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Holonomy and (stated) skein algebras
in combinatorial quantization

Matthieu Faitg

Abstract. The algebra Lg;n.H/ was introduced by Alekseev, Grosse, and Schomerus and by
Buffenoir and Roche and quantizes the character variety of the Riemann surface †g;n n D
(where D is an open disk). In this article we define a holonomy map in that quantized set-
ting, which associates a tensor with components in Lg;n.H/ to tangles in .†g;n nD/ � Œ0; 1�,
generalizing previous works of Buffenoir and Roche and of Bullock, Frohman, and Kania-
Bartoszynska. We show that holonomy behaves well for the stack product and the action of
the mapping class group; then we specialize this notion to links in order to define a general-
ized Wilson loop map. Thanks to the holonomy map, we give a geometric interpretation of
the vacuum representation of Lg;0.H/ on L0;g.H/. Finally, the general results are applied to
the case H D Uq2.sl2/ in relation to skein theory and the most important consequence is that
the stated skein algebra of a compact oriented surface with just one boundary edge is isomor-
phic to Lg;n.Uq2.sl2//. Throughout the paper, we use a graphical calculus for tensors with
coefficients in Lg;n.H/ which makes the computations and definitions very intuitive.
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1. Introduction

Let G be a Lie group, usually assumed connected and simply-connected (the most
studied example is G D SL2.C/) and let †g;n be the compact oriented surface of
genus g with n punctures (or equivalently with n open disks removed). It is well
known that the moduli space of flat G-connections on †g;n can be identified with
the G-character variety Hom.�1.†g;n/;G/=G, thanks to the identification between a
connection and its holonomy on closed curves. The character variety carries a Poisson
structure due to Atiyah and Bott [7] and Goldman [28]. A good survey of these topics
is [33].

There exist several quantizations of the character variety. In this paper we will use
the combinatorial quantization, developped in the mid-90s by Alekseev [2], Alekseev,
Grosse, and Schomerus [3, 4], and Buffenoir and Roche [11]. The starting point of
this approach is the combinatorial description of the Atiyah–Bott–Goldman Poisson
structure by Fock and Rosly [26], based on classical r-matrices, and the definition of
an algebra Lg;n which quantizes Hom.�1.†g;n nD/;G/, where D is an open disk.

More precisely, let †o
g;n D †g;n nD, Ag;n D Hom.�1.†o

g;n/; G/ and CŒAg;n�

be the corresponding algebra of functions. Since �1.†o
g;n/ is a free group, any r 2

Ag;n Š G2gCn can be identified with a collection of 2g C n elements of G

r D .hb1 ; ha1 ; : : : ; hbg ; hag ; hmgC1 ; : : : ; hmgCn/ 2 G2gCn

which are the holonomies of the generators bi ; ai ; mi of �1.†o
g;n/. Let

V

T W G !
EndC.V / be a finite-dimensional representation of G. Then we define matrices
V

B.1/;
V

A.1/; : : : ;
V

B.g/;
V

A.g/;
V

M.g C 1/; : : : ; V

M.g C n/ 2 CŒAg;n�˝ EndC.V /

with coefficients in CŒAg;n� as follows

.
V

B.k/ij /.r/ D
V

T ij .hbk /; .
V

A.k/ij /.r/ D
V

T ij .hak /; .
V

M.k/ij /.r/ D
V

T ij .hmk /

where
V

T ij are the matrix coefficients of
V

T in some basis. Since one has CŒAg;n� Š
CŒG�˝.2gCn/, the coefficients of the matrices

V

B.k/;
V

A.k/;
V

M.k/ (with V running in
the set of finite-dimensional G-modules) generate CŒAg;n� as an algebra. The Fock–

Rosly description expresses the Poisson brackets ¹ VB.k/ij ;
W

B.k0/i 0j 0º, ¹
V

B.k/ij ;
W

A.k0/i 0j 0º,
etc., in a matrix form thanks to a classical r-matrix. The idea of combinatorial quan-
tization is to replace the Lie group G by the quantum group Uq.g/ (q D eh) and the
classical r-matrix r 2 g˝2 by the quantumR-matrixR 2Uq.g/˝2, modulo non-trivial
commutation relations governed by R. This defines an associative non-commutative
algebra Lg;n, generated by coefficients

V

B.k/ij ;
V

A.k/ij ;
V

M.k/ij (with V now running
in the set of finite-dimensional Uq.g/-modules), and such that the commutator of two
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such matrix coefficients contains the Fock–Rosly Poisson bracket at the order 1 in h.
An important feature of Lg;n is that it is endowed with aUq.g/-module-algebra struc-
ture, which is the quantized version of the action of G on CŒAg;n� by conjugation; in
particular, we have a subalgebra Linv

g;n of invariant elements, which is the quantized
version of the observables CŒAg;n�

G . The definition of Lg;n is purely algebraic and
works for any ribbon Hopf algebra H instead of Uq.g/, hence defining an algebra
Lg;n.H/ (see Definition 2.1). In this paper there are no further assumptions on H .

Holonomy and Wilson loops (trace of the holonomy in some representation) are
very natural notions in classical gauge theory. Thus, an immediate problem is to define
the corresponding notions in the quantized setting. This is has been achieved first
in [14], where the authors defined a Wilson loop operation for framed links in the
thickened surface with values in Linv

g;n.H/; the element associated to a framed link
is written as the quantum trace of some matrix with coefficients in Lg;n.H/ which
can be interpreted as the holonomy of the link. The definition is however quite com-
plicated and it is difficult to explicitly compute examples. These notions have been
redefined in a more conceptual way in [12] (also see [13]), but in a formalism which
is dual to the one used in [14] and here (the bridge between the two formalisms is
discussed in detail in [20, Section 5.1.3]). More precisely, in [12], the authors use a
description of the surface as a fat graph and encode operations on this graph by objects
called multitangles; then holonomy is defined as a particular multitangle. Comput-
ing explicit examples requires to use several rules and is still a bit tricky. Finally,
in [8, Section 8], a Wilson loop functor for H -colored tangles in a thickened punc-
tured disk (i.e., g D 0, n� 0) is defined as a generalization of the Reshetikhin–Turaev
functor in a manner similar to ours. Let us also mention that a holonomy functor is
defined in [36, Section 5], but only for paths in a non-thickened ribbon graph.

Let us now describe the content of the paper. We view the surface †o
g;n as the fat

graph defined by the generators of �1.†o
g;n/ (see Figures 1 and 2). Our approach is

based on a graphical calculus introduced in Section 3, which transforms complicated
computations for tensors with coefficients in Lg;n.H/ into simple manipulations of
diagrams. This graphical calculus is an extension of the graphical calculus in rib-
bon categories; namely we add a new diagram, called a handle, which corresponds
to a matrix with coefficients in Lg;n.H/. With this tool at hand, the definition of
holonomy is almost obvious and it is transparent that it is a generalization of the
Reshetikhin–Turaev functor. Moreover, this formulation allows us to define holonomy
for tangles (and not just links) in †o

g;n � Œ0; 1�; this is especially useful to establish
the relation with stated skein algebras.

Section 2 is devoted to preliminaries about surfaces, Hopf algebras, the Reshe-
tikhin–Turaev functor and the algebra Lg;n.H/. In Section 3, we introduce the graph-
ical calculus for tensors with coefficients in Lg;n.H/, which is our main technical
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tool in this paper, and we reformulate the defining relations of Lg;n.H/ in terms of
diagram equalities.

In Section 4 we define holonomy for tangles in †o
g;n � Œ0; 1� (Definition 4.2).

The reason why this operation is called holonomy is explained after Proposition 4.8.
We show that the holonomy is compatible with the stack product (Theorem 4.4, this
result was known for links [14, Theorem 1], [12, Theorem 8] and is similar to [8,
Theorem 8.1] for gD 0) and that it behaves well under the action of the mapping class
group (Theorem 4.5, with nD 0 for simplicity); the proofs are entirely diagrammatic.
We then specialize this definition to framed based links and provide a Hennings-type
description of the holonomy for such links; this can be compared with the rules given
in [12, Section 6.2]. Finally, we define generalized Wilson loops for framed links
colored by symmetric linear forms (as in the Hennings setting [30]) and with values
in Linv

g;n.H/, namely the subalgebra of invariant elements. Enlarging the set of colors
is important whenH is non-semisimple because in that case we have symmetric linear
forms which are not characters of someH -module and hence if we color the links only
by H -modules (i.e., by characters) we miss a lot of interesting invariant elements.

Let †o;�
g;n be †o

g;n with one point removed on its boundary. In Section 5 we take
H D Uq2.sl2/ (quantum group of sl2 at a formal parameter q2) and we show that the
stated skein algebra � s

q.†
o;�
g;n/ (see [19, 34]) is isomorphic to Lg;n.Uq2.sl2// (Theo-

rem 5.3), answering the question of [19] about the relation between the two theories.
In particular, this gives a presentation by generators and relations of � s

q.†
o;�
g;n/ (Corol-

lary 5.5). The isomorphism is defined as follows. For H D Uq2.sl2/, all the strands
can be colored without loss of generality by the fundamental representation V2, with
basis .v�; vC/. Thanks to the isomorphism V �2 Š V2, the holonomy hol.T s/ of a
stated tangle T s 2 � s

q.†
o;�
g;n/ does not depend on the orientation of its strands and is

an element of Lg;n.Uq2.sl2// ˝ V ˝k2 , where k is the number of boundary points
of T s. Then the isomorphism between � s

q.†
o;�
g;n/ and Lg;n.Uq2.sl2// is simply given

by reading the component of the tensor hol.T s/ indexed by the state of T s. Our result
shows that in the case of the surfaces†o;�

g;n, the stated skein algebra is a particular case
of the algebra Lg;n.H/. So, it might be possible to generalize stated skein algebras to
other Hopf algebras than Uq2.sl2/; in particular the states would be vectors in some
representations (for Uq2.sl2/ the states �;C correspond to the basis vectors v�; vC
of V2).

Finally, in Section 6 we explain that the stacking representation of†o
g;0 � Œ0; 1� on

†o
0;g � Œ0;1� corresponds through holonomy to the vacuum representation of Lg;0.H/

on L0;g.H/ (Theorem 6.4). As a result, whenH DUq2.sl2/, the representation of the
(usual) skein algebra �q.†g;0/ obtained via the Wilson loop map and the representa-
tion of Linv

g;0.Uq2.sl2// on Linv
0;g.Uq2.sl2// is equivalent to the obvious representation

of �q.†g;0/ on �q.†0;gC1/ defined by stacking (Corollary 6.7). When q is a root of
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unity �, we obtain more interesting (and finite-dimensional) representations thanks to
the use of the restricted quantum group xU�2.sl2/, as discussed in Section 7. If one
wants to study explicitly these representations of skein algebras at roots of unity in
higher genus (here we only describe explicitly the case of the torus g D 1), one prob-
lem is to describe Linv

0;g.
xU�2.sl2//, which for g > 1 is complicated both as a vector

space and as an algebra. We hope that the generalized Wilson loops defined in this
paper may help to understand this space (for instance to find an interesting set of
generators or even better a basis in which the multiplication has a suitable form).

Remark 1.1. During the preparation of this manuscript, similar results as in Theo-
rem 5.3 and Theorem 6.4 were proved independently in [29] (see Remark 2.21 and
Theorem 6.4 of that paper, respectively, for the corresponding statements). That work
used the framework of factorization homology [9] and its relationship to skein theory
established in [16, 17], and so our proofs are very different.

2. Preliminaries

2.1. Surfaces

We denote by †g;n the compact oriented surface of genus g with n punctures, except
in Section 6 and Section 7 where †g;n will be the compact oriented surface of genus
g with n open disks removed (i.e., we remove open neighborhoods of the punctures).
Let D � †g;n be an open disk disjoint from the punctures, then we denote †o

g;n D
†g;nnD. We put an orientation on the boundary curve induced by the deletion of D,
as indicated in Figures 1 and 2.

The surface†o
g;n is represented in Figure 1 under a form suitable for our purposes

(for the moment do not consider the black dot on the boundary in the figures); we
represent both the situations with punctures and with open disks removed. This is not
the usual view of†o

g;n. For instance,†o
2;0 and†o

0;2 are represented in a more familiar
way in Figure 2. To pass from one view to another, retract †o

g;n to a neighborhood

bi ai
mj

Figure 1. Surface †o;�
g;n and generators of the fundamental group.
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Figure 2. Surfaces †o;�
2;0

and †o;�
0;2

with canonical fat graphs embedded on them.

of the canonical loops generating the fundamental group or conversely embed the fat
graph of Figure 1 in the corresponding surface like in Figure 2.

The fundamental group �1.†o
g;n/ is a free group generated by the loops b1;a1; : : : ;

bg ; ag ;mgC1; : : : , mgCn displayed in Figure 1; moreover, the basepoint of �1.†o
g;n/

is represented by a black square dot.
Let MCG.†o

g;n/ be the mapping class group of †o
g;n. For simplicity, we will

restrict to g � 1; nD 0 for the results using or involving the mapping class group. So,
we recall that MCG.†o

g;0/ is the group of isotopy classes of orientation-preserving
diffeomorphisms †o

g;0 ! †o
g;0 which fix the boundary pointwise. A useful feature is

that this group is generated by 2g C 1 Dehn twists, called the Humphries generators
(see [24]).

Finally, we let †o;�
g;n be the surface †o

g;n with one point removed from the bound-
ary curve induced by the deletion of the open disk D. This is represented by a big
black dot in Figures 1 and 2. Note that �1.†

o;�
g;n/ D �1.†

o
g;n/ and MCG.†o;�

g;n/ D
MCG.†o

g;n/.

2.2. Hopf algebras, modules, Reshetikhin–Turaev functor

LetH be a braided Hopf algebra with coproduct�, counit ", antipode S and universal
R-matrix R (see [31, Chapter VIII]). We will often write R D ai ˝ bi (with implicit
summation on i ) and we set R0 D bi ˝ ai . The Drinfeld element and its inverse are

u D S.bi /ai ; u�1 D S�2.bi /ai (1)

It implements S2 by conjugation: S2.x/ D uxu�1. In all this paper we assume that
H is ribbon, which means that there exists a central and invertible element v 2 H
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such that
�.v/ D .R0R/�1v ˝ v; S.v/ D v

and thus
".v/ D 1; v2 D uS.u/:

It follows that H is pivotal; indeed, the element g D uv�1 satisfies

�.g/ D g ˝ g; for all x 2 H; S2.x/ D gxg�1: (2)

For any finite-dimensional H -module I , g provides an isomorphism of H -modules

eI W I �� �! I;

evx; 7! g�1x;
(3)

where evx.'/ D '.x/ for ' 2 I � and x 2 I . If I is a finite-dimensional H -module,
we denote by

I

T WH ! EndC.I / Š Matdim.I /.C/

the representation morphism, and by
I

h D I

T .h/ the representation of h 2 H on I .
The coefficients

I

T ij 2 H� of
I

T in some basis are called the matrix coefficients of the
H -module I . The restricted dual of H , denoted H ı, is the vector subspace of H�

generated by all the matrix coefficients of all the finite-dimensional H -modules. We
assume that H ı separates the points, which means that if an equality is true in all the
finite-dimensional representations, then it is true inH . We denote by O.H/ the vector
space H ı endowed with the canonical Hopf algebra structure dual to that of H .

Let modl.H/ be the category of finite-dimensional left H -modules. The braiding
cI;J W I ˝ J ! J ˝ I , its inverse c�1I;J W J ˝ I ! I ˝ J and the twist �I W I ! I are
defined by

cI;J .x ˝ y/ D biy ˝ aix; c�1I;J .y ˝ x/ D S.ai /x ˝ biy; �I .x/ D v�1x:

The H -action on the dual I � is .h'/.x/ D '.S.h/x/ and the duality morphisms
bI WC! I ˝ I �, dI W I �˝ I ! C, b0I WC! I �˝ I , d 0I W I ˝ I �! C are defined by

bI .1/D vi ˝ vi ; dI .'˝ x/D '.x/; b0I .1/D vi ˝ g�1vi ; d 0I .x˝ '/D '.gx/

where .vi / is a basis of I , .vi / is the dual basis and we use Einstein’s convention for
pairs of indices (implicit summation).

It is well known ([37], see also [32] and [31, Section XIV.5.1]) that there is a
tensor functor FRTWRGH ! modl.H/, where RGH is the category of H -colored
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ribbon graphs; FRT is called the Reshetikhin–Turaev functor and takes the following
values:

FRT

 
I
!
D idI ; FRT

 
I

!
D idI� ; FRT

0B@ f

I

J
1CAD .f W I ! J /;

FRT

�
IJ
�
D cI;J ; FRT

 
I
!
D �I ; FRT

�
I

�
D bI ;

FRT

�
I
�
D dI ; FRT

�
I
�
D b0I ; FRT

�
I
�
D d 0I :

In the sequel, we identify a ribbon graph with its evaluation through FRT. Note that
we read diagrams from bottom to top.

2.3. Algebra Lg;n.H / and related notions

Consider 2g C n copies of the vector space H ı (restricted dual, see above) indexed
by the simple closed loops bi ; ai ; mj which generate �1.†o

g;n/ (see Figure 1), and
denote by Vg;n their direct sum:

Vg;n D H ıb1 ˚H ıa1 ˚ � � � ˚H ıbg ˚H ıag ˚H ımgC1 ˚ � � � ˚H ımgCn :

Let ib1 ; ia1 ; : : : ; ibg ; iag ; imgC1 ; : : : ; imgCn WH ı ! Vg;n be the canonical injections
in each copy. We define

I

B.1/ij D ib1.
I

T ij /;
I

A.1/ij D ia1.
I

T ij /; : : : ;

I

B.g/ij D ibg .
I

T ij /;
I

A.g/ij D iag .
I

T ij / (4a)

and
I

M.g C 1/ij D imgC1.
I

T ij /; : : : ;
I

M.g C n/ij D imgCn.
I

T ij / (4b)

for all I; i; j . The vector space Vg;n is generated by these elements. Now, consider the
tensor algebra T .Vg;n/; by definition a generic element in T .Vg;n/ is a linear combi-
nation of formal products of the elements introduced in (4). We identify the elements
of Vg;n with their obvious embedding in T .Vg;n/. Then T .Vg;n/ is generated as an
algebra by the coefficients of the matrices

I

B.1/;
I

A.1/; : : : ;
I

B.g/;
I

A.g/;
I

M.g C 1/; : : : ; I

M.g C n/ 2 T .Vg;n/˝ EndC.I /

for all the finite-dimensional H -modules I .
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Definition 2.1. The algebra Lg;n.H/ is the quotient of T .Vg;n/ by the relations given
by the following matrix equalities:

I˝J
X.i/D I

X.i/1

IJ¾R0 JX.i/2 IJ¾R0�1 for 1 � i � g C n; (5)
IJ

R
I

B.i/1

IJ¾R0 JA.i/2 D J

A.i/2
IJ

R
I

B.i/1
IJ

R�1 for 1 � i � g; (6)
IJ

R
I

X.i/1
IJ

R�1
J

Y .j /2 D
J

Y .j /2
IJ

R
I

X.i/1
IJ

R�1 for 1 � i < j � g C n; (7)

where X.i/ is A.i/ or B.i/ if 1 � i � g and is M.i/ if g C 1 � i � g C n, and the
same applies to Y.j /.

Let us explain the notations used in this definition. If we have a matrix
I

U 2 Lg;n.H/˝ EndC.I /

(resp.
J

V 2 Lg;n.H/ ˝ EndC.J /) then we denote by
I¾U1 (resp.

I¾V2) its canonical
embedding in Lg;n.H/˝ EndC.I /˝ EndC.J /. In components, this reads

.

I¾U1/ikjl D I

U ij ı
k
l (resp. .

I¾V2/ikjl D ıij JV kl ).
IJ

R 2 EndC.I / ˝ EndC.J / is the representation of R 2 H ˝ H on I ˝ J , and we
implicitly identify it with 1˝ IJ

R 2 Lg;n.H/˝ EndC.I /˝ EndC.J /. Similarly, for
R0; R�1; R0�1 (recall that R0 is the flip of R). Hence, these relations are equalities in
Lg;n.H/˝ EndC.I /˝ EndC.J /. To obtain the defining relations of Lg;n.H/, one
computes the matrix products in each side of these equalities and identifies the coef-
ficients of the resulting matrices. Note that the defining relations may differ slightly
from one paper to another, depending on the conventions chosen by the authors. This
algebra first appeared in this form in [2,4,6]; in [3,11] to each fat graph � describing
the surface and satisfying certain properties was associated an algebra L�.H/.

By construction we have the naturality of the (families of) matrices
I

X.i/, namely
for any H -morphism f W I ! J it holds

f
I

X.i/ D J

X.i/f (8)

where X.i/ is A.i/ or B.i/ if 1 � i � g and is M.i/ if g C 1 � i � g C n (and we
identify f with its matrix).

We define a right action � of H on Lg;n.H/ by

I

X.i/ � h D
I¾h0 IX.i/ IÀS.h00/ (9a)

i.e.,
I

X.i/
j

k
� h D

I¾h0j
l

I

X.i/lm

IÀS.h00/mk ; (9b)
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where we use Sweedler’s notation for the coproduct

�.h/ D h0 ˝ h00;

Einstein’s convention for pairs of indices and we recall that I
x is the representation

of x 2 H on I . Then it is straightforward to check that � endows Lg;n.H/ with a
structure of (right)H -module-algebra. Equivalently, one can work with the associated
left O.H/-coaction �WLg;n.H/! O.H/˝Lg;n.H/:

�.
I

X.i// D I

T
I

X.i/S.
I

T / (10a)

i.e.,
�.

I

X.i/
j

k
/ D I

T
j

l
S.

I

Tmk /˝
I

X.i/lm; (10b)

where in the right-hand side of the first equality we identify O.H/ (resp. Lg;n.H/)
with the subalgebra O.H/ ˝ 1 (resp. 1 ˝ Lg;n.H/). The subalgebra of invariant
elements is

Linv
g;n.H/ D ¹x 2 Lg;n.H/ j for all h 2 H; x � h D ".h/xº:

Equivalently, an element x is invariant if �.x/ D "˝ x.
Let x 2 �1.†o

g;n/ be a simple loop (i.e., without self-crossings). We say that x is
positively oriented if its orientation looks as follows (this represents a neighborhood
of the basepoint in Figure 1):

(11)

The lift
IQx 2 Lg;n.H/˝ EndC.I / of a positively oriented simple loop x in the rep-

resentation I is defined as follows: first express x in terms of the generators of
�1.†

o
g;n/, then replace each generator by the corresponding matrix in the representa-

tion I :
b1 7!

I

B.1/; a1 7!
I

A.1/; : : : ;

and finally multiply the resulting matrix by I
vN.x/, where v 2H is the ribbon element

andN.x/ 2Z is defined in [20, Section 5.3.2] (the definition ofN.x/ is not important
for the sequel). For instance,

Ieb1 D I

B.1/;
Iea1 D I

A.1/; : : : :

If x is negatively oriented, then x�1 is positively oriented and the lift of x is defined
as

IQx D .
I

ex�1/�1:
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Note that in general
Ifxy ¤ IQx IQy, due to the fact thatN.xy/¤N.x/CN.y/. A remark-

able property is that the lifts of a positively-oriented simple loop x satisfy the fusion
relation (5) [20, Proposition 5.3.14]:

I˝J
Qx D IQx1

IJ¾R0 JQx2 IJ¾R0�1:
Without the normalization I

vN.x/ this last equality would not be true.
As already said, for results involving the mapping class group we will restrict to

g� 1;nD 0 for simplicity (the generalization to any g;n is possible but would require
more discussion). The lift of f 2 MCG.†o

g;0/ is an automorphism

Qf WLg;0.H/! Lg;0.H/

defined on generators by

Qf . IB.i// D
I

Af .bi /; Qf . IA.i// D
I

Af .ai / (12)

which obviously means

Qf . IB.i/kl / D .
I

Af .bi //kl ; Qf . IA.i/kl / D .
I

Af .ai //kl :

It holds Af ı g D Qf ı Qg. Moreover, for any simple loop x 2 �1.†o
g;0/:

Qf . IQx/ D
I

ef .x/: (13)

Recall that in [23] we assumed H to be finite-dimensional and factorizable in order
to obtain a projective representation of MCG.†g;0/ on some subspace Inv..H�/˝g/
of .H�/˝g . Without these assumptions, this representation is a priori not defined.
Nevertheless, the lift of a mapping class can be defined without these assumptions
on H , as we just did above.

3. Diagrammatic description of Lg;n.H /

We will define a graphical calculus for the algebras Lg;n.H/. The basic observation
is that these algebras are defined in a matrix way, and that we have matrices labeled by
finite-dimensional H -modules. Hence, we will extend the usual evaluation of H -col-
ored ribbon graphs in the sense of [37] by adding a diagram corresponding to such
matrices.
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We denote by
I

X an element of Lg;n.H/˝ EndC.I / (in other words a matrix with
coefficients in Lg;n.H/ of size dim.I /), where I is a finite-dimensional H -mod-
ule. A typical example is a product of the matrices of generators

I

A.i/;
I

B.j /;
I

M.k/;
namely,

I

X D I

A.i1/
l1

I

B.j1/
m1

I

M.k1/
n1 : : :

I

A.is/
ls

I

B.js/
ms

I

M.ks/
ns (14)

with l˛; m˛ , n˛ 2 Z and 1 � i˛; j˛ � g, g C 1 � k˛ � g C n; for instance
I

X D I

M.3/�2
I

B.1/�1
I

A.2/

(it is not obvious that the matrices
I

A.i/;
I

B.j /;
I

M.k/ are invertible; a simple proof is
given in Proposition 3.3 below). In particular, a matrix of the form (14) is defined for
any I and by (8) it satisfies naturality

f
I

X D J

Xf: (15)

Note that the lift
IQx of a simple loop x 2 �1.†ıg;n/ is of the form (14) except that there

is the normalization I
vN.x/, but since v is central the lifts also satisfies naturality.

Let .vi / be a basis of I and .vj / be the dual basis. Then we have an isomorphism
of vector spaces

Lg;n.H/˝ EndC.I /
�!Lg;n.H/˝ I ˝ I �;

I

X 7! I

X ij ˝ vi ˝ vj ;
(16)

where we use Einstein’s convention for pairs of indices. In this paper, we systemati-
cally identify a matrix

I

X with
I

X ij ˝ vi ˝ vj . Such an element will be represented by
the following diagram:

I

X

I

(17)

The module I colors the strand while the matrix
I

X colors the handle. We define a
graphical element corresponding to the other possible orientation of the strand:

I

X
I

X

I

I I

I DD I

X i
j ˝ vi ˝ g 1vj ;

IdI eI
(18)

where eI WI ��! I is the isomorphism (3). Let us explain this. To define the graphical
element on the left, we put a ribbon graph atop the one defined in (17). This ribbon
graph represents a morphism I �˝ I ��! I �˝ I in modl.H/, which can be applied



Holonomy and (stated) skein algebras in combinatorial quantization 13

to
I�
X ij ˝ vi ˝ h‹; vj i and gives the element in Lg;n.H/˝ I �˝ I written at the right.

The converse to (18) is

I

I

X
I

X

D I

I I

IdIeI
(19)

Note that the two previous diagrammatic identities are completely parallel to the rela-
tion between the values assigned by the Reshetikhin–Turaev functor to cups with
different orientations.

The Kronecker product of two matrices
I

X;
J

Y , defined by
I

X ˇ J

Y D I

X ij
J

Y kl ˝ vi ˝ vj ˝ wk ˝ wl

(where .vi / is a basis of I , .wk/ is a basis of J and .vj /; .wl/ are their respective
dual bases), is represented by the gluing of the corresponding graphical elements:

I J

J

Y
I

X

(20)

Definition 3.1. A general diagram is obtained by gluing (as in (20)) several copies
of the handle diagrams introduced in (17) and (18), and by putting atop an oriented
and colored compatible ribbon graph G. The evaluation of diagrams is a map zFRT

which consists of applying idLg;n.H/˝FRT.G/ to the tensors associated to the handle
diagrams introduced previously, where FRT is the Reshetikhin–Turaev functor. The
evaluation of a diagram is an element of Lg;n.H/˝ J1 ˝ � � � ˝ Jl , where J1; : : : ; Jl
are H -modules. This is depicted as follows:

zFRT

0BBBBBB@
G

J1 Jl

I1 Ik

I1

X1

Ik

Xk

1CCCCCCA
D .idLg;n.H/ ˝ FRT.G// ı zFRT

0@I1 Ik

I1

X1

Ik

Xk

1A
where the double arrows mean that the strands can carry any orientation.
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In the sequel, we always identify a diagram with its evaluation through zFRT. For
instance,

I

I

Y
I

X

D I

Xj
I

Y kl ˝ FRT
�
I I

I

�
.vi ˝ vj ˝ vk ˝ vl/

D I

X ij
I

Y
j

l
˝ vi ˝ vl D .

I

X
I

Y /il ˝ vi ˝ vl ;

and we see that this diagram represents the matrix product
I

X
I

Y . Similarly,

I
D I

X ij ˝ FRT
�

I
�
.vi ˝ vj / D

I

X ij
I
g
j
i

D tr. Ig
I

X/ D trq s.
I

X/ (21)

represents the quantum trace of
I

X .

Proposition 3.2. (1) The defining relations (5)–(7) of Lg;n.H/ are respectively
equivalent to the diagrammatic relations (22)–(24) below:

JI

I˝J

X .i/

D

I J

I

X.i/
J

X.i/

for all i , (22)

IJ

J

A.i/
I

B.i/

D

J I

J

A.i/
I

B.i/

for all i ,

(23)

IJ

I

X.i/
J

Y .j /

D

J I

J

Y .j /
J

Y .j /

for i < j ,

(24)
We recall that X.i/ is A.i/ or B.i/ if 1 � i � g and is M.i/ if g C 1 � i � g C n,
and the same applies to Y.j /.
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(2) The naturality relation (15) is equivalent to each one of the following dia-
grammatic relations:

I IJ J

D
I

X
J

X

f f
(25a)

I J I J

D
I

X
J

X

f f
(25b)

where
I

X is any matrix of the form (14).

Proof. (1) First note that for any a; b 2 H , it holds

.
I
a
I

X.i/
I

b/
j

k
˝ vj ˝ vk D

I

X.i/
j

k
˝ avj ˝ S�1.b/vk : (26)

To show (22), writeRD a˛ ˝ b˛ (with implicit summation on ˛), so that (5) becomes

I˝J
X.i/ D . IX.i/

I¾b˛ I¾bˇ /1. J¾a˛ J

X.i/

JÀS.aˇ //2:
Hence, by (26) and the definition of the braiding in modl.H/ we have

I˝J
X.i/kmln ˝ vk ˝ wm ˝ wn ˝ vl

D . IX.i/
I¾b˛ I¾bˇ /kl . J¾a˛ J

X.i/

JÀS.aˇ //mn ˝ vk ˝ wm ˝ wn ˝ vl
D I

X.i/kl
J

X.i/mn ˝ vk ˝ a˛wm ˝ aˇwn ˝ S�1.b˛bˇ /vl
D I

X.i/kl
J

X.i/mn ˝ vk ˝ S.a˛/wm ˝ S.aˇ /wn ˝ bˇb˛vl
D I

X.i/kl
J

X.i/mn ˝ .idI ˝ idJ ˝ c�1J�;I�/.vk ˝ S.a˛/wm ˝ b˛vl ˝ wn/
D I

X.i/kl
J

X.i/mn ˝ .idI ˝ idJ ˝ c�1J�;I�/
ı .idI ˝ c�1J;I� ˝ idJ�/.vk ˝ vl ˝ wm ˝ wn/:

This corresponds to the desired diagrammatic relation. To show (23) we first have to
rewrite (6):

IJ

R
I

B.i/1

IJ¾R0 JA.i/2 IJR D J

A.i/2
IJ

R
I

B.i/1

D J

A.i/2.
I¾a˛/1. J¾b˛/2 I

B.i/1

D .
I¾a˛/1 J

A.i/2
I

B.i/1.

J¾b˛/2:



M. Faitg 16

Using the properties of the antipode S and of R (see [31]), we see that a˛aˇ ˝
bˇS.b˛/ D 1˝ 1; hence we get

J

A.i/2
I

B.i/1 D .
I¾a˛/1 IJR I

B.i/1

IJ¾R0 JA.i/2 IJR JÀS.b˛/2
D .

I¾a˛ I¾aˇ I

B.i/

I¾b I¾aı/1. J¾bˇ J¾a J

A.i/

J¾bı JÀS.b˛//2:
By (26), the fact that .S ˝ S/.R/ D R and the definition of the braiding in modl.H/
we get

J

A.i/kl
I

B.i/mn ˝ wk ˝ wl ˝ vm ˝ vn

D .
I¾a˛ I¾aˇ I

B.i/

I¾b I¾aı/mn . J¾bˇ J¾a J

A.i/

J¾bı JÀS.b˛//kl ˝ wk ˝ wl ˝ vm ˝ vn
D I

B.i/mn
J

A.i/kl ˝ bˇawk ˝ S�1.bıS.b˛//wl ˝ a˛aˇvm ˝ S�1.baı/vn
D I

B.i/mn
J

A.i/kl ˝ bˇS.a /wk ˝ b˛bıwl ˝ a˛aˇvm ˝ aıbvn
D I

B.i/mn
J

A.i/kl ˝ .idI ˝ cJ;I� ˝ idJ�/.bˇS.a /wk
˝ aˇvm ˝ bıwl ˝ aıbvn/
D I

B.i/mn
J

A.i/kl ˝ .idI ˝ cJ;I� ˝ idJ�/

ı .cJ;I ˝ cJ�;I�/.vm ˝ S.a /wk ˝ bvn ˝ wl/
D I

B.i/mn
J

A.i/kl ˝ .idI ˝ cJ;I� ˝ idJ�/ ı .cJ;I ˝ cJ�;I�/
ı .idJ ˝ c�1I;J� ˝ idI�/.vm ˝ vn ˝ wk ˝ wl/

which corresponds to the desired diagrammatic relation. (24) is proven in a similar
way.

(2) By (15), we have
I

X ij ˝ .f ˝ idI�/.vi ˝ vj / D
I

X ij ˝ f ki vk ˝ vj
D .f I

X/kj ˝ vk ˝ vj
D . JXf /kj ˝ wk ˝ wj
D J

Xkl ˝ wk ˝ f lj wj
D J

Xkl ˝ .idI ˝ f �/.wk ˝ wl/

where f �W J � ! I � is the transpose of f . This gives the first diagram below. The
second diagram is equivalent to the first thanks to (18) and the equality f ı eI D
eJ ı f ��.

This diagrammatic reformulation of the defining relations of Lg;n.H/ implies
two basic well-known properties of the matrices

I

B.i/;
I

A.i/;
I

M.i/.
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Proposition 3.3. Let X.i/ be A.i/ or B.i/ if 1 � i � g and be M.i/ if g C 1 � i �
g C n.

(1) The reflection equation
IJ

R12
I

X.i/1.

IJ¾R0/12 JX.i/2 D J

X.i/2
IJ

R12
I

X.i/1.

IJ¾R0/12
holds and is equivalent to the following diagrammatic equality:

I J

I

X.i/
J

X.i/

D

I J

I

X.i/
J

X.i/

(27)

(2) The matrix
I

X.i/ is invertible with inverse

I

X.i/�1 D I
u�1

IÀS.bi / t I�X.i/ I¾ai
where u is the Drinfeld element (1), t is the transpose and R D ai ˝ bi . Diagramati-
cally,

I

I

X.i/ 1

D

I

I

X.i/

(28)

Proof. (1) This is a consequence of (25) and (22):

=

JI JI JI

=

I˝J

X .i/
I

X.i/
J

X.i/
J ˝I

X .i/

= =

I

X.i/
J

X.i/
I

X.i/
J

X.i/

JI

JI
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It is left to the reader to check that the diagrammatic equality is equivalent to the
matrix equality.

(2) This is also a consequence of (25) and (22):

I

Idim.I / D
I

D

I I

D D

I˝I

X .i/
C

X.i/

I

X.i/
I

X.i/
I

X.i/
I

X.i/

Again, it is left to the reader to check using (18) that the diagrammatic and matrix
equalities are equivalent.

Remark 3.4. The proof of the previous proposition uses only the naturality and the
fusion relation (5), hence the result applies to any family of matrices .

I

X/I2modl .H/

satisfying these properties and in particular to the lifts .
IQx/I2modl .H/ of a positively-

oriented simple loop x 2 �1.†ıg;n/ (see Section 2.3).

4. Holonomy and Wilson loops

4.1. General definition for tangles

Recall that the surface †o;�
g;n is defined in Section 2.1; it is a punctured bordered sur-

face in the sense of [34, Section 2] and [19, Section 2.2].
Let † D †o;�

g;n � Œ0; 1� be the thickening of †o;�
g;n. For a point p D .x; t/ 2 †, we

call t 2 Œ0; 1� the height of p. The following definition is taken from [34, Section 2.2],
except that we add an orientation and a coloring on the tangles. Note however that
we restrict to the surfaces †o;�

g;n (we do not consider more general punctured bordered
surfaces).

Definition 4.1. (1) An H -colored @†-tangle is an oriented, framed, compact, prop-
erly embedded 1-dimensional submanifold T � † such that

• at every point of @T D T \ @† the framing is vertical;
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• the points of @T have distinct heights;

• each connected component of T is colored (i.e., labeled) by a finite-dimensional
H -module.

We denote by T .†
o;�
g;n/ the set of isotopy classes of such tangles.

(2) An isotopy of H -colored @†-tangles is an isotopy preserving these defining
properties.

(3) An H -colored @†-tangle diagram is the projection of T � †o;�
g;n � Œ0; 1� on

†
o;�
g;n, together with the colors, the over/underpassing information at each double point

and the height information at each boundary point. We assume as usual that T is in
general position before doing the projection.

(4) Let o be an orientation of the boundary curve @†o;�
g;n. A @†-tangle diagram

is o-ordered if the heights of the boundary points are increasing when one goes along
@†

o;�
g;n according to o.

Up to isotopy, a @†-tangle T can always be presented by a o-ordered diagram.
More precisely, up to isotopy, the diagram of an H -colored @†-tangle T can always
be presented as follows:

T

VkV1

K1 KrI1 Il J1 Jm

(29)
where the handles contain only bunches of parallel strands, T is a (non-unique) tangle,
the H -modules Ii ; Ji ; Ki ; Vi color the strands, the double arrows mean that each
strand is oriented, the boundary points are all on the line at the top of the rectangle
and the big dot (�) is the point that we have removed from @†o

g;n. Last but not least,
the boundary points of T have increasing heights with respect to the orientation of the
boundary represented by the arrow. Note that k may be equal to 0, which means that
T is a link (no boundary points).

Definition 4.2. Let T 2 T .†
o;�
g;n/ be represented by anH -colored @†-tangle diagram

as in (29). The holonomy of T is an element

hol.T / 2 Lg;n.H/˝ V a11 ˝ � � � ˝ V akk
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defined as the evaluation (see Definition 3.1) of the following diagram:

T

I1 Il

B .i/
J1 Jm K1 Kr

M .j /

VkV1

I1 Il J1 Jm K1 Kr

The symbol ai 2 ¹#;"º depends on the orientation of the strands (ai D# if the strand
is oriented downwards and ai D" else) and we define V #i D Vi and V "i D V �i . If T

does not have boundary points, then hol.T / is just an element of Lg;n.H/.

We note that hol.T / does not depend on the choice of the tangle T . Indeed, since
the Reshetikhin–Turaev functor is an isotopy invariant, the evaluation of the diagram
in Definition 4.2 depends only on the isotopy class of T . Moreover, if we drag certain
crossings, cups and caps along the handles in order to obtain another tangle T 0 repre-
senting T , then this does not change the value of hol.T / thanks to naturality (25):

II
D

J I

D
J I

I˝J

X .i/
J ˝I

X .i/
I˝I

X .i/
C

X.i/

The diagrammatic relations introduced previously allow us to compute the value
of hol in a purely diagrammatic way, and sometimes to obtain a simple expression of
the result. For instance, here is a computation:

I
I

I

=

I

= D I
v

I

B 1
I

A:

I

B 1
I

A

I

B
I

A

hol
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A natural operation for H -colored @†-tangles is the stack product, defined in the
usual way.

Definition 4.3. Let T1;T2 2 T .†
o;�
g;n/ and let T�1 2 †o;�

g;n �
�
0; 1
2

�
be isotopic to T1

and TC2 2 †o;�
g;n �

�
1
2
; 1
�

be isotopic to T2. The stack product of T1 and T2 is

T1 � T2 D T�1 [ TC2 2 T .†o;�
g;n/:

Note that our convention for � is the opposite to the one of [19,34]: here T1 � T2
means that we put T1 below T2 in the thickened surface. For x ˝ v 2 Lg;n.H/˝
V1 ˝ � � � ˝ Vk and y ˝ w 2 Lg;n.H/ ˝ W1 ˝ � � � ˝ Wl (with x; y 2 Lg;n.H/,
v 2 V1 ˝ � � � ˝ Vk , and w 2 W1 ˝ � � � ˝Wl ), we define

.x ˝ v/ˇ .y ˝ w/
D xy ˝ v ˝ w 2 Lg;n.H/˝ V1 ˝ � � � ˝ Vk ˝W1 ˝ � � � ˝Wl :

Theorem 4.4. Let T1;T2 2 T .†
o;�
g;n/. It holds

hol.T1 � T2/ D hol.T1/ˇ hol.T2/:

Proof. See Appendix A.

The holonomy behaves well under the action of the mapping class group. As said
in Section 2.3, we will prove this for nD 0. Note that MCG.†o

g;0/ acts on†o;�
g;0 � Œ0;1�

by f .x; t/ D .f .x/; t/ and recall the lift Qf of a mapping class f defined in (12).

Theorem 4.5. Let f 2 MCG.†o
g;0/ and let T 2 T .†

o;�
g;0/. Then

hol.f .T // D Qf ˝ id
V
a1
1
˝���˝V ak

k

.hol.T //

where the V aii are the colors of the boundary strands of T (see Definition 4.2).

Proof. The proof is purely diagrammatic. Without loss of generality, we assume that
f is one of the Humphries generators � (see [24, Section 4.4.3]) where  is one of
the simple closed curves depicted in [24, Figure 4.5]. Let U � †o;�

1;0 be a connected
subset containing all the handles and a very small part of the bottom of the rectan-
gle (see Figure 1). By isotopy, we can assume that  � U . Also by isotopy we can
assume that T \ .U � Œ0; 1�/ contains only bunches of parallel strands and then by
another isotopy that T \ .U � Œ0; 1�/ � U � ¹0º. Then � .T / is obtained by com-
puting � .T \ .U � ¹0º/ in the usual way in the surface †o;�

g;0 � ¹0º. Moreover, as in
the proof of Theorem 4.4, we can assume up to introducing coupons that each handle
contains only one positively oriented strand (as in (17)). Now, if f D �a1 , which is
one of the Humphries generators (a1 is m1 in the notations of [24, Figure 4.5]), we
can restrict to †o;�

1;0 (since a1 is contained in this subsurface) and then we have the
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graphical computation in L1;0.H/ represented in Figure 3. We used the fusion rela-
tion, the inverse of the reflection equation (27) and the definition of the lift Q�a D Q�a1
(see Section 2.3):

Q�a.
I

A/ D I

A; Q�a.
I

B/ D I
v�1

I

B
I

A:

The equalities for the others Humphries generators are shown similarly, although the
diagrams are more cumbersome.

For further use, let us describe the behaviour of hol when we change the orien-
tation of a strand. Consider (not colored) @†-tangles TC, T� with one connected
component, which are equal as unoriented tangles and which are oriented as follows:

TC D T D

For I a finite-dimensionalH -module, we denote by holI .T˙/ the value of hol on the
@†-tangle T˙ colored by I . Then, thanks to (18), (19), and (25), it is easy to see that

holI .T�/ D .idI� ˝ eI /.holI
�
.TC//; (30a)

holI .TC/ D .eI ˝ idI�/.holI
�
.T�//: (30b)

This is obviously generalized to arbitrary @†-tangles.

4.2. Holonomy of a based link

We will now specialize Definition 4.2 to the case ofH -colored framed links in†o
g;n �

Œ0; 1� with basepoints, so that it will become more clear why we call this operation the
holonomy.

Definition 4.6. A based H -colored link L � † D †
o;�
g;n � Œ0; 1� is an oriented and

framed embedding of circles such that

• for each connected component Li of L, we have Li \ @† D ¹piº; pi is called a
basepoint;

• the basepoints have distinct heights;

• each connected component of L is colored (i.e., labeled) by a finite-dimensional
H -module.

An isotopy of based H -colored links is an isotopy compatible with the defining
properties and preserving globally the boundary @† (so that basepoints can be moved
along the boundary but cannot be suppressed). It is clear that using isotopy any based
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I

T

J a �˛7�! I
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Figure 3. Proof of the equality hol ı�a.T / D .e�a ˝ id/ ı hol.T /.
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H -colored link can be presented as follows, where the basepoints p1; : : : ; pk have
strictly increasing heights:

V1 Vk

p1 pk

T

I1 Il J1 Jm K1 Kr

(31)
We will always use this presentation in the sequel.

To a based H -colored link L, we associate an H -colored @†-tangle T .L/ as fol-
lows. First, using isotopy, represent L as in (31). Then at each basepoint pi apply one
of the following substitutions, depending on the orientation of the connected compo-
nent Li attached to that basepoint:

pi

Vi

7!
Vi

pC
ipi

(32a)

pi

Vi

7!
ViVi

pC
ipi

(32b)

where the resulting boundary points are arranged so that p�1 ; p
C
1 ; : : : ; p

�
k
; pC
k

(in this
order) have strictly increasing heights (to demistify the reason of the right hand-side
assignment; look at (28) as well as at the proof of Proposition 4.8 and at Remark 4.14
below). Using this transformation, we define the holonomy of an H -colored based
link as

hol.L/ D hol.T .L//:

By definition, we have

hol.L/ 2Lg;n.H/˝ V1 ˝ V �1 ˝ � � � ˝ Vk ˝ V �k
D Lg;n.H/˝ EndC.V1/˝ � � � ˝ EndC.Vk/:

Hence, hol.L/ can be written as x ˝N1 ˝ � � � ˝Nk (Ni 2 EndC.Vi /), with implicit
summation to simplify notations.
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Proposition 4.7. The right action (9) of h 2H on the coefficients of the tensor hol.L/
is given by

hol.L/ � h D x ˝
V1¿
h.1/N1

V1Á
S.h.2// ˝ � � � ˝

VkÁ
h.2k�1/Nk

Vk

Ï
S.h.2k//

where �.2k�1/.h/ D h.1/ ˝ � � � ˝ h.2k/ is the coproduct iterated 2k � 1 times.

Proof. This is straightforward. For instance, consider the following link L � †o;�
1;0

with two basepoints:

Then, using the identification (16) together with (9), (26), and the fact that

FRT.Ttot/W I ˝ I � ˝ J ˝ J � ! V1 ˝ V �1 ˝ V2 ˝ V �2
is H -linear, we obtain

hol.L/ � h D . IB ij
J

Akl / � h˝ FRT.Ttot/.xi ˝ xj ˝ yk ˝ yl/

D .
I¿
h.1/

I

B

IÁ
S.h.2///ij .

J¿
h.3/

J

A

JÁ
S.h.4///kl ˝ FRT.Ttot/.xi ˝ xj ˝ yk ˝ yl/

D I

B ij
J

Akl ˝ FRT.Ttot/.h
.1/xi ˝ h.2/xj ˝ h.3/yk ˝ h.4/yl/

D I

B ij
J

Akl ˝ ..h.1/ ˝ h.2/ ˝ h.3/ ˝ h.4//FRT.Ttot/.xi ˝ xj ˝ yk ˝ yl//
D x.N1/mn .N2/op ˝ h.1/vm ˝ h.2/vn ˝ h.3/wo ˝ h.4/wp

D x.
V1¿
h.1/N1

V1Á
S.h.2///mn .

V2¿
h.3/N2

V2Á
S.h.4///op ˝ vm ˝ vn ˝ wo ˝ wp

D x ˝
V1¿
h.1/N1

V1Á
S.h.2// ˝

V2¿
h.3/N2

V2Á
S.h.4//

where .xi /; .yi /; .vi /; .wi / are basis of I; J; V1; V2 respectively.

A simple loop x 2 �1.†o
g;n/ can naturally be viewed as a based link x � †o;�

g;n �
¹0º. For the next result we will use the mapping class group, so we restrict to n D 0
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for simplicity. We denote by holI .x/ the value of hol on the simple loop x colored
by I . Thanks to Theorem 4.5, we have for all f 2 MCG.†o

g;0/

Qf .holI .x// D holI .f .x// (33)

where the matrix at the left-hand side is obviously defined by

Qf .holI .x//ij D Qf .holI .x/ij /:

Also recall the lift of a simple loop defined in Section 2.3.

Proposition 4.8. For any simple loop x 2�1.†o
g;0/ and finite-dimensionalH -module

I it holds
holI .x/ D IQx:

Proof. Observe first that if the result is true for some simple loop x, then it is true for
every f .x/, where f 2 MCG.†o;�

g;0/. Indeed, thanks to (33) and (13):

holI .f .x// D Qf .holI .x// D Qf . IQx/ D
I

ef .x/:

Now, one can check directly that the result is true for the loops

a1; si D b1a�11 b�11 a1 : : : bia
�1
i b�1i ai : (34)

with 1 � i � g. These are positively oriented simple loops (see (11)). a1 is a non-
separating loop while s1; : : : ; sg are separating loops exhausting all the possible
topological types of separating loops (see [24, Section 1.3.1]). Hence, if y is a pos-
itively oriented simple loop, there exists a homeomorphism f 2 MCG.†o

g;0/ such
that y D f .x/ where x is one of the loops in (34). It follows that the result is true for
any positively oriented simple loop. The result for negatively oriented simple loops is
deduced as follows:

eI idI

I

I

eIidI
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where Tx is the part of x outside a small neighborhood of the basepoint and Dx�1
is the corresponding part of diagram (but with opposite orientation) obtained when
applying holI . For the first equality, we used the definition of hol together with (30);
for the second one, we applied the previously established result for the positively
oriented loop x�1 and also the naturality of braiding and twist; for the third one,
we used (18); and, for the fourth one, we used Remark 3.4. We are done since by
definition

.

I

ex�1/�1 D IQx:
Recall what is the holonomy in the classical case. For a discrete G-connection

r 2 Ag;n D Hom.�1.†o
g;n/; G/ and a simple loop x 2 �1.†o

g;n/, the holonomy is
simply hol.x/.r/ D r.x/ 2 G. Now, if V is a finite-dimensional representation of
G, we define holV .x/.r/ to be

VÀr.x/;
namely the representation of r.x/ on V . By taking matrix coefficients, we obtain
functions on Ag;n:

holV .x/ij WAg;n ! C; r 7!
VÀr.x/ij :

Hence, holV .x/ 2CŒAg;n�˝EndC.V /. Let
V

B.1/D holV .b1/;
V

A.1/D holV .a1/; : : : .
Now, express x in terms of the generators of �1.†o

g;n/ and replace each generator by
the corresponding matrix in the representation V :

b1 7!
V

B.1/; a1 7!
V

A.1/; : : : I

this defines the lift
VQx 2 CŒAg;n� ˝ EndC.V / of x in that representation. It is clear

that holV .x/ D VQx, which is exactly the same formula as in Proposition 4.8 and then
justifies the name “holonomy” for Definition 4.2.

4.3. Hennings formulation of the holonomy of a based link

We now give a description à la Hennings [30] of the holonomy which will be useful
in the next section. This description applies only to based links.

We will use universal elements. These are elements

B.i/; A.i/; M.i/ 2 Lg;n.H/˝H

such that
I

B.i/ D .id˝ I

T /.B.i//;
I

A.i/ D .id˝ I

T /.A.i//;
I

M.i/ D .id˝ I

T /.M.i//;

(35)
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for all finite-dimensionalH -module I and all i (we recall that
I

T is the representation
morphism of H on I ). In the sequel, we assume that H is such that these elements
exist; this assumption is fulfilled by relevant classes of Hopf algebras.

Lemma 4.9. If H is finite-dimensional or if H D Uq.g/ with q generic, then there
exist universal elements satisfying (35).

Proof. We can restrict to L0;1.H/, and we let
I

M D I

M.1/ for all I . Assume first
that H is finite-dimensional; then we can use the regular representation H . Write
H

M D xi ˝ fi 2 L0;1.H/˝ EndC.H/ and define M D xi ˝ fi .1/ 2 L0;1.H/˝H .
Let �a 2 EndH .H/ defined by �a.h/ D ha. By (8), it holds

H

M�a D �a
H

M , thus, for
all a 2 H ,

xi ˝ fi .a/D xi ˝ fi ı �a.1/D xi ˝ �a ı fi .1/D xi ˝ fi .1/a D xi ˝
H

T .fi .1//.a/

which shows that
H

M D .id ˝ H

T /.M/. Next, consider a direct sum H˚N , and let
j˛WH ! H˚N and p˛WH˚N ! H be the associated canonical injections and pro-
jections. By (8), we have

H˚N
M D

X
˛

j˛
H

Mp˛ D
X
˛

.id˝ j˛
H

T p˛/.M/ D .id˝ H˚N
T /.M/:

Finally, let I be any finite-dimensionalH -module. Since I is finitely generated, there
is a surjective morphism � WH˚N ! I for some N and hence

I

M� D � H˚N
M D .id˝ � H˚N

T /.M/ D .id˝ I

T �/.M/:

But, since � is surjective, it is right invertible and thus
I

M D .id˝ I

T /.M/:

Now, take H D Uq.g/. The map

ˆWL0;1.H/! H

defined by
I

M ! .idH ˝
I

T /.R0R/

is an injective morphism of algebras (see [8, Theorem 4.3] and the references therein).
Then, under the identification L0;1.H/Š im.ˆ/, we have

I

M D .id˝ I

T /.M/, where
M D R0R 2 im.ˆ/˝H . Note that M actually belongs to some completion but we
will not discuss this detail here.
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We write

B.i/ D B.i/0 ˝B.i/1; A.i/ D A.i/0 ˝A.i/1; M.i/ DM.i/0 ˝M.i/1

with implicit summation to simplify notations. By definition, the right action (9) of
H on Lg;n.H/ satisfies

X0 � h˝X1 D X0 ˝ h0X1S.h
00/

where X is B.i/;A.i/, or M.i/

Let L be a based link presented as in (31), but without coloring. First, for each
basepoint pi we define a coupon Ori depending on the orientation of the strand and
which is the analogue of (32):

Then we form the following diagram:

(36)
We put the dotted line to stress that the diagram can be deformed by isotopy, but with
the restriction that all the points below (resp. above) the line must remain below (resp.
above) the line. The evaluation of this diagram is an element

Hen.L/ 2 Lg;n.H/˝H˝k
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computed according to the following rules, which generalize those defining the
Hennings invariant. Starting from one of the basepoints labeled 1; : : : ; k and follow-
ing the strand according to its orientation, we multiply together from left to right the
values associated to each graphical element that we encounter until we come back to
the basepoint:

Here X D X0 ˝X1 is one of the B.i/;A.i/;M.i/ and

�.m/.X1/ D X
.1/
1 ˝ � � � ˝X

.mC1/
1

is the iterated coproduct. Note that the handle contains a bunch of parallel strands and
the picture represents the value associated to the l-th strand. Then, by applying this
rule for each starting point, we obtain elements Z1; : : : ; Zk 2 H , and we define

Hen.L/

D �B.1/0A.1/0 : : : B.g/0A.g/0M.g C 1/0 : : : M.g C n/0
�˝Z1 ˝ � � � ˝Zk :

Here is an example in †o
0;1 � Œ0; 1�:

where we used that bigai D v�1 (recall that g is the pivotal element and v is the
ribbon element).

The evaluation of Hen.L/ on representations almost gives back the holonomy:

.id˝
V1

T ˝ � � � ˝
Vk

T /.Hen.L// D .V1g ˝ � � � ˝ Vk
g / holV1;:::;Vk .L/ (37)

where holV1;:::;Vk means the holonomy of the based link whose strands are colored
by V1; : : : ; Vk . This equality is the generalization of the corresponding fact for the
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Hennings invariant and the proof is left to the reader. Note that the pivotal elements
in the right-hand side come from the caps at the top of (36). Let us write

Hen.L/ D Z0 ˝Z1 ˝ � � � ˝Zk 2 Lg;n.H/˝H˝k

with implicit summation. Then, according to Proposition 4.7 and (2), the right action
of H on Lg;n.H/ satisfies

.Z0 � h/˝Z1 ˝ � � � ˝Zk
D Z0 ˝ S2.h.1//Z1S.h.2//˝ � � � ˝ S2.h.2k�1//ZkS.h.2k//: (38)

4.4. Generalized Wilson loops

In the classical case, a Wilson loop around a simple curve  assigns to a connection the
trace of the holonomy of  in some representation; this quantity is gauge invariant. We
will straightforwardly generalize this to the quantized case, by replacing the simple
curve by a based link and by replacing the trace by a quantum trace (or more generally
by a symmetric linear form shifted by g).

Let L be an uncolored based link with k connected components. Let f 2 .H ı/˝k
(recall that H ı is the restricted dual of H ). By definition, f is a linear combination
of the form

f D
X

I1;:::;Ik

.ƒI1;:::;Ik /
i1;:::;ik
j1;:::;jk

I1

T
i1
j1
˝ � � � ˝

Ik

T
ik
jk

with implicit summation on i1; : : : ; ik; j1; : : : ; jk and where the Il are isomorphism
classes of finite-dimensional H -modules and the coefficients .ƒI1;:::;Ik /

i1;:::;ik
j1;:::;jk

2 C

are all zero except a finite number of them. This can be written more conveniently as

f D
X

I1;:::;Ik

tr.ƒI1;:::;Ik
I1

T ˝ � � � ˝
Ik

T /

where the matricesƒI1;:::;Ik 2 EndC.I1˝ � � � ˝ Ik/ are all zero except a finite number
of them. We define

W f .L/ D
X

I1;:::;Ik

tr.ƒI1;:::;Ik .
I1
g ˝ � � � ˝ Ik

g / holI1;:::;Ik .L// 2 Lg;n.H/

where holI1;:::;Ik .L/ is the holonomy of the based link whose components are colored
by I1; : : : ; Ik . In terms of the Hennings formulation, we see thanks to (37) that it holds

W f .L/ D .id˝ f /.Hen.L//:

We denote by Invk.H/ the subspace of multilinear forms f 2 .H ı/˝k which
satisfy

f .S.h.2k// ‹ h.2k�1/; : : : ; S.h.2// ‹ h.1// D ".h/f for all h 2 H;
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where the “?” are the positions of the variables. In particular, Inv1.H/ is the subspace
of symmetric linear forms:

Inv1.H/ D SLF.H/ D ¹' 2 H ı j for all x; y 2 H; '.xy/ D '.yx/º:

Proposition 4.10. We have the following properties:

(1) f 2 Invk.H/ H) W f .L/ 2Linv
g;n.H/, where L is a based link with k base-

points;

(2) W f .L/W f 0.L0/ D W f˝f 0.L � L0/;
(3) for n D 0 and any j 2 MCG.†o

g;0/, Qj.W f .L// D W f .j.L//;

(4) any element of Lg;n.H/ can be written W f .L/ for some f 2 .H ı/˝k and
some based link L with k basepoints (k; f;L are non-unique);

(5) any element of Linv
g;n.H/ can be written W f .L/ for some f 2 Invk.H/ and

some based link L with k basepoints (k; f;L are non-unique).

Proof. (1) Write Hen.L/ D Z0 ˝Z1 ˝ � � � ˝Zk . Then, thanks to (38),

W f .L/ � h D .Z0 � h/f .Z1; : : : ; Zk/;
D Z0f .S2.h.1//Z1S.h.2//; : : : ; S2.h.2k�1//ZkS.h.2k///;
D Z0f .S.S.h/.2k//Z1S.h/.2k�1/; : : : ; S.S.h/.2//ZkS.h/.1//;
D Z0".S.h//f .Z1; : : : ; Zk/ D ".h/W f .L/:

(2) follows immediately from Theorem 4.4.

(3) follows immediately from Theorem 4.5.

(4) Let x 2 Lg;n.H/. Thanks to the defining relations of Lg;n.H/ (Defini-
tion 2.1), it is clear that any element of Lg;n.H/ can be written as a linear combination
of some products of the form

I1

B.1/
i1
j1

J1

A.1/
k1
l1
: : :

Ig

B.g/
ig
jg

Jg

A.g/
kg
lg

K1

M.g C 1/m1o1 : : :
Kn

M.g C n/mnon :

To avoid cumbersome notations, take for instance .g; n/ D .1; 1/. Then we can write

x D
X
I;J;K

.ƒI;J;K
I˝J˝K
g /

jlo

ikl

I

B ij
J

Akl
K

M l
o D

X
I;J;K

tr.ƒI;J;K
I˝J˝K
g

I

B
J

A
K

M/

where only a finite number of the matricesƒI;J;K 2 EndC.I ˝ J ˝K/ are non-zero,
and inserting g is not an issue since it is invertible. Take

f D
X
I;J;K

tr.ƒI;J;K
I

T ˝ J

T ˝ K

T / 2 .H ı/˝3
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and

By definition, we have W f .L/ D x.
(5) follows by combining the proofs of the properties (1) and (4).

Remark 4.11. Let L be the obvious generalization to any g; n of the based link used
in the previous proof. Then we have shown that

.H ı/˝.2gCn/� Lg;n.H/; f 7! W f .L/;

Inv2gCn.H/� Linv
g;n.H/; f 7! W f .L/

are surjective linear maps. When H is finite-dimensional and factorizable, we have
dim.Lg;n.H// D dim.H/2gCn (see [23, Section 3.3]) and by comparison of dimen-
sions these maps are isomorphisms of vector spaces.

For a based link L, we define its free isotopy class ŒL� to be the result of the
following operation (applied to all the basepoints):

By definition, ŒL��†o
g;n � Œ0;1� is a link in the usual sense. Recall that in the classical

case, a Wilson loop does not depend on the basepoint, but only on the free isotopy
class of the curve. In general,W f .L/ depends on the basepoint. If we want to remove
this dependence, we must restrict f to be in a suitable subspace.

Proposition 4.12. Let L1; L2 be based links with k basepoints. If f 2 SLF.H/˝k ,
then W f depends only on the free isotopy class:

ŒL1� D ŒL2� H) W f .L1/ D W f .L2/:

Proof. Thanks to the cyclicity of symmetric linear forms, it is clear that the basepoints
in the diagram (36) can be moved at any generic point (i.e., not at a maximal, mini-
mal or crossing point, nor in a handle) without changing the value of the evaluation
.id˝ '1 ˝ � � � ˝ 'k/.Hen.Li //. Moreover, that the evaluation of the diagram (36) is
unchanged under isotopy is a generalization of the corresponding fact for the Hen-
nings invariant.
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It follows that W f makes sense for (usual) links if f 2 SLF.H/. More precisely,
let L.†o

g;n/ be the set of isotopy classes of framed links in †o
g;n � Œ0; 1� which are

SLF.H/-colored (i.e., each connected component is labeled by a symmetric linear
form). Let L 2 L.†o

g;n/ be a link with k components and let Lb be any uncolored
based link such that ŒLb� D L, then we define

W.L/ D W '1˝���˝'k .Lb/ (39)

where '1; : : : ; 'k are the colors of the components of L.

Definition 4.13. We call W WCL.†o
g;n/ ! Linv

g;n.H/ the generalized Wilson loop
map, and an element W.L/ is called a generalized Wilson loop.

By the second property in Proposition 4.10, the generalized Wilson loops form a
subalgebra in Linv

g;n.H/.

Remark 4.14. Recall that the character of a finite-dimensionalH -module I is defined
as �I D tr.

I

T /. Let L� be an unbased link whose all strands are colored by characters
�I1 ; : : : ; �Ik and L be the same link without coloring. Then

W.L�/ D holI1;:::;Ik .L/

and we recover the Wilson loop map defined in [20, Chapter 6]. Indeed, it suffices
to consider the case where there is only one strand. Let Lb be a based link such that
ŒLb�D L. By definition,W.L�/D trq.holI .Lb//. Hence, according to (32) and (21),
we have

where TLb is the part of Lb outside a small neighborhood of the basepoint, DLb is
the corresponding diagram obtained when applying holI and DL is the free isotopy
diagram of DLb .
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5. Relationship with stated skein algebras

Recall the Definition 4.1 of @†-tangles, which is just a slight generalization of [34,
Section 2.3]. In this section and as in [19,34], we will consider @†-tangles which are
uncolored and unoriented. Recall from [34, Section 2.5] that the stated skein algebra
� s
q.†/ of a punctured bordered surface † is the ZŒq1=2; q�1=2�-module freely gen-

erated by the (isotopy classes of) @†-tangles on that surface, modulo the Kauffman
relations

D q C q 1
.q2 C q 2/¿;; (40)

and the boundary relations

(41a)

(41b)

(41c)

(41d)

The conventions for the figures are the same as in [19, 34]. However, we stress that
our convention for the stack product (Definition 4.3) is opposite to that of [19, 34]; in
other words, the stated skein algebras considered here have opposite multiplication to
those in these papers.

In this section we work withH D Uq2 D Uq2.sl2/, the quantum group associated
to sl2.C/ with ground ring ZŒq1=2; q�1=2�, where q is a formal parameter or a com-
plex number which is not a root of unity. Let Oq2 D Oq2.sl2/ be the restricted dual
of Uq2 with its canonical Hopf algebra structure. The goal of this section is to show
that the holonomy map provides an isomorphism of Oq2-comodule-algebras between
� s
q.†

o;�
g;n/ and Lg;n.Uq2/. We recall that †o;�

g;n is the surface †g;n nD (whereD is an
open disk) with one point removed on its boundary (Figure 1), where†g;n is the com-
pact oriented surface of genus g with n punctures. We begin with useful preliminary
remarks.

Let V2 be a 2-dimensional C-vector space with basis .v�; vC/. V2 can be endowed
with an Uq2-module structure, called the fundamental representation of Uq2 . The
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action is given by

Ev� D 0; F v� D vC; Kv� D q2v�;
EvC D v�; F vC D 0; KvC D q�2vC:

It is well known that every finite-dimensional simple Uq2-module is a direct sum-
mand of some tensor power V ˝N2 . It follows that Oq2 is generated as an algebra by

the matrix coefficients
V2

T st of V2 (with s; t 2 ¹˙º). This also applies to the algebra
Lg;n.Uq2/; indeed, let

B.i/ D
V2

B.i/; A.i/ D
V2

A.i/; M.i/ D
V2

M.i/:

For any matrix X 2 Lg;n.Uq2/˝ EndC.V2/, we denote by X st (s; t 2 ¹˙º) its com-
ponents in the basis .v�; vC/:

X D
�
X�� X�C
XC� XCC

�
:

Finally, let R 2 EndC.V2/
˝2 be the R-matrix of Uq2 evaluated on V2 ˝ V2, and let

R21 be the matrix defined by .R21/
s1s2
t1t2
D Rs2s1t2t1

. Explicitly,

RD q�1

0BBB@
q2 0 0 0

0 1 q2 � q�2 0

0 0 1 0

0 0 0 q2

1CCCA ; R21D q�1

0BBB@
q2 0 0 0

0 1 0 0

0 q2 � q�2 1 0

0 0 0 q2

1CCCA : (42)

Lemma 5.1. The algebra Lg;n.Uq2/ is generated by the coefficients of the matrices
B.i/;A.i/ for 1� i � g andM.i/ for gC 1� i � gC n, modulo the relations given
by the following matrix identities:

RX.i/1R21X.i/2 D X.i/2RX.i/1R21; for 1 � i � g C n;
X.i/��X.i/

C
C � q4X.i/�CX.i/C� D 1 for 1 � i � g C n;

RB.i/1R21A.i/2 D A.i/2RB.i/1R�1 for 1 � i � g;
RX.i/1R

�1Y.j /2 D Y.j /2RX.i/1R�1 for 1 � i < j � g C n;
where X.i/ is A.i/ or B.i/ if 1 � i � g and is M.i/ if g C 1 � i � g C n, and the
same applies to Y.j /. Recall that the meaning of the subscripts 1; 2 is explained after
Definition 2.1.

Proof. Since any finite-dimensional Uq2-module is a direct summand of some V ˝N2 ,
N 2 N, the fusion relation (5) implies the claim about the set of generators. It is well
known (see, e.g., [8, Lemma 5.1]) that the fusion relation (5) with I D J D V2 is
equivalent to the two first lines of relations. The third and fourth lines of relations are
just (6) and (7) with I D J D V2.
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As a result, we can without loss of generality restrict the color of all the strands in
diagrams to be V2, since any color can be recovered by cabling and inserting a Jones–
Wenzl idempotent. Hence, in this section, all the strands in diagrams are implicitly
colored by V2.

Another important property is that V2 is self-dual. For our purposes, we fix a
particular isomorphism as follows:

DWV �2
�! V2;

v� 7! �q5=2vC;
vC 7! q1=2v�;

i.e.,

D D
�

0 q1=2

�q5=2 0

�
where .v�; vC/ is the dual basis of .v�; vC/. Recall that, by definition of theH -mod-
ule structure on I �, it holds

I�
h D t .

I¿S.h//;
where t denotes the transpose and we recall that I

x means the representation of x 2 H
on the finite-dimensional H -module I . If we take I D V2, we have

V2

h D D D
V�
2

h

and hence we deduce the following equality, which will be useful later:

t .
V2

h / D D�1
V2ÁS�1.h/D: (43)

There exists a particular pivotal element g lying in some completion of Uq2
(see [38]) and satisfying

gv� D �q2v�; gvC D �q�2vC

(of course g ¤ �K). With this choice, one can check that it holds

e ıD� D D (44a)

i.e.,
tD D V2

g D; (44b)

where e D eV2 W V ��2
�! V2 is the identification with the bidual (3). This implies that

the value of a diagram does not depend of the orientation of its closed components.
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Indeed,

(we use (18) and the similar fact for cups and caps) and hence by inserting coupons
D and D�1 on a strand we can change its orientation wihout changing the value of
the diagram.

Remark 5.2. If one chooses the usual pivotal element K instead of g, then (44)
becomes e ıD� D �D and the value of a diagram depends up to a sign of the ori-
entation on its closed components, see [32, Lemma 3.18] and [38]. This explains the
choice of the less natural-looking pivotal element g.

According to these remarks, we define a non-oriented graphical calculus for
Lg;n.Uq2/, with unoriented cups, caps, crossings and handles:

The explicit values of these unoriented graphical elements are

D

0BBB@
q1=2X�C
�q5=2X��
q1=2XCC
�q5=2XC�

1CCCA ; (45a)

[ D

0BBB@
0

�q5=2
q1=2

0

1CCCA ; (45b)
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\ D �0 q�1=2 �q�5=2 0
�
; (45c)

D PR; (45d)

D .PR/�1; (45e)

where P is the flip tensor P ik
jl
D ıi

l
ıkj , the X st (with s; t 2 ¹˙º) are the components

of the matrix X D
V2

X and R is the R-matrix (42). More generally, a handle containing
several unoriented strands is obviously defined by putting a coupon D on each strand
of the oriented version, and the associated explicit value is computed thanks to the
fusion relation (22). The values (45) extend in the usual way to an evaluation map Z
of diagrams. When Z is restricted to tangles (diagrams without handles), it is just an
unoriented version of the Reshetikhin–Turaev functor forUq2-colored framed tangles.
It is well known that Z satisfies the Kauffman bracket skein relation (40). Let us
record for further use that by definition

Z
� �ik

jl
D Rkijl ; Z

� �ik
jl
D .R�1/iklj ;

where i; j; k; l 2 ¹˙º.
Let us now proceed with preliminary remarks about stated skein algebras. By (41),

we have

:

;

s t

D [st

s t

D \st

More generally, it is shown in [19, Section 5] that

"

0BB@
1CCA D Z.T /s1::: skt1::: tl

; (46)

where si ; ti 2 ¹˙º are states. The left-hand side of this figure represents an element
of the stated skein algebra of the bigon B (with T any tangle), "W � s

q.B/! ZŒq˙1=2�
denotes the counit of � s

q.B/ [19, Section 3.4] and Z is the evaluation map defined
by (45).

As explained in [19, Section 3.2], cutting out a bigon B from a boundary edge e of
a punctured bordered surface S and applying the splitting theorem [34, Theorem 3.1]
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yields a morphism�eW� s
q.S/! � s

q.B/˝ � s
q.S/which is a � s

q.B/-comodule-algebra
structure on � s

q.S/ (see [19, Figure 7]). An important fact for our purposes is that the
equality ." ˝ id/ ı �e D id (which is one of the axioms of a comodule) together
with (46) allows us to prove relations in � s

q.S/ in a graphical way.
Let us illustrate this in the case of � s

q.B/. Consider the following matrix T 2
� s
q.B/˝ EndC.V2/ (here V2 is just considered as a vector space):

T D
�
T �� T �C
TC� TCC

�
; with T st D

(s; t 2 ¹˙º are states). First, observe that

D
X
i1;:::;il

"

0BB@
1CCA

D
X
i1;:::;il

Z.X/
s1::: sk
i1::: il

T
i1
t1
: : : T

il
tl
;

where X is any tangle. For the first equality, we used id D ."˝ id/ ı�e where e is
the dashed arc, and for the second we used the product in � s

q.B/ and (46). Hence, we
see that the elements T st generate � s

q.B/ as an algebra. Similarly, we have

D
X
ij

"

 !
D
X
ij

R
s2s1
ij T it2T

j
t1

D D
X
ij

"

 !
D
X
ij

R
j i
t2t1
T
s1
i T

s2
j :

Hence, we obtain the relation RT1T2 D T2T1R, where as usual T1; T2 denote
the canonical embeddings of T 2 � s

q.B/ ˝ EndC.V2/ into � s
q.B/ ˝ EndC.V2/

˝2.
Finallly,

\st D

s t

D
X
ij

"

 
i j

! i j

s t

D
X
ij

\ijT is T jt
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and it is easy to compute that this implies detq.T /D T �� TCC � q�2T �CTC� D 1. Hence,
the coefficients of T 2 � s

q.B/˝ EndC.V2/ satisfy exactly the relations of the matrix
coefficients of the fundamental representation V2 of Uq2 . In [19, Section 3.3] a less
usual presentation of Oq2 is obtained using a similar method and it is shown that these
algebras are indeed isomorphic:

� s
q.B/ Š Oq2 :

In the sequel, we identify these two algebras (i.e., we identify T with
V2

T ), so that
� s
q.S/ becomes a Oq2-comodule-algebra for any punctured bordered surface S.

Let T s �† D .†o;�
g;n/� Œ0; 1� be an unoriented, uncolored stated @†-tangle, with

states s1; : : : ; sk 2 ¹˙º. Forget the states of T s and on each strand put an arbitrary
orientation and the color V2. This gives an oriented colored @†-tangle T and, by
Definition 4.2, hol.T / 2 L0;1.H/˝ V a12 ˝ � � � ˝ V ak2 where ai 2 ¹#;"º. Let

o# D idWV2 ! V2 and o" D DWV �2
�! V2:

We define a map

holsW ¹stated @†-tanglesº !Lg;n.Uq2/;

T s 7!
�

id˝
kO
iD1

.vsi ı oai /
�
.hol.T //;

(47)

where .v�; vC/ is dual to the canonical basis .v�; vC/ of V2 (recall that we use the
special pivotal element g discussed above to evaluate the diagram of hol.T /). This
map is obviously extended to formal linear combinations of @†-tangles.

The map hols can also be described as follows. Consider the (unoriented and
uncolored) diagram built like in Definition 4.2 associated to T s (states are not used
in the diagram). Then evaluate this diagram with the unoriented graphical calculus
defined in (45); the result is an element of Lg;n.Uq2/ ˝ V ˝k2 and hols.T s/ is the
component .s1; : : : ; sk/ of that tensor. In particular, we see that the formula in (47)
does not depend on the arbitrary orientations chosen to obtain T .

Theorem 5.3. The map hols descends to an isomorphism of Oq2-comodule-algebras:

� s
q.†

o;�
g;n/ Š Lg;n.Uq2/:

Proof. We first show that hols is well defined, i.e., that it preserves the defining rela-
tions of � s

q.†
o;�
g;n/. It is clear that hols is compatible with the Kauffman bracket skein

relations (40) since so does the unoriented graphical calculus for Uq2 . For the bound-
ary relations (41), we have

hols
� �

D vs ˝ vt .[/ D [st ;
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hols
� �

.vs ˝ vt /

D .v� ˝ vC � q�2vC ˝ v� � q1=2\/.vs ˝ vt /
D ı�s ıCt � q�2ıCs ı�t � q1=2.�q�5=2ıCs ı�t C q�1=2ı�s ıCt / D 0

for all s; t 2 ¹˙º, as desired.
The fact that hols is an algebra morphism follows immediately from Theorem 4.4.

To show that it is an isomorphism, we will use the following facts:

� s
q.†

o;�
g;n/ Š � s

q.†
o;�
1;0/
z̋g z̋� s

q.†
o;�
0;1/
z̋n;

Lg;n.Uq2/ Š L1;0.Uq2/
z̋g z̋L0;1.Uq2/

z̋n;

where z̋ is the braided tensor product of algebras in the category of left Oq2-comod-
ules. The first isomorphism follows from the glueing theorem for stated skein alge-
bras [19, Theorem 4.13]. The second isomorphism is a well-known and general fact
about the algebras Lg;n.H/ ([5, Section 3.2], also see [23, Section 3.2]). Hence,
to show that hols is an isomorphism, it is enough to show it for the surfaces †o;�

0;1

and †o;�
1;0, which is done in Sections 5.1 and 5.2. The fact that hols is a morphism

of Oq2-comodules also follows from the corresponding fact for these two building
blocks.

Remark 5.4. I learned from the referee that T. Lê announced independently in some
conferences (in particular Paris, october 2019) that stated skein algebras are isomor-
phic to Lg;n.Uq2/, with a sketch of the proof. This result is also mentioned in his
preprint with Yu [35], which appeared shortly after the present work.

Let U .bi /s
t ;U

.ai /s
t ;U

.mi /s
t (with s; t 2 ¹˙º) be the @†-tangles naturally associated

to the generators bi ; ai ; mj of �1.†o
g;n/ represented in Figure 1:

These elements can be arranged as matrices

U .bi /;U .ai /;U .mj / 2 � s
q.†

o;�
g;n/˝ EndC.V2/;
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and by definition it holds

hols.U .bi // D B.i/ tD; hols.U .ai // D A.i/ tD; hols.U .mj // DM.j / tD (48)

where obviously hols.U .bi //st D hols.U .bi /s
t /, etc. Thanks to Lemma 5.1, we obtain

a presentation by generators and relations of � s
q.†

o;�
g;n/.

Corollary 5.5. The algebra � s
q.†

o;�
g;n/ is generated by the coefficients of the matrices

U .bi /;U .ai / for 1 � i � g and U .mi / for g C 1 � i � g C n, modulo the relations
obtained by replacing B.i/ with U .bi /.tD/�1, A.i/ with U .ai /.tD/�1 and M.i/ with
U .mi /.tD/�1 in the relations of Lemma 5.1.

The (usual) skein algebra �q.†
o
g;n/ is the subalgebra of � s

q.†
o;�
g;n/ consisting

of linear combinations of closed links (tangles without boundary points and hence
without states). On this subalgebra, hols is simply the Wilson loop map W with all
the strands colored by �C2 , the character of V2. By [13, Theorem 10] (see also [8,
Theorem 8.4] for the statement of this result in the formalism used here), the map
W provides an isomorphism from �q.†

o
g;n/ to the subalgebra of invariant elements

Linv
g;n.Uq2/. Hence, we have the following result.

Corollary 5.6. The (usual) skein algebra �q.†
o
g;n/ is exactly the subalgebra of invari-

ant elements of the Oq2-comodule-algebra � s
q.†

o;�
g;n/.

5.1. Proof for †
o;�

0;1

Let

M D
V2

M D
�
M�� M�C
MC� MCC

�
2 L0;1.Uq2/˝ EndC.V2/:

Then by Lemma 5.1, L0;1.Uq2/ is generated by the 4 coefficients of the matrix M ,
modulo the following relations:

RM1R21M2 DM2RM1R21; qdet.M/ D 1; (49)

where by definition the quantum determinant is qdet.M/ DM��MCC � q4M�CMC� .
For l � 0 and s1; : : : ; sl ; t1; : : : ; tl 2 ¹˙º, we define the following elements of

� s
q.†

o;�
0;1/:
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(for l D 0 this is U.0/ D 1, namely the empty diagram). Note that, for a fixed l ,
these elements can be arranged into a tensor U.l/ 2 � s

q.†
o;�
0;1/ ˝ EndC.V2/

˝l . For
simplicity, we denote U D U.1/ and V D U.2/; in a matrix form these tensors are
written as

U D U.1/ D
�

U�� U�C
UC� UCC

�
; V D U.2/ D

0BBB@
V���� V���C V��C� V��CC
V�C�� V�C�C V�CC� V�CCC
VC��� VC��C VC�C� VC�CC
VCC�� VCC�C VCCC� VCCCC

1CCCA :
As explained previously, we use the .� s

q.B/ D Oq2/-comodule-algebra structure of
stated skein algebras together with id D ."˝ id/ ı �e and (46) to derive equalities
graphically. Here we apply this to the dashed arc e depicted below:

D
X
i1;:::;il
j1;:::;jl

"

0@ 1A
D
X
i1;:::;il
j1;:::;jl

Z.T /
s1::: sk
i1::: il jl ::: j1

U.l/i1::: ilj1::: jl
(50)

where the summation indices are all in ¹˙º. This equality implies in particular that
the collection of elements U.l/

i1::: il
j1::: jl

(with l � 0 and i�; j� 2 ¹˙º for each �) spans
� s
q.†

o;�
0;1/ as a ZŒq˙1=2�-module.

Since L0;1.Uq2/ is isomorphic to the braided dual of Uq2 [8, Section 4], we
can deduce the following lemma from [19, Proposition 4.17], where it is shown that
� s
q.†

o;�
0;1/ is isomorphic to the braided dual. Our proof is however different.

Lemma 5.7. The following statements hold true.

(1) There is a morphism j WL0;1.Uq2/ ! � s
q.†

o;�
0;1/ of Oq2-comodule-algebras

defined by j.M/ D U.tD/�1. Explicitly,�
j.M�� / j.M�C/
j.MC� / j.MCC /

�
D
�
q�5=2U�C �q�1=2U��
q�5=2UCC �q�1=2UC�

�
:

(2) The morphism j is surjective.

Proof. (1) We will show that the relations (49) defining L0;1.Uq2/ are satisfied.
This is entirely based on formal matrix computations. Using the product in � s

q.†
o;�
0;1/
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and (50), we obtain

U
s1
t1
U
s2
t2
D D

X
ijkl

Vij
lk
Z

 !s1t1s2t2
ijkl

D
X
jklm

Vs1j
lk
R
s2t1
jm R

t2m

kl

D
X
jklm

.aˇ /
s2
j Vs1j

lk
.tb˛/

l
m .

tbˇ /
m
t1
.ta˛/

k
t2
;

where we wrote RD a� ˝ b� with implicit summation and implicit representation on
the fundamental representation V2, i.e., R is the matrix in (42). Hence,

U1U2 D .aˇ /2V .tb˛/1.tbˇ /1 t.a˛/2

where as usual the subscript 1;2 indicate the two canonical embeddings of � s
q.†

o;�
0;1/˝

EndC.V2/ in � s
q.†

o;�
0;1/˝ EndC.V2/

˝2. Now, we compute

U1U2 D .aˇ /2VD�11 S�1.b˛/1S�1.bˇ /1D1D�12 S�1.a˛/2D2
D .aˇ /2VD�11 D�12 .b˛/1S

�1.bˇ /1.a˛/2D1D2
D .aˇ /2VD�11 D�12 .b˛/1g

�1
1 S.bˇ /1g1g

�1
2 S2.a˛/2g2D1D2

D .aˇ /2VD�11 g�11 D�12 g�12 S2.b˛/1S.bˇ /1S
2.a˛/2g1D1g2D2

D .aˇ /2V .tD/�11 .
tD/�12 R21S.bˇ /1.

tD/1.
tD/2:

For the first equality, we used (43); for the second one, we used .S ˝ S/.R/ D
R and obvious commutation relations between tensors; for the third one and for
the fourth one, we used (2) (here g implicitly means

V2
g ) and obvious commuta-

tion relations between tensors, and for the fifth we used (44). Thanks to the relation
aaˇ ˝ S.bˇ /b D 1˝ 1, we can invert this equality, which gives

V .tD/�11 .
tD/�12 D .U.tD/�1/1R21

�
U.tD/�1

�
2
R�121 : (51)

Now, since
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we obtain thanks to relation (50) thatX
ij

R
s2s1
ij V

ij
t2t1
D
X
ij

V
s1s2
j i R

t2t1
ij ;

that is
R21V21 D V .tb˛/1.

ta˛/2:

Then, relations (43) and .S ˝ S/.R/DR yieldsR21V21D�12 D�11 DVD�11 D�12 R21.
Finally, we multiply this equality by g�11 g�12 and we use the relations Rg1g2 D
g1g2R and (44):

R21V21.
tD/�12 .

tD/�11 D V .tD/�11 .
tD/�12 R21:

This last equality together with (51) gives the first equality of (49):

R.U.tD/�1/1R21.U.tD/�1/2 D .U.tD/�1/2R.U.tD/�1/1R21:

In order to obtain the quantum determinant relation, observe that

and then (50) gives
P
ij V st

ij \j i D [st , which can be rewritten as V t.P\/ D [,

where P ij
kl
D ıi

l
ı
j

k
is the flip tensor. Moreover, a computation reveals that t.P\/ D

.tD/�11 .
tD/�12 [. Hence, by (51), we have

.U.tD/�1/1R21.U.tD/�1/2R�121[ D [:

Expanding this matrix equality in components gives only one new relation, which
is precisely qdet.U.tD/�1/ D 1. Hence, j is a morphism of algebras. Let us show
that it is a morphism of Oq2-comodules (recall that we identify � s

q.B/ with Oq2). By
definition of the coaction of Oq2 on � s

q.†
o;�
0;1/, we have

�e7��!
X
ij

˝

Hence,�e.U s
t /D

P
ij T

s
i T

t
j ˝U i

j . Let us identify Uk
l

(resp. T k
l

) with 1˝Uk
l

(resp.
T k
l
˝ 1); then we get �e.U/ D TU tT . By (43) and (44), it holds

tT D D�1S�1.T /D D D�1g�1S.T /gD D tD�1S.T / tD
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and hence

�e ı j.M/ D �e.U/ tD�1 D TU tT tD�1

D T .U tD�1/S.T / D .j ˝ id/ ı�.M/;

where � is the coaction (10) on L0;1.Uq2/.
(2) Observe that

U
s1
t1
: : : U

sl
tl
D

where the handle contains a bunch of l parallel strands and � 2 B2n is some braid (it
can be computed explicitly but we do not need it). By (50), it follows that

U
s1
t1
: : : U

sl
tl
D
X
i1;:::;ik
i 0
1
;:::;i 0

k

Z.�/
s1 t1::: sl tl
i1::: il i

0
1
::: i 0
l

U.l/
i1::: il
i 0
1
::: i 0
l

:

But � is a braid, so that Z.�/ is an invertible matrix, and hence we can invert these
relations and write any element U.l/

i1::: il
i 0
1
::: i 0
l

as a linear combination of the monomials
U
s1
t1
: : :U

sl
tl

. The claim is proved since, as already observed, the collection of elements
U.l/

i1::: il
i 0
1
::: i 0
l

spans � s
q.†

o;�
0;1/ as a ZŒq˙1=2�-module.

Lemma 5.8. The map
holsW � s

q.†
o;�
0;1/! L0;1.Uq2/

is an isomorphism of Oq2-comodule-algebras.

Proof. Thanks to (48), we have hols ıj D id. It follows that j is injective and it is
surjective by Lemma 5.7. Hence, it is an isomorphism of Oq2-comodule-algebras,
with inverse hols.

5.2. Proof for †
o;�

1;0

Let

B D
V2

B D
�
B�� B�C
BC� BCC

�
; A D

V2

A D
�
A�� A�C
AC� ACC

�
2 L1;0.Uq2/˝ EndC.V2/:
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Then, by Lemma 5.1, L1;0.Uq2/ is generated by the 8 coefficients of the matrices B
and A, modulo the following relations:

RB1R21B2 D B2RB1R21; (52a)

RA1R21A2 D A2RA1R21; (52b)

RB1R21A2 D A2RB1R�1; (52c)

B��B
C
C � q4B�CBC� D 1; (52d)

A��A
C
C � q4A�CAC� D 1: (52e)

As previously, for l � 0 and s1; : : : ; sl ; t1; : : : ; tl 2 ¹˙º, we define the elements
U.l/.b/

s1::: sl
t1::: tl

(resp. U.l/.a/
s1::: sl
t1::: tl

) of � s
q.†

o;�
1;0/ as follows:

resp.,

These elements can be arranged into tensors

U.l/.b/;U.l/.a/ 2 � s
q.†

o;�
1;0/˝ EndC.V2/

˝l :

For simplicity, we denote

U .b/ D U.1/.b/; U .a/ D U.1/.a/

and set
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We have the analogue of (50):

D
X

Z.T br/
s1::: sk
i1::: il j1::: jm i

0
1
::: i 0
l
j 0
1
::: j 0mU.l/.b/i1::: ilj1::: jl

U.m/.a/i
0
1
::: i 0m

j 0
1
::: j 0m : (53)

where the sum is over all the indices i�; i 0�; j�; j 0� , each one ranging in ¹˙º. To obtain
this relation, one applies as before the equality id D ." ˝ id/ ı �e and (46) to the
dashed arc e in the figure below, which gives a bigon and another copy of †o;�

1;0:

... ...
s1 sk

T

... ...

where we force the apparition of the product U.l/.b/
i1::: il
j1::: jl

U.m/.a/
i 0
1
::: i 0m

j 0
1
::: j 0m using iso-

topy; this explains why we have T br instead of T in the right-hand side of (53). In

particular, (53) implies that the collection of elements U.l/.b/
i1::: il
j1::: jl

U.m/.a/
i 0
1
::: i 0m

j 0
1
::: j 0m

(with l;m � 0 and i�; j�; i 0�; j 0� 2 ¹˙º for each �) spans � s
q.†

o;�
1;0/ as a ZŒq˙1=2�-mod-

ule.
The next result is the exact analogue of Lemma 5.7.

Lemma 5.9. The following statemests hold true.

(1) We have a morphism j WL1;0.Uq2/ ! � s
q.†

o;�
1;0/ of Oq2-comodule-algebras

defined by j.B/ D U .b/.tD/�1 and j.A/ D U .a/.tD/�1.

(2) The morphism j is surjective.

Proof. (1) The proof is again entirely based on formal matrix computations. It is
clear that the two first lines of relations in (52) are satisfied, since it suffices to repeat



M. Faitg 50

the proof of Lemma 5.7 in each handle with the matrices U .b/;U .a/ instead of U . To
show the exchange relation (third line of (52)), observe that, by (53),

U .a/s1
t1

U .b/s2
t2
D

D
X
ijkl

U .b/i
jU .a/k

l Z

 !s1t1s2t2
ijkl

:

The evaluation of the braid gives the following expression:

U
.a/
1 U

.b/
2 D .aıaU .b/ tb˛

taˇ /2
�
bS.a˛/U

.a/ tbˇ
tbı
�
1

with R D a� ˝ b� is the matrix in (42). Then, as in the proof of Lemma 5.7, a com-
putation left to the reader based on (43) and (44) shows that this equality is equivalent
to

R.U .b/.tD/�1/1R21.U .a/.tD/�1/2 D .U .a/.tD/�1/2R.U .b/.tD/�1/1R�1

as desired.

(2) By repeating the proof of the second claim of Lemma 5.7 in each handle, we

know that we can write any element U.l/.b/
i1::: il
j1::: jl

(resp. U.m/.a/
i 0
1
::: i 0m

j 0
1
::: j 0m) as a polyno-

mial in the 4 elements U .b/s
t (resp. U .a/s0

t 0 ), with s; t; s0; t 0 2 ¹˙º. Hence, any element

U.l/.b/
i1::: il
j1::: jl

U.m/.a/
i 0
1
::: i 0m

j 0
1
::: j 0m can be written as a polynomial in the 8 elements U .b/s

t ,

U .a/s0
t 0 . The claim is proved since, as already observed, this collection of elements

spans � s
q.†

o;�
1;0/ as a ZŒq˙1=2�-module.

Lemma 5.10. The map

holsW � s
q.†

o;�
1;0/! L1;0.Uq2/

is an isomorphism of Oq2-comodule-algebras.

Proof. Completely similar to the proof of Lemma 5.8.

6. Geometric interpretation of the vacuum representation of Lg;0.H /

on L0;g.H /

In this section we take n D 0. Let LA
g;0.H/ be the subalgebra of Lg;0.H/ gener-

ated by all the coefficients
I

A.i/k
l

of the matrices
I

A.i/ (for all i and all the finite-
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dimensional H -modules I ). We define a right action G of LA
g;0.H/ on C by

1 G I

A.i/ D Idim.I / for all i

i.e.,

1 G I

A.i/kl D ıkl for all i:

It is immediate that G is compatible with relations (5), (7) of Definition 2.1. Hence,
we have a representation Cvac of LA

g;0.H/. 1 is called a vacuum vector or a cyclic
vector, often denoted � or j0i (see for instance [6, Theorem 21], but with different
conventions than here). Then we define the right vacuum representation of Lg;0.H/

to be the induced representation

Cvac ˝
LA
g;0
.H/

Lg;0.H/

where LA
g;0.H/ acts by left multiplication on Lg;0.H/. Thanks to the defining rela-

tions of Lg;0.H/ (Definition 2.1), it is clear that any element of Lg;0.H/ can be
written as a linear combination of some products of the form

J1

A.1/
k1
l1
: : :

Jg

A.g/
kg
lg

I1

B.1/
i1
j1
: : :

Ig

B.g/
ig
jg
:

Hence, any element in the vacuum representation is a linear combination of vectors
of the form

1 G
I1

B.1/
i1
j1
: : :

Ig

B.g/
ig
jg
:

Similarly, any element of L0;g.H/ can be written as a linear combination of some
products of the form

I1

M.1/
i1
j1
: : :

Ig

M.g/
ig
jg
;

and we have an isomorphism of vectors spaces

Cvac ˝
LA
g;0
.H/

Lg;0.H/!L0;g.H/;

1 G
I1

B.1/
i1
j1
: : :

Ig

B.g/
ig
jg
7!

I1

M.1/
i1
j1
: : :

Ig

M.g/
ig
jg
:

By identification of these two spaces, we obtain the (right) vacuum representation of
Lg;0.H/ on L0;g.H/; we still denote the action by G.

Remark 6.1. We consider a right representation because we want to relate it to the
stacking representation of CT .†

o;�
g;0/ on CT .†

o;�
0;g/, which is a right representation

due to our convention on the stack product (Definition 4.3).
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Lemma 6.2. The vacuum representation of Lg;0.H/ on L0;g.H/ is explicitly given
by

I1

M.1/
Ig

M.g/
J

B.j /

I1

M.1/
Ij 1

M .j 1/
Ij ˝J

M .j /
Ij C1

M .j C 1/
Ig

M.g/

and

I1

M.1/
Ig

M.g/
J

A.j /

I1

M.1/
Ij 1

M .j 1/
Ij

M.j /
Ij C1

M .j C 1/
Ig

M.g/

The left-hand side of the first equality means of course

.
I1

M.1/ik : : :
Ig

M.g/lm G
J

B.j /no/˝ ui ˝ uk ˝ � � � ˝ vl ˝ vm ˝ wn ˝ wo;

and similarly for the second.

Proof. These are just the outcomes of graphical computations. For instance, below is
the computation for the action of

J

A.1/ in the case g D 2:

I1 GI2 J

I1

M.1/
I2

M.2/
J

A.1/
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D 1G I1 I2 J

I1

B.1/
I2

B.2/
J

A.1/

I2 JI1

D 1G D
I1

B.1/
J

A.1/
I2

B.2/

I2 JI1

D 1G
J

A.1/
I1

B.1/
I2

B.2/

I2 JI1

D 1G D

I1 I2 J

I1

B.1/
I2

B.2/
I1

M.1/
I2

M.2/

We used (24), (23), and the definition of the vacuum representation.
Other cases are treated similarly.

Remark 6.3. There is a left representation of Lg;0.H/ on .H ı/˝g which comes
from the facts that there exists [2] a morphism of algebras Lg;0.H/! H .O.H//˝g

(the Heisenberg double of the dual Hopf algebra O.H/) and that there is a natural
representation of H .O.H// on H ı. When H is finite-dimensional and factorizable,
the morphism Lg;0.H/! H .O.H//˝g is an isomorphism [23, Section 3.3], and it
is well known that, when H is finite-dimensional, H .O.H// Š EndC.H

�/. Hence,
under these assumptions, Lg;0.H/ has only one indecomposable left representation,
namely .H�/˝g , which is necessarily dual to the vacuum (right) representation on
L0;g.H/. Note however that writing down an explicit intertwiner is not obvious (one
has to use certain elements defined in [23] which implement the action of the mapping
class group). I do not know if these two representations are isomorphic when H is
infinite-dimensional.
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Recall that we denote by T .†
o;�
g;n/ the set of isotopy classes of H -colored

@†-tangles, with † D †
o;�
g;n � Œ0; 1�, and by CT .†

o;�
g;n/ the C-vector space with

basis T .†
o;�
g;n/. Then CT .†

o;�
g;n/ is an algebra for the stack product. There is a right

representation of CT .†
o;�
g;0/ on CT .†

o;�
0;g/ obtained by stacking †o;�

g;0 � Œ0; 1� atop
†

o;�
0;g � Œ0; 1�; we denote it by J. Note that it is a right representation due to our

convention for the stack product (Definition 4.3).
For x ˝ v 2 L0;g.H/˝ V and y ˝ w 2 Lg;0.H/˝W , where V;W are finite-

dimensional H -modules, we define

.x ˝ v/ G .y ˝ w/ D .x G y/˝ v ˝ w 2 L0;g.H/˝ V ˝W:

We also denote by hol0;g and holg;0 the holonomy maps for CT .†
o;�
0;g/ and CT .†

o;�
g;0/

respectively (see Definition 4.2). The following result relates the representations G
andJ.

Theorem 6.4. For S 2 CT .†
o;�
0;g/ and T 2 CT .†

o;�
g;0/ it holds

hol0;g.S/ G holg;0.T / D hol0;g.S J T /:

Proof. The representationJ is depicted as follows for the case g D 2 (which is com-
pletely representative of the general situation):

T

S

S

T

D

J

For simplicity, we omit the orientations and the colorings in this figure; moreover,
even if we draw only one strand in each handle for S and T , this represents in fact



Holonomy and (stated) skein algebras in combinatorial quantization 55

bunches of parallel strands. To obtain S J T , we used the embeddings of the fat
graphs in the more intuitive views of the surfaces †o;�

2;0 and †o;�
0;2 (see Figure 2); it

is more easy to perform the stacking from this viewpoint. The theorem follows from
the comparison with the diagrammatic formulas in Lemma 6.2. Note that above we
have presented S J T in such a way that the comparison is immediate; in particular
the two crossings just below the coupon T correspond to the crossings which appear
when we apply hol2;0 to T (Definition 4.2).

Corollary 6.5. The subspace Linv
0;g.H/ is stable under the action of Linv

g;0.H/:

x 2 Linv
0;g.H/; y 2 Linv

g;0.H/ H) x G y 2 Linv
0;g.H/:

Proof. Thanks to the fifth property in Proposition 4.10, write x D W f1.L1/ (resp.
y D W f2.L2/), where the based link L1 (resp. L2) has k (resp. l) basepoints and
f1 2 Invk.H/ (resp. f2 2 Invl.H/). Then

x G y D W f1.L1/ GW f2.L2/ D W f1˝f2.L1 J L2/:

But it is clear that f1 ˝ f2 2 InvkCl.H/ and thus by the first property in Proposi-
tion 4.10, this element is invariant.

Recall that L.†o
g;0/ is the set of (isotopy classes of) SLF.H/-colored framed links

in †o
g;0 � Œ0; 1�, and similarly for L.†g;0/. The canonical embedding j � idW†o

g;0 �
Œ0; 1�!†g;0 � Œ0; 1� induces a surjective (non-injective) linear map � WCL.†o

g;0/!
CL.†g;0/. Also recall the generalized Wilson loop map W defined in (39).

Proposition 6.6. Let x 2 Linv
0;g.H/ and L1; L2 2 CL.†o

g;0/. It holds

�.L1/ D �.L2/ H) x GW.L1/ D x GW.L2/:

Hence, for L 2 CL.†g;0/, x GW.L/ is well defined.

Proof. Consider the SLF.H/-colored links L;L@ depicted below:

L D
T

L@ D
T

The dots mean the remaining of †o
g;0 � Œ0; 1� (see Figure 2), where the links L; L@

are equal. It is clear that two links L1; L2 satisfy �.L1/ D �.L2/ if we can pass
from one to another by such transformation. Thanks to the fifth property in Proposi-
tion 4.10, write x D W f .K/ where the uncolored based link K has k basepoints and
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f 2 Invk.H/. We use the Hennings formulation of holonomy (see Section 4.3). Let
Lb andL@

b
be uncolored based links such that ŒLb�DL and ŒL@

b
�DL@. The diagrams

(as in (36)) associated to K J Lb and K J L@
b

are related as follows:

1 k 10 l 0

1 k 10 20 l 0

This represents a neighborhood of the dotted line, and the remaining of the dia-
grams are equal. We number the basepoints of Lb; L@b with primes to distinguish
them from the basepoints of K. To avoid cumbersome computations, take k D 2

(this is completely representative of the general situation). Write Hen.K J Lb/ D
Z0 ˝ Z1 ˝ Z2 ˝ Z01 ˝ � � � ˝ Z0l 2 Lg;n.H/˝H˝.2Cl/, with implicit summation.
Let ai.1/ ˝ bi.1/; : : : ; ai.8/ ˝ bi.8/ be 8 D 4k copies of R D ai ˝ bi (one for each
crossing in the diagram above); then

Hen.K J L@b/
D Z0 ˝ gS.ai.4//bi.5/g�1Z1bi.6/S2.ai.3//˝ gS.ai.2//bi.7/g�1Z2bi.8/S2.ai.1//
˝ gbi.1/bi.2/bi.3/bi.4/S.ai.5//ai.6/S.ai.7//ai.8/g�1Z01 ˝Z02 ˝ � � � ˝Z0l
D Z0 ˝ S2.ai.4/bi.5//Z1S.ai.3/bi.6//˝ S2.ai.2/bi.7//Z2S.ai.1/bi.8//
˝ gS�1.bi.4/bi.3/bi.2/bi.1//S.ai.8/ai.7/ai.6/ai.5//g�1Z01 ˝Z02 ˝ � � � ˝Z0l
D Z0 ˝ S2.a.1/i b

.1/
j /Z1S.a

.2/
i b

.2/
j /˝ S2.a.3/i b

.3/
j /Z2S.a

.4/
i b

.4/
j /

˝ gS�1.bi /S.aj /g�1Z01 ˝Z02 ˝ � � � ˝Z0l :
For the second equality we used the properties of S , the formula .S ˝ S/.R/ D R
and (2), and for the third equality we used an iteration of the formulas .�˝ id/.R/D
R13R23, .id ˝ �/.R/ D R13R12. Hence, denoting by '1; : : : ; 'l the colors of the
components of L;L@, we have

x GW.L@/ DW f .K/ GW '1˝���˝'l .L@b/ D W f˝'1˝���˝'l .K J L@b/

DZ0 f
�
S2.a

.1/
i b

.1/
j /Z1S.a

.2/
i b

.2/
j /˝ S2.a.3/i b

.3/
j /Z2S.a

.4/
i b

.4/
j /

�
� '1.gS�1.bi /S.aj /g�1Z01/'2.Z02/ : : : 'l.Z0l/

DZ0 f .Z1 ˝Z2/'1.Z01/ : : : 'l.Z0l/
DW f˝'1˝���˝'l .K J Lb/ D W f .K/ GW '1˝���˝'l .Lb/ D x GW.L/:
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For the second and sixth equalities we used Theorem 6.4 and for the fourth equality
we used that f 2 Invk.H/ and that ."˝ id/.R/ D .id˝ "/.R/ D 1.

This proposition shows that we have a representation of CL.†g;0/ (and not just
of CL.†g;0 nD/) on Linv

0;g.H/. Hence, in some sense, the disk D is glued back via
this process and we can deal with the closed surface †g;0.

Let us specialize these results to H D Uq2 D Uq2.sl2/, where they descend to
the skein algebra (quotient of CL.†g;0/ by skein relations). As already said (before
Corollary 5.6), in that case we can without loss of generality color all the link com-
ponents by �C2 and we have two isomorphisms

Wg;0W �q.†o
g;0/

�! Linv
g;0.Uq2/; W0;g W �q.†o

0;g/
�! Linv

0;g.Uq2/: (54)

Moreover, there is a natural representation of �q.†g;0/ on �q.†
o
0;g/ D �q.†0;gC1/

(skein module of a handlebody) obtained by stacking, we still denote it byJ.

Corollary 6.7. Under the identifications (54), the representation G of Linv
g;0.Uq2/ on

Linv
0;g.Uq2/ is the stacking representationJ of �q.†g;0/ on �q.†

o
0;g/. In other words,

W0;g.L1/ GWg;0.L2/ D W0;g.L1 J L2/:

7. A remark on roots of unity

Corollary 6.7 is a bit disappointing because it tells us that the representation of
�q.†g;0/ produced by combinatorial quantization is just equivalent to the obvious
representation on the skein module of a handlebody. This changes dramatically if we
replace the formal variable q by a root of unity � and we will now describe a construc-
tion producing much less obvious representations of ��.†g;0/, which are moreover
finite-dimensional.

Let � D ei�=2p be a 4p-th root of unity (p � 2), and let U�2 be the specialization
of Uq2.sl2/ to �2 D ei�=p . Then we can consider the restricted quantum group of sl2,
denoted by xU�2 D xU�2.sl2/, which is the quotient of U�2 by

Ep D F p D 0; K2p D 1:

The algebra Lg;n.U�2/ does not exist since U�2 is not braided. Nevertheless, we
can consider the specialization Lg;n.Uq2/�2 of Lg;n.Uq2/ at q2 D �2 (this special-
ization is studied in great detail in [8] for g D 0). Moreover, it is possible to define
Lg;n. xU�2/ (see [21, Section 6] for full details), and it turns out it is the quotient of
Lg;n.Uq2/�2 by

.X.i/�C/
p D .X.i/C� /p D 0; .X.i/CC/

2p D 1;



M. Faitg 58

where as usual X.i/ is A.i/ or B.i/ if 1 � i � g and is M.i/ if g C 1 � i � g C n
(recall Lemma 5.1, from which we take back the notations). This together with the
relations of Lemma 5.1 gives a presentation by generators and relations of Lg;n. xU�2/.
The dimension of Lg;n. xU�2/ is .2p3/2gCn.

Let W�W ��.†o
g;n/! Linv

g;n.Uq2/�2 be the specialization of the Wilson loop map
(we recall that all the strands in ��.†

o
g;n/ are implicitly colored by the character �C2 of

the fundamental representation V2) and let SW be the Wilson loop map for H D xU�2
(with source the SLF. xU�2/-colored links and with values in Linv

g;n.
xU�2/, according

to Definition 4.13); note that we choose g D KpC1 for the pivotal element in xU�2 .
The representation V2 descends to xU�2 , so that �C2 2 SLF. xU�2/. If we restrict SW to
��.†

o
g;n/ (i.e., we restrict SW to the links colored by �C2 ), then SW factors through W�:

��.†
o
g;n/ Linv

g;n.
xU�2/

Linv
g;n.Uq2/�2

SW

W� pr

where pr is the canonical projection. The restriction of pr to Linv
g;n.Uq2/�2 (specializa-

tion of Linv
g;n.Uq2/ at �2) takes values in Linv

g;n.
xU�2/ (but note that this restriction is not

surjective). By the results of the previous section, we obtain an action ofL 2 ��.†g;0/

on x 2 Linv
0;g.
xU�2/ by

x G SW.L/
and this produces a finite-dimensional right representation of ��.†g;0/.

In the sequel, we describe explicitly this representation in the case of the torus
†1;0. Consider the following curves in†o

0;1 � ¹0º �†o
0;1 � Œ0; 1� and in†1;0 � ¹0º �

†1;0 � Œ0; 1� respectively:

b

a

m

Since xU�2 is factorizable, we know by [21, Lemma 3.9] that we have an isomorphism
of algebras

SLF. xU�2/
�! Linv

0;1.
xU�2/; ' 7! SW '.m/; (55)

where SW '.m/ is the value of SW on m colored by '. Recall that SLF. xU�2/ is a com-
mutative algebra, for the usual product of linear forms ' D .' ˝  / ı � (this is
true for any finite-dimensional factorizable ribbon Hopf algebra H ; actually for such
H one has SLF.H/ Š Z.H/ Š Linv

0;1.H/).
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According to [15], ��.†1;0/ is generated by the links a and b. Hence, to describe
the representation it suffices to compute the action of SW.a/ D SW �

C
2 .a/ and SW.b/ D

SW �
C
2 .b/ on SW '.m/. Recall that the Casimir element is

C D FE C �2K C ��2K�1
.�2 � ��2/2 2 Z. xU�2/:

Lemma 7.1. For all ' 2 SLF.H/, it holds

SW '.m/ G SW.a/ D SW '.‹c/.m/; SW '.m/ G SW.b/ D SW '�
C
2 .m/

where c D .�2 � ��2/2C , '.‹c/ is defined by h 7! '.hc/ and '�C2 is the product of
the linear forms ' and �C2 .

Proof. Thanks to Lemma 6.2, we have

I

M G SW.a/ D

D

D I

M.�C2 ˝
I

T /
�
.g ˝ 1/RR0�;

where the last equality is obtained by a straightforward computation. Using the for-
mula for R [25, Section 4], we get that .�C2 ˝ id/..g ˝ 1/RR0/ D c, and hence
I

M G SW.a/ D I

M
I
c. Thus, if we let ' DPI tr.ƒI

I

T /,

SW '.m/ G SW.a/ D
X
I

tr.ƒI
I
g

I

M G SW.a// D
X
I

tr.ƒI
I
g

I

M
I
c/ D SW '.‹c/.m/:

For b, it is clear by definition of G that
I

M G SW.b/ D I

M SW �
C
2 .m/, which implies

SW '.m/ G SW.b/ D SW '.m/SW �
C
2 .m/. But due to (55) it holds SW '.m/SW �

C
2 .m/ D

SW '�
C
2 .m/.

To simplify notations, we identify SLF. xU�2/ and Linv
0;1.
xU�2/ through the isomor-

phism (55), so that we obtain a representation of ��.†1;0/ on SLF. xU�2/. Recall that
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dim.SLF. xU�2// D 3p � 1, and we have the GTA basis ([1,27]; here we use notations
from [22]):

�C1 ; ��1 ; : : : ; �Cp ; ��p ; G1; : : : ; Gp�1:

The �ṡ are the characters of the simple modules X˙.s/ (in particular XC.2/DV2)
and the Gs are certain linear combinations of matrix coefficients of projective mod-
ules. It is easy to compute the action of a (' G SW.a/ D '.‹c/) on these elements:

�˛s G SW.a/ D �˛.�2s C ��2s/�˛s ;
Gs G SW.a/ D �.�2s C ��2s/Gs � .�2 � ��2/2.�Cs C ��p�s/

where ˛ 2 ¹˙º. The action of b (' G SW.b/ D '�C2 ) is given by the multiplication
rules in the GTA basis ([27], also see [22] for an elementary proof):

�˛1 G SW.b/ D �˛2 ; G1 G SW.b/ D Œ2�G2;

�˛s G SW.b/ D �˛s�1 C �˛sC1; Gs G SW.b/ D Œs � 1�
Œs�

Gs�1 C Œs C 1�
Œs�

GsC1;

�˛p G SW.b/ D 2�˛p�1 C 2��˛1 ; Gp�1 G SW.b/ D Œ2�Gp�2:

where Œk� D �2k���2k
�2���2 .

Let

V1 D vect.�Cs C ��p�s; �Cp ; ��p /1�s�p�1;
V2 D vect.�Cs /1�s�p�1;
V3 D vect.Gs/1�s�p�1

so that SLF. xU�2/ D V1 ˚ V2 ˚ V3. Note that V1 is the subspace generated by the
characters of the projective modules. From the formulas above, we see that the struc-
ture of SLF. xU�2/ under the action of ��.†1;0/ has the following shape:

V2 V3

V1

SW.b/ SW.a/; SW.b/

By this diagram, we mean that V1 is a submodule, that V2 GW.a/�V2, V2 GW.b/�
V1 C V2, etc. Let

J1 D V1; J2 D V1 C V2; J3 D V1 C V2 C V3:
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Proposition 7.2. J1 � J2 � J3 is a composition series for SLF. xU�2/ under the action
of ��.†1;0/. Moreover, the composition factor J2=J1 is isomorphic to � red

� .†o
0;1/, the

reduced skein module of the annulus (which is a ��.†1;0/-module by stacking and
reducing).

Proof. We must show that J1; J2=J1; J3=J2 are irreducible. Recall that the center of
xU�2 contains p C 1 primitive orthogonal idempotents e0; : : : ; ep , associated to the
blocks of xU�2 [25, Proposition 4.4.4]. They can be expressed as polynomials of c
[25, Proposition D.1.1]: e0 D P0.c/; : : : ; ep D Pp.c/. Moreover, it is easy to see that

�Cs .‹et / D ıs;t�Cs ; ��s .‹et / D ıp�s;t��s ; Gs.‹et / D ıs;tGs:

Let us show that J1 is irreducible. Let 0 ¤ S � J1 be a submodule, and let 0 ¤ ' D
�0�

�
p C

P
s �s.�

C
s C ��p�s/C �p�Cp 2 S . At least one of the coefficients, say �s , is

non-zero. Then

' G Ps.SW.a// D '.‹Ps.c// D '.‹es/ D �s.�Cs C ��p�s/

and thus �Cs C ��p�s 2 S . Assume for instance s D 1. We have

.�C1 C ��p�1/ G SW.b/ D .�C2 C ��p�2/C ��p ;

and

..�C2 C ��p�2/C ��p / G P2.SW.a// D ..�C2 C ��p�2/C ��p /.‹e2/ D �C2 C ��p�2;

..�C2 C ��p�2/C ��p / G P0.SW.a// D ..�C2 C ��p�2/C ��p /.‹e0/ D ��p
so that �C2 C ��p�2; ��p 2 S . Continuing like this, one shows step by step that all the
basis vectors are in S , and thus S D J1 as desired. The proofs for J2=J1 and J3=J2
are similar.
For the last claim, recall that � red

� .†o
0;1/ is the quotient (in some sense) of ��.†

o
0;1/

by the .p�1/-th Jones–Wenzl idempotent (see [18, Section 6.5] for a survey) and
that it is generated as a vector space by the “closures” cl.fn/ of the Jones–Wenzl
idempotents fn for 0 � n � p � 2:
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We have SW.cl.fs�1// D SW �
C
s .m/, so that SW.cl.fp�1//C J1 D SW �

C
p .m/C J1 D 0

(where x C J1 means the class of x modulo J1) and SW W � red
� .†o

0;1/ ! J2=J1 is a
well-defined map. Due to Theorem 6.4 we see that

SW.cl.fs�1/ J L/C J1 D SW.cl.fs�1// G SW.L/C J1 D SW �
C
s .m/ G SW.L/C J1

where L 2 ��.†1;0/ andJ is the stacking and reducing representation of ��.†1;0/ on
� red
� .†o

0;1/. Thus, SW W � red
� .†o

0;1/! J2=J1 is an isomorphism of ��.†1;0/-modules.

Remark 7.3. In [20, Section 6.5], we studied the left representation of ��.†1;0/ on
the space mentioned in Remark 6.3 instead of on the vacuum representation space.
Then the claim in [20, Proposition 6.5.5], even if it is in agreement with the one in
Proposition 7.2, does not make sense since we compare a left representation with the
representation of ��.†1;0/ on � red

� .†o
0;1/ which is right due to our convention for the

stack product (Definition 4.3); we did not realize this subtlety at that time. To make
sense of it, one must take the dual representation, and apply the intertwiner mentioned
in Remark 6.3.

It is very difficult to generalize to higher genus such an explicit description of the
representation of ��.†g;0/ on Linv

0;g.
xU�2/. Indeed, by Remark 4.11, finding a basis of

Linv
0;g.
xU�2/ is equivalent to finding a basis of Inv2g. xU�2/ (multilinear forms invariant

under the iterated coadjoint action), which is a difficult problem. Moreover, at roots of
unity, generating sets of ��2.†g;0/ are not known. However, we see from the previous
result that the natural representation of ��2.†g;0/ on � red

�2
.†o

0;g/ (which is known to
be irreducible [10]) will be a composition factor of the representation of ��2.†g;0/

on Linv
0;g.
xU�2/ in a non-trivial way. Finally, the socle of this representation might be a

generalization of the ideal formed by the characters of projective modules (which is
the socle in the case of the torus, see V1 above).

A. Proof of Theorem 4.4

The proof is purely diagrammatic but requires some preliminaries. The interested
reader might find it relevant to study the proof on an example with small values of
g; n, like g D 2; n D 3. We begin with some notations:
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Note that up to using coupons we can assume that all the strands are positively
oriented when they go through an handle and also that the bunch of strands in each
handle is reduced to only one strand (colored by the tensor product of the colors).
Hence, we can assume the following form for T1:

I2gC1I1 I2 I2gCn

T1

VkV1

I2g 1 I2g

where the tangle T1 is allowed to contain coupons. Similarly, we can assume such a
form for T2, but with colors J1; : : : ; J2gCn instead of I1; : : : ; I2gCn and W1; : : : ; Wl
instead of V1; : : : ; Vk and with some tangle T2 instead of T1. The product T1 � T2
then looks as follows in Figure 4, where the braid exg;n (or rather its diagram) is
constructed as follows. Let Œ0; 1�3 with coordinates .x; y; z/ and let �x be the projec-
tion on the first coordinate. Let ai ; cj be points in Œ0; 1� � ¹0º � ¹0º and let bi ; dj be
points in Œ0; 1� � ¹0º � ¹1º, where 1 � i � g and 1 � j � n, such that �x has strictly
increasing values on the following sequence:

.a1; b1; a2; b2; : : : ; ag ; bg ; c1; d1; c2; d2; : : : ; cn; dn/:

Similarly, let Nai ; Ncj be points in Œ0; 1�� ¹1º � ¹0º and Nbi ; Ndj be points in Œ0; 1�� ¹1º �
¹1º, where 1 � i � g and 1 � j � n, such that �x has strictly increasing values on
the following sequence:

. Na1; : : : ; Nag ; Nc1; : : : ; Ncn; Nb1; : : : ; Nbg ; Nd1; : : : ; Ndn/:

Join the points ai and Nai (resp. bi and Nbi , cj and Ncj , dj and Ndj ) by straight lines
and project the result on the .x; y/-plane, this gives a braid diagram (we can always
arrange the points ai ; bi ; cj ; dj and Nai ; Nbi ; Ncj ; Ndj so that the projection on .x; y/ has
only simple or double points and we get a well-defined diagram). Finally, for each
1 � i � g, replace the strand joining the points ai and Nai (resp. bi and Nbi ) by 4
parallel strands (4-cabling). Similarly, for each 1 � j � n, replace the strand joining
the points cj and Ncj (resp. dj and Ndj ) by 2 parallel strands (2-cabling). This gives a
braid diagram of exg;n in Œ0; 1� � Œ0; 1�.
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T1

I2gC1

VkV1

I1 J1 I2 J2

ˇ1;0

I2g 1 J2g 1 I2g J2g

ˇ1;0

J2gC1

ˇ0;1

I2gCn J2gCn

ˇ0;1

exg;n

T2

WlW1

I1 I1 J1 J1I2gCn I2gCn J2gCn J2gCn

Figure 4. T1 � T2.
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Lemma A.1. The following statements hold true.

(1) The following equalities hold for all 1 � i � g and g C 1 � j � g C n:

ˇ0;1

I I J J

D

I J

I˝J

M.j /
I

M.j /
J

M.j /

ˇ1;0

I1 I2 I1 I2 J1 J2J1 J2

I1˝J1

B .i/
I2˝J2

A .i/

D

I1 I2 J1 J2

I1

B.i/
I2

A.i/
J1

B.i/
J2

A.i/

(2) Let ˛1; : : : ; ˛g and ˇ1; : : : ; ˇg be braids on 4 strands and let 1; : : : ; n and
ı1; : : : ; ın be braids on 2 strands. It holds

exg;n ı .˛1 ˝ ˇ1 ˝ ˛2 ˝ ˇ2 ˝ � � �
˝ ˛g ˝ ˇg ˝ 1 ˝ ı1 ˝ 2 ˝ ı2 ˝ � � � ˝ n ˝ ın/

D .˛1 ˝ � � � ˝ ˛g ˝ 1 ˝ � � � ˝ n
˝ ˇ1 ˝ � � � ˝ ˇg ˝ ı1 ˝ � � � ˝ ın/ ı exg;n:

(3) For k; l � 1, define

�k;l D .id˝.l�1/k
˝ ck;k ˝ id˝.l�1/

k
/ ı .id˝.l�2/

k
˝ c˝2

k;k
˝ id˝.l�2/

k
/ ı � � �

ı .id˝2
k
˝ c˝.l�2/

k;k
˝ id˝2

k
/ ı .idk ˝ c˝.l�1/k;k

˝ idk/

where idk D id˝k is the identity braid on k strands; then

exg;n D .id˝4g ˝ c4g;2n ˝ id˝2n/ ı .�4;g ˝ �2;n/:
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Proof. (1) The first equality is readily equivalent to (22). The second equality is the
outcome of a diagrammatic computation displayed in Figure 5 and based on (22)
and (23).

(2) This is obvious by definition of the braid exg;n.

(3) Let a0i ; c
0
j be points in Œ0; 1� � ®1

2

¯ � ¹0º and let b0i ; d
0
j be points in Œ0; 1� �®

1
2

¯� ¹1º, where 1� i � g and 1� j � n, such that �x has strictly increasing values
on the following sequence:

.a01; : : : ; a
0
g ; b
0
1; : : : ; b

0
g ; c
0
1; : : : ; c

0
n; d

0
1; : : : ; d

0
n/:

Join the points ai and a0i (resp. bi and b0i , cj and c0j , dj and d 0j ) by straight lines
and project the result on the .x; y/-plane, this gives a braid diagram. For each 1 �
i � g, replace the strand joining the points ai and a0i (resp. bi and b0i ) by 4 parallel
strands (4-cabling); for each 1 � j � n, replace the strand joining the points cj and
c0j (resp. dj and d 0j ) by 2 parallel strands (2-cabling). This defines a braid diagram B1

in Œ0; 1� � �0; 1
2

�
.

Similarly, join the points a0i and Nai (resp. b0i and Nbi , c0j and Ncj , d 0j and Ndj ) by
straight lines and project the result on the .x; y/-plane, this gives a braid diagram.
For each 1 � i � g, replace the strand joining the points a0i and Nai (resp. b0i and Nbi )
by 4 parallel strands (4-cabling); for each 1 � j � n, replace the strand joining the
points c0j and Ncj (resp. d 0j and Ndj ) by 2 parallel strands (2-cabling). This defines a
braid diagram B2 in Œ0; 1� � �1

2
; 1
�
.

Then it is not difficult to see that

exg;n D B2 ı B1; B1 D �4;g ˝ �2;n; B2 D id˝4g ˝ c4g;2n ˝ id˝2n

(it is helpful to draw some examples for small values of g; n).

The proof of Theorem 4.4 is now reduced to the diagrammatic computation
displayed in Figures 6, as we now explain. First note that, by definition, the first
diagram in this figure represents hol.T1 � T2/ while the last diagram represents
hol.T1/ ˇ hol.T2/. The first equality is obtained by applying the first item in
Lemma A.1 (1), while the second equality is obtained thanks to the second and third
items. For the third equality, observe first that due to the exchange relation (24) we
have that for i < j :

D
c4;4

J2i 1

B .i/
J2i

A .i/
I2j 1

B .j /
I2j

A .j /
I2j 1

B .j /
I2j

A .j /
J2i 1

B .i/
J2i

A .i/



H
olonom

y
and

(stated)skein
algebras

in
com

binatorialquantization
67

I1˝J1

B .i/
I2˝J2

A .i/
I1˝J1

B .i/
I2˝J2

A .i/

I1

B.i/
J1

B.i/
I2

A.i/
J2

A.i/
I1

B.i/
J1

B.i/
I2

A.i/
J2

A.i/

I1

B.i/
I2

A.i/
J1

B.i/
J2

A.i/
I1

B.i/
I2

A.i/
J1

B.i/
J2

A.i/

D

D

D

D

D

Figure 5. Proof of the second equality in Lemma A.1 (1).
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D
I1

B.1/
I2

A.1/
I2g 1

B .g/
I2g

A .g/
I2gC1

M .g C 1/
I2gCn

M .g C n/
J1

B.1/
J2

A.1/
J2g 1

B .g/
J2g

A .g/
J2gC1

M .g C 1/
J2gCn

M .g C n/

I1˝J1

B .1/
I2˝J2

A .2/
I2g 1˝J2g 1

B .g/
I2g˝J2g

A .g/
I2gC1˝J2gC1

M .gC 1/
I2gCn˝J2gCn

M .gCn/

V1 Vk W1 Wl

V1 Vk W1 Wl

I1 I1 I2gCn I2gCn J1 J1 J2gCn J2gCn

I1 I1 I2gCn I2gCn J1 J1 J2gCn J2gCn

T1 T2

T1 T2

exg;n

exg;n

ˇ1;0 ˇ1;0 ˇ0;1 ˇ0;1

Figure 6a. Proof of hol.T1 � T2/ D hol.T1/ˇ hol.T2/ (first part).
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D

D

D
I1

B.1/
I2

A.1/
I2g 1

B .g/
I2g

A .g/
I2gC1

M .g C 1/
I2gCn

M .g C n/
J1

B.1/
J2

A.1/
J2g 1

B .g/
J2g

A .g/
J2gC1

M .g C 1/
J2gCn

M .g C n/

I1

B.1/
I2

A.1/
I2g 1

B .g/
I2g

A .g/
I2gC1

M .g C 1/
I2gCn

M .g C n/
J1

B.1/
J2

A.1/
J2g 1

B .g/
J2g

A .g/
J2gC1

M .g C 1/
J2gCn

M .g C n/

I1

B.1/
I2

A.1/
I2g 1

B .g/
I2g

A .g/
I2gC1

M .g C 1/
I2gCn

M .g C n/
J1

B.1/
J2

A.1/
J2g 1

B .g/
J2g

A .g/
J2gC1

M .g C 1/
J2gCn

M .g C n/

V1 Vk W1 Wl

V1 Vk W1 Wl

V1 Vk W1 Wl

T1 T2

T1 T2

c4g;2n

c4g;2n

4;g 2;n

T1 T2

Figure 6b. Proof of hol.T1 � T2/ D hol.T1/ˇ hol.T2/ (second part).
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Using repeatedly this identity, we transform the tensor product of the handles labeled
by
I1

B.1/;
I2

A.1/;
J1

B.1/;
J2

A.1/;
I3

B.2/;
I4

A.2/;
J3

B.2/;
J4

A.2/; : : : ;
I2g�1
B .g/;

I2g

A .g/;
J2g�1
B .g/;

J2g

A .g/

into the tensor product of the handles labeled by
I1

B.1/;
I2

A.1/;
I3

B.2/;
I4

A.2/; : : : ;
I2g�1
B .g/;

I2g

A .g/;
J1

B.1/;
J2

A.1/;
J3

B.2/;
J4

A.2/; : : : ;
J2g�1
B .g/;

J2g

A .g/:

Moreover, this manipulation removes exactly the braid �4;g in the diagram. Similarly,
using repeatedly relation (24), we transform the tensor product of the handles labeled
by
I2gC1
M .g C 1/;

J2gC1
M .g C 1/;

I2gC2
M .g C 2/;

J2gC2
M .g C 2/; : : : ;

I2gCn
M .g C n/;

J2gCn
M .g C n/

into the tensor product of the handles labeled by
I2gC1
M .g C 1/;

I2gC2
M .g C 2/; : : : ;

I2gCn
M .g C n/;

J2gC1
M .g C 1/;

J2gC2
M .g C 2/; : : : ;

J2gCn
M .g C n/;

and this manipulation removes exactly the braid �2;n in the diagram. For the fourth
equality, we simply use relation (24) several times to transform the tensor product of
the handles labeled by

J1

B.1/;
J2

A.1/;
J3

B.2/;
J4

A.2/; : : : ;
J2g�1
B .g/;

J2g

A .g/;
I2gC1
M .g C 1/;

I2gC2
M .g C 2/; : : : ;

I2gCn
M .g C n/

into the tensor product of the handles labeled by
I2gC1
M .g C 1/;

I2gC2
M .g C 2/; : : : ;

I2gCn
M .g C n/;

J1

B.1/;
J2

A.1/;
J3

B.2/;
J4

A.2/; : : : ;
J2g�1
B .g/;

J2g

A .g/;

and this manipulation removes exactly the braid c4g;2n in the diagram.
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