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Naturality of SL3 quantum trace maps for surfaces

Hyun Kyu Kim

Abstract. Fock–Goncharov’s moduli spaces XPGL3;S of framed PGL3-local systems on punc-
tured surfaces S provide prominent examples of cluster X-varieties and higher Teichmüller
spaces. In a previous paper of the author (2022), building on the works of others, the so-called
SL3 quantum trace map is constructed for each triangulable punctured surface S and an ideal
triangulation � of S, as a homomorphism from the stated SL3-skein algebra of the surface to
a quantum torus algebra that deforms the ring of Laurent polynomials in the cube-roots of the
cluster coordinate variables for the cluster X-chart for XPGL3;S associated to �. We develop
quantum mutation maps between special subalgebras of the cube-root quantum torus algebras
for different triangulations and show that the SL3 quantum trace maps are natural, in the sense
that they are compatible under these quantum mutation maps. As an application, the quantum
SL3-PGL3 duality map constructed in the previous paper is shown to be independent of the
choice of an ideal triangulation.
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1. Introduction

1.1. Naturality of quantum SL3-PGL3 duality maps for Fock–Goncharov
cluster varieties

Let S be a generalized marked surface (or a decorated surface), obtained from a
compact oriented smooth real surface xS with possibly empty boundary by removing
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a non-empty finite set of points called marked points, where we choose at least one
marked point from each boundary component of xS. So, each component of the bound-
ary of S is diffeomorphic to an open interval; we call it a boundary arc of S. A
marked point in the interior of xS is called a puncture of S. If @xS D ¿, S is called
a punctured surface. Let G be a split reductive algebraic group over Q, such as SLn
or PGLn, where n � 2. The moduli space LG;S of G-local systems on S has been
a central object of study in many areas of mathematics and physics. Some enhanced
versions AG;S, XG;S, and PG;S of G-local systems with certain kinds of boundary
data are defined and studied by Fock and Goncharov [17] and by Goncharov and
Shen [25]; the spaces XG;S and PG;S are equipped with Poisson structures, and they
coincide with each other in the case when S is a punctured surface. One of the crucial
properties of these enhanced moduli stacks is that they have structures of cluster vari-
eties [17, 25], which first appeared in the early 2000s and are gaining more interest
especially recently, where these moduli spaces associated to surfaces and algebraic
groups form a very important class of examples.

Here, we focus on ASLn;S, XPGLn;S, and PPGLn;S. Let us recall the quivers rel-
evant to the cluster variety structures on them. Choose an ideal triangulation � of
S, i.e., a mutually disjoint collection of simple paths in S running between marked
points, called ideal arcs, dividing S into ideal triangles, which are regions bounded
by three ideal arcs. We assume that the valence of � at each puncture of S is at least
two, which means that we do not allow “self-folded” triangles; see Section 2.1 for
a discussion on this condition. For each ideal triangle of �, consider the quiver as
in Figure 1 depending on n, and glue them throughout the surface to obtain a single
quiver, called the n-triangulation quiver QŒn�

� for � [17, 18]. (One must cancel the
length 2 cycles formed by dashed arrows.) In the present paper, we mainly deal with
the case of nD 3 only, soQŒ3�

� will be denoted byQ� in the main text. For any quiver
Q, denote the set of all nodes of Q by V.Q/ and its signed adjacency matrix by

" D "Q;

which is a V.Q/ � V.Q/ matrix whose entries "vw are defined as follows:

"vw D .the number of arrows from v to w/

� .the number of arrows from w to v/; v; w 2 V.Q/:

As in Figure 1, we allow dashed arrows, which can be viewed as “half” arrows; each
of them contributes by 1

2
when counting the number of arrows.

Per each choice of an ideal triangulation � of S, it is known that there exist
birational maps [17, 25]

ASLn;S Ü .Gm/
V.Q/ and PPGLn;S Ü .Gm/

V.Q/;
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Figure 1. n-triangulation quiver for one triangle.

called cluster A- and X-charts for �, respectively1, with Q being the n-triangulation
quiver QŒn�

� for �. Here, Gm D Spec.QŒx˙1�/ is the multiplicative group scheme,
whose set of k-points is k�, for a field k. We denote the above cluster X-chart of
PPGLn;S associated to � by the symbol ��. The transition maps between two such
charts for different ideal triangulations are given by compositions of certain sequences
of cluster A- and X-mutation formulas. Let us elaborate a little more. Given a cluster
A-chart with the underlying quiver Q, with the cluster A-coordinate variables Av
for the nodes v of Q, through the mutation �k at the node k, one obtains another
cluster A-chart with the quiver �k.Q/ DQ0 such that V.Q0/ D V.Q/ whose signed
adjacency matrix "0 D "Q0 is given in terms of the original matrix "D "Q through the
quiver mutation formula

"0vw D

´
�"vw if k 2 ¹v;wº;

"vw C
1
2
."vkj"kw j C j"vkj"kw/ if k 62 ¹v;wº;

and with the cluster A-variables A0v for v 2 V.Q0/ D V.Q/ given by the cluster A-
mutation formulas

A0v D

8<:Av if v ¤ k;

A�1
k

�Q
w2V.Q/A

Œ"wk �C
w C

Q
w2V.Q/A

Œ�"wk �C
w

�
if v D k;

where Œ��C is the positive part, i.e., Œa�C D a if a � 0 and Œa�C D 0 if a < 0. Simi-
larly, a cluster X-chart with the quiver Q and the cluster X-variables Xv , v 2 V.Q/,
transforms via the mutation �k at the node k to a cluster X-chart with the quiver
�k.Q/ D Q

0 and the cluster X-variables X 0v given by

X 0v D

´
X�1
k

if v D k;

Xv
�
1CX

� sgn."vk/
k

��"vk if v ¤ k;
(1.1)

1The charts for the space PPGLn;S are called “X-charts”, instead of “P-charts”, where the
terminology “X-charts” comes from the theory of cluster X-varieties.
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Figure 2. The sequence of four mutations for a flip at an arc, transforming Q� D Q
Œ3�

�
to

Q�0 D Q
Œ3�

�0
.

where sgn.�/ is the sign, i.e., sgn.a/ D 1 if a > 0 and sgn.a/ D �1 if a < 0. For the
current situation for the n-triangulation quivers, note that when the ideal triangulations
� and�0 of S are related by a flip at an arc, i.e., differ exactly by one arc, it is known
that the n-triangulation quivers QŒn�

� and QŒn�
�0 are related by a certain sequence of

1
6
.n � 1/n.nC 1/ mutations (see [17]). When n D 3, for example, first, mutate QŒ3�

�

at the two nodes lying in the arc of � that is to be flipped; then, mutate at the two
nodes lying in the interiors of the two triangles of � having the to-be-flipped arc as a
side to land in QŒ3�

�0 ; see Figure 2.
The cluster A-charts of ASLn;S for � and �0 are related by the composition of

the cluster A-mutations for this same sequence of 1
6
.n � 1/n.nC 1/ mutations, and

the cluster X-charts of PPGLn;S for � and �0 by the composition of the cluster X-
mutations for the same mutation sequence. Moreover, PPGLn;S is equipped with a
canonical Poisson structure [17, 25], given on each cluster X-chart �� for an ideal
triangulation � by

¹Xv; Xwº D "vwXvXw 8v;w 2 V
�
Q
Œn�
�

�
;

where " D ."vw/v;w2V.Q
Œn�
�
/

is the signed adjacency matrix of QŒn�
� .

One major line of research is on the quantization of the Poisson moduli space
PPGLn;S, or more precisely, of its cluster X-variety structure. One first needs to con-
struct a corresponding quantum cluster X-variety, as a “non-commutative scheme”.
There is such a formulation by Fock and Goncharov for a general cluster X-variety
[19, 20]. For each (classical) cluster X-chart � with the underlying quiver Q (not
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necessarily the above discussed special cluster X-chart �� which has QŒn�
� as its

underlying quiver), consider the Fock–Goncharov algebra X
q
� defined as the asso-

ciative algebra over ZŒq˙1=18� defined by

generators: X˙1v ; v 2 V.Q/;

relations: XvXw D q2"vwXwXv; XvX�1v D X�1v Xv D 1 8v;w 2 V.Q/:

For the purpose of the present introduction section, a reader may think of this alge-
bra as being defined over ZŒq˙1=2� instead of ZŒq˙1=18�; see Remark 2.17. This
non-commutative algebra, which is an example of a quantum torus algebra, is what
deforms the classical ring of functions on the chart � , namely, the Laurent polynomial
ring ZŒ¹X˙1v j v 2V.Q/º�, in the direction of the above Poisson structure. For a muta-
tion �k W � Ý � 0 D �k.�/, one would associate a quantum mutation map between
the skew fields of fractions of the Fock–Goncharov algebras

�
q
��0 D �

q

k
W Frac.Xq

�0/! Frac.Xq
�/

so that it recovers the classical mutation formula as q ! 1, and that satisfies the
consistency relations satisfied by their classical counterparts; namely, �q

k
�
q

k
D id

should hold for each initial cluster X-chart � , �qj �
q

k
�
q
j �

q

k
D id when "jk D 0, and

�
q
j �

q

k
�
q
j �

q

k
�
q
j D P.jk/ when "jk D ˙1, where P.jk/ stands for the label exchange

j $ k (Proposition 3.6). Such quantum mutation maps are found in [20], based on
earlier works, such as [4, 9], constituting a version of a quantum cluster X-variety.
In particular, the quantum isomorphism �

q
��0 W Frac.Xq

�0/! Frac.Xq
�/ can be con-

structed for each pair of cluster X-charts � and � 0 in a consistent manner, by com-
posing those for the mutations connecting � and � 0. For the case of PPGLn;S, denote
by

ˆ
q
��0 WD �

q
����0

W Frac
�
X
q
��0

�
! Frac

�
X
q
��

�
(1.2)

the quantum isomorphism for the cluster X-charts �� and ��0 for PPGLm;S associated
to two ideal triangulations � and �0 of S. In particular, when � and �0 are related
by the flip at an arc, ˆq��0 is a composition of 1

6
.n � 1/n.nC 1/ number of quantum

mutation maps �q
k

; see Definition 3.7 for n D 3.
We are interested in the problem of constructing a deformation quantization map,

which is a map connecting the classical cluster X-variety and the corresponding quan-
tum cluster X-variety. More precisely, it is an assignment to each “quantizable” clas-
sical observable function a corresponding quantum observable. One first needs to
decide which classical functions to quantize, and the natural candidates would be
the universally Laurent functions, i.e., the functions that are Laurent in all cluster X-
charts. In our case of PPGLn;S, these form the ring denoted by Ocl.PPGLn;S/, which is
proved in [47] to equal the ring O.PPGLn;S/ of regular functions on PPGLn;S. Then,
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a deformation quantization map would be a map

O.PPGLn;S/! Oq.PPGLn;S/

satisfying some conditions, where Oq.PPGLn;S/ stands for the ring of all quantum
universally Laurent elements, i.e., the intersection of all quantum Laurent polynomial
rings X

q
� � Frac.Xq

�/, where Frac.Xq
�/ for different �’s are identified via the quan-

tum mutation maps �q��0 in a consistent manner. One standard approach would be to
first establish a duality map

I W ASLn;S.Z
T /! O.PPGLn;S/;

whose existence was originally conjectured by Fock and Goncharov in [17], and
whose image forms a basis of O.PPGLn;S/, enumerated by the set ASLn;S.Z

T / of
ZT -points of ASLn;S, where ZT is the semi-field of tropical integers (see Section 5.1),
and then to establish a quantum duality map

Iq W ASLn;S.Z
T /! Oq.PPGLn;S/;

which deforms I in a suitable sense. For a discussion on the domain set ASLn;S.Z
T /,

we refer the readers to [33] and to Section 5.1 of the present paper. Then, one would
construct a deformation quantization map by sending each basis element I.`/ for
` 2 ASLn;S.Z

T / to the corresponding element Iq.`/.
The setting of n D 2 is referred to as the quantum Teichmüller theory; for punc-

tured surfaces S, a classical duality map I is constructed by Fock and Goncharov [17]
and a quantum duality map Iq by Allegretti and the author [3], based on Bonahon and
Wong’s SL2 quantum trace map [7]. These constructions heavily use geometry and
topology of the surface S. For other n� 2, and in fact for a much more general class of
cluster X-varieties, a duality map I is constructed by Gross, Hacking, Keel, and Kont-
sevich [24, 27], and a quantum duality map Iq by Davison and Mandel [12]. These
general constructions are very powerful when proving properties but lack geometric
intuition on surface geometry and are quite difficult to compute. Even for the simplest
possible punctured surfaces like the once-punctured torus, a direct computation has
not been established yet, for a crucial ingredient called a “consistent scattering dia-
gram” has not been described in a manner that can be used in a direct computation.
In the meantime, a geometric and straightforward-to-compute duality map for n D 3
in the case of punctured surfaces S is constructed by the author in [33]. Moreover,
in [33], an SL3 quantum trace map is developed and is used to construct a quan-
tum duality map too. More precisely, as for the quantum duality maps, for each ideal
triangulation � of a triangulable punctured surface S, a map

Iq� W ASL3;S.Z
T /! X

q
��

(1.3)
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is constructed, and several nice properties are proved. One of the most important and
fundamental properties for these Iq� is the naturality, or the compatibility under the
change of ideal triangulations. This naturality, which was not proved and merely left
as a conjecture in [33], is the major motivation of, as well as the major consequence
of, the main theorem of the present paper.

Theorem 1.1 (Main application: naturality of SL3-PGL3 quantum duality maps). Let
S be a triangulable punctured surface. For any two ideal triangulations � and �0

of S (without self-folded triangles), the SL3-PGL3 quantum duality maps in equa-
tion (1.3) for � and �0, constructed in [33], are related by the quantum coordinate
change map ˆq��0; i.e.,

Iq� D ˆ
q
��0 ı Iq�0 :

This theorem, which implies that the above proposed deformation quantization
map for the space PPGL3;S D XPGL3;S for a triangulable punctured surface S is inde-
pendent of the choice of an ideal triangulation� of S, can be regarded as the principal
result of the present paper, for a reader whose primary area is the theory of cluster
varieties.

1.2. Naturality of SL3 quantum trace maps

We now describe a more general statement, which we will formulate as the actual
main theorem. We first need to introduce the SL3-skein algebra [22, 48, 49]. For a
generalized marked surface S, consider the 3-dimensional manifold S � I called the
thickened surface of S, where

I D .�1; 1/

is the open interval in R whose elements are called elevations. Each boundary arc of
S corresponds to a boundary wall b � I. An SL3-web W in S � I (Definition 2.10),
which goes back to [39] in its simplest case, is a disjoint union of oriented simple
loops in S � I, oriented edges in S � I ending at boundary walls, and oriented 3-
valent graphs in S � I which may have endpoints at boundary walls such that W
meets boundary walls transversally at 1-valent endpoints, the endpoints of W lying
in each boundary wall have mutually distinct elevations, and each 3-valent vertex is
either a source or a sink. Also,W is equipped with a framing. A state ofW is a map s W
@W ! ¹1; 2; 3º, and .W; s/ is called a stated SL3-web. A (reduced) stated SL3-skein
algebra �!s .SIZ/red (Definition 2.11) [29,33] is defined as the free ZŒ!˙1=2�-module
freely spanned by all isotopy classes of stated SL3-webs in S� I, mod out by the SL3-
skein relations in Figure 3 and the boundary relations in Figure 5, where ! is related
to q as

q D !9; or more precisely; q˙1=18 D !˙1=2: (1.4)
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D Œ3�q¿ D D �Œ2�q

(S1) (S2)

D C D q�2=3 Cq1=3

(S3) (S4)

D q2=3 Cq�1=3

(S5)

Figure 3. SL3-skein relations, drawn locally (¿ means empty) in S, with the framing pointing
toward the eyes of the reader; the regions bounded by a loop, a 2-gon, or a 4-gon in (S1), (S2),
(S3) are contractible, and Œm�q D qm�q�m

q�q�1
2 ZŒq˙1�.

The product of �!s .SIZ/red is defined by superposition, i.e.,

ŒW1; s1� � ŒW2; s2� D ŒW1 [W2; s1 [ s2�

when W1 � S � .0; 1/ and W2 � S � .�1; 0/, where ŒW; s� denotes the element of
�!s .SIZ/red represented by the stated SL3-web .W; s/; we stack the former on top of
the latter.

When S is a punctured surface, �!s .SIZ/red can be understood as the SL3-skein
algebra �!.SIZ/ which is defined just by the SL3-skein relations in Figure 3 for
isotopy classes of SL3-webs in S � I, without the boundary relations in Figure 5 or
states (Definition 2.11). It is known from [48,49] that �!.SIZ/ is a quantum algebra
deforming O.LSL3;S/, the coordinate ring of the SL3-character stack. Similarly, for
the SL2 case, the SL3-skein algebras play a crucial role in the cluster-variety-theoretic
study of the moduli spaces ASL3;S and PPGL3;S, where the bridge to the world of
cluster varieties is the family of maps

Tr!� D Tr!�IS W �
!
s .SIZ/red ! Z!�;

called the SL3 quantum trace maps (Theorem 2.23) associated to each triangulable
generalized marked surface S and its ideal triangulation �, where Z!� is a cube-root
version of the Fock–Goncharov algebra, namely, a ZŒ!˙1=2�-algebra defined by

generators: Z˙1v ; v 2 V
�
Q
Œ3�
�

�
;

relations: ZvZw D !2"vwZwZv; ZvZ�1v D Z�1v Zv D 1 8v;w 2 V
�
Q
Œ3�
�

�
;
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where " D ."vw/v;w2V.Q
Œ3�
�
/

is the signed adjacency matrix of the quiver QŒ3�
� . The

usual Fock–Goncharov algebra X
q
� WD X

q
��

embeds into Z!� as

X˙1v 7! Z˙3v 8v 2 V
�
Q
Œ3�
�

�
:

The SL3 quantum trace maps are constructed in [33], building on the work by Dou-
glas [13] on loops, as an SL3 analog of Bonahon and Wong’s SL2 quantum trace [7];
see [44] for a generalization to SLn quantum trace maps. The motivating property is
that it deforms the classical map from �1.SIZ/ to O.LSL3;S/ [48] or to O.XSL3;S/

[33] in a certain sense; in particular, Tr1� should yield the trace-of-monodromy func-
tions along oriented loops, which are studied essentially by Fock and Goncharov [17].
Another characterizing property of Tr!� is the axiom about cutting and gluing (The-
orem 2.23 (QT1)), which says that the SL3 quantum trace maps are compatible with
the process of cutting the surface S along an ideal arc of a triangulation �. Although
several favorable properties of the SL3 quantum trace maps are shown and used cru-
cially in [33], one fundamental property was just conjectured but not proved in [33],
namely, the naturality, or the compatibility under the change of ideal triangulations,
which is the main theorem of the present paper.

The first major step toward this naturality statement is to find a sensible formu-
lation of it, which is already non-trivial because the values of the SL3 quantum trace
maps are Laurent polynomials in the cube-root variables Zv’s, instead of the usual
quantum cluster X-variables Xv’s. The transformation formulas for the latter vari-
ables Xv under the quantum mutation maps �q

k
are certain non-commutative rational

formulas deforming equation (1.1) (see Definition 3.5); in general, one would not
expect that each Zv would transform by rational formulas. It is only the elements of
some subalgebra of Frac.Z!�/ that do transform via rational formulas. This subalgebra
which we find in the present paper, as well as the characterizing condition for its ele-
ments, is called balanced, as they are the SL3 analog of Hiatt’s balancedness condition
for SL2 [7, 28], used for Bonahon and Wong’s SL2 quantum trace [7]. The descrip-
tion of the SL3 balancedness condition is more complicated than that of SL2 and is
inspired by the properties of the values of the tropical coordinates of SL3-laminations
in S (Definition 2.13) [14, 33].

Definition 1.2 (Definition 3.9; [33]). Let� be an ideal triangulation of a triangulable
generalized marked surface S. Let V D V.Q

Œ3�
� /. An element .av/v2V 2 .

1
3
Z/V is

said to be �-balanced if, for each ideal triangle t of �, the following holds: denoting
the sides of t by e1; e2; e3 (with e4 WD e1) and the nodes of QŒ3�

� lying in t by ve˛ ;1,
ve˛ ;2 (for ˛ D 1; 2; 3), and vt as in Figure 4, one has

(1) the numbers
P3
˛D1 ave˛;1 and

P3
˛D1 ave˛;2 belong to Z;

(2) for each ˛ D 1; 2; 3, the number ave˛;1 C ave˛;2 belongs to Z;
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ve1;2 ve1;1

ve2;1

ve2;2

ve3;2

ve3;1

vt

Figure 4. Labels of the nodes of a 3-triangulation quiver in a triangle.

(3) for each ˛ D 1; 2; 3, the number �avt C ave˛;2 C ave˛C1;1 belongs to Z.

We refer the readers to [15] (see also [14]) for a combinatorial and representation-
theoretic formulation of the balancedness condition in Definition 1.2 in terms of the
so-called Knutson–Tao rhombi [23, 38].

Definition 1.3 (Definitions 3.11–3.12). Let �, S, and V be as in Definition 1.2.
The �-balanced cube-root Fock–Goncharov algebra yZ!� is the subalgebra of Z!�
spanned by the Laurent monomials

Q
v Xavv WD

Q
v Z3avv with the powers forming

a �-balanced element .av/v2V 2 .
1
3
Z/V . The �-balanced fraction algebra for � is

the subalgebra bFrac.Z!�/ of the skew field of fractions Frac.Z!�/ consisting of all
elements that can be written as PQ�1 with P 2 yZ!� � Z!� and 0 ¤ Q 2 X

q
� � Z!�.

In fact, one can identify bFrac.Z!�/ with the skew field of fractions Frac. yZ!�/
(Lemma 3.13). We note that X

q
� �

yZ!�, as well as Frac.Xq
�/ �

bFrac.Z!�/.
We show that the quantum mutation maps in equation (1.2) can be extended to

these balanced fraction algebras.

Proposition 1.4 (The balanced cube-root version of quantum coordinate change maps;
Section 3.3). Let S be a triangulable generalized marked surface. There is a family
of algebra isomorphisms between the balanced fraction algebras

‚!��0 W
bFrac.Z!�0/! bFrac.Z!�/

defined for each pair of ideal triangulations � and �0, which extend the maps ˆq��0 ,
recover the classical coordinate change maps as!1=2! 1, and satisfy the consistency
‚!��00 D ‚

!
��0‚

!
�0�00 .

The formula for ‚!��0 is directly inspired by ˆq��0 . When � and �0 are related
by the flip at an arc, whileˆq��0 is given as the composition of four quantum mutation
maps �q

k
(Definition 3.7) among the skew fields of fractions Frac.Xq

�/ of the Fock–
Goncharov algebras X

q
� , we construct ‚!��0 (Definition 3.28) as the composition of

four balanced cube-root quantum mutation maps �!
k

(Definition 3.23) defined among
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certain subalgebras bFrack.Z!� / of Frac.Z!� / (Definition 3.22; see equation (3.2) and
Definition 2.15 for Z!� ). One key thing to check is, in case one starts with an element
of the �0-balanced fraction algebra bFrac.Z!�0/ and tries to apply the four balanced
cube-root quantum mutation maps �!

k
, whether the element at each step belongs to

the domain bFrack.Z!� / of �!
k

(Lemma 3.30). We also check that the resulting element
lies in the �-balanced fraction algebra bFrac.Z!�/ (Lemma 3.30). Then, to show the
consistency relations (Proposition 3.33), we resort to the known results on identities
of classical and quantum cluster mutations (Lemmas 3.1–3.2, Propositions 3.6, 3.8;
[17, 31]).

We can now state the main result of the present paper, which was conjectured
in [33] and also partially in an earlier work of Douglas [13].

Theorem 1.5 (Main theorem, Theorem 4.1: naturality of the SL3 quantum trace
maps). Let S be a triangulable generalized marked surface. For any two ideal tri-
angulations � and �0 of S (without self-folded triangles), the SL3 quantum trace
maps for � and �0 of [33] are related by the balanced cube-root quantum coordinate
change maps ‚!��0 , i.e.,

Tr!� D ‚
!
��0 ı Tr!�0 :

To prove this, we first establish the compatibility (Proposition 3.34) of the bal-
anced coordinate change maps ‚!��0 with the cutting of the surfaces along internal
arcs of ideal triangulations (Definition 2.21), and then using the cutting/gluing prop-
erty of Tr!� we reduce the situation to the case when S is a quadrilateral. Then, in fact,
we also use the cutting/gluing property of Tr!� with respect to an ideal arc isotopic to
a boundary arc e so that e cuts out a biangle (Definition 2.2) to observe that it suffices
to just check the above theorem for simple oriented edges living over a quadrilateral
surface (Section 4.1). Still, a direct computational check would be quite involved,
and we use several tricks to reduce the amount of the computations (Sections 4.2–
4.4). Namely, we use the equivariance of Tr!� under the elevation-reversing map on
�!s .SIZ/red and the �-structure on Z!� (Proposition 4.5; [33]), together with basic
observations on �-invariant Laurent monomials of Z!� (Lemmas 2.20, 4.4) so that
what remains to check is whether Tr!�.ŒW; s�/ stays being Laurent and multiplicity-
free as in Lemma 2.20 in the cube-root quantum variables after applying the balanced
cube-root quantum mutation maps �!

k
at special nodes, which we verify carefully in

Sections 4.3–4.4.
As mentioned above, perhaps, the most interesting and important consequence of

the main theorem, Theorem 1.5, is Theorem 1.1 which we prove in Section 5.1 and
which is about the quantum duality map for the space XPGL3;S for a triangulable punc-
tured surface S. However, we expect that Theorem 1.5 itself would also serve as the
first step toward a much wider range of future research topics, such as the representa-
tion theory for various versions of the SL3-skein algebras. One now has a consistent
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way of relating these algebras with various versions of Fock–Goncharov algebras,
which are quantum torus algebras and hence admit a straightforward representation
theory. Thus, one might seek for the SL3 analogs of Bonahon and Wong’s series of
works on the similar topic for SL2 (see, e.g., [8]), which might also find applications
in 3-dimensional topological quantum field theories or 2-dimensional conformal field
theories. As suggested by a referee, we remark here that the main theorems of the
present paper still hold when q is a root of unity, which is the setting of several poten-
tial applications of these theorems, including the results obtained in [5, 8] (also [35]).

2. SL3 quantum trace maps

In the present section, we recall the SL3 quantum trace maps from [33], as well as
basic necessary notions from references therein.

2.1. Surfaces and triangulations

Definition 2.1 ([42,43]). A generalized marked surface .†;P / is a pair of a compact
oriented smooth surface † with possibly empty boundary @† and a non-empty finite
subset P of † such that each component of @† contains at least one point of P .
Elements of P are called the marked points, and the elements of P not lying in @†
are called the punctures. When @† D ¿, we say that .†;P / is a punctured surface.

For a given generalized marked surface .†;P /, we often let

S D † nP ;

and identify it with the data .†;P /; e.g., we refer to S as a generalized marked
surface. Let

@S D .@†/ nP ; VS D S n @S:

A basic ingredient is an ideal triangulation of a surface S.

Definition 2.2 ([42, 43]). Let .†; P / be a generalized marked surface, and S D

† nP .

• An ideal arc in S is the image of an immersion

˛ W Œ0; 1�! †

such that ˛.¹0; 1º/ � P and ˛j.0;1/ is an embedding into S. Call ˛..0; 1// the
interior of this ideal arc. Two ideal arcs are isotopic if they are isotopic within the
class of ideal arcs. An ideal arc is called a boundary arc if it lies in @†. An ideal
arc is called an internal arc if its interior lies in VS.
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• The generalized marked surface S is said to be triangulable if it is none of the
following:

– monogon, i.e., a closed disc with a single marked point on the boundary,

– biangle, i.e., a closed disc with two marked points on the boundary,

– sphere with less than three punctures.

• An ideal triangulation of a triangulable generalized marked surface S is a collec-
tion � of ideal arcs of S such that

– no arc of � bounds a disc whose interior is in S;

– no two arcs of � are isotopic or intersect each other in S;

– � is maximal among the collections satisfying the above two conditions.

We often identify two ideal triangulations if their members are simultaneously
isotopic.
We assume that each constituent arc isotopic to a boundary arc is a boundary arc.

An ideal triangulation� of S divides S into regions called (ideal) triangles of�,
each of which is bounded by three ideal arcs, called the sides of this triangle, counted
with multiplicity.

Definition 2.3. An ideal triangulation� of a triangulable generalized marked surface

S D † nP

is self-folded if there exists a puncture p of .†;P / such that the valence of� at p is 1.

In the present paper, by an ideal triangulation we always mean a non-self-folded
one.

That is, we assume that the valence of an ideal triangulation at each puncture is
at least 2. Also, by a triangulable generalized marked surface S we mean a surface
that admits a non-self-folded ideal triangulation. This means that we should further
exclude the case of a monogon with one puncture. When there is a puncture with
valence 1 which occurs exactly at the self-folded side (of multiplicity 2) of a self-
folded triangle, the formulas, as well as proofs, need to be modified, as in the case of
SL2 which was dealt with in [7]. A treatment of self-folded triangulations for SLn,
especially SL3, will be established in an upcoming joint work [30] with Seung–Jo
Jung.

Basic constructions will depend on the choice of an ideal triangulation of a sur-
face, and the heart of the matter is to keep track of what happens if we use a different
ideal triangulation. One standard approach in the literature is to deal with the “gen-
erators” of all possible changes of ideal triangulations, i.e., the following elementary
changes.
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Definition 2.4. Two ideal triangulations of a same generalized marked surface are
said to be related by a flip at an arc if, considered up to simultaneous isotopy, they
differ precisely by one internal arc.

We note that, in the above definition, we still assume that both of the two ideal
triangulations are non-self-folded. When� and�0 are related by a flip at an arc, there
is a natural bijection between � and �0 as sets; each arc of � and the corresponding
arc of �0 are then denoted by the same symbol. In particular, we would use the same
symbol for the flipped arc of� and that for�0, although they are actually different as
ideal arcs. Say, if the flipped arc is denoted by i , then we say � and �0 are related by
the flip at the arc i . We also say that �0 is obtained from � by the flip move ˆi and
write

�0 D ˆi .�/:

A change of ideal triangulations is an ordered pair .�; �0/ of ideal triangulations,
which we often denote by �Ý�0. In case � and �0 are related by a flip at an arc i ,
we denote this change by ˆi .

Lemma 2.5 ([21], [40, Corollary 6.7]). Any two ideal triangulations � and �0 are
connected by a finite sequence of flips. That is, �0 D ˆir � � �ˆi2ˆi1.�/.

In case we allow ideal triangulations to be self-folded, the statement of Lemma 2.5
is well known; see, e.g., [21] and references therein. The statement when we only
allow ideal triangulations that are not self-folded, as we are doing in the present paper,
is somewhat less well known and is proved in [40, Corollary 6.7].

The flips satisfy some algebraic relations; that is, sometimes when one applies
a certain sequence of flips to a certain ideal triangulation, one gets back the same
ideal triangulation. We find it convenient to first recall a well-known signed adjacency
matrix for �, which is a j�j � j�j integer matrix that encodes certain combinatorics
of �. For each ideal triangle t of �, if its sides are e1, e2, e3 appearing clockwise in
this order, then we say that eiC1 is the clockwise next one to ei (with e4 WD e1).

Definition 2.6 (See, e.g., [21] and references therein). Let� be an ideal triangulation
of a triangulable generalized marked surface. The signed adjacency matrix .bij /i;j of
the triangulation � is the integer � �� matrix defined as

bij D
X
t

bij .t/;

where the sum is over all ideal triangles t of �, and

bij .t/ D

8̂̂<̂
:̂
1 if i , j appear as sides of t and i is the clockwise next one to j ;

�1 if i , j appear as sides of t and j is the clockwise next one to i ;

0 if at least one of i , j is not a side of t :
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Remark 2.7. In fact, .bij /i;j is the signed adjacency matrix for the 2-triangulation
quiver QŒ2�

� which appeared in the introduction.

Lemma 2.8 (Classical consistency relations for flips of ideal triangulations). Fix a
triangulable generalized marked surface S. The flips ˆi of ideal triangulations of S

satisfy the following relations:

(1) ˆiˆi D id when applied to any ideal triangulation;

(2) ˆi ĵˆi ĵ D id when applied to an ideal triangulation � with bij D 0;

(3) ˆi ĵˆi ĵˆi D P.ij / when applied to an ideal triangulation � with

bij D ˙1;

where P.ij / is the label exchange i $ j .

Proposition 2.9 (The completeness of the flip relations). Any algebraic relation
among flips is a consequence of the above. That is, any sequence of flips that starts
and ends at the same ideal triangulation can be transformed to the empty sequence of
flips by applying a finite number of the above three types of relations.

Both of these statements are well known; see, e.g., [21] and references therein.
We note that if we use “tagged” ideal triangulations as in [21] which in particular
include self-folded ideal triangulations, instead of just ideal triangulations that are not
self-folded as stipulated by Definition 2.3, then there exist relations of flips that are
not consequences of the above; see [21, 37].

2.2. SL3-skein algebras and SL3-laminations

Definition 2.10 ([22,29,49], [33, Definition 5.1]). Let .†;P / be a generalized marked
surface, and S D † nP . Let

I WD .�1; 1/

be the open interval in R, and let S� I be the thickening of S, or a thickened surface.
For a point .x; t/ 2S� I, the I-coordinate t is called the elevation of .x; t/. If .x; t/ 2
A � I for some subset A � S, we say .x; t/ lies over A. For each boundary arc b of
S, the corresponding boundary component b � I of S � I is called a boundary wall.

An SL3-web W in S � I consists of

• a finite subset of .@S/� I which we denote by @W , whose elements are called the
external vertices or the endpoints of W ;

• a finite subset of VS � I, whose elements are called the internal vertices of W ;

• a finite set of oriented smooth simple non-closed compact curves in S � I whose
interiors lie in VS � I and whose ends are at external or internal vertices of W ,
whose elements are called the (oriented) edges of W ;
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• a finite set of oriented smooth simple closed curves in VS � I, whose elements are
called the (oriented) loops of W ;

• a framing on W , when W is regarded as the union of the constituent edges and
loops, i.e., a continuous choice of an element of Tx.S � I/ n TxW for each point
x 2 W ,

subject to the following conditions:

• each external vertex is 1-valent, and W meets a boundary wall transversally at an
external vertex;

• each internal vertex is either a 3-valent sink or a 3-valent source; i.e., for each
internal vertex, the orientations of the three incident edges are either all incoming
toward the vertex or all outgoing;

• there is no self-intersection of W except possibly at the 3-valent internal vertices;

• the framing at each external vertex is upward vertical, i.e., is parallel to the I factor
and points toward 1;

• for each internal vertex x of W , there is a diffeomorphism from a neighborhood
N of x in S � I to D � I (where D is an open disc in R2) such that the image of
W \N lies in D � ¹0º with an upward vertical framing;

• for each boundary wall b � I, the endpoints of W lying in b � I have mutually
distinct elevations.

An isotopy of SL3-webs in S � I is an isotopy within the class of SL3-webs in S � I.

Definition 2.11 ([22, 29, 49], [33, Definition 5.3]). Let S be a generalized marked
surface. Let R be a commutative ring with unity.

• The SL3-skein algebra �!.SIR/ is the free RŒ!˙1=2�-module with the set of
all isotopy classes of SL3-webs in S � I as a free basis, mod out by the SL3-
skein relations in Figure 3, with equation (1.4) in mind. The element of �!.SIR/

represented by an SL3-web W in S � I is denoted by ŒW �.

• A state of an SL3-web W in S � I is a map s W @W ! ¹1; 2; 3º. A pair .W; s/ is
called a stated SL3-web in S � I.

• The stated SL3-skein algebra �!s .SIR/ is the free RŒ!˙1=2�-module with the set
of all isotopy classes of stated SL3-webs in S � I as a free basis, mod out by the
SL3-skein relations in Figure 3, with equation (1.4) in mind.

• The reduced stated SL3-skein algebra �!s .SIR/red is the quotient of �!s .SIR/

by the boundary relations in Figure 5, where the index-inversion .r1."/; r2."// for
" 2 ¹1; 2; 3º is given by

.r1.1/; r2.1//D .1; 2/; .r1.2/; r2.2//D .1; 3/; .r1.3/; r2.3//D .2; 3/I (2.1)
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x

D �q�
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x1 x2� x1 x2�

D q

x2 x1�

C

x2 x1�

(B1) s.x/ D ", s.x1/ D r1."/, s.x2/ D r2."/ (B2) s.x1/ D "1, s.x2/ D "2, with "1 > "2

x y�

D 0

x1 x2 x3� �

D �q
7
2

(B3) s.x/ D s.y/ (B4) s.x1/ D 1, s.x2/ D 2, s.x3/ D 3

Figure 5. Boundary relations for stated SL3-skeins (horizontal blue line is boundary); the end-
points in the figure are consecutive in the elevation ordering for that boundary component (i.e.,
À other endpoint with elevation in between these), and x � y means y has a higher elevation
than x; see equation (2.1) for the definition of r1, r2 appearing in (B1).

in the pictures, x and xi are labels of endpoints, each picture is assumed to carry
a respective state which is usually written as s. The element of �!s .SIR/red (and
that of �!s .SIR/) represented by a stated SL3-web .W; s/ in S � I is denoted by
ŒW; s�.

• The multiplication in �!s .SIR/red (and that in �!s .SIR/ or �!.SIR/) is given
by superposition; i.e.,

ŒW; s� � ŒW 0; s0� D ŒW [W 0; s [ s0�

(and ŒW � � ŒW 0�D ŒW [W 0�) whenW �S� .0; 1/ andW 0 �S� .�1;0/, where
s [ s0 W @W [ @W 0 ! ¹1; 2; 3º is defined in an obvious manner.

The main object of study of the present paper is the SL3 quantum trace map which
is to be reviewed at the end of the present section; the domain of this map is the
reduced stated SL3-skein algebra �!s .SIZ/red. It is useful to notice that in case S

is a triangulable punctured surface, in particular has no boundary, then �!s .SIR/red

coincides with �!.SIR/.
The above boundary relations (B1)–(B4) are used in [33] as a modified version

of the ones in [29]. Meanwhile, Frohman and Sikora [22] used somewhat different
boundary relations to define their version of the “reduced” (non-stated) skein alge-
bra denoted by R�.S/, and they found a basis of this algebra consisting of reduced
non-elliptic SL3-webs and constructed a coordinate system for such SL3-webs. These
basic SL3-webs have no crossings and have upward vertical framing everywhere;
hence, they can be projected down to S via the projection map

� W S � I! S (2.2)
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and viewed as objects living in the surface S; see Definition 2.12 (BE2) below for a
precise meaning of having no crossings. Generalizing these reduced non-elliptic SL3-
webs living in a surface S, the notion of SL3-laminations in S is defined and studied
in [33], and a coordinate system on them is established in [33] based on Douglas
and Sun’s coordinates [14] which are certain modification of Frohman and Sikora’s
coordinates [22]. We review these in a concise manner.

Definition 2.12 (Modified from [22,39,50]). Let S be a generalized marked surface.
Let W be an SL3-web in S � I (without a chosen state) such that

(NE1) the framing is upward vertical everywhere;

(NE2) W has no crossing, in the sense that the restriction �jW W W ! �.W / of
the projection � to W is one-to-one.

The projection �.W / in S is called an SL3-web in the surface S. If furthermore the
following condition is satisfied:

(NE3) in �.W / there is no contractible region bounded by a loop, a 2-gon or a
4-gon, as appearing in (S1)–(S3) of Figure 3,

then �.W / is said to be non-elliptic. In addition to (NE1), (NE2), and (NE3), if fur-
thermore the following condition is satisfied:

(NE4) in �.W / there is no boundary 2-gon , 3-gon , or 4-gon

,

then �.W / is said to be reduced. An isotopy of non-elliptic SL3-webs in S means an
isotopy within the class of non-elliptic SL3-webs in S.

Definition 2.13 ([33]). Let S be a generalized marked surface.
• A simple loop in S is called a peripheral loop if it bounds a region in S diffeo-

morphic to a disc with one puncture in the interior; if the corresponding puncture is
p 2P , we say that this peripheral loop surrounds p. A peripheral arc in S is a simple
curve in S that ends at points of @S and bounds a region in S diffeomorphic to an
upper half-disc with one puncture on the boundary. Peripheral loops and peripheral
arcs are called peripheral curves.

An SL3-lamination ` in S is the isotopy class of a reduced non-elliptic webW D
W.`/ in S equipped with integer weights on the components, subject to the following
conditions and the equivalence relation.

(L1) The weight of each component of W containing an internal 3-valent vertex
is 1.

(L2) The weight of each component of W that is not a peripheral curve is non-
negative.
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(L3) An SL3-lamination containing a component of weight zero is equivalent to
the SL3-lamination with this component removed.

(L4) An SL3-lamination with two of its components being homotopic, respecting
orientations, with weights a and b is equivalent to the SL3-lamination with
one of these components removed and the other having weight aC b.

Let AL.SIZ/ be the set of all SL3-laminations in S.

A statement about a coordinate system onAL.SIZ/ is postponed until Section 3.3.

2.3. PGL3 Fock–Goncharov algebras for surfaces

A quiver Q consists of a set V.Q/ of nodes and a set E.Q/ of arrows between the
nodes, where an arrow is an ordered pair .v;w/ of nodes, depicted in pictures as

v
ı!

w
ı.

The signed adjacency matrix of a quiverQ is the V.Q/�V.Q/matrix "Q D "whose
.v; w/-th entry is

"vw D "v;w D .number of arrows from v to w/ � .number of arrows from w to v/:

If a quiver Q0 can be obtained from a quiver Q by deleting a cycle of length 1 or 2
(i.e., either an arrow of the form .v; v/ or the pair of arrows of the form .v; w/ and
.w; v/), we sayQ andQ0 are equivalent; this generates an equivalence relation on the
set of all quivers. The set of equivalence classes of all quivers for a fixed set of nodes
V is in bijection with the set of all skew-symmetric V � V integer matrices.

Let us consider a generalized quiver Q based on a set V of nodes, which corre-
sponds to a skew-symmetric V � V matrix with entries in 1

2
Z. This can be thought of

as a collection of half-arrows
v
ıÜw

ı so that the signed adjacency matrix is given by

"vw D
1

2
.number of half-arrows from v to w/

�
1

2
.number of half-arrows from w to v/:

In practice, one can define a generalized quiver as a collection of half-arrows and
(usual solid) arrows and consider an equivalence relation generated by the move delet-
ing a cycle of half-arrows of length 1 or 2 and the move replacing two half-arrows
from v to w by an (usual solid) arrow from v to w. In particular, quivers are gener-
alized quivers. We will identify two generalized quivers if they are equivalent, unless
there is a confusion.

Throughout the paper, when we say a quiver, we will mean a generalized quiver.

Definition 2.14. Let� be an ideal triangulation of a triangulable generalized marked
surface S. The (extended) 3-triangulation quiver Q� for � is a quiver defined as
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follows. The set of nodes V.Q�/ is realized as a subset of S, consisting of one point
in the interior of each ideal triangle of � and two points lying in the interior of each
ideal arc of�. The quiverQ� DQ

Œ3�
� is obtained by gluing (i.e., taking the union of)

all the quivers defined for the ideal triangles of � as in Figure 1. Denote by "� D "
the signed adjacency matrix for Q�.

We now present the quantum algebra of the Fock–Goncharov–Shen (cluster) Pois-
son moduli space PPGL3;S [17,25] considered in [19,20,25] and its cube-root version
considered in [13, 33]. For later use, we find it convenient to define these algebras for
more general setting as follows, not just for ideal triangulations of surfaces, and also
to present their standard �-structures at this point.

Definition 2.15. Let Q be a quiver. Denote by V D V.Q/ its set of nodes, and by
" D ."vw/v;w2V its signed adjacency matrix.

Define the Fock–Goncharov algebra X
q
Q for Q as the free associative �-algebra

over ZŒq˙1=18� generated by ¹X˙1v j v 2 Vº mod out by the relations

XvXw D q2"vwXwXv 8v;w 2 V ; XvX�1v D X�1v Xv D 1 8v 2 V ;

where the �-structure on X
q
Q is defined to be the unique anti-ring-homomorphism

� W X
q
Q ! X

q
Q, U 7! U�, sending each X�v to itself, 8v 2 V , 8� 2 ¹1; �1º, and

q˙1=18 to q�1=18.
Define the cube-root Fock–Goncharov algebra Z!Q for Q by the free associative

�-algebra over ZŒ!˙1=2� generated by ¹Z˙1v j v 2 Vº mod out by the relations

ZvZw D !2"vwZwZv 8v;w 2 V ; ZvZ�1v D Z�1v Zv D 1 8v 2 V ;

where the �-structure on Z!Q is the unique anti-ring-homomorphism � W Z!Q ! Z!Q,
U 7! U�, sending each Z�v to itself, 8v 2 V , 8� 2 ¹1;�1º, and !˙1=2 to !�1=2.

The Fock–Goncharov algebra X
q
Q is regarded as being embedded into Z!Q as

X
q
Q ,! Z!Q W X

�
v 7! Z3�v ; 8v 2 V ; 8� 2 ¹1;�1º; q˙1=18 7! !˙1=2:

We will denote Z˙1v by X˙1=3v . For a 2 1
3
Z, the symbol Xav means the element Z3av 2

Z!Q.
For each of X

q
Q and Z!Q, the �-structure is also called the �-map, and an element

U (of X
q
Q or Z!Q) is said to be �-invariant if it is fixed by the �-map, that is, if U�DU.

For an ideal triangulation � of a triangulable generalized marked surface S, we
write

X
q
� WD X

q
Q�

and Z!� WD Z!Q�

for convenience.
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Lemma 2.16. Under the notation convention of the above definition, Xavv Xaww D
q2"vwavawXaww Xavv holds for all v;w 2 V and av; aw 2 1

3
Z, and

Z˛vv Z˛ww D !
2"vw˛v˛wZ˛ww Z˛vv

holds for all v;w 2 V and ˛v; ˛w 2 Z.

Some versions of these algebras appeared in the literature before the works [19,
20, 25] and are often called quantum torus algebras. The Fock–Goncharov algebras
X
q
Q will serve as the quantum algebras that quantize the moduli space PPGL3;S in

the end, but the quantization method suggested in [33] makes a crucial use of the
cube-root Fock–Goncharov algebras Z!Q as an intermediate step. The present paper
deals mostly with Z!Q and a certain subalgebra of it that properly contains X

q
Q, so

the terminology we use focuses more on Z!Q rather than X
q
Q. For example, by a

“(quantum) Laurent polynomial” for Q or � we would mean an element of Z!Q or
Z!�, instead of an element of X

q
Q or X

q
�.

Remark 2.17. It is expected in [33, Section 5] that the “correct” quantum algebras
X
q
Q that one would want in the end should be the quantum torus algebras defined over

ZŒq˙1=2� instead of over ZŒq˙1=18� (in fact, over ZŒq˙1� for punctured surfaces S,
without boundary), but at the moment the arguments work only over the coefficient
ring ZŒq˙1=18�. See Proposition 3.14 which is a result of [33] written only with respect
to the coefficient ring ZŒ!˙1=2�DZŒq˙1=18� and also the proof of Lemma 3.27 which
requires the usage of this coefficient ring as opposed to ZŒq˙1=2�.

Definition 2.18. LetQ, V D V.Q/, X
q
Q and Z!Q be as in Definition 2.15. Enumerate

the elements of V as v1; v2; : : : ; vN , according to any chosen ordering on V .
A Laurent polynomial for Q is an element of Z!Q. A Laurent monomial for Q is

an element of Z!Q of the form

�!m X˛v1=3v1 X˛v2=3v2 � � �X˛vN =3vN D �!m Z˛v1v1 Z˛v2v2 � � �Z
˛vN
vN

for some � 2 ¹1;�1º, m 2 1
2
Z, and ˛v1 ; : : : ; ˛vN 2 Z.

For an ideal triangulation � of a triangulable generalized marked surface S, a
Laurent polynomial for � is a Laurent polynomial for Q�, and a Laurent monomial
for � is a Laurent monomial for Q�.

It is easy to see that the above definition does not depend on the choice of an
ordering on V , and that each Laurent polynomial for Q can be expressed as a finite
sum of Laurent monomials for Q.

One convenient technical tool used in the present paper is the following well-
known notion.
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Definition 2.19. Let Q, V D V.Q/ and Z!Q be as in Definition 2.15. Let

" D ."vw/v;w2V

be the signed adjacency matrix forQ. Enumerate the elements of V as v1; v2; : : : ; vN ,
according to any chosen ordering on V .

A Laurent monomial �!mZ˛v1v1 � � �Z
˛vN
vN forQ, with �2¹1;�1º,m 2 1

2
Z, ˛v1 ; : : : ;

˛vN 2 Z, is said to be Weyl-ordered if � D 1 andmD �
P
1�i<j�N "vivj ˛vi˛vj . We

denote such a Laurent monomial byhY
v2V

X˛v=3v

i
Weyl
D

hY
v2V

Z˛vv
i

Weyl
WD !

�
P
i<j "vi vj ˛vi ˛vj Z˛v1v1 � � �Z

˛vN
vN ;

associated to .˛v/v2V 2 ZV .
Let f 2 Z!Q be a Laurent polynomial for Q. Express f as a finite sum of Lau-

rent monomials �!mZ˛v1v1 � � �Z
˛vN
vN for Q. Denote by Œf�Weyl 2 Z!Q what is obtained

from this sum expression of f by replacing each summand term �!mZ˛v1v1 � � �Z
˛vN
vN

by �ŒZ˛v1v1 � � �Z
˛vN
vN �Weyl. Call Œf�Weyl the (term-by-term) Weyl-ordering of f. Such an

element Œf�Weyl of Z!Q is called a (term-by-term) Weyl-ordered Laurent polynomial
for Q.

For a matrix M with entries in Z!Q, denote by ŒM�Weyl the matrix obtained by
replacing each entry of M by its (term-by-term) Weyl-ordering.

It is a well-known straightforward exercise to show that the Weyl-ordered Laurent
monomial denoted by Œ

Q
v2V X˛v=3v �Weyl D Œ

Q
v2V Z˛vv �Weyl is a well-defined element

of Z!Q independent of the choice of ordering on V D V.Q�/. It is also easy to see
that Œf�Weyl depends only on f but not on the choice of an expression of f as a sum of
Laurent monomials.

The following lemma is easily verifiable as well and will become handy. In par-
ticular, it gives one characterization of Weyl-ordered Laurent monomials for Q.

Lemma 2.20. LetQ, V DV.Q/ and Z!Q be as in Definition 2.15. Let .˛v/v2V 2ZV .

(1) The Weyl-ordered Laurent monomial Œ
Q
v2V Z˛vv �Weyl for Q is �-invariant.

(2) For m 2 1
2
Z, the element !mŒ

Q
v2V Z˛vv �Weyl 2 Z!Q is �-invariant if and only

if m D 0.

(3) A multiplicity-free Laurent polynomial forQ, i.e., a Laurent polynomial forQ
that can be written as a sum of Laurent monomials so that no two appearing
Laurent monomials �!mŒ

Q
v2V Z˛vv �Weyl and �0!m

0

Œ
Q
v2V Z˛

0
v
v �Weyl have the

same degrees ˛v D ˛0v , 8v, is fixed by the �-map if and only if each of its
terms is fixed by the �-map; i.e., it is a term-by-term Weyl-ordered Laurent
polynomial.



Naturality of SL3 quantum trace maps for surfaces 139

As a consequence, for ˛v1 ; : : : ; ˛vN 2 Z, the unique m 2 1
2
Z that makes

!mZ˛v1v1 � � �Z
˛vN
vN

�-invariant is m D �
P
i<j "vivj ˛vi˛vj , in which case

!mZ˛v1v1 � � �Z
˛vN
vN D

h Y
v2V

Z˛vv
i

Weyl
:

2.4. SL3 quantum trace maps

Both the SL3-skein algebra and the PGL3 Fock–Goncharov algebra could be viewed
as certain versions of the quantum algebras for the Poisson moduli space XPGL3;S

or PPGL3;S. The main object of study of the present paper, the SL3 quantum trace
map [33], is a map that connects these two algebras. Its characteristic property is the
compatibility under the cutting and gluing of the surfaces. We first recall the process
of cutting.

Definition 2.21 (Cutting process; see, e.g., [33, Lemma 5.6]). Let S be a generalized
marked surface. Let e be an ideal arc of S whose interior lies in the interior of S

such that e is not isotopic to a boundary arc of S (Definition 2.2). Denote by Se the
generalized marked surface obtained from S by cutting along e, which is uniquely
determined up to isomorphism. Let ge W Se ! S be the gluing map.

If � is an ideal triangulation of S containing e as one of the members, then the
cutting process yields an ideal triangulation �e WD g�1e .�e/ of Se .

Let W be an SL3-web in S � I that meets e � I transversally, where the intersec-
tion points of W \ .e � I/ are not internal 3-valent vertices of W and have mutually
distinct elevations, and the framings at these intersections are upward vertical. Then,
let We WD .ge � id/�1.W / be the SL3-web in Se � I obtained from W by the cut-
ting process along e. A state se of We is said to be compatible with a state s of W if
se.x/ D s..ge � id/.x// for all x 2 @We \ .ge � id/�1.@W / and se.x1/ D se.x2/ for
all x1; x2 2 @We \ .ge � id/�1.e � I/ such that .ge � id/.x1/ D .ge � id/.x2/.

Denote by ge W V.Q�e / ! V.Q�/ the corresponding map between the nodes
of the 3-triangulation quivers. Define the induced cutting map between the cube-root
Fock–Goncharov algebras

i�;�e W Z
!
� ! Z!�e

to be the ZŒ!˙1=2�-algebra map given on the generators as

i�;�e .Zv/ D
Y

w2g�1e .v/

Zw 8v 2 V.Q�/;

and likewise on their inverses.
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Note that g�1e .v/� V.Q�e / has a single element unless v 2 V.Q�/ is one of the
two nodes lying in e, in which case g�1e .v/ has two elements; in this case, for v1; v2 2
g�1e .v/, we have Zv1Zv2 D Zv2Zv1 in Z!�e , so the product expression

Q
w2g�1e .v/Zw

makes sense.
The following basic observation on the cutting map i�;�e will be used later.

Lemma 2.22. The cutting map i�;�e WZ
!
�!Z!�e defined in Definition 2.21 is injec-

tive.

Proof. Let V D V.Q�/ and Ve D V.Q�e /. Let

W D
°h Y

v2V

Z˛vv
i

Weyl
j .˛v/v2V 2 ZV

±
� Z!�

and We D ¹Œ
Q
w2Ve

Z˛ww �Weyl j .˛w/w2Ve 2 ZVeº � Z!�e . A standard fact about Lau-
rent polynomial rings says that W forms a ZŒ!˙1=2�-basis of Z!� and that We forms
a ZŒ!˙1=2�-basis of Z!�e . Let W 0e WD ¹Œ

Q
w2Ve

Z˛ww �Weyl j .˛w/w2Ve 2 ZVe ; ˛w D

˛w0 whenever ge.w/D ge.w0/º �Z!�e . It is straightforward to see that i�;�e induces
a set bijection from W to W 0e . Meanwhile, since W 0e � We and We is ZŒ!˙1=2�-
linearly independent, one also observes that We is ZŒ!˙1=2�-linearly independent.
Since i�;�e is a ZŒ!˙1=2�-linear map that sends a ZŒ!˙1=2�-basis to a ZŒ!˙1=2�-
linearly independent set, it is injective.

Theorem 2.23 ([33, Theorems 1.27, 5.8]; see also [13, 44]). There exists a family of
ZŒ!˙1=2�-algebra homomorphisms

Tr!� D Tr!�IS W �
!
s .SIZ/red ! Z!�;

called the SL3 quantum trace maps, defined for each triangulable generalized marked
surface S and its ideal triangulation � such that the following hold.

(QT1) (Cutting/gluing) Let .W; s/ be a stated SL3-web in S� I, and e an internal
arc of �. Let Se , �e , and We � Se � I be obtained from S, �, and W � S � I by
cutting along e as in Definition 2.21. Then,

i�;�e Tr!�IS.ŒW; s�/ D
X
se

Tr!�e ISe .ŒWe; se�/;

where the sum is over all states se of We that are compatible with s in the sense as in
Definition 2.21, and the cutting map i�;�e is as in Definition 2.21.

(QT2) (Values of oriented edges over a triangle) Let .W; s/ be a stated SL3-web
in t � I, where t is a triangle, viewed as a generalized marked surface with a unique
ideal triangulation�. Denote the sides of t by e1, e2, e3 (with e4 D e1), and the nodes
of Q� by ve˛ ;1, ve˛ ;2, vt (for ˛ D 1; 2; 3) as in Figure 4.
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(QT2-1) If W consists of a single left-turn oriented edge in t � I, i.e., a cross-
ingless SL3-web with upward vertical framing consisting of a single
oriented edge, with the initial point x lying over e˛ and the terminal
point lying over e˛C1, then Tr!�It .ŒW; s�/ is the .s.x/; s.y//-th entry2 of
the following 3 � 3 matrix with entries in Z!�:240@ Zve˛;2Z2ve˛;1 0 0

0 Zve˛;2Z�1ve˛;1 0

0 0 Z�2ve˛;2Z�1ve˛;1

1A Z2vt Z2vtCZ�1vt Z�1vt
0 Z�1vt Z�1vt
0 0 Z�1vt

!

�

0B@ Zve˛C1;1Z2ve˛C1;2
0 0

0 Zve˛C1;1Z�1ve˛C1;2
0

0 0 Z�2ve˛C1;1
Z�1ve˛C1;2

1CA
375

Weyl

: (2.3)

(QT2-2) If W consists of a single right-turn oriented edge in t � I, i.e., a sin-
gle crossingless oriented edge from x 2 e˛C1 � I to y 2 e˛ � I, then
Tr!�It .ŒW; s�/ is the .s.x/; s.y//-th entry of264
0B@ Zve˛C1;2Z2ve˛C1;1

0 0

0 Zve˛C1;2Z�1ve˛C1;1
0

0 0 Z�2ve˛C1;2
Z�1ve˛C1;1

1CA
�

 
Zvt 0 0

Zvt Zvt 0

Zvt ZvtCZ�2vt Z�2vt

!0@ Zve˛;1Z2ve˛;2 0 0

0 Zve˛;1Z�1ve˛;2 0

0 0 Z�2ve˛;1Z�1ve˛;2

1A35
Weyl

:

The SL3 quantum trace map, which can be viewed as the SL3 version of Bonahon
and Wong’s SL2 quantum trace map [7] and which later generalized to the SLn quan-
tum trace map by Lê and Yu [44], is supposed to be a quantum deformed version of the
SL3 classical trace map, whose value at an oriented loop is the “trace-of-monodromy
function” on the space XPGL3;S along that loop. The values on the basic cases (QT2-
1)–(QT2-2), which already appeared in [13], are natural candidates for these cases,
deforming the entries of the corresponding classical monodromy matrices of Fock
and Goncharov [17], or, more precisely, the suitably normalized versions. By the cut-
ting/gluing property (QT1), the values of the SL3 quantum trace maps for a surface S

are completely determined by the values for the triangle t , viewed as a standalone gen-
eralized marked surface. However, the above version of Theorem 2.23 does not tell us
how to compute the values of Tr!�It .ŒW; s�/ for all SL3-websW in t � I. In [33], what
is crucially used in the proof of Theorem 2.23 above as well as in the computation of
the values is the biangle analog of the SL3 quantum trace map.

2We use the usual convention that the .a; b/-th entry of a matrix means the entry at the a-th
row and the b-th column.
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Proposition 2.24 ([33, Proposition 5.26 and Section 5]). Let B be a biangle, viewed
as a generalized marked surface, diffeomorphic to a closed disc with two marked
points on the boundary and no puncture in the interior. There exists a ZŒ!˙1=2�-
algebra homomorphism

Tr!B W �
!
s .BIZ/red ! ZŒ!˙1=2�;

called the biangle SL3 quantum trace map, satisfying the following.

(BQT1) The cutting/gluing property for each internal ideal arc e in B connecting
the two marked points of B holds:

Tr!B.ŒW; s�/ D
X
s1;s2

Tr!B1.ŒW1; s1�/Tr!B2.ŒW2; s2�/;

where cutting B along e yields Be D B1 t B2 which is a disjoint union
of two biangles, with W cut into We D W1 t W2, and the sum is over
all states s1; s2 such that the state se WD s1 t s2 of We D W1 t W2 is
compatible with s in the sense of Definition 2.21.

(BQT2) When W consists of a single crossingless oriented edge connecting the
two boundary walls of B � I,

Tr!B.ŒW; s�/

D

´
1 if s assigns the same state values to the two endpoints of W ;

0 otherwise:

(BQT3) Let S be a triangulable generalized marked surface and e an internal
ideal arc of S isotopic to a boundary arc b so that cutting S along e
yields Se DS0 tB with B being a biangle and S0 being isomorphic to
S. Let� be an ideal triangulation of S not meeting the interior of e. Let
�0 be the ideal triangulation of S0 obtained from S by replacing b by e.
For an SL3-web W in S � I such that the cutting process along e yields
a well-defined SL3-webWe DW0 tWB in Se � ID .S0 � I/t .B � I/,
one has

Tr!�IS.ŒW; s�/ D
X
s0;sB

Tr!�0IS0.ŒW0; s0�/Tr!B.ŒWB ; sB �/;

where the sum is over all states s0 and sB of W0 and WB constituting a
state se WD s0 t sB ofWe that is compatible with s in the sense of Defini-
tion 2.21, and the algebras Z!� and Z!�0 are naturally being identified.

It is the property (BQT3) that yields a “state-sum formula” [33, Section 5.3] for
the SL3 quantum trace Tr!�IS for a triangulable generalized marked surface, which we
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briefly review. Consider a split ideal triangulation y� of �, obtained by adding one
ideal arc e0 per each arc e of � so that e0 is isotopic to e and y� is still a collection of
arcs that do not meet each other in their interiors. So, an arc of � now becomes two
parallel arcs, forming a biangle. Cutting along all internal arcs of y� yields a disjoint
union of triangles Ot and biangles B , where each Ot corresponds to an ideal triangle t
of �, and each B corresponds to an ideal arc of �. Let .W; s/ be a stated SL3-web
in S � I, and assume that W meets y� � I transversally, and that W \ .Ot � I/ and
W \ .B � I / are SL3-webs in Ot � I and in B � I for each Ot and B . We call elements
of W \ .y� � I/ the junctures of W with respect to y�, and call a function

J W W \ .y� � I/! ¹1; 2; 3º

a juncture-state of W with respect to y�. By using Theorem 2.23 (QT1) and Proposi-
tion 2.24 (BQT3), one obtains the state-sum formula

Tr!�.ŒW; s�/ D
X
J

�Y
B

Tr!B.ŒW \ .B � I/; J �/
��Y

Ot

Tr!
Ot
.ŒW \ .Ot � I/; J �/

�
; (2.4)

where the sum
P
J is over all juncture-states J of W with respect to y� that restricts

to s at @W , the product
Q
B is over all biangles B of y�, and the product

Q
Ot is over all

triangles Ot of y�. Note that J can be thought of as yielding a state forW \ .B � I/ and
that for W \ .Ot � I/ via restriction to their endpoints. Equation (2.4) is written with-
out the cutting maps (Definition 2.21) between different cube-root Fock–Goncharov
algebras, so we need to say a few words about it. A value of Tr!B lies in ZŒ!˙1=2�,
and a value of Tr!

Ot
lies in the cube-root Fock–Goncharov algebra yZ!t for the trian-

gle t of � (Definition 2.15); here, we naturally identified Z!
Ot

and Z!t , which are
defined using the unique triangulations of the surfaces Ot and t . So, the right-hand side
of equation (2.4) can be viewed as an element of

N
t Z!t , where the tensor product

is over all triangles t of �. The algebra Z!� embeds into this tensor product alge-
bra (see [33, Definition 5.5]) by the embedding map which sends each generator Z�v ,
v 2 V.Q�/, � 2 ¹1;�1º, to the product of all generators Z�w;t of Z!t such that v cor-
responds to a node w of the 3-triangulation quiver Qt for the triangle t (each viewed
as a surface, with a unique triangulation). For each v, there are either one or two such
pairs .w; t/, where the latter happens only when v is a node lying in an internal arc of
�. It is shown in [33] (see, e.g., Proposition 5.47 there) that the value of the sum in
the right-hand side of equation (2.4) lies in Z!� �

N
t Z!t .

If .W; s/ is a general stated SL3-web in S� I, then one would apply an isotopy to
.W; s/ so that W satisfies the above-mentioned hypothesis for the state-sum formula
in equation (2.4), and then consider the sum in equation (2.4). It is shown in [33] (see,
e.g., Propositions 5.50–5.51 there) that the value of the sum does not depend on the
isotopy and hence depends only on the isotopy class of .W; s/. In practice, one would
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want to isotope W so that the complexities, e.g., the 3-valent vertices, are pushed to
be located over biangles. Then, the cutting/gluing properties let us compute Tr!�IS in
terms of Tr!t for triangles t and Tr!B for biangles B . One could have isotoped W so
that the pieces of W living over each triangle are as in (QT2-1)–(QT2-2), and that
each piece lives at a constant elevation; then one says that W is in a gool position3,
in which case each value of Tr!t is given by product of values presented in (QT2-1)–
(QT2-2). Then, the hard computation should be done over the biangles (i.e., for the
values of Tr!B ), which are relatively easier than a similar computation for triangles.
Note that the biangle SL3 quantum trace can be viewed either as an incarnation of
the Reshetikhin–Turaev invariant for tangles associated to the standard 3-dimensional
representation of the quantum group Uq.sl3/ [46], or as the counit of the quantum
group Oq.SL3/ [29]; see [33] for more details. The state-sum formula provides one
algorithmic way of computing the values of the SL3 quantum trace, and at the same
time a way of proving the very existence of the SL3 quantum trace maps. However,
we will only make a relatively mild use of this state-sum formula for y� in the present
paper.

Some nice favorable properties of the SL3 quantum trace maps Tr!� are proved
in [33], but there are still more to be proved. Among the remaining, perhaps, the most
important property is the “naturality” under the mapping class group action, i.e., the
independence on the choice of ideal triangulations �. The present paper undertakes
the task of properly formulating and proving this property.

3. Quantum coordinate change for flips of ideal triangulations

Per change of ideal triangulations �Ý�0 of a triangulable generalized marked sur-
face, we investigate the quantum coordinate change maps between various versions
of the Fock–Goncharov quantum algebras associated to � and �0. This is the first
necessary step toward the main result of the present paper and can be viewed as the
SL3 analog of Hiatt’s result on the square-root version of the quantum mutation maps
for SL2 [28, 51].

3.1. Classical cluster X-mutations

We begin by reviewing the classical setting of [17, 19]. Let V be any fixed nonempty
finite set, and let

F D Q.¹Xıv j v 2 Vº/

3This terminology is coined in [33] as a stronger version of the “good position” which is
used in [33] as an SL3-analog of Bonahon and Wong’s “good position” appearing in [7] for the
SL2 quantum trace maps.
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be the field of rational functions on algebraically independent variables enumerated
by V ; we refer to F as the ambient field. The set V will play a role of the set of nodes
of the generalized quivers to be considered, so the elements of V are called nodes.
Choose any subset Vfr of V ; the elements of Vfr are called the frozen nodes, and those
of V n Vfr are called the unfrozen nodes. With these choices, a cluster X-seed (or,
just a seed) is defined as a pair � D .Q; .Xv/v2V /, where Q is a quiver whose set
of nodes V.Q/ is V , whose signed adjacency matrix is denoted by " D ."vw/v;w2V ,
sometimes called the exchange matrix of the seed, and Xv’s are elements of F such
that ¹Xv j v 2 Vº is a transcendence basis of F over Q, called the cluster X-variables
of the seed. We require "vw to be integers unless both v and w are frozen. For any
unfrozen node k of Q, i.e., k 2 V n Vfr, one defines a process of mutation �k at the
node k, which transforms the seed � into another seed �k.�/. Denoting by

�k.�/ D �
0
D .Q0; .X 0v/v2V /;

the quiver Q0 D �k.Q/ is defined by the following quiver mutation formula for its
signed adjacency matrix "0:

"0vw D

´
�"vw if k 2 ¹v;wº;

"vw C
1
2
."vkj"kw j C j"vkj"kw/ if k 62 ¹v;wº;

(3.1)

and the variables X 0v for � 0 are defined as elements of F given by the following
cluster X-mutation formula:

X 0v D

´
X�1
k

if v D k;

Xv
�
1CX

� sgn."vk/
k

��"vk if v ¤ k;

where sgn.�/ 2 ¹1;�1º denotes the sign, i.e., sgn.a/ D 1 if a > 0 and sgn.a/ D �1
if a < 0. Another way of transforming a seed � D .Q; .Xv/v2V / into a new seed is
the seed automorphism P� associated to a permutation � of the set V . The new seed
P� .�/ D �

0 D .Q0; .X 0v/v2V / is given by

"0�.v/�.w/ D "vw ; X 0�.v/ D Xv:

One can apply the mutations and seed automorphisms repeatedly. In general, one
begins with one cluster X-seed, referred to as an initial cluster X-seed, and considers
only those cluster X-seeds connected to the initial one by (finite) sequences of muta-
tions and seed automorphisms. The quivers appearing in these seeds are said to be
mutation-equivalent to each other.

Let S be a triangulable generalized marked surface. To each ideal triangula-
tion � of S is associated the seed �� D .Q�; .Xv/v2V.Q�//, where Q� is the 3-
triangulation quiver for � defined in Definition 2.14, whose signed adjacency matrix
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is denoted by " D "�. The set V.Q�/ of all nodes of the quiver Q� plays the role of
V , and the set Vfr of frozen nodes is defined to be the subset of V.Q�/ consisting of
the nodes of Q� lying in the boundary arcs of S. A crucial aspect is the relationship
between the seeds associated to different ideal triangulations. Suppose that �Ý�0

is a flip at an arc. It is known [17] that the corresponding 3-triangulation quivers Q�
and Q�0 are related by a sequence of four mutations; namely, starting from Q�, first
mutate at the two nodes lying in the arc being flipped (in an arbitrary order); then
mutate at the two nodes lying in the interiors of the two triangles having this flipped
arc as a side (in an arbitrary order). If we denote the nodes of Q� appearing in the
two triangles having this flipped arc as a side by v1; v2; : : : ; v12 as in Figure 2, where
some of these nodes may be identical nodes depending on the situation, then one can
write

Q�0 D �v12�v7�v4�v3Q�;

as seen in Figure 2. This mutation sequence also naturally yields an identification
between V.Q�/ and V.Q�0/. Now, not only the quivers, but also the variables should
be related under this mutation sequence. That is to say, one could view the situation
as starting from the seed ��, and defining a new seed ��0 by

��0 WD �v12�v7�v4�v3��:

The original formulation of [17] is to construct a rational coordinate system for
the moduli space XPGL3;S per each ideal triangulation� so that a coordinate function
is associated to each node ofQ� and to show that the coordinate systems for ideal tri-
angulations � and �0 differing by a flip are related by the coordinate change formula
given by the composition of the above particular sequence of cluster X-mutations.
Here, we are being more abstract, just using the concept of cluster X-seeds, not hav-
ing a geometric moduli space at hand. One thing to keep in mind in the abstract
setting is that if two seeds are connected by a sequence of mutations and seed auto-
morphisms, and if the composition of the corresponding coordinate change maps for
the variables is the identity map, then we identify the two seeds. A consequence of
the above original geometric formulation of [17] is that the consistency relations for
flips of triangulations in Lemma 2.8 also hold for the above abstract setting.

Lemma 3.1 (Classical consistency relations for flips, for 3-triangulation quivers, and
for seeds). For each flip � Ý �0 of ideal triangulations of a triangulable general-
ized marked surface S at an internal arc i of �, where the nodes are denoted as in
Figure 2, denote by

ˆ��0 D ˆi WD �v12�v7�v4�v3 ;

which can be applied to quivers or to cluster X-seeds so that, in particular, Q�0 D
ˆi .Q�/ and ��0 D ˆi .��/. Then,ˆi ’s satisfy the following relations, when applied
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to the 3-triangulation quiver Q� or to the cluster X-seed �� for an initial triangula-
tion � satisfying the respective conditions:

(1) ˆiˆi D id for any internal arc i of any triangulation �;

(2) ˆi ĵˆi ĵ D id if the internal arcs i and j of � satisfy bij D 0 (see Defini-
tion 2.6 for bij );

(3) ˆi ĵˆi ĵˆi D P
�
Œ3�

ij

if the internal arcs i and j of � satisfy bij D ˙1,

where � Œ3�ij is a suitable permutation which permutes the seven nodes involved
in the mutations in the left-hand side and fixes all other nodes.

It is not hard to write down the permutation � Œ3�ij explicitly, once one chooses
node labels; we leave it as an exercise. A more basic well-known result is about the
consistency relations for mutations.

Lemma 3.2 (Classical consistency relations for mutations of X-seeds). The mutations
�k’s of quivers and cluster X-seeds satisfy the following relations:

(1) �v�v D id, when applied to any seed � , for any non-frozen node v;

(2) �v�w�v�w D id, when applied to a seed � such that "vw D 0;

(3) �v�w�v�w�v D P.vw/, when applied to a seed � such that "vw D ˙1,
where .vw/ stands for the permutation of the nodes that exchanges v and
w and fixes all other nodes.

As of now, the proof of Lemma 3.1 relies on the geometry of the moduli space
XPGL3;S [17] (or PPGL3;S [25]). One can try to prove it directly using the more basic
algebraic lemma, i.e., Lemma 3.2. For example, the left-hand side of item (1) of
Lemma 3.1, when applied to �, can be written as

.�v3�v4�v7�v12/.�v12�v7�v4�v3/;

which one can prove to equal id, with the help of items (1) and (2) of Lemma 3.2.
Similarly, item (2) of Lemma 3.1 can be shown using item (2) of Lemma 3.2. Showing
item (3) of Lemma 3.1 using Lemma 3.2 would be more involved, and we leave this
as an exercise to the readers.

3.2. Quantum mutations for X-seeds and for Fock–Goncharov algebras

For the quantum setting, here, we first review known constructions established in [4,
17, 20], restricted and adapted to the setting of the present paper.

First, for a general cluster X-variety setting: to a cluster X-seed

� D .Q; .Xv/v2V /
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whose underlying quiver is Q we associate the Fock–Goncharov algebra X
q
Q defined

in Definition 2.15 and write it as

X
q
� WD X

q
Q; (3.2)

which is to serve as a quantum algebra for the seed � . As mentioned before, this
algebra is an example of the so-called quantum torus algebras, which are known to
satisfy the (right) Ore conditions [11], i.e., P.Xq

� n ¹0º/\QX
q
� ¤ ¿ for each P;Q 2

X
q
� with Q ¤ 0; hence, the skew field of (right) fractions Frac.Xq

�/ makes sense. An
element of Frac.Xq

�/ is represented by a formal expression of the form PQ�1, with
P;Q 2X

q
� , Q¤ 0, where two such expressions P1Q�11 and P2Q�12 represent the same

element of Frac.Xq
�/ if there exist nonzero S1; S2 2 X

q
� such that P1S1 D P2S2 and

Q1S1 D Q2S2. The product of two such expressions can be expressed again in the
form PQ�1 by algebraic manipulations using the defining commutation relations of
X
q
� ; see the proof given right after Definition 3.12 and the proof of Lemma 3.27 for

examples of such manipulations. We now recall the quantum mutation map associated
to a mutation of classical X-seeds. Before giving the formula for this map, it is useful
to recall the following crucial ingredient.

Definition 3.3 (Compact quantum dilogarithm [16]). The quantum dilogarithm for a
quantum parameter q is the function

‰q.x/ D

1Y
rD0

�
1C q2rC1x

��1
:

One way of understanding this function is to view it as a formal series. One can
also view it as a meromorphic function on the complex plane, when q is a complex
number such that jqj < 1. Its characteristic property is the difference equation

‰q.q2x/ D .1C qx/‰q.x/;

which is clear at least in a formal sense. This equation inspires the following defini-
tion.

Definition 3.4 (Ratio of quantum dilogarithm). For ˛ 2 Z, define

F q.xI˛/ WD ‰q.q2˛x/‰q.x/�1 (3.3)

formally. More precisely, F q.xI ˛/ is defined as the rational expression in x and q
given by

F q.xI˛/ WD

j˛jY
rD1

�
1C q.2r�1/ sgn.˛/x

�sgn.˛/ (3.4)

if ˛ ¤ 0. When ˛ D 0, set F q.xI 0/ D 1.
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One can use the formal definition of the quantum dilogarithm ‰q and equa-
tion (3.3) to obtain heuristic ideas of proofs; however, we will make our actual proofs
depend solely on equation (3.4).

We now describe Fock and Goncharov’s quantum mutation formula.

Definition 3.5 (Quantum X-mutation for Fock–Goncharov algebras [19, 20]). For a
mutation � Ý � 0 D �k.�/ of cluster X-seeds (whose underlying set of nodes are V )
at an unfrozen node k 2 V n Vfr, define the quantum mutation map as the algebra
homomorphism between the skew fields of fractions

�
q
��0 D �

q

k
W Frac.Xq

�0/! Frac.Xq
�/

given by the composition
�
q

k
D �

]q

k
ı �0k;

where the monomial-transformation part

�0k W Frac.Xq
�0/! Frac.Xq

�/

is the skew field homomorphism (over ZŒq˙1=18�) given on the generators by

�0k..X
0
v/
�/ D

´
X��
k

if v D k;��
XvXŒ"vk �C

k

�
Weyl

�� if v ¤ k;
8� 2 ¹1;�1º; (3.5)

where " D ."vw/v;w2V is the exchange matrix for � , and the automorphism part

�
]q

k
W Frac.Xq

�/! Frac.Xq
�/

is given formally as the conjugation by the expression ‰q.Xk/:

�
]q

k
D Ad‰q.Xk/I

more precisely, �]q
k

is the skew field homomorphism (over ZŒq˙1=18�) given on the
generators by

�
]q

k
.X�v/ D X�v � F

q.XkI � � "kv/ (3.6)

for each v 2 V and � 2 ¹1;�1º, where F q is as in equation (3.4).
For a seed automorphism � Ý � 0 D P� .�/, define the quantum seed automor-

phism as the skew field homomorphism (over ZŒq˙1=18�) given on the generators by

P� W Frac.Xq
�0/! Frac.Xq

�/; .X0�.v//
�
7! X�v; 8v 2 V ; 8� 2 ¹1;�1º:

The most basic property of �q
k

and P� is that they recover the classical muta-
tion and seed automorphism formulas �k and P� when we put q1=18 D 1. More
importantly, they satisfy the quantum counterparts of the consistency relations of the
classical mutations as in Lemma 3.2.



H. K. Kim 150

Proposition 3.6 ([4], [19, Section 3.3]). The quantum mutations �q
k

’s satisfy the
following, when applied to Frac.Xq

�/ for an initial seed � satisfying the respective
conditions:

(1) �qv�
q
v D id for any non-frozen node v, for any initial seed �;

(2) �qv�
q
w�

q
v�

q
w D id, when "vw D 0 holds for the initial seed �;

(3) �qv�
q
w�

q
v�

q
w�

q
v D P.vw/, when "vw D ˙1 holds for the initial seed � .

We now apply the quantum mutation construction to our setting, namely, for the
cluster X-seeds �� for XPGL3;S, or PPGL3;S, associated to an ideal triangulation � of
a surface S.

Definition 3.7 (Quantum coordinate change map for cluster X-charts for a flip). For
each flip �Ý�0 of ideal triangulations of a triangulable generalized marked surface
S at an internal arc i of �, where the nodes of the 3-triangulation quivers Q� and
Q�0 are denoted as in Figure 2, define the quantum coordinate change map

ˆ
q
��0 D ˆ

q
i W Frac.Xq

�0/! Frac.Xq
�/

between the skew fields of fractions of the Fock–Goncharov algebras (Definition 2.15
and equation (3.2)) as

ˆ
q
i WD �

q
v3
�qv4�

q
v7
�qv12 : (3.7)

The reason why the order of composition of the four quantum mutations looks
reversed from that in the classical setting is that each quantum mutation �q

k
is written

in a contravariant manner, for it is a deformation of the pullback map ��
k

of the clas-
sical mutation birational map �k between the split algebraic tori .Gm/

V associated
to seeds. That is, the classical mutation sequence �v12�v7�v4�v3 can be applied to a
quiver, a seed, or the split algebraic torus for a seed, while the pullback maps on the
(coordinate) functions should be written as ��v3�

�
v4
��v7�

�
v12

, and the above ˆqi is a
deformation of this last composition.

One can naturally expect that the quantum counterparts of the consistency rela-
tions of the flips, i.e., Lemma 3.1, should hold.

Proposition 3.8 (Quantum consistency relations for flips for XPGL3;S). For a trian-
gulable generalized marked surface S, the quantum coordinate change maps ˆqi
associated to flips at arcs i of triangulations satisfy the following relations, when
applied to the initial seed �� for a triangulation � of S satisfying the respective
conditions:

(1) ˆqi ˆ
q
i D id for any internal arc i of any triangulation �;

(2) ˆqi ˆ
q
jˆ

q
i ˆ

q
j D id if the internal arcs i and j of � satisfy bij D 0 (see Defi-

nition 2.6 for bij );
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(3) ˆqi ˆ
q
jˆ

q
i ˆ

q
jˆ

q
i D P� Œ3�

ij

if the internal arcs i and j of � satisfy bij D ˙1,

where � Œ3�ij is as in Lemma 3.1 (3).

Proof. It is proved in [31] that a relation satisfied by classical cluster X-mutations is
also satisfied by the corresponding quantum cluster X-mutations. Since the classical
relations hold by Lemma 3.2, we are done.

3.3. The balanced algebras and the quantum coordinate change maps for them

In this subsection, we introduce main technical definitions of the present paper.
Let � be an ideal triangulation of a triangulable generalized marked surface S

and .W; s/ a stated SL3-web in S � I (Definitions 2.10–2.11). In general, the value
Tr!�.ŒW; s�/ of the SL3 quantum trace map (Theorem 2.23) lies in Z!� (Definition 2.15),
i.e., is a Laurent polynomial in the variables Zv’s, v 2 V.Q�/, instead of lying in
X
q
�, i.e., being a Laurent polynomial in Xv D Z3v’s. Suppose that �Ý�0 is a flip at

an arc. The main purpose of the present paper is to show that the SL3 quantum trace
values Tr!�.ŒW; s�/ and Tr!�0.ŒW; s�/ are related by a suitable quantum mutation map.
So far, the only known quantum mutation map is

ˆ
q
��0 W Frac.Xq

�0/! Frac.Xq
�/;

which tells us how the variables X0v , v 2 V.Q�0/, are related to the variables Xv ,
v 2 V.Q�/. Hence, one needs first to establish a quantum mutation map for the cube-
root variables Z0v and Zv . Similarly, as in the SL2 case [7, 28, 51], one can find a
(quantum) rational formula only between certain subalgebras of the skew fields of
fractions Frac.Z!�0/ and Frac.Z!�/. So, the very first step is to identify these spe-
cial subalgebras. Following the terminology for the known constructions for the SL2
case [7, 28], we call these subalgebras the balanced subalgebras. The SL3 version of
the balancedness condition comes from that of the tropical coordinate systems [14,33]
on the set AL.SIZ/ of all SL3-laminations in S.

Definition 3.9 (From [33, Proposition 3.30]). Let � be an ideal triangulation of a
triangulable generalized marked surface S. An element .av/v2V.Q�/ 2 .

1
3
Z/V.Q�/

is said to be �-balanced if, for each triangle t of �, the following hold: denoting by
e1, e2, e3 the sides of t in the clockwise order (with e4 D e1), by ve˛ ;1, ve˛ ;2 the
nodes of Q� lying in e˛ so that ve˛ ;1 ! ve˛ ;2 matches the clockwise orientation of
the boundary of t , and by vt the node of Q� lying in the interior of t , as in Figure 4:

(BE1) the numbers
P3
˛D1 ave˛;1 and

P3
˛D1 ave˛;2 belong to Z;

(BE2) 8˛ D 1; 2; 3, the number ave˛;1 C ave˛;2 belongs to Z;

(BE3) 8˛ D 1; 2; 3, the number �avt C ave˛;2 C ave˛C1;1 belongs to Z.
(Or equivalently, the number avt C ave˛;1 C ave˛C1;2 belongs to Z.)
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As mentioned in the introduction, see [15] (and [14]) for a combinatorial and
representation-theoretic formulation of the �-balancedness condition in terms of the
Knutson–Tao rhombi [23, 38].

Proposition 3.10 ([33, Proposition 3.30], [14]). Let � be an ideal triangulation of a
triangulable generalized marked surface S. There exists an injective map

a� W AL.SIZ/!

�
1

3
Z

�V.Q�/

; ` 7! .av.`//v2V.Q�/;

called the tropical coordinate system (associated to �) on the set AL.SIZ/ of all
SL3-laminations in S (Definition 2.13), satisfying favorable properties. Moreover,
a� is a bijection onto the set of all �-balanced elements of .1

3
Z/V.Q�/.

We say that av.`/ 2 1
3
Z is the tropical coordinate of the SL3-lamination ` at the

node v of the 3-triangulation quiverQ�. For the reason why this is called a “tropical”
coordinate, see Section 5.1.

The following definition and the next one constitute the first set of main technical
definitions introduced in the present paper.

Definition 3.11. Let� be an ideal triangulation of a triangulable generalized marked
surface S. Let V D V.Q�/.

A Laurent monomial �!mŒ
Q
v2V Xavv �Weyl D �!mŒ

Q
v2V Z3avv �Weyl 2 Z!� for �

(see Definitions 2.15 and 2.18), with � 2 ¹1;�1º, m 2 1
2
Z, .av/v2V 2 .

1
3
Z/V , is said

to be �-balanced if .av/v2V 2 .
1
3
Z/V is �-balanced in the sense of Definition 3.9.

A Laurent polynomial for�, i.e., an element of Z!�, is said to be�-balanced if it
can be expressed as a sum of �-balanced Laurent monomials for �.

Let the �-balanced cube-root Fock–Goncharov algebra yZ!� for � be the subset
of Z!� consisting of all �-balanced Laurent polynomials for �.

It is easy to observe that yZ!� is indeed a subalgebra of Z!�, and that

X
q
� �

yZ!�: (3.8)

For each cluster X-seed � D .Q; .Xv/v2V / we associate the cube-root Fock–
Goncharov algebra Z!Q defined in Definition 2.15, and write it as

Z!� WD Z!Q:

A Laurent monomial for � and a Laurent polynomial for � mean a Laurent monomial
for Q and a Laurent polynomial for Q, respectively (Definition 2.18).

Just as for the case of X
q
� , since the algebra Z!� is an example of quantum torus

algebras, it satisfies the (right) Ore condition, and hence, the skew field of (right)
fractions Frac.Z!� / makes sense. As a special example, Frac.Z!�/ makes sense for an
ideal triangulation � of a surface S.
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Definition 3.12. Let� be an ideal triangulation of a triangulable generalized marked
surface S. Define the �-balanced fraction (cube-root Fock–Goncharov) algebra for
� as the subset bFrac.Z!�/ of Frac.Z!�/ consisting of all elements that can be expressed
as PQ�1 with P 2 yZ!� � Z!� and 0 ¤ Q 2 X

q
� � Z!�.

One can observe that bFrac.Z!�/ is a subalgebra of Frac.Z!�/. Here, we provide a
proof of this observation, which might serve as a preparation for some of the upcom-
ing arguments. First, we show that it is closed under addition. Consider two elements
P1Q�11 and P2Q�12 , with P1;P2 2 yZ!� and Q1;Q2 2 X

q
� n ¹0º. By the Ore condition

of X
q
� (see Section 3.2) applied to Q1 and Q2 we have Q1.X

q
� n ¹0º/\Q2X

q
� ¤ ¿;

hence, there exist Q3;Q4 2 X
q
� with Q3 ¤ 0, satisfying Q1Q3 D Q2Q4. Let Q5 WD

Q1Q3 D Q2Q4; we see Q5 ¤ 0. Note that

P1Q�11 C P2Q�12 D P1Q3.Q1Q3/
�1
C P2Q4.Q2Q4/

�1
D .P1Q3 C P2Q4/Q�15 :

By equation (3.8), we see that P3 WD P1Q3 C P2Q4 belongs to yZ!�. Thus, we have
shown that P1Q�11 C P2Q�12 D P3Q�15 belongs to bFrac.Z!�/, as desired. Next, let us
show that bFrac.Z!�/ is closed under multiplication; we should show P1Q�11 P2Q�12 2bFrac.Z!�/. By additivity, it suffices to deal with the case when P2 is a Laurent mono-
mial in yZ!� � Z!�; then P2 is invertible, and its inverse is also a Laurent monomial.
Then, one can easily show that Q6 WD P�12 Q1P2 belongs to X

q
� n ¹0º, by using the

basic commutation relations in Lemma 2.16. Note that P2Q6 D Q1P2; hence,

P1Q�11 P2Q�12 D P1P2Q�16 Q�12 D .P1P2/.Q2Q6/
�1
I

this is an example of the standard algebraic manipulations done in the skew field of
fractions as mentioned in the beginning of Section 3.2. As P1P2 2 yZ!� and Q2Q6 2

X
q
� n ¹0º, we have shown that P1Q�11 P2Q�12 2 bFrac.Z!�/, as desired.

Another useful observation which is easy to see is that bFrac.Z!�/ contains yZ!� and
Frac.Xq

�/ as subalgebras.
As a matter of fact, almost verbatim argument of [34, Remark 3.11] shows the

following lemma.

Lemma 3.13. bFrac.Z!�/ is a skew field and coincides with the skew field of fractions
Frac. yZ!�/ of yZ!�, where Frac. yZ!�/ is naturally viewed as a subalgebra of Frac.Z!�/.

Note that the elements of bFrac.Z!�/ are of the form PQ�1 with P 2 yZ!� �Z!� and
0 ¤ Q 2 X

q
� �

yZ!� � Z!�, whereas those of Frac. yZ!�/ are of the form PQ�1 with
P 2 yZ!� and 0 ¤ Q 2 yZ!�.

The definition of balancedness is inspired by the following important basic state-
ment.
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Proposition 3.14 (Values of the SL3 quantum trace are �-balanced). Let � be an
ideal triangulation of a triangulable generalized marked surface S and .W; s/ a
stated SL3-web in S � I. Then, the value Tr!�.ŒW; s�/ of the SL3 quantum trace is
a �-balanced Laurent polynomial for �, i.e.,

Tr!�.ŒW; s�/ 2 yZ
!
� � Z!�:

Proposition 3.14 is not stated in [33] but follows from the following statements
about the highest-term degrees and the congruence of degrees of terms. The highest-
term statement is proved in [33, Proposition 5.80] for non-elliptic SL3-webs without
endpoints and played a crucial role in that whole paper. Almost verbatim proof of
[33, Proposition 5.80] yields the following version for a generalized marked surface,
possibly with boundary.

Proposition 3.15 (The highest term of the SL3 quantum trace value [33, Proposition
5.80]). Let � be an ideal triangulation of a triangulable generalized marked surface
S and .W; s/ a stated SL3-web in S � I such that W has upward vertical framing
everywhere, �.W / is a reduced non-elliptic SL3-web in S (with � in equation (2.2)),
and s assigns 1 to all endpoints. Let V D V.Q�/. Then, Tr!�.ŒW; s�/ 2 Z!� can be
written as a sum of Laurent monomials for � such that !mŒ

Q
v2V Xav.�.W //

v �Weyl, for
somem 2 1

2
Z, is the unique Laurent monomial of the highest preorder induced by the

powers of the Laurent monomials, where av.�.W // 2 1
3
Z is the tropical coordinate

at v 2 V of �.W / viewed as an SL3-lamination equipped with weight 1 on all com-
ponents. That is, for any other Laurent monomial �0!m

0

Œ
Q
v2V Xbvv �Weyl appearing in

Tr!�.ŒW; s�/ (with �0 2 ¹1;�1º,m0 2 1
2
Z, .bv/v2V 2 .

1
3
Z/V ), we have av.�.W //� bv

for all v 2 V , with at least one of these inequalities being strict. Moreover, if W has
no endpoints, then m D 0.

It is worthwhile to remark that the reason why the highest term of Tr!�.ŒW; s�/
is possibly not equal the Weyl-ordered Laurent monomial Œ

Q
v2V Xav.�.W //

v �Weyl but
is equal only up to a factor !m is that when W has endpoints, one can find that an
SL3-web W 0 in S � I with upward vertical framing whose projection �.W 0/ in S

coincides with �.W / but such that W and W 0 are not isotopic as SL3-webs in S � I.
We refer the readers to Remark 4.6 for more detailed arguments and a more refined
statement. For now, let us move on to the investigation of the terms of Tr!�.ŒW; s�/
other than the highest term.

Proposition 3.16 (Congruence of terms of the SL3 quantum trace value [33, Proposi-
tion 5.76]). Any pair of two terms �0!m

0

Œ
Q
v2V Xbvv �Weyl and �00!m

00

Œ
Q
v2V Xb

0
v
v �Weyl

of Tr!�.ŒW;s�/ appearing in Proposition 3.15 satisfies bv � b0v 2Z,8v 2V DV.Q�/;
this holds for any state s of W , not just for the special state s used in Proposi-
tion 3.15.
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Proposition 3.17. bv � av.�.W // 2 Z, 8v 2 V , for any state s for the aboveW .

Proof of Proposition 3.17. For the special state s that assigns 1 to all endpoints ofW ,
the statement follows from Propositions 3.15 and 3.16. So, it suffices to prove a claim
saying that if we change the values of the state s, then the degrees of the Laurent
monomial terms for Tr!�.ŒW; s�/ change by integers. This claim can be checked from
Theorem 2.23 (QT2) by inspection in the case when the surface S is an ideal trian-
gle. For a general surface, this claim can be proved by using the state-sum formula in
equation (2.4), as follows. Put W into a gool position (see the discussion after equa-
tion (2.4)) by isotopy so that the values of Tr!t in the right-hand side of equation (2.4)
are given by products of the values presented in Theorem 2.23 (QT2). Then, one can
observe that the degrees of the Laurent monomials appearing in the values of Tr!t
change by integers as we change s. This leads to the desired claim for the value of
Tr!�.ŒW; s�/, hence the proposition.

Proof of Proposition 3.14. With the help of the SL3 skein relations and isotopy, we
can observe that Tr!�.ŒW; s�/ can be expressed as a ZŒ!˙1=2�-linear combination of
Tr!�.ŒW

0; s0�/ with W 0 (but not necessarily s0) satisfying the conditions of Proposi-
tion 3.15. By Proposition 3.17, the degree .bv/v2V 2 .

1
3
Z/V of each Laurent mono-

mial term �0!m
0

Œ
Q
v2V Xbvv �Weyl of Tr!�.ŒW

0; s0�/ belongs to .av.�.W 0///v2V C ZV .
By Proposition 3.10, we know that .av.�.W 0///v2V is �-balanced, and it is easy to
see from definition that the �-balancedness of an element of .1

3
Z/V is preserved by

shift by an element of ZV . Hence, .bv/v2V is �-balanced. It follows that all Laurent
monomial terms of Tr!�.ŒW

0; s0�/, hence also those of Tr!�.ŒW;s�/, are�-balanced.

We will now extend the quantum coordinate change map ˆqi D �
q
v3�

q
v4�

q
v7�

q
v12

in equation (3.7) of Definition 3.7 to the balanced fraction algebras. Note that ˆi D
�v12�v7�v4�v3 connects the seed �� for the triangulation � to the seed ��0 for the
triangulation �0 that is related to � by the flip at an internal arc i . For convenience,
we name the intermediate seeds as follows:

�� D ��.0/
�v3Ý ��.1/

�v4Ý ��.2/
�v7Ý ��.3/

�v12Ý ��.4/ D ��0 :

So, for r D 0; 1; 2; 3; 4,�.r/ is just a formal symbol for the seed denoted by ��.r/ , not
necessarily representing an ideal triangulation; we may view �.r/ as an “imaginary”
ideal triangulation, to which a generalized quiver Q�.r/ is associated, whose signed
adjacency matrix is denoted by ".r/:

� D �.0/
�v3Ý �.1/

�v4Ý �.2/
�v7Ý �.3/

�v12Ý �.4/ D �0: (3.9)

This notation is reflected already in Figure 2. Note that this sequence of four mutations
yields natural identifications among the sets of nodes V.Q�.r//, r D 0; 1; 2; 3; 4 so
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that we may write

V.Q�/DV.Q�.0//DV.Q�.1//DV.Q�.2//DV.Q�.3//DV.Q�.4//DV.Q�0/:

(3.10)
For convenience, we write the four nodes being mutated at as

v.1/ D v3; v.2/ D v4; v.3/ D v7; v.4/ D v12: (3.11)

We first define the cube-root versions �0
v.r/

of the monomial parts �0
v.r/

of the
quantum mutation maps �q

v.r/
(see Definition 3.5) for r D 1; 2; 3; 4. We actually do it

in a more general cluster X-seed setting.

Definition 3.18. For a mutation � Ý � 0 D �k.�/ of cluster X-seeds (whose under-
lying set of nodes being V ) at an unfrozen node k 2 V n Vfr, define the cube-root
monomial transformation

�0k W Z
!
�0 ! Z!�

as the ZŒ!˙1=2�-algebra homomorphism given on the generators by

�0k..Z
0
v/
�/ D

´
Z��
k

if v D k;��
ZvZŒ"vk �C

k

�
Weyl

�� if v ¤ k;
8� 2 ¹1;�1º; (3.12)

where " D ."vw/v;w2V is the exchange matrix for � .
Let

�0k W Frac.Z!�0/! Frac.Z!� /

be the unique extension to a homomorphism of skew fields.

The following basic observation will become handy.

Lemma 3.19 (Basic properties of the cube-root monomial transformation). One has

(1) The map �0
k
W Z!�0 ! Z!� described in Definition 3.18 is well defined.

(2) The map �0
k
W Frac.Z!�0/! Frac.Z!� / extends

�0k W Frac.Xq
�0/! Frac.Xq

�/

defined in Definition 3.5.

(3) The map �0
k
WZ!�0 !Z!� defined in Definition 3.18 preserves the �-structures,

i.e.,
�0k.U

�/ D .�0k.U//
�
8U 2 Z!�0 :

(4) The map �0
k
WZ!�0!Z!� sends a �-invariant element to a �-invariant element.

(5) The map �0
k
W Z!�0 ! Z!� sends a Weyl-ordered Laurent monomial to a Weyl-

ordered Laurent monomial.
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(6) The map �0
k
WZ!�0!Z!� , as well as �0

k
W Frac.Z!�0/! Frac.Z!� /, is invertible,

and the inverse is given on the generators by

.�0k/
�1.Z�v/ D

´
Z0
k
�� if v D k;��

Z0vZ0Œ"vk �C
k

�
Weyl

�� if v ¤ k;
8� 2 ¹1;�1º (3.13)

and sends a Laurent monomial to a Laurent monomial.

Proof. (1) Let {Xq
� be the subring of X

q
� generated by ¹X�v j v 2 Vº [ ¹q˙1=2º. Note

that Z!� is isomorphic to {Xq
� as rings via an isomorphism sending each Z�v to X�v and

!˙1=2 to q˙1=2, and likewise for � 0. Therefore, the statement to be proved follows
from the corresponding statement for the monomial transformation�0

k
W Frac.Xq

�0/!

Frac.Xq
�/ defined in Definition 3.5, or more precisely that for a restriction �0

k
W

Frac. {Xq
�0/! Frac. {Xq

�/, which in turn is proved, e.g., in [20, Corollary 2.9, Remark
2 after Definition 3.1]. One could also verify it directly, as follows. It suffices to check
whether the defining relations are preserved. That is, we should check that

�0k.Z
0
v/�
0
k.Z
0
w/ D !

2"0vw�0k.Z
0
w/�
0
k.Z
0
v/ 8v;w 2 V ;

�0k.Z
0
v/�
0
k..Z

0
v/
�1/ D �0k..Z

0
v/
�1/�0k.Z

0
v/ 8v 2 V ;

where "0 D ."0vw/v;w2V is the exchange matrix for � 0. To present here one example
of such a checking, suppose that k … ¹v;wº; we should then check whether

ŒZvZŒ"vk �C
k

�WeylŒZwZŒ"wk �C
k

�Weyl D !
2"0vw ŒZwZŒ"wk �C

k
�WeylŒZvZŒ"vk �C

k
�Weyl

holds. In view of the definition of the Weyl-ordering of a Laurent monomial (Defi-
nition 2.19), it suffices to check the version of the equation with the Weyl-ordering
symbols Œ��Weyl removed, i.e.,

.ZvZŒ"vk �C
k

/.ZwZŒ"wk �C
k

/ D !2"
0
vw .ZwZŒ"wk �C

k
/.ZvZŒ"vk �C

k
/:

Using the commutation relations as in Lemma 2.16, observe that�
ZvZŒ"vk �C

k

��
ZwZŒ"wk �C

k

�
D !2"kwŒ"vk �CZvZwZŒ"vk �C

k
ZŒ"wk �C
k

D !2"kwŒ"vk �C!2"vwZwZvZŒ"wk �C
k

ZŒ"vk �C
k

D !2"kwŒ"vk �C!2"vw!2"vk Œ"wk �C
�
ZwZŒ"wk �C

k

��
ZvZŒ"vk �C

k

�
:

This indeed equals !2"
0
vw .ZwZŒ"wk �C

k
/.ZvZŒ"vk �C

k
/ because

"kw Œ"vk�C C "vw C "vkŒ"wk�C D "vw C "kw
"vk C j"vkj

2
C "vk

"wk C j"wkj

2

D "vw C
"vkj"kw j C j"vkj"kw j

2
D "0vw ;
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where the last equality is from equation (3.1). The remaining computational checks
are similar but easier and are left to the readers. One might find Definition 4.8 and
Lemma 4.9, which are to appear later in the present paper, useful for such computa-
tions; this idea of using “log variables” is also taken in the proof in [20] implicitly.

(2) As each generator X�v of X
q
� is the third power .Z�v/3 of the corresponding

generator Z�v of Z!� , and likewise for � 0, it suffices to use the basic fact about Weyl-
ordering, namely, ŒU3�Weyl D .ŒU�Weyl/

3. It is a special case of the following well-
known lemma, which we formulate slightly more generally than necessary now, for
later use.

Lemma 3.20. Let � be a cluster X-seed.

(A) If U1; : : : ;Ur are elements of Z!� that mutually commute, then

ŒU1 � � �Ur �Weyl D ŒU1�Weyl � � � ŒUr �Weyl:

(B) For each U 2 Z!� and m 2 Z�0, one has ŒUm�Weyl D .ŒU�Weyl/
m.

(C) If U 2 Z!� is invertible, then ŒU�Weyl is invertible, and ŒUm�Weyl D .ŒU�Weyl/
m

holds for all m 2 Z.

We remark that the Weyl-ordering of a product of elements of Z!� does not in
general coincide with the product of the Weyl-orderings of those elements.

Proof of Lemma 3.20. (A) Write each Ui as a sum of Laurent monomials. By the
definition of Laurent monomials (Definition 2.18) and the defining relations of Z!�
(Definition 2.15), one can see that the product of Laurent monomials is again a Lau-
rent monomial. Keeping in mind that ŒU�Weyl for U 2 Z!� is defined as the term-
by-term Weyl-ordering (Definition 2.19), one observes that it suffices to show the
statement for the case when each Ui is a Laurent monomial. Then, we observe that
both ŒU1 � � �Ur �Weyl and ŒU1�Weyl � � � ŒUr �Weyl are Laurent monomials, and they differ
by multiplication by !m for some m 2 1

2
Z. Note that ŒU1 � � �Ur �Weyl is �-invariant

by Lemma 2.20 (1). Meanwhile, note that ŒUi �Weyl D !
miUi for some mi 2 1

2
Z, so

ŒU1�Weyl; : : : ; ŒUr �Weyl commute with each other (because U1; : : : ;Ur commute with
each other). Since ŒUi �Weyl is �-invariant by Lemma 2.20 (1), we observe that

.ŒU1�Weyl � � � ŒUr �Weyl/
�
D .ŒUr �Weyl/

�
� � � .ŒU1�Weyl/

�

D ŒUr �Weyl � � � ŒU1�Weyl D ŒU1�Weyl � � � ŒUr �Weyl;

so ŒU1�Weyl � � � ŒUr �Weyl is �-invariant. Thus, by using Lemma 2.20 (2), we can deduce
that ŒU1 � � �Ur �Weyl and ŒU1�Weyl � � � ŒUr �Weyl coincide with each other. We note that
one could also obtain this statement (A) as an easy consequence of Definition 4.8 and
Lemma 4.9 which are to appear later.

(B) This follows immediately from part (A).
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(C) By part (B), we should prove the statement only when m < 0. If U 2 Z!� is
invertible, then ŒU�WeylŒU�1�WeylD ŒUU�1�WeylD Œ1�WeylD 1 by part (A), and likewise,
we get ŒU�1�WeylŒU�Weyl D 1. Thus, ŒU�Weyl is invertible, and ŒU��1Weyl D ŒU

�1�Weyl. So,
if m < 0, then

ŒUm�Weyl D Œ.U�1/�m�Weyl
part (B)
D .ŒU�1�Weyl/

�m
D .ŒU��1Weyl/

�m
D ŒU�mWeyl;

as desired.

(3) First, when U is a generator .Z0v/� , note that �0
k
.U�/D .�0

k
.U//� holds because

each generator is �-invariant by the definition of the �-structure on Z!�0 (see Defini-
tion 2.15), and the image of each generator is also �-invariant by the definition of the
�-structure on Z!� (see Definition 2.15) and by Lemma 2.20 (1). Now, consider an
element of Z!�0 of the form U D �!mU1U2 � � �Ur , with � 2 ¹1;�1º, m 2 1

2
Z, and

each of U1; : : : ;Ur being one of the generators of Z!�0 . Note that

�0k..�!
mU1 � � �Ur/�/ D �0k.�!

�mU�r � � �U
�
1/

D �0k.�!
�mUr � � �U1/

D �!�m�0k.Ur/ � � � �
0
k.U1/

D �!�m.�0k.Ur//
�
� � � .�0k.U1//

�

D .�!m.�0k.U1/ � � � �
0
k.Ur///

�

D .�0k.�!
mU1 � � �Ur//�:

So, �0
k
.U�/D .�0

k
.U//� holds for such an element U. As an element of Z!�0 is a sum of

such elements, and since �0
k

and the �-maps of Z!�0 and Z!� all preserve the addition
operation, we get that �0

k
.U�/ D .�0

k
.U//� holds for every element U of Z!�0 .

(4) This immediately follows from item (3).
(5) This follows from item (4) in view of Lemma 2.20 (1)–(2).
(6) Let us first show that �0

k
is invertible. Since �0

k
sends generators to Laurent

monomials, the problem boils down to a simple linear algebra. Namely, once we pack-
age the exponents of the generators in the right-hand side of equation (3.12) as the
V �V matrix .avw/v;w2V , by setting akk D�1, avv D 1 for all v ¤ k, akv D Œ"vk�C
for all v ¤ k, and awv D 0 otherwise so that the entries of the v-th column represent
the powers of the generators Zw appearing in the image of the v-th generator Z0v ,
then all we need to check is whether this matrix has an inverse with integer entries.
It is easy to observe that this matrix is the inverse of itself, which implies that �0

k
is

invertible. In fact, this also implies that the inverse map .�0
k
/�1 also sends generators

to Laurent monomials, and that the formula for .�0
k
/�1.Z�v/ for each generator Z�v is

given as in the right-hand side of equation (3.13), perhaps up to some integer power
of !1=2, which may differ for each generator. Note that item (4) implies that .�0

k
/�1
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preserves the �-structures, and hence, .�0
k
/�1.Z�v/ is �-invariant because Z�v is. By

Lemma 2.20 (1)–(2), we can conclude that .�0
k
/�1.Z�v/ is given precisely as in the

right-hand side of equation (3.13), without any powers of !1=2.

For convenience, for r D 0; 1; 2; 3; 4, we will write

Z!
�.r/
WD Z!�

�.r/
:

The generators Z˙1v of Z!
�.r/

may be denoted by .Z.r/v /˙1 to emphasize the depen-

dence on r , likewise for X˙1v D .X.r/v /˙1, and more generally Xav D .X.r/v /a for
a 2 1

3
Z.

The goal is to define the cube-root version �!
v.r/

of the quantum mutation �q
v.r/

as
the composition

�!
v.r/
D �

]!

v.r/
ı �0

v.r/
W a subset of Frac

�
Z!
�.r/

�
! a subset of Frac

�
Z!
�.r�1/

�
;

where the monomial-transformation part �0
v.r/

is the restriction of the map �0
v.r/
W

Frac.Z!
�.r/

/! Frac.Z!
�.r�1/

/ defined in Definition 3.18, and the automorphism part

�
]!

v.r/
D Ad

‰q.X.r�1/
v.r/

/
W a subset of Frac

�
Z!
�.r�1/

�
! a subset of Frac

�
Z!
�.r�1/

�
is given by conjugation by the formal expression ‰q.X.r�1/

v.r/
/ in terms of the quantum

dilogarithm (Definition 3.3), just like �q
v.r/

. One of the major tasks to be done is to
find a natural subset of Frac.Z!

�.r/
/, r D 0;1;2; 3; 4 such that �!

v.r/
is well defined. For

r D 0 and r D 4, we already have candidates, namely, the balanced fraction algebras
bFrac.Z!�/ and bFrac.Z!�0/. Instead of finding and justifying the best candidates for the
intermediate seeds�.r/, r D 1; 2; 3, we will be content with a model, where the maps
�!
v.r/

are well defined, which is a bare minimum for the purpose of the present paper.
The following technical lemma is a crucial part of this bare minimum condition.

Lemma 3.21. Let v.r/ be as in equation (3.11), for r D 1; 2; 3; 4. Denote the set
of nodes appearing in equation (3.10) by V . Let .a0v/v2V D .a

.4/
v /v2V 2 .

1
3
Z/V be

�0-balanced in the sense of Definition 3.9.
Recursively, define .a.r�1/v /v2V 2 .

1
3
Z/V for r D 4; 3; 2; 1 as

a.r�1/v D

´
�a

.r/

v.r/
C
P
w2V

�
"
.r�1/

w;v.r/

�
C
a
.r/
w if v D v.r/;

a
.r/
v if v ¤ v.r/:

(3.14)

Then, the number

˛.r/ WD
X
v2V

"
.r�1/

v.r/;v
a.r�1/v 2

1

3
Z (3.15)

belongs to Z for r D 1; 2; 3; 4.
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Proof. With the node names as in Figure 2, denote a.r/vj by a.r/j and ".r/vj vk by ".r/
jk

. Let

us compute .a.r�1/v /v2V for r D 4; 3; 2; 1 in terms of

.a0v/v2V D .a
.4/
v /v2V :

For r D 4, note that v.4/ D v12, and from Figure 2 note that

"
.3/
3;12 D "

.3/
10;12 D �1; "

.3/
4;12 D "

.3/
9;12 D 1; "

.3/
j;12 D 0 8j 62 ¹3; 4; 9; 10ºI (3.16)

hence, from equation (3.14), we get

a
.3/
12 D �a

0
12 C a

0
4 C a

0
9; a

.3/
j D a

0
j 8j ¤ 12:

For r D 3, v.3/ D v7, and from Figure 2, we have

"
.2/
1;7 D "

.2/
4;7 D �1; "

.2/
3;7 D "

.2/
6;7 D 1; "

.2/
j;7 D 0 8j 62 ¹1; 3; 4; 6ºI (3.17)

hence, from equation (3.14), we get´
a
.2/
7 D �a

.3/
7 C a

.3/
3 C a

.3/
6 D �a

0
7 C a

0
3 C a

0
6; a

.2/
12 D a

.3/
12 D �a

0
12 C a

0
4 C a

0
9;

a
.2/
j D a

.3/
j D a

0
j 8j 62 ¹7; 12º:

(3.18)
For r D 2, v.2/ D v4, and from Figure 2, we have

"
.1/
5;4 D "

.1/
12;4 D 1; "

.1/
7;4 D "

.1/
11;4 D �1; "

.1/
j;4 D 0 8j 62 ¹5; 7; 11; 12ºI

hence, from equation (3.14), we get

a
.1/
4 D �a

.2/
4 C a

.2/
5 C a

.2/
12 D �a

0
4 C a

0
5 C .�a

0
12 C a

0
4 C a

0
9/ D a

0
5 C a

0
9 � a

0
12;

a
.1/
7 D a

.2/
7 D �a

0
7 C a

0
3 C a

0
6; a

.1/
12 D a

.2/
12 D �a

0
12 C a

0
4 C a

0
9;

a
.1/
j D a

.2/
j D a

0
j 8j 62 ¹4; 7; 12º:

For r D 1, v.1/ D v3, and from Figure 2, we have

"
.0/
2;3 D "

.0/
12;3 D �1; "

.0/
7;3 D "

.0/
8;3 D 1; "

.0/
j;3 D 0 8j 62 ¹2; 7; 8; 12ºI

hence, from equation (3.14), we get8̂̂<̂
:̂
a
.0/
3 D �a

.1/
3 C a

.1/
7 C a

.1/
8 D �a

0
3 C .�a

0
7 C a

0
3 C a

0
6/C a

0
8 D �a

0
7 C a

0
6 C a

0
8;

a
.0/
4 D a

.1/
4 D a

0
5 C a

0
9 � a

0
12; a

.0/
7 D a

.1/
7 D �a

0
7 C a

0
3 C a

0
6;

a
.0/
12 D a

.1/
12 D �a

0
12 C a

0
4 C a

0
9; a

.0/
j D a

.1/
j D a

0
j 8j 62 ¹3; 4; 7; 12º:

(3.19)
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In view of Figure 2, the �0-balancedness condition of .a0v/v2V for the two trian-
gles of�0 having the flipped arc as a side says that the following numbers are integers:8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

(BE1) W b1 WD a
0
1 C a

0
8 C a

0
12; b2 WD a

0
2 C a

0
9 C a

0
7;

b3 WD a
0
5 C a

0
7 C a

0
10; b4 WD a

0
6 C a

0
12 C a

0
11;

(BE2) W b5 WD a
0
1 C a

0
2; b6 WD a

0
8 C a

0
9; b7 WD a

0
7 C a

0
12;

b8 WD a
0
10 C a

0
11; b9 WD a

0
5 C a

0
6;

(BE3) W b10 WD �a
0
3 C a

0
2 C a

0
8; b11 WD �a

0
3 C a

0
9 C a

0
12;

b12 WD �a
0
3 C a

0
7 C a

0
1;

b13 WD �a
0
4 C a

0
6 C a

0
7; b14 WD �a

0
4 C a

0
12 C a

0
10;

b15 WD �a
0
4 C a

0
11 C a

0
5:

(3.20)

We now show that the numbers ˛.r/ 2 1
3
Z defined in equation (3.15) are integers for

r D 1; 2; 3; 4. Observe that8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

˛.4/ D a
.3/
3 C a

.3/
10 � a

.3/
4 � a

.3/
9 D a

0
3 C a

0
10 � a

0
4 � a

0
9 D �b11 C b14;

˛.3/ D a
.2/
1 C a

.2/
4 � a

.2/
3 � a

.2/
6 D a

0
1 C a

0
4 � a

0
3 � a

0
6 D b12 � b13;

˛.2/ D �a
.1/
5 � a

.1/
12 C a

.1/
7 C a

.1/
11 D �a

0
5 � .�a

0
12 C a

0
4 C a

0
9/

C .�a07 C a
0
3 C a

0
6/C a

0
11

D �b3 C b4 � b11 C b14;

˛.1/ D a
.0/
2 C a

.0/
12 � a

.0/
7 � a

.0/
8 D a

0
2 C .�a

0
12 C a

0
4 C a

0
9/

� .�a07 C a
0
3 C a

0
6/ � a

0
8

D �b1 C b2 C b12 � b13:

(3.21)

So, in view of equation (3.20), one can see that ˛.r/ are all integers for r D 1; 2; 3; 4.

Consider applying the conjugation Ad
‰q.X.r�1/

v.r/
/

to a Weyl-ordered Laurent mono-

mial for �.r�1/ hY
v2V

�
X.r�1/v

�a.r�1/v

i
Weyl
2 Z!

�.r�1/
� Frac

�
Z!
�.r�1/

�
for some .a.r�1/v /v2V 2 .

1
3
Z/V , not necessarily the specific one defined via the recur-

sive formulas in Lemma 3.21; here, V should be regarded as V.Q�.r�1//. Define
˛.r/ 2 1

3
Z by the formula equation (3.15). Using the relations among the generators

of Z!
�.r�1/

as written in Lemma 2.16, one can observe that

X.r�1/
v.r/

hY
v2V

�
X.r�1/v

�a.r�1/v

i
Weyl
D q2˛

.r/
hY
v2V

�
X.r�1/v

�a.r�1/v

i
Weyl

X.r�1/
v.r/
I
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this is, in fact, where the formula for ˛.r/ in equation (3.15) came from. Then, we
have, at least formally (using equation (3.3)),

Ad
‰q.X.r�1/

v.r/
/

�hY
v2V

�
X.r�1/v

�a.r�1/v

i
Weyl

�
D ‰q

�
X.r�1/
v.r/

�hY
v2V

�
X.r�1/v

�a.r�1/v

i
Weyl

�
‰q
�
X.r�1/
v.r/

���1
D

hY
v2V

�
X.r�1/v

�a.r�1/v

i
Weyl

‰q
�
q2˛

.r/

X.r�1/
v.r/

��
‰q
�
X.r�1/
v.r/

���1
D

hY
v2V

�
X.r�1/v

�a.r�1/v

i
Weyl

F q
�
X.r�1/
v.r/
I˛.r/

�
:

In order for the last resulting expression to make sense, we must have ˛.r/ 2 Z, which
motivated Lemma 3.21. The above formal computation inspires the following defini-
tions. We will rely only on these rigorous definitions, and not on the formal heuristics
above.

Definition 3.22. Let � be a cluster X-seed, whose set of nodes of the underlying
quiver and the exchange matrix are denoted by V and "D ."vw/v;w2V . Let k 2V nVfr

be an unfrozen node.
A Laurent monomial �!mŒ

Q
v2V Xavv �Weyl 2 Z!� for the seed � , with � 2 ¹1;�1º,

m 2 1
2
Z, and .av/v2V 2 .

1
3
Z/V , is said to be .�; k/-balanced if the number ˛ WDP

v2V "kvav 2
1
3
Z belongs to Z.

A Laurent polynomial for � , i.e., an element of Z!� , is said to be .�; k/-balanced
if it is a sum of .�; k/-balanced Laurent monomials.

The .�; k/-balanced fraction algebra, denoted by bFrack.Z!� /, is defined as the
subset of Frac.Z!� / consisting of all elements of the form PQ�1 with P being a .�;k/-
balanced Laurent polynomial for � and 0 ¤ Q 2 X

q
� � Z!� .

An argument similar to the proof given right after Definition 3.12, together with an
easy observation that the product of .�; k/-balanced elements of Z!� is again .�; k/-
balanced, proves that bFrack.Z!� / indeed forms a subalgebra.

Definition 3.23. Define the balanced (cube-root) quantum mutation map associated
to the mutation �

�kÝ�k.�/D�
0 of a cluster X-seed � (whose underlying set of nodes

and the exchange matrix are V and " D ."vw/v;w2V ) at an unfrozen node k 2 V n Vfr

as the map
�!k W

bFrack.Z!�0/! bFrack.Z!� /

defined as the composition

�!k WD �
]!

k
ı �0k W

bFrack.Z!�0/
�0
k
�! bFrack.Z!� /

�
]!

k
��! bFrack.Z!� /;
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where �0
k
W bFrack.Z!�0/! bFrack.Z!� / is the restriction of the map

�0k W Frac.Z!�0/! Frac.Z!� /

defined in Definition 3.18, and �]!
k
W bFrack.Z!� /! bFrack.Z!� / is given formally by

the conjugation action
�
]!

k
WD Ad‰q.Xk/;

or more precisely, given on the .�; k/-balanced Laurent monomials as

�
]!

k

�
�!m

hY
v2V

Xavv
i

Weyl

�
D

�
�!m

hY
v2V

Xavv
i

Weyl

�
� F q.XkI˛/; (3.22)

where ˛ D
P
v2V "kvav and F q is as in equation (3.4).

Lemma 3.24. Above �!
k

is well defined.

Proof. Let us first check whether �0
k
W Frac.Z!�0/! Frac.Z!� / of Definition 3.18 re-

stricts to �0
k
W bFrack.Z!�0/ ! bFrack.Z!� /; that is, we should check that the .� 0; k/-

balanced fraction algebra bFrack.Z!�0/ is sent by �0
k

to the .�; k/-balanced fraction
algebra bFrack.Z!� /. First, recall from Lemma 3.19 (2) that �0

k
W Frac.Z!�0/! Frac.Z!� /

of Definition 3.18 extends �0
k
W Frac.Xq

�0/! Frac.Xq
�/ of Definition 3.5. Hence, �0

k

sends X
q
�0 � Z!�0 � Frac.Z!�0/ to X

q
� � Z!� � Frac.Z!� /. Therefore, it remains to

show that each element of Z!�0 that is .� 0; k/-balanced is sent by �0
k

to an element of
Z!� that is .�; k/-balanced.

We show this at the level of Laurent monomials. Consider a (Weyl-ordered) .� 0;k/-
balanced Laurent monomial Œ

Q
v2V .X0v/a

0
v �Weyl 2 Z!�0 for � 0, with

.a0v/v2V 2

�
1

3
Z

�V

:

By Lemma 3.19 (5), we have

�0k

�hY
v2V

.X0v/
a0v

i
Weyl

�
D

hY
v2V

Xavv
i

Weyl
(3.23)

for some .av/v2V 2 .
1
3
Z/V . In view of the formula for the image under �0

k
of the

generators as in equation (3.12), one can observe that

av D a
0
v 8v ¤ k; ak D �a

0
k C

X
v2V

Œ"vk�Ca
0
v: (3.24)

For the current lemma we do not need ak , but we recorded it for later use. The
.� 0;k/-balancedness condition of Œ

Q
v2V .X0v/a

0
v �Weyl says that

P
v2V "

0
kv
a0v2Z. Since
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"0
kv
D�"kv for all v¤ k (see equation (3.1)) and "0

kk
D 0D "kk (by skew-symmetry),

it follows thatX
v2V

"kvav D
X
v¤k

"kvav D
X
v¤k

"kva
0
v D �

X
v¤k

"0kva
0
v D �

X
v2V

"0kva
0
v: (3.25)

Hence,
P
v2V "kvav 2 Z, and the image Œ

Q
v2V Xavv �Weyl 2 Z!� is .�; k/-balanced, as

desired.
For �]!

k
, in case the Laurent monomial �!mŒ

Q
v2V Xavv �Weyl 2 Z!� for � is .�; k/-

balanced, then the number ˛D
P
v2V "kvav 2

1
3
Z is an integer; hence, the expression

F q.XkI ˛/ in equation (3.22) makes sense as an element of Frac.Xq
�/. Any element

of X
q
� is a sum of terms of the form �!mŒ

Q
v2V Xcvv �Weyl with � 2 ¹1; �1º, m 2

1
2
Z, .cv/v2V 2 ZV , each of which is easily observed to be .�; k/-balanced as we

have
P
v2V "kvcv 2 Z (keeping in mind that "kv is an integer, since k is an unfrozen

node); this shows that elements of Z!� that belong to X
q
� are .�; k/-balanced. Note

also that the product of .�; k/-balanced elements of Z!� is again .�; k/-balanced. It
follows that the element in the right-hand side of equation (3.22) is an element of the
.�; k/-balanced fraction algebra bFrack.Z!� / provided that �!mŒ

Q
v2V Xavv �Weyl 2 Z!�

is .�; k/-balanced. In case �!mŒ
Q
v2V Xavv �Weyl 2 Z!� belongs to X

q
� , one observes

that the right-hand side of equation (3.22) is an element of Frac.Xq
�/. Combining

these observations together with the fact that bFrack.Z!� / is closed under addition, one
observes that �]!

k
sends an element of bFrack.Z!� / to an element of bFrack.Z!� /.

One last thing to check for the well-definedness of �]!
k

is whether the formula
of equation (3.22) is consistent with the algebraic relations among .�; k/-balanced
Laurent monomials. It suffices to check that

�
]!

k

�
�!m

hY
v2V

Xavv
i

Weyl

�
�
]!

k

�
�0!m

0
hY
v2V

Xbvv
i

Weyl

�
D �

]!

k

�
�!m

hY
v2V

Xavv
i

Weyl
� �0!m

0
hY
v2V

Xbvv
i

Weyl

�
holds whenever �!mŒ

Q
v2V Xavv �Weyl and �0!m

0

Œ
Q
v2V Xbvv �Weyl are .�; k/-balanced

Laurent monomials. Notice that the argument of �]!
k

in the right-hand side is a .�; k/-
balanced monomial �00!m

00

Œ
Q
v2V XavCbvv �Weyl, so the value of the right-hand side is

also determined by the formula equation (3.22) to be

�
]!

k

�
�!m

hY
v2V

Xavv
i

Weyl
� �0!m

0
hY
v2V

Xbvv
i

Weyl

�
D

�
�!m

hY
v2V

Xavv
i

Weyl
� �0!m

0
hY
v2V

Xbvv
i

Weyl

�
� F q.XkI˛ C ˇ/;
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where ˛ D
P
v2V "kvav and ˇ D

P
v2V "kvbv; we used the fact thatX

v2V

"kv.av C bv/ D ˛ C ˇ:

On the other hand, the value of the left-hand side is determined by equation (3.22) to
be

�
]!

k

�
�!m

hY
v2V

Xavv
i

Weyl

�
�
]!

k

�
�0!m

0
hY
v2V

Xbvv
i

Weyl

�
D

�
�!m

hY
v2V

Xavv
i

Weyl

�
F q.XkI˛/

�
�0!m

0
hY
v2V

Xbvv
i

Weyl

�
F q.XkIˇ/

D

�
�!m

hY
v2V

Xavv
i

Weyl

��
�0!m

0
hY
v2V

Xbvv
i

Weyl

�
F q.q2ˇXkI˛/F q.XkIˇ/;

where the last equality is deduced from XkŒ
Q
v2V Xbvv �Weyl D q

2ˇ Œ
Q
v2V Xbvv �WeylXk ,

which in turn follows from Lemma 2.16. The only thing that remains to be shown is
that F q.q2ˇXkI ˛/F q.XkIˇ/ equals F q.XkI ˛ C ˇ/, which follows from the corre-
sponding statement for the function F q:

F q.xI˛ C ˇ/ D F q.q2ˇxI˛/F q.xIˇ/ holds for all ˛; ˇ 2 Z:

One can see this using a formal definition of F q in equation (3.3) as

F q.xI˛ C ˇ/ D ‰q.q2.˛Cˇ/x/‰q.x/�1

D ‰q.q2˛.q2ˇx//‰q.q2ˇx/�1‰q.q2ˇx/‰q.x/�1

D F q.q2ˇxI˛/F q.xIˇ/

and can also obtain a rigorous proof using equation (3.4).

Remark 3.25. This codomain subset bFrack.Z!� / of Frac.Z!� / is sufficient for the
purpose of the present paper. However, one may seek for the most natural subset of
Frac.Z!� /, e.g., on which the balanced cube-root quantum mutation can be applied
at all possible unfrozen nodes. For the seed � D �� associated to an ideal triangu-
lation �, our candidate is the �-balanced fraction algebra bFrac.Z!�/, based on the
�-balancedness condition on the powers .av/v2V of the Laurent monomials. We sug-
gest that, for a general seed � , connected to the triangulation seeds �� by mutations,
a “�-balancedness” condition on .av/v2V 2 .

1
3
Z/V should be defined by applying

the tropical versions of the cluster A-mutations to the �-balanced elements of ��. In
the present paper, we will not try to verify whether this is indeed a good choice of a
subset of Frac.Z!� / nor try to come up with a description of it in terms of a general
seed � .
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From Lemma 3.19 (2), and the formulas in equations (3.22) and (3.6), one ob-
serves the following lemma.

Lemma 3.26. Above �!
k
W bFrack.Z!�0/! bFrack.Z!� / of Definition 3.23 extends �q

k
W

Frac.Xq
�0/! Frac.Xq

�/ of Definition 3.5.

We establish one useful basic fact to be used later.

Lemma 3.27. Above �!
k
WbFrack.Z!�0/!bFrack.Z!� / preserves the �-structures. More

precisely, bFrack.Z!�0/ is closed under the �-structure of Frac.Z!�0/ (induced by the �-
structure of Z!�0 defined in Definition 2.15), bFrack.Z!� / is closed under the �-structure
of Frac.Z!� /, and for each F 2 bFrack.Z!�0/ one has

�!k .F
�/ D .�!k .F//

�:

Proof. Let us first show that bFrack.Z!� / is closed under the �-map of Frac.Z!� /. We
begin by describing this �-map in more detail. An element of Frac.Z!� / is of the form
F D PQ�1 with P 2 Z!� and 0 ¤ Q 2 X

q
� � Z!� . By definition of the �-structure on

the skew field of fractions Frac.Z!� / induced by that of Z!� , we have F� D .Q�/�1P�,
which can be written as P1Q�11 for some P1 2 Z!� and 0 ¤ Q1 2 X

q
� � Z!� by some

algebraic manipulations.
Now, in view of Definition 3.22, the element F D PQ�1 belongs to bFrack.Z!� /

if and only if P is .�; k/-balanced in the sense of Definition 3.22, that is, if P is a
sum of .�; k/-balanced Laurent monomials. So, one can see that, in order to show
that bFrack.Z!� / is closed under the �-map, it suffices to deal with the case when P
is a single .�; k/-balanced Laurent monomial P D Œ

Q
v2V Xavv �Weyl; here, .av/v2V 2

.1
3
Z/V , and

P
v2V "kvav 2 Z. Let us write Q D

P
�qmŒ

Q
v2V Xbvv �Weyl; here,

P
is

a finite sum, and we wrote a summand in a generic form, with � 2 ¹1;�1º, m 2 1
18

Z,
.bv/v2V 2 ZV , without introducing the index variable for the sum.

By Lemma 2.20 (1), a Weyl-ordered Laurent monomial Œ��Weyl is �-invariant.
Hence, P� D P, and Q� D

P
�q�mŒ

Q
v2V Xbvv �Weyl, in view of the definition of the

�-map in Definition 2.15. Using Lemma 2.16, one observes that the commutation
relation of P D Œ

Q
v2V Xavv �Weyl and Œ

Q
v2V Xbvv �Weyl appearing in the summand of Q

or Q� readshY
v2V

Xbvv
i

Weyl

hY
v2V

Xavv
i

Weyl
D q2c

hY
v2V

Xavv
i

Weyl

hY
v2V

Xbvv
i

Weyl
;

c D
X
v;w2V

"vwbvav: (3.26)

Note that c 2 1
6
Z in the current setting, so

q2c 2 ZŒq˙1=3� � ZŒq˙1=18� D ZŒ!˙1=2�
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(but not necessarily q2c 2 ZŒq˙1=2�). One can rewrite equation (3.26) in terms of
conjugation by P:

P�1
hY
v2V

Xbvv
i

Weyl
P D q2c

hY
v2V

Xbvv
i

Weyl
; (3.27)

which can be used to move P around, as follows:

F� D .Q�/�1P� D
�X

�q�m
hY
v2V

Xbvv
i

Weyl

��1
P

D PP�1
�X

�q�m
hY
v2V

Xbvv
i

Weyl

��1
P

D P
�X

�q�mP�1
hY
v2V

Xbvv
i

Weyl
P
��1

D P
�X

�q�mq2c
hY
v2V

Xbvv
i

Weyl

��1
.* equation (3.27)/:

Above is a typical example of what we referred to as an “algebraic manipulation” in
the skew field of fractions Frac.Z!� /. So, we see that F� is of the form P1Q�11 , with
P1 D P and Q1 D

P
�q�mq2cŒ

Q
v2V Xbvv �Weyl 2 X

q
� . One may see here a reason

why we used ZŒq˙1=18� D ZŒ!˙1=2� as the coefficient ring, instead of ZŒq˙1=2�, in
the definition of X

q
� in Definition 2.15; see Remark 2.17. From Q1DP�1Q�P, we see

that Q¤ 0)Q�¤ 0)Q1¤ 0. Note finally that P1D P is .�;k/-balanced (because
we assumed P is .�; k/-balanced), and therefore, F� 2 bFrack.Z!� /, as desired. This
shows that bFrack.Z!� / is closed under the �-map. This statement also applies to the
seed � 0, yielding that bFrack.Z!�0/ is also closed under the �-map.

Let us first deal with the easiest case when F equals a single .� 0; k/-balanced
Weyl-ordered Laurent monomial FDŒ

Q
v2V X0v

a0v �Weyl2Z!�0 ; here, .a0v/v2V 2 .
1
3
Z/V ,

with
P
v2V "

0
kv
a0v 2 Z. In this case, we have F� D F (see Lemma 2.20 (1)). We

observed in the proof of Lemma 3.24 (equations (3.23)–(3.24)) that

�0k

h Y
v2V

X0v
a0v
i

Weyl
D

h Y
v2V

Xavv
i

Weyl
;

where av D a0v for all v ¤ k, and ak D �a0k C
P
v2V Œ"vk�Ca

0
v , and also thath Y

v2V

Xavv
i

Weyl
2 Z!�

is .�;k/-balanced, i.e., ˛ D
P
v2V "kvav 2 Z. Now, equation (3.22) applies and gives

�
]!

k

�h Y
v2V

Xavv
i

Weyl

�
D

h Y
v2V

Xavv
i

Weyl
F q.XkI˛/;
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where F q is as in equation (3.4). Thus,

�!k .F
�/ D �!k .F/ D �

]!

k

�
�0k

�hY
v2V

X0v
a0v
i

Weyl

��
D

hY
v2V

Xavv
i

Weyl
F q.XkI˛/:

On the other hand, note that

.�!k .F//
�
D

�hY
v2V

Xavv
i

Weyl
F q.XkI˛/

��
D .F q.XkI˛//�

�hY
v2V

Xavv
i

Weyl

��
D F 1=q.XkI˛/

hY
v2V

Xavv
i

Weyl
.* X�kDXk; q�D1=q; Lemma 2.20 (1)/:

In order to move Œ
Q
v2V Xavv �Weyl to the left, we perform an algebraic manipulation as

before. First, note from Lemma 2.16 the commutation relation

Xk
h Y
v2V

Xavv
i

Weyl
D q2

P
v2V "kvav

h Y
v2V

Xavv
i

Weyl
XkI

thus, �hY
v2V

Xavv
i

Weyl

��1
Xk
hY
v2V

Xavv
i

Weyl
D q2˛Xk :

Hence, moving Œ
Q
v2V Xavv �Weyl to the left, we get

.�!k .F//
�
D

hY
v2V

Xavv
i

Weyl
F 1=q

��hY
v2V

Xavv
i

Weyl

��1
Xk
hY
v2V

Xavv
i

Weyl
I˛
�

D

hY
v2V

Xavv
i

Weyl
F 1=q.q2˛XkI˛/:

We claim that

F 1=q.q2mxIm/ D F q.xIm/

holds as equality of functions for any m 2 Z. Indeed, from the definition of F q as in
equation (3.4), in case m � 0, we have

F 1=q.q2mxIm/ D .1C q�1.q2mx//.1C q�3.q2mx// � � � .1C q�.2m�1/.q2mx//

D .1C q2m�1x/.1C q2m�3x/ � � � .1C qx/

D .1C qx/ � � � .1C q2m�3x/.1C q2m�1x/

D F q.xIm/;



H. K. Kim 170

and in case m < 0, we have

F 1=q.q2mxIm/

D .1C q.q2mx//�1.1C q3.q2mx//�1 � � � .1C q2.�m/�1.q2mx//�1

D .1C q2mC1x/�1.1C q2mC3x/�1 � � � .1C q�3x/�1.1C q�1x/�1

D .1C q�1x/�1.1C q�3x/�1 � � � .1C q�.2.�m/�3//�1.1C q�.2.�m/�1//�1

D F q.xIm/:

So, we get .�!
k
.F//� D Œ

Q
v2V Xavv �WeylF

q.XkI˛/D �!k .F/; hence, finally, �!
k
.F�/D

.�!
k
.F//�, as desired.
We just showed that �!

k
.F�/D.�!

k
.F//� holds for every .� 0; k/-balanced Weyl-

ordered Laurent monomial F for � 0. By the complex-conjugate linearity of the �-
maps, we see that this equality holds for any .� 0; k/-balanced Laurent polynomial F 2
Z!�0 for � 0. Since any element X

q
�0 � Z!�0 is a .� 0; k/-balanced Laurent polynomial,

this equality holds for all F 2 X
q
�0 . A general element F of bFrack.Z!�0/ is of the form

PQ�1 with P 2Z!�0 being a .� 0; k/-balanced Laurent polynomial for � 0, and 0¤Q 2
X
q
�0 . We just saw that �!

k
.P�/ D .�!

k
.P//� and �!

k
.Q�/ D .�!

k
.Q//� holds. Let us

assume for now that P is a Laurent monomial Œ
Q
v2V X0v

a0v �Weyl; in particular, P� D P
in this case. Using the computation of F� we performed above, we have F� D PQ�11 ,
with Q1 D P�1Q�P. Note that �!

k
.F/ D �!

k
.P/.�!

k
.Q//�1, and similarly, �!

k
.F�/ D

�!
k
.P/.�!

k
.Q1//

�1; here, �!
k
.Q/; �!

k
.Q1/ 2 X

q
� (see, e.g., Lemma 3.26). Note that

.�!k .F//
�
D ..�!k .Q//

�/�1.�!k .P//
�

D .�!k .Q
�//�1�!k .P

�/

D .�!k .Q
�//�1�!k .P/

D �!k .P/.�
!
k .P//

�1.�!k .Q
�//�1�!k .P/

D �!k .P/..�
!
k .P//

�1�!k .Q
�/�!k .P//

�1

D �!k .P/.�
!
k .P

�1Q�P//�1 .* �!k is a homomorphism/

D �!k .P/.�
!
k .Q1//

�1

D �!k .F
�/:

So, �!
k
.F�/ D .�!

k
.F//� holds for such F. Any general F of bFrack.Z!�0/ is a ZŒ!1=2�-

linear combination of such kind of F we just dealt with. By the complex-conjugate
linearity of the �-maps, �!

k
.F�/ D .�!

k
.F//� holds for such a general F.

A useful observation that one can obtain by similar arguments as presented in
the beginning of the proof of Lemma 3.27 is that, for any ideal triangulation � of a
triangulable punctured surface, the �-balanced fraction algebra bFrac.Z!�/ is closed
under the �-structure of Frac.Z!�/.
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The following definition is the second main definition of the present paper.

Definition 3.28 (Balanced cube-root quantum coordinate change map for a flip). Let
� and �0 be ideal triangulations of a triangulable generalized marked surface S

that differ by a flip at an arc i , with notations as in Figure 2. Define the balanced
(cube-root) quantum coordinate change map between the balanced fractions algebras
(Definition 3.12)

‚!��0 D ‚
!
i W

bFrac.Z!�0/! bFrac.Z!�/

as
‚!��0 WD �

!
v3
�!v4�

!
v7
�!v12 :

The following two lemmas establish the well-definedness of ‚!��0 D ‚
!
i .

Lemma 3.29. The above ‚!��0 is a well-defined map from bFrac.Z!�0/ to Frac.Z!�/.

Lemma 3.30. The image of ‚!��0 lies in the �-balanced fraction algebra bFrac.Z!�/
(Definition 3.12).

As a preliminary step for a proof of the above two lemmas, we first establish the
following simple observation.

Lemma 3.31. Let v.r/ be as in equation (3.11) for r D 1; 2; 3; 4. Denote the set of
nodes appearing in equation (3.10) by V . Let .a0v/v2V D .a

.4/
v /v2V 2 .

1
3
Z/V , which

is not necessarily assumed to be �0-balanced.
Recursively, define .a.r�1/v /v2V 2 .

1
3
Z/V for r D 4; 3; 2; 1, using the formula in

equation (3.14) applied to .a0v/v2V D .a
.4/
v /v2V . Define the numbers ˛.r/ 2 1

3
Z for

r D 1;2; 3; 4 by the formula in equation (3.15); i.e., we let ˛.r/ D
P
v2V "

.r�1/

v.r/;v
a
.r�1/
v .

Then,
˛.r/ D �

X
v2V

"
.r/

v.r/;v
a.r/v 8r D 1; 2; 3; 4:

Proof of Lemma 3.31. The statement of this lemma is a special case of equation (3.25)
which we established in the proof of Lemma 3.24. To make sure that the current
situation is indeed an example of the setting for equation (3.25), one can verify by
inspection that equation (3.14) is an example of equation (3.24); in fact, as mentioned
in the proof of Lemma 3.24, what we need from equation (3.14) in order to apply
equation (3.25) is just a.r�1/v D a

.r/
v , 8v ¤ v.r/.

Proof of Lemma 3.29. What needs to be shown is that the four maps �!
v.r/

, rD4;3;2;1,

can indeed be applied in this order to each element of bFrac.Z!�0/ (Definition 3.12);
that is, we should make sure that, at each stage, the relevant element lies in the domain
of �!

v.r/
, namely, the .��.r/ ; v

.r//-balanced fraction algebra bFracv.r/.Z
!
�.r/

/ (Defini-

tion 3.22). If we restrict to Frac.Xq
�0/ �

bFrac.Z!�0/, then by Lemma 3.26 the map
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‚!��0 D �
!
v.1/
�!
v.2/
�!
v.3/
�!
v.4/

coincides with ˆq��0 D �
q

v.1/
�
q

v.2/
�
q

v.3/
�
q

v.4/
; in particu-

lar, it is well defined on Frac.Xq
�0/. Therefore, it suffices to show that ‚!��0 is well

defined on the �0-balanced Laurent polynomials in Z!�0 , or just on the �0-balanced
Laurent monomials in Z!�0 (see Definition 3.11 for �0-balancedness).

Let U0 D Œ
Q
v2V .X0v/a

0
v �Weyl 2Z!�0 , with .a0v/v2V D .a

.4/
v /v2V 2 .

1
3
Z/V , be a�0-

balanced Laurent monomial. So, .a0v/v2V D .a
.4/
v /v2V is a �0-balanced element of

.1
3
Z/V in the sense of Definition 3.9. To ease the computation, we establish some

auxiliary elements; let U.4/ WD U0 D Œ
Q
v2V .X

.4/
v /a

.4/
v �Weyl 2 Z!

�.4/
, and for each r D

4; 3; 2; 1, define
U.r�1/ WD �0

v.r/
.U.r// 2 Z!

�.r�1/
:

Since �0
v.r/
W Z!

�.r/
! Z!

�.r�1/
sends a Weyl-ordered Laurent monomial to a Weyl-

ordered monomial for r D 4; 3; 2; 1 (* Lemma 3.19 (5)) and since U.4/ is a Weyl-
ordered Laurent monomial, it follows that U.r�1/ is a Weyl-ordered Laurent mono-
mial for r D 4; 3; 2; 1. Hence, for each r D 4; 3; 2; 1, one can write

U.r�1/ D
hY
v2V

.X.r�1/v /a
.r�1/
v

i
Weyl

(3.28)

for some .a.r�1/v /v2V 2 .
1
3
Z/V . For each r D 4; 3; 2; 1, one can compute .a.r�1/v /v2V

in terms of .a.r/v /v2V using the formula in equation (3.12); namely, we can deduce
that a.r�1/v D a

.r/
v for all v ¤ v.r/, and that a.r�1/

v.r/
D �a

.r/

v.r/
C
P
v2V Œ"

.r�1/

v;v.r/
�Ca

.r/
v ,

which exactly matches equation (3.14). Therefore, Lemma 3.21 applies to the current
situation.

Claim. For each r D 4; 3; 2; 1, the Laurent monomial U.r/ 2 Z!
�.r/

is .��.r/ ; v
.r//-

balanced (Definition 3.22).
In view of Definition 3.22, to prove this claim, we need to check whether the

number
P
v2V "

.r/

v.r/;v
a
.r/
v 2

1
3
Z belongs to Z for r D 4; 3; 2; 1. This indeed holds by

Lemmas 3.21 and 3.31; we note that this integer is denoted by �˛.r/ in those lemmas.
Now that we proved the claim, we can apply �!

v.r/
to U.r/ for each r D 4; 3; 2; 1, in

view of Definition 3.23 (and Lemma 3.24); the result is

�!
v.r/
.U.r// D �]!

v.r/
�0
v.r/
.U.r// D �]!

v.r/
.U.r�1//

D �
]!

v.r/

�hY
v2V

.X.r�1/v /a
.r�1/
v

i
Weyl

�
equation (3.22)
D

hY
v2V

.X.r�1/v /a
.r�1/
v

i
Weyl
� F q

�
X.r�1/
v.r/
I

X
v2V

"
.r�1/

v.r/;v
a.r�1/v

�
equation (3.15)
D U.r�1/ � F q

�
X.r�1/
v.r/
I˛.r/

�
:
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For convenience, let V.r�1/ WD F q.X.r�1/
v.r/
I˛.r// for r D 4; 3; 2; 1. Then, we have

�!
v.r/
.U.r// D U.r�1/V.r�1/ 8r D 4; 3; 2; 1; (3.29)

where V.r�1/ 2 Frac.Xq

�.r�1/
/.

Let us now start applying the maps �!
v.r/

, r D 4; 3; 2; 1, to the element U0 2 Z!�0

in this order; we should make sure that these maps are indeed applicable and then
investigate how the final result looks like. First, by the above claim, we can observe
that U0 D U.4/ is in the domain of �!

v.4/
W bFracv.4/.Z

!
�.4/

/! bFracv.4/.Z
!
�.3/

/. In equa-
tion (3.29), we computed the image as

�!
v.4/
.U.4// D U.3/V.3/;

with V.3/ 2 Frac.Xq

�.3/
/. Hence, by the claim for U.3/, we see that �!

v.4/
.U.4// D

U.3/V.3/ belongs to bFracv.3/.Z
!
�.3/

/, which is the domain of

�!
v.3/
W bFracv.3/.Z

!
�.3/

/! bFracv.3/.Z
!
�.2/

/:

The image is

�!
v.3/

�
�!
v.4/
.U.4//

�
D �!

v.3/
.U.3/V.3//D �!

v.3/
.U.3//�!

v.3/
.V.3//DU.2/V.2/�q

v.3/
.V.3//„ ƒ‚ …;
(3.30)

where for the last equality we used equation (3.29) and Lemma 3.26. Since the under-
braced part belongs to Frac.Xq

�.2/
/, using the claim for U.2/, we get that

�!
v.3/
.�!
v.4/
.U.4/// D U.2/V.2/�q

v.3/
.V.3//

belongs to bFracv.2/.Z
!
�.2/

/, which is the domain of

�!
v.2/
W bFracv.2/.Z

!
�.2/

/! bFracv.2/.Z
!
�.1/

/:

The image is

�!
v.2/

�
�!
v.3/

�
�!
v.4/
.U.4//

��
D �!

v.2/

�
U.2/V.2/�q

v.3/
.V.3//

�
D U.1/ V.1/�q

v.2/

�
V.2/�q

v.3/
.V.3//

�„ ƒ‚ …;
where for the last equality we used equation (3.29) and Lemma 3.26. Since the under-
braced expression is an element of Frac.Xq

�.1/
/, using the claim for U.1/, we get that

�!
v.2/
.�!
v.3/
.�!
v.4/
.U.4//// belongs to bFracv.1/.Z

!
�.1/

/, which is the domain of �!
v.1/
W

bFracv.1/.Z
!
�.1/

/! bFracv.1/.Z
!
�.0/

/. Therefore, �!
v.1/
.�!
v.2/
.�!
v.3/
.�!
v.4/
.U.4///// makes

sense as a well-defined element of bFracv.1/.Z
!
�.0/

/ � Frac.Z!
�.0/

/ � Frac.Z!�/. This
finishes the proof.
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Proof of Lemma 3.30. In the beginning of the above proof of Lemma 3.29, we ob-
served that ‚!��0 sends an element of Frac.Xq

�0/ �
bFrac.Z!�0/ � Frac.Z!�0/ to an

element of Frac.Xq
�/� Frac.Z!�/which is contained in the�-balanced fraction alge-

bra bFrac.Z!�/ (Definition 3.12). So, it suffices to show that‚!��0 sends a�0-balanced
Laurent polynomial in Z!�0 to a�-balanced Laurent polynomial in Z!�. We will show
that ‚!��0 sends a �0-balanced Laurent monomial in Z!�0 to a �-balanced Laurent
monomial in Z!�.

We use the same notations as in the above proof of Lemma 3.29. In particular,
U0 D U.4/ D Œ

Q
v2V .X0v/a

0
v �Weyl 2 Z!�0 is a �0-balanced Laurent monomial (Defini-

tion 3.11), with .a0v/v2V 2 .
1
3
Z/V ; in view of Definition 3.11, we see that .a0v/v2V is

�0-balanced in the sense of Definition 3.9. To continue the last steps of the proof
of Lemma 3.29, we arrive at the following computational result for the image of
U0 D U.4/ under ‚!��0 D �

!
v.1/
�!
v.2/
�!
v.3/
�!
v.4/

:

‚!��0.U/ D �
!
v.1/

�
�!
v.2/

�
�!
v.3/

�
�!
v.4/
.U.4//

���
D �!

v.1/

�
U.1/V.1/�q

v.2/

�
V.2/�q

v.3/
.V.3//

��
D U.0/ V.0/�q

v.1/

�
V.1/�q

v.2/

�
V.2/�q

v.3/
.V.3//

�
2Frac.Xq

�.1/
/

�
„ ƒ‚ …

2Frac.Xq

�.0/
/

;

where for the last equality we used equation (3.29) and Lemma 3.26. Note that the
underbraced part belongs to Frac.Xq

�.0/
/DFrac.Xq

�/which is contained in bFrac.Z!�/.

Therefore, to show ‚!��0.U/ 2 bFrac.Z!�/ it suffices to show U.0/ 2 bFrac.Z!�/; as

U.0/ D
h Y
v2V

.X.0/v /a
.0/
v

i
Weyl

is a Laurent monomial in Z!
�.0/
D Z!� as written in equation (3.28), we need to show

that U.0/ is �-balanced (Definition 3.11), i.e., that .a.0/v /v2V 2 .
1
3
Z/V is �-balanced

(Definition 3.9). For convenience, write .a.0/v /v2V D .av/v2V . In view of Figure 2, the
�-balancedness condition of .av/v2V for the two triangles of� appearing in Figure 2
which are the triangles being involved in the flip � Ý �0 says that the following
fifteen numbers are integers:8̂̂̂̂
<̂
ˆ̂̂:

(BE1) W a1 C a3 C a5; a2 C a4 C a6; a8 C a10 C a4; a9 C a11 C a3;

(BE2) W a1 C a2; a3 C a4; a5 C a6; a8 C a9; a10 C a11;

(BE3) W �a7 C a6 C a1; �a7 C a2 C a3; �a7 C a4 C a5;

�a12 C a3 C a8; �a12 C a9 C a10; �a12 C a11 C a4:

(3.31)
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In the proof of Lemma 3.21, we expressed .av/v2V in terms of .a0v/v2V , through
the formulas written in equation (3.19). As we observed in the proof of Lemma 3.21,
the�0-balancedness condition of .a0v/v2V for the two triangles of�0 appearing in Fig-
ure 2 which are involved in the flip translates to the condition that the fifteen numbers
b1; b2; : : : ; b15 2

1
3
Z in equation (3.20) are integers. Below we show that the integral-

ity of the numbers in equation (3.20) implies that of the numbers in equation (3.31):

a1 C a3 C a5 D a
0
1 C .�a

0
7 C a

0
6 C a

0
8/C a

0
5

D .a01 C a
0
8 C a

0
12/ � .a

0
7 C a

0
12/C .a

0
5 C a

0
6/

D b1 � b7 C b9 2 Z;

a2 C a4 C a6 D a
0
2 C .a

0
5 C a

0
9 � a

0
12/C a

0
6

D .a02 C a
0
9 C a

0
7/ � .a

0
7 C a

0
12/C .a

0
5 C a

0
6/

D b2 � b7 C b9 2 Z;

a8 C a10 C a4 D a
0
8 C a

0
10 C .a

0
5 C a

0
9 � a

0
12/

D .a05 C a
0
7 C a

0
10/ � .a

0
7 C a

0
12/C .a

0
8 C a

0
9/

D b3 � b7 C b6 2 Z;

a9 C a11 C a3 D a
0
9 C a

0
11 C .�a

0
7 C a

0
6 C a

0
8/

D .a06 C a
0
12 C a

0
11/ � .a

0
7 C a

0
12/C .a

0
8 C a

0
9/

D b4 � b7 C b6 2 Z;

a1 C a2 D a
0
1 C a

0
2 D b5 2 Z;

a3 C a4 D .�a
0
7 C a

0
6 C a

0
8/C .a

0
5 C a

0
9 � a

0
12/

D �.a07 C a
0
12/C .a

0
5 C a

0
6/C .a

0
8 C a

0
9/

D �b7 C b9 C b6 2 Z;

a5 C a6 D a
0
5 C a

0
6 D b9 2 Z;

a8 C a9 D a
0
8 C a

0
9 D b6 2 Z;

a10 C a11 D a
0
10 C a

0
11 D b8 2 Z;

�a7 C a6 C a1 D �.�a
0
7 C a

0
3 C a

0
6/C a

0
6 C a

0
1 D b12 2 Z;

�a7 C a2 C a3 D �.�a
0
7 C a

0
3 C a

0
6/C a

0
2 C .�a

0
7 C a

0
6 C a

0
8/ D b10 2 Z;

�a7 C a4 C a5 D �.�a
0
7 C a

0
3 C a

0
6/C .a

0
5 C a

0
9 � a

0
12/C a

0
5

D 3a05 � 3a
0
12 C .�a

0
3 C a

0
9 C a

0
12/ � .a

0
5 C a

0
6/C .a

0
7 C a

0
12/

D 3a05 � 3a
0
12 C b11 � b9 C b7 2 Z;

�a12 C a3 C a8 D �.�a
0
12 C a

0
4 C a

0
9/C .�a

0
7 C a

0
6 C a

0
8/C a

0
8

D 3a08 � 3a
0
7 C .�a

0
4 C a

0
6 C a

0
7/C .a

0
7 C a

0
12/ � .a

0
8 C a

0
9/

D 3a08 � 3a
0
7 C b13 C b7 � b6 2 Z;
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�a12 C a9 C a10 D �.�a
0
12Ca

0
4Ca

0
9/Ca

0
9Ca

0
10D�a

0
4Ca

0
12Ca

0
10 D b14 2 Z;

�a12 C a11 C a4 D �.�a
0
12 C a

0
4 C a

0
9/C a

0
11 C .a

0
5 C a

0
9 � a

0
12/

D �a04 C a
0
11 C a

0
5 D b15 2 Z:

This is sufficient for us to deduce that .av/v2V is �-balanced because the �-balanced-
ness condition of .av/v2V for triangles other than the two triangles of � in Figure 2
coincides with the �0-balancedness condition of .a0v/v2V 0 for triangles other than the
two triangles of �0 in Figure 2. This finishes the proof of ‚!��0.U/ 2 bFrac.Z!�/.

The following is easily observed from Lemma 3.26.

Lemma 3.32. Above map ‚!��0 extends ˆq��0 W Frac.Xq
�0/! Frac.Xq

�/ of Defini-
tion 3.7.

Because of the similarity of the formulas of �!
k

and those of �q
k

, the proofs in [4],
[19, Section 3.3], [31, 32] of the consistency relations for the quantum mutations �q

k

(as in Propositions 3.6 and 3.8) apply almost verbatim to the proof of those for the
corresponding balanced quantum mutations �!

k
.

Proposition 3.33. The consistency relations satisfied by the quantum mutations �q
k

and the quantum coordinate change maps ˆqi for flips of ideal triangulations are
satisfied by the balanced counterparts �!

k
and ‚!i , whenever the relations make

sense.

We elaborate on the phrase “whenever the relations make sense”, which is about
the domains and codomains of the maps �!

k
involved in the relations. For example,

�!k �
!
k D id (3.32)

holds, when understood on appropriate domains and codomains; namely, the compo-
sition

bFrack.Z!� /
�!
k
��! bFrack.Z!�k.�//

�!
k
��! bFrack.Z!� / (3.33)

coincides with the identity map on bFrack.Z!� / for any cluster X-seed � and any
unfrozen node k of � .

As a consequence, of Proposition 3.33, one obtains a balanced quantum coordi-
nate change map

‚!��0 W
bFrac.Z!�0/! bFrac.Z!�/

for each change of ideal triangulations � Ý �0, i.e., for each pair of ideal triangu-
lations � and �0, not just for flips. Namely, since any two ideal triangulations �
and �0 are connected by a finite sequence of flips, one can find a sequence of ideal
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triangulations � D �0, �1; : : : ; �n D �0 so that each �i�1 Ý �i is a flip. Then,
define

‚!��0 D ‚
!
�0�n

WD ‚!�0�1 ı‚
!
�1�2

ı � � � ı‚!�n�1�n : (3.34)

Propositions 3.33 and 2.9 guarantee that the resulting map depends, up to (index)
permutation of nodes of the 3-triangulation quivers for ideal triangulations (Defini-
tion 2.14), only on the initial and the terminal triangulations �, �0 and not on the
choice of the decomposition �0; �1; : : : ; �n.

Another important property of the balanced quantum coordinate change map‚!��0
is its compatibility with the cutting map i�;�e which appeared in Definition 2.21.

Proposition 3.34 (Compatibility of the balanced quantum coordinate change under
cutting). Let � be an ideal triangulation of a triangulable generalized marked sur-
face S and e an internal arc of�. Let Se be the generalized marked surface obtained
from S be cutting along e, and let �e be the triangulation of Se obtained from � by
cutting along e (Definition 2.21). Denote by i�;�e W Frac.Z!�/!Frac.Z!�e / the nat-
ural extension of the cutting map

i�;�e W Z
!
� ! Z!�e

(Definition 2.21), defined by the map sending the fraction expression PQ�12Frac.Z!�/
to .i�;�e .P//.i�;�e .Q//�1 2 Frac.Z!�e /, where P;Q 2 Z!� with Q ¤ 0.

(1) The image of bFrac.Z!�/ � Frac.Z!�/ (Definition 3.12) under the (extended)
cutting map

i�;�e W Frac.Z!�/! Frac.Z!�e /

described above lies in bFrac.Z!�e / � Frac.Z!�/.

(2) Suppose that �0 is another ideal triangulation of S such that e is an internal
arc of�0 and that� and�0 are connected by a finite sequence of flips at arcs
other than e. Let �0e be the ideal triangulation of Se obtained from �0 by
cutting along e. Then, the diagram

bFrac.Z!�0/
‚!
��0 //

i
�0;�0e

��

bFrac.Z!�/

i�;�e
��

bFrac.Z!
�0e
/

‚!
�e �

0
e // bFrac.Z!�e /

commutes, i.e.,

i�;�e ı‚
!
��0 D ‚

!
�e �

0
e
ı i�0;�0e W

bFrac.Z!�0/! bFrac.Z!�/: (3.35)
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Proof. (1) Let V D V.Q�/ and Ve D V.Q�e /. Consider a Laurent monomialh Y
v2V

Xavv
i

Weyl
2 Z!�

for�, with .av/v2V 2 .
1
3
Z/V . In view of the definition of the map i�;�e WZ

!
�!Z!�e

as in Definition 2.21, one can observe that the image of this Laurent monomial for �
is a Laurent monomial for �e , i.e.,

i�;�e

h Y
v2V

Xavv
i

Weyl
D

h Y
w2Ve

Xbww
i

Weyl

for some .bw/w2Ve 2 .
1
3
Z/Ve and that .av/v2V 2 ZV implies .bw/w2Ve 2 ZVe . The

latter observation means that i�;�e sends X
q
� � Z!� to X

q
�e
� Z!�e . So, in order

to show that i�;�e W Frac.Z!�/! Frac.Z!�e / sends the �-balanced fraction algebra
bFrac.Z!�/ (Definition 3.12) to the�e-balanced fraction algebra bFrac.Z!�e /, it suffices
to show that i�;�e sends a �-balanced Laurent monomial to a �e-balanced Laurent
monomial.

Notice from the definition of the balancedness condition as in Definitions 3.9
and 3.11 that the balancedness condition of a Laurent monomial is described for each
ideal triangle, in terms of the powers in the Laurent monomial of the variables for
the nodes living in this triangle. From Definition 2.21, observe that triangles of �
naturally correspond to triangles of �e and that the power av in a Laurent monomial
Œ
Q
v2V Xavv �Weyl for� for a node v ofQ� living in some triangle t coincides with the

power bw in the image Laurent monomial i�;�e Œ
Q
v2V Xavv �Weyl D Œ

Q
w2Ve

Xbww �Weyl

for �e for each node w of Q�e corresponding to v in the cutting process (i.e.,
ge.w/ D v in the notation of Definition 2.21); in particular, w lives in the triangle
te of �e corresponding to t of �. From this observation, one can deduce that the �-
balancedness of Œ

Q
v2V Xavv �Weyl implies the �e-balancedness of Œ

Q
w2Ve

Xbww �Weyl,
as desired.

(2) It suffices to show this for a flip (by Lemma 2.5 and Proposition 3.33), and
it suffices to show the compatibility of each balanced quantum mutation �!

v.r/
, r D

1; 2; 3; 4. For convenience, write the sets of nodes of Q�.r/ by V and those of Q
�
.r/
e

by Ve .
For each r D 0; 1; 2; 3; 4, denote the quantum cluster X-variables for�.r/e by Y.r/w

per each w 2 Ve . Let v1, v2 be the nodes of V lying in e. Let w1, w01 be the nodes
of Ve corresponding to v1, and w2; w02 2 Ve corresponding to v2 so that w1 and w2
lie in the same boundary arc of Se , while w01, w02 lie on another boundary arc of Se .
Apart from these nodes, there is a natural bijection between the nodes of V and those
of Ve . Let g W Ve ! V be the gluing map of the nodes (see Definition 2.21, where
it is denoted by ge), i.e., g.w1/ D g.w01/ D v1, g.w2/ D g.w02/ D v2, g.v/ D v,
8v 2 Ve n ¹w1; w

0
1; w2; w

0
2º D V n ¹v1; v2º.
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For each r D 4; 3; 2; 1, let us show

i
�.r�1/;�

.r�1/
e
ı �!

v.r/
D �!

v.r/
ı i
�.r/;�

.r/
e
W bFracv.r/

�
Z!
�.r/

�
! bFracv.r/

�
Z!
�
.r�1/
e

�
:

(3.36)
We will first show this equality when applied to a .�.r/;v.r//-balanced Laurent mono-
mial Œ

Q
v2V .X

.r/
v /

a
.r/
v �Weyl 2 bFracv.r/.Z

!
�.r/

/, with .av/v2V 2 .
1
3
Z/V . That is, we aim

to show that

i
�.r�1/;�

.r�1/
e

�
�!
v.r/

�hY
v2V

.X.r/v /
a
.r/
v

i
Weyl

��
D�!

v.r/

�
i
�.r/;�

.r/
e

�hY
v2V

.X.r/v /
a
.r/
v

i
Weyl

��
:

(3.37)
Note that, in view of Definition 2.21, for each r D 4; 3; 2; 1, the cutting map

i
�.r/;�

.r/
e

sends the Laurent monomial Œ
Q
v2V .X

.r/
v /

a
.r/
v �Weyl 2 bFracv.r/.Z

!
�.r/

/ to

i
�.r/;�

.r/
e

hY
v2V

.X.r/v /
a
.r/
v

i
Weyl
D

h Y
w2Ve

.Y.r/w /
a
.r/

g.w/

i
Weyl

: (3.38)

Consider the left-hand side of equation (3.37) first. By equation (3.29), we have

�!
v.r/

�hY
v2V

.X.r/v /
a
.r/
v

i
Weyl

�
D

hY
v2V

.X.r�1/v /a
.r�1/
v

i
Weyl

F q
�
X.r�1/
v.r/
I˛.r/

�
;

where .a.r�1/v /v2V is given by the formula in equation (3.14) in terms of .a.r/v /v2V ,
and ˛.r/ by equation (3.15); in turn, in view of Definition 2.21, this is sent via
i
�.r�1/;�

.r�1/
e

to

i
�.r�1/;�

.r�1/
e

�
�!
v.r/

�hY
v2V

.X.r/v /
a
.r/
v

i
Weyl

��
D

h Y
w2Ve

.Y.r�1/w /
a
.r�1/

g.w/

i
Weyl

F q
�
Y.r�1/
v.r/
I˛.r/

�
:

For the right-hand side of equation (3.37), first, note that Œ
Q
v2V .X

.r/
v /

a
.r/
v �Weyl 2

bFracv.r/.Z
!
�.r/

/ is sent via i
�.r/;�

.r/
e

to the element Œ
Q
w2Ve

.Y.r/w /a
.r/

g.w/ �Weyl as written

in equation (3.38). In the meantime, the signed adjacency matrices ".r/e for Q
�
.r/
e

and

".r/ for Q�.r/ are related by

".r/vu D
X

v02g�1.v/; u02g�1.u/

.".r/e /v0u0 8v; u 2 V : (3.39)

One observation is that no cancellation occurs in the right-hand side of equation (3.39)
except for two possible cases. One is when ¹v; uº D ¹v1; v2º holds. In the other case,
one of v and u is a node lying in the edge e, while the other is a node lying in the
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edge f which is the edge being flipped in the current proof; moreover, the common
endpoint puncture p shared by e and f is of valence 2, and each of v and u is the node
closer to p among the two nodes lying in the respective edges e and f . However, the
latter case does not happen because after flipping at an edge incident to a puncture
of valence 2 one obtains a puncture of valence 1, which we excluded in Section 2.1.
Therefore, the only case when a cancellation might occur in the right-hand side of
equation (3.39) is when ¹v; uº D ¹v1; v2º. Thus, whenever ¹v; uº ¤ ¹v1; v2º, the
terms in the right-hand side are either all non-negative or all non-positive, and hence,
we have

Œ".r/vu �C D
X

v02g�1.v/; u02g�1.u/

Œ.".r/e /v0u0 �C 8v; u 2 V : (3.40)

Now, observe from equation (3.29) applied to the case ‚!
�e�

0
e

of the cut surfaces
(instead of original ‚!��0) that

�!
v.r/

h Y
v2Ve

.Y.r/v /
a
.r/

g.v/

i
Weyl
D

h Y
v2Ve

.Y.r�1/v /b
.r�1/
v

i
Weyl

F q
�
Y.r�1/
v.r/
I˛.r/e

�
;

where .b.r�1/v /v2Ve is given similarly as in equation (3.14) by

b.r�1/v D

8<:�a.r/v.r/ C
P
w2Ve

�
."
.r�1/
e /w;v.r/

�
C
a
.r/

g.w/
if v D v.r/;

a
.r/

g.v/
if v ¤ v.r/;

(3.41)

and ˛.r/e is given by
˛.r/e D

X
w2Ve

.".r�1/e /v.r/;wa
.r�1/

g.w/
:

We claim that
b.r�1/v D a

.r�1/

g.v/
:

From equations (3.41) and (3.14), this is clear for the case v ¤ v.r/. For the case
v D v.r/, this follows from equations (3.39) and (3.40). Moreover, observe from
equation (3.39) that ˛.r/e equals ˛.r/ of equation (3.15). Hence, we showed that the
left-hand side and the right-hand side of equation (3.37) are equal, as desired. This
holds for any .a.r/v /v2V 2 .

1
3
Z/V that is .�.r/; v.r//-balanced, and in particular when

.a
.r/
v /v2V 2 ZV . So, in view of the definition of the .�.r/; v.r//-balanced fraction

algebra bFracv.r/.Z
!
�.r/

/ and that of the .�.r�1/; v.r//-balanced fraction algebra
bFracv.r/.Z

!
�.r�1/

/ as in Definition 3.22, it follows that equation (3.36) holds. The
sought-for equation (3.35) then follows by combining equation (3.36) for rD4;3;2;1,
since each of ‚!��0 and ‚!

�e�
0
e

is given by the composition �!
v.1/
�!
v.2/
�!
v.3/
�!
v.4/

, in an
appropriate sense. This finishes the proof.
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4. Naturality of SL3 quantum trace maps under changes of
triangulations

Here, comes the main statement of the present paper.

Theorem 4.1 (Main theorem; naturality of SL3 quantum trace maps under changes of
triangulations). Let � and �0 be ideal triangulations (without self-folded triangles)
of a triangulable generalized marked surface S. Let .W; s/ be a stated SL3-web in
S � I. Then, the values under the SL3 quantum trace maps of ŒW; s� 2 �!s .SIZ/red

are compatible under the balanced quantum coordinate change map ‚!��0 defined in
Definition 3.28 and equation (3.34), i.e.,

‚!��0.Tr!�0.ŒW; s�// D Tr!�.ŒW; s�/:

We note that the left-hand side makes sense because Tr!�0.ŒW; s�/ lies in yZ!�0 due
to Proposition 3.14, and hence in bFrac.Z!�0/ (Definition 3.12) which is the domain of
‚!��0 as seen in Definition 3.28 and equation (3.34).

The present section is devoted to the proof of this theorem. In view of Lemma 2.5
and Proposition 3.33, it suffices to prove this in the case when � and �0 are related
by a flip at an arc.

4.1. The base case: Crossingless arcs over an ideal quadrilateral

Let e be the internal arc of� that is being flipped, i.e., the only arc of� that is not an
arc of�0. Let the two triangles of� having e as a side be t and u. Collect all the sides
of t and u that are not e or boundary arcs of S, and let this collection be E. So, the
number of members of E is one of 0, 1, 2, 3, and 4. The surface obtained from S by
cutting along all arcs of E is a disjoint union of a quadrilateral Q and a surface SE .
Note that SE may also be disconnected and even be empty in case S was already
a quadrilateral. Here, by a quadrilateral we mean a generalized marked surface of
genus zero with one boundary component, with four marked points on the boundary
and no marked point in the interior. By the cutting process (Definition 2.21),� yields
triangulations �Q and �E for Q and SE , respectively, while �0 yields �0

Q
and �0E

for Q and SE . Note that �E and �0E coincide with each other, while �Q and �0
Q

differ by a flip. Suppose that an SL3-web .W; s/ in S � I meets E � I transversally,
and moreover that

W \ .Q � I/ and W \ .SE � I/

are SL3-webs in Q � I and in SE � I, respectively; if not, .W; s/ can be isotoped
in S � I to satisfy this condition. By the cutting/gluing property of the SL3 quantum
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trace maps (Theorem 2.23 (QT1)), one has

iE .Tr!�IS.ŒW; s�// D
X
sQ;sE

Tr!�QIQ
.ŒW \ .Q � I/; sQ�/

˝ Tr!�E ISE .ŒW \ .SE � I/; sE �/;

i 0E .Tr!�0IS.ŒW; s�// D
X
sQ;sE

Tr!
�0

Q
IQ
.ŒW \ .Q � I/; sQ�/

˝ Tr!�E ISE .ŒW \ .SE � I/; sE �/;

where iE and i 0E are natural embeddings (see Definition 2.21):

iE W Z
!
� ! Z!�Qt�E

Š Z!�Q
˝Z!�E ;

i 0E W Z
!
�0 ! Z!

�0
Q
t�E
Š Z!

�0
Q
˝Z!�E ;

and the sums are over all states sQ and sE of the SL3-websW \ .Q � I/ in Q � I and
W \ .SE � I/ in SE � I that constitute states sQ t sE that are compatible with s in
the sense of Definition 2.21. By Proposition 3.34, which is the compatibility of the
quantum mutation maps ‚!�;�0 under the cutting maps along ideal arcs, one observes
that

iE ı‚
!
�;�0 D

�
‚!
�Q;�

0
Q
˝‚!�E ;�E

Did

�
ı i 0E W

yZ!�0 !
yZ!�Q

˝ yZ!�E :

It then suffices to show that

Tr!�QIQ
.ŒW \ .Q � I/; sQ�/ D ‚!�Q;�

0
Q

Tr!
�0

Q
IQ
.ŒW \ .Q � I/; sQ�/:

Thus, we could assume from the beginning that the entire surface S is just a quadri-
lateral Q.

Fatten each of the four boundary arcs of the quadrilateral S D Q to a biangle
by choosing an ideal arc isotopic to each boundary arc. Let B1, B2, B3, B4 be these
biangles. Cutting Q along these four ideal arcs yields a disjoint union B1, B2, B3,
B4, and a quadrilateral, which we denote by Q0. Suppose that .W; s/ is a stated SL3-
web in Q � I, and suppose that W \ .Bi � I/, i D 1; 2; 3; 4, and W \ .Q0 � I/ are
SL3-webs in Bi � I, i D 1; 2; 3; 4, and in Q0 � I, respectively. Let � and �0 be two
distinct ideal triangulations of Q, which are related by a flip. Let �0 and �00 be the
ideal triangulation of Q0 induced by the cutting process (Definition 2.21). By the
cutting/gluing property of the SL3 quantum trace maps (Proposition 2.24 (BQT3)),
we have

i�;�0 Tr!�IQ.ŒW; s�/

D

X
s1;s2;s3;s4;s0

 
4Y
iD1

Tr!Bi .ŒW \ .Bi � I/; si �/

!
Tr!�0IQ0.ŒW \ .Q0 � I/; s0�/;



Naturality of SL3 quantum trace maps for surfaces 183

i�0;�0
0

Tr!�0IQ.ŒW; s�/

D

X
s1;s2;s3;s4;s0

 
4Y
iD1

Tr!Bi .ŒW \ .Bi � I/; si �/

!
Tr!
�0
0
IQ0
.ŒW \ .Q0 � I/; s0�/;

where i�;�0 and i�0;�0
0

are natural isomorphisms

i�;�0 W Z
!
� ! Z!�0 ; i�0;�0

0
W Z!�0 ! Z!

�0
0
;

and the sums are over all states that constitute states compatible with s in the sense of
Definition 2.21. Observing

i�;�0 ı‚
!
�;�0 D ‚

!
�0;�

0
0
ı i�0;�0

0
W yZ!�0 !

yZ!�0

from Proposition 3.34, it suffices to show that

Tr!�0IQ0.ŒW \ .Q0 � I/; s0�/ D ‚!�0;�00 Tr!
�0
0
IQ0
.ŒW \ .Q0 � I/; s0�/:

The advantage we get by this cutting process is as follows. In the beginning, we do
not assume anything about the SL3-web W in Q � I. Then, by isotopy, one can push
complicated parts ofW , e.g., all 3-valent vertices, to the biangles B1, B2, B3, B4 and
also apply “vertical” isotopy so that W is “nice” over Q0 in the following sense.

Lemma 4.2. One can isotopeW so thatW0 WDW \ .Q0 � I/ satisfies the following.

(1) W0 has no crossing or 3-valent vertex.

(2) Each component ofW0 is at a constant elevation equipped with upward verti-
cal framing, and the elevations of the components ofW0 are mutually distinct.

(3) Each component of the part ofW0 lying over each of the ideal triangles of�0
and�00 is a left-turn or a right-turn oriented edge (as in Theorem 2.23 (QT2)).

(4) Each component of W0 is a constant-elevation lift in Q0 � I, with upward
vertical framing, of a corner arc of Q0; i.e., the projection �.W0/ in Q0 is a
simple oriented edge connecting two adjacent boundary arcs of Q0.

In the language of [33], items (1)–(3) mean that W0 can be put into a “gool”
position (which is stronger than a “good” position) [33, Lemma 5.45]. Then, there
could be some component of W0 whose projection in Q0 is a simple edge connecting
two non-adjacent boundary arcs of Q0; one can avoid having these and get (4) by
using isotopies of the form appearing in the right picture of [33, Figure 17] (before
applying the vertical isotopy to make sure that the distinct-elevations condition in (2)
holds).

Since Tr!�0IQ0 ,‚!
�0;�

0
0

, and Tr!
�0
0
IQ0

all preserve the product structures, the prob-
lem boils down to the following. By dropping all the subscripts 0 for convenience,
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v7

v1 v2

v3

v4v5

v6

v8

v9

v10v11

v12

3
 4


1


2


Figure 6. Four cases of SL3-webs W over a quadrilateral Q with triangulation �0.

what remains to check is the equality

Tr!�IQ.ŒW; s�/ D ‚
!
��0 Tr!�0IQ.ŒW; s�/; (4.1)

when � and �0 are ideal triangulations of a quadrilateral surface Q, and W satisfies
the following:

W is a constant-elevation lift in Q � I;with upward vertical framing;

of a corner arc of Q:

Some of the possible cases are visualized in Figure 6.
One can check equation (4.1) for these cases by direct computation, which is

doable by hand. But we will try an approach that minimizes the amount of compu-
tations, which is also more enlightening. Here, we perform a preliminary step. Note
from Definition 3.28 that ‚!��0 D �

!
v3
�!v4�

!
v7
�!v12 . Thus, by applying �!v4�

!
v3

to both
sides of equation (4.1) and using the involutivity of �!

k
as in equation (3.32), one can

turn equation (4.1) into

�!v4�
!
v3

�
Tr!�IQ.ŒW; s�/

�
D �!v7�

!
v12

�
Tr!�0IQ.ŒW; s�/

�
; (4.2)

which is much more symmetric than equation (4.1). Indeed, what is done in either
side is first to apply the SL3 quantum trace map with respect to an ideal triangula-
tion of the quadrilateral Q, and then apply the balanced cube-root quantum mutation
maps �!

k
(Definition 3.23) for the two nodes k living in the diagonal arc of this ideal

triangulation.
However, one must be careful about the domains and codomains when applying

the balanced cube-root quantum mutation map �!
k

, as well as when applying the rela-
tion in equation (4.1). So, a priori, equations (4.2) and (4.1) should be understood as
separate statements. The statement of equation (4.2) asserts that both sides are well
defined (with respect to the domains of �!

k
) and that they are equal to each other. The

remainder of the present section will be devoted to a proof of this equation (4.2). For
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the purpose of our proof of Theorem 4.1, we should also make sure that equation (4.2)
implies equation (4.1), which we show below.

By Proposition 3.14 applied to �0, we have Tr!�0IQ.ŒW; s�/ 2 yZ
!
�0 �

bFrac.Z!�0/.
In the proof of Lemma 3.29, we showed that the four maps �!v12 , �!v7 , �!v4 , and �!v3 can
be applied, in this order, to any element of bFrac.Z!�0/, and that it results in an element
of bFrac.Z!�/. For the moment, denote �!v3�

!
v4
�!v7�

!
v12

Tr!�0IQŒW; s� by W 2 bFrac.Z!�/.

The last step to reach W is the application of �!v3 WbFracv3.Z
!
�.1/

/!bFracv3.Z
!
�/ to the

element �!v4�
!
v7
�!v12 Tr!�0IQŒW; s�, so by what we checked in the proof of Lemma 3.29

we have �!v4�
!
v7
�!v12 Tr!�0IQŒW; s� 2 bFracv3.Z

!
�.1/

/ and W 2 bFracv3.Z
!
�/. Applying

the involutivity of �!v3 as in equation (3.32) or more precisely as written in equa-
tion (3.33) applied to �!v3 W bFracv3.Z

!
�.1/

/! bFracv3.Z
!
�/ and �!v3 W bFracv3.Z

!
�/!

bFracv3.Z
!
�.1/

/, we get �!v4�
!
v7
�!v12 Tr!�0IQŒW; s� D �!v3.W/ DW W0. The next to last

step to reach W is the application of �!v4 W bFracv4.Z
!
�.2/

/ ! bFracv4.Z
!
�.1/

/ to the
element �!v7�

!
v12

Tr!�0IQŒW; s�, so by what we checked in the proof of Lemma 3.29

we have �!v7�
!
v12

Tr!�0IQŒW; s� 2 bFracv4.Z
!
�.2/

/ and �!v4.�
!
v7
�!v12 Tr!�0IQŒW; s�/DW0 2

bFracv4.Z
!
�.1/

/. Applying the involutivity of �!
k

as in equations (3.32)–(3.33) applied

to �!v4 W bFracv4.Z
!
�.2/

/! bFracv4.Z
!
�.1/

/ and �!v4 W bFracv4.Z
!
�.1/

/! bFracv4.Z
!
�.2/

/,
we get �!v7�

!
v12

Tr!�0IQŒW; s� D �
!
v4
.W0/. Thus, so far, we proved that

�!v7�
!
v12

Tr!�0IQŒW; s� D �
!
v4
�!v3.W/: (4.3)

As a side remark, one can now see that equation (4.1) implies equation (4.2); indeed,
if equation (4.1) holds, then we have WD Tr!�IQŒW;s�; hence, equation (4.3) becomes
equation (4.2) in this case.

However, we wanted to show that equation (4.2) implies equation (4.1). If we
assume that equation (4.2) holds, then from equation (4.3) it follows that

�!v4�
!
v3

Tr!�IQ.ŒW; s�/ D �
!
v4
�!v3.W/ (4.4)

holds. Note that each �!
k
W bFrack.Z!�k.�// !

bFrack.Z!� / is an isomorphism, with

its inverse being �!
k
W bFrack.Z!� /! bFrack.Z!�k.�//, due to the involutivity in equa-

tions (3.32)–(3.33). So, �!v4�
!
v3

is an isomorphism; hence, from equation (4.4), we
get Tr!�IQŒW; s� DW; since W D �!v3�

!
v4
�!v7�

!
v12

Tr!�0IQŒW; s� D ‚
!
��0 Tr!�0IQŒW; s�,

equation (4.1) holds. So, we indeed showed that equation (4.2) implies equation (4.1),
as desired.

4.2. The Weyl-ordering and the classical compatibility statement

It remains to show that equation (4.2) holds. Our strategy to show equation (4.2) is to
use Lemma 2.20, especially its item (3), which says that a multiplicity-free Laurent
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polynomial in a cube-root Fock–Goncharov algebra Z!Q (i.e., a (cube-root) quantum
torus algebra) (Definition 2.15), for a general quiver Q, is �-invariant if and only if
it is a (term-by-term) Weyl-ordered Laurent polynomial (Definition 2.19). We find
it convenient to establish and use an easy observation that a Weyl-ordered Laurent
polynomial is completely determined by its classicalization.

Definition 4.3. Let Q be a quiver, and denote by V D V.Q/ the set of its nodes
and by " D ."vw/v;w2V its signed adjacency matrix. Let Z!Q be the cube-root Fock–
Goncharov algebra for Q, as defined in Definition 2.15, with generators

Z˙1v D X˙1=3v ; v 2 V :

Denote by Z1Q the cube-root Fock–Goncharov algebra forQwith the quantum param-

eter !1=2 set to be 1, where the generators are written as Z˙1v D X
˙1=3
v , v 2 V ; that

is, Z1� can be viewed just as the Laurent polynomial ring ZŒ¹Z˙1v j v 2 Vº�.
The classicalization map

cl!Q W Z
!
Q ! Z1Q

is defined as the unique ring homomorphism sending !˙1=2 to 1 and each Z˙1v to
Z˙1v . Define the Weyl-ordering quantization map

Wl!Q W Z
1
Q ! Z!Q

as the unique Z-linear map sending each Laurent monomial to its corresponding
Weyl-ordered Laurent monomial (Definition 2.19)

Wl!Q
�Y
v2V

Xavv

�
D

hY
v2V

Xavv
i

Weyl
8.av/v2V 2

�
1

3
Z

�V

:

When � is an ideal triangulation of a triangulable generalized marked surface S,
we denote Z1Q� , cl!Q� , and Wl!Q� by Z1�, cl!�, and Wl!�.

So, for any quiver Q, an element of Z!Q is a Weyl-ordered Laurent polynomial if
and only if it is in the image of Wl!Q. Meanwhile, cl!Q ıWl!Q D id obviously holds.
Hence, Wl!Q ı cl!Q ıWl!Q DWl!Q, and therefore, Wl!Q ı cl!Q D id holds when applied
to Weyl-ordered Laurent polynomials. From this, one obtains the following lemma.

Lemma 4.4. A Weyl-ordered Laurent polynomial U 2 Z!Q for a quiver Q is com-
pletely determined by its classicalization cl!Q.U/ 2 Z1Q. That is, if U and V are
Weyl-ordered Laurent polynomials in Z!Q such that cl!Q.U/D cl!Q.V/, then UDV.

Keeping Lemma 4.4 in mind, we propose the following strategy to prove equa-
tion (4.2). We are using the same notations for Q, �, �0, and W as used in the
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last subsection Section 4.1 for equation (4.1), and those for intermediate cluster X-
seeds �.r/ connecting the seeds for � and �0 as in Section 3.3; in particular, �.2/ D
�v4�v3� D �v7�v12�

0.

Step 1. Show that �!v4�
!
v3
.Tr!�IQ.ŒW; s�// 2 Frac.Z!

�.2/
/ lies in Z!

�.2/
(i.e., is Lau-

rent) and is a multiplicity-free Laurent polynomial in Z!
�.2/

(in the sense of Lemma
2.20 (3)).

Step 2. Show that �!v7�
!
v12
.Tr!�0IQ.ŒW; s�// 2 Frac.Z!

�.2/
/ lies in Z!

�.2/
(i.e., is Lau-

rent) and is a multiplicity-free Laurent polynomial in Z!
�.2/

.

Step 3. Show that �!v4�
!
v3
.Tr!�IQ.ŒW; s�// and �!v7�

!
v12
.Tr!�0IQ.ŒW; s�// are fixed by the

�-map.

Step 4. Show that �!v4�
!
v3
.Tr!�IQ.ŒW; s�// and �!v7�

!
v12
.Tr!�0IQ.ŒW; s�// have the same

classicalizations.
From Steps 1, 2, and 3, it would follow that both �!v4�

!
v3
.Tr!�IQ.ŒW; s�// and

�!v7�
!
v12
.Tr!�0IQ.ŒW; s�// are �-invariant multiplicity-free Laurent polynomials in

Z!
�.2/

, hence are Weyl-ordered Laurent polynomials, by Lemma 2.20 (3). Then, from
Step 4 and Lemma 4.4, it would follow that they are equal, as desired in equation (4.2).

Steps 3 and 4 are relatively easy, so we do them here now.

Step 3. We first recall the following result from [33].

Proposition 4.5 (Elevation reversing and �-structure [33, Proposition 5.25]). Let �
be an ideal triangulation of a triangulable generalized marked surface S. Then,

Tr!� ı r D � ı Tr!�

holds, where
r W �!s .SIZ/red ! �!s .SIZ/red

is the elevation-reversing map, defined as the Z-linear map sending !˙1=2 to !�1=2

and ŒW; s� to ŒW 0; s0�, whenever W and W 0 are SL3-webs in S � I with upward
vertical framing with no crossings such that W 0 is obtained from W by reversing
the elevation of all points, i.e., replacing each point .x; t/ 2 S � I by .x;�t /, and
s0.x;�t / D s.x; t/, and the �-map � W Z!� ! Z!� on Z!� is as defined in Defini-
tion 2.15.

Note that when W is a constant-elevation lift in Q � I, with upward vertical
framing, of a corner arc in Q, the element ŒW; s� of �!s .QI Z/red is fixed by the
elevation-reversing map r, and hence, Tr!�IQ.ŒW; s�/ 2 Z!� and Tr!�0IQ.ŒW; s�/ 2 Z!�0

are fixed by the �-maps; indeed, using Proposition 4.5, note that

.Tr!�IQ.ŒW; s�//
�
D Tr!�IQ.r.ŒW; s�// D Tr!�IQ.ŒW; s�/;
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and likewise for Tr!�0IQ.ŒW; s�/. Now, to finish proving Step 3, it is enough to recall
from Lemma 3.27 that the maps �!v3 , �!v4 , �!v7 , and �!v12 all preserve the �-structures.
Indeed, note

.�!v4.�
!
v3
.Tr!�IQ.ŒW; s�////

�
D �!v4..�

!
v3
.Tr!�IQ.ŒW; s�///

�/

D �!v4.�
!
v3
..Tr!�IQ.ŒW; s�//

�//

D �!v4.�
!
v3
.Tr!�IQ.ŒW; s�///;

and similarly for �!v7�
!
v12
.Tr!�0IQ.ŒW; s�//. So, Step 3 is done.

Remark 4.6. Before going on to Step 4, we take a slight digression which utilizes
Proposition 4.5, which was promised in the discussion immediately following Propo-
sition 3.15. Namely, let S, �, and .W; s/ be as in Proposition 3.15. By Proposition
3.15, the unique highest term of Tr!�.ŒW; s�/ 2 Z!� equals !mŒ

Q
v2V Xav.�.W //

v �Weyl

for some m 2 1
2
Z. The question was why there should be !m, in case when W

has endpoints. Since W has upward vertical framing and has no crossings, we have
r.ŒW; s�/ D ŒW 0; s0�, where W 0 is an SL3-web in S � I with upward vertical framing
with no crossings such that the projection �.W 0/ coincides with �.W /, and s0 is the
state of W 0 that assigns 1 to all endpoints. So, W and W 0 can be thought of as being
related by changing the orderings of elevations of endpoints. It is a straightforward
exercise using [33, Propositions 5.50, 5.27] to show that

Tr!�.ŒW
0; s0�/ D !3N Tr!�.ŒW; s�/

holds for some N 2 Z. In the meantime, from r.ŒW; s�/ D ŒW 0; s0�, one obtains

Tr!�.r.ŒW; s�// D Tr!�.ŒW
0; s0�/;

whose left-hand side equals �.Tr!�.ŒW; s�// by Proposition 4.5, and whose right-hand
side equals !3N Tr!�.ŒW; s�/. So, we have �.Tr!�.ŒW; s�// D !3N Tr!�.ŒW; s�/. It is
easy to see that the highest term of the left-hand side is

�

�
!m

h Y
v2V

Xav.�.W //
v

i
Weyl

�
D !�m

h Y
v2V

Xav.�.W //
v

i
Weyl

;

whereas the highest term of the right-hand side is !3N!mŒ
Q
v2V Xav.�.W //

v �Weyl. This
shows that !�m D !3NCm; hence, m D �3

2
N . In particular, the highest term of

Tr!�.ŒW; s�/ 2 Z!� equals !mŒ
Q
v2V Xav.�.W //

v �Weyl for some m 2 3
2
Z, which slightly

refines the statement of Proposition 3.15. The arguments we gave here, which depend
on [33, Propositions 5.50, 5.27], reveal that m is not in general 0, although one could
get a bound of its absolute value in terms of the number of endpoints of W .
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Step 4. This statement is the classical version, i.e., for !1=2 D 1, of equation (4.2).
Recall that we showed at the end of Section 4.1 that equation (4.2) is equivalent to
equation (4.1) for a general parameter !1=2. Each step of the proof works also when
!1=2 D 1, so one can deduce that the classical version of equation (4.2) is equivalent
to the classical version of equation (4.1). So, it is enough to just show the latter. We
formulate this classical statement for more general setting as follows, as a classical
counterpart of Theorem 4.1.

Proposition 4.7 (Naturality of SL3 classical trace maps under changes of triangula-
tions). Let � and �0 be ideal triangulations of a triangulable generalized marked
surface S. Let .W; s/ be a stated SL3-web in S � I. Then, the values under the SL3
quantum trace maps of ŒW;s�2 �!s .SIZ/red in the case when!1=2D 1 are compatible
under the coordinate change map, i.e.,

‚1��0
�
Tr1�0.ŒW; s�/

�
D Tr1�.ŒW; s�/:

Note that by‚1��0 we mean the limit of‚!��0 as!1=2! 1. This Proposition 4.7 is
proven in [33, Corollary 5.70] in the case when S is a punctured surface. Essentially,
the same proof applies to the case when S is a generalized marked surface.

Proof of Proposition 4.7. By the argument of Section 4.1, it suffices to prove this
when S is a quadrilateral Q and W is a constant-elevation lift, with upward verti-
cal framing, of a corner arc of Q. For such a case, one can verify the equality by
direct computations. Here, we provide a proof using arguments in [33]. Suppose the
state s assigns "1; "2 2 ¹1; 2; 3º to the initial and the terminal endpoints of W ; then
Tr1�.ŒW; s�/ is the ."1; "2/-th entry of the normalized monodromy matrix MW I� asso-
ciated to W , which is a product of normalized basic monodromy matrices associated
to small pieces of W , as described in [33, Section 4.2]; see (MM1)–(MM3) of [33,
Section 4.2] for the basic monodromy matrices. Note that MW I� is a 3 � 3 matrix
whose entries are in Z1�, having determinant 1; i.e., MW I� 2 SL3.Z1�/. Likewise,
Tr1�0.ŒW; s�/ is the ."1; "2/-th entry of the normalized monodromy matrix MW I�0 2

SL3.Z1�0/. By inspection of the entries, especially of the .1; 1/-th entries which are
Laurent monomials of the highest preorder (induced by the degrees) whose degrees
are given by the tropical coordinates of the SL3-laminations �.W / (see Proposi-
tion 3.15, and also [33, Figure 5]), one observes that MW I� 2 SL3. yZ1�/ and MW I�0 2

SL3. yZ1�0/. Meanwhile, as noted in [33, Section 4.2], observe that these monodromy
matrices MW I� and MW I�0 are normalized versions of Fock and Goncharov’s unnor-
malized monodromy matrices zMW I� 2GL3.X1

�/ and zMW I�0 2GL3.X1
�0/, appearing

in [17]. Observe also that, in [17], it is shown that zMW I� and zMW I�0 , viewed as
elements of the projective transformations PGL3.X1

�/ and PGL3.X1
�0/, are related

to each other by the composition �1v3�
1
v4
�1v7�

1
v12

of the sequence of four (usual)
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classical X-mutations which appeared in Section 3. Viewing the X-coordinates Xv’s
and X 0v’s as real-valued functions (on the set XPGL3;S.R/ of R-points of the mod-
uli stack XPGL3;S), one can view Zv’s and Z0v’s as unique real-valued cube-roots
of Xv’s and X 0v’s. Now, as in [33, Section 4.2], from the fact that the projection
SL3.R/! PGL3.R/ is bijective, one can deduce that the normalized matrices MW I�

and MW I�0 are related by the composition �1v3�
1
v4
�1v7�

1
v12

of the four cluster X-
mutations. More precisely, this last statement is about the evaluations at R. One can
finish the proof by observing that the mutation formulas for the balanced subalgebras,
in case !1=2D 1, when evaluated at R, are compatible with the evaluation of the usual
cluster X-mutation.

This finishes Step 4.
Observe that (as mentioned already), for the remaining Steps 1 and 2, the sit-

uation for �!v4�
!
v3

Tr!�IQ.ŒW; s�/ and that for �!v7�
!
v12

Tr!�0IQ.ŒW; s�/ are symmetric.
Namely, each of these two situations can be interpreted as first applying the SL3
quantum trace for an ideal triangulation of Q and then applying the mutations at
the two nodes lying in the unique internal arc of this ideal triangulation. The two
mutations can be taken in any order, as they commute with each other, by the relation
�!
k
�!
`
D �!

`
�!
k

for "k`D 0 in Proposition 3.33. In general, when dealing with relations
among �!

k
’s, one has to be careful about the domains; here, we specifically mean the

equations �!v4�
!
v3

Tr!�IQ.ŒW; s�/D �
!
v3
�!v4 Tr!�IQ.ŒW; s�/ and �!v7�

!
v12

Tr!�0IQ.ŒW; s�/D
�!v12�

!
v7

Tr!�0IQ.ŒW;s�/, which indeed make sense and hence fall into the case of Propo-
sition 3.33; one can use Lemma 3.30 and Proposition 3.14 appropriately to check that
both sides of both equations do make sense. Because of this symmetry, checking Step
1 for all possible cases when W is a constant-elevation lift of a corner arc of Q is
equivalent to checking Step 2 for all those cases ofW and also equivalent to checking
Step 2 for the four cases of W depicted in Figure 6. We perform the computational
check of Step 2 for W in Figure 6 in the following subsections.

4.3. Reducing the amount of computation

It remains to do Step 2 of the previous subsection, for all cases of W as in Figure 6.
For this task, we make use of the following convenient way of dealing with the Weyl-
ordered Laurent monomials by introducing the log variables.

Definition 4.8. Let � be an ideal triangulation of a triangulable generalized marked
surface. Let

V D V.Q�/:

Let H� be a free Z-module with the set of symbols ¹zv j v 2 Vº [ ¹ 1
18

cº as a free
basis, equipped with a skew-symmetric bilinear map Œ�; �� WH� �H�! . 1

18
c/Z such
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that

Œzv; zw � D 2"vw � 2 �
1

18
c;

�
1

18
c; zv

�
D 0 8v;w 2 V :

Define

xv WD 3zv 8v 2 V

so that 1
3

xv means zv . Meanwhile, for any a 2 1
18

Z, ac denotes .18a/ � . 1
18

c/. Define
the exponential map

exp W H� ! Z!�; z 7! exp.z/ DW ez

as

exp
�
˛ �

1

18
cC

X
v2V

avxv
�
WD !˛=2

hY
v2V

Xavv
i

Weyl
;

where ˛ 2 Z and .av/v2V 2 .
1
3
Z/V .

For example, e
1
18 cD!1=2, e

1
9 cD e2�

1
18 cD!, ecD q, ezv DZv D e

1
3 xv , exv DXv .

The bracket Œ�; �� can be written in terms of xv’s as follows, which will become a handy
formula to have

Œavxv; awxw � D 2avaw"vw c; 8v;w 2 V ; 8av; aw 2
1

3
Z: (4.5)

We find it useful to have the following well-known fact. We provide a proof, for
completeness.

Lemma 4.9 (Baker–Campbell–Hausdorff (BCH) formula). For x; y 2 H�,

exp.x/ exp.y/ D e
1
2 Œx;y� exp.xC y/:

Proof. The statement is easily seen to hold if one of x and y is an integer multiple
of 1

18
c. So, it suffices to show the statement in the case when x D

P
v2V avxv and

yD
P
v2V bvxv , with .av/v2V ; .bv/v2V 2 .

1
3
Z/V . Then, xC yD

P
v2V .av C bv/xv .

Choose any ordering on V to write its elements as v1; v2; : : : ; vN . For notational
convenience, write avr D ar and bvr D br for each r D 1; : : : ; N , and "vrvs D "rs
for r; s D 1; : : : ; N . Note thathY
v2V

Xavv
i

Weyl

hY
v2V

Xbvv
i

Weyl

Dq�
P
r<s "rsaras .Xa1v1 � � �X

aN
vN
/ � q�

P
r<s "rsbrbs .Xb1v1 � � �X

bN
vN
/ .* Definition 2.19/

Dq�
P
r<s "rs.arasCbrbs/Xa1v1 � � �X

aN
vN

Xb1v1 � � �X
bN
vN
:
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Now, we use Lemma 2.16 to move the factor Xb1v1 to the left till it meets Xa1v1 , then
move Xb2v2 to the left till it meets Xa2v2 , etc.:hY
v2V

Xavv
i

Weyl

hY
v2V

Xbvv
i

Weyl

D q�
P
r<s "rs.arasCbrbs/q�

PN
rD2 "r1arb1.Xa1v1Xb1v1/Xa2v2 � � �X

aN
vN

Xb2v2 � � �X
bN
vN

D q�
P
r<s "rs.arasCbrbs/q2

PN
rD2 "r1arb1q2

PN
rD3 "r2arb2

� .Xa1v1Xb1v1/.X
a2
v2

Xb2v2/Xa3v3 � � �X
aN
vN

Xb3v3 � � �X
bN
vN

D � � � D q�
P
r<s "rs.arasCbrbs/q2

P
r>s "rsarbs .Xa1v1Xb1v1/.X

a2
v2

Xb2v2/ � � � .X
aN
vN

XbNvN /

D q�
P
r<s "rs.arasCbrbs/q2

P
r<s "srasbrXa1Cb1v1

� � �XaNCbNvN
;

where for the last equality we exchanged the indices r and s for the second sum over
r and s appearing in the exponent of q. On the other hand, note from Definition 2.19
that hY

v2V

XavCbvv

i
Weyl
D q�

P
r<s "rs.arCbr /.asCbs/Xa1Cb1v1

� � �XaNCbNvN
;

and note that 1
2
Œx;y�D 1

2

P
r;s2¹1;:::;N º arbsŒxvr ;xvs �D

P
r;s2¹1;:::;N º "rsarbsc, where

we used equation (4.5). So, in view of qa D eac for a 2 1
18

Z, to show exp.x/exp.y/D
e
1
2 Œx;y� exp.xC y/, it remains to show

�

X
r<s

"rs.aras C brbs/C 2
X
r<s

"srasbr

D

X
r;s2¹1;:::;N º

"rsarbs �
X
r<s

"rs.ar C br/.as C bs/:

Subtracting �
P
r<s "rs.aras C brbs/ from both sides, rewriting "sr in the second

sum of the left-hand side as �"rs , and adding
P
r<s "rs.arbs C bras/ to both sides,

this equation becomesX
r<s

"rs.�2asbr C arbs C bras/ D
X

r;s2¹1;2;:::;N º

"rsarbs:

The left-hand side equals
P
r<s "rs.�asbr C arbs/. For the right-hand side, write the

sum
P
r;s as the sum of three sums

P
rDs.�/C

P
r<s.�/C

P
r>s.�/; the first sum

for r D s vanishes because "rr D 0, the second sum equals
P
r<s "rsarbs , and the

third sum can be written with the indices r and s exchanged asX
s>r

"srasbr D
X
r<s

"rs.�asbr/:

So, one observes that the left-hand side equals the right-hand side.



Naturality of SL3 quantum trace maps for surfaces 193

Step 2 involves twelve nodes v1; : : : ; v12 appearing in Figure 2. We denote the
generators .Z.r/vj /

˙1 D .X.r/vj /
˙1=3, j D 1; : : : ; 12, of the cube-root Fock–Goncharov

algebra Z!
�.r/

, r D 0; 1; 2; 3; 4, by .Z.r/j /˙1 D .X.r/j /˙1=3, and the “log” generators
1
3

x.r/vj D z.r/vj of H�.r/ (Definition 4.8) by 1
3

x.r/j D z.r/j . Here,�.r/, r D 0; 1; 2; 3; 4, is

defined as in the discussion above equation (3.9) in Section 3.3. The entries ".r/vj ;vk of

the exchange matrix ".r/ for �.r/ are written as ".r/
jk

. An element .a.r/vj /
12
jD1 of .1

3
Z/V

would be denoted by .a.r/j /12jD1 2 .
1
3
Z/12. As in Section 3, for r D 4, the superscript

.4/ may be replaced by the prime symbol 0, such as Z.4/j D Z0j , X.4/j D X0j , z.4/j D z0j ,

x.4/j D x0j , ".4/
jk
D "0

jk
, a.4/j D a

0
j .

For Step 2 (and Step 1), we need to investigate �!v7�
!
v12
.Tr!�0IQ.ŒW;s�//. By Propo-

sition 3.14, we know that Tr!�0IQ.ŒW; s�/ is a sum of �0-balanced Laurent monomials
in Z!�0 (Definition 3.11). So, we will first investigate �!v7�

!
v12
.U0/ for an arbitrary

�0-balanced Laurent monomial U0 D Œ
Q12
jD1 X0j

a0
j �Weyl D exp.

P12
jD1 a

0
j x0j /, where

.a0j /
12
jD1 2 .

1
3
Z/12 D .1

3
Z/V is �0-balanced (Definition 3.9). In fact, in the proof of

Lemma 3.29, we have already performed this computation. In particular, there we
checked that U0, hence Tr!�0IQ.ŒW; s�/ as well, belongs to bFracv12.Z

!
�0/ which is the

domain of

�!v12 D �
]!
v12
�0v12 W

bFracv12.Z
!
�0/!

bFracv12.Z
!
�.3/

/ � Frac.Z!
�.3/

/;

and that �!v12.U
0/ belongs to bFracv7.Z

!
�.3/

/ � Frac.Z!
�.3/

/ which is the domain of

�!v7 D �
]!
v7
�0v7 W

bFracv7.Z
!
�.3/

/! bFracv7.Z
!
�.2/

/ � Frac.Z!
�.2/

/:

We also investigated explicitly how the image �!v7�
!
v12
.U0/ 2 Frac.Z!

�.2/
/ is given,

which we could recollect here. However, in order to lessen the amount of computation,
we perform a slight manipulation, which essentially kills the effect of the maps �0v7
and �0v12 . We first justify this process in the following lemma.

Lemma 4.10. An element Y of Frac.Z!
�.2/

/ is Laurent for �.2/ if and only if the ele-
ment .�0v12/

�1.�0v7/
�1.Y/ of Frac.Z!�0/ is Laurent for �0, where �0v12 W Frac.Z!�0/!

Frac.Z!
�.3/

/ and �0v7 W Frac.Z!
�.3/

/! Frac.Z!
�.2/

/ are as defined in Definition 3.18.
Moreover, when Y is Laurent for �.2/, i.e., when Y 2 Z!

�.2/
, it is multiplicity-free (in

the sense of Lemma 2.20 (3)) if and only if .�0v12/
�1.�0v7/

�1.Y/ 2 Z!�0 is multiplicity-
free.

Proof. It is enough to recall from Lemma 3.19 (6) that as each of �0v12 and �0v7 is
invertible and that each of them and their inverses sends Laurent monomials to Lau-
rent monomials.

We go on to investigate .�0v12/
�1.�0v7/

�1.�!v7�
!
v12
.Tr!�0IQ.ŒW; s�///.
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Lemma 4.11. Let .a0j /
12
jD1 2 .

1
3
Z/12D .1

3
Z/V be�0-balanced (Definition 3.9). Then,

to the element exp.
P12
jD1 a

0
j x0j / of Z!�0 the composition of maps

.�0v12/
�1.�0v7/

�1�!v7�
!
v12

can be applied, where

�!v12 W
bFracv12.Z

!
�0/!

bFracv12.Z
!
�.3/

/

and �!v7 W bFracv7.Z
!
�.3/

/! bFracv7.Z
!
�.2/

/ are as in Definition 3.23, and

�0v7 W Frac.Z!
�.3/

/! Frac.Z!
�.2/

/

and �0v12 W Frac.Z!�0/! Frac.Z!
�.3/

/ are as in Definition 3.18. The image is given by

.�0v12/
�1.�0v7/

�1�!v7�
!
v12

 
exp

 
12X
jD1

a0j x0j

!!

D exp

 
12X
jD1

a0j x0j

!
F q
�
X0�17 I˛

.3/
�
F q
�
X0�112 I˛

.4/
�
;

(4.6)

where F q is as in equation (3.4), and the numbers ˛.3/ and ˛.4/ are given by

˛.3/ WD a01 C a
0
4 � a

0
3 � a

0
6; ˛.4/ WD a03 C a

0
10 � a

0
4 � a

0
9;

which are integers.

Proof. First, note that the domain issues are dealt with in the proof of Lemma 3.29.
Namely, if we follow the notation there and let U0D exp.

P12
jD1 a

0
j x0j /, then it is proved

there that �!v7�
!
v12
.U0/ indeed makes sense as a well-defined element of Frac.Z!

�.2/
/.

There is no problem applying .�0v12/
�1.�0v7/

�1 to �!v7�
!
v12
.U0/. (One may want to see

Lemma 3.19 (6).)
In equation (3.30) in the proof of Lemma 3.29, we obtained

�!v7�
!
v12
.U0/ D U.2/V.2/�qv7.V

.3//;

where U.2/ D �0v7.U
.3// D �0v7.�

0
v12
.U0//, V.2/ D F q.X.2/7 I˛

.3//, and

V.3/ D F q.X.3/12 I˛
.4//;

where ˛.3/ and ˛.4/ are given by equation (3.15). Note that in the proof of Lemma 3.21
we found formulas to express ˛.3/ and ˛.4/ in terms of .a0j /

12
jD1 in equation (3.21),

namely, ˛.3/ WD a01 C a
0
4 � a

0
3 � a

0
6 and ˛.4/ WD a03 C a

0
10 � a

0
4 � a

0
9, as written in the
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statement of the current lemma. The integrality of ˛.3/ and ˛.4/ was the content of
Lemma 3.21. To summarize, we have

�!v7�
!
v12
.U0/ D

�
�0v7�

0
v12
.U0/

�
F q
�
X.2/7 I˛

.3/
�
�qv7

�
F q
�
X.3/12 I˛

.4/
��
:

Thus, applying the skew field isomorphism

.�0v12/
�1.�0v7/

�1
W Frac.Z!

�.2/
/! Frac.Z!�0/

to both sides, we get

.�0v12/
�1.�0v7/

�1�!v7�
!
v12
.U0/

D U0 F q
�
.�0v12/

�1.�0v7/
�1.X.2/7 /„ ƒ‚ …I˛.3/�F q�.�0v12/�1.�0v7/�1�qv7.X.3/12 /„ ƒ‚ …I˛.4/�;

and we just need to compute the two underbraced arguments of F q .
From equation (3.13) of Lemma 3.19 (6), we see that

.�0v12/
�1.�0v7/

�1.X.2/7 / D .�0v12/
�1
�
.X.3/7 /�1

�
D
��

X07.X
0
12/

Œ"
.3/
7;12

�C
�

Weyl

��1
D .X07/

�1;

where in the last equality we used ".3/7;12 D 0 (see equation (3.16)). Observe that

�qv7.X
.3/
12 / D �

]q
v7
�0v7.X

.3/
12 / .* Definition 3.5/

D �]qv7.X
.2/
12 /

�
* equation (3.5); ".2/7;12D0 .see equation (3.17)/

�
D X.2/12 � F

q
�
X.2/7 I "

.2/
7;12

�
.* equation (3.6)/

D X.2/12
�
* "

.2/
7;12 D 0; Definition 3.4

�
;

and that

.�0v12/
�1.�0v7/

�1.X.2/12 /

D .�0v12/
�1.X.3/12 /

�
* equation (3.13); ".2/12;7 D 0 .see equation (3.17)/

�
D .X012/

�1 .* equation (3.13)/;

which finishes the computation of the two underbraced parts, hence the desired state-
ment.

Remark 4.12. Lemma 4.11 is all we need for our purposes, but one could also com-
pute �!v7�

!
v12
.exp.

P12
jD1 a

0
j x0j // explicitly by similar computations and obtain

�!v7�
!
v12

 
exp

 
12X
jD1

a0j x0j

!!
D

 
exp

 
12X
jD1

a
.2/
j x.2/j

!!
F q
�
X.2/7 I˛

.3/
�
F q
�
X.2/12 I˛

.4/
�
;
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where .a.2/j /12jD1 2 .
1
3
Z/12 is given by

a
.2/
7 D �a

0
7 C a

0
3 C a

0
6; a

.2/
12 D �a

0
12 C a

0
4 C a

0
9; a

.2/
j D a

0
j 8j ¤ 7; 12;

(see Lemma 3.21 and equation (3.18)), and ˛.3/ and ˛.4/ are the same as in Lemma
4.11. This result is what is used in a previous version of the present paper, which we
now replaced by Lemma 4.11, which lessens the subsequent computations.

Now, we apply the above lemmas. In each case of W and each state s of W ,
Step 2 of the previous subsection requires us to check that �!v7�

!
v12
.Tr!�0IQ.ŒW; s�// is

Laurent for�.2/ and is multiplicity-free. Due to Lemma 4.10, it suffices to check that
.�0v12/

�1.�0v7/
�1�!v7�

!
v12
.Tr!�0IQ.ŒW; s�// is Laurent for�0 and is multiplicity-free. We

perform this checking in the following subsection, with the help of Lemma 4.11.

4.4. Checking the quantum Laurent property and the multiplicity-freeness

In each of the four cases of W in Figure 6, and each state s, we will now check that
.�0v12/

�1.�0v7/
�1�!v7�

!
v12
.Tr!�0IQ.ŒW; s�// is Laurent for�0 and is multiplicity-free. We

will first compute Tr!�0IQ.ŒW; s�/ and observe that it is a multiplicity-free sum of
Weyl-ordered Laurent monomials exp.

P12
jD1 a

0
j x0j / for some .a0j /

12
jD1 2 .

1
3
Z/12. We

know from Proposition 3.14 that these .a0j /
12
jD1 are�0-balanced in the sense of Defini-

tion 3.9. Hence, we can apply Lemma 4.11. As seen in equation (4.6), the application
of .�0v12/

�1.�0v7/
�1�!v7�

!
v12

to exp.
P12
jD1 a

0
j x0j / has the effect of gaining the factor

F q.X0�17 I ˛.3//F q.X0
�1
12 I ˛

.4//. When this factor is merely rational but not Laurent,
checking the Laurentness for Step 2 is non-trivial. When Tr!�0IQ.ŒW;s�/ involves some
X07 and X012, checking the multiplicity-freeness for Step 2 is nontrivial, even though
Tr!�0IQ.ŒW; s�/ is multiplicity-free. For actual checking of Step 2, for each case of W ,
we will make a table of values of a0j , ˛.3/, and ˛.4/.

Suppose that s assigns the state values "1; "2 2 ¹1; 2; 3º to the initial and the
terminal endpoints of W . We would sometimes write s as the pair ."1; "2/. We write
Tr!�0 for Tr!�0IQ.

Case 1
. This case falls into Theorem 2.23 (QT2-1); hence, one can observe that
Tr!�0.ŒW; s�/ is the image under the map Wl!�0 (Definition 4.3) of the ."1; "2/-th entry
of the classical matrix0@Z0

2
Z0
1

2
0 0

0 Z0
2
Z0
1

�1
0

0 0 Z0
2

�2
Z0
1

�1

1A0@Z0
3

2
Z0
3

2
CZ0

3

�1
Z0
3

�1

0 Z0
3

�1
Z0
3

�1

0 0 Z0
3

�1

1A0@Z0
8
Z0
9

2
0 0

0 Z0
8
Z0
9

�1
0

0 0 Z0
8

�2
Z0
9

�1

1A
D

0@Z02Z012Z032Z08Z092 Z02Z012Z032Z08Z09�1CZ02Z012Z03�1Z08Z09�1 Z02Z
0
1

2
Z03
�1
Z08
�2
Z09
�1

0 Z02Z
0
1

�1
Z03
�1
Z08Z

0
9

�1
Z02Z

0
1

�1
Z03
�1
Z08
�2
Z09
�1

0 0 Z02
�2
Z01
�1
Z03
�1
Z08
�2
Z09
�1

1A.
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By inspection, Tr!�0.ŒW; s�/ is a Weyl-ordered multiplicity-free Laurent polynomial
for �0, with each summand Laurent monomial term being of the form

Wl!�
�
X 02

a0
2X 01

a0
1X 03

a0
3X 08

a0
8X 09

a0
9
�
D exp

 
12X
jD1

a0j x0j

!

with .a0j /
12
jD1 2 .

1
3
Z/12 and a0j D 0 if j 62 ¹2;1;3;8;9º. By Proposition 3.14, .a0j /

12
jD1 2

.1
3
Z/12 is �0-balanced, which one can also directly check easily in this case. For

each of these Laurent monomials, we record a01; a
0
3; a
0
9, ˛.3/ D a01 C a

0
4 � a

0
3 � a

0
6 D

a01 � a
0
3 and ˛.4/ D a03 C a

0
10 � a

0
4 � a

0
9 D a

0
3 � a

0
9 in the following table; in the first

row, ."1; "2/ stands for the ."1; "2/-th entry, and ."1; "2/k for the k-th term of the
."1; "2/-th entry.

.1; 1/ .1; 2/1 .1; 2/2 .1; 3/ .2; 2/ .2; 3/ .3; 3/

a01 2=3 2=3 2=3 2=3 �1=3 �1=3 �1=3

a03 2=3 2=3 �1=3 �1=3 �1=3 �1=3 �1=3

a09 2=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3

˛.3/ 0 0 1 1 0 0 0
˛.4/ 0 1 0 0 0 0 0

Therefore, for each column, since ˛.3/; ˛.4/ 2 ¹0; 1º, we see that

F q.X0�17 I˛
.3//F q.X0�112 I˛

.4//

is a multiplicity-free Laurent polynomial in the variables X07 and X012, in view of
equation (3.4). As Tr!�0.ŒW; s�/ does not involve X07 or X012 for any s in this case, using
equation (4.6) of Lemma 4.11, we see that .�0v12/

�1.�0v7/
�1�!v7�

!
v12
.Tr!�0.ŒW; s�// is

Laurent for �0 and is multiplicity-free, as desired.

Case 2
. This case falls into Theorem 2.23 (QT2-2); hence, one can observe that
Tr!�0.ŒW; s�/ is the image under the map Wl!�0 of the ."1; "2/-th entry of the classical
matrix0@Z0

9
Z0
8

2
0 0

0 Z0
9
Z0
8

�1
0

0 0 Z0
9

�2
Z0
8

�1

1A Z03 0 0

Z0
3

Z0
3

0

Z0
3
Z0
3
CZ0

3

�2
Z0
3

�2

!0@Z0
1
Z0
2

2
0 0

0 Z0
1
Z0
2

�1
0

0 0 Z0
1

�2
Z0
2

�1

1A :
So, by inspection, Tr!�0.ŒW; s�/ is a Weyl-ordered multiplicity-free Laurent polyno-
mial for�0, with each summand Laurent monomial being of the form exp.

P12
jD1a

0
j x0j /

with .a0j /
12
jD1 2 .

1
3
Z/12, where a0j D 0 when j 62 ¹9; 8; 3; 1; 2º. For nonzero Laurent

monomials, we record

a09; a
0
3; a

0
1; ˛

.3/
D a01 � a

0
3 and ˛.4/ D a03 � a

0
9:
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.1; 1/ .2; 1/ .2; 2/ .3; 1/ .3; 2/1 .3; 2/2 .3; 3/

a09 1=3 1=3 1=3 �2=3 �2=3 �2=3 �2=3

a03 1=3 1=3 1=3 1=3 1=3 �2=3 �2=3

a01 1=3 1=3 1=3 1=3 1=3 1=3 �2=3

˛.3/ 0 0 0 0 0 1 0
˛.4/ 0 0 0 1 1 0 0

Again, since ˛.3/; ˛.4/ 2 ¹0; 1º and Tr!�0.ŒW; s�/ does not involve X07 or X012, using
equation (4.6) of Lemma 4.11, we see that .�0v12/

�1.�0v7/
�1�!v7�

!
v12
.Tr!�0.ŒW; s�// is

Laurent for �0 and is multiplicity-free, as desired.

Case 3
. We claim that Tr!�0.ŒW; s�/ is the image under the map Wl!�0 of the ."1; "2/-
th entry of the classical matrix0@Z0

6
Z0
5

2
0 0

0 Z0
6
Z0
5

�1
0

0 0 Z0
6

�2
Z0
5

�1

1A
�

0@Z0
4

2
Z0
4

2
CZ0

4

�1
Z0
4

�1

0 Z0
4

�1
Z0
4

�1

0 0 Z0
4

�1

1A0@Z0
7
Z0
12

2
0 0

0 Z0
7
Z0
12

�1
0

0 0 Z0
7

�2
Z0
12

�1

1A0@Z0
3

2
Z0
3

2
CZ0

3

�1
Z0
3

�1

0 Z0
3

�1
Z0
3

�1

0 0 Z0
3

�1

1A
�

0@Z0
1
Z0
2

2
0 0

0 Z0
1
Z0
2

�1
0

0 0 Z0
1

�2
Z0
2

�1

1A :
First, let us verify this at the classical level. Conceptually, as mentioned in the proof of
Proposition 4.7, the “SL3 classical trace” Tr1�0.ŒW; ��/ corresponds to the monodromy
matrix MW I�0 associated toW , or more precisely to the projection �.W / ofW in the
surface S, where the monodromy matrix is given by the product of basic monodromy
matrices given in (MM1)–(MM3) of [33, Section 4.2]. The state s of Tr1�0.ŒW;s�/ indi-
cates which entry we read from the matrix MW I�0 . The above expression presents the
product of five basic monodromy matrices. We first divide W into five small pieces,
as done in [33, Section 4.2]. The first factor is the “edge matrix” (MM1) associated
to the initial piece of W passing through the lower-left-side edge of Q having v5 and
v6. The second factor is the “left-turn matrix” (MM2) associated to the second piece
of W in the interior of the lower triangle of �0 having v4. The third factor is the edge
matrix (MM1) for the piece ofW passing through the diagonal edge of�0. The fourth
factor is the left-turn matrix (MM2) for the next piece ofW in the interior of the upper
triangle of �0. The fifth factor is the edge matrix (MM1) for the last piece of W pass-
ing through the upper-left-side edge of Q having v1 and v2. A proof that the values
of the SL3 classical trace are indeed the entries of the monodromy matrices can be
obtained by using Theorem 2.23 in the case !1=2 D 1, especially by the cutting/gluing
axiom (QT1) which justifies the interpretation in terms of the product of monodromy
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matrices for parts of W living in the two triangles of �0. A precise argument can be
found in the proof of [33, Proposition 5.69].

Before proving the analogous statement for the quantum case Tr!�0.ŒW; s�/, note
that the product of the underlined middle three matrices in the above product expres-
sion is
0BBB@
Z04
2
Z07Z

0
12

2
Z03
2

Z04
2
Z07Z

0
12

2
.Z03

2
CZ03

�1
/C .Z04

2
CZ04

�1
/Z07Z

0
12

�1
Z03
�1

.Z04
2
Z07Z

0
12

2
C .Z04

2
CZ04

�1
/Z07Z

0
12

�1
CZ04

�1
Z07
�2
Z012
�1
/Z03
�1

0 Z04
�1
Z07Z

0
12

�1
Z03
�1

Z04
�1
.Z07Z

0
12

�1
CZ07

�2
Z012
�1
/Z03
�1

0 0 Z04
�1
Z07
�2
Z012
�1
Z03
�1

1CCCA :

So, by inspection, the SL3-classical trace Tr1�0.ŒW; s�/ is a multiplicity-free Laurent
polynomial for �0.

Let us investigate the SL3 quantum trace Tr!�0.ŒW; s�/. Cutting the quadrilateral Q

into two ideal triangles t1 and t2 by the internal arc e of �0, with t1 being the bottom
triangle in Figure 6, we apply the cutting/gluing axiom Theorem 2.23 (QT1). Then,

i�0;�0e Tr!�0.ŒW; s�/ D
X
s1;s2

Tr!t1.ŒW1; s1�/Tr!t2.ŒW2; s2�/ (4.7)

withWi WDW \ .ti � I/ and Tr!ti is with respect to the unique ideal triangulation of ti ,
where the sum is over all pairs of states s1; s2 ofW1 andW2 that are compatible with s
in the sense of Definition 2.21. Each ofW1 � t1 � I andW2 � t2 � I falls into the case
of Theorem 2.23 (QT2); for this particular setting of Case 3
, both are left turns, i.e.,
(QT2-1). Hence, from Theorem 2.23 (QT2), we see that Tr!ti .ŒWi ; si �/ is an entry of a
3 � 3 matrix with entries being multiplicity-free Laurent polynomials in Z!t1 . Hence,
from the state-sum formula in equation (4.7), one can deduce that Tr!�0.ŒW; s�/ is a
multiplicity-free Laurent polynomial in Z!�0 . In the meantime, we have observed by
using Proposition 4.5 that Tr!�0.ŒW; s�/ is �-invariant (see the paragraph following
Proposition 4.5). Therefore, by Lemma 2.20 (3), Tr!�0.ŒW; s�/ is (term-by-term) Weyl-
ordered, and hence by Lemma 4.4, or more precisely by the discussion preceding it,
Tr!�0.ŒW; s�/ equals the image under Wl!�0 of its classicalization, namely, Tr1�0.ŒW; s�/,
as claimed.

Now, by inspection on the classical monodromy matrices for Tr1�0.ŒW; s�/, one
finds out that Tr!�0.ŒW; s�/ is a Weyl-ordered multiplicity-free Laurent polynomial in
Z!�0 with each summand Laurent monomial being of the form exp.

P12
jD1 a

0
j x0j / with

.a0j /
12
jD1 2

�
1

3
Z

�12
;

where a0j D 0 when j 62 ¹6; 5; 4; 7; 12; 3; 1; 2º. We record the nonzero a0j ’s,

˛.3/ D a01 C a
0
4 � a

0
3 � a

0
6

and
˛.4/ D a03 C a

0
10 � a

0
4 � a

0
9 D a

0
3 � a

0
4:
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.1; 1/ .1; 2/1 .1; 2/2 .1; 2/3 .1; 2/4 .1; 3/1 .1; 3/2 .1; 3/3 .1; 3/4 .2; 2/ .2; 3/1 .2; 3/2 .3; 3/

a06 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 �2=3

a05 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 �1=3 �1=3 �1=3 �1=3

a04 2/3 2/3 2/3 2/3 �1=3 2/3 2/3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3

a07 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 �2=3 1/3 1/3 �2=3 �2=3

a012 2/3 2/3 2/3 �1=3 �1=3 2/3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3

a03 2/3 2/3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3

a01 1/3 1/3 1/3 1/3 1/3 �2=3 �2=3 �2=3 �2=3 1/3 �2=3 �2=3 �2=3

a02 2/3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3

˛.3/ 0 0 1 1 0 0 0 �1 �1 0 �1 �1 0

˛.4/ 0 0 �1 �1 0 �1 �1 0 0 0 0 0 0

For the entries .1; 1/, .2; 2/, and .3; 3/, we have

˛.3/ D ˛.4/ D 0I

henceF q.X0�17 I˛.3//F q.X0
�1
12 I˛

.4//D1, and therefore using equation (4.6) of Lemma
4.11 we see that .�0v12/

�1.�0v7/
�1�!v7�

!
v12
.Tr!�0.ŒW; s�// is Laurent for�0 and is multi-

plicity-free, as desired, for the cases when the state s is .1; 1/, .2; 2/, or .3; 3/.
We have ˛.4/D�1 for .1;2/2 and .1;2/3, which represent the second and the third

terms exp.
P12
jD1 a

0
j x0j / of the .1; 2/-th entry Tr!�0.ŒW; .1; 2/�/; in the corresponding

two columns in the above table, the only difference is a012. We compute the sum of
these two terms:

exp
�
1

3
x06 C

2

3
x05 C

2

3
x04 C

1

3
x07 C

2

3
x012 �

1

3
x03 C

1

3
x01 �

1

3
x02

�
C exp

�
1

3
x06 C

2

3
x05 C

2

3
x04 C

1

3
x07 �

1

3
x012 �

1

3
x03 C

1

3
x01 �

1

3
x02

�
D exp

�
1

3
x06 C

2

3
x05 C

2

3
x04 C

1

3
x07 C

2

3
x012 �

1

3
x03 C

1

3
x01 �

1

3
x02

�
� .1C e�c exp.�x012//;

where we used the BCH formula (Lemma 4.9), and�
1

3
x06 C

2

3
x05 C

2

3
x04 C

1

3
x07 C

2

3
x012 �

1

3
x03 C

1

3
x01 �

1

3
x02; �x012

�
D 2

�
�
1

3
"06;12�

2

3
"05;12�

2

3
"04;12�

1

3
"07;12�

2

3
"012;12C

1

3
"03;12�

1

3
"01;12C

1

3
"02;12

�
c

.* equation (4.5)/

D 2

�
�
1

3
� 0 �

2

3
� 0 �

2

3
� .�1/ �

1

3
� 0 �

2

3
� 0C

1

3
� 1 �

1

3
� 0C

1

3
� 0

�
c

.* read from Figure 2/

D 2c:
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In more detail, if we denote 1
3

x06 C
2
3

x05 C
2
3

x04 C
1
3

x07 C
2
3

x012 �
1
3

x03 C
1
3

x01 �
1
3

x02
by x0, then what is just done is ex0 C ex0�x0

12
Lemma 4.9
D ex0 C e�

1
2 Œx
0;�x0

12
�ex0e�x0

12 D

ex0 C e�cex0e�x0
12 D ex0.1C e�ce�x0

12/. Note that

1C e�c exp.�x012/ D 1C q
�1X0�112 D

�
F q
�
X0�112 I �1

���1
.* equation (3.4)/:

This means that

.the sum of the second and third terms of Tr!�0.ŒW; .1; 2/�// � F
q
�
X0�112 I �1

�
is a Laurent monomial; it equals ex0 in our notation. So, in view of equation (4.6)
of Lemma 4.11, and since F q.X0�17 I ˛.3// D F q.X0�17 I 1/ D 1 C qX0�17 , it follows
that .�0v12/

�1.�0v7/
�1�!v7�

!
v12
.Tr!�0.ŒW; .1; 2/�// is Laurent for �0. We note that the

multiplicity-free-ness is not immediate, although we know that Tr!�0.ŒW; .1; 2/�/ is
multiplicity-free; this is because of the factors F q.X.2/7 I˛

.3// and F q.X.2/12 I˛
.4//. For

simplicity, let us denote by .1;2/r the r-th Laurent monomial term of Tr!�0.ŒW; .1;2/�/
so that Tr!�0.ŒW; .1; 2/�/ D

P4
rD1.1; 2/r . In particular, we have .1; 2/2 D ex0 and

.1; 2/3 D e
x0�x0

12 in our notation. From equation (4.6) and our computation above, we
have

.�0v12/
�1.�0v7/

�1�!v7�
!
v12

�
Tr!�0.ŒW; .1; 2/�/

�
D .1; 2/1C .1; 2/2

�
1C qX0�17

�
C .1; 2/4:

So, to check if this is multiplicity-free, we should check in the above table of values
of a0j that no two of the columns labeled by .1; 2/1, .1; 2/2, .1; 2/4 and a new column
obtained from the .1; 2/2 column by shifting the value of a07 by �1 (hence a07 D�2=3
for this new column), which, respectively, represent the terms .1; 2/1, .1; 2/2, .1; 2/4,
and .1; 2/2 � qX0�17 , have identical values of a0j . This can be done by inspection, and
hence we can conclude that .�0v12/

�1.�0v7/
�1�!v7�

!
v12
.Tr!�0.ŒW; .1; 2/�// is Laurent for

�0 and is multiplicity-free, as desired.
We do likewise for .1; 3/1 and .1; 3/2, where ˛.3/ D 0 and ˛.4/ D �1; the two

columns in the above table differ only at a012. The sum of the corresponding two terms
exp.

P12
jD1 a

0
j x02/ is

exp
�
1

3
x06 C

2

3
x05 C

2

3
x04 C

1

3
x07 C

2

3
x012 �

1

3
x03 �

2

3
x01 �

1

3
x02

�
C exp

�
1

3
x06 C

2

3
x05 C

2

3
x04 C

1

3
x07 �

1

3
x012 �

1

3
x03 �

2

3
x01 �

1

3
x02

�
D exp

�
1

3
x06C

2

3
x05C

2

3
x04C

1

3
x07C

2

3
x012�

1

3
x03�

2

3
x01�

1

3
x02

�
.1Ce�c exp.�x012//

by a similar computation as before; note especially that the difference between this
situation and that for .1; 2/2 and .1; 2/3 is just the coefficient of x01. So,�

the sum of the first and the second terms of Tr!�0.ŒW; .1; 3/�/
�
� F q

�
X0�112 I �1

�
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is a Laurent monomial, which is same as the Laurent monomial term for .1; 3/1. Let
us now investigate .1; 3/3 and .1; 3/4, where

˛.3/ D �1 and ˛.4/ D 0:

The only difference of these two columns is at a07. The sum of the corresponding two
terms exp.

P12
jD1 a

0
j x0j / is

exp
�
1

3
x06 C

2

3
x05 �

1

3
x04 C

1

3
x07 �

1

3
x012 �

1

3
x03 �

2

3
x01 �

1

3
x02

�
C exp

�
1

3
x06 C

2

3
x05 �

1

3
x04 �

2

3
x07 �

1

3
x012 �

1

3
x03 �

2

3
x01 �

1

3
x02

�
D exp

�
1

3
x06C

2

3
x05�

1

3
x04C

1

3
x07�

1

3
x012�

1

3
x03�

2

3
x01�

1

3
x02

�
.1Ce�c exp.�x07//;

where we used the BCH formula (Lemma 4.9) and�
1

3
x06 C

2

3
x05 �

1

3
x04 C

1

3
x07 �

1

3
x012 �

1

3
x03 �

2

3
x01 �

1

3
x02; �x07

�
D 2

�
�
1

3
"06;7 �

2

3
"05;7 C

1

3
"04;7 �

1

3
"07;7 C

1

3
"012;7 C

1

3
"03;7 C

2

3
"01;7 C

1

3
"02;7

�
c

.* equation (4.5)/

D 2

�
�
1

3
� .�1/ �

2

3
� 0C

1

3
� 1 �

1

3
� 0C

1

3
� 0C

1

3
� .�1/C

2

3
� 1C

1

3
� 0

�
c

.* read from Figure 2/

D 2c:

Since 1C e�c exp.�x07/ D 1C q
�1X0�17 D .F q.X0�17 I �1//�1, it follows that�

the sum of the third and the fourth terms of Tr!�0.ŒW; .1; 3/�/
�
� F q

�
X0�17 I �1

�
is a Laurent monomial, which is the Laurent monomial term for .1; 3/3. Combining,
in view of equation (4.6) of Lemma 4.11, we conclude that

.�0v12/
�1.�0v7/

�1�!v7�
!
v12
.Tr!�0.ŒW; .1; 3/�//

is a Laurent polynomial, having two terms, which are the Laurent monomial terms for
.1; 3/1 and .1; 3/3 of Tr!�0.ŒW; .1; 3/�/. By inspection on the columns for .1; 3/1 and
.1;3/3 in the above table for a0j , we see that .�0v12/

�1.�0v7/
�1�!v7�

!
v12
.Tr!�0.ŒW;.1;3/�//

is multiplicity-free, as desired.
Lastly, we investigate .2; 3/1 and .2; 3/2, where

˛.3/ D �1 and ˛.4/ D 0I
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the only difference of the two columns in the table is at a07. The sum of the corre-
sponding two terms exp.

P12
jD1 a

0
j x0j / is

exp
�
1

3
x06 �

1

3
x05 �

1

3
x04 C

1

3
x07 �

1

3
x012 �

1

3
x03 �

2

3
x01 �

1

3
x02

�
C exp

�
1

3
x06 �

1

3
x05 �

1

3
x04 �

2

3
x07 �

1

3
x012 �

1

3
x03 �

2

3
x01 �

1

3
x02

�
D exp

�
1

3
x06�

1

3
x05�

1

3
x04C

1

3
x07�

1

3
x012�

1

3
x03�

2

3
x01�

1

3
x02

�
.1Ce�c exp.�x07//;

by a similar computation as in the situation for .1; 3/3 and .1; 3/4, which differs from
the current situation just at the coefficient of x05. So,

.�0v12/
�1.�0v7/

�1�!v7�
!
v12
.Tr!�0.ŒW; .2; 3/�//

is a Laurent monomial, hence is a multiplicity-free Laurent polynomial, as desired.

Case 4
. The flow of logic will be similar. By a similar reasoning as in Case 3
, one
can note that Tr!�0.ŒW; s�/ is the image under Wl!�0 of the ."1; "2/-th entry of the
classical matrix0@Z0

2
Z0
1

2
0 0

0 Z0
2
Z0
1

�1
0

0 0 Z0
2

�2
Z0
1

�1

1A
�

 
Z0
3

0 0

Z0
3

Z0
3

0

Z0
3
Z0
3
CZ0

3

�2
Z0
3

�2

!0@Z0
12
Z0
7

2
0 0

0 Z0
12
Z0
7

�1
0

0 0 Z0
12

�2
Z0
7

�1

1A Z04 0 0

Z0
4

Z0
4

0

Z0
4
Z0
4
CZ0

4

�2
Z0
4

�2

!

�

0@Z0
5
Z0
6

2
0 0

0 Z0
5
Z0
6

�1
0

0 0 Z0
5

�2
Z0
6

�1

1A ;
where the product of the underlined middle three matrices is
0BBB@

Z03Z
0
12Z

0
7

2
Z04 0 0

Z03Z
0
12.Z

0
7

2
CZ07

�1
/Z04 Z03Z

0
12Z

0
7

�1
Z04 0

.Z03Z
0
12Z

0
7

2
C .Z03 CZ

0
3

�2
/Z012Z

0
7

�1
CZ03

�2
Z012
�2
Z07
�1
/Z04 .Z03 CZ

0
3

�2
/Z012Z

0
7

�1
Z04 CZ

0
3

�2
Z012
�2
Z07
�1
.Z04 CZ

0
4

�2
/ Z03

�2
Z012
�2
Z07
�1
Z04
�2

1CCCA :

The table of terms exp.
P12
jD1 a

0
j x0j / for Tr!�0.ŒW; s�/, together with

˛.3/ D a01 C a
0
4 � a

0
3 � a

0
6

and

˛.4/ D a03 C a
0
10 � a

0
4 � a

0
9 D a

0
3 � a

0
4;
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are recorded as before.

.1;1/ .2;1/1 .2;1/2 .2;2/ .3;1/1 .3;1/2 .3;1/3 .3;1/4 .3;2/1 .3;2/2 .3;2/3 .3;2/4 .3;3/

a02 1/3 1/3 1/3 1/3 �2=3 �2=3 �2=3 �2=3 �2=3 �2=3 �2=3 �2=3 �2=3

a01 2/3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3

a03 1/3 1/3 1/3 1/3 1/3 1/3 �2=3 �2=3 1/3 �2=3 �2=3 �2=3 �2=3

a012 1/3 1/3 1/3 1/3 1/3 1/3 1/3 �2=3 1/3 1/3 �2=3 �2=3 �2=3

a07 2/3 2/3 �1=3 �1=3 2/3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3 �1=3

a04 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 �2=3 �2=3

a05 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 �2=3

a06 2/3 2/3 2/3 �1=3 2/3 2/3 2/3 2/3 �1=3 �1=3 �1=3 �1=3 �1=3

˛.3/ 0 �1 �1 0 �1 �1 0 0 0 1 1 0 0

˛.4/ 0 0 0 0 0 0 �1 �1 0 �1 �1 0 0

We should focus on the cases when ˛.3/ or ˛.4/ is nonzero. The sum of the relevant
terms exp.

P12
jD1 a

0
j x0j / for such cases are as follows:

.2; 1/1; .2; 1/2 W exp
�
1

3
x02 �

1

3
x01 C

1

3
x03 C

1

3
x012 C

2

3
x07 C

1

3
x04 C

1

3
x05 C

2

3
x06

�
C exp

�
1

3
x02 �

1

3
x01 C

1

3
x03 C

1

3
x012 �

1

3
x07 C

1

3
x04 C

1

3
x05 C

2

3
x06

�
D exp

�
1

3
x02�

1

3
x01C

1

3
x03C

1

3
x012C

2

3
x07C

1

3
x04C

1

3
x05C

2

3
x06

�
.1Ce�c exp.�x07//;

.3; 1/1; .3; 1/2 W exp
�
�
2

3
x02 �

1

3
x01 C

1

3
x03 C

1

3
x012 C

2

3
x07 C

1

3
x04 C

1

3
x05 C

2

3
x06

�
C exp

�
�
2

3
x02 �

1

3
x01 C

1

3
x03 C

1

3
x012 �

1

3
x07 C

1

3
x04 C

1

3
x05 C

2

3
x06

�
D exp

�
�
2

3
x02�

1

3
x01C

1

3
x03C

1

3
x012C

2

3
x07C

1

3
x04C

1

3
x05C

2

3
x06

�
.1Ce�c exp.�x07//;

.3; 1/3; .3; 1/4 W exp
�
�
2

3
x02 �

1

3
x01 �

2

3
x03 C

1

3
x012 �

1

3
x07 C

1

3
x04 C

1

3
x05 C

2

3
x06

�
C exp

�
�
2

3
x02 �

1

3
x01 �

2

3
x03 �

2

3
x012 �

1

3
x07 C

1

3
x04 C

1

3
x05 C

2

3
x06

�
D exp

�
�
2

3
x02�

1

3
x01�

2

3
x03C

1

3
x012�

1

3
x07C

1

3
x04C

1

3
x05C

2

3
x06

�
.1Ce�c exp.�x012//;

.3; 2/2; .3; 2/3 W exp
�
�
2

3
x02 �

1

3
x01 �

2

3
x03 C

1

3
x012 �

1

3
x07 C

1

3
x04 C

1

3
x05 �

1

3
x06

�
C exp

�
�
2

3
x02 �

1

3
x01 �

2

3
x03 �

2

3
x012 �

1

3
x07 C

1

3
x04 C

1

3
x05 �

1

3
x06

�
D exp

�
�
2

3
x02�

1

3
x01�

2

3
x03C

1

3
x012�

1

3
x07C

1

3
x04C

1

3
x05�

1

3
x06

�
.1Ce�c exp.�x012//:
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So, in view of equation (4.6) of Lemma 4.11, for each s D ."1; "2/, we can verify by
a similar reasoning as in Case 3
 that .�0v12/

�1.�0v7/
�1�!v7�

!
v12
.Tr!�0.ŒW; ."1; "2/�// is

Laurent for �0 and is multiplicity-free.
This finishes Step 2 (hence also Step 1) of the previous subsection and therefore

completes our proof of Theorem 4.1, the main theorem of the present paper.

5. Consequences and conjectures

5.1. Naturality of quantum SL3-PGL3 duality maps under changes
of triangulations

The main consequence and motivation of our main theorem, Theorem 4.1, is the nat-
urality of the quantum SL3-PGL3 duality maps of [33] for triangulable punctured
surfaces under a change of ideal triangulation�Ý�0. We urge the readers to keep in
mind that, in the present subsection, the surfaces are assumed to have empty boundary.

Theorem 5.1 (Naturality of the quantum duality maps under changes of triangula-
tions). Let S be a triangulable punctured surface. For each ideal triangulation �
of S (without self-folded triangles (Definition 2.3)), let X

q
� be the Fock–Goncharov

algebra as defined in Definition 2.15. Then, the family of quantum SL3-PGL3 duality
maps

Iq� W ASL3;S.Z
T /! X

q
�

constructed in [33, Theorems 1.28, 5.83] is compatible under the quantum coordinate
change maps associated to changes of ideal triangulations. That is, if � and �0 are
ideal triangulations of S (without self-folded triangles) and ˆq��0 W Frac.Xq

�0/ !

Frac.Xq
�/ is the corresponding quantum coordinate change map (defined in Defini-

tion 3.7), then
Iq�.`/ D ˆ

q
��0.I

q
�0.`// 8` 2 ASL3;S.Z

T /:

We briefly recall from the construction in [33] of this map Iq�. We first need to
discuss the domain ASL3;S.Z

T /, which is the set of ZT -points of the space ASL3;S.
Here, ZT is the semi-field of tropical integers, which is Z as a set, equipped with
two binary operations called the tropical addition ˚ and the tropical multiplication
ˇ, defined as a ˚ b WD max.a; b/ and a ˇ b D a C b. Instead of recalling the def-
inition of ASL3;S and hence of ASL3;S.Z

T / [17], we will only see how these are
understood in our situation. First, recall the set AL.SIZ/ of all SL3-laminations in S

(Definition 2.13) and the “tropical” coordinate-system map (Proposition 3.10)

a� W AL.SIZ/!

�
1

3
Z

�V.Q�/

; ` 7! .av.`//v2V.Q�/;
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developed in [14, 33], which is injective. Upon the change of triangulations �Ý�0,
it is proved in [15,33] that the coordinate maps a� and a�0 are related to each other by
a tropicalized version of the coordinate change formula for the sequence of cluster A-
mutations associated to the transformations �Ý�0 as mentioned in Section 1; here,
tropicalization means that one replaces the usual addition, product, and division by the
tropical counterparts. These tropicalized coordinate change formulas are piecewise
Z-linear. In particular, the integrality condition a�.`/ 2 ZV.Q�/ holds if and only if
a�0.`/ 2 ZV.Q�0 /. In [33], an SL3-lamination ` 2 AL.SIZ/ is said to be congruent
if a�.`/ 2 ZV.Q�/ � .1

3
Z/V.Q�/ holds for some �, hence for all � (thanks to the

piecewise Z-linearity); i.e., all tropical coordinate values which a priori live in 1
3
Z are

actually integers. So, for a congruent SL3-lamination `, the coordinates

a�.`/ D .av.`//v2V.Q�/

are integer-valued at each node v of the quiver Q�, and they transform via the tropi-
calized cluster A-mutations under the change of triangulations, in a suitable manner.
In this sense, it was concluded in [33] that the set of all congruent SL3-laminations in
S is in natural bijection with ASL3;S.Z

T /, giving a geometric meaning to the alge-
braically defined set ASL3;S.Z

T /. See also [1, 23, 41] for other geometric models for
what can be called the SL3-laminations, i.e., the elements of ASL3;S.Z

T /.
We will construct a map Iq� not just on the set ASL3;S.Z

T / � AL.SIZ/ of con-
gruent SL3-laminations in S, but on the set AL.SIZ/ of all SL3-laminations, with
the codomain of the map replaced by yZ!�. That is, we will give a construction of a
map

Iq� W AL.SIZ/! yZ
!
�

and then later restrict on the subset ASL3;S.Z
T /. We note that, in [33], this map on

AL.SIZ/ is denoted by yI!� while its restriction to ASL3;S.Z
T / is denoted by Iq; here,

we write yI!� just as Iq� to save notations.
Let ` 2 AL.SIZ/, i.e., an SL3-lamination in S. If ` D ¿, set Iq�.`/ WD 1. Now,

assume that ` is non-empty. Write ` as a disjoint union ` D `1 [ `2 [ � � � [ `n, where
each `i is an SL3-lamination represented by a single component SL3-web Wi in S,
with weight ki 2 Z n ¹0º. Here, following [33, Definition 3.31], SL3-laminations are
said to be disjoint if they can be represented by non-elliptic SL3-webs in S that are
disjoint, and a union of disjoint SL3-laminations is called a disjoint union of SL3-
laminations; in fact, we consider a union of SL3-laminations only when they are
disjoint.

If Wi is not a peripheral loop (Definition 2.13), then let

Iq�.`i / WD
�
Tr!�.Œ zWi ;¿�/

�ki ; (5.1)
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where zWi is a lift ofWi in S� I at a constant elevation with upward vertical framing;
the ki -th power makes sense because ki > 0. If Wi is a peripheral loop, let

Iq�.`i / WD
h Y
v2V.Q�/

Xav.`i /
v

i
Weyl
I (5.2)

that is, Iq�.`i /D Œ.
Q
v2V.Q�/

Xav.Wi /
v /ki �Weyl D .Œ.

Q
v2V.Q�/

Xav.Wi /
v /�Weyl/

ki in this

case (we used Lemma 3.20 (C) and the fact that
Q
v2V.Q�/

Xav.Wi /
v is invertible),

whereWi denotes the SL3-lamination consisting just ofWi with weight 1. Finally, let

Iq�.`/ D Iq�.`1/I
q
�.`2/ � � � I

q
�.`n/; (5.3)

given by the product.
If Wi is not a peripheral loop, then Iq�.`i / D .Tr!�.Œ zWi ;¿�//ki lies in yZ!� � Z!�

because Tr!�.Œ zWi ;¿�/ lies in yZ!� due to Proposition 3.14, and yZ!� is a subring of
Z!�. If Wi is a peripheral loop, then from equation (5.2) and equation (5.5) we have
Iq�.`i /D X`i D Œ

Q
v2V Xav.`i /

v �Weyl. From Proposition 3.10, Definitions 3.9 and 3.11,
we see that Iq�.`i / 2

yZ!�. In particular, we can deduce that each factor Iq�.`i / in the
right-hand side of equation (5.3) belongs to yZ!�.

Proposition 5.2. Above Iq�.`/ is a well-defined element of yZ!� � Z!�.

To prove Proposition 5.2, what needs to be checked is that each Iq�.`i / com-
mutes with each Iq�. j̀ /. This is addressed in [33, Lemma 5.74], with the treatment
of peripheral loops left as an exercise, as being an SL3-analog of [3, Lemma 3.9]
which is for the setting of SL2. For completeness, we give a proof here. We note that
the method presented below (for SL3) can be modified to give an alternative proof
of [3, Lemma 3.9] for SL2. We first establish a following statement about peripheral
loops. For the remainder of the present section, we let

V D V.Q�/

for convenience, unless there is a possible confusion.

Lemma 5.3. Let `0 be an SL3-lamination in S represented by a union of peripheral
loops (Definition 2.13) with arbitrary weights, and let `0 be any SL3-lamination in S.
Then, Œ

Q
v2V Xav.`0/

v �Weyl commutes with Œ
Q
v2V Xav.`0/

v �Weyl, that is,hY
v2V

Xav.`0/
v

i
Weyl

hY
v2V

Xav.`0/
v

i
Weyl
D

hY
v2V

Xav.`0/
v

i
Weyl

hY
v2V

Xav.`0/
v

i
Weyl

: (5.4)

Proof of Lemma 5.3. For convenience, let us introduce some temporary notations for
this proof. For any SL3-lamination ` in S, write

X` WD
hY
v2V

Xav.`/
v

i
Weyl

: (5.5)
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An SL3-lamination in S will be called a weight-positive if it can be represented by
a non-elliptic SL3-web in S with all weights being non-negative. An SL3-lamination
in S is called a peripheral if it can be represented by a non-elliptic SL3-web in S

given by a union of peripheral loops (with arbitrary weights). A peripheral is called a
single peripheral if it can be represented by a single peripheral loop. So, the sought-
for equation equation (5.4) can be written as

X`0X`
0

D X`
0

X`0 ;

which should be proved for each peripheral `0 and each weight-positive `0. We do this
in several steps.

Step 1: X`0X`0 D X`0X`0 holds when `0 is a single peripheral and `0 is a weight-
positive.

Let `0 and `0 be as such. Then, `0 can be represented by a non-elliptic SL3-web
W0 in S consisting of a peripheral loop, with some weight k0 2 Z. Let zW0 be a
constant-elevation lift of W0 in S � I with upward vertical framing. Similarly, `0 can
be represented by a non-elliptic SL3-web W 0 in S, all of whose components are of
weight 1. Let zW 0 be a constant-elevation lift of W 0 in S � I with upward vertical
framing.

One can isotope W0 so that W0 is contained in a small enough neighborhood of
the puncture it surrounds so thatW0 is disjoint fromW 0. Denote still by zW0 the corre-
sponding lift of W0 in S � I. Since the product structure of �!s .SIZ/red is defined
by superposition, one can then observe that the elements Œ zW0;¿� and Œ zW 0;¿� of
�!s .SIZ/red commute with each other. Since Tr!� is an algebra homomorphism (The-
orem 2.23), we thus have

Tr!�.Œ zW0;¿�/Tr!�.Œ zW
0;¿�/ D Tr!�.Œ zW

0;¿�/Tr!�.Œ zW0;¿�/: (5.6)

Note that Proposition 3.15, the highest-term statement, applies to both Œ zW0;¿� and
Œ zW 0;¿�. Thus, Tr!�.Œ zW0;¿�/ is a Laurent polynomial with the unique highest Laurent
monomial term being XW0 , where W0 denotes the SL3-lamination represented by W0
with weight 1, and Tr!�.Œ zW

0;¿�/ is a Laurent polynomial with the unique highest
Laurent monomial term being X`0 . We can then observe that the left-hand side of
equation (5.6) is a Laurent polynomial with the unique highest term being XW0X`0 ,
whereas the right-hand side is a Laurent polynomial with the unique highest term
being X`0XW0 . The equality of equation (5.6) says that these highest terms of the left
and the right sides agree, i.e., XW0X`0 D X`0XW0 . Note from av.`0/ D k0 � av.W0/
and Lemma 3.20 (C) that X`0 D .XW0/k0 . From this, we obtain the sought-for com-
mutation relation

X`0X`
0

D X`
0

X`0 :
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Step 2: X`0X`0 D X`0X`0 holds when `0 and `0 are single peripherals.
Let `0 be represented by a single peripheral loopW 0 in S with weight k0 2 Z, and

view W 0 as an SL3-lamination itself, with weight 1. Then, W 0 is a weight-positive;
hence, Step 1 applies, yielding X`0XW 0 DXW 0X`0 . By a similar reasoning used at the
end of Step 1, we have X`0 D .XW 0/k0 . Hence, X`0X`0 D X`0X`0 follows, as desired.

Step 3: X`0X`0 D X`0X`0 holds when `0 and `0 are any peripherals.
One can write `0 as a disjoint union `0 D `1 [ `2 [ � � � [ `n, with each `i being

a single peripheral for i D 1; : : : ; n; then, av.`0/ D av.`1/ C � � � C av.`n/ for all
v 2 V (see [33, Lemma 3.32]). By Step 2, X`i D Œ

Q
v2V Xav.`i /

v �Weyl and X j̀ D

Œ
Q
v2V Xav. j̀ /

v �Weyl commute for each i; j 2 ¹1; : : : ; nº. Thus,

X`1 � � �X`n D
hY
v2V

Xav.`1/
v

i
Weyl
� � �

hY
v2V

Xav.`n/
v

i
Weyl

D

hY
v2V

Xav.`1/C���Cav.`n/
v

i
Weyl

.* Lemma 3.20 (A)/

D

hY
v2V

Xav.`0/
v

i
Weyl
D X`0 :

Likewise, if one writes `0 as a disjoint union `0D `01 [ � � � [ `
0
r of single peripherals `0i ,

the Laurent monomials X`01 ; : : : ;X`0r commute with each other, and X`0 DX`01 � � �X`0r .
Note that Step 2 says that each of X`i commutes with each of X`

0
j also. Hence, X`0

and X`0 commute, as desired.

Step 4: X`0X`0 D X`0X`0 holds when `0 is any peripheral and `0 is a weight-positive.
Write `0 as a disjoint union `0 D `1 [ `2 [ � � � [ `n of single peripherals so that

X`0 D X`1 � � �X`n as seen in the proof of Step 3. Since each `i for i D 1; : : : ; n is a
single peripheral, by Step 1 we have X`iX`0 D X`0X`i . Thus,

X`0X`
0

DX`1X`2 � � �X`nX`
0

DX`1X`2 � � �X`
0

X`nD � � �DX`
0

X`1X`2 � � �X`nDX`
0

X`0 ;

where we moved X`0 to the left using the commutation relations X`iX`0 D X`0X`i ,
i D 1; : : : ; n.

Step 5: X`0X`0 D X`0X`0 holds when `0 is any peripheral and `0 is any SL3-lamina-
tion.

First, let `00 be any peripheral such that the disjoint union `00 WD `0 [ `00 is a weight-
positive. Such `00 exists; for example, one can construct `00 as the SL3-lamination
based on the SL3-web given by the union of all peripheral loops whose isotopy classes
appear in `0, given big enough positive weights (this idea is used in [33]). Following
the notation in [33], denote by �`00 the SL3-lamination obtained from `00 by mul-
tiplying all weights by �1 (when `00 is represented by an SL3-web with weights on
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components). As in [33, Lemma 3.33], we then have av.�`00/D�av.`00/ for all v 2V ,
and also `0 [ `00 [ .�`

0
0/ D `0 holds as SL3-laminations. (Here, the left-hand side

`0 [ `00 [ .�`
0
0/ is a disjoint union of SL3-laminations.) So, we have `00 [ .�`00/D `

0,
and hence, av.`00/C av.�`00/ D av.`0/ for all v 2 V [33, Lemma 3.32].

Since `0 is a peripheral and `00 is a weight-positive, Step 4 applies and yields

X`0X`
00

D X`
00

X`0 : (5.7)

Since �`00 is a peripheral and `00 is a weight-positive, Step 4 applies and yields

X�`
0
0X`

00

D X`
00

X�`
0
0 ;

which, together with av.`00/C av.�`00/ D av.`0/ and Lemma 3.20 (A), implies that

X`
0

D X�`
0
0X`

00

: (5.8)

Note now that

X`0X`
0

D X`0X�`
0
0X`

00

.* equation (5.8)/

D X�`
0
0X`0X`

00

.* `0;�`
0
0 are peripherals; apply Step 3/

D X�`
0
0X`

00

X`0 .* equation (5.7)/

D X`
0

X`0 .* equation (5.8)/;

as desired.

Corollary 5.4. Let `0 be an SL3-lamination in S consisting only of peripheral loops
(with arbitrary weights). Then,

X`0 D
h Y
v2V

Xav.`0/
v

i
Weyl

(equation (5.5)) is in the center of the�-balanced cube-root Fock–Goncharov algebra
yZ!� � Z!� (Definition 3.11).

Proof of Corollary 5.4. In view of the definition of yZ!� (Definition 3.11), it suffices
to show that X`0 commutes with each�-balanced Laurent monomial Œ

Q
v2V Xavv �Weyl

for �, with .av/v2V being an arbitrary element of .1
3
Z/V that is �-balanced in the

sense of Definition 3.9. Pick any such .av/v2V . Then, by Proposition 3.10, there exists
an SL3-lamination ` in S such that the tuple of its tropical coordinates .av.`//v2V

coincides with the tuple .av/v2V . Thus, Œ
Q
v2V Xavv �Weyl D X`, using the notation in

equation (5.5). We showed in Lemma 5.3 that X`0 commutes with X`, as desired.

We are now ready to prove Proposition 5.2, which is on the well-definedness of
Iq�.`/ 2

yZ!�.
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Proof of Proposition 5.2. As mentioned, what needs to be checked is that each pair of
factors Iq�.`i / and Iq�. j̀ / appearing in the product expression in the right-hand side of
equation (5.3) commute with each other. Recall that an SL3-lamination ` is expressed
as a disjoint union `1 [ `2 [ � � � [ `n of SL3-laminations, and that `i is represented by
a single-component SL3-web Wi in S with weight ki 2 Z n ¹0º; we can assume that
W1; : : : ; Wn are disjoint from each other. We denoted by zWi a constant-elevation lift
in S � I of Wi with upward vertical framing. Since we are dealing with a punctured
surface, zWi has no endpoints.

Since the projections of zWi to S are mutually disjoint, one observes that the ele-
ments Œ zWi ;¿� of �!s .SI Z/red, for i D 1; : : : ; n, mutually commute with respect
to the superposition product (Definition 2.11). Since the SL3 quantum trace map
Tr!� W �

!
s .SIZ/red ! Z!� is an algebra homomorphism (Theorem 2.23), it follows

that Tr!�.Œ zWi ;¿�/, for i D 1; : : : ; n, hence also their positive powers .Tr!�.Œ zWi ;¿�//ki
(with ki 2 Z>0), mutually commute. It follows that Iq�.`i / and Iq�. j̀ / commute if
neither Wi nor Wj is a peripheral loop; see equation (5.1).

Suppose thatWi is a peripheral loop. Then, since Iq�. j̀ / 2
yZ!� for all j , it follows

from Corollary 5.4 that Iq�.`i / D X`i commutes with Iq�. j̀ / for all j .
So, all Iq�.`i /, i D 1; : : : ; n, mutually commute with each other; hence, indeed

Iq�.`/ is well defined through equation (5.3). Moreover, since we saw that each Iq�.`i /

belongs to the algebra yZ!�, it follows that Iq�.`/ 2
yZ!�.

By applying Proposition 3.15 to each Iq�.`i / in equation (5.3) and using arguments
similar to above, together with the additivity of the tropical coordinates as in [33,
Lemma 3.32], one can show that Iq�.`/ has the unique highest term Œ

Q
v2V Xav.`/

v �Weyl

[33, Theorem 5.83 (3)]. In case `2AL.SIZ/ belongs to ASL3;S.Z
T /, we have av.`/ 2

Z for all v 2 V , so this highest term is an element of X
q
� � Z!�. Now, from Proposi-

tion 3.16, it follows that the other Laurent monomial terms of Iq�.`/ 2Z!� also belong
to X

q
�; hence, Iq�.`/ 2 X

q
�, as desired, for ` 2 ASL3;S.Z

T /. So, indeed, the image
under Iq� W AL.SIZ/! yZ!� of the subset ASL3;S.Z

T / lies in X
q
�, so the restriction

of Iq� on ASL3;S.Z
T / can be written as

Iq� W ASL3;S.Z
T /! X

q
�:

Notice that the arguments so far, which are largely based on [33], prove that, for
` 2 ASL3;S.Z

T /, Iq�.`/ is a well-defined Laurent polynomial in the variables Xv ,
v 2 V D V.Q�/, with coefficients being in ZŒ!˙1=2� D ZŒq˙1=18�. It is expected in
[33, Section 5] that the coefficients live in ZŒq˙1=2� (in fact in ZŒq˙1� when S is a
punctured surface, without boundary, as we are assuming now), but this has not been
proved and left as a conjecture.

We now turn into the proof of Theorem 5.1, i.e., the naturality of Iq� with respect
to the quantum coordinate change maps. In view of the above construction of Iq�,
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Theorem 4.1 yields the naturality‚!��0I
q
�0.`i /D Iq�.`i / for each `i that is not repre-

sented by a peripheral loop (equation (5.1)). For peripheral loops, we need some more
work; namely, the following proposition yields the naturality ‚!��0I

q
�0.`i / D Iq�.`i /

for `i represented by a peripheral loop.

Proposition 5.5. Let� be an ideal triangulation of a triangulable generalized marked
surface S that has at least one puncture. LetW be a constant-elevation (with upward
vertical framing) lift in S � I of an oriented peripheral loop in S surrounding a
puncture.

(1) Tr!�.ŒW;¿�/ is a sum of three Weyl-ordered �-balanced Laurent monomials
in Z!� (Definition 2.19).

(2) Among the three Laurent monomial terms of Tr!�.ŒW;¿�/ 2 Z!�, the Laurent
monomial of the highest partial ordering is Œ

Q
v2V.Q�/

Xav.�.W //
v �Weyl.

(3) For any other ideal triangulation �0, one hash Y
v2V.Q�/

Xav.�.W //
v

i
Weyl
D ‚!��0

�h Y
v2V.Q�0 /

.X0v/
a0v.�.W //

i
Weyl

�
;

where a0v.�.W // denote the tropical coordinates of �.W / in terms of �0.

Proof of Proposition 5.5. One may note that the two items (1) and (2) are proved
for the classical setting !1=2 D 1 in [33, Proposition 4.15]. In the quantum setting,
the arguments in the proof of this classical setting still go through, in case when the
projection �.W / ofW is a loop in S that meets each arc of� at most once. However,
in a general case, one needs to come up with a more careful treatment, as we do now.
First, one can isotopeW , within the class of constant-elevation SL3-webs in S � I so
that W meets � � I in a minimal number. Then, � � I divides W into left- or right-
turn oriented edges living over triangles of�, where these arcs are either all left turns
or all right turns (see, e.g., [33, Lemma 4.11]). Assume that they are all left turns.
The case of the all-right-turn can be taken care of with only a slight modification of
the argument. Consider a split ideal triangulation y� for � (as explained immediately
after Proposition 2.24), and assume that W still meets y� � I in a minimal number
so that, for each biangle B of y�, W \ .B � I/ consists of “parallel” arcs (i.e., non-
intersecting simple arcs at the same elevation). Apply a vertical isotopy to W so that,
for each triangle Ot of y�, each of the components of W \ .Ot � I/ is at a constant
elevation at all times throughout the isotopy, and that in the end, for each triangle
Ot of y�, the components of W \ .Ot � I/ are at mutually distinct elevations. So, W
would be in a “good position” with respect to y�, and in fact in a “gool position”, in
the sense used in [33, Section 5.3]. Still, for each biangle B of y�, the projection of
W \ .B � I/ in S consists of parallel arcs in B (i.e., non-intersecting simple arcs
in B connecting the two sides of B), but a component of W \ .B � I/ may not be
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at a constant elevation. In fact, what matters is the ordering of the elevations of the
components of W \ .Ot � I/ for each triangle Ot . Let t and u be two triangles of �
sharing a side so that the corresponding triangles Ot and Ou of y� “share” a common
biangle B . We say that the ordering of components of the part of W living over Ot
is compatible with that for Ou at this biangle B , if the ordering of elevations of the
endpoints of W \ .Ot � I/ lying over a side of B and that of the endpoints of W \
. Ou � I/ lying over the other side of B correspond to each other by the connectedness
relation by the arcs of W \ .B � I/. That is, to say, the SL3-web W \ .B � I/ in
B � I can be isotoped by a vertical isotopy within the class of the SL3-webs in B � I
so that the components of W \ .B � I/ lie in mutually distinct elevation intervals.
Another way to put it is that the element ŒW \ .B � I/� of the SL3-skein algebra
�!.BIZ/ (Definition 2.11) is given by the product of its constituent edges, each of
which connects the two sides of B . It is proved in [10, Theorem 1.2] that the ordering
of elevations of the components of W \ .Ot � I/ for each triangle Ot can be chosen so
that the above compatibility holds at all biangles of y�. Let us use such an elevation
ordering for each triangle Ot .

Consider the junctures W \ .y� � I/, and a juncture-state

J W W \ .y� � I/! ¹1; 2; 3º:

First, the state-sum formula in equation (2.4) [33, Section 5.3] yields

Tr!�.ŒW;¿�/ D
X
J

�Y
B

Tr!B.ŒW \ .B � I/; J �/
��Y

Ot

Tr!
Ot
.ŒW \ .Ot � I/; J �/

�
; (5.9)

where the sum is over all juncture-states J , the product
Q
B is over all biangles B

of y�, and the product
Q
Ot is over all triangles Ot of y�. Since W was put into a good

(or a gool) position, for each Ot , Tr!
Ot
.ŒW \ .Ot � I/; J �/ is a product of Tr!

Ot
.ŒWOt Ii ; J �/,

where WOt I1; WOt I2; : : : are components of W \ .Ot � I/, each of which is a left-turn
edge over Ot . Because of the elevation compatibility at each biangle B , we see that
Tr!B.ŒW \ .B � I/; J �/ is a product of Tr!B.ŒWBIj ; J �/, where WBI1; WBI2; : : : are
components of W \ .B � I/, each of which is a simple edge over B connecting the
two boundary walls of B . For each component WBIj , by Proposition 2.24 (BQT2),

Tr!B.ŒWBIj ; J �/D

´
1 ifJ assigns the same state values to the two endpoints ofWBIj ;

0 otherwise:
(5.10)

Lemma 5.6. A juncture-state J WW \ .y�� I/!¹1;2;3º has a nonzero contribution
to the sum in equation (5.9) if and only if J is a constant juncture-state, i.e., assigns
the same value to all junctures.
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This follows from equations (5.9), (5.10), and Theorem 2.23 (QT2) which says
that the value of each Tr!

Ot
.ŒWOt Ii ; J �/ equals the ."1; "2/-th entry of the matrix in equa-

tion (2.3), where this matrix is upper triangular.
The .1; 1/-th entry of Tr!

Ot
.ŒWOt Ii ; J �/ is of the highest partial ordering (among

."; "/-th entries), so the constant juncture-state with value 1 yields the highest term of
Tr!�.ŒW;¿�/. By the proof of [33, Proposition 4.15], which is the classical counter-
part of items (1) and (2) of the current proposition, we then obtain items (1) and (2).
In general, the quantum situation is more subtle and complicated than the classical
situation, as the values of the biangle SL3 quantum trace Tr!B could be complicated,
as they are essentially a Reshetikhin–Turaev invariant for the standard 3-dimensional
representation of Uq.sl3/ [46], involving R-matrices. Here, the elevation compatibil-
ity of [10] allowed us to avoid such a complicated computation.

For item (3), it suffices to show the statement in the case when

�Ý�0

is a flip at an arc k. Let e be an arc of � that is different from k and that meets
the peripheral loop �.W /. Suppose that W is isotoped so that it satisfies the nice
properties with respect to a split ideal triangulation y� of � as above, i.e., in a gool
position and having the elevation ordering compatibility at biangles. Cut along e; let
Se be the resulting surface, �e and �0e the triangulations of Se induced from � and
�0, and We the SL3-web in Se , obtained by this cutting process (Definition 2.21).
Pick one point x inW \ .e � I/ (there can be at most two such points), and let x1 and
x2 be the endpoints of We corresponding to x. For a state se W @We ! ¹1; 2; 3º of We
that is compatible with the original state s W @W ! ¹1; 2; 3º of W , it must be that

se.x1/ D se.x2/

(note @W D ¿). For each " 2 ¹1; 2; 3º, denote by ."; "/ the state se that assigns " to
x1 and x2. By the cutting/gluing property (Theorem 2.23 (QT1)), we have

i�;�e Tr!�.ŒW;¿�/ D
3X
"D1

Tr!�e .ŒWe; ."; "/�/;

and in view of the relationship between the above equation and the state-sum formula
for Tr!�.ŒW;¿�/ in equation (5.9), one can observe that the summand in equation (5.9)
corresponding to the constant juncture-state J with value " is sent via the cutting map
i�;�e (Definition 2.21) to the term Tr!�e .ŒWe; ."; "/�/ on the right-hand side, likewise
for �0. Hence, we have

i�;�e .ŒTr!�.ŒW;¿�/�high/ D Tr!�e .ŒWe; .1; 1/�/;

i�0;�0e .ŒTr!�0.ŒW;¿�/�high/ D Tr!
�0e
.ŒWe; .1; 1/�/;
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where Œ��high stands for the highest Laurent monomial term. Note now (in the bal-
anced fraction algebras) that

i�;�e .‚
!
��0 ŒTr!�0.ŒW;¿�/�high/

D ‚!
�e�

0
e
i�0;�0e .ŒTr!�0.ŒW;¿�/�high/ .* Proposition 3.34/

D ‚!
�e�

0
e

Tr!
�0e
.ŒWe; .1; 1/�/

D Tr!�e .ŒWe; .1; 1/�/ .* Theorem 4.1/

D i�;�e .ŒTr!�.ŒW;¿�/�high/:

Hence, it follows from the injectivity of i�;�e (Lemma 2.22) that

‚!��0 ŒTr!�0.ŒW;¿�/�high D ŒTr!�.ŒW;¿�/�high:

Remark 5.7. The proof of Proposition 5.5 also yields an analogous result for periph-
eral arcs (Definition 2.13), when the surface S has boundary.

We finally arrive at a proof of Theorem 5.1.

Proof of Theorem 5.1. For a triangulable punctured surface S, by the construction
of the quantum duality map Iq�, Theorem 4.1 and Proposition 5.5 together imply
‚!��0I

q
�0.`i /D Iq�.`i / for all `i in equation (5.3); hence,‚!��0I

q
�0.`/D Iq�.`/ for all

` 2 AL.SIZ/. When ` 2 ASL3;S.Z
T /, we saw that Iq�0.`/ 2 X

q
�0 and Iq�.`/ 2 X

q
�.

Now, by Lemma 3.32, we can now write ˆq��0I
q
�0.`/ D Iq�.`/ for ` 2 ASL3;S.Z

T /,
hence Theorem 5.1.

Thus, the quantum duality maps Iq� for all ideal triangulations� of a triangulable
punctured surface S can be viewed as constituting a single quantum duality map

Iq W ASL3;S.Z
T /! O

q
tri.XPGL3;S/;

where O
q
tri.XPGL3;S/ stands for the ring of all elements that are “quantum X-Laurent”,

i.e., are Laurent in the quantum X-variables Xv , v 2 V.Q�/, i.e., belong to X
q
�, for

every ideal triangulation �. That is, for each ideal triangulation �, we define

O
q
�.XPGL3;S/ WD

\
�0

ˆ
q
��0.X

q
�0/ � X

q
� � Frac.Xq

�/;

where
T
�0 is over all ideal triangulations�0; note that O

q
�.XPGL3;S/ for different tri-

angulations are isomorphically identified through the (restrictions of) the mapsˆq��0 .
We denote these rings O

q
�.XPGL3;S/ for all possible ideal triangulations� collectively

by O
q
tri.XPGL3;S/. Recall the classical SL3-PGL3 duality map

I W ASL3;S.Z
T /! O.XPGL3;S/



H. K. Kim 216

constructed in [33], whose image forms a basis of O.XPGL3;S/, the ring of all regular
functions on Fock and Goncharov’s moduli stack XPGL3;S of “framed” PGL3-local
systems on S [17]. As mentioned in Section 1, it is known from [47, Theorem 1.1]
that O.XPGL3;S/ coincides with the ring Ocl.XPGL3;S/ of classical universally X-
Laurent elements, i.e., the elements of the Laurent polynomial ring X1

� Š ZŒ¹X˙1v W

v 2 V.Q�/º� that stay X-Laurent after arbitrary sequence of mutations (that is, X-
Laurent not just for all triangulations, but for all possible cluster X-seeds). Sending
each basis element I.`/ 2 O.XPGL3;S/ to Iq.`/ 2 O

q
tri.XPGL3;S/, one obtains a defor-

mation quantization map

O.XPGL3;S/! O
q
tri.XPGL3;S/

for the (Poisson) moduli space XPGL3;S for a triangulable punctured surface S.

5.2. Future perspectives

We list some conjectures that are not mentioned in the introduction.

Conjecture 5.8. Let S be a triangulable punctured surface. For each congruent
SL3-lamination ` 2 ASL3;S.Z

T /, the corresponding element Iq.`/ 2 O
q
tri.XPGL3;S/

belongs to O
q
cl.XPGL3;S/, i.e., is quantum X-Laurent for all cluster X-seeds for

XPGL3;S, not just for the seeds corresponding to ideal triangulations of S.

In the present paper, we had a glimpse of Conjecture 5.8. Namely, our proofs and
arguments can be used to show that this quantum X-Laurent property holds for the
cluster X-seeds sitting “in between” the seeds for the ideal triangulations. One pos-
sible expectation is that a quantum version of [47, Lemma 2.2] [26, Theorem 3.9]
would hold, which would say that if a quantum X-Laurent element for any chosen
seed stays quantum X-Laurent after all possible single mutations from this seed,
then this element is universally quantum X-Laurent. The author was informed by
Linhui Shen that one could prove this “expectation” for (the quantum version of)
the cluster X-variety XjQj associated to the mutation equivalence class jQj of any
initial quiver Q. Here, XjQj is the scheme made by gluing the split algebraic tori
GV
m D Spec.QŒX˙1v W v 2 V �/ (where V is the set of nodes of Q) associated to

cluster X-seeds obtained from the initial seed by sequences of mutations and seed
automorphisms, where the gluing maps are given by the corresponding rational coor-
dinate change formulas. We present a rough argument of this proof as follows: first,
observe from [4, Theorem 5.1] that this holds for (the quantum version of) the cluster
A-variety AjQj which is constructed with (quantum) cluster A-mutations instead of
(quantum) cluster X-mutations, and then, observe that one can embed the quantized
X-algebra Oq.XjQj/ into a quantized A-algebra Oq.AjQj/ (see [4]) as in [25, Proposi-
tion 18.5] so that the situation reduces to [4, Theorem 5.1]. Then, what would remain
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to show is whether Iq�.`/ stays quantum X-Laurent after mutating at a node lying in
the interior of a triangle.

Another direction of research related to Conjecture 5.8 is to extend the results
of the present paper, as well as those of [33] so that they incorporate more general
kinds of ideal triangulations without the non-self-foldedness (Definition 2.3) assump-
tion [30], and flips among them; we would allow self-folded triangles, and maybe we
should also take into consideration the “tagged” ideal triangulations [21].

Since O.XPGL3;S/ coincides with the ring Ocl.XPGL3;S/ Š O.XjQ�j/ of all ratio-
nal functions on XPGL3;S that are regular (i.e., X-Laurent) for all cluster X-seeds
[47, Theorem 1.1], once one has Conjecture 5.8 then one can write the deformation
quantization map as

Ocl.XPGL3;S/! O
q
cl.XPGL3;S/

or solely in terms of the cluster X-variety XjQ�j associated to the mutation-equiva-
lence class jQ�j of the quiver Q�

O.XjQ�j/! Oq.XjQ�j/:

After having Conjecture 5.8, the natural next step is the following conjecture.

Conjecture 5.9. Let S be a triangulable punctured surface. The elements Iq.`/, ` 2
ASL3;S.Z

T /, form a basis of O
q
cl.XPGL3;S/.

A natural approach to the above conjecture is to try to compare the elements Iq.`/

with the quantum theta functions of Davison and Mandel [12]; this approach is already
mentioned in [33], but an important tool for it that was missing in [33] is precisely
the main result of the present paper, Theorems 4.1 and 5.1. Another approach to Con-
jecture 5.9 without going through [12] nor Conjecture 5.8 is studied in a work in
progress, joint with Linhui Shen [36]. In [36], we will also extend the construction of
the SL3-PGL3 quantum duality map and proofs of its properties to the case of surfaces
with boundary; we note that most of the arguments work similarly as for punctured
surfaces, but there are some subtleties to deal with.

For readers’ reference, as suggested by a referee, we note that the classical and
quantum SL3-PGL3 duality maps constructed in [33] and studied in the present sec-
tion are higher-rank analogs of the well-known SL2-PGL2 duality maps, which we
briefly review now.

The classical SL2-PGL2 duality map I WASL2;S.Z
T /!O.XPGL2;S/ is constructed

by Fock and Goncharov [17], and a corresponding quantum SL2-PGL2 duality map

Iq W ASL2;S.Z
T /! O

q
tri.XPGL2;S/

is constructed by Allegretti and the author [3], where the latter is based on Bona-
hon and Wong’s SL2 quantum trace maps [7] going from the SL2 skein algebras to
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the Fock–Goncharov algebras for the 2-triangulation quiversQŒ2�
� (Figure 1) for ideal

triangulations � of S. The codomain ring O
q
tri.XPGL2;S/ of Iq is defined in a simi-

lar manner as O
q
tri.XPGL3;S/, using ideal triangulations of S; we remark that one can

regard the quantum duality map Iq of [3] as Iq W ASL2;S.Z
T /! O

q
cl.XPGL2;S/ (note

the codomain), thanks to the work of Mandel and Qin [45] which relates the result
of [3] and the work of Davison and Mandel [12]. In the meantime, the author was
informed by Linhui Shen that it is possible to directly prove that O

q
tri.XPGL2;S/ coin-

cides with O
q
cl.XPGL2;S/. Namely, we use the quantum version of [47, Lemma 2.2]

[26, Theorem 3.9] of which we presented a brief proof above; that is, if a quantum
X-Laurent element for a seed stays quantum Laurent after all possible single muta-
tions from that seed, then it is universally quantum X-Laurent. In this SL2-PGL2
setting, an ideal triangulation corresponds to a seed, and a mutation at a node means
flip at an ideal arc of the ideal triangulation, in case this flipping also yields an ideal
triangulation; we note that the coordinate change formula associated to a flip that
involves a self-folded triangle is slightly different from the cluster mutation formula
(see [17, Section 10.7] [2, Section 9] [30]). To prove O

q
tri.XPGL2;S/ D O

q
cl.XPGL2;S/,

it suffices to show that there exists an ideal triangulation of S such that flipping at
any of its constituent ideal arc yields an ideal triangulation; it is not hard to see that
this is true for punctured surfaces S, unless it is a thrice-punctured sphere. Indeed, for
surfaces with exactly one puncture, any ideal triangulation satisfies this. For a fourth-
punctured sphere, it is easy to come up with an explicit example that works. Say we
have such an ideal triangulation � for a surface with genus g and n punctures; intro-
duce a new puncture in the interior of any of the ideal triangles of �, and add to �
three new ideal arcs in this triangle incident to the new puncture to obtain an ideal
triangulation �0 for a surface with genus g and nC 1 punctures; one can see that �0

satisfies the property, finishing the proof by induction.
Fock and Goncharov realized the abstract set ASL2;S.Z

T /, which is the domain of
I and Iq , geometrically as a set of “SL2-laminations” in S, where an SL2-lamination
in a triangulable punctured surface S is a collection of isotopy classes of mutually
disjoint unoriented simple essential loops in S with integer weights, subject to certain
condition.

To a non-peripheral loop 
 in S Fock and Goncharov’s duality map I associates
the trace-of-monodromy function along 
 on XPGL2;S, and to a peripheral loop 
 is
associated a special monomial function (which is the “highest term” of the trace-of-
monodromy along 
 ). To a non-peripheral loop 
 with weight k 2 Z>0 is associated
the trace of Œ
�k D Œ
k� 2 �1.S/ (i.e., 
 going k times around), which can also be
given as a result of applying the k-th Chebyshev polynomial Tk of the first kind to
the trace of 
 , and to a peripheral loop 
 with weight k 2 Z is associated the k-
th power of the monomial function for 
 . To an SL2-lamination the duality map I



Naturality of SL3 quantum trace maps for surfaces 219

associates the product of functions associated to its mutually non-homotopic compo-
nents as just described. Here, the polynomials Tk.t/ 2 ZŒt � are defined recursively by
T0.t/ D 1, T1.t/ D t , Tk.t/ D tTk�1.t/� Tk�2.t/, k � 2; its characteristic property
is tr.Ak/D Tk.tr.A// for A 2 SL2. These polynomials are used in the construction of
I by Fock and Goncharov [17] and also in that of Iq by Allegretti and the author for
non-peripheral loops with positive weights, and hence, the corresponding bases (i.e.,
the images of the duality maps) are called bracelets bases.

On the other hand, to a non-peripheral loop 
 with weight k 2 Z>0 one can try
associating the k-th power of the trace of 
 , which is different from trace of 
k , as
.tr.A//k ¤ tr.Ak/ forA2 SL2 in general. Nevertheless, this also leads to duality maps
and hence bases of the rings of regular functions, which are called bangles bases. The
terms “bracelets” and “bangles” come from the literature on bases of the SL2 skein
algebras (see [52]); a “bracelet” represents a picture of a simple loop winding around
multiple times (hence having some self-intersections), whereas a “bangle” represents
a picture of multiple parallel copies of a simple loop. In terms of properties mostly
related to the theory of cluster varieties, the bracelets bases have been considered as
more canonical objects than the bangles bases.

We note that the classical and quantum SL3-PGL3 duality maps constructed in [33]
are higher-rank analogs of the bangles bases for SL2-PGL2, as opposed to the bracelets
bases for SL2-PGL2. We expect that what can be called SL3-PGL3 bracelets bases
should be more canonical objects. For a non-peripheral loop component of an SL3-
lamination, say, represented by a loop 
 with weight k 2 Z�0, a bracelets duality
map would associate the trace of Œ
�k D Œ
k� 2 �1.S/ (as already mentioned in [33]),
while the bangles duality map of [33] associates the k-th power of 
 as seen in
equation (5.1). In an upcoming joint work with Thang Lê [35], one special property
satisfied by these bracelets SL3-PGL3 duality maps but not by the bangles duality
maps will be studied; see also the work of Bonahon and Higgins [6]. However, as
mentioned in [33, Section 6], it is not clear how the web components having 3-valent
vertices should be dealt with, in what would be regarded as full “correct” higher
analogs of the SL2-PGL2 bracelets bases, and it is an interesting and important future
problem to study this.
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