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Existence of surfaces optimizing geometric
and PDE shape functionals under reach constraint

Yannick Privat, Rémi Robin, and Mario Sigalotti

Abstract. This article deals with the existence of hypersurfaces minimizing general shape function-
als under certain geometric constraints. We consider as admissible shapes orientable hypersurfaces
satisfying a so-called reach condition, also known as the uniform ball property, which ensures C1;1

regularity of the hypersurface. In this paper, we revisit and generalize the results of Dalphin (2018
and 2020) and Guo and Yang (2013). We provide a simpler framework and more concise proofs
of some of the results contained in these references and extend them to a new class of problems
involving PDEs. Indeed, by using the signed distance, we avoid the intensive and technical use of
local maps, as was the case in the above references. Our approach, originally developed to solve
an existence problem in Privat, Robin, and Sigalotti’s 2022 paper, can be easily extended to costs
involving different mathematical objects associated with the domain, such as solutions of elliptic
equations on the hypersurface.

1. Framework and main results

1.1. Introduction

In this paper, we are interested in the question of the existence of optimal sets for shape
optimization problems involving surfaces. More precisely, we are interested in shape func-
tionals written as

J.�/ D

Z
@�

j.x; �@�.x/; B@�.x//; d�@�.x/;

where � denotes a smooth subset of Rd , the word “smooth” is understood at this stage
such that all the involved quantities make sense, � denotes the outward-pointing normal
vector to @�, and B@� is either a purely geometric quantity such as the mean curvature or
the solution of a PDE on @� or on �.

We are then interested in the existence of solutions for the optimization problem

inf
� admissible

J.�/ :
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This kind of problem is very generic. What matters here is that the standard techniques,
exposed and developed, for example, in [7,10], do not apply to d � 1 objects and it is nec-
essary to adopt a particular approach. The first question to ask is the choice of the set Oad

of all admissible domains. Since the shape functionals we consider involve geometric
quantities of the type “outward normal vector to the boundary” or “mean curvature”, it is
necessary that the manipulated surfaces are not too irregular. For this reason, we choose
to impose a constraint that guarantees a uniform regularity, say C1;1, of the manipulated
sets. This uniform regularity constraint is imposed by using the notion of “reach”. Thus,
the set Oad represents the set of surfaces having a reach uniformly bounded by below. The
precise definition of this notion will be given in Section 1.3.

This kind of problem has been the subject of recent studies and results [4, 5, 9], which
have provided positive answers to the existence issues. In their approach, the authors
used an efficient, but nevertheless laborious, approach based on the parametrization of
the manipulated surfaces, seen as regular manifolds, using local charts.

The objective of this paper is to promote a different approach, based on the exten-
sion of the functions defined on the manipulated surfaces to volume neighborhoods, the
introduction of an extruded surface, and the rewriting of the surface integrals as volume
integrals using ad hoc variable changes. This is a methodological paper, in which a proof
method is presented that may work in many cases. The results contained in the article
illustrate this point. We discuss possible generalizations of these results in the concluding
section.

This method allows us to gain conciseness and provides much shorter and direct exis-
tence proofs than in the above references. The method also allows us to extend the field
of investigation to new families of problems involving the solution of a PDE defined on
a hypersurface. Nevertheless, some arguments used by the authors of [4, 5, 9] cannot be
shortened by using our approach. We have therefore chosen to expound our method in a
short article, in which we detail all the parts of the proof that can be condensed and we
make the necessary reminders concerning the results that cannot be condensed.

The article is organized as follows: we introduce the definition of the reach of a surface
as well as the class of admissible sets we will deal with in Section 1.3. The main results of
this article, regarding several existence results for shape optimization problems involving
surfaces, are provided in Section 1.4. The whole of Section 2 is devoted to the proofs of the
main results. In these proofs, we detail the arguments based on our approach and which
lead to simplified proofs of the results in [4, 5, 9]. In order to illustrate the potential of our
approach, we also provide an existence result involving a general functional depending on
the solution of a PDE on the sought manifold.

1.2. Notations

Let us recall some classical notations used throughout this paper.

• For the sake of notational simplicity, we will sometimes use the notation � (resp. �n)
to denote the hypersurfaces @� (resp. @�n).
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• The Euclidean inner product (resp. norm) will be denoted h�; �i (resp. k � k or some-
times j � j, when no confusion with other notations is possible).

• Given two positive integers k 6 d and � � Rd , Hk.�/ denotes the k-dimensional
Hausdorff measure of �.

• Given � � Rd , the distance (resp. signed distance) to � is defined for all x 2 Rd by

d�.x/ D inf
y2�
kx � yk (resp. b�.x/ D d�.x/ � dRd n�.x//:

• Given � � Rd and h > 0, the tubular neighborhood Uh.�/ is defined as

Uh.�/ D
®
x 2 Rd j d�.x/ 6 h

¯
:

• Given � � Rd , the reach of � is defined as

Reach.�/ D sup
®
h > 0 j d� is differentiable in Uh.�/ n�

¯
:

Recall that if @� is a non-empty compact C1;1-hypersurface of Rd , then there exists
h > 0 such that � satisfies a two-sided uniform ball condition, namely

8x 2 @�; 9dx 2 Rd j kdxkRd D 1; Bh.x � hdx/ � � and

Bh.x C hdx/ � Rd n�;
(Bh)

where Bh.x/ stands for the open ball of radius h centered in x. See Figure 1. Further-
more, assuming Hd .@�/ D 0, we have the simpler characterization

Reach.@�/ D sup
®
h j � satisfies (Bh)

¯
:

Conversely, if @� is non-empty and satisfies condition (Bh), then its reach is larger
than h and the Lebesgue measure of @� in Rd is equal to 0. Furthermore, @� is a C1;1

hypersurface of Rd . We refer, for instance, to [4, Theorems 2.6 and 2.7].

• For a given oriented C1;1 hypersurface @�, we denote by r@� or r� the tangential
gradient and by r the full gradient in Rd . When needed, each gradient will be assim-
ilated to a line vector in Rd .

• N denotes N [ ¹C1º.

• �d�1 denotes the unit sphere of Rd .

• Md .R/ denotes the linear space of d � d matrices with real entries, endowed with the
Euclidean operator norm k � k. Id denotes the identity matrix in Rd .

• For a given C1;1 hypersurface @�, we denote by H@� W @�! R its mean curvature.
We refer to Appendix A for proper definitions.

• Two oriented C1;1 hypersurfaces @�1 and @�2 are said to be isotopic if there exists a
continuous function H W @�1 � Œ0; 1�! Rd such that

– H.x; 0/ D x for all x 2 @�1,

– H.�; t / is a diffeomorphism onto its image for all t 2 Œ0; 1�,

– H.�; 1/ is a diffeomorphism from @�1 to @�2.
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Figure 1. In black, we have two hypersurfaces @�. In red, we show the skeleton of @�, which is the
set where d@� is not differentiable. Since the reach of @� is the distance to such a set, it provides
bounds on the curvature radii (cf. Remark A.2), as illustrated by the left figure. Additionally, ‘bot-
tleneck folding’ is not allowed, as illustrated by the right figure. Note that in these diagrams, it does
not matter whether � is above or below in the left figure, or right or left in the right one.

1.3. Preliminaries on sets of uniformly positive reach

Given r0 > 0 and a non-empty compact set D � Rd , let us introduce the set Or0 of
admissible shapes whose reach is bounded by r0, namely,

Or0 D
®
� � D j � is open; Reach.@�/ > r0; � 6D ;; and Hd .@�/ D 0

¯
:

The elements of Or0 are known to satisfy the following properties:

Lemma 1.1. Let � 2 Or0 . Then,

(1) @� is a C1;1 .d � 1/-submanifold. Conversely,

Or0 D
®
��D j� is open; Reach.@�/> r0; and @� is a .d � 1/-submanifold

¯
:

(2) For x 2 @�, rb�.x/ is the unit outward normal vector.

(3) For h< r0, the vector fieldrb� is 2
r0�h

-Lipschitz continuous on the tubular neigh-
borhood Uh.@�/.

(4) The restriction of rb� to @� is 1
r0

-Lipschitz continuous.

(5) There exists a constant C depending only on d , r0, and D such that Hd�1.@�/

6 C .

Points 1 and 2 are proved in [7, Chapter 7, Theorem 8.2]. Points 3 and 4 are proved in
[4, Theorems 2.7 and 2.8]. The proof of Point 5 is given in Section 2.1.1.

We will endow the set Or0 with a “sequential” topology, by introducing a notion of
convergence in this set.

Definition 1.2 (R-convergence in Or0 ). Given .�n/n2N 2 ON
r0

, we say that .�n/n2N R-
converges to �1 2 Or0 and we write �n

R
�! �1 if

b�n ! b�1

8̂̂<̂
:̂

in C.D/;

in C1;˛.Ur .@�1//; 8r < r0; 8˛ 2 Œ0; 1/;

weakly-� in W 2;1.Ur .@�1//; 8r < r0:
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The next result justifies the interest of the class Or0 endowed with the R-convergence
for existence issues.

Proposition 1.3. Or0 is sequentially compact for the R-convergence.

The proof of this proposition can be found in Appendix B. Let us end this section by
providing several additional properties of the R-convergence.

Lemma 1.4. If �n
R
�! �1, then

(1) Hd�1.@�n/ converges toward Hd�1.@�1/ as n!C1.

(2) Hd .�n/ converges toward Hd .�1/ as n!C1.

(3) If all the @�n belong to the same isotopic class, then @�1 also belongs to such a
class.

The proof of this lemma is given in Section 2.2.

Remark 1.5. According to Lemma 1.4, we obtain, for example, that for a given�0 2 Or0
and a 6 b, ®

� 2 Or0 j a 6 Hd�1.@�/ 6 b; @� is isotopic to @�0
¯

is a sequentially compact set.

1.4. Main results

Let us introduce the general shape functional

F1.�/ D

Z
@�

j1.x; �.x/;H@�.x// d�@�.x/;

where j1 is continuous from Rd � �d�1 � R to R and convex with respect to its last
variable. We recall that � andH@� denote respectively the outward pointing normal vector
and the mean curvature.

By Proposition 1.3, the set Or0 is sequentially compact for the R-convergence. There-
fore, in order to infer the existence of an optimal surface minimizing F1 over Or0 it is
enough to prove the lower semicontinuity of functional F1 (under suitable assumptions on
the function j1). This is the main purpose of the following result:

Theorem 1.6 ([4, Theorem 1.3]). Let us assume that j1 is continuous with respect to
all variables and convex with respect to its last one. Then, F1 is a lower semicontinuous
shape functional for the R-convergence, that is, for every sequence .�n/n2N 2 ON

r0
that

R-converges toward �1, one has

lim inf
n!C1

F1.�n/ > F1.�1/:
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As a consequence, the shape optimization problem

inf
�2Or0

F1.�/

has a solution.

It is notable that, by applying Theorem 1.6 to both j1 and �j1, we get the following
corollary:

Corollary 1.7. If j1 is continuous and linear in the last variable, then F1 is a continuous
shape functional for the R-convergence.

Remark 1.8. In the case where d D 3, it is proved in [4, Theorem 1.3] that Theorem 1.6
holds if we replace the mean curvature by the Gaussian one in the definition of F2. We do
not provide a proof here, since most of the difficulties are related to the convergence of a
product of weak-�-converging sequences and our approach does not change the proof in
a significant way.

Let us now consider two classes of shape optimization problems involving either an
elliptic PDE inside � or an elliptic PDE on the C1;1 hypersurface @�.

Problems involving an elliptic PDE on a C1;1-hypersurface of Rd . Given f 2 C0.D/,
we consider the problem of minimizing a shape functional depending on the solution v@�
of the equation

��v@�.x/ D f .x/ in @�; (1)

where �@� denotes the positive Laplace–Beltrami operator on @�. Since we are not con-
sidering C1 manifolds but rather C1;1 ones, we need to explain how the PDE must be
understood. We use here an energy formulation defining, for a closed and non-empty
hypersurface @�, the functional

E@� W H
1
� .@�/ 3 u 7!

1

2

Z
@�

jr�u.x/j
2d�@� C

Z
@�

f .x/u.x/d�@�;

whereH 1
� .@�/ denotes the Sobolev space of functions inH 1.@�/with zero mean on @�.

We hence define v@� as the unique solution of the minimization problem

min
u2H1

� .@�/
E@�.u/: (2)

Lemma 1.9. Let � 2 Or0 . Problem (2) has a unique solution v@�. Furthermore, if @�
is C2 and if f 2 C0.D/, then v@� satisfies (1) almost everywhere in @�.

The proof of this result is postponed to Appendix C.
Let us introduce the shape functional

F2.�/ D

Z
@�

j2.x; �.x/; v@�.x/;r�v@�.x// d�@�.x/;

where j2 W Rd � �d�1 �R �Rd ! R is assumed to be continuous.
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Theorem 1.10. The shape functional F2 is lower-semicontinuous for the R-convergence,
that is, for every sequence .�n/n2N 2 ON

r0
that R-converges toward �1, one has

lim inf
n!C1

F2.�n/ > F2.�1/:

As a consequence, the shape optimization problem

inf
�2Or0

F2.�/

has a solution.

Problems involving an elliptic PDE in a domain of Rd . Finally, let us investigate the
case of a shape criterion involving the solution of a PDE on a domain of Rd . We consider
hereafter a Poisson equation with non-homogeneous boundary condition, but we claim
that all conclusions can be easily extended to a larger class of elliptic PDEs.

Let h 2 L2.D/, g 2 H 2.D/, and define u� as the solution of´
�u� D h in �;

u� D g in @�:
(3)

Let us introduce the shape functional F3 given by

F3.�/ D

Z
@�

j3.x; �.x/; u�.x/;ru�.x// d�@�.x/;

where j3 W Rd � �d�1 �R �Rd ! R is continuous.

Theorem 1.11 ([5, Theorem 2.1]). The shape functional F3 is lower-semicontinuous for
the R-convergence.

It is notable that by adapting the proof of Theorem 1.10, it is possible to obtain a much
shorter proof of this theorem. In order not to make this article unnecessarily heavy, we
only give the main steps of the proof in Section 2.5. This example is mentioned both for
the sake of completeness, in order to review the existing literature, and also to underline
the potential of the approach introduced here, which allows us to find more direct proofs
of all the known results and to extend them.

In addition, it is interesting to notice that our approach allows us to deal with problems
involving PDEs both using weak formulations as in (3) and also those whose solutions are
obtained using a minimization principle, as is the case in (1). The approach thus seems
robust and we believe that it can be easily adapted to general families of problems (for
example, to a general non-degenerate elliptic PDE).
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2. Proofs

2.1. The extruded surface approach

One of the key ideas to prove sequential continuity of functionals involving an integral on
the boundary is to approximate such an integral by an integral on a small tubular neigh-
borhood (as done, e.g., in [6]).

Let us first illustrate the method by proving Point 5 of Lemma 1.1.

2.1.1. Proof of 1.1, Point 5. For 0 < h < r0, consider

T W .�h; h/ � @�! Uh.@�/;

.t; x/ 7! x C trb�.x/:

Since T is Lipschitz continuous, it is differentiable at almost every .t0; x0/, with

d.t0;x0/T .s; y/ D y C srb�.x0/C t0dx0rb�.y/; 8.s; y/ 2 R � Tx0@�: (4)

Remark 2.1. Note that as rb�.x0/ is a normal unit vector to @� at x0, we can identify
the tangent hyperplane Tx0@� with Rd�1 endowed with a Euclidean structure inherited
from that of Rd . We will use this identification several times in this paper.

As a result, we can identify R� Tx0@� 3 .s; y/ 7! y C srb�.x0/ with an orthogonal
matrix. Moreover, up to the choice of a different orientation on Tx0@�, such a matrix
belongs to the special orthogonal group SO.n/. We use the same coordinate representation
to identify R� Tx0@� 3 .s; y/ 7! dx0rb�.y/ with a n� nmatrix. By uniform continuity
of the determinant around SO.d/, there exists C0 > 0 such that, for every M 2 SO.d/
and every l 2Md .R/ such that klk 6 C0,

1

2
� det.M C l/ �

3

2
:

As rb� is 2
r0

-Lipschitz continuous on @�, we have that for almost every x0 2 @� and
every t0 2 R, kt0dx0rb�k 6 2jt0j

r0
.

Let us fix h < min.r0; r0C0=2/ (independent of �), so that kt0dx0rb�k 6 C0 for
almost every x0 2 @� and every t0 2 .�h; h/. By the change of variable formula, we then
have

Hd�1.@�/ D

Z
@�

d�@� D
1

2h

Z
Uh.@�/

det.dT�1.y/T /dy 6
3

4h
Hd .Uh.D//;

whence the conclusion.

2.1.2. Extruded surface and R-convergence. Let us now illustrate the power of this
approach in the case of an R-converging sequence. Let�n

R
�! �1. From now on, we use

the notation �n WD @�n for the hypersurfaces.
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For h < r0 and n 2 N, let us define a parametrization of a neighborhood of �n by

Tn W .�h; h/ � �n ! Uh.�n/;

.t; x/ 7! x C trb�n.x/:

Lemma 2.2. For every " > 0, there exists h > 0 such that for all n 2 N,

1 � " 6 det.d.t0;x0/Tn/ 6 1C " for a.e. .t0; x0/ 2 .�h; h/ � �n:

Proof. We follow the same argument as in Section 2.1.1. More precisely, for a given
" > 0, there exists C0 > 0 such that for everyM 2 SO.d/ and every l 2Md .R/ such that
klk 6 C0,

1 � " 6 det.M C l/ 6 1C ":

Let us fix h < min.r0; r0C0=2/ (independent of n). As rb�n is 2
r0

-Lipschitz continuous
on �n, we get kt0dx0rb�nk6C0 for almost every x0 2� and every t0 2 .�h;h/. Whence,
using equation (4) with the previous estimate, we conclude the proof.

Remark 2.3. In what follows, we will use the Bachmann–Landau notation oh!0.1/ for
a function converging to 0 in L1 as h goes to 0 and for a given n, large enough. For
example, Lemma 2.2 implies that

det.dTn/ D 1C oh!0.1/ on .�h; h/ � �n;

which means 8" > 0; 9N0 2 N; 9h > 0;8n 2 xN; n > N0 implies

j det.d.t0;x0/Tn/ � 1j 6 " for a.e. .t; x/ 2 .�h; h/ � �n:

Let us now introduce the orthogonal projection pn onto �n, defined on Uh.�n/ for
every h 2 .0; r0/.

Lemma 2.4. The following properties hold:

(1) pn coincides with the second component of T �1n W Uh.�n/! .�h; h/ � �n.

(2) For all x 2 Uh.�n/, pn.x/ D x � b�n.x/rb�n.x/.

(3) pn converges toward p1 in L1.Uh.�1//.

Proof. Properties (1) and (2) are obviously equivalent and are proved in [7, Chapter 7,
Theorem 7.2]. Property (3) follows from the C1 convergence of b�n toward b�1 .

We can now state the key equality to relate surface and volume integrals. Apply
Lemma 2.2 with " 2 .0; 1/ to select h > 0 such that Tn W .�h; h/ � �n ! Uh.�n/ is
invertible for every n 2 N1.

1It is actually well known that the domain of invertibility of Tn contains Ur0 .�n/.
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Lemma 2.5. For all n 2 N, f 2 L1.�n/, and t 2 .0; h/, we haveZ
�n

f .x/ d��n.x/ D
1

2t

Z
Ut .�n/

f ı pn.y/ det.dT�1n .y/Tn/ dy:

Proof. Using the change of variable formula (also known as the area formula for Lipschitz
continuous functions), one getsZ >

�t

Z
�n

f .x/ d��n.x/dt D

Z
Ut .�n/

f ı pn.y/ det.dT�1n .y/Tn/ dy:

From now on, we will omit the T �1n .y/ inside the determinant to improve the read-
ability.

Lemma 2.6. For every h 6 r0=2 and 0 < t < h, there exists N0 such that

8n > N0; Uh�t .�1/ � Uh.�n/ � UhCt .�1/:

Proof. By uniform convergence of b�n toward b�1 , we have that for n large enough

b�1�1..t � h; h � t // � b
�1
�n
..�h; h// � b�1�1..�h � t; hC t //:

In order to perform changes of variable in surface integrals, it is convenient to use pn
directly as a way to map �1 onto �n. To this aim, we define

�n W �1 ! �n;

x 7! pn.x/:

Note that for n large enough, Lemma 2.6 ensures that �n is well defined. We also intro-
duce Jac.�n/ to denote the Jacobian of �n. Then, we have the following lemma:

Lemma 2.7. For n large enough, �n W �1 ! �n is a diffeomorphism. In addition,

sup
x2�1

j Jac.�n/.x/ � 1j
n!1
�! 0: (5)

Proof. Let x 2 �1. We take v 2 Tx�1, and identify it with an element of the tangent
hyperplane (see Remark 2.1). As v is tangent to �1 at x, we get

hv;rb�1.x/i D 0:

Using Property 2 of Lemma 2.4, we get

dxpn.v/ D v � hrb�n.x/; virb�n.x/ � b�n.x/r
2b�n.x/v:

Let us now fix h < r0
3

. For n large enough, thanks to Lemma 2.6, we have �n � Uh.�1/.
Thus,

kdxpn.v/ � vk 6 krb�n.x/ � rb�1.x/kkvk C kb�nkL1.�1/kr
2b�n.x/kkvk
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6 kvk
�
krb�n � rb�1kL1.U r0

3
.�1//

C kb�nkL1.�1/kr
2b�n.x/kL1.U r0

3
.�1//

�
:

We recall that both krb�n � rb�1kL1.U r0
3
.�1// and kb�nkL1.�1/ converge toward

zero. In addition, the quantity kr2b�n.x/kL1.U r0
3
.�1// is uniformly bounded. As a con-

sequence,
sup
x2�1

sup
v2Tx�n
kvkD1

kdxpn.v/ � vk
n!1
�! 0:

Using a similar argument to the one used in Lemma 2.2, we take the determinant and
obtain (5).

As a result, we know that �n is a local diffeomorphism. It remains to prove that �n is
injective. To this aim, we suppose that n is large enough to ensure that

krb�n � rb�1kL1.U r0
3
.�1// <

1

2
:

Let x; y 2 �1 such that pn.x/ D pn.y/. If x 6D y, this implies that there exists
t 2 .�2r0

3
; 2r0
3
/ n ¹0º such that

x D y C trb�n.pn.y// D y C trb�n.y/:

As �1 2 Or0 , it satisfies the r0 uniform ball property (see (Bh)). Thus, one has

Br0.y C r0 sign trb�1.y// \ �1 D ;:

But, we have

jx � y � r0 sign trb�1.y/j D jtrb�n.y/ � r0 sign trb�1.y/j 6
t

2
C jt � r0 sign t j

< r0:

This is a contradiction, and hence �n is injective, which implies that it is a diffeomorphism
from �1 to �n.

2.2. Proof of Lemma 1.4

Suppose that .�n/n2N 2 ON
r0
R-converges toward �1 2 Or0 .

2.2.1. Proof of Point 1. For h < r0, using Lemma 2.5, we have

Hd�1.�n/ D

Z
�n

d��n.x/ D
1

2h

Z
Uh.�n/

det.dTn/ dy:

Moreover, by Lemma 2.6,

Hd�1.�n/ D
1

2h

Z
Uh�t .�1/

det.dTn/ dy C
1

2h

Z
Uh.�n/nUh�t .�1/

det.dTn/ dy
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for t 2 .0; h/ and n large enough. Let us compare the first term on the right-hand side with

Hd�1.�1/ D
1

2.h � t /

Z
Uh�t .�1/

det.dT1/ dy:

Using Lemma 2.2, det.dT1/D det.dTn/C oh!0.1/ on .�h; h/� �1. In addition, 1
2h
�

1
2.h�t/

D O. t
h
/. Hence,

1

2h

Z
Uh�t .�1/

det.dTn/ dy D Hd�1.�1/C oh!0.1/C O
� t
h

�
:

On the other hand, using again the relation det.dT1/ D det.dTn/C oh!0.1/,

1

2h

Z
Uh.�n/nUh�t .�1/

det.dTn/ dy 6
1

2h

Z
UhCt .�1/nUh�t .�1/

det.dTn/ dy

D
1

2h

�Z
UhCt .�1/

det.dTn/ dy �
Z
Uh�t .�1/

det.dTn/ dy
�

D
1

2h
.2.hC t /Hd�1.�1/ � 2.h � t /H

d�1.�1/C oh!0.h//

D
2t

h
Hd�1.�1/C oh!0.1/ D O

� t
h

�
C oh!0.1/:

By taking h arbitrarily small while t D h2, we prove that Hd�1.�n/! Hd�1.�1/.

2.2.2. Proof of Point 2. Using the uniform convergence of b�n to b�1 , we deduce that
for every " > 0, there exists N0 2 N such that

b�1�1..�1;�"�/ � b
�1
�n
..�1; 0// � b�1�1..�1; "//; 8n > N0:

Hence, we get
Hd .b�1 6 �"/ 6 Hd .�n/ 6 Hd .b�1 < "/:

By inner regularity of Hd , Hd .b�1 6 �"/
"!0
�! Hd .b�1 < 0/ D Hd .�1/. Similarly,

by outer regularity Hd .b�1 <"/
"!0
�!Hd .b�1 � 0/DHd .�1/, where we used that�1

belongs to Or0 .

2.2.3. Proof of Point 3. We want to prove that �n is isotopic to �1 for n large enough.
We consider

'n.t; x/ W Œ0; 1� � �1 ! R3;

.t; x/ 7! x C t .pn.x/ � x/:

According to Lemma 2.7, 'n.1; �/ D �n is a diffeomorphism from �1 onto �n. In addi-
tion, following the proof of Lemma 2.7, we easily get that for t 2 .0; 1/, 'n.t; �/ is a
diffeomorphism onto its image.
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2.3. Proof of Theorem 1.6

Suppose that .�n/n2N 2 O
N
r0
R-converges toward�1 2 Or0 . Let 0 < t < h small enough

(to be fixed later) and n be large enough.
We recall that the unit normal vector to �n is given by rb�n (see Lemma 2.4). Then,

according to Lemma 2.5,

F1.�n/ D

Z
�n

j1.x;rb�n.x/;H�n.pn.y///d��n.x/

D
1

2h

Z
Uh.�n/

j1.pn.y/;rb�n.pn.y//;H�n.pn.y/// det.dT�1n .y/Tn/ dy:

Moreover, using Lemma 2.6,

F1.�n/ D
1

2h

Z
Uh�t .�1/

j1.pn.y/;rb�n.pn.y//;H�n.pn.y/// det.dTn/ dy

C
1

2h

Z
Uh.�n/nUh�t .�1/

j1.pn.y/;rb�n.pn.y//;H�n.pn.y///

det.dTn/ dy: (6)

The key idea is to prove that all arguments of j1 in the first term converge toward their
analogues for n D1 and to ensure that the second term is small for small t .

Let us start with comparing the first term in the right-hand side with F1.�1/. Notice
that

1

2h

Z
Uh�t .�1/

j1.pn.y/;rb�n.pn.y//;H�n.pn.y/// det.dTn/ dy

D
1

2.h � t /

Z
Uh�t .�1/

2.h � t /

2h

det.dTn/
det.dT1/

j1.pn.y/;rb�n.pn.y//;H�n.pn.y///

det.dT1/ dy:

By Lemma 2.2, we have


2.h � t /
2h

det.dTn/
det.dT1/

� 1




L1.Uh.�1//

D oh!0.1/C O
� t
h

�
:

Let us now investigate the mean curvature term. Note that this term is slightly technical
to handle for two reasons:

• the mean curvature H�n is defined as the trace of the shape operator, which is itself
defined as the differential of the restriction to the hypersurface of rb�n (see Appen-
dix A);

• the Hessian of b�n converges only in a weak sense.

We will use the following lemma, which is obtained thanks to the chain rule:
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Lemma 2.8 ([6, Theorem 4.4]). Let h< r0 and n2 xN. Ifr2b�n.x/ exists for x 2 Uh.�1/,
then r2b�n.pn.x// exists and

r
2b�n.pn.x// D r

2b�n.x/ŒId�b�n.x/r
2b�n.x/�

�1:

In addition, one has that r2b�n.�
�1
n .pn.x/// exists as well.

Notice that the last part of the statement is not explicitly contained in [6] but can be
obtained by straightforwardly adapting the proof of its Theorem 4.4.

As r2b�n is uniformly bounded on a neighborhood of �1 and that b�n.x/ 6 h for
x 2 Uh.�n/, there exists C > 0 such that

ess sup
x2Uh.�n/

kŒId�b�n.x/r
2b�n.x/�

�1
� Id k 6 Ch;

for small h. As a consequence, using Lemma A.3, one has

H�n.pn.x// D Trr2b�n.pn.x// D Trr2b�n.x/C O.h/:

Note also that H�n 6 1
r0

on �n. We can use the uniform continuity of j1 on a compact set
to ensure that for n large enough and n D1,

1

2.h � t /

Z
Uh�t .�1/

j1.pn.y/;rb�n.pn.y//;H�n.pn.y/// det.dT1/ dy

D
1

2.h � t /

Z
Uh�t .�1/

j1.pn.y/;rb�n.pn.y//;Trr2b�n.y// det.dT1/ dy

C O.h/: (7)

The next step is to pass to the limit within the integral. Note that, by definition of
R-convergence,8̂̂̂̂

<̂
ˆ̂̂:

pn
n!1
�! p1 strongly in L1.U r0

2
.�1//;

rb�n ı pn
n!1
�! rb�1 ı p1 strongly in L1.U r0

2
.�1//;

Trr2b�n
n!1
�! Trr2b�1 weak-� in L1.U r0

2
.�1//:

Thus, as j1 is continuous from Rd � �d�1 � R to R and convex with respect to its last
variable, it follows, for example, from [1, Theorem 1] that

L1.U r0
2
.�1//

3
3 .p; n;w/ 7!

Z
Uh�t .�1/

j1.p.y/; v.y/; w.y// det.dT1/ dy

is sequentially lower-semicontinuous with respect to the strong convergence in .p; v/ and
weak-� in w. Thus,

lim inf
n!1

1

2.h � t /

Z
Uh�t .�1/

j1.pn.y/;rb�n.pn.y//;Trr2b�n.y// det.dT1/ dy

>
1

2.h � t /

Z
Uh�t .�1/

j1.p1.y/;rb�1.p1.y//;Trr2b�1.y// det.dT1/ dy
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D
1

2.h � t /

Z
Uh�t .�1/

j1.p1.y/;rb�1.p1.y//;Trr2b�1.p1.y///

det.dT1/ dy C O.h/

D F1.�1/C O.h/: (8)

In order to conclude, let us check that the term in line (6) is small. Since j1 is continuous
on a compact set, it admits a minimum m0 2 R. Let m1 D min.0;m0/ 6 0. Then,

1

2h

Z
Uh.�n/nUh�t .�1/

j1.pn.y/;rb�n.pn.y//;H�n.pn.y/// det.dTn/ dy

>
1

2h

Z
Uh.�n/nUh�t .�1/

m1 det.dTn/ dy

>
1

2h

Z
UhCt .�1/nUh�t .�1/

m1
det.dTn/
det.dT1/

det.dT1/ dy:

Using 


 det.dTn/
det.dT1/

� 1




L1.U2h.�1//

D oh!0.1/

and Z
Uh˙t .�1/

m1 det.dT1/ dy D 2.h˙ t /m1Hd�1.�1/;

we get

1

2h

Z
Uh.�n/nUh�t .�1/

j1.pn.y/;rb�n.pn.y//;H�n.pn.y/// det.dTn/ dy

> m1H
d�1.�1/

�
oh!0.1/C O

� t
h

��
: (9)

Finally, combining equations (7)–(9), we obtain

lim inf
n!C1

F1.�n/ > .F1.�1/CO.h//
�
1CO

� t
h

��
Cm1H

d�1.�1/
�

oh!0.1/CO
� t
h

��
:

Hence, taking h! 0 while ensuring t D o.h/ gives

lim inf
n!C1

F1.�n/ > F1.�1/;

and finishes the proof.

2.4. Proof of Theorem 1.10

Let .�n/n2N denote a sequence that R-converges to �1, and let vn denote the unique
solution v�n to problem (2) for � D �n. The difficult part here is that v�n is not defined
on �1. Our main tool will be �n, the restriction to �1 of the orthogonal projection pn
on �n. Those objects were introduced in Section 2.1.2 and we proved that �n is a diffeo-
morphism between �1 and �n in Lemma 2.7.



Y. Privat, R. Robin, and M. Sigalotti 80

We also have to be careful when we transport the tangential gradient of a function. In
order to relate the tangential gradient and the ambient gradient, we establish the following
pointwise estimate:

Lemma 2.9. Let n 2N and fn 2H 1.�n/. Then, fn ı �n 2H 1.�1/ and, for almost every
x 2 �1,

r�1.fn ı �n/.x/ D r�nfn.�n.x//.IdCCn.x//; (10)

where tangential gradients are understood as d -dimensional line vectors and

Cn.x/ D .rb�n.x/
>
rb�n.x/ � Id/rb�1.x/

>
rb�1.x/

C b�n.x/r
2b�n.x/.rb�1.x/

>
rb�1.x/ � Id/:

In addition, Cn converges toward zero in the L1 norm, that is,

ess supx2�1kCn.x/k
n!1
�! 0: (11)

Proof. First notice that

r�1.fn ı pn/.x/ D r.fn ı pn ı p1/.x/

for almost every x 2 @�1, since the directional derivative of fn ı pn ı p1 at the point x
in the direction rb�1.x/ is zero. By Lemma 2.8, r2b�n.x/ is well defined for almost
every x in �1. By Lemma 2.4 and the chain rule, we obtain almost everywhere on �1

r.fn ı pn ı p1/.x/

D ..rfn/ ı pn/.Id�rb>�nrb�n � b�nr
2b�n/.Id�rb

>
�1
rb�1 � b�1r

2b�1/

D ..r�nfn/ ı �n/.Id�.Id�rb
>
�n
rb�n/rb

>
�1
rb�1

� b�nr
2b�n.Id�rb

>
�1
rb�1//;

where we used that rfn D r�nfn, pn D �n, and b�1 D 0 on �1. This shows (10).
Let us now bound the L1 norm of Cn. There exists C > 0 such that, for every n

satisfying �1 � U r0
2
.�n/,

ess supx2�1kr
2b�n.x/.rb

>
�1
.x/rb�1.x/ � Id/k 6 C:

In addition, kb�nkL1.�1/ converges to zero. Finally, using the uniform convergence
of rb�n toward rb�1 , we get

rb>�nrb�nrb
>
�1
rb�1

L1.�1/
������!
n!1

rb>�1.rb�1rb
>
�1
/rb�1 D rb

>
�1
rb�1 :

This concludes the proof of (11).

From the solution vn in H 1
� .�n/, we introduce the function wn defined on �1 by

wn D vn ı �n �
1

Hd�1.�1/

Z
�1

vn ı �n d��1 :

Note that, defined as such, wn belongs to H 1
� .�1/.
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Step 1: convergence of .wn/n2N . Let us start by considering the sequence of energies
.E�n.vn//n2N . This sequence is bounded above by 0, since E�n.vn/ � E�n.0/ D 0 for
every n. By using the uniform Poincaré inequality stated in Proposition C.2 combined
with the Cauchy–Schwarz inequality, we get that .

R
�n
jvnj

2 d��n.x//n2N is bounded. We
now compute

1

Hd�1.�1/

Z
�1

vn ı �n d��1 D
1

Hd�1.�1/

Z
�n

vn Jac.�n/d��n

D

�pHd�1.�n/

Hd�1.�1/
kvnkL2.�n/

�
on!1.1/;

where we used Lemma 2.7, the Cauchy–Schwarz inequality, and the fact that vn has zero
average on �n. Hence, we infer thatwn D vn ı �nC on!1.1/. In addition, by performing
a change of variable and by using Lemmas 2.7 and 2.9, we getZ

�n

�1
2
jr�nvn.y/j

2
� f .y/vn.y/

�
d��n.y/

D

Z
�1

�1
2
jr�nvn.�n.y//j

2
� f .�n.y//.vn ı �n/.y/

�
Jac.�n/�1d��1.y/

D

Z
�1

�1
2
jr�1wn.y/j

2
� f .�n.y//wn.y/

�
d��1.y/C on!1.1/;

where we used thatr�1wnDr�1.vn ı �n/, by definition ofwn. By using Proposition C.2
and again the Cauchy–Schwarz inequality, we successively infer that the sequences
.
R
�1
jwnj

2 d��1.x//n2N and .
R
�1
jr�1wnj

2 d��1.x//n2N are bounded. By using The-
orem C.1, the sequence .wn/n2N converges up to a subsequence toward w1 2 H 1

� .�1/,
weakly in H 1.�1/, and strongly in L2.�1/. Up to extracting a subsequence, we getZ

�1

jr�1w1.x/j
2 d��1 6 lim inf

n!C1

Z
�1

jr�1wn.x/j
2 d��1 ;

lim
n!1

Z
�1

wn.x/f .�n.x// d��1 D

Z
�1

w1.x/f .x/ d��1 :

As a consequence,
E�1.w1/ 6 lim inf

n!C1
E�n.vn/:

Step 2: Minimality of w1. Let u 2 H 1
� .�1/ be given and define zn in H 1

� .�n/ by

zn D u ı �
�1
n �

1

Hd�1.�n/

Z
�n

u ı ��1n d��n :

Let n 2 N. By minimality, one has

E�n.vn/ 6 E�n.zn/:
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By mimicking the arguments and computations of the first step, we easily get that

E�n.zn/ D E�1.u/C on!1.1/; (12)

yielding at the end E�1.w1/ 6 E�1.u/. We infer that w1 is the unique solution to vari-
ational problem (2). Since the reasoning above holds for any closure point of .wn/n2N , it
follows that the whole sequence .wn/n2N converges toward w1, weakly inH 1.�1/, and
strongly in L2.�1/. Finally, using u D w1 in (12), we obtain that

E�1.w1/ D lim inf
n!C1

E�n.vn/:

In particular, .kwnk2H1.�1/
/n2N converges toward kw1k2H1.�1/

, which implies the strong
convergence of wn in H 1.�1/.

Step 3: Lower-semicontinuity of F2. Let us use the same notations as those used previ-
ously. Using a change of variable, we get

F2.�n/ D

Z
�n

j2.x;rb�n.x/; vn.x/;r�nvn.x// d��n.x/

D

Z
�1

j2.�n.x/;rb�n.�n.x//; vn.�n.x//;r�nvn ı �n.x// Jac.�n/�1d��1.x/:

In addition, according to the results above and Lemma 2.4, the following convergences
hold: 8̂̂̂̂

ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

Jac.�n/�1
n!1
�! 1 strongly in L1.�1/;

�n
n!1
�! Id j�1 strongly in L1.�1/;

rb�n ı �n
n!1
�! rb�1 strongly in L1.�1/;

vn ı �n
n!1
�! w1 strongly in L2.�1/;

r�nvn ı �n
n!1
�! r�1w1 strongly in L2.�1/;

where w1 is the unique solution to variational problem (2).
By applying [1, Theorem 1], one has

lim inf
n!C1

F2.�n/ > F2.�1/:

This is the desired conclusion.

2.5. Main steps in the proof of Theorem 1.11

First note that u� � g solves (3) with source term h � �g and Dirichlet boundary con-
dition. As a consequence, we can reduce our study to the case of homogeneous Dirichlet
condition (i.e., u� D 0 on �).

The method relies on a uniform extension property proved by Chenais in [3] for sur-
faces satisfying an "-cone condition, which is weaker than the uniform ball condition.
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Lemma 2.10 ([3, Theorem II.1]). There exists a positive constant C (depending only
on r0 and D) such that for every � 2 Or0 , there exists an extension operator E� 2
L.H 2.�/;H 2.D// satisfying

E�.u/j� D u; kE�kL.H2.�/;H2.D// 6 C:

We will use this lemma to extend the solution of the PDEs to the whole box D. The
next step is to find a uniform H 2 estimate of the solutions. In our case, such an estimate
was proved by Dalphin, who extended a result for domains with C2 boundary obtained by
Grisvard in [8].

Lemma 2.11 ([5, Proposition 3.1]). There exists C > 0 (depending only on r0 and D)
such that for every � 2 Or0 and f 2 H 2.�/ \H 1

0 .�/, we have

kf kH2.�/ 6 Ck�f kL2.�/:

As a consequence, we have a uniform H 2.D/ estimate on the extension of the solu-
tion u�, namely,

kE�.u�/kH2.D/ 6 CkhkL2.D/; 8� 2 Or0 : (13)

Let us now consider�n
R
�!�1. Using (13), we get that .E�n.u�n//n2N is uniformly

bounded in H 2.D/. Up to extracting a subsequence, we can assume that

E�n.u�n/
n!1
�! u�

´
weakly in H 2.D/;

strongly in H 1.D/:
(14)

The next step is to prove that the restriction to �1 of u� is u�1 .
To this aim, let us consider an arbitrary compact setK contained in the interior of�1

and a C1 function ' with compact support included in K. For n large enough, K is
contained in the interior of �n (see Lemma 2.6), and, therefore, one has ' 2 H 1

0 .�n/ for
such integers n. Using the variational formulation of the PDE given by (3), we getZ

D

hrE�n.u�n/;r'i � f ' D 0:

Using the density of C1 functions with compact support in H 1
0 .�1/ and passing to the

limit yields that u�j�1 D u�1 .

Remark 2.12. In order to replace Dirichlet boundary conditions by Neumann’s ones,
one can follow similar steps as those leading to equation (14). Then, by considering the
variational formulation with ' 2 C1.D/ and passing to the limit inZ

�n

g@�' !

Z
�1

g@�'

(a consequence of Corollary 1.7 if g 2 C0.D/), one gets that u�j�1 D u�1 .
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The last step is to relate F3.�n/ and F3.�1/. Since the involved functions belong to
Sobolev spaces and since one aims at comparing surface integrals with tubular ones, we
need a suitable uniform trace result.

Lemma 2.13. There exists C such that for every h < r0
2

, every n 2 xN, and every f 2
H 1.U r0

2
.�n//,

kf � zf ı pnkL2.Uh.�n// 6 Chkf kH1.U r0
2
.�n//;

where zf denotes the trace of f on �n.

Proof. Let f be a smooth function. According to Lemma 2.4, every point y 2 Uh.�n/ can
be written in a unique way as y D x C trb�n.x/ with x D pn.y/ 2 �n and t 2 .�h; h/.
Moreover, one has

jf .x C trb�n.x// � f .x/j
2 6 C 2k@rb�n .x/f .x C yrb�n.x//k

2

L2y.�
r0
2 ;

r0
2 /
jt j;

where @rb�n stands for the derivative in the direction rb�n.x/ and C is the norm of
the continuous embedding of H 1.Œ� r0

2
; r0
2
�/ into the space C

1
2 of 1

2
-Hölder continuous

functions. Hence, using Lemma 2.2, we get

kf � f ı pnk
2
L2.Uh.�n//

D

Z h

�h

Z
�n

jf .x C trb�n.x// � f .x/j
2 det.dTn/ dxdt

6
Z h

�h

Z
�n

C 2k@rb�nf .x C yrb�n.x//k
2

L2y.�
r0
2 ;

r0
2 /
jt j det.dTn/ dxdt

6 C 2h2
Z
�n

k@rb�nf .x C yrb�n.x//k
2

L2y.�
r0
2 ;

r0
2 /
.1C oh!0.1// dx

6 C 2h2kf k2
H1.U r0

2
.�n//

.1C oh!0.1//:

We conclude the proof thanks to the density of the smooth functions in H 1.

Using that u�n is uniformly bounded in H 2.D/, let us apply Lemma 2.13 to u�n
and ru�n . We obtain

ku�n � u�n ı pnk
2
L2.Uh.�n//

C kru�n � .ru�n/ ı pnk
2
L2.Uh.�n//

D oh!0.h/:

The end of the proof is similar to the one of Theorem 1.6 and consists in using the extruded
surface approach to prove

lim inf
n!C1

F3.�n/ > .1C oh!0.1//

� lim inf
n!C1

1

2h

Z
Uh.�n/

j3.x;rb�n.pn.x//; E�n.u�n/.x/;rE�n.u�n/.x// dx
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> .1C oh!0.1//
�
1C O

� t
h

��
� lim inf
n!C1

1

2.h � t /

Z
Uh�t .�1/

j3.x;rb�1.p1.x//; u
�.x/;ru�.x// dx

C oh!0.1/C O
� t
h

�
> F3.�1/C oh!0.1/C O

� t
h

�
;

which concludes the proof.

3. Conclusion

In this paper, we have introduced a new method to tackle the existence issue for shape
optimization problems under uniform reach constraints on the considered shapes, of the
type

inf
�2Or0

Z
@�

j.x; �@�.x/; B@�.x// d�@�.x/:

While several references such as [4, 5, 9] have already addressed similar questions on the
same type of problems, we believe that the approaches developed in this paper are on the
one hand simpler, but also sufficiently robust to allow easy extension of the results to more
general settings.

For example, we believe that minor adaptations of the developed proof techniques
allow one to extend our results to the following cases without much effort:

• Under weaker regularity hypotheses, one could think of replacing the continuity as-
sumption by lower semicontinuity on the integrand j¹1;2;3º. Another example would
be to assume that f in equation (1) belongs to H 1=2.D/ instead of C.D/. In fact, if
f 2 H 1=2.D/, then its restriction to @� is well defined and belongs to L2.@�/. The
crucial aspect would then be to establish regularity of the integrand.

• More general PDEs could be considered (see Theorems 1.10 and 1.11). Extension to
general elliptic equations associated with differential operators of the kind r� � .�r�/
satisfying a coercivity property should be straightforward. We also believe that our
framework allows extensions to non-linear elliptic PDEs under reasonable assump-
tions.

• One could consider costs involving the solution of a minimization problem depending
on � but not necessarily related to a PDE. Indeed, in the proof of Theorem 1.10, our
study of the variational problem does not rely on the underlying PDE. We treated a
case involving a convex minimization problem over the set of divergence-free vector
fields on @� in [12].

All of those generalizations do not seem obvious when using other methods.
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Let us conclude by discussing a more open-ended problem. A very interesting exten-
sion of this work would be to generalize our results to manifolds with boundary. For
instance, we could examine open sets ! of @� (under the induced topology) such that @!
also satisfies a reach condition. In this scenario, ! becomes a d � 1 submanifold with
a boundary, prompting the question of whether adapted versions of Theorems 1.6, 1.10,
and 1.11 are attainable (e.g., by imposing Dirichlet conditions on the submanifold’s
boundary).

A. Curvatures of a submanifold

Let us quickly review the definition of the mean curvature for an oriented .d � 1/-subman-
ifold of Rd with C1;1 regularity. To stick with our notation, we consider the submanifold
to be the boundary of some � 2 Or0 .

Definition A.1. The Gauss map is the application which assigns to each x 2 � D @� the
direct unit normal vector to � at x. In our setting, it can be defined as

N W� ! �d�1;

x 7! rb�.x/:

We can now define the following objects:

• The shape operator (or Weingarten map) is the differential of the Gauss map. For
every x 2 � , the tangent spaces Tx� and TN.x/�d�1 are equal as linear subspaces
of Rd , and the shape operator at x is self-adjoint where it is defined. See, for example,
[11, Chapter 5] for a general introduction.

• The trace of the shape operator is called the mean curvature and is denoted H .2

• The determinant of the shape operator is called the Gauss curvature.

Remark A.2. The Gauss map is 1
r0

-Lipschitz continuous (see Lemma 1.1), where r0 is
the reach of � . Thus, the shape operator is in L1 and, for almost every x 2 � , all the
eigenvalues �1.x/; : : : ; �d�1.x/ of the shape operator are bounded in modulus by 1

r0
. This

means, in particular, that the curvature radii are almost everywhere bigger than r0.

We insist on the fact that N is defined only on � and thus the shape operator is not
defined on Rd or any tubular neighborhood of � . Nevertheless, we have the following
property:

2Note that in differential geometry it is common to define the mean curvature as the trace of the shape
operator divided by .d � 1/.
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Lemma A.3. The mean curvature coincides with the trace of r2b� on � .

Proof. Let x 2 � and let B be an orthonormal basis of Tx� . Using the identification
between Tx� and the tangent hyperplane (see Remark 2.1), we obtain that ¹rb�.x/º [B

is an orthonormal basis of Rd. The vector fieldrb� is constant along the directionrb�.x/
(see, e.g., [7, Theorem 7.8.5.ii]). As a consequence, the trace of r2b� and the mean
curvature coincide.

B. R-convergence: Proof of Proposition 1.3

The compactness property follows from two facts. First, the Arzelà–Ascoli theorem, com-
bined with the fact that every function b�, for� 2Or0 , is 1-Lipschitz continuous. Second,
the reach constraint which imposes a uniform bound on the second derivative of b�. These
two facts are used in [7] and [4] to get the sequential compactness results used below.

Let .�n/n2N denote a sequence in Or0 . By the compactness property of sets of uni-
formly positive reach proved in [7, Chapter 6], it follows that, up to a subsequence, b�n
converges to b�1 for the C 0 topology onD. In [4], the convergence is shown to hold also
for the strong C1;˛ topology (for ˛ < 1) and for the weak W 2;1 topology in an r-tubular
neighborhood of @�1, with r < r0.

As a consequence, Reach.�1/ > r0. In particular, according to Lemma 1.1, b�1
is C1;1 on Ur .�1/.

C. The Laplace–Beltrami equation on a manifold: Proof of
Lemma 1.9

Let .@�; g/ denote a closed compact manifold. We explain hereafter how to understand
the equation �@�v D h in @� in a weak sense, whenever � 2 Or0 . Indeed, under this
assumption, @� is a C1;1 submanifold according to Lemma 1.1, not necessarily C2, which
justifies why such an equation cannot be understood in a strong sense.

The key ingredient in what follows is the Rellich–Kondrachov lemma, stating the com-
pactness of the embedding H 1

� .@�/ ,! L2.@�/.

Theorem C.1 (Rellich–Kondrachov theorem on surfaces). Let � 2 Or0 . Let .un/n2N

denote a sequence in H 1
� .@�/ such that .

R
@�
jrun.x/j

2 d�@�/n2N is bounded. There
exists u� 2 H 1

� .@�/ such that, up to a subsequence, .un/n2N converges to u� weakly
in H 1

� .@�/ and strongly in L2.@�/.

Proof. According to [6, Theorem 4.5.ii], since @� is C1;1, the L2 norm k � kL2.@�/ on
the surface @� and the L2 norm L2.@�/ 3 u 7! ku ı p�kL2.Uh.@�// on the thickened
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surface Uh.@�/ are equivalent whenever h > 0 is small enough, where p�.x/ denotes the
orthogonal projection of x onto @�, that is, p�.x/ D x � b�.x/rb�.x/, and Uh.@�/ D
¹x 2 Rd j jb�.x/j < h and p�.x/ 2 @�º.

Similarly, according to [6, Theorem 4.7.v], since @� is C1;1, the norm k � kH1
� .@�/

defined as
kuk2

H1
� .@�/

D

Z
@�

jr�uj
2 d�@�;

and the norm k � kH1
Uh.@�/

given by

kukH1
Uh.@�/

D
1

2h

Z
Uh.@�/

jr�u ı p�j
2 d�@�

are equivalent whenever h > 0 is small enough. We conclude the proof by using the
standard Rellich–Kondrakov theorem (see, e.g., [2, Section 9.3]) on the thickened sur-
face Uh.@�/.

The following result is a Poincaré-type lemma, uniform with respect to the chosen
surface in the set Or0 :

Proposition C.2 (Poincaré lemma on a surface). Let r0 > 0 and � 2 Or0 . There exists
C.r0;D/ > 0 such that

8u 2 H 1
� .�/;

Z
�

jr�u.x/j
2 d�� > C.r0;D/

Z
�

ju.x/j2 d�� :

Proof. Let .�n; vn/n2N , with vn 2 H 1
� .�n/, be a minimizing sequence for the problem

inf
�2Or0

inf
u2H1

� .�/

R
�
jr�u.x/j

2 d��R
�
ju.x/j2 d��

:

Let us argue by contradiction, assuming thatZ
�n

jr�nvn.x/j
2 d��n 6

1

n
and

Z
�n

jvn.x/j
2 d��n D 1;

by homogeneity of the Rayleigh quotient. According to 1.3, we can assume without loss
of generality that .�n/n2N R-converges toward �1 2 Or0 .

Let pn denote the orthogonal projection on �n and let us introduce the function wn
defined in Uh.�n/ for h as in Lemma 2.2 and n large enough by wn D vn ı pn. We follow
exactly the same lines as in the first step of the proof of Theorem 1.10. A direct adaptation
of the first step of the proof of Theorem 1.10 yieldsZ

�1

jr�1wn.y/j
2 d��1.y/ D

Z
�n

jr�nvnj
2 d��n.x/C o.1/:

We infer that Z
�1

jr�1wnj
2 d��1.x/ 6

1

n
C o.1/:
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By using Theorem C.1, we get that the sequence .wn/n2N converges up to a sub-
sequence toward w� 2 H 1

� .�1/ weakly in H 1.�1/ and strongly in L2.�1/. Up to
extracting a subsequence, we getZ

�1

jr�1w
�.x/j2 d��1 6 lim inf

n!C1

Z
�1

jr�1wn.x/j
2 d��1 D 0;Z

�1

jw�.x/j2 d��1 D 1;Z
�1

wn.x/ d��1 D 0:

By using the first equality, we get that w� is constant on � and we obtain a contradiction
with the two last equalities above.

Let us now prove Lemma 1.9. Let .un/n2N denote a minimizing sequence for prob-
lem (2). Since .E�.un//n2N is bounded, and since

E�.un/ > C.d; r0/kunk
2
L2.�/

� khkL2.�/kunkL2.�/

according to Proposition C.2, we infer that .kunkL2.�//n2N is bounded. SinceZ
�

jr�un.x/j
2 d�� D E�.un/ �

Z
�

un.x/h.x/ d�� 6 khkL2.�/kunkL2.�/ C E�.un/;

we infer the existence of u� 2 H 1
� .�/ such that, up to a subsequence, .un/n2N converges

weakly in H 1
� .�/ and strongly in L2.�/. Up to extracting a subsequence, we get

inf
u2H1

� .�/
E�.u/ D lim inf

n!C1
E�.un/ >

Z
�

jr�u
�.x/j2 d�� C

Z
�

u�.x/h.x/ d�� D E�.u
�/

and the existence follows. The uniqueness is standard and follows from the strong con-
vexity of the functional E� .

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed
during the current study.

Funding. This work has been supported by the Inria AEX StellaCage. The first author
was partially supported by the ANR Project “SHAPe Optimization - SHAPO”.

References

[1] L. D. Berkovitz, Lower semicontinuity of integral functionals. Trans. Amer. Math. Soc. 192
(1974), 51–57 Zbl 0294.49001 MR 348582

https://doi.org/10.2307/1996817
https://zbmath.org/?q=an:0294.49001
https://mathscinet.ams.org/mathscinet-getitem?mr=348582


Y. Privat, R. Robin, and M. Sigalotti 90

[2] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Universitext,
Springer, New York, 2011 Zbl 1220.46002 MR 2759829

[3] D. Chenais, On the existence of a solution in a domain identification problem. J. Math. Anal.
Appl. 52 (1975), no. 2, 189–219 Zbl 0317.49005 MR 385666

[4] J. Dalphin, Uniform ball property and existence of optimal shapes for a wide class of geometric
functionals. Interfaces Free Bound. 20 (2018), no. 2, 211–260 Zbl 1397.49057
MR 3827803

[5] J. Dalphin, Existence of optimal shapes under a uniform ball condition for geometric function-
als involving boundary value problems. ESAIM Control Optim. Calc. Var. 26 (2020), article
no. 108 Zbl 1459.49026 MR 4185053

[6] M. C. Delfour, Tangential differential calculus and functional analysis on a C 1;1 submanifold.
In Differential geometric methods in the control of partial differential equations (Boulder, CO,
1999), pp. 83–115, Contemp. Math. 268, Amer. Math. Soc., Providence, RI, 2000
Zbl 0977.58004 MR 1804791

[7] M. C. Delfour and J.-P. Zolésio, Shapes and geometries. Second edn., Adv. Des. Control 22,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011
Zbl 1002.49029 MR 2731611

[8] P. Grisvard, Elliptic problems in nonsmooth domains. Monogr. Stud. Math. 24, Pitman
(Advanced Publishing Program), Boston, MA, 1985 Zbl 0695.35060 MR 775683

[9] B.-Z. Guo and D.-H. Yang, On convergence of boundary Hausdorff measure and application
to a boundary shape optimization problem. SIAM J. Control Optim. 51 (2013), no. 1, 253–272
Zbl 1263.49052 MR 3032875

[10] A. Henrot and M. Pierre, Shape variation and optimization. EMS Tracts Math. 28, European
Mathematical Society (EMS), Zürich, 2018 Zbl 1392.49001 MR 3791463

[11] J. Jost, Riemannian geometry and geometric analysis. Seventh edn., Universitext, Springer,
Cham, 2017 Zbl 1380.53001 MR 3726907

[12] Y. Privat, R. Robin, and M. Sigalotti, Optimal shape of stellarators for magnetic confinement
fusion. J. Math. Pures Appl. (9) 163 (2022), 231–264 Zbl 1491.49031 MR 4438900

Received 23 October 2023; revised 30 April 2024.

Yannick Privat
Institut Elie Cartan de Lorraine, Inria, CNRS, Université de Lorraine, BP 70239,
54506 Vandœuvre-lès-Nancy Cedex; Institut Universitaire de France (IUF), France;
yannick.privat@univ-lorraine.fr

Rémi Robin
Centre Automatique et Systèmes, Mines Paris, LPENS, INRIA, CNRS, Sorbonne Université,
Laboratoire de Physique de l’École Normale Supérieure, PSL Research University, 60 Bd
Saint-Michel, 75272 Paris, France; remi.robin@inria.fr

Mario Sigalotti (corresponding author)
Laboratoire Jacques Louis Lions, Inria, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris,
France; mario.sigalotti@inria.fr

https://zbmath.org/?q=an:1220.46002
https://mathscinet.ams.org/mathscinet-getitem?mr=2759829
https://doi.org/10.1016/0022-247X(75)90091-8
https://zbmath.org/?q=an:0317.49005
https://mathscinet.ams.org/mathscinet-getitem?mr=385666
https://doi.org/10.4171/IFB/401
https://doi.org/10.4171/IFB/401
https://zbmath.org/?q=an:1397.49057
https://mathscinet.ams.org/mathscinet-getitem?mr=3827803
https://doi.org/10.1051/cocv/2020026
https://doi.org/10.1051/cocv/2020026
https://zbmath.org/?q=an:1459.49026
https://mathscinet.ams.org/mathscinet-getitem?mr=4185053
https://doi.org/10.1090/conm/268/04309
https://zbmath.org/?q=an:0977.58004
https://mathscinet.ams.org/mathscinet-getitem?mr=1804791
https://doi.org/10.1137/1.9780898719826
https://zbmath.org/?q=an:1002.49029
https://mathscinet.ams.org/mathscinet-getitem?mr=2731611
https://doi.org/10.1137/1.9781611972030
https://zbmath.org/?q=an:0695.35060
https://mathscinet.ams.org/mathscinet-getitem?mr=775683
https://doi.org/10.1137/110853765
https://doi.org/10.1137/110853765
https://zbmath.org/?q=an:1263.49052
https://mathscinet.ams.org/mathscinet-getitem?mr=3032875
https://doi.org/10.4171/178
https://zbmath.org/?q=an:1392.49001
https://mathscinet.ams.org/mathscinet-getitem?mr=3791463
https://doi.org/10.1007/978-3-319-61860-9
https://zbmath.org/?q=an:1380.53001
https://mathscinet.ams.org/mathscinet-getitem?mr=3726907
https://doi.org/10.1016/j.matpur.2022.05.005
https://doi.org/10.1016/j.matpur.2022.05.005
https://zbmath.org/?q=an:1491.49031
https://mathscinet.ams.org/mathscinet-getitem?mr=4438900
mailto:yannick.privat@univ-lorraine.fr
mailto:remi.robin@inria.fr
mailto:mario.sigalotti@inria.fr

	1. Framework and main results
	1.1. Introduction
	1.2. Notations
	1.3. Preliminaries on sets of uniformly positive reach
	1.4. Main results

	2. Proofs
	2.1. The extruded surface approach
	2.1.1 Proof of 1.1, Point 5
	2.1.2 Extruded surface and R-convergence

	2.2. Proof of Lemma 1.4
	2.2.1 Proof of Point 1
	2.2.2 Proof of Point 2
	2.2.3 Proof of Point 3

	2.3. Proof of Theorem 1.6
	2.4. Proof of Theorem 1.10
	2.5. Main steps in the proof of Theorem 1.11

	3. Conclusion
	A. Curvatures of a submanifold
	B. R-convergence: Proof of Proposition 1.3
	C. The Laplace–Beltrami equation on a manifold: Proof of Lemma 1.9
	Data availability
	References

