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Singularities of the network flow
with symmetric initial data

Matteo Novaga and Luciano Sciaraffia

Abstract. We study the formation of singularities for the curvature flow of networks when the initial
data is symmetric with respect to a pair of perpendicular axes and has two triple junctions. We show
that, in this case, the set of singular times is finite.

1. Introduction

The mean curvature flow is one of the best studied geometric evolution equations, in
particular, its one-dimensional version, often called the curve shortening flow. This last
flow is completely understood thanks to the works of Gage and Hamilton, as well as
Grayson [11, 13]: a closed, embedded curve in the plane becomes convex in finite time
and then shrinks to a round point. A natural and interesting generalisation of this flow is
the network flow, also known as multiphase mean curvature flow in higher dimensions,
where instead of considering a single curve the underlying geometric object is a regular
network, that is, a finite union of embedded curves that can meet only at their endpoints,
and at each multiple junction only three curves meet forming equal angles of 2�=3 (more
precise definitions are provided in Section 2). This last condition, named after Herring,
arises naturally because of the variational structure of the flow, since these triple junctions
minimise length locally.

The network flow has been thoroughly studied, although a complete understanding as
in the case of a single curve is far from being achieved. One of the first results in this line
comes from Bronsard–Reitich [10], where they showed short time existence for the flow of
triods, that is, networks consisting of three curves and one triple junction, with Neumann
boundary conditions. Subsequently, the works of Mantegazza–Novaga–Tortorelli [23] and
later Magni–Mantegazza–Novaga [19] studied the singularity formation under the flow,
with Dirichlet boundary conditions, stating in which cases the flow exists for all times and
reaches in the limit the Steiner tree spanned by the three endpoints.
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More recently, in [12,22] a general proof of existence of a solution to the network flow
with regular initial data was given. It was also shown that the flow can be extended to a
maximal existence time at which, if finite, a singularity forms: either the L2-norm of the
curvature blows up, or the length of one of the curves goes to zero. Moreover, as in the case
of the curve shortening flow, a geometric uniqueness holds: every other solution starting
at the same initial network is just a reparametrisation of the flow. Thus, to give a complete
description of the flow, it becomes crucial to understand and classify the singularities that
can arise.

In contrast to what happens in the case of a single curve, it could be possible during the
network flow that the length of one or more curves goes to zero while the curvature of the
network remains bounded. This kind of phenomenon is often called a type-0 singularity,
and allows the flow to approach an irregular network with junctions of multiplicity greater
than three. Because of this, it becomes a compelling question to understand if it is pos-
sible to start a regular flow when the initial network fails to satisfy the Herring condition. It
turns out that, thanks to the results of [14,18], such an irregular network can serve as initial
data for a regular flow, enabling its continuation beyond some singularities, albeit not in a
unique way. Such flows are constructed by locally replacing an irregular junction by one of
the self-similar, tree-like expanding solitons obtained in [24] according to the number of
curves concurring at said junction. In this way, new edges might “emerge” flowing out of
the junction, and the nonuniqueness of the continuation is directly tied to the nonunique-
ness of the expanders. In any case, the number of possible geometric solutions is classified
by the number of expanders at each irregular junction [18, Corollary 8.7]. Thanks to these
findings, it becomes possible to continue the flow past a type-0 singularity. We remark that
it could also be possible to restart the flow in other potential scenarios where the curvature
does blow up, but these are not within the scope of this discussion. The interested reader
might see the discussion present in [22, Section 10.4]. We also mention other approaches
based on the evolution of partitions, or clusters, where the interfaces are boundaries of the
evolving domains they enclose, called grains. These methods also allow starting the flow
from irregular initial data, such as those based on minimising movements [7, 17] and the
Brakke flow [9, 15, 16, 27] (see also [18, Section 8.5]).

Much of the analysis of singularities can be done conditional to the so-called multiplic-
ity-one conjecture, which states that every limit of parabolic rescalings of the flow around
a fixed point is a flow of embedded networks with multiplicity one. Indeed, Mantegazza–
Novaga–Pluda [21] showed, conditionally to this statement, that if there are no loops in the
initial network, or, in other words, the initial datum is a tree, then only type-0 singularities
can occur. Hence, in the case of trees the flow could in principle be continued indefinitely.

It turns out that the multiplicity-one conjecture is true for networks with at most two
triple junctions, as was shown in [20]. As a result, a complete description of the possible
singularities was obtained in this case. In particular, if no loop disappears at a singu-
lar time, there is only one way to continue the flow, so that the network remains locally
connected, which the authors call the standard transition (cf. [18, Corollary 8.8]). This
situation arises when the two triple junctions coalesce into a single point, forming a quad-
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Figure 1. Expanding soliton asymptotic to the standard cross.

ruple junction with equal opposing angles of �=3 and 2�=3. The flow past this singularity
is locally described by the unique regular expander flowing out a standard cross. This
soliton consists of a straight segment which “emerges” from the quadruple junction in the
direction of the �=3 angle, while its other four edges approach exponentially the corres-
ponding rays of the cross, as illustrated in Figure 1. However, the previous results only
give a short time existence with no uniform control over the lifespan of the flow, which
makes it difficult to rule out the possible accumulation of singular times. This is the only
question remaining to be answered to give a complete description and a global time exist-
ence theorem in this case.

In this note we address this problem in the case of networks with two triple junctions
that are symmetric to a pair of perpendicular axes. We refer to this class of networks
simply as symmetric. With this condition, there are only four possible cases: the tree, the
lens, the � -network, and the eyeglasses, which are illustrated in Figure 2.

Before stating our main result, we mention that the case of the lens has already been
studied and settled in a slightly more general case in [8, 26]. In complete analogy
with [11, 13], it is proved that a (noncompact) lens-shaped network that is symmetric
with respect to one axis eventually becomes convex and approaches a straight line in finite
time, as the enclosed region disappears and the curvature blows up. The following theorem
gives a complete description in the remaining cases:

Theorem 1.1. Let �0 be a symmetric regular network with two triple junctions. Then,
there is a maximal time T > 0 and a unique network flow ¹�.t/º0�t<T with initial data �0
such that the set of its singular times is a finite subset of .0; T �; in particular, there is no
accumulation of singularities. Moreover,

• if �0 is a tree, then T D 1 (global existence) and limt!1 �.t/ is either a standard
cross or a Steiner tree;

• otherwise T <1 and �.t/ becomes eyeglasses-shaped after the last type-0 singular-
ity, and the curvature blows up as the enclosed regions vanish with t " T .
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Figure 2. The four types of symmetric networks with two triple junctions: the tree, the lens, the
� -network, and the eyeglasses.

Remark 1.2. In the case of a tree, we cannot rule out a singularity at infinity, as the
example in [25, Theorem 6.1] shows. There the authors construct a globally defined flow
that stays regular for every time and converges to a cross in infinite time.

Let us briefly describe what the dynamics are in this situation. Since the initial datum is
symmetric, it is easy to see that the evolution also stays symmetric until the first singularity
forms. If we encounter a type-0 singularity, that is, the length of one of the curves goes
to zero and the curvature of the network remains bounded, then again by symmetry the
vanishing curve must be the straight edge passing through the origin. In this way, the
two triple junctions collide, and we can then apply the results in [14, Theorem 1.1] and
[18, Theorem 1.1] to restart the flow (cf. [20, Theorem 6.1]). Since the unique self-similar
regular expanding soliton flowing out of a standard cross has the same symmetries as
the cross [24, Proposition 2.2], we may conclude that the evolution remains symmetric
as before. A tree transitions to a tree, and a � -network transitions to eyeglasses and vice
versa. This process can continue as long as the curvature remains bounded, and as stated,
this can only happen a finite number of times, so any oscillatory behaviour is excluded.

The proof of Theorem 1.1 relies on a result by Angenent [5, Theorem 1.3], which
we present as Proposition 2.7, adapted to this singular case. Its proof is grounded in the
Sturmian theorem, as stated by Angenent [4, Theorem 2.1] (cf. [1, Theorems C and D]).
In essence, this theorem asserts that if u 2 C1.QT / is a solution to a linear parabolic



Singularities of the network flow with symmetric initial data 17

equation in QT ´ Œ0; 1� � Œ0; T �, and if u.x; t/ ¤ 0 for all 0 � t � T and x D 0; 1, then
at any time t 2 .0; T �, the number of zeroes of u.�; t / will be finite. Furthermore, this
number decreases as a function of t and strictly decreases whenever u.�; t / has a zero of
high multiplicity. For additional applications, we refer to [3], and for a detailed proof, the
reader may consult [1].

Although we are dealing with a very special case of the network flow, it is reasonable
to believe that Theorem 1.1 holds true in general for tree-like networks, with appropriate
modifications.

Conjecture 1.3. The number of singular times during the evolution of a tree is finite. If no
boundary curve disappears during the evolution, then the flow exists for all positive times
and converges to a (possibly degenerate) minimal network.

In addition, we observe that the same technique employed to prove Theorem 1.1 can
be used to deduce an analogous theorem for the evolution of networks on the sphere S2,
where we have a similar notion of symmetry. In this case, we consider networks with two
triple junctions that are symmetric with respect to a reflection across two perpendicular
great circles, which are the geodesics of S2. Since the outcome remains unchanged when
considering a tree-like initial configuration, we focus on the case of the � -network and the
eyeglasses.

Theorem 1.4. Let �0 be a symmetric, closed, and regular network with two triple junc-
tions on the sphere S2. Then, there is a maximal time T > 0 and a unique network
flow ¹�.t/º0�t<T with initial data �0 such that the set of its singular times is a finite
subset of .0; T /; in particular, there is no accumulation of singularities. Moreover, either

• T D1 and limt!1 �.t/ is a minimal � -network;

• or T < 1 and the curvature blows up as one of the enclosed regions vanish with
t " T .

Note that in this particular situation, if the flow is globally defined, the limit
as t !1 is always a regular network. This contrasts with the case of a tree, as explained
in Remark 1.2.

The plan of the paper is the following: In Section 2 we introduce the notion of network
and network flow, and we recall some preliminary results on existence and uniqueness
of solutions. In Section 3 we prove our main result on the singularities of the flow of
symmetric networks with two triple junctions. Finally, in Section 4 we explain how to
modify the arguments from Section 3 to prove Theorem 1.4.

2. Notation and preliminary results

Before proceeding to the proof of Theorem 1.1, we shall first establish our notation,
present the necessary definitions, and recapitulate the essential results.
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Let 
 W Œ0; 1�! R2 be a regular C 2 curve, meaning that 
 0.x/¤ 0 for all x 2 Œ0; 1�. We
denote its unit tangent by �.x/´ 
 0.x/=j
 0.x/j and its unit normal by �, such that ¹�; �º
is a positive basis of R2. The curvature of 
 with respect to � is denoted by �. Occasion-
ally, we may use superscript indices to label curves, and when we do, we also label their
tangents, normals, and curvatures accordingly.

Definition 2.1 (Network). A network � is a finite union of embedded, regular curves
¹
j ºnjD1 of class C 2, called edges, that meet only at their endpoints and nontangentially,
and such that the union of their images

Sn
jD1 


j .Œ0; 1�/ is a connected set. A network � is
said to be regular when its edges intersect solely at triple junctions, at which their interior
tangents form equal angles of 2�=3. The endpoints of curves that are not shared by other
curves are referred to as endpoints of the network.

Note that the regularity condition at triple junctions can be stated as follows: if three
curves 
jk (k D 1; 2; 3) intersect at, say, x D 0, then

�j1.0/C �j2.0/C �j3.0/ D 0:

Definition 2.2 (Network flow). Let �.t/D ¹
j .�; t /ºnjD1 with t 2 .a; b/ be a one-parame-
ter family of regular networks, with fixed endpoints p1; : : : ; pr , and time-dependent triple
junctions o1.t/; : : : ; os.t/. Then, ¹�.t/ºa<t<b is said to be a solution to the network flow if
at every time t 2 .a; b/, with possible curve relabelling, the following system is satisfied:8̂̂<̂

:̂
h@t


j .x; t/; �j .x; t/i D �j .x; t/; x 2 Œ0; 1�; j D 1; : : : ; n;


k.1; t/ D pk ; k D 1; : : : ; r;

� l1 C � l2 C � l3 D 0 at the triple junction ol .t/; l D 1; : : : ; s:

(1)

We now state a version of short time existence for the network flow that suits our
needs.

Proposition 2.3 (cf. [12, Theorems 1.1–1.2]). Let �0 be a regular network. Then, there
exists a smooth solution ¹�.t/º0�t<T , unique up to reparametrisations, to the network
flow (1) starting at �0 and fixing its endpoints. Moreover, the flow can be extended to a
maximal time T > 0, at which at least one of the following scenarios unfolds:

• T D1;

• the inferior limit as t " T of the length of one of the edges of �.t/ is zero;

• the superior limit as t " T of the L2-norm of the curvature of �.t/ is infinite.

Proposition 2.3 allows us to initiate the flow from any regular data and extend it to a
maximal time, while ensuring the flow remains smooth. Nevertheless, in the specific case
we address here, where the initial network possesses only two triple junctions, we can
provide additional insights.
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Proposition 2.4 (cf. [20, Theorem 1.1]). Let �0 be a regular network with exactly two
triple junctions, and let ¹�.t/º0�t<T be the maximal smooth flow starting at �0. Suppose
also that T is finite and the length of no boundary edge goes to zero. Then, as t " T , one
of the following occurs:

• the length of a curve joining the triple junctions goes to zero while the curvature
remains bounded;

• the limit of the lengths of the curves composing a loop goes to zero and the L2-norm
of the curvature goes to infinity.

If the network �0 is a tree, then only the first situation happens.

As explained in the introduction, when the first scenario in Proposition 2.4 occurs, the
flow approaches an irregular network with a single quadruple junction, resulting in the
development of a type-0 singularity. Nonetheless, a transition to a regular flow is made
possible by the following proposition:

Proposition 2.5 (cf. [18, Theorem 1.1, Proposition 8.5]). Let �0 be an irregular net-
work. Then, there exists a solution ¹�.t/º0�t<T to the network flow given by (1) such
that �.t/ converges in the Hausdorff distance to �0 as t # 0. Furthermore, all the solu-
tions, accounting for possible reparametrisations, can be classified by the self-similar,
tree-like expanding solitons described in [24] at each irregular junction. In particular,
if �0 consists of a single quadruple junction with angles �=3 and 2�=3, and no other
junctions are present, then the flow admits a unique solution.

While the convergence to the initial datum �0 can be understood in a much stronger
sense, as discussed in [18], for our purposes, local uniform convergence suffices. In any
case, it is worth noting that convergence remains smooth away from the irregular junc-
tions, provided that �0 itself is smooth.

Proposition 2.5 can be regarded as a restarting theorem after the formation of an irreg-
ular network, as previously explained. Furthermore, since the flow remains regular for
positive times, we can employ Proposition 2.3 to extend it until the next singularity, if
there is one. This leads us to the following definition, which is the primary focus of our
discussion here:

Definition 2.6 (Extended network flow). An extended network flow with initial condi-
tion �0 is a one-parameter family of networks ¹�.t/º0�t<T that satisfies the following
conditions:

• there exists a finite number of times 0D t0 < t1 < � � �< tmD T such that the restriction
¹�.t/ºtk<t<tkC1 , k D 0; : : : ; m � 1, is a regular network flow in the sense of Defini-
tion 2.2;

• at each tk , k D 1; : : : ; m � 1, a type-0 singularity forms, and we call these singular
times;

• �.t/ converges to �.tk/ in the Hausdorff distance as t # tk .
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Thus, another way then to rephrase Theorem 1.1 is that every solution to the network
flow in the sense of Definition 2.6 can be continued to a maximal extended flow such that
either T D1, or else T <1 and the curvature increases without bound as t " T .

We now present the main tool used for the proof of Theorem 1.1.

Proposition 2.7 (cf. [5, Theorem 1.3]). Let 
1; 
2W Œ0; 1� � Œ0; T /! R2 be two solutions
to the curve shortening flow, and suppose that for each .x; t/ 2 Œ0; 1� � Œ0; T /,


1.0; t/; 
1.1; t/ ¤ 
2.x; t/ and 
2.0; t/; 
2.1; t/ ¤ 
1.x; t/:

Then, the number of intersections of 
1.�; t / and 
2.�; t /,

i.t/´ #¹.x1; x2/ 2 Œ0; 1� � Œ0; 1� W 
1.x1; t / D 
2.x2; t /º;

is finite for every t 2 .0; T /. Moreover, i.�/ is a nonincreasing function of t , and decreases
exactly when 
1 and 
2 become tangent at some point.

We briefly remark that the presence of triple junctions is what makes it difficult to
apply Proposition 2.7 to a general, nonsymmetric network.

3. Proof of Theorem 1.1

We are now ready for the proof of our main result. Let �0 be a symmetric regular net-
work with two triple junctions, and let ¹�.t/º0�t<T be the evolution given by Proposi-
tion 2.3. By our symmetry assumptions, from the system in (1) it follows that at each time
t 2 .0; T /, the network �.t/ is also symmetric with the same axes of symmetry as �0.
Therefore, modulo a rotation and translation, the flow is completely described by one
single curve in the first quadrant of R2, where the coordinate axes coincide with the sym-
metry axes of �.t/. Let 
 W Œ0; 1�� Œ0; T /! R2 be the evolution of this defining curve, and
call .x1; x2/ the rectangular coordinates of R2. After a reparametrisation, we may further
suppose that 
.0; t/ is the triple junction, which lies in the x1-axis, and �.0; t/ D .1

2
;
p
3
2
/

is the unit tangent, which is constant. Thus, we have the following boundary conditions
for 
 , according to each case, if �0:

• is a tree, then 
.1; t/ D p is a fixed endpoint of the network;

• is a � -network, then 
.1; t/ is a free point in the x2-axis such that �.1; t/ D .�1; 0/;

• is eyeglasses, then 
.1; t/ is a free point in the x1-axis such that �.1; t/ D .0;�1/.

As a consequence of Proposition 2.4, the flow develops a type-0 singularity at T if and
only if limt"T 
.0; t/ D .0; 0/.

Proof of Theorem 1.1. To fix ideas, let us suppose that the initial network �0 is a tree
with fixed endpoints. Assume also that at a finite time T , the flow develops a type-0
singularity. We can then apply Proposition 2.5 and extend the flow a little further to a time
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yT > T . By symmetry, this can be viewed as extending the evolution of the defining curve
to a map 
 W Œ0; 1� � Œ0; yT /! R2, where the triple junction 
.0; t/ is in the x2-axis for
times t 2 .T; yT /.

Now, consider a straight line ` through the origin, such that the endpoint p … ` and the
angle between the x1-axis and ` is in the range .�

6
; �
3
/. Note also that ` is a static solution

to the curve shortening flow. Define the function

i.t/´ #
®
x 2 Œ0; 1� W 
.x; t/ 2 `

¯
; t 2 .0; yT /:

We show that i is finite and nonincreasing in time, and decreases strictly across t D T .
Indeed, as long as the vertices of the network do not collide, that is, as 
.0; t/ stays

away from the origin, we can invoke Proposition 2.7 to see that i.t/ is not increasing in
time. On the other hand, 
.�; t / converges smoothly to a curve 
.�; T / as t " T such that

.0; T / D 0, and �.0; T / D .1

2
;
p
3
2
/. Therefore, there exist some small "; ı > 0 such

that 
.�; t / crosses ` in the rectangle Œ0;"��Œ0;2"� at a single point, for every t 2.T � ı; T �.
Note that 
.�; T / intersects ` exactly at the origin, and besides this point it lies com-
pletely above ` within the specified small rectangle. We now show that, after we restart
the flow, 
.�; t / remains at a positive distance above ` in Œ0; "� � Œ0; 2"� for a short time.

Because of the invariance under reparametrisations, we can locally represent the evol-
ution of 
 as a graph u.x; t/ over the x1-axis, for .x; t/ 2 Œ0; "� � ŒT; T C ı/, with ı
possibly smaller. The function uW Œ0; "� � ŒT; T C ı/! R then satisfies the partial differ-
ential equation

ut D
uxx

1C .ux/2
in Œ0; "� � .T; T C ı/

with Cauchy–Neumann boundary conditions

u.x; T / D uT .x/; ux.0; t/ D 1=
p
3; .x; t/ 2 Œ0; "� � .T; T C ı/;

where uT W Œ0; "� ! R is a function parametrising 
.�; T /. If we consider the function
w.x; t/´ u.x; t/�mx, with m 2 . 1p

3
;
p
3/ being the tangent of the angle ` forms with

the x1-axis, then w solves
wt D

wxx

1C .wx Cm/2
;

which is strictly parabolic. Thanks to the estimate on the shortest curve of the flow with
singular initial data [14, Theorem 1.1], there is a positive constant c such that

w.0; t/ � c
p
t � T :

Furthermore, Proposition 2.5 implies that as t approaches T from above, u.�; t / uni-
formly converges to uT . Therefore, for sufficiently small ı, we have w."; t/ > 0 for all
t 2 ŒT; T C ı/. This, combined with the fact that w.x; T / � 0 for all x 2 Œ0; "� and
the application of the maximum principle, shows that w remains greater than zero in
Œ0; "� � ŒT; T C ı/, which means 
.�; t / remains above the line ` during this interval.
Hence, in a neighbourhood of the origin, the number of intersections between 
.�; t / and `
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Figure 3. The number of intersections with the diagonal (dashed line) decreases by at least one
through a standard transition.

decreases by precisely one as t crosses T . Outside this neighbourhood, we can once again
employ Proposition 2.7 for t in the range .T; T C ı/. This analysis demonstrates that i.t/
decreases by at least one over the interval .0; T C ı/. For illustration purposes, see Fig-
ure 3.

Due to our symmetry assumptions and our choice of the line `, after reflecting with
respect to the diagonal x1 D x2 we find ourselves back in the initial setup. As a con-
sequence, we can repeat the previous reasoning every time the two triple junctions of �.t/
coalesce into the origin, and as i.t/ cannot decrease indefinitely, it must become constant
for sufficiently large t > 0, after which there are no more type-0 singularities. We can thus
obtain an extended network flow as in Definition 2.6.

The steps described above carry almost identically to the other types of networks, with
the only difference that we do not need to be concerned about avoiding any particular
point p because there are no external endpoints.

We conclude the proof by referencing once again Proposition 2.4, from which it fol-
lows that the flow of a tree can be extended indefinitely. In contrast, for the � -network and
the eyeglasses cases, there must exist a time at which the two bounded regions collapse
simultaneously, causing the L2-norm of the curvature to blow up. This can only happen
as an eyeglasses-shaped network, as there is no self-similar shrinking � -network [6].

Finally, in the case of a tree, there exists a sequence tn!1 such that �.tn/ converges
in C 1;˛ \W 2;2 for every ˛ 2 .0; 1

2
/ to either a regular Steiner tree or a standard cross.

If it converges to a Steiner tree, we can apply [25, Theorem 1.2] to establish the full
smooth convergence of the flow as t!1. Otherwise, regardless of the sequence of times,
the limit is a standard cross. Thus, in this scenario as well, we observe full and smooth
convergence.

4. Extension to the 2-sphere

We conclude this note by explaining how to adapt the proof Theorem 1.1 to the network
flow on the sphere S2 instead of R2 and show Theorem 1.4. Thanks to the theory developed



Singularities of the network flow with symmetric initial data 23

in [2, 5], this extension can be achieved almost effortlessly, albeit with a mild change in
the flow’s behaviour near the maximal time of existence.

First, it is worth noting that all the definitions presented in Section 2 straightforwardly
apply to this case, and all the propositions in that section remain valid. Regarding the
proof, the only change needed with respect to the argument in Section 3 is that instead of
counting intersections with a straight line, we use a great circle passing through the centre
of symmetry of the network, making an angle greater than �=6 but less than �=3 with
respect to a chosen great circle of symmetry. The analogue of Proposition 2.7 asserts that
this number decreases during the evolution. Across a type-0 singularity, we again represent
the evolution locally as a graph over the chosen great circle using the exponential map.
The resulting equation for the evolution remains strictly parabolic, and the application of
the maximum principle yields the desired strict monotonicity. We therefore conclude that
the flow can be extended until the curvature becomes unbounded as an enclosed region
vanishes, or it can be extended indefinitely and converges to a minimal network. In the
latter case, the minimal network must be a � -network – minimal eyeglasses or 8-figures
do not exist on the 2-sphere, which can be deduced from geodesic segments being arcs of
great circles. In particular, infinity is excluded as a singular time.
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