
Mathematisches Forschungsinstitut Oberwolfach

Report No. 38/2024

DOI: 10.4171/OWR/2024/38

Mathematics, Statistics, and Geometry of Extreme Events
in High Dimensions

Organized by
Richard Davis, New York

Rafal Kulik, Ottawa
Anne Sabourin, Paris

Stilian Stoev, Ann Arbor

19 August – 23 August 2024

Abstract. The workshop brought together researchers contributing to var-
ious recent topics in Extreme Value Theory. Discussions and talks included
recent probabilistic development in the theory of regular variation, advances
in multivariate representations compatible with sparsity structures, statisti-
cal inference in both high dimensional and time series frameworks, and novel
applications and emerging directions that leverage recent advances in deep
learning.

Mathematics Subject Classification (2020): 60-06, 60G70, 62-06.

License: Unless otherwise noted, the content of this report is licensed under CC BY SA 4.0.

Introduction by the Organizers

The unifying theme of the workshop was the study of extreme value phenomena
from a variety of mathematical perspectives. The workshop gathered more than
forty participants from all around the globe, with various backgrounds.

The study of extremes in probability and statistics has a rich history, which can
be traced back to the works of Fisher and Tippett (1928) and Gnedenko (1943).
From a theoretical standpoint, it is motivated by natural and fundamental ques-
tions on the limiting behavior of the maxima of independent random variables,
vectors, and stochastic processes. A number of theoretical results have culmi-
nated into a rich probabilistic and statistical framework that now has a wide range
of applications to science, engineering, insurance, and finance. The prototypical
problem that one can solve using the classical extreme value theory tools is the
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prediction of extreme events beyond the range of the historically available data.
This can be done in a principled way by using the so-called de Haan-Balkema-
Pickands theorem when dealing with independent data. The theory and methods
extend to the realm of stochastic processes and dependent data through the meth-
ods of block-maxima or peaks-over-threshold, among others. This has led to the
adoption of the classical extreme value methods as the gold standard in many
areas.

The modern developments in the field, however, are motivated by a wide range
of practical as well as theoretical challenges, which are, in broad strokes, related
to the notion of “big data” as well as the emerging paradigm of “big models” from
the field of machine learning.

In applications, the availability of large-scale spatial and spatio-temporal data,
for example, in modern weather or environmental measurements and climate mod-
els challenges the computational as well as the modeling capabilities of the tradi-
tional methodology. This naturally leads to the consideration of large-scale com-
puting architectures and large-scale high-dimensional models. These tectonic par-
adigm shifts naturally challenge a number of standard theoretical assumptions
such as independence/weak dependence, stationarity, and other regularity condi-
tions adopted in the classical theory. As a result, new and emerging directions
of research in the field have been actively pursued, many of which were presented
during the workshop.

The workshop featured 30 talks from a balanced and representative group of
researchers including established senior experts, a number of active early to mid-
career researchers as well, as many doctoral students and several junior faculty.

We now provide a brief overview of the variety of novel ideas introduced and
discussed during the workshop, structuring the presentation into (possibly overlap-
ping) general themes in an attempt to facilitate reading. Of course the following
description cannot be, and is not exhaustive and the reader is referred to the list
of extended abstracts for a complete account.

Probability theory and geometry of extremes. Two talks discussed a general
unifying treatment of the fundamental notion of multivariate regular variation for
random elements taking values in Banach or more generally Souslin spaces (Bas-
rak and Molchanov). An application to limit theorems for extremal processes in
the Gromov-Hausdorff topology was presented (Jin). Geometric representations
of multivariate tail dependence based on limit sets arising from light-tailed sam-
ple clouds were reviewed. They were used to develop novel semi-parametric sta-
tistical inference methodology (Wadsworth). Advances on tail dependence and
stochastic dominance for multivariate max-stable distributions were presented
(Strokorb). Large deviations theory for k-nearest neighbor balls was developed
(Owada). Connections between extremes, topological data analysis, and stochas-
tic geometry were reviewed and new limit theorems for sparse high-dimensional
geometric graphs were established (Hirsch).

Multivariate extremes: Graphical models, tail (in)dependence, and di-
mension reduction. The state-of-the art of the active area of graphical models
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for multivariate extremes was reviewed, followed by a novel, unifying approach
to asymptotic conditional independence in relation with an underlying Lévy mea-
sure (Engelke). Possibly cyclic graphical structures in max-linear models were
introduced (Krali). An approach to principal component analysis for multivariate
extremes was considered based on projecting the angular measure onto a hyper-
plane (Wan). Further approaches to principal component analysis for multivari-
ate max-stable distributions were considered from the perspective of solving an
optimization problem (Janßen). New ideas on defining inner-product structures
tailored for the study of multivariate extremes were introduced (Cooley). Dimen-
sion reduction frameworks for multivariate extremes were presented, leveraging
Machine Learning tools such as Kernel PCA (Samorodnitsky) and Spectral Clus-
tering (Avella Medina). A definition of mutual asymptotic independence among
multivariate heavy-tailed variables was proposed and applied to risk measures in
financial networks (Fasen-Hartmann).

Statistical inference and extremes in high dimensions. A multiple testing
procedure regarding equality of tail indices was presented. Its asymptotic behavior
in the high-dimensional asymptotics regime where the dimension increases with
the sample size was established (Zhou). In relation to graphical models mentioned
above, a penalized estimation of the precision matrix in Hüsler-Reiss model al-
lowing consistent recovery of a sparsity pattern was presented (Volgushev). The
question of dimension selection for sparse regular variation was also studied were
an ad-hoc information criterion was introduced for this purpose and shown to be
weakly consistent (Butsch). A methodology for the automatic selection of the
number of components in cluster analysis for extremes was presented and studied
theoretically (Bai). A Bayesian spectral inference methodology was introduced,
where the angular measure is modeled via a mixture of tilted Dirichlet distribu-
tions – well-suited for efficient Monte Carlo inference (Davison). A novel Bayesian
approach to inference and conditional sampling from irregularly observed spatial
models of extremes was developed (Thannheimer).

Extremes in Time Series. In the context of stationary, heavy-tailed time series,
a novel circular bootstrap method for sliding block maxima statistics was presented
and justified with asymptotic theory (Bücher). Clusters-over-threshold estimators
together with their asymptotic properties were presented (Wintenberger). Long-
range dependence for max-stable time series was studied from the perspective
of tail dependence and asymptotic theory for extremogram-type estimators was
established (Oesting). A framework for optimal prediction of extreme events from
the perspective of Neyman-Pearson classification was presented and applied to
extreme event prediction in autoregressive and FARIMA time series (Verma).

Novel applications and emerging directions. An overview of a framework
for amortized inference via Bayes Neural Networks was presented and applied to
large-scale spatial extremes, where computational challenges associated with likeli-
hood methods have been a long-standing challenge (Huser). Asymptotic theory for
neural estimators was established (Hentschel). A novel multi-fidelity framework
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for the optimal way to combine simulations from different types of large-scale com-
puter experiments arising in the context of extreme ship motions was presented
(Pipiras). The importance of using high-quality data and the theoretical chal-
lenges in dealing with non-stationarity due to climate change were addressed in
the context of forecasting rainfall extremes using scoring rules. The notion of de-
sign life period was proposed as an alternative to return period for the purpose of
communicating about extremes to engineers and the public (Rootzén).

Acknowledgement: The workshop organizers, on behalf of all participants, would
like to thank the staff and the leadership of MFO for the hospitality and for
providing a stimulating and inspiring environment for research.

The MFO and the workshop organizers would like to thank the National Science
Foundation for supporting the participation of junior researchers in the workshop
by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Kernel PCA and its application to analysis of multivariate extremes

Gennady Samorodnitsky

(joint work with Marco Avella Medina, Richard Davis)

The principal goals of this paper are twofold: 1) provide general insights into ker-
nel PCA showing that it can effectively identify clusters of preimages when the
data consists of a discrete signal with added noise, and 2) apply kernel PCA for
describing dependence structure of multivariate extremes. Kernel PCA has been
motivated as a tool for denoising and clustering of the approximate preimages.
The idea is that such structure should be captured by the first principal com-
ponents in the corresponding function space. We provide some simple insights
that naturally lead to clustered preimages when the underlying data comes from
a discrete signal corrupted by noise. Specifically, we use the Davis-Kahan theory
to give a perturbation bound on the performance of preimages that quantifies the
impact of noise in clustering a discrete signal. We then propose kernel PCA as
a method for analyzing the dependence structure of multivariate extremes and
demonstrate that it can be a powerful tool for clustering and dimension reduction.
In this case, kernel PCA is applied only to the extremal part of the sample, i.e.,
the angular part of random vectors for which the radius exceeds a large threshold.
More specifically, we focus on the asymptotic dependence of multivariate extremes
characterized by the angular or spectral measure in extreme value theory and pro-
vide a careful analysis in the case where the extremes are generated from a linear
factor model. We give theoretical analysis of the ingredients in the Davis-Kahan
perturbation bounds by leveraging their asymptotic distribution. Our theoreti-
cal findings are complemented with numerical experiments illustrating the finite
sample performance of our methods.
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An approach to dimension reduction via max-stable
principal components

Anja Janßen

(joint work with Felix Reinbott)

Principal component analysis (PCA) is one of the most popular dimension re-
duction techniques in statistics and is especially powerful when a multivariate
distribution is concentrated near a lower-dimensional subspace. Multivariate ex-
treme value distributions have turned out to provide challenges for the application
of PCA since their constraint support impedes the detection of lower-dimensional
structures and heavy-tails can imply that second moments do not exist, thereby
preventing the application of classical variance-based techniques for PCA.

One way to motivate the usual PCA is via a regression problem: We search
for an optimal linear subspace of dimension p < d to project a d-variate random
vector X upon, where optimality is measured in terms of the second moment of
the projection error. It is thus equivalent to finding a solution to the regression
problem

(1) min
(B,W )∈Rd×p×Rp×d

E‖BWX −X‖22,

i.e. in finding an optimal matrix W which maps our random vector X to a p-
dimensional subspace and its optimal counterpart B which reconstructs X from
this lower dimensional representation.

However, this approach to PCA is only suitable if our random vector X has
finite second moments and it is only meaningful if we are interested in the bulk of
observations, not the extremes. Our aim is thus to modify the approach in (1) by
first finding a suitable class of distributions for the random vectorX and then to fix
a suitable distance measure between X and its lower dimensional reconstruction.

We achieve this by first settling on the class of max-stable random vectors which
are suitable limit distributions for maxima and for which a convenient representa-
tion in terms of spectral functions holds, see [4]. Based on this representation, [2]
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and [3] introduced a metric ρ on max-stable distributions, called “spectral dis-
tance” in [5], which metricizes convergence in probability. Max-stable distribu-
tions are known to be closed under max-linear transformations, which we denote
by ⋄, see [1] for a general theory of max-linear algebra.

With these three components, i.e. max-stable random vectors, max-linear trans-
formations of them and the spectral distance, we adapt the optimization problem
in (1) to the extremal setting by rephrasing it as

(2) min
(B,W )∈Rd×p×Rp×d

ρ (B ⋄W ⋄X,X) ,

for a max-stable random vector X .
We are able to characterize the case in which a perfect lower-dimensional re-

construction is possible.

Theorem 1. Let X be a d-variate simple max-stable random vector and let p ≤ d.
Then the following statements are equivalent.

(i) There exists a pair of matrices (B∗,W ∗) ∈ [0,∞)d×p× [0,∞)p×d such that

ρ(B∗ ⋄W ∗ ⋄X,X) = 0.

(ii) After possibly permuting the entries of X, there exists a p-variate simple
max-stable random vector Y and a matrix Λ ∈ [0,∞)(d−p)×p, such that

(3) X =

(
idp
Λ

)
⋄ Y.

Furthermore, if (3) holds, we can choose (B∗,W ∗) as

B∗ =

(
idp
Λ

)
, W ∗ =

(
idp, 0p×(d−p)

)
.

It should be noted that the optimization problem in (2) is not convex, nor can
it be solved iteratively for growing values of p, but we apply a sequential least
squares quadratic programming algorithm which works well in simulations. More
details can be found in [7], see also the R-package [6].
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Bayesian inference for functional extreme events defined via partially
unobserved processes

Max Thannheimer

(joint work with Marco Oesting)

In order to describe the extremal behaviour of some stochastic process X a gen-
eralized peaks-over-threshold approach can be used, allowing us to consider single
extreme events. These can be flexibly defined as exceedances of a risk functional
ℓ, such as a spatial average, applied to X . Inference for the resulting limit pro-
cess, the so-called ℓ-Pareto process, requires the evaluation of ℓ(X) and thus the
knowledge of the whole process X . In practical applications, we face the challenge
that observations of X are only available at single sites. To overcome this issue,
we propose a two-step MCMC-algorithm in a Bayesian framework. In a first step,
we sample from X conditionally on the observations in order to evaluate which
observations lead to ℓ-exceedances. In a second step, we use these exceedances to
sample from the posterior distribution of the parameters of the limiting ℓ-Pareto
process. Alternating these steps results in a full Bayesian sampling algorithm for
the extremes of X .

1. Basics

Let S ⊂ Rd be compact and C(S)+ the space of non-negative continuous real-
valued functions f : S → [0,∞) equipped with norm ‖f‖∞ := sups∈S |f(S)| and
the σ-algebra generated by cylinder sets. Consider a sample-continuous process
X = {X(s) : s ∈ S} which is in the max-domain of some sample-continuous
max-stable process Z = {Z(s) : s ∈ S} of α-Fréchet margins for some α > 0.

By [1], the process Z allows for the spectral representation

Z(s)
d
=

∞∨

k=1

Γ
−1/α
k Wk(s), s ∈ S,

where {Γk}k∈N are the arrival times of a Poisson process on (0,∞) with unit
intensity and Wk are independent copies of a non-negative sample-continuous sto-
chastic process W = {W (s) : s ∈ S}, the so-called spectral process, satisfying
E(W (s)α) = 1 for all s ∈ S.

ℓ-normalized spectral representation. Let ℓ : C(S)+ → R be a non-trivial
homogeneous continuous functional, the so-called risk functional. We define ex-
treme events as via risk functional exceedances, i.e., realizations of X with a
risk functional evaluation above a high threshold u. Provided that ℓ(W ) > 0
almost surely, there exists a non-negative sample-continuous stochastic process
W (ℓ) = {W (ℓ)(s), s ∈ S} such that

Z(s)
d
= α

√
cℓ

∞∨

k=1

Γ
−1/α
k

W
(ℓ)
k (s)

ℓ(W
(ℓ)
k )

, s ∈ S,(1)
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for independent copies W
(ℓ)
1 ,W

(ℓ)
2 , . . . of W (ℓ) and

cℓ =

∫

C(S)+
ℓ(w)αdPW (w).

The law of W (ℓ) is given by

P(W (ℓ) ∈ A) =
1

cℓ

∫

C(S)+
ℓ(w)α1{w∈A}dPW (w), A ∈ B

(
C(S)+

)
,(2)

see [3].
By decomposing X into a ℓ-normalized part X

ℓ(X) and an intensity part ℓ(X)

we have for threshold u → ∞ that

lim
u→∞

P

(
X

ℓ(X)
∈ B, ℓ(X) > ru

∣∣∣∣ ℓ(X) > u

)
= P

(
W (ℓ)

ℓ(W (ℓ))
∈ B

)
r−α.(3)

We use this limit theorem for Bayesian inference with an MCMC approach. In
this work, we assume the shape parameter α > 0 to be known and introduce a
parameterized Brown-Resnick process model for the spectral process W =: Wθ of
the form

W (s) = exp

(
G(s)−G(s0)−

1

2
Var(G(s)−G(s0))

)
, s ∈ S,

where G = Gθ is a parameterized centered Gaussian process with covariance given
as

Cov(G(s), G(s̃)) := c||s||β + c||s̃||β − c||s− s̃||β , c > 0, β ∈ (0, 2).

The Gaussian process Gθ is a two dimensional fractional Brownian motion and can
therefore be simulated very efficiently on a regular grid via circulant embedding [2].
Conditionally on being risk functional exceedances, we treat observations at sites
s = (s0, . . . , sn) as observations of the spectral process using (3) via

X(s)

X(s0)
=

X(s)/ℓ(X)

X(s0)/ℓ(X)

d≈ W (ℓ)(s)/ℓ(W (ℓ))

W (ℓ)(s0)/ℓ(W (ℓ))
= W (ℓ)(s).

2. Algorithm

To account for an unobservable risk functional we introduce a conditional simu-
lation step in our MCMC procedure. In a first step we repetitively simulate our
process W (ℓ) on a fine grid conditional on our observations. With this fine grid
simulations we are able to evaluate the risk functional and decide which observa-
tions lead to risk functional exceedances so that we can use them as data in the
second step to estimate our parameter θ in a conventional MCMC algorithm. The
current implementation can be found online at
https://github.com/maxthannheimer/FunctionalParetoMCMC.
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Figure 1. Simulate Brown-Resnick-Pareto process with two
parameters, α = 1, n = 20 stations and N = 400 fine grid points.

1000 MCMC steps, 250 burn-in, mean of remaining 750.

2.1. First step. Via the following MCMC approach we construct a Markov chain
with stationary distribution

fW (ℓ)(t)|W (ℓ)(s)=x/x0
(z) ∝ ℓα(z)fW (t)|W (s)=x/x0

(z), z ∈ R
N :

For fixed parameter θ independently from the current fine grid simulation w of
W (ℓ), propose a new w′ from the conditional density fW (t)|W (s)=x/x0

of the spec-
tral process Wθ, which is just a conditional log Gaussian simulation. The proposal
is then accepted with the acceptance rate

a(w,w′) = min

{
ℓα(w)

ℓα(w′)
, 1

}
.

2.2. Second step. Via the following MCMC approach we construct a Markov
chain with stationary distribution

fθ(θ | x/x0) ∝ fW (s)(x/x0 | θ) 1

cℓ,θ
Eθ (ℓ(W )α | W (s) = x/x0) · π(θ) :

Given the current parameter θ, we propose a new parameter θ′ from a suitable
proposal distribution q(θ, ·). We accept the proposal with acceptance rate

min

{
q(θ′, θ)cℓ,θ′

−1fW (s)(x/x0 | θ′)Eθ′ (ℓ(W )α | W (s) = x/x0)π(θ
′)

q(θ, θ′)cℓ,θ−1fW (s)(x/x0 | θ)Eθ (ℓ(W )α | W (s) = x/x0)π(θ)
, 1

}
.

Estimators for cℓ,θ = E(ℓ(W )α) and Eθ (ℓ(W )α | W (s) = x/x0) are available.
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On the optimal prediction of extreme events in heavy-tailed time
series with applications to solar flare forecasting

Victor Verma

(joint work with Stilian Stoev, Yang Chen)

The prediction of extreme events in time series is a fundamental problem aris-
ing in many applications. In our recent preprint [1], we introduce a framework
for studying optimal prediction of these events. In this framework, there is an
unobserved response variable Y and an observed covariate vector X , and the ob-
jective is to predict whether Y > F←Y (p), where p ∈ (0, 1) is close to one and
F←Y (p) is the pth quantile of Y . We use a predictor of the form {g(X) > τ},
where g and τ are some Borel function and threshold, respectively, that we must
choose. We search among predictors {g(X) > τ} that are calibrated - those for
which P(g(X) > τ) = 1 − p = P(Y > F←Y (p)), i.e., those that raise alarms as
frequently as the extreme event occurs. Using quantiles as thresholds, we consider
{g(X) > F←g(X)(p)} to be optimal in the class of calibrated predictors if for any

other calibrated predictor {k(X) > F←k(X)(p)},

P(Y > F←Y (p) | g(X) > F←g(X)(p)) ≥ P(Y > F←Y (p) | k(X) > F←k(X)(p));

in other words, the precision of {g(X) > F←g(X)(p)} needs to be at least as large

as the precision of any other calibrated predictor.
Within our framework, the optimal predictor turns out to be based on a ratio

of two conditional densities. The theorem below is a simplified version of Theorem
2.1 in [1]; for the sake of concision, we give simplified versions of our results here.

Theorem 1 (Theorem 2.1 in [1]). Fix p ∈ (0, 1) and let f1 and f0 be the conditional
densities:

X | {Y > F←Y (p)} ∼ f1 and X | {Y ≤ F←Y (p)} ∼ f0.

Define the density ratio

r(x) :=
f1(x)

f0(x)
;

then {r(X) > F←r(X)(p)} is an optimal predictor of {Y > F←Y (p)}.

There is a sizable literature on density ratio estimation (see [2]), but even using
methods from this literature, the density ratio r in Theorem 1 may be hard to
estimate accurately. Fortunately, in some situations, optimal prediction does not
require estimation of the density ratio. One important example is the situation in
which Y is related to X via the model

Y = g(X) + σ(X)ǫ,

where ǫ is independent of X and σ is a positive function. For this model, we have
the following result:
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Theorem 2 (Theorem 2.2 in [1]). For all p ∈ (0, 1), an optimal predictor of
{Y > F←Y (p)} is {k(X) > F←k(X)(p)}, where

k(X) =
g(X)− F←Y (p)

σ(X)
.

Denote the precision P(Y > F←Y (p) | g(X) > F←g(X)(p)) by λp(Y, g(X)). Letting

p ↑ 1, we obtain a tail dependence coefficient, assuming the limit exists:

λ(Y, g(X)) = lim
p↑1

λp(Y, g(X)).

If it exists, we call λ(Y, g(X)) the extremal precision of g(X). We can consider
optimal prediction in the extremal regime p ↑ 1. We say that g(X) is an extremally
optimal predictor of Y if

λ(Y, g(X)) = lim sup
p↑1

sup
h

λp(Y, h(X)).

Theorem 2.3 in [1] gives conditions under which g(X) is extremally optimal when
Y = g(X) + ǫ, where ǫ is independent of X .

Theorem 2 can be used to derive optimal predictors for certain time series
models. Consider a stationary, causal autoregressive (AR) model of order d:

(1) Yt =

d∑

j=1

φjYt−j + ǫt, t ∈ Z.

Set φ := (φ1, . . . , φd)
⊤. Let {e1, . . . , ed} be the standard basis of Rd; set Φ :=

(φ e1 · · · ed−1) ∈ Rd×d and φ(h) := Φhe1. The optimal predictor for model
(1) can be computed using φ(h):

Theorem 3 (Theorem 3.2 in [1]). The optimal predictor of {Yt+h > F←Y (p)} based

on Yt:(t−d+1) := (Yt, . . . , Yt−d+1)
⊤ is {Ŷt+h(φ) > F←

Ŷt+h(φ)
(p)}, where

Ŷt+h(φ) := φ(h)⊤Yt:(t−d+1).

From data, we can compute a consistent estimator φ̂ of φ using a method like

LAD estimation [3]; we plug φ̂ into the expressions for φ(h) and Ŷt+h(φ) to get

(2) Ŷt+h(φ̂) := φ̂(h)⊤Yt:(t−d+1).

An estimate q̂ of the pth quantile of Ŷt+h(φ̂) can also be computed from data
using, e.g., a sample quantile of expressions of the form (2). The approximation

Ŷt+h(φ̂) to the optimal predictor Ŷt+h(φ) has two nice asymptotic properties:

Theorem 4 (Theorem 3.3 in [1]). Under certain conditions, including φ̂
P−→ φ, the

predictor {Ŷt+h(φ̂) ≥ q̂} is:
(i) Asymptotically calibrated, i.e., as the sample size n → ∞,

P(Ŷt+h(φ̂) ≥ q̂) → 1− p = P(Yt+h ≥ F←Y (p))
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(ii) Asymptotically optimal, i.e., as n → ∞,

P(Yt+h ≥ F←Y (p) | Ŷt+h(φ̂) ≥ q̂) → P(Yt+h ≥ F←Y (p) | Ŷt+h(φ) ≥ F←
Ŷt+h(φ)

(p)).

Now consider a stationary, invertible moving average (MA) model of order ∞:

Yt =

∞∑

j=0

ajǫt−j , t ∈ Z.

We have the following characterization of the optimal predictor:

Theorem 5 (Theorem 3.1 in [1]). The optimal predictor of {Yt+h > F←Y (p)} based

on Ys,−∞ < s ≤ t, is {Ŷ (opt)
t+h > F←

Ŷ
(opt)
t+h

(p)}, where Ŷ
(opt)
t+h =

∑∞
j=0 aj+hǫt−j.

Assume that the ǫt’s are iid and regularly varying with tail index α and extremal
skewness pǫ, with Eǫt = 0 when α > 1, and that

∑∞
j=0 |aj |δ < ∞ for some

δ ∈ (0, α) ∩ (0, 2]; these conditions are from [4]. Then a simple formula for the

extremal precision of Ŷ
(opt)
t+h can be obtained:

Theorem 6 (Theorem 3.4 in [1]). Suppose that {Yt} is invertible. For h ≥ 0,
define

κ+(aj) := pǫI(aj > 0) + (1− pǫ)I(aj < 0) and η+(a, h) :=

∞∑

j=0

κ+(aj+h)|aj+h|α.

For every h ≥ 1, the extremal precision of Ŷ
(opt)
t+h is λ(Yt+h, Ŷ

(opt)
t+h ) = η+(a,h)

η+(a,0) .

Finally, the following curious result says that optimal prediction in the extremal
regime can sometimes be done with just the most recent observation:

Proposition 7 (Proposition 3.2 in [1]). Suppose that for some h ≥ 1, η+(a, h) > 0
and the sequence {aj} is lag-h absolute decreasing, i.e., |aj+h| ≤ |aj |, for all j ≥ 0.

Then, if aj+haj ≥ 0 for all j ≥ 0, we have λ(Yt+h, Yt) = λ(Yt+h, Ŷ
(opt)
t+h ).

Our project was motivated by the problem of predicting strong solar flares,
which can be done by predicting when a quantity called the solar X-ray flux will
surpass a high threshold. See Section 1 of [1] for background on this problem and
Section 5 of the same preprint for results from our attempt to predict flares using
predictors motivated by Theorems 3 and 5.
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Information criteria for the number of directions of extremes in
high-dimensional data

Lucas Butsch

(joint work with Vicky Fasen-Hartmann)

In multivariate extreme value analysis, estimating the extremal dependence struc-
ture is a challenging task, especially in the context of high-dimensional data.
Therefore, a common approach is to reduce the dimensionality by considering
only the directions in which extreme values occur. The underlying models are
assumed to be sparse regularly varying, recently introduced by Meyer and Win-
tenberger [4]. An Rd

+-valued random vector X is called sparse regularly varying,

if a S
d−1
+ -valued random vector Z and a non degenerate random variable Y exist

such that as t → ∞,

P (‖X‖/t > y, π (X/t) ∈ A | ‖X‖ > t) −→ P(Y > y,Z ∈ A),

for all y > 0 and all Borel sets A ⊂ S
d−1
+ := {x ∈ Rd

+ : ‖x‖1 = 1} with P(Z ∈
∂A) = 0, where π is the Euclidean projection onto S

d−1
+ . Sparse regular variation

has the advantage of capturing the sparsity structure in which extreme events occur
better than multivariate regular variation. Therefore, we use the concept of sparse
regular variation and assume that the support of Z is sparse and concentrates on
a subsimplex of Sd−1+ .

In order to estimate the extremal directions, we define Cβ := {x ∈ S
d−1
+ : xi >

0 for i ∈ β, xi = 0 for i /∈ β} ⊆ S
d−1
+ for β ∈ P∗d := Pd \ ∅, where Pd is the power

set of {1, . . . d}, which builds a disjoint partition of Sd−1+ . From the knowledge of
P(Z ∈ Cβ) > 0 for all β ∈ P∗d conclusions about the direction β can be made.
The set of relevant directions is defined as S(Z) := {β ∈ P∗d : P(Z ∈ Cβ) > 0}
and s∗ := |S(Z)| is the number of relevant directions. A major challenge for
the estimation of the extreme directions is that the empirical estimators of the
probabilities P(Z ∈ Cβ), β ∈ P∗d , detect more extremal directions than there are
true extremal directions. Suppose X,X1,X2, . . . is a sequence of i.i.d. sparse
regularly varying random vectors, ‖X(1,n)‖ ≥ · · · ≥ ‖X(n,n)‖ is the order statistic
of ‖X1‖, . . . , ‖Xn‖ and the number of extreme observations used for the esti-
mations is denoted by kn ∈ N, whereas we assume that kn → ∞ as n → ∞.
Suppose that there exists a sequence of high thresholds un > 0 for n ∈ N such
that kn/n ∼ P(‖X‖ > un) and un → ∞ as n → ∞. We consider the estimators
of Meyer and Wintenberger [5]

Tn(β) :=
∑n

j=1 1 {π (Xj/un) ∈ Cβ , ‖Xj‖ > un}
and

Tn(β, kn) :=
∑n

j=1 1
{
π
(
Xj/‖X(kn+1)‖

)
∈ Cβ , ‖Xj‖ > ‖X(kn+1)‖

}

of the probability

P(Z ∈ Cβ) = limn→∞ P(π(X/un) ∈ Cβ | ‖X‖ > un) =: limn→∞ pn(β).
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We enumerate the β ∈ P∗d such that

P(Z ∈ Cβ1) ≥ . . . ≥ P(Z ∈ Cβs∗
) > P(Z ∈ Cβs∗+1

) = . . . = P(Z ∈ Cβ
2d−1

) = 0.

Then we define

Tn(kn) := (Tn(β1, kn), . . . , Tn(βr, kn))
⊤

and pn,T n, analogously, where r := |{β ∈ P∗d : Tn(Cβ , kn) > 0}|.
To detect the non extremal directions and hence, to estimate s∗, the idea of

Meyer and Wintenberger [5] is now to fit the model M s
kn

defined for any s ∈
{1, . . . , r} by a multinomial distribution from the class {Mult(kn, p̃

s) : p̃s ∈ Θs}
where Θs := {p̃s = (p̃s1, . . . , p̃

s
r) ∈ (0, 1)r : p̃s1 ≥ . . . ≥ p̃sr,

∑r
j=1 p̃

s
j = 1, p̃ss+1 =

. . . = p̃sr =: ρ̃s} with likelihood function

LMs
kn
(p̃s|Tn(kn)) = kn! (

∏r
j=1 Tn,j(kn)!)

−1∏s
j=1(p̃

s
j)

Tn,j(kn)
∏r

j=s+1(ρ̃
s)Tn,j(kn)

and MLE p̂s
n with entries p̂sn,j = Tn,j(kn)/kn for j = 1, . . . , s and ρ̂sn =

∑r
j=s+1

Tn,j(kn)/((r−s)kn). Now, an information criterion aims to find the true extremal
directions β1, . . . , βs∗ by considering which Model M s

kn
for s ∈ {1, . . . , r} best

fits the distribution of Tn(kn) and subsequently derives an estimator for s∗. In
the following, we present our results for the Akaike information criterion (AIC)
of Meyer and Wintenberger [5] and the derivation of the Bayesian information
criterion (BIC) and the quasi Akaike information criterion QAIC. Furthermore,
we derived a mean-squared error based information criterion (MUSIC), which is
not addressed here. Note that assumptions are necessary for the following results,
but will be skipped for the sake of brevity.

AIC: The AIC of Meyer and Wintenberger [5] is defined as AICkn(s) :=
− logLMs

kn
(p̂s

n |Tn(kn))+ s for s = 1, . . . , r, which is motivated by minimizing the

expected Kullback-Leibler (KL) divergence between the true distribution of Tn(kn)
and the model M s

kn
. Due to our results limn→∞ P(AICkn(s) > AICkn(s

∗)) < 1
for s > s∗ and limn→∞ P(AICkn(s) > AICkn(s

∗)) = 1 for s < s∗, follows that the
AIC is not a weakly consistent information criterion because asymptotically exists
a positive probability of overestimating s∗.

BIC: The underlying idea of the BIC is that given the data Tn(kn), the model
M s

kn
with the highest posterior probability P(M s

kn
|Tn(kn)) for s = 1, . . . , r is cho-

sen. Building up on an asymptotic upper bound of −2 logP(M s
kn
|Tn(kn)) similar

to Cavanaugh and Neath [3], we introduce the Bayesian information criterion
concerning the upper bound (BICU) for s = 1, . . . , r as

BICUkn(s) := −2 logLMs
kn
(p̂s

n |Tn(kn)) + 2s log (kn) + s log (r/[2π(r − s)]) .

Motivated by a lower bound of ∇2 logLMs
kn

we further define the Bayesian infor-

mation criterion concerning the lower bound (BICL) for s = 1, . . . , r as

BICLkn(s) := −2 logLMs
kn
(p̂s

n |Tn(kn)) + s log (kn) + s log (kn/[2πTn,1(kn)]) .

For s 6= s∗ we derived that

lim
n→∞

P(BICUkn(s) > BICUkn(s
∗)) = 1
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as well as limn→∞ P(BICLkn(s) > BICLkn(s
∗)) = 1. Hence, BICU and BICL are

weakly consistent and select asymptotically with probability 1 the true Model
M s∗

kn
.

QAIC: The QAIC, which is an abbreviation for quasi Akaike information criterion,

is derived similar to the Akaike information criterion (cf. Akaike [1]), but instead
of working with the likelihood function of a multinomial distribution as in Meyer
and Wintenberger [5] we use the likelihood function of a Gaussian distribution.
The reason for this approach is that due to a modified version of Theorem 1 in
Meyer and Wintenberger [5] the asymptotic behavior as n → ∞,

√
kn diag(p∗n)

−1/2 (T n/kn − p∗n)
D−→ Nr(0r, Ir),

holds, where p∗n := (pn,1, . . . , pn,s∗ , ρn, . . . , ρn)
⊤∈ R

r with ρn :=
∑r

j=s∗+1 pn,j/(r−
s∗). Then the idea is to choose the model which minimizes the expected Kullback-
Leibler divergence of the true distribution PT n

of T n and the normal distribution

Nr(knp̃
s, kn diag(p̃

s)), p̃s = (p̃s1, . . . , p̃
s
s, ρ̃

s, . . . , ρ̃s) ∈ Rr
+. For an i.i.d. copy T̃ n of

T n and p̂s
n(T̃ n) defined analogously to p̂s

n we approximate the Kullback-Leibler
divergence by

E

[
KL(PT n

,Nr(knp̃
s, kn diag(p̃

s)))|
p̃s=p̂s

n(T̃ n)

]
.

Due to a convergence in distribution of the argument in the previous expectation
to a centered random variable we define the quasi Akaike information criterion
(QAIC) for s = 1, . . . , r as

QAICkn
(s) := r log(2π) + r log(kn) +

∑s
j=1 log(p̂

s
n,j) + (r − s) log(ρ̂sn) + r + s.

Further, we showed that limn→∞ P(QAICkn
(s)−QAICkn

(s∗) > 0) = 1 for s 6= s∗

and therefore the QAIC is weakly consistent.
The performance of the different information criteria were successfully tested

in a simulation study.
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Toward inner product spaces of regularly varying random variables

Dan Cooley

(joint work with Kenneth Broadhead)

We begin by describing tail equivalent regularly varying random variables; that
is, those which share a normalizing function b(s) → ∞ as s → ∞ leading to
a nontrivial limit: lims→∞ b(s)P (|X | > sx) = kx−α. An advantage of using a
common normalizing function is that it allows one to compare the ‘scales’ k of
the random variables. Extending to random vectors, one definition of multivariate

regular variation is b(s)P (X/s ∈ ·) v→ νX(·), where ’v’ denote vague convergence
(Resnick, 2007). The limiting measure is a product measure in polar coordinates:
νX(dr×dw) = αr−α−1dHX (w), whereHX is the angular measure, which contains
all information for dependence in the limiting measure as well as information about
the scales of the components Xi’s.

As estimating HX is difficult in high dimensions, we turn our attention to
pairwise summaries of tail dependence, the extremal dependence measure (EDM)
of Larsson and Resnick (2012), and the tail pairwise dependence measure (ΣX ,
TPDM) of Cooley and Thibaud (2019), a matrix of EDM’s. The TPDM is positive
definite and symmetric. We show the scale the components of X is given by the
diagonal elements of the TPDM if α = 2, and total mass is given by the diagonal
sum if HX is defined by the L2 norm. We show that TPDM’s values are invariant
to the dimension of the vector being considered. Finally, we show that the EDM
is linear if α = 2.

As the EDM/TPDM have the properties of an inner product, we propose a vec-
tor space for regularly varying random variables. Beginning with a vector space of
consistent regularly varying random variables, we define equivalence classes via the
null space of random variables such that lims→∞ b(s)P (|X | > sx) = 0. The EDM
serves as an inner product for the vector space of equivalence classes. We show via
norm convergence, the space W (with α = 2) is complete, thus is a Hilbert space.
The implication of this work is that we can utilize the projection theorem to bridge
regular-variation-based extremes modeling to traditional methods in statistics.

This developing work is being done jointly with Kenneth Broadhead, CSU.
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Piecewise-linear modelling of multivariate geometric extremes

Jennifer Wadsworth

(joint work with Ryan Campbell)

A geometric representation for multivariate extremes, based on the shapes of scaled
sample clouds in light-tailed margins and their so-called limit sets [1, 2, 4], has
recently been shown to connect several existing extremal dependence concepts [6].
The scaled sample cloud of independent and identically distributed random vectors
with common light-tailed (von Mises) margins Xi ∈ Rd, i = 1, . . . , n is defined as

Nn =

{
X1

rn
, . . . ,

Xn

rn

}
,

where a suitable scaling sequence rn is the 1− 1/n marginal quantile. We assume
that this random set converges in probability onto a limit set G := {x : g(x) ≤ 1},
where the 1-homogeneous function g is the gauge function. The shape of G is
affected by both the margins and dependence of X, so we specify to standard
exponential margins. We further assume the sufficient, though not necessary,
condition for convergence on to G that X has a Lebesgue density fX , and that
− log fX(tx)/t → g(x), for continuous g [1].

Statistical inference related to this framework is still in its infancy. We outline a
framework for inference on the limit set shape, presenting both parametric methods
from [9] and a novel semi-parametric approach. In [9] it is shown that the Lebesgue

density of the pseudo-polar transformed variables R =
∑d

j=1 Xj , W = X/‖X‖ ∈
Sd−1 = {w : ‖w‖ = 1} often satisfies

(1) fR|W (r | w) ∝ rd−1 exp{−rg(w)}[1 + o(1)], r → ∞,

motivating a truncated gamma model with rate parameter g(w) for large values
of the conditional variable R | W = w. In [9] inference was outlined via likelihood
based on (1), using parametric models for the gauge function: g(w;φ), for a pa-
rameter vector φ. However, parametric gauge functions will often be too inflexible
to capture the true shape of the limit set G. We therefore outline a technique for
semi-parametric estimation, defining the gauge function in a piecewise-linear man-
ner. Semi-parametric estimation of limit sets has also been considered by [5,8] for
dimension d = 2 and [7] for up to d = 3. Our proposed piecewise-linear approach is
simple to define and calculate, making estimation possible for d > 3. Specifically,
given a set of reference angles w⋆

1 , . . . ,w
⋆
N ∈ Sd−1, we assign a length θi to each

angle, which specifies the L1 distance from the origin to the boundary of the unit
level set of g: θi = 1/g(w⋆

i ). The gauge function at other points of Sd−1 is defined
by piecewise-linear interpolation between these points. For d ≥ 3 this necessitates
a triangulation on which to define (hyper-)planes; we adopt a Delaunay triangu-
lation [3]. To adequately capture the shape of G, the number of reference angles,
and hence parameters, N , may be large, so we add an L2 regularisation penalty
on local differences in gradient to a likelihood based on (1).
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Beyond limit set estimation, our general approach provides a new class of
asymptotically motivated statistical models for the tails of multivariate distribu-
tions, and such models can accommodate any combination of simultaneous or non-
simultaneous extremes through suitably-specified parametric or piecewise-linear
forms for the limit set shape. Extrapolation further into the tail of the distribu-
tion is possible via simulation from the fitted model, and probability estimates are
feasible in regions where other frameworks for multivariate extreme value analysis
struggle.

References

[1] A. Balkema and N. Nolde Asymptotic independence for unimodal densities, Advances in
Applied Probability 42 (2010), 411–432

[2] R. A. Davis, E. Mulrow and S. I. Resnick Almost Sure Limit Sets of Random Samples in
Rd, Advances in Applied Probability 20 (1988), 573–599.

[3] B. Delaunay Sur la sphère vide, Bulletin de l’Académie des Sciences de l’URSS, Classe des
Sciences Mathématiques et Naturelles 6 (1934), 793–800.

[4] K. Kinoshita and S. I. Resnick Convergence of Scaled Random Samples in Rd, Annals of
Probability 19 (1991), 1640–1663

[5] R. Majumder, B. A. Shaby, B. Reich, and D. Cooley, Semiparametric estimation of the
shape of the limiting bivariate point cloud, arXiv preprint arXiv:2306.13257 (2023)

[6] N. Nolde and J. L. Wadsworth, Linking representations for multivariate extremes via a limit
set, Advances in Applied Probability 54 (2022), 688–717.

[7] I. Papastathopoulos, L. de Monte, R. Campbell and H. Rue, Statistical inference for radially-
stable generalized Pareto distributions and return level-sets in geometric extremes, arXiv
preprint arXiv:2310.06130 (2023)

[8] E. S. Simpson and J. A. Tawn, Estimating the limiting shape of bivariate scaled sample
clouds: with additional benefits of self-consistent inference for existing extremal dependence
properties, arXiv preprint arXiv:2207.02626 (2022)

[9] J. L. Wadsworth and R. Campbell, Statistical inference for multivariate extremes via a geo-
metric approach, Journal of the Royal Statistical Society Series B: Statistical Methodology
(to appear) (2024).

Distinguish Forms of Asymptotic Dependence for Heavy Tailed Data

Tiandong Wang

(joint work with Sidney I. Resnick)

In multivariate heavy tail estimation, the support of the limit measure provides
information on the dependence structure of the random vector with the heavy
tail distribution [7]. However, even in simple circumstances in R2

+, the positive
quadrant in two dimensions, exploratory methods such as scatter, diamond or
density estimation plots may have trouble distinguishing between cases:

• Full dependence where the limit measure concentrates on a ray of the form
{(x, y) ∈ R2

+ : y/x = m > 0};
• Strong dependence where the support of the limit measure is a proper
connected subcone of R2

+ of the form {(x, y) ∈ R2
+ : y/x ∈ [ml,mu]};
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• Weak dependence where the support of the limit measure is all of R2
+; and

• Asymptotic independence where the limit measure concentrates on the
axes R+ × {0} ∪ {0} × R+.

Estimation and visualization techniques reasonably detect lack of connected-
ness in the second bullet so we downplay that possibility. However, exploratory
techniques can struggle to distinguish the bulleted cases, the most obvious reason
being the requirement that data be thresholded according to the distance from
the origin. Also, there is current interest in the topic of extremal clustering [1–6]
which has some philosophical connections to the current work but is less focused
on identifying correct asymptotic models.

We give two test statistics Dn and Tn which help distinguish full vs not-full
asymptotic dependence and show the statistics are asymptotically normal but
with different asymptotic variances, depending on the case.

Let {Zi = (Xi, Yi) : i ≥ 1} be iid, set Ri := Xi + Yi, and define Z∗i = (X∗i , Y
∗
i )

to be the vector such that X∗i + Y ∗i is the i-th largest order statistic of {Ri : 1 ≤
i ≤ n}, which we denote R(i). Consider the following hypotheses: for fixed and
known (for now) 0 < a ≤ b < 1,

H
(1)
0 : S([a, b]) = 1, H(1)

a : S([a, b]) < 1.(1)

We first propose a test statistic for the test in (1). Define the statistic

Dn :=
1

k(n)

k(n)∑

i=1

(
1 +

d
(
Z∗i ,Ca,b

)

R(k(n))

)
log

R(i)

R(k(n))

=Hk(n),n +
1

k(n)

kn∑

i=1

(
d
(
Z∗i ,Ca,b

)

R(k(n))

)
log

R(i)

R(k(n))
(2)

where Hk(n),n is the Hill estimator of 1/α applied to {Ri, 1 ≤ i ≤ n} based on k(n)
upper order statistics, and {k(n)} is an intermediate sequence (i.e. k(n) → ∞,

n/k(n) → ∞, n → ∞). Under H
(1)
0 as given in (1), we have

(3)
√
k(n)(Dn − 1/α) ⇒ 1

α
N(0, 1).

Now consider the hypothesis test as formed in Step 2:

H
(2)
0 : S({θ0}) = 1 H(2)

a : S([0, 1] \ {θ0}) > 0.(4)

where θ0 ∈ [a, b], and to capitalize on hidden regular variation resulting from 2RV,
we need the assumption that [a, b] is a proper subset of [0, 1]. Since θ0 ∈ [a, b] and
Dn is unable to distinguish between the two hypotheses in (4), we propose another
test statistic. Let Θ∗i := X∗i /(X

∗
i + Y ∗i ) be the concomitant of R(i), and define

Tn :=

∑k(n)
i=1 Θ∗i log

R(i)

R(k(n))∑k(n)
i=1 Θ∗i

.(5)

Assume H
(2)
0 holds and the angular measure S(·) = ǫθ0(·), θ0 ∈ (0, 1). Suppose

b0(t) ∈ RV1/(α(1+ρ)) and α0 = α(1 + ρ). Let {k(n)} be an intermediate sequence.
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Then for W (·) a standard Brownian motion we have

√
k(n)

(
Tn − 1

α

)
⇒ 1

α

(∫ 1

0

W (s)
ds

s
−W (1)

)
d
=

1

α
W (1) ∼ N(0, 1/α2).(6)

Assume strong dependence exists such that suppS(·) = [a, b]. Suppose A(t) ∈
RV−ρ, ρ > 0, so b0(t) ∈ RV1/(α(1+ρ)) and α0 = α(1 + ρ). As before, {k(n)} is an
intermediate sequence. Define

µ :=

∫ b

a

xS(dx), σ2 :=

∫ b

a

(x− µ)2S(dx),

and under strong dependence assumption H
(2)
a , we have

√
k(n)

(
Tn − 1

α

)
⇒ (1 + σ2/µ2)1/2

α

(∫ 1

0

W (s)

s
ds−W (1)

)

d
=

(1 + σ2/µ2)1/2

α
W (1) ∼ N

(
0,

1

α2
(1 + σ2/µ2)

)
.(7)

We then apply the proposed testing procedure to real data. We download the
daily adjusted stock prices of Chevron (CVX), Exxon (XOM) and Apple (AAPL)
during the time period from January 04, 2016 to December 30, 2022. To remove
the possible serial dependence of stock returns, we compute the log returns of
these three stocks using their every-other-day prices. The acf plots show little
serial dependence for all three stocks. This leads to a reduced dataset of n = 880
observations for each stock. After applying the tests, we conclude that the absolute
returns of CVX and XOM show full asymptotic dependence, whereas the absolute
returns of CVX and AAPL show weak asymptotic dependence.
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Regular Variation of General Random Elements I+II

Bojan Basrak and Ilya Molchanov

(joint work with Nikolina Milincevic)

By now the concept of regularly varying random variables is well understood, along
with its multivariate extension for random vectors, see, for example, [7, 15, 16].
Starting from the regular variation in the space of continuous functions on [0, 1]
studied by [8], these already classical constructions have been extended for random
elements in metric spaces in [11], [14] and [17].

Different approaches to the extension of regular variation and vague convergence
to general metric spaces appeared in the literature. One is based on the concept
of modulus, and was particularly created with the so-called star-shaped metric
spaces in mind, see [17] and also [3] who pushed this machinery beyond the star-
shaped spaces framework. Another approach is based on an abstract concept of
boundedness (or bornology), see [2] and [13], who develop an approach to the
vague convergence promoted in [12]. As one of our auxiliary, but potentially
quite practical results, we show that the two approaches to regular variation on
a general topological space X are equivalent under mild topological assumptions.
Both approaches are built on two components: a scaling operator Tt : X → X (an
action of the group (0,∞) on X) and a bornology X (a family of the so called
bounded sets). For an X-valued random element ξ to be regularly varying we
assume that one can find a sequence (an), an → ∞, and a nontrivial measure µ
such that

nP(T1/an
ξ ∈ A) → µ(A) ,

for any A ∈ X with µ(∂A) = 0. Note that there exist earlier generalisations
of regular variation made by mimicking the classical constructions in Euclidean
spaces, i.e., by constructing X after excluding a zero point or a closed cone C from
the underlying separable metric space (see [8], [11] and [14]). However, it is not
often recognised that the resulting theory depends not only on the excluded cone,
but also on the concept of boundedness (which is traditionally referred to as ideal
in set theory) one constructs on the residual space remaining after this exclusion.
In other words, along with what is excluded it is important to know how the
exclusion is done. We illustrate this phenomenon with examples, e.g., involving
the very classical situation of the joint regular variation of two independent Pareto
random variables.

It should be noted that generalisations of the regular variation concept in general
spaces (including the overview of these results in [13]) have been mostly derived
by mimicking the classical constructions in Euclidean spaces. In particular, it has
been always imposed that the underlying space is metric separable, not to say
Polish. In this work we show that the metrisability of the carrier space is not
necessary for the study of the tail behaviour of measures and so in this way we
disentangle the roles of metric (which is only necessary to determine the topology)
and scaling in studies of regular variation. Examples of non-metrisable space are
abundant, e.g., the space of continuous functions with pointwise convergence (the
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Cp-space, see [18]), or infinite-dimensional Banach spaces with weak topologies,
or the space of linear functionals on Banach spaces with a weak-star topology.
Further important examples of non-Polish spaces arise as continuous images of
Polish spaces, which are (not necessarily metrisable) Souslin spaces. Even in the
context of metric spaces, separability is violated in many natural examples, e.g.
for the space of bounded real-valued sequences with the uniform distance or the
space of functions of bounded variation.

There are many motives for generalising regular variation and the related no-
tion of vague convergence: i) eliminating irrelevant parts of the theory seems
appealing from the mathematical point of view; ii) relying on general concepts of
scaling, ideal (boundedness) and topology simplifies applications of the theory in
various settings; and iii) many intriguing examples do not fit standard theory and
some insights are only revealed after the generalisation. Although, the standard
definition of regular variation involves convergence of sequences of measures or
measures indexed by a real number, we show that all the results concerning the
vague convergence can be formulated in non-sequential topological spaces.

There are several further reasons to explore the regular variation property in
non-Polish spaces. For instance in functional spaces, standard concepts of regular
variation rely on the use of the uniform metric [8] or its variants like the Skorokhod
metric in [3]. Putting a weaker topology on such a space allows for more flexibility
in choosing continuous functions with values in this space, and so makes it possible
to use continuous mapping arguments. On the other hand, establishing the regular
variation property on a standard space with a nontraditional stronger topology
allows for a larger class of continuous mappings on that space.

In this work we build the general theory of regular variation on topological
spaces starting from the first principles, relying on the idea of a measurable group
action on a topological space. For the treatise of weak convergence of bounded
measures on topological spaces, we refer to [4, 5]. In the following we extend this
to unbounded measures and define their vague convergence. This substantially
generalises the setting of [1]. The central role is played by a general definition
of the vague convergence with respect to an ideal of sets, which generalises the
recently introduced useful concepts of boundedness (or bornology) on the space,
see [2] and [13]. To minimise the topological assumptions, we work with measures
on the Baire σ-algebra on the carrier space. If this space is perfectly normal, then
the Baire and Borel σ-algebras coincide and all results become applicable in the
Borel setting. Since we do not require that the underlying space is sequential, in
order to ensure broader applicability of the defined vague convergence, we work
with convergence of nets even despite the fact that the regular variation is defined
for measures parametrised by a real number. In view of this, some results require
continuity of measures with respect to nets (instead of conventional sequences),
such measures are usually called τ -additive. For instance, this is guaranteed if the
carrier space is hereditary Lindelöf, meaning that each open covering of any open
set admits a countable subcovering.
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The essential ingredients needed to study tail behaviour are scaling and func-
tions homogeneous for this scaling (moduli or gauge functions). Such functions
provide information how large is an element of the space. Homogeneous measures
(also called tail measures) arise as limiting objects characterising tail behaviour
of regularly varying measures. Note in this relation that homogeneous measures
naturally arise as Lévy measures of stable laws on semigroups, see [6,10]. Generic
representation results for homogeneous measures on measurable spaces (without
any topological assumptions) have been obtained in [10] and further rediscovered
in [9]. In difference to [10], we work here not at the limit (being a homogeneous
measure), but in the under limit setting where measures are not necessarily ho-
mogeneous but regularly varying. We systematically work with regular variation
of a positive exponent α. The case of negative α is easily obtained by redefining
the scaling or by a continuous mapping argument.

While our standing assumption is the Baire measurability of the scaling oper-
ation, additional properties, like continuity of the scaling and the existence of a
continuous modulus make it possible to prove useful equivalent characterisations
of the regular variation property, which then becomes easier to check. This is also
the case in other works, notably in [3] where the continuity assumption is tacitly
added from Section 3 as a standing assumption to handle the vague convergence.

As explained in [2], the definition of the vague convergence refers to a family of
sets, which are designated as bounded. These sets build a bornology (or bounded-
ness) on the carrier space. A very similar idea, under the name of localisation, is
used in [12] in the context of Polish spaces. In general, this family of sets forms an
ideal (the dual to a filter), which becomes a bornology if it covers the whole space.
The systematic use of ideals simplifies and generalises results concerning the vague
convergence, leads to a useful formulation of a continuous mapping theorem and
makes it possible to view this ideal as a variable parameter in the definition of the
regular variation. It also makes it possible to keep the ground space fixed and,
instead of excluding some cones from it as common in [14], work with different
ideals on the same space. As our examples show, it is important not only what is
excluded from the space, but also how bounded sets approach the excluded region.
We show that this effect appears even on the Euclidean plane. In difference to all
previous works, we include into consideration also ideals which might contain some
scaling-invariant elements. This is particularly essential in working with regular
variation on the space of sets, since scaling-invariant closed sets are abundant.

A constructive definition of an ideal employs continuous nonnegative homoge-
neous functions on the carrier space X. The simplest case arises when the space
does not contain scaling invariant elements and admits a strictly positive homo-
geneous function τ : X → (0,∞). In this case such a function is called a proper
modulus and is used to generate a bornology using its upper level sets

{x ∈ X : τ(x) > u} , u > 0 ,

see [17]. We show in natural examples (e.g., looking at R∞) that such a function
does not necessarily exist. This was observed in [3] who worked with a countable
family of moduli which are homogeneous functions, possibly vanishing on some
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elements of the carrier space. We follow this approach and identify main features
which explain this situation and clarify relationships between ideals and homoge-
neous functions. We present a result, which establishes the equivalence between
the existence of a continuous modulus and topological properties of the ideal.

Our general approach leads also to simplification of proofs of many well-known
results for Polish spaces, most notably, the equivalence between the regular varia-
tion property and the existence of a spectral measure which arises from the polar
decomposition. In the setting of metric spaces, the roles of separability and com-
pleteness assumptions are highlighted in each particular result. Furthermore, we
present a construction of the product of ideals, which applies to obtain the hidden
regular variation phenomenon and which does not employ any metric on the under-
lying space. It is shown that in case of a metric space we recover the conventional
construction based on excluding a neighbourhood of a given cone.

References

[1] M. Barczy and G. Pap. Portmanteau theorem for unbounded measures. Statist. Probab.
Lett., 76(17):1831–1835, 2006.
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Stochastic orderings among multivariate extreme value distributions

Kirstin Strokorb

(joint work with Michela Corradini)

1. Introduction

Research on stochastic orderings covers several decades as documented for instance
in the textbook treatments of [1] and [2]. Related notions of positive dependence
in Extremes have been established for some time, e.g. it is well-known that mul-
tivariate max-infinitely divisible distributions, exhibit positive association [3, 4].
Recently, an extremal version of the popular MTP2 property [5,6] has been linked
to graphical modelling, sparsity and implicit regularisation in multivariate extreme
value models [7].

In this work [8] we focus on the order of positive quadrant dependence (PQD
order, also termed concordance order) among multivariate max-stable distribu-
tions, which is linked to the comparative behaviour of minima and maxima of
the components of max-stable vectors. We show that PQD-order holds for two
max-stable distributions if and only if it holds for the corresponding exponent
measures. Among marginally closed parametric models the popular asymmetric
Dirichlet family and the Hüsler-Reiß family turn out to be PQD-ordered according
to the natural order within their parameter spaces.

2. Prerequisites

Since the PQD-order compares dependence structures, we may assume without
loss of generality that the equal margins of the considered multivariate distribu-
tions are standard Fréchet, i.e. they have cumulative distribution function (cdf)
Φ1(x) = exp{−1/x}, x > 0. Such distributions are often termed simple max-stable
distributions, and various representations are known. For instance, the cdf of any
d-variate simple max-stable random vector X can be expressed as

P(X ≤ x) = exp

{
− Λ

({
y ∈ R

d : yi > xi for some i ∈ {1, . . . , d}
})}

for x ∈ (0,∞]d, where Λ is a (−1)-homogeneous measure on [0,∞)d \ {0}, termed
exponent measure [4].

For two d-variate random vectors X, X̃ (or their corresponding distribution

functions G and G̃), we say that

• X is UO-smaller than X̃, denoted X ≤uo X̃,

if P(X ∈ U) ≤ P(X̃ ∈ U) for all upper orthants U ⊂ Rd;

• X is LO-smaller than X̃, denoted X ≤lo X̃,

if P(X ∈ Lc) ≤ P(X̃ ∈ Lc) for all lower orthants L ⊂ Rd.

• X is PQD-smaller than X̃, denoted X ≤PQD X̃,

if X ≤uo X̃ and X ≥lo X̃.
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When defining corresponding notions of multivariate orders for exponent mea-
sures of simple max-stable random vectors, we need to take into account that
exponent measures explode at the origin. Hence, it is natural to adapt the above
definitions by restricting the survival-type test sets of upper orthants U or com-
plements of lower orthants Lc to those, which are bounded away from the origin.

3. Main results

While results regarding lower orthants are straightforward and included for the
sake of completeness, the key novelty lies in understanding the upper orthant
order better in this context, and thereby the comparative behaviour of minima

of max-stable random vectors. The implication “Λ ≤uo Λ̃ =⇒ G ≤uo G̃” in the
following theorem is non-trivial.

Theorem 1. Let G and G̃ be d-variate simple max-stable distributions with expo-

nent measures Λ and Λ̃, respectively. Then

(a) G ≤lo G̃ ⇐⇒ Λ ≤lo Λ̃;

(b) G ≤uo G̃ ⇐⇒ Λ ≤uo Λ̃;

(c) If d = 2, then G ≤PQD G̃ ⇐⇒ G ≤uo G̃ ⇐⇒ G ≥lo G̃.

The assumption d = 2 is essential in the last part. In higher dimensions these
equivalences are no longer true. [8] includes counterexamples of so-called Choquet -
or Tawn-Molchanov type, whose exponent measures lie on rays through indicator
vectors. Generally, the stochastic ordering of Choquet max-stable random vectors
can be easily understood in terms of their parametrizations either via extremal
coefficients (which encodes lower orthant order) or via tail dependence coefficients
(which encodes upper orthant order). This helps to reveal that a variety of phe-
nomena may occur when comparing max-stable stochastic models. Still, we obtain
the following corollaries from Theorem 1.

Corollary 2. Let G and G̃ be d-variate simple max-stable distributions with ex-

ponent measures Λ and Λ̃, then

G ≤PQD G̃ ⇐⇒ Λ ≤PQD Λ̃.

Corollary 3. Let Gindep, Gdep, G and G∗ be d-dimensional simple max-stable
distributions, where Gindep and Gdep represent the models with fully independent
and fully dependent components, respectively, while G∗ is the unique simple max-
stable distribution of Choquet/Tawn-Molchanov type sharing an identical set of
extremal coefficients with the generic max-stable distribution G. Then

Gindep ≤PQD G∗ ≤PQD G ≤PQD Gdep.

Moreover, two popular parametric families of multivariate extreme value dis-
tributions that are closed under taking marginal distributions, are the max-stable
Dirichlet [9] and Hüsler-Reiß [10] distributions. These turn out to be PQD-ordered
according to the natural order in their respective parameter spaces [8]. For the
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Hüsler-Reiß model this holds true even for the supermodular order. Figure 1 il-
lustrates how the PQD-order for the Dirichlet model corresponds to differences in
the concentration of mass of its angular measure.

α = (1.5, 1.5, 1.5) α = (1.5, 3, 12) α = (1.5, 12, 96)

Figure 1. Heat maps of angular densities of the Dirichlet model;
brighter colours represent larger values. The corresponding

max-stable distributions are PQD-ordered, increasing from left to
right.
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Convergence of Extremal Processes in Spaces of Growing Dimension

Bochen Jin

(joint work with Ilya Molchanov)

Consider a random walk S
(d)
k , k ≥ 0, in d-dimensional Euclidean space with square

integrable centred increments such that the expected square norm of the increment
is one. The values of this random walk for k = 0, . . . , n normalised by

√
n are

considered as a finite metric space Z(d)
n which is embedded in Rd with the induced

metric. Under condition of uniform smallness type on the d components of the
increment, Kabluchko and Marynych (2022) proved that, as n and d go to infinity

in any regime, then the metric space Z(d)
n converges in probability in the Gromov–

Hausdorff metric to the Wiener spiral. The latter space is the space of all indicators
1[0,t], t ∈ [0, 1], embedded in L2([0, 1]), equivalently, the interval [0, 1] with the

metric r(t, s) =
√
|t− s|.

In their subsequent preprint, Kabluchko and Marynych (2023) showed that in
the heavy-tailed case with α ∈ (0, 1), the limiting metric space is random and is
derived from an infinite-dimensional version of a subordinator (called a crinckled
subordinator), assuming certain condition on the joint growth regime of n and d.

In the talk, we study an extremal version of this setting, where the random
walk is replaced by a sequence of successive maxima and the underlying metric in
Rd is taken to be ℓ∞.

Let

X
(d)
i := (X

(d)
i1 , . . . , X

(d)
id ), i ∈ N,

be a sequence of independent and identically distributed random vectors in Rd
+.

Define the sequence of consecutive componentwise maxima of these random vectors

by letting M
(d)
0 := 0 and

M
(d)
i := (M

(d)
i1 , . . . ,M

(d)
id ), i ∈ N,

where

M
(d)
ij = max(X

(d)
1j , . . . , X

(d)
ij ).

For two vectors x, y ∈ R
d
+, denote by x ∨ y the vector built of the componentwise

maxima of x and y and by x ∧ y of the componentwise minima. Then

M
(d)
i = X

(d)
1 ∨ . . . ∨X

(d)
i , i ∈ N.

Let c00 denote the space of sequences (xn)n∈N ∈ R∞+ with only finite number of
non-zero components and the ℓ∞-norm, that is,

‖x− y‖∞ = sup
n∈N

|xi − yi|.

Furthermore, let c̃00 = (c00/ ∼) be the quotient space of c00 up to all permutations
of the nonzero components. Fix an m ∈ N and define a family Sm of subsets A of
c̃00 such that there exists an s > 0, so that each x ∈ A is equivalent to a sequence
y with min(y1, . . . , ym) ≥ s.
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If m = 1, then S1 is the family of sets A such that ‖x‖∞ ≥ s for some s > 0
and all x ∈ A.

Let n = n(d) depend on d so that n(d) → ∞ as d → ∞. Assume that there
exists a sequence a(n, d) ∈ (0,∞) (we usually suppress the dependence on d and
write a(n) = a(n, d)) such that

(1) nP
{
(a(n))−1X(d) ∈ ·

}
v−→ ν(·) as n, d → ∞.

The vague convergence is in c̃00 equipped with the ideal (boundedness) Sm. By
definition, the limiting measure ν is finite on Sm.

Furthermore, assume that the asymptotic orthogonality condition holds, that
is, for all ε > 0,

(2) n2P
{
‖X(d)

1 ∧X
(d)
2 ‖∞ ≥ εa(n)

}
→ 0 as n, d → ∞,

which can be relaxed to

P
{
‖(X(d)

1 ∨ . . . ∨X(d)
n ) ∧ (X̃

(d)
1 ∨ . . . ∨ X̃(d)

n )‖∞ ≥ εa(n)
}
→ 0 as d → ∞,

where (X̃
(d)
i )i∈N are independent copies of X(d) and independent with (X

(d)
i )i∈N.

Denote

M(d)
n :=

{
M

(d)
1 , . . . ,M (d)

n

}
.

We endow M(d)
n with the ℓ∞ metric, so that (M(d)

n , ‖ · ‖∞) becomes a random
metric space.

Let η :=
∑

k δ(xk,yk) be the Poisson process on [0,∞) × c̃00 with the intensity
measure being the product of the Lebesgue measure and ν. Define a random closed
subset of ℓ∞

R(T ) :=
{ ×

k:xk≤t
yk, t ∈ [0, T ]

}
.

Theorem 1. Fix T > 0. Assume that (1) and (2) are fulfilled. Then,
(
a(n)−1M(d)

⌊nT⌋, ‖ · ‖∞
)
=⇒ (R(T ), ‖ · ‖∞) as d → ∞,

in distribution with respect to the topology generated by the Gromov–Hausdorff
distance.

Lemma 2. For all x, y ∈ Rd
+, we have

∣∣∣‖x ∨ y − x‖∞ − ‖y‖∞
∣∣∣ ≤ ‖x ∧ y‖∞.

If x = x1 ∨ . . . ∨ xl and y = y1 ∨ . . . ∨ ym for x1, . . . , xl, y1, . . . , ym ∈ Rd
+, then∣∣∣‖x ∨ y − x‖∞ − ‖y‖∞

∣∣∣ ≤ max
j=1,...,l,k=1,...,m

‖xj ∧ yk‖∞.

Example 3. Let X
(d)
1 := d−1/α(ξ1, . . . , ξd), where ξ1, . . . , ξd are independent

copies of a random variable ξ with power tail P{ξ > t} ∼ t−α. Let a(n) = n1/mα.
Denote the k-th smallest component of (ξ1, . . . , ξd) by ξ(k), that is ξ(1) ≤ . . . ≤

ξ(d).
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For any fixed m ≥ 1, by Section 2.2 in [1],

nP
{
ξ(d) ≥ t1d

1/αn1/mα, . . . , ξ(d−m+1) ≥ tmd1/αn1/mα
}

= nd(d− 1) . . . (d−m+ 1)

∫ ∞

t1d1/αn1/mα

(1 − x−α1 )d−mαx−α−11 dx1

∫ ∞

t2d1/αn1/mα

αx−α−12 dx2 . . .

∫ ∞

tmd1/αn1/mα

αx−α−1m dxm

∼ nd(d− 1) . . . (d−m+ 1)(t1d
1/αn1/mα)−α . . . (tmd1/αn1/mα)−α,

which converges to t−α1 . . . t−αm as n, d → ∞. Then (1) holds with ν = θ⊗mα , where
θα((t,∞)) = t−α, t > 0.

Let ξ′ be the independent copy of ξ. Then,

n2P
{
‖X(d)

1 ∧X
(d)
2 ‖∞ ≥ εn1/mα

}
= n2

(
1−

(
P
{
ξ ∧ ξ′ < εn1/mαd1/α

})d)

= n2
(
1−

(
1− (P

{
ξ ≥ εn1/mαd1/α

}
)2
)d)

∼ n2d(P
{
ξ ≥ εn1/mαd1/α

}
)2 = n2−2/md−1ε−2α,

which converges to 0 as d → ∞ if m = 1 or n = o(dm/2(m−1)) if m ≥ 2.
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Large deviations for the volume of k-nearest neighbor balls

Takashi Owada

(joint work with Christian Hirsch, Taegyu Kang, Moritz Otto, Christoph Thäle)

The main theme of this work is to develop the large deviations theory for the
point process associated with the Euclidean volume of k-nearest neighbor balls.
We consider the unit cube [0, 1]d equipped with the toroidal metric

dist(x, y) = min
z∈Zd

‖x− y + z‖,

where ‖ · ‖ denotes the Euclidean norm in Rd. Then, the unit cube [0, 1]d is
considered as a flat torus with a periodic boundary. Let Br(x) =

{
y ∈ [0, 1]d :

dist(x, y) ≤ r
}
, r > 0, be the closed ball in [0, 1]d of radius r centered at x ∈ [0, 1]d.

Given a point measure ω in [0, 1]d and a point x ∈ [0, 1]d, and a fixed integer k ≥ 1,
define

Rk(x, ω) := inf
{
r > 0 : ω

(
Br(x) \ {x}

)
≥ k

}

to be the k-nearest neighbor distance of x; it gives a radius r for which Br(x)\{x}
contains exactly k points of ω with one of those points lying on the boundary of
Br(x).
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Given a homogeneous Poisson point process Pn on [0, 1]d with intensity n, we
are interested in the stochastic behavior of the point process

(1) Lk,n :=
∑

X∈Pn

δ(X,nκdRk(X,Pn)d−an),

where δ(x,y) is the Dirac measure at (x, y) ∈ [0, 1]d×R, and κd is volume of the unit

ball in Rd, so that κdRk(X,Pn)
d represents the volume of a k-nearest neighbor

ball centered at X ∈ Pn.
The primary objective of this paper is to provide comprehensive results on

the asymptotics of the process (1), from the viewpoints of large deviations. We
consider two distinct scenarios with respect to a divergence speed of the centering
term (an). The first scenario examined is that

an → ∞, an − logn− (k − 1) log logn → −∞, as n → ∞.

In this case, (an) grows to infinity more slowly than the regime for Poisson conver-
gence of (1). Intrinsically, there appear infinitely many k-nearest neighbor balls
as n → ∞, whose volume are approximately an/n up to the scale.

Define E0 := [0, 1]d × (s0,∞], where s0 is a fixed real number, and let M+(E0)
of finite non-negative Radon measures on E0. Further, we define bn = nak−1n e−an ,
n ≥ 1. To state our LDP more precisely, we introduce the measure

τk(du) :=
e−u

(k − 1)!
1{u ≥ s0}du.

Theorem 1. The sequence (Lk,n/bn)n≥1 satisfies an LDP on M+(E0) in the weak
topology, with speed bn and rate function Hk(· |Leb⊗τk), where Leb is the Lebesgue
measure and

Hk(ρ |Leb⊗ τk) :=

∫

E0

log
{ dρ(x, u)

d (Leb⊗ τk)

}
ρ(dx, du)− ρ(E0) + (Leb⊗ τk)(E0).

In the second scenario of this work, we consider the centering term (an) satis-
fying

an − logn− (k − 1) log logn → ∞, an = o(n), as n → ∞.

Then, (an) tends to infinity more rapidly than the Poisson regime, so that the k-
nearest neighbor balls centered around Pn, whose volume are approximately an/n
up to the scale, are even less likely to occur.

We again introduce the sequence bn = nak−1n e−an as before. Our objective is
to investigate large deviations for the sequence (P ◦ L−1k,n)n≥1 of probability dis-

tributions of (Lk,n)n≥1 on the space Mp(E), where E := [0, 1]d × (−∞,∞]. A
main challenge is that the space Mp(E) is not locally compact, and therefore, the
vague topology would not be applicable for the convergence of such probability
distributions. To overcome this difficulty, we adopt the notion of M0-topology.
The main feature of M0-topology is that the corresponding test functions are
continuous and bounded real-valued functions on Mp(E) that vanish in the neigh-
borhood of the origin. For the space Mp(E), one can take the null measure ∅ as
its origin. Let B∅,r denote an open ball of radius r > 0 centered at ∅ in the vague
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metric. Denote by M0 = M0

(
Mp(E)

)
the space of Borel measures on Mp(E),

the restriction of which to Mp(E) \ B∅,r is finite for all r > 0. Moreover, define

C0 = C0
(
Mp(E)

)
to be the space of continuous and bounded real-valued functions

on Mp(E) that vanish in a neighborhood of ∅. Given ξn, ξ ∈ M0, we say that
ξn converges to ξ in the M0-topology, denoted as ξn → ξ in M0, if it holds that∫
Mp(E)

g(η)ξn(dη) →
∫
Mp(E)

g(η)ξ(dη) for all g ∈ C0.

Theorem 2. In the above setting, as n → ∞,

b−1n P (Lk,n ∈ ·) → ξk, in M0,

where

ξk(·) :=
1

(k − 1)!

∫

E

1{δ(x,u) ∈ ·} e−udxdu.

Subsequently, we switch our attention to the large deviations in the half-space
model, which we identify by Hd with the product space Hd = Rd−1 × (0,∞). The
Riemannian metric on Hd is determined by

ds2 =
dx2

1 + . . .+ dx2
d−1 + dy2

y2
, (x1, . . . , xd−1) ∈ R

d−1, y ∈ (0,∞).

Then, the hyperbolic volume is defined by

|B|hyp :=

∫

B

y−ddx1 · · · dxd−1dy, B ⊂ H
d.

Let P be a Poisson point process with the hyperbolic volume measure as its inten-
sity measure. We study large k-nearest neighbor balls whose centers are located in
the restriction of P to the family of sampling windows Wλ := [0, 1]d−1× [e−λ,∞),
λ > 0. Note that the hyperbolic volume ofWλ is given by |Wλ|hyp =

∫∞
e−λ y

−d dy =

(d− 1)−1e(d−1)λ.
Subsequently, we define the point process

ξk,λ :=
∑

x∈PWλ

δ|BRk(x)(x)|hyp−vλ ,

where

Rk(x,P) := inf{r ≥ 0 : P(Br(x)) ≥ k + 1}
and (vλ)λ>0 is a threshold sequence satisfying

vλ − (d− 1)λ− (k − 1) logλ → −∞, λ → ∞.

In particular, the expected number of exceedances in the window Wλ is of order
uλ := |Wλ|hype−vλvk−1λ . Let E0 = [s0,∞) for a fixed constant s0 ∈ R.

Theorem 3. Let k ≥ 1. Then, the family of random measures (ξk,λ/uλ)λ>0

satisfies an LDP on M+(E0) with speed uλ and rate function H( · |τk), where
τk(du) = e−u/(k − 1)!du, u > s0 and

H(ρ|τk) :=
∫

E0

log
dρ

dτk
(x)ρ(dx) − ρ(E0) + τk(E0).
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Limit theory of sparse random geometric graphs in high dimensions

Christian Hirsch

(joint work with Gilles Bonnet, Daniel Rosen, and Daniel Willhalm)

1. General overview

In this talk, we study topological and geometric functionals of high-dimensional
ℓ∞-random geometric graph in a sparse regime, where the expected number of
neighbors decays exponentially in the dimension. More precisely, we establish
moment asymptotics, central limit theorems and Poisson approximation theorems
for certain functionals that are additive under disjoint unions of graphs. For
instance, this includes simplex counts and Betti numbers of the Rips complex, as
well as general sub graph counts of the random geometric graph. We also present
multiadditive extensions that cover the case of persistent Betti numbers of the
Rips complex.

In the following short extended abstract, we describe very briefly the assump-
tions on the point process and the considered additive functionals. For the precise
limit results, we refer the reader to the published work [1].

2. Point-process and graph model

We start with Pd, which is a Poisson point process in Rd with some intensity λd
d.

Later, we will let d → ∞ and λd to 0. In other words, the intensity will decrease
exponentially fast in d. Furthermore, Wd will be a cubical observation window in
Rd, which we will equip with periodic boundary conditions.

After that we construct the Rips-complex on Pd, which is a simplicial complex.
More precisely, this is the Rips-complex associated with the ℓ∞-Gilbert graph on
Pd at a threshold t1/d with t ∈ [0, 1]. That is, two points x, y are connected by an
edge if and only if |x− y|∞ ≤ t1/d. This Rips complex will henceforth be denoted
by Ripsd(t). Here, we note that it is more common to consider the Gilbert graph
with the Euclidean distance than with the ℓ∞-distance. However, we found that
in high dimensions, is far more convenient since then a high-dimensional distance
constraint breaks down to a series of one-dimensional constraints. The sparsity
assumption is illustrated in the Figure 1.

Finally, we also set Rips∗d(t) :=
⋃

G∈Compd(t)
G, where

Compd(t) := {G ⊆ Ripsd(t) : G is a component centered in Wd}

3. Limit theory of additive functionals

In the main results of the talk, we study the asymptotic behavior of univariate
nonnegative functionals on the random ℓ∞-GG in high dimensions. That is, we
investigate Ad,t := a(Rips∗d(t)) as a stochastic process on [0, 1] in the limit d → ∞.
To describe precisely the variance-scaling in our CLT, we introduce additional
terminology. The key property here is additivity.
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Figure 1. Illustration of sparse Gilbert graph

More precisely, we fix a nonnegative functional a on isomorphism classes of
abstract graphs, which is additive in the sense that a(R) =

∑
C a(C), where the

sum extends over all connected components C of R. An important for such an
additive functional is the triangle count illustrated in the Figure 2.

Figure 2. Illustration of the triangle count

Before any CLT can be established, we need to discuss the expectation scaling
of the functional Ad,t. To make this precise, for k ≥ 1 let Ak denote the family
of connected graphs on {0, . . . , k} with a(G) > 0. Then, we set k0 := min{k ≥ 0 :

Ak 6= ∅} and ρd := |Wd|λ(k0+1)d
d maxG∈Ak0

v(G)d, where

v(G) :=

∫

Rk0

1{G⊆{{i,j}⊆{0,...,k0}:|ui−uj |≤1}}d(u1, . . . , uk0)

Loosely speaking, v(G) encodes the combinatorial likelihood of realizing a certain
equivalence class. Then, the scaling of ρd can be understood as saying that in
the exponentially sparse regime, only the most likely configuration determines the
expectation asymptotics. We now state this observation as a theorem. Moreover,
this result also contains information on the asymptotic covariances.

Theorem 1. Assume that a is additive and that a(G) ∈ eO(|G|). Then, for 0 ≤
t ≤ t′ ≤ 1,

• E[Ad,t] ∼ ρdt
k0

(k0+1)!

∑
G∈A′

k0

a(G)

• Cov(Ad,t′ , Ad,t) ∼ ρdt
k0

((k0+1)!)2

∑
G∈A′

k0

a(G)2,

where A′k0
:= {G : v(G) = maxG′∈Ak0

v(G′)}
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We now state in loose terms the main results of the talk, namely the normal
and Poisson approximation for the functional Ad,t. To make this precise, we first
introduce some notation. Namely,

• r(t) := tk0

((k0+1)!)2

∑
G∈A′

k0

a(G)2

• (Bt)t≤1 denotes a standard Brownian motion

• (N
(G)
t )t≤1 denotes a Poisson process with intensityKk0((k0+1)!)−1tk0−1dt

Now, we state the announced result.

Theorem 2. Assume that a = a+ − a− with a± additive, increasing and that
a±(G) ∈ eO(|G|).

(1) If ρ
1/d
d → ∞: (ρ

−1/2
d (Ad,t − E[Ad,t]))t≤1

fidi⇒ (Br(t))t≤1

(2) If ρ
1/d
d → ∞ & λdρ

2/(3d)
d → 0: (ρ

−1/2
d (Ad,t − E[Ad,t]))t

Skorokhod
=⇒ (Br(t))t

(3) If ρd → K: (Ad,t)t≤1
Skorokhod

=⇒
(∑

G∈A′

k0

N
(G)
t a(G)

)
t≤1
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Long-Range Dependence in the Tails

Marco Oesting

(joint work with Albert Rapp, Ioan Scheffel)

The phenomenon of long-range dependence is known to have an impact on the
asymptotic properties of statistical estimators in time series. In case of a stationary
time series {Xt}t∈Z with finite second moments σ2 = E(X2

0 ) < ∞, most notions of
long- and short-range dependence are defined in terms of the covariance function
γ(h) = Cov(Xh, X0). Then, short-range dependence corresponds to the case that
γ(h) → 0 sufficiently fast as h → ∞, while long-range dependence means that
γ(h) decays rather slowly. For statistical estimators such as the arithmetic mean,
these definitions typically result in a phase transition: The estimator converges to
the quantity of interest with the same rate of convergence as in the i.i.d. case only
if the time series is short-range dependent, see [6].

In extreme value analysis, where one considers the tail of the distribution, such
a notion of short-/long-range dependence does not seem to be appropriate as it
is based on the bulk of the distribution and requires the existence of moments.
Therefore, the study of long-range dependence in extreme value analysis is still
lacking a unified framework.
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1. Long-Range Dependence for Max-Stable Time Series

A promising approach has recently been taken by Kulik and Spodarev [3] who
define long- and short-range dependence in the following way.

Definition 1. A real-valued stationary time series X = {Xt}t∈Z is called short-
range dependent if

(1)
∑

t∈T

∫

R

∫

R

∣∣∣Cov(1{X(0) > u}, 1{X(t) > v})
∣∣∣µ(du)µ(dv) < ∞

for any finite measure µ on the real line. Otherwise, i.e. if there exists a finite
measure µ such that the sum in inequality (1) is infinite, X is called long-range
dependent.

Note that this definition does not require the existence of moments. Further-
more, it is invariant under marginal transformations. These two properties make
the definition particularly attractive for extremes.

As an example, we can study this definition for stationary max-stable time
series X = {Xt}t∈Z with α-Fréchet margins [2]. For these processes, the upper
tail dependence coefficient

χ(h) = lim
u→∞

P(Xh > u | X0 > u), h ∈ Z,

takes a similar role as the covariance in the classical setting. In particular, in [4],
we show that the time seriesX is short-range dependent in the sense of Definition 1
if and only if ∑

h∈Z
χ(h) < ∞.

2. Consequences on Estimators for the Extremogram

In order to investigate consequences of long-range dependence for estimators, we
study the extremogram [1] defined via

ρB(T ) = lim
u→∞

P((Xt)t∈T ∈ uB | X0 > u) ∈ [0, 1],

where T ⊂ Z0 is a finite index set and B ⊂ [0,∞]|T | is a continuity set bounded
away from 0. Here, we follow [1] and consider the ratio estimator

ρ̂B,n(T ) =
P̂n,un(B)

P̂n,un((0,∞)|T |)

where

P̂n,un(B) =
1

n

∑n

j=0
1{Xj > un, (Xj+t)t∈T ∈ unB}.

In [5], we notice some phase transition for this estimator under short and long-
range dependence, respectively. More precisely, we prove the following theorem.
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Theorem 2. Let X = (Xt)t∈Z be a max-stable stationary time series with α-
Fréchet margins and let {un}n∈N ⊂ (0,∞) be a sequence such that un → ∞ and
nP(X0 > un) → ∞ as n → ∞. Then, we obtain the following results:

• If X is short-range dependent in the sense of Definition 1, then

Var
[√

nP(X0 > un)ρ̂B,n(T )
]
→ σ2 < ∞.

• If X is long-range dependent in the sense of Definition 1, then

Var
[√

nP(X0 > un)P̂n,un((0,∞)|T |)
]
= ∞.

In the case of short-range dependence, we can further show asymptotic normal-
ity, while the asymptotic distribution in the long-range dependent case remains
an open problem. The results can also be extended from the max-stable case
to the more general case of positively associated regularly varying time series if
convergence to the tail process is sufficiently fast.

References

[1] R. A. Davis, and T. Mikosch, The extremogram: A correlogram for extreme events, Bernoulli
15, 977–1009.

[2] L. de Haan, A spectral representation for max-stable processes, The Annals of Probability
12, 1194–1204.

[3] R. Kulik, and E. Spodarev, Long range dependence of heavy-tailed random functions, Jour-
nal of Applied Probability 58, 569–593.

[4] V. Makogin, M. Oesting, A. Rapp, and E.Spodarev, Long range dependence for stable
random processes, Journal of Time Series Analysis 42, 161–185.

[5] M. Oesting, and A. Rapp, Long memory of max-stable time series as phase transition:
asymptotic behaviour of tail dependence estimators, Electronic Journal of Statistics 17,
3316–3336.

[6] G. Samorodnitsky, Stochastic Processes and Long Range Dependence, Springer, 2016.

Mathematics, statistics, and geometry of extremal graphical models

Sebastian Engelke

(joint work with Jevgenijs Ivanovs, Kirstin Strokorb, Jakob D. Thøstesen,
Manuel Hentschel, Johan Segers, Stanislav Volgushev)

Recent methods in extreme value theory concentrate on detecting and modeling
sparsity in possibly high dimensions; see [2] for a review. One branch of research is
concerned with Markov structures on graphs. In this talk we present an overview
over recent developments on graphical modeling of the extreme values of a random
vector. We point out connections to the theory of infinitely divisible distributions
and Lévy processes.

We first recall some elementary properties of max-infinitely divisible (max-i.d.)
and (sum-)infinitely divisible (sum-i.d.) distributions, which are the only limits of
triangular arrays of normalized, componentwise sums and maxima of independent
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random vectors. A d-dimensional random vector Z with standard Fréchet margins
is max-i.d. if and only if its distribution function can be written as

P(Z ≤ x) = exp
[
− Λ(Rd

+ \ [0, x])
]
, x ∈ R

d
+,

where Λ is the exponent measure, a possibly infinite Borel measure on the space
Rd

+ \ {0} with Λ(A) < ∞ for all Borel sets A bounded away from the origin.
Similarly, for an infinitely divisible random vector Z, the characteristic function

is given θ ∈ Rd by

Eeiθ
⊤Z = exp

[
− 1

2
θ⊤Σθ + iγ⊤θ +

∫

Rd\{0}

(
eiθ

⊤x − 1− iθ⊤xI{‖x‖2 ≤ 1}
)
Λ(dx)

]
,

where γ ∈ Rd is a drift parameter and Σ is the symmetric, non-negative definite
d × d covariance matrix of the Gaussian component. The Borel measure Λ on
Rd \ {0} is the so-called Lévy measure, which satisfies Λ(A) < ∞ for all Borel sets
A bounded away from the origin together with

∫
‖x‖2∈(0,1) ‖x‖

2
2Λ(dx) < ∞.

The measure Λ appears in both distributions classes and turns out to be crucial
to define sparsity, conditional independence and graphical models for these models.
Since Λ is typically exploding at the origin and therefore an infinite measure,
classical conditional independence is not applicable. This is for instance the case
when Λ is homogeneous of order −1, which correspond to the important classes
of max-stable and sum-stable (or α-stable) distributions. The crucial idea of the
next definition from [6] is to require this property only on test sets with product
form and finite measure:

R(Λ) =

{
R = ×v∈V Rv : Rv ∈ B(R), Λ(R) > 0, 0V /∈ R

}
,

where B(R) are the Borel sets in R.

Definition 1. For disjoint sets A,B,C ⊂ V = {1, . . . , d} that form a partition of
V , we say that Λ admits conditional independence of A and B given C, denoted
by

A ⊥ B | C [Λ],

if we have the classical conditional independence

YA ⊥⊥ YB | YC for Y ∼ PR for all R ∈ R(Λ).(1)

This is trivially true for A or B being empty, and for C = ∅ we say that Λ admits
independence of A and B, and write

A ⊥ B [Λ].

This definition turns out to be very natural. For instance, under light as-
sumptions, it satisfies the semi-graphoid axioms in [14] and is equivalent to the
factorization of the density (if it exists) of Λ. Importantly, this Λ-conditional
independence has probabilistic interpretations for both max-i.d. and sum-i.d. dis-
tributions. For the maxima case, we need to define the so-called multivariate
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Pareto distribution associated with Λ by Y ∼ PY (·) = Λ(·)/Λ(Rd
+ \ [0, 1]d). We

then have the equivalence

A ⊥ B | C [Λ] ⇔ YA ⊥e YB | YC ,

where ⊥e is the extremal conditional independence introduced in [8]; see also [16]
for a similar notion for extremes of Markov trees. The corresponding extremal
graphical models on undirected graphs G = (V,E) have recently attracted large
attention and methods for graph learning [3, 7, 9, 12, 13, 17] and statistical infer-
ence have been developed [1, 11, 15]. Moreover, the Λ-conditional independence
generalizes this notion and answers several discussion contributions in the article.
For instance, the corresponding Λ-graphical models can be disconnected, one does
not need to require densities and the max-linear models on directed acyclic graphs
in [10] arise as special cases. Moreover, it is possible to model asymptotic inde-
pendence; for more details see [6]. For a recent review on statistics of extremal
graphical models see [4].

For the sum-i.d. case, we first note that for any Lévy measure Λ there is an
associated d-dimensional Lévy process X = (X(t) : t ≥ 0). This process can be
decomposed as an independent sum X = W+ J, where W is a Brownian motion
with covariance Σ and drift γ ∈ R, and the jump process J is described by the
Lévy measure Λ. We show in [5] that

XA ⊥⊥ XB | XC ⇔ JA ⊥⊥ JB | JC and WA ⊥⊥ WB | WC ,

that is, the characterization of conditional independence of the process X can be
separated into the corresponding statements for the Brownian and jump parts.
Conditional independence of the Brownian part is easily characterized by the pre-
cision matrix Σ−1. For the jump part, it turns out that

JA ⊥⊥ JB | JC ⇔ A ⊥ B | C [Λ],

that is, our Λ-conditional independence has a very natural interpretation for the
sample paths of Lévy processes. This opens the door to a new, unexplored area
of graphical models for Lévy processes.
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[6] S. Engelke, J. Ivanovs, and K. Strokorb, Graphical models for infinite measures with appli-

cations to extremes, 2022. Available from https://arxiv.org/abs/2211.15769.
[7] S. Engelke and S. Volgushev, Structure learning for extremal tree models, J. R. Stat. Soc.

Ser. B. Stat. Methodol. 84 (2022), 2055–2087.

https://arxiv.org/abs/2111.00840
https://arxiv.org/abs/2211.15769


2222 Oberwolfach Report 38/2024

[8] S. Engelke and A. S. Hitz, Graphical models for extremes (with discussion), J. R. Stat. Soc.
Ser. B. Stat. Methodol. 82 (2020), no. 4, 871–932.

[9] S. Engelke and A. Taeb, Extremal graphical modeling with latent variables, 2024. Available

from https://arxiv.org/abs/2403.09604.
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Order Selection for Clustering Multivariate Extremes

Shuyang Bai

(joint work with Shiyuan Deng, He Tang)

Multivariate extreme value theory examines the concurrent extreme values of mul-
tiple variables. After standardizing the marginal distributions of the variables, one
studies the angular distribution of extreme samples (data points with the largest
norms). This distribution, under the multivariate maximum domain of attraction
assumption, approximates a limit distribution on the unit sphere, referred to as
spectral (or angular) measure.

High dimensionality is a notable challenge due to the small sample sizes of
extreme values. As a parsimonious model to reduce complexity, we consider a dis-
crete spectral measure with a finite number of atoms. Several parametric models,
such as heavy-tailed max-linear and sum-linear models, have this type of spectral
measure. Several recent works [1–3] employed clustering algorithms on the spec-
tral measure sphere to summarize angular distributions. The connection between
discrete spectral measures and spherical clustering is evident: each spectral atom
serves as a cluster center, with extreme samples forming clusters around these
atoms. [2] and [3] confirmed the consistent recovery of the discrete spectral mea-
sure using such algorithms. So far, existing works have assumed a known number
of atoms (or clusters), which we term the order. In [1–3], ad hoc methods such
as elbow and scree plots were used to determine the order in real data, relying on
vague visual interpretation and lacking theoretical support.

In this talk, we further explore clustering-based estimation of multivariate ex-
treme models with a discrete spectral measure. The main contribution involves
the development of an order selection method that, on the theoretical side, con-
sistently recovers the true order, and on the practical side, enjoys intuitive and
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simple implementation. Our method is based on a variant of the well-known Sil-
houette method [4]. In particular, we introduce an additional penalty term to
the so-called simplified average silhouette width, which discourages small cluster
sizes and small dissimilarities between cluster centers. The optimal order is chosen
by visualizing the bending of the penalized average silhouette width curve (as a
function of the order selected) when the tuning parameter of the penalty term
increases. As a consequence, this method consistently estimates the order of a
max-linear factor model, for which a usual information-based method is not ap-
plicable. Simulation studies demonstrate the bias-correcting effect of the penalty
introduced. The method is also illustrated on a river discharge data set for sta-
tions located throughout the US. The order selected by our method matches the
geographical context of these stations.
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Fast amortized neural inference methods for spatial extremes in
high dimensions

Raphaël Huser

(joint work with Jordan Richards, Matthew Sainsbury-Dale,
Andrew Zammit-Mangion)

Important advancements in statistical deep-learning [5] have led to the devel-
opment of flexible modeling approaches [7, 8], and fast and statistically-efficient
inference methods for high-dimensional spatiotemporal processes [11]. These have
attracted major attention recently, in part due to the ever-increasing generation
of massive and high-resolution datasets (through remote sensing, climate models,
high-frequency financial data, etc.), but also because the statistical models needed
to analyze such datasets are becoming increasingly complex. Historically, both
frequentist and Bayesian likelihood-based approaches have been developed to fit
such models to big datasets and, in particular, a variety of methods based on
low-rank or sparse model approximations have played a key role. However, these
classical likelihood-based methods are impractical when the likelihood function
is unavailable or computationally-intractable, like with popular spatial extremes
models [1, 3, 6], or when large models must be fitted repeatedly in an operational
or online manner. A variety of likelihood-free methods, such as Approximate
Bayesian Computation (ABC; see, e.g., [10]), have been introduced to bypass this
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computational bottleneck. However, these approximate inference methods are of-
ten suboptimal in practice. For example, traditional ABC relies on the choice of
“suitable” summary statistics and a tolerance level used to assess whether simu-
lated data are “close enough” to the observed data; not surprisingly, ABC can be
very sensitive to these choices, especially in high dimensions. ABC has recently
been combined with the Random Forests algorithm to help select appropriate
summary statistics, but its performance remains heavily dependent on the tol-
erance level and the prior specification. More recently, neural Bayes estimators
have shown an enormous potential for overcoming these limitations and enabling
extremely fast and optimal inference with complex models in large-scale scientific
applications including max-stable processes used to model spatially-indexed block
maxima [2,4,9]. A neural estimator is simply a neural network (with data as input
and parameters as output), that can be computed simply as follows:

(i) Sample parameters from a prior Ω;
(ii) Given the above parameter sets, simulate data from the model;
(iii) Choose a suitable neural network architecture to construct the neural es-

timator θ̂γ(·);
(iv) Train the neural network (i.e., estimate γ) to recover the true sampled

parameters by minimizing a user-defined loss function L (e.g., the absolute-
error or squared-error loss) averaged across all sampled parameter-data
samples.

As shown in [9], the resulting neural estimator minimizes a Monte Carlo approxi-

mation of the Bayes risk, defined as rΩ(θ̂(·)) =
∫
Θ

∫
Sn L(θ, θ̂(Z))p(Z | θ)dZdΩ(θ),

where Z = (Z ′1, . . . ,Z
′
n)
′ are n data replicates, S is the sample space and Θ is

the parameter space. Neural estimators can thus be easily understood through
the lens of statistical decision theory, and we refer to them as neural Bayes esti-
mators. Note that the above method is likelihood-free, and yet, it can accurately
approximate Bayes estimators (thus—approximately—enjoying their optimality
and large-sample properties). As neural networks can be evaluated very quickly on
GPUs, neural Bayes estimators are thus extremely fast to evaluate (post-training),
likelihood-free, and amenable to rapid bootstrap-based uncertainty quantification.
Therefore, they are ideal to use with spatial extremes models in high dimensions,
where estimation is often a computational bottleneck. Moreover, this inference
approach is very general in the sense that it only loosely depends on the model
being fitted; for example, it is not restricted to spatial models. Finally, it is amor-
tized since the same neural estimator can be used repeatedly on new data without
having to retrain the neural network, provided the new data structure conforms
with the chosen neural network architecture used to construct θ̂γ(·). This leads
to significant speed-ups.

However, to model extremal peaks-over-threshold data using popular spatial
extremes models such as r-Pareto processes or a variety of subasymptotic ran-
dom scale mixture models, one needs to design a neural network architecture that
can handle censored observations. This is indeed required as spatial extremes
can sometimes include marginally non-extreme observations whose inclusion in
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the inference procedure is known to bias the estimation of the extremal depen-
dence structure. In this work, we detail how censored peaks-over-threshold data
can be handled by neural Bayes estimators. This is achieved in two steps: first,
after standardizing the data to an appropriate marginal scale, we mask the data
that are to be censored (i.e., the low values) by replacing them with an arbitrary
constant below the censoring level; second, we augment these masked data with
the vector of threshold exceedance indicators, as usually done with traditional
censored likelihood inference. Finally, the neural network is trained by providing
these augmented and masked data as an input, arranged as a multidimensional
array with two outer dimensions. The resulting estimator is shown through exten-
sive simulations to be extremely fast to evaluate (orders of magnitude faster than
state-of-the-art likelihood-based approaches), scalable to higher dimensions and
different sample sizes, and applicable to varying censoring levels, while properly
downweighting the influence of low observations. The method is illustrated by
application to air pollution extremes over the whole Arabic peninsula where more
than a hundred thousand extreme-value models are fitted locally to high values of
PM2.5 data in unprecedented dimensions.
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Measuring risk contagion in financial networks: The effect
of a Gaussian copula

Vicky Fasen-Hartmann

(joint work with Bikramjit Das)

The stability of a complex financial system may be assessed by measuring risk
contagion between various financial institutions with relatively high exposure. We
consider a financial network model using a bipartite graph of financial institutions
(e.g., banks, investment companies, insurance firms) on one side and financial as-
sets on the other side. Following empirical evidence, returns from such risky assets
are modeled by heavy-tailed distributions, whereas their joint dependence is char-
acterized by copula models exhibiting a variety of tail dependence behavior. In
this talk we restrict our attention to the Gaussian copula, a popular model for pair-
wise asymptotic independence, although the results hold for general dependence
structures.

In the study of extremes, the presence of asymptotic independence between
variables in a model signifies that extreme events across multiple variables are
probably less likely to occur together. Although the concept is well-understood in
a bivariate context, it remains relatively unexplored when addressing the nuances
of joint occurrence of extremes in higher dimensions. First we discuss the classical
notion of (pairwise) asymptotic independence and then propose a notion of mutual
asymptotic independence to capture the distinctiveness of tail behavior in dimen-
sions larger than two. A straightforward consequence of Sibuya [4] is that the
popular Gaussian copula exhibits pairwise asymptotic independence. For mutual
asymptotic independence, we provide explicit conditions on the correlation matrix
of the Gaussian copula characterizing mutual asymptotic independence,. Even in
dimension d = 3 it is straightforward to construct a Gaussian copula exhibiting
mutual asymptotic independence but as well to construct an example which is
not mutually asymptotically independent. In Das and Fasen-Hartmann [2] these
differences are illustrated using examples of various copulas not only restricting to
Gaussian copulas

Next, based on Das and Fasen-Hartmann [3] we compute multivariate tail risk
probabilities of the risky assets where the marginal risks are heavy-tailed and the
dependence structure is a Gaussian copula. The marginal heavy-tailed risks are
modeled by tail-equivalent Pareto-like tails which lead to a few interesting conse-
quences. As the threshold increases, we note that the rate of decay of probabilities
of tail sets varies depending on the type of tail sets considered and the Gaussian
correlation matrix. We are able to give the explicit tail rates for rectangular sets
and characterize completely the multivariate regular variation of these models on
special Euclidean subcones which allow tail risk estimations for more general sets.

As measure for risk contagion, we consider CoVaR, a popular measure of risk
contagion and study its asymptotic behavior under broad model assumptions,
where one asset has regularly varying tail. We further propose the Extreme CoVaR
Index (ECI) for capturing the strength of risk contagion between risk entities,
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which is particularly useful for models exhibiting asymptotic independence. The
results are illustrated by providing precise expressions when the dependence of the
assets is modeled by a Gaussian copula.

Finally, we are able to give the preciese tail rates, CoVaR behavior and the ECI
in a bipartite network when the dependence of the assets is modeled by a Gaussian
models. Extensions to other different kind of portfolios and other dependence
structures is possible as well and given in Das and Fasen-Hartmann [3].
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Characterizing extremal dependence on a hyperplane

Phyllis Wan

A general framework of modeling extremes is the peak-over-threshold framework,
in which one considers the distribution of observations conditional on being over
a high threshold. In the univariate case, this framework has been well-studied
and widely used. The observations exceeding a high threshold can be modelled by
the class of generalized Pareto distributions, parametrized by a scale parameter
and a shape parameter. This allows for straightforward statistical inference using
likelihood techniques. For an overview, see e.g. [1].

Analyzing multivariate extremes requires simultaneous considerations of the
marginal tails and the extremal dependence. The former can be approached by
applying univariate techniques, while the latter can be separated from the former
by standardizing the marginals of the data. Even so, modeling the extremal de-
pendence remains a core problem in extreme value analysis as its structure may
be complex and cannot be summarized by finite-dimensional models.

There are two common approaches in the literature to geometrically characterize
the tail dependence of a random vector X.

• Angular measure Θ: Standardize the marginals of X to the standard
Pareto distribution. Then for a pre-specified norm ‖ · ‖, the projection of
X onto the unit sphere {v|‖v‖ = 1}, conditional on the norm of X being
large, converges to

(1)
X

r

∣∣∣∣
‖X‖>r

d→ R ·Θ, as r → ∞,

where Θ is a random vector on the positive unit sphere {v ∈ [0,∞)d|‖v‖ =
1} and R is a standard Pareto variable independent of Θ. Here Θ is called
the angular measure or the spectral measure. For an overview, see e.g. [2].
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• Spectral random vector S: Standardize the marginals of X to the
standard Exponential distribution. Then the exceedances of X, whose
maximum component is large, converges to

(2) X− r · 1|max(X)>r
d→ Z, as r → ∞,

where Z has the stochastic representation

Z := E · 1+ S,

such that S is a random vector on the irregular support {v ∈ Rd|max(v) =
0} and E is a standard exponential random variable independent of S.
Here S is said to be the spectral random vector. See [3] and [4].

The two characterizations are connected as (2) is equivalent to (1) using the
L∞-norm. Both Θ and S can be used to characterize the extremal dependence
structure. However, notice that the supports of Θ and S are nonlinear and induces
intrinsic dependence between the dimensions. This poses nontrivial constraints for
the construction of statistical models and their inference.

In this paper, I consider a different representation of the extremal dependence.
Namely, I examine the exceedances of X condition on the component mean X̄
being large and investigate whether or not

X− r · 1|X̄>r
d→ Z∗, as r → ∞.

In the case where the tail of X has nondegenerate extremal dependence structure,
the limiting distribution Z∗ can be represented as

Z∗ := E · 1+V + µV,

such that

• V is characterized by the class of centered random vector on the hyper-
plane 1⊥ := {v|vT1 = 0} with the moment condition E[emax(V)] < ∞;

• µV is a location vector determined by the distribution of V;
• E is a standard exponential random variable independent of V.

In particular, for any positive semidefinite covariance matrix Σ that satisfies Σ ·
1 = 0, V ∼ N(0,Σ) characterizes the widely used Hüsler-Reiss models [5]. This
justifies the popular claim that the Hüsler-Reiss family serves as the counterpart
of Gaussian family in the modeling of extremes.

The canonical spectral random vector V resides on a linear vector space. This
translates the statistical analyses on multivariate extremes to that on a linear
vector space, enabling straightforward adaptation of existing statistical techniques.
As an example, I illustrate the application of principal component analysis to
achieve a lower-dimensional approximation of tail observations.
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Penalized estimation of Hüsler-Reiss precision matrices

Stanislav Volgushev

(joint work with Michaël Lalancette, Alexander Ryabchenko, Sebastian Engelke)

Hüsler-Reiss distributions form a popular class of multivariate Pareto distribu-
tions. They can be shown to arise as limits in the multivariate peak over threshold
setting and are thus canonical models for the dependence structure of extremes.

As shown in [4], Hüsler-Reiss distributions can be conveniently parametrized
by the so-called Hüsler-Reiss precision matrix Θ. The class of valid Hüsler-Reiss
precision matrices is given by

{Θ ∈ R
d×d : Θ = Θ⊤, v⊤Θv ≥ 0,Θ1d = 0, rank(Θ) = d− 1},

where 1d ∈ Rd is the vector with a 1 in every entry.
A particularly attractive feature of the HR precision matrix Θ lies in the follow-

ing fact: if Y , follows a Hüsler-Reiss distribution with parameter matrix Θ, then
the zero pattern of Θ encodes the extremal conditional independence structure
of Y . Here, conditional independence is understood in the sense of [1] since Y
is not supported on a product space and classical conditional independence fails.
This conditional independence structure can be conveniently encoded in a graph
G = (V,E) where the vertices V = {1, . . . , d} correspond to entries of Y and
the absence of an edge encodes conditional independence relationships, see [5] for
background on probabilistic graphical models.

Estimating Θ is challenging, especially in high dimensions. The entries of Θ
cannot be expressed through moments, rather Θ is the Moore-Penrose pseudo-
inverse of a certain matrix Σ with entries that correspond to certain logarithmic
moments of Y . This is akin to the problem of estimating a precision matrix of
a multivariate normal distribution. An additional challenge arises because we
typically do not observe realizations form the Hüsler-Reiss distribution itself but
rather only data whose extreme values are approximately Hüsler-Reiss.

Existing methodology for estimating Hüsler-Reiss precision matrices has focused
on estimating the sparsity pattern of Θ [2], estimating the entries of Θ is the
sparsity pattern is known through matrix completions [4], or does not produce
valid precision matrix estimates without further pre-processing [6] because the
zero row-sum and positive semi-definiteness constraints fail.

In this talk we present, for the first time, an approach to penalized estimation of
Θ that automatically leads to valid Hüsler-Reiss precision matrices. The basic idea
is akin to the graphical lasso [3]. However, a naive extension of the approach in [3]
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is shown to fail both in simulations and through a theoretical analysis. We then
propose a remedy that is based on adaptive weighting. The resulting estimator
is shown to consistently estimate the correct sparsity pattern even in growing
dimensions. Our theoretical analysis also extends the consistency of the matrix
completion problem in [4] in growing dimensions.
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Asymptotic Theory for Neural Estimators

Manuel Hentschel

(joint work with Almut Rödder, Sebastian Engelke)

Neural estimators, as trained neural network functions, represent a powerful tool
in parameter estimation. They operate by taking a sample from a parameter-
ized distribution as input and producing an estimate of the parameters as out-
put. Notably, they have demonstrated exceptional performance in diverse applica-
tions, such as extreme value theory and covariance estimation in spatial statistics
[Lenzi et al., 2021, Gerber and Nychka, 2021, Sainsbury-Dale et al., 2023]. These
examples are of particular interest due to the inapplicability of conventional tech-
niques such as Maximum Likelihood estimation which are often too computa-
tionally expensive in practice. In this project, we aim to provide a theoretical
foundation for the use of neural estimators in parameter estimation, and provide
asymptotic results for their performance. To this end, we decompose the error of
a neural estimator into different components, and employ results from Bayes lit-
erature [Vaart, 1998], neural network approximation theory [Cybenko, 1989], and
statistical learning theory [Xu and Mannor, 2012] to show a modified notion of
consistence for neural estimators.
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Heavy-tailed directed graphical models

Mario Krali

The interacting complex mechanisms that drive rare events present a daunting
area of multivariate dependence modelling of extremes. In this work we attempt
to fully describe the joint extremal dependence in high dimensions. Inspired by
structural equation models [7], we model extremal dependence on a directed, but
not necessarily acyclic, graphical structure D = (V,E), whereby every node vari-
able is represented as

Xi =
∨

j∈pa(i)
cijXk ∨ ciiZi, i ∈ V,(1)

and we refer to the model as the max-linear structural equation model (MSEM).
We refer to |V | = d as the dimension of the graph and write pa(i) and an(i) to
denote, respectively, the parents and the ancestors of node i. We call the Zi’s
innovations, and require them to be asymptotically independent [8], which marks
a departure from the classical assumption of exogeneity, or independence, of the
innovations — known as noise or error variables — in non-extremal statistics.

Despite the similarities between the MSEM and the recursive max-linear model
(RMLM) [4], which is supported on a directed acyclic graph (DAG), the presence
of cycles in the graphical structure of (1) provides a generalization over DAGs, and
allows for more complex types of causal dependencies such as two-way causality.

The first problem we encounter is the representation of X = (X1, . . . , Xd) as a
max-linear (or max-factor) model, namely,

Xi = ∨j∈an(i)aijZj , i ∈ V.(2)

The coefficients aij serve as path weights between the node variables and provide
causal interpretations for the dependencies between the nodes [4]; these coefficients

are arranged into the coefficient matrix A ∈ R
d×d
+ . Conditions for the existence of

such solution (via innovations) can be found in [2], and are translated to the max-
times setup by [1]. However, existence of a solution does not necessarily guarantee
identifiability from the matrix A.

For DAG structures the matrix A can be arranged in upper-triangular form,
which allows the identification of causal relations between the node variables, and
enables the association of the nodes to the respective innovation indices. Contrary
to DAGs, this is in general not possible if cycles are present in directed graphs. For
instance, the coefficient matrix A of the MSEM supported on the directed graph
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in Figure 1 has d2 = 9 non-zero entries which cannot be linked to the innovations
simply by looking at the zero-pattern of the coefficient matrix A.

23 1

Figure 1. Directed graph supporting a three-dimensional
MSEM.

For a vector X supported on the directed graph in Figure 1, we can write
X = AL ×max Z and X = AR ×max Z

′ for column-permuted matrices given by

AL =



a11 a12 a13
a21 a22 a23
a31 a32 a33


 and AR =



a11 a13 a12
a21 a23 a22
a31 a33 a32


 ,

and after a simple relabelling of the innovation vector, namely, Z = (Z1, Z2, Z3)
and Z ′ = (Z1, Z3, Z2). The operation ×max is similar to matrix multiplication,
but replaces summation with the maximum operator.

Without loss of generality we assume that the rows of A have unit, or stan-
dardized, α-th norm. Under the condition that the cyclic path weights are strictly
less than one, we show that the standardized matrix A has a particular structure
which helps establish identifiability.

Theorem 1. For an MSEM X with standardized coefficient matrix A and with
cyclic path weights strictly less one, it holds that aii > aji for all i, j ∈ V .

This result has important consequences in extreme value statistics, because it
enables the construction of a procedure that combines the extremal dependence
measure [3] and the extremal scalings [5, 6] in order to compute the coefficient
matrix A, which gives a complete description of the extremal behaviour of the
vector X.
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Bootstrapping disjoint, sliding and circular block maxima

Axel Bücher

(joint work with Torben Staud)

Suppose (Xt)t∈Z is a stationary time series such that affinely standardized maxima
a−1r {max(X1, . . . , Xr)− br} over stretches of size r weakly converge to the gener-
alized extreme value (GEV) distribution with shape parameter γ, for r → ∞. For
an observed stretch of size n, the classical block maxima method is concerned with
measurable functions ϕm applied to the sample of disjoint block maxima, that is,
with

ϕm(max(X1, . . . , Xr),max(Xr+1, . . . , X2r), . . . ,max(X(m−1)r+1, . . . , Xmr)),

where m = n/r (assumed to be an integer for simplicity) denotes the number
of disjoint blocks. If r = rn → ∞, the asymptotic behavior of such expressions
is typically driven by standardized empirical means Hn = 1√

m

∑m
i=1{h(Zi,r) −

E[h(Zi,r)]}, where Zi,r = a−1r {max(X(i−1)r+1, . . . , Xir) − br} and where h is a
measurable function. A suitable application of the central limit theorem implies
asymptotic normality of Hn with asymptotic variance σ2 = Var(h(Z)), where Z
is GEV-distributed with cdf G, say.

As an alternative, instead of considering disjoint block maxima, one may con-
sider measurable functions applied to the sample of sliding block maxima, that
is,

ϕn−r+1(max(X1, . . . , Xr),max(X2, . . . , Xr+1), . . . ,max(Xn−r+1, . . . , Xn));

note that the respective sample is of size n−r+1. The asymptotic behavior is then

typically driven by H ′n =
√
m 1

n−r+1

∑n−r+1
i=1 {h(Z ′i,r) − E[h(Z ′i,r)]}, where the ith

standardized sliding block maximum is given by Z ′i,r = a−1r {max(Xi, . . . , Xi+r−1)−
br}. It has recently been found that H ′n is asymptotically normal as well with as-
ymptotic variance given by

(σ′)2 = 2

∫ 1

0

Cov(h(Z1,ξ), h(Z2,ξ))dξ,

where (Z1,ξ, Z2,ξ) has joint cdf H(x, y) = G(x)ξG(y)ξG(x∧y)1−ξ, see [1,3], among
others. Remarkably, (σ′)2 ≤ σ2 [3], with the inequality typically being strict.

Statistical inference based on disjoint or sliding block maxima typically requires
suitable estimators for σ2 or (σ′)2, respectively. Given the complicated expression
for (σ′)2, this is an intricate problem, with standard plug-in methods only being
feasible if explicit calculations are possible. As an alternative, one may rely on
bootstrap approximations [2]. We show that naive block-bootstrap approaches
are inconsistent, and provide a consistent alternative based on resampling circular
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block maxima. The latter are obtained by calculating sliding maxima on small
blocks of blocks (for instance, twice the block size r) after repeating the first r− 1
observations in each such block of blocks. As a by-product, we show that the
circular block maxima method has the same asymptotic variance as the sliding
block maxima method.
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Parametric multi-fidelity estimation with applications to extremes

Vladas Pipiras

(joint work with Minji Kim, Brendan Brown)

In a multi-fidelity (MF, for short) setting, data come from two sources: the high-
fidelity source associated with a random variable X(1) and the low-fidelity one as-
sociated with X(2). Given the same (random) conditions, X(1) and X(2) measure
the same quantity and are possibly dependent as a random vector (X(1), X(2)).

Suppose (X
(1)
i , X

(2)
i ), i = 1, . . . , n, are i.i.d. observations of (X(1), X(2)). Further-

more, a computational cost to produce X(2) is thought to be considerably smaller
(compared to X(1)), at the expense of precision. It is less costly to observe addi-

tional copies of X(2), say i.i.d. copies X
(2)
i , i = n+ 1, . . . , n+m. The MF data in

question is thus

(1) (X
(1)
1 , X

(2)
1 ), . . . , (X(1)

n , X(2)
n ), X

(2)
n+1, . . . , X

(2)
n+m.

In contrast, the baseline will consist only of the high-fidelity observations

(2) X
(1)
1 , . . . , X(1)

n .

Suppose, in addition, that the distributions ofX(1) andX(2) are specified paramet-
rically: the (vector) parameter θj specifies the distribution of X(j), j = 1, 2, with

additional (vector) parameter η, thought to capture the dependence between X(1)

and X(2), combining into (θ1, θ2, η) to specify the joint distribution of (X(1), X(2)).
An example are univariate and bivariate generalized extreme value distributions
for X(1) and X(2) representing block maxima. The question addressed in this work
is how the parameter θ1 of the high-fidelity variable X(1) can be estimated more
efficiently when using the MF data (1), compared to the baseline when only the
high-fidelity data (2) are used.

Three types of MF estimators are considered for estimating θ1 with the MF
data (1): the moment MF estimator, the maximum-likelihood (ML, for short)
MF estimator and the marginal maximum-likelihood MF estimator. The moment
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estimation applies to the situation when θ1 can be expressed in terms of the means
of functions of the high-fidelity variable X(1), say, θ1 = Eh(X(1)) when θ1 is scalar
and h is a (known) function. In this case, the moment estimator of θ1 is written
as

(3) θ̂1,mom = (h(X(1))n + α · ((h(X(2))n+m − (h(X(2))n),

where α ∈ R is suitably chosen and Y k = 1
k

∑k
i=1 Yi. Moment-type MF estimators

were considered in at least the following contexts: control variates methods (e.g.
[1]), multi-fidelity methods (e.g. [2]), semi-supervised learning (e.g. [3]). The ML
estimation is a standard parametric estimation of model parameters, including θ1,
from the MF data (1), and can be considered most efficient. In contrast to the
moment estimation, the ML estimation requires a joint parametric specification
and may be sensitive to misspecification of the dependence between X(1) and
X(2). Placing in-between the previous two methods, the marginal ML estimation
considers, say, in the univariate case and when the marginal parametric families
are the same,

(4) θ̂1,mml = (θ̂1,ml)n + β · ((θ̂2,ml)n+m − (θ̂2,ml)n),

where β ∈ R is suitably chosen and (θ̂j,ml)k, j = 1, 2, denotes the ML estimator

computed from the data X
(j)
i , i = 1, . . . , k. When X(1) and X(2) are independent

and no efficiency gain is expected from the low-fidelity data, (4) with β = 0

leads to the ML estimator (θ̂1,ml)n based on the high-fidelity data alone. When

X(1) = X(2) are completely dependent, (4) with β = 1 leads to the ML estimator

(θ̂2,ml)n+m based on the low-fidelity (and hence high-fidelity when X(1) = X(2))
data.

Apart from introducing the three types of MF estimators above, this work com-
pares their efficiency and that of several estimators based on the baseline data (2)
for several parametric distribution families, including the bivariate Gaussian dis-
tribution, the bivariate Gumbel distribution and several forms of the bivariate
Bernoulli distribution. In addition, an application is provided concerning quantifi-
cation of occurrences of extreme ship motions generated by two computer codes
of varying fidelity.
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Flexible mixture modelling for sample extremes

Anthony Davison

(joint work with Sonia Alouini)

Finite mixture models date back at least to [1] and are widely used in statistical
data analysis owing to the their natural interpretation in terms of sub-populations
of a larger population. The basic mixture density for a vector random variable W
can be written as

f(w) =

K∑

k=1

ηkfk(w),

where the component density functions fk are interpreted in terms of distinct sub-
populations that appear in non-negative proportions ηk, where η1 + · · ·+ ηK = 1.
In applications the fk typically depend on parameters θk that must be estimated,
and the number of components K may be known from the context or may be
unknown. In the latter case mixtures provide flexible semi-parametric models
for density functions, and they have been intensively studied over many years,
partly because of their importance for applications and partly because of their
non-standard theoretical properties. A recent reference is [2], and earlier books
include [3–5].

A key object in the statistics of multivariate extremes is the angular distribution,
which determines the limiting dependence structure between the elements of a
vector X = (X1, . . . , XD) of non-negative real numbers via its so-called pseudo-
angles W = (W1, . . . ,WD), where W = X/‖X‖1 lies in the simplex SD−1 =
{(w1, . . . , wD) : w1, . . . , wD ≥ 0, w1 + · · · + wD = 1}. The angular distribution
satisfies only the marginal constraintsDE(Wd) = 1 for each d, and thus appears to
be ripe for estimation by non- or semi-parametric methods. This idea was exploited
by [6], who used a reversible jump Markov chain Monte Carlo algorithm to fit a
mixture of Dirichlet distributions in a Bayesian approach. Their work showed that
the approach was feasible, but the algorithm was rather slow because the marginal
constraints were explicitly enforced on the parameters, leading to complex Markov
chain proposals. This issue was somewhat mitigated in later work [7] but remains
an obstacle to widespread use of the approach in applications.

This talk described a different approach to fitting mixtures of Dirichlet distri-
butions suggested by Theorem 2 of [8], which describes how any distribution on
SD−1 that has positive means can be ‘tilted’ to satisfy the marginal constraints.
So far as we are aware, this result has only previously been used to construct the
so-called Dirichlet or Coles–Tawn model for bivariate and trivariate extremes, but
it also allows the efficient fitting of mixtures of Dirichlet distributions that satisfy
the marginal constraints, using a Markov chain Monte Carlo algorithm. We show
that the resulting class of mixture distributions is topologically dense in the class
of angular distributions, discuss approaches to hard and soft clustering of extreme
events, and illustrate the power of the approach by an application to air pollution
data in which the resulting clusters of pollution events have clear interpretations.
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On the Clusters Over Threshold method

Olivier Wintenberger

(joint work with Gloria Buriticá)

Extremes in stationary regularly varying time series tend to occur in clusters,
manifesting as short periods characterized by multiple large observations. These
blocks are significant as they encapsulate critical information about the extreme
behavior of the series. In this study, we delve into the analysis of cluster statistics,
which are tools designed to summarize the behavior of functions acting on these
extremal blocks. Among the key examples of such cluster statistics is the extremal
index.

The purpose of our research is twofold. First, we establish the asymptotic nor-
mality of Clusters Over Threshold estimators based on sequences of consecutive
observations with large ℓα-norms, where α > 0 is the tail index. This provides
a theoretical foundation for understanding the distributional properties of these
estimators as the sample size increases. Second, we rigorously verify the conditions
necessary for these results to hold in linear models. We prove that the asymptotic
variance of traditional cluster-based index estimators is, in fact, zero, as was ini-
tially conjectured by Hsing in [1]. More generally the asymptotic variance admits
an explicit expression and is simple to estimate.

To substantiate our theoretical findings, we provide an application that illus-
trates the practical implications of our results. We use the Clusters Over Threshold
method for estimating the extremal indices of daily precipitations among different
regions. Thereby we demonstrate the applicability and robustness in real-world
data analysis of our method.
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Spectral learning of multivariate extremes

Marco Avella Medina

(joint work with Richard A. Davis, Gennady Samorodnitsky)

Spectral clustering and related techniques are very popular and have found success
in various applications in machine learning and statistics [1]. The central idea
of spectral clustering is to use the eigenvectors of the graph Laplacian matrix
constructed from an affinity graph between sample points in order to find clusters
in the data. Typically these are obtained by a K-means algorithm that take
these graph Laplacian eigenvectors as input. We follow this same principle but
use as input to our algorithm the angular parts of the observations whose norms
exceed a certain large threshold i.e., a standard spectral clustering algorithm is
applied to the graph built over the angular parts of these extreme observations.
Because of the nature of the extreme events that we study, we leverage tools from
multivariate extreme value theory for analyzing the theoretical properties of our
spectral clustering algorithm. In particular, we use multivariate regular variation
as a modeling tool since it is closely connected to asymptotic characterizations of
multivariate extreme value distributions [2]. The basic idea is that a d-dimensional
random vectorX is regularly varying if the distribution of the angular partX/‖X‖
stabilizes (i.e., converges in distribution) as the radial part ‖X‖ becomes large
and that the radial part has Pareto-like tails. The dependence structure is then
governed by the asymptotic distribution of the limiting angular part. In this work,
we consider clustering the angular parts of observations with large radii.

Extremal spectral clustering algorithm. Assume that Nn observations Xi

(with i in some set Vn of cardinality Nn) are in the extremal part of the sample.
Associated with each i ∈ Vn, is the angular component of the observationXi/‖Xi‖.
We consider mutual k-Nearest Neighbor graphs constructed as follows. A node
i1 ∈ Vn is connected to a node i2 ∈ Vn if the point on the unit sphere corresponding
to i2 is among the k-nearest neighbors of the point corresponding to i1, and i1
is among the nearest neighbors of i2. We work with weighted graphs, where we
assign to the edges a weight equal to the distance between the points on the unit
sphere defining the nodes. More specifically, we will take as input to our algorithm
the weighted adjacency matrix W = [wi1i2 ]i1,i2∈Vn and

wi1i2 =

{
d
(
Xi1/‖Xi1‖,Xi2/‖Xi2‖

)
if i1 and i2 are connected,

0, if i1 and i2 are not connected.

The degree of a node i ∈ Vn is defined as di =
∑

j∈Vn wij . The degree ma-

trix D is defined as the diagonal matrix with diagonal elements [di]i∈Vn and the
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normalized symmetric graph Laplacian matrix is defined as

L = I −D−1/2WD−1/2,

where I is the identity matrix. The spectral clustering algorithm of [3] proceeds
as follows:

(1) Compute the first m eigenvectors u1, . . . ,um of L (i.e., the eigenvectors
corresponding to the m smallest eigenvalues of L) and define an Nn ×m
matrix U using these eigenvectors.

(2) Form an Nn × m matrix V by normalizing the rows of U to have unit
norm.

(3) Treating each of the Nn rows of V as a vector in Rm, cluster them into m
clusters C1, . . . , Cm using the K-means algorithm.

(4) Assign the original points Xi to cluster Cj if and only if row i of the matrix
V was assigned to cluster Cj .

Linear factor model and main result. We now introduce the generative model
that we study in this work. Let X be a d-dimensional random vector defined by
the following linear factor model

X = AZ ,

where A = [aij ]i=1,...d;j=1,...p is a d × p matrix of nonnegative elements and Z
is a p-dimensional random vector of factors consisting of independent and iden-
tically distributed random variables, that are either nonnegative or symmetric,
and have asymptotically Pareto tails, i.e., P(Z1 > z) ∼ cz−α, as z → ∞ for some
α > 0 and c > 0. Note that we write f(x) ∼ g(x) as x → ∞ to mean that
limx→∞ f(x)/g(x) = 1. It is easy to show (see, for example, [4], Proposition A.1)
that X is a multivariate regularly varying random vector satisfying

lim
x→∞

P

(
X

‖X‖ ∈ · | ‖X‖ > x,

)
⇒ Γ(·) ,

where ⇒ denotes weak convergence on the unit sphere Sd−1, Γ is a discrete prob-
ability measure on Sd−1 that, in the symmetric case, puts mass ‖a(k)‖α/w at
a(k)/‖a(k)‖ for k = 1, . . . , p, where a(k) = (a1k, a2k, . . . , adk)

⊤ , is the kth column
of A and w =

∑p
k=1 ‖a(k)‖α.

Our main result is to show that with probability tending to one as n → ∞, the
extremal kn-NN graph obtained from a sample drawn from the linear factor model
will have exactly m ≤ p connected components corresponding to the m distinct
asymptotic point masses of the spectral measure Γ(·) of the model. In other words,
the extremal kn-NN graph consistently identifies the underlying clusters through
its connected components. This together with known results about spectral clus-
tering (for instance Proposition 2 in [1]) show that our proposed extremal spectral
clustering algorithm consistently identifies the clusters of extremes generated by
the linear factor model. The main result follows from the proposition and theorem
stated below. The full version of our work is [5].
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We will need some additional notation in order to state our results rigorously.
For n = 1, 2, . . . , we define the set of indexes corresponding to extreme observations

In =
{
i = 1, . . . , n : ‖Xi‖ > un

}
,

and denote its cardinality by Nn =card(In). We will assume the sequence (un)
satisfies n−(α+2)/(α(α+3))un → ∞ . Note that we may choose a further sequence
(hn) such that

(1) hn → ∞, hn = o(un), hn = o
(
u(α+1)/2
n n−1/2

)
, n−1/αunhn → ∞

as n → ∞. Indeed, the choice hn = u
(α−1)/4
n n(2−α)/(4α) works for this purpose.

Lemma 1. Let (hn) be a sequence satisfying (1) and consider the event

An =
{
for any i ∈ In at most one of Zim, m = 1, . . . , p exceeds hn

}
.

Then P(An) → 1 as n → ∞.

We now define the sets of indexes corresponding to extremes generated by each
of the individual factors i.e. we define for j = 1, . . . , p

I(j)
n = {i = 1, . . . , n : ‖Xi‖ > un, Zij > un/a

∗} ,
where a∗ = d1/2 max{amj, m = 1, . . . , d; j = 1, . . . , p}. We enumerate Xi/‖Xi‖,
i ∈ In as Yi, i = 1, . . . , Nn, a sample on Sd−1 of random size Nn. For each

j = 1, . . . , p, we enumerate Xi/‖Xi‖, i ∈ I(j)
n as Y

(j)
i , i = 1, . . . , N

(j)
n , a sample

on S
d−1 of random size N

(j)
n .

Proposition 2. Suppose that kn = o
(
nu−αn

)
as n → ∞. Then there is a sequence

(Bn,1) of events with P(Bn,1) → 1 as n → ∞ such that, for all n large enough, on

the event Bn,1, any two points Y
(j1)
i1

and Y
(j2)
i2

, i1 = 1, . . . , N
(j1)
n , i2 = 1, . . . , N

(j2)
n

will belong to two different connected components of the kn-NN graph if cj1 6= cj2 .

Theorem 3. Assume that the generic noise variable Z is symmetric and has a
probability density function fZ such that fZ(z) is bounded away from 0 on compact
intervals and bounded from above, and such that C−1z−(α+1) ≤ fZ(z) ≤ Cz−(α+1),
α > 1, for all z ≥ z0, some C ≥ 1. Suppose that d = 2. Then, if kn > A logn
with large enough A > 0, there is a sequence (An,2) of events with P(An,2) → 1
as n → ∞ such that, for all n large enough, on the event An,2, any two points

Y
(j)
i1

and Y
(j)
i2

, i1 = 1, . . . , N
(j)
n , i2 = 1, . . . , N

(j)
n will belong to the same connected

component of the kn-NN graph for any j = 1, . . . , p.
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High dimensional inference for extreme value indices

Chen Zhou

(joint work with Liujun Chen)

To simplify models on multivariate extremes, in various domain science, it is com-
monly assumed that all marginal distributions share the same extreme value index.
This assumption is foundational to several theoretical models, for example, the
multivariate regular variation model proposed and applied in [1–3]. In addition,
this assumption is also adopted by spatial extremes models applied to meteoro-
logical extremes, see, e.g. [4–6]. Such a maintained assumption, the equal extreme
value indices hypothesis, needs to be tested.

The classical method for testing the equal extreme value indices hypothesis is
via Wald-type tests, by combining the estimates of the extreme value indices for all
dimensions. These tests enjoy favorable properties when the dimensionality of the
data is low, see, e.g., [7] and [8]. However, Wald-type tests exhibit unsatisfactory
performance in high dimensional scenarios.

Testing the equal extreme value indices hypothesis under a high dimensional
setting is therefore an important validation step before applying existing models
with this maintained assumption to high dimensional data. In the field of high
dimensional statistics, it is known that traditional statistical methods, originally
designed in a low dimensional context, often prove inadequate when applied to
high dimensional data. For instance, the existing literature on the multivariate
mean tests provide new testing methods in high dimensional settings; see, e.g., [10].
We refer interested readers to [11] for a recent review of the mean test problem in
high dimensional settings.

The “dimensionality curse” is more of a concern in extreme value statistics than
in classical statistical problems such as the mean test. Denote the dimensionality
of the data as p and the sample size of the data as n. High dimensional statistics
consider situations where p = p(n) → ∞ as n → ∞, sometimes allowing for
p = O(log n). In extreme value statistics, the effective sample size, i.e. the number
of observations used for estimation, is often much lower than n. For instance, in the
peak-over-threshold approach, often the top k observations are used. Theoretically,
it is often required that k := k(n) satisfies k → ∞ and k/n → 0 as n → ∞. When
considering the “dimensionality curse”, it is about comparing p with the effective
sample size k. In other words, even if p < n, which is not an ultra high dimension
problem in the classical sense, one may still have that k/p → 0 as n → ∞, making
it an ultra high dimension problem in extreme value statistics.

In this paper, we propose a novel testing procedure for comparing extreme
value indices in a high dimensional setting. Our testing problems are formulated
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as follows. Consider identically and independently distributed (i.i.d.) observations

X1 = (X
(1)
1 , . . . , X

(p)
1 ), . . . , Xn = (X

(1)
n , . . . , X

(p)
n ) drawn from a multivariate dis-

tribution function F with marginal distributions F1, . . . , Fp. For all j = 1, . . . , p,
assume that the distribution Fj is heavy-tailed, i.e., there exist extreme value
indices γj > 0 such that,

lim
t→∞

1− Fj(tx)

1− Fj(t)
= x−1/γj , j = 1, . . . , p.

The first goal of this paper is to test the null hypothesis

H0 : γj = γ0
j for all j = 1, . . . , p,

where γ0 =
(
γ0
1 , . . . , γ

0
p

)⊤
is a pre-specified positive vector. Additionally, we can

extend our test procedure to test whether the extreme value indices are identical
across p random variables, that is,

H∗0 : γ1 = · · · = γp.

Our novel testing procedure inspired by [10], with two major differences. Firstly,
our analysis addresses a characteristic of the tail of marginal distributions, which
differs largely from moderate level characteristics such as the mean. Secondly, our
test procedure is based on estimating all marginal extreme value indices using the
Hill estimator in [14]. Unlike the sample mean, this estimator involves averaging
the logarithms of order statistics, which are neither independent nor identically
distributed. This complexity calls for novel proofs in establishing the asymptotic
theory of the test statistic in a high dimensional setting. To the best of our
knowledge, there are no existing methods tailored to address the testing problem
associated with hypotheses H0 or H∗0 within a high dimensional setting, i.e., p →
∞ as n → ∞. The present paper reports on a first attempt with providing a few
technical tools that can be used in future research.

We focus on testing the null hypothesis H0. For γj > 0, an efficient estimator
for the extreme value index γj is the Hill estimator [14]. For each dimension
j ∈ {1, . . . , p}, let kj be an intermediate sequence kj = kj(n) such that kj → ∞
and kj/n → 0 as n → ∞. The Hill estimator is then defined as

(1) γ̂j(kj) :=
1

kj

kj∑

i=1

log
X

(j)
n−i+1,n

X
(j)
n−kj ,n

,

where X
(j)
1,n ≤ · · · ≤ X

(j)
n,n are the order statistics of

{
X

(j)
1 , . . . , X

(j)
n

}
. We intro-

duce the test statistic

T (k1, . . . , kp) = max
1≤j≤p

kj

(
γ̂j(kj)

γ0
j

− 1

)2

.

We establish the asymptotic theory of the test statistic T (k1, . . . , kp) under H0 in
the following theorem.
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Theorem 1. Assume suitable conditions regarding the marginal behavior and
(weak) cross-sectional dependence. Under the null hypothesis H0, as n → ∞,
for any x ∈ R,

Pr(T (k1, . . . , kp)− 2 log p+ log (log p) ≤ x) → exp

{
− 1√

π
exp(−x/2)

}
.

Theorem 1 demonstrates that the test statistic T (k1, . . . , kp), upon appropriate
normalization, converges to a Gumbel distribution, also recognized as the Type-I
extreme value distribution. The limiting distribution in our theory is the same as
that of the high dimensional mean test statistic in [10]. Intuitively, this follows
from the fact that the test statistic T (k1, . . . , kp) is a maximum of p estimation er-
rors which are asymptotically normally distributed. Hence, obtaining the Gumbel
distribution as a limit is in line with the classical extreme value theorem [15, 16],
despite that the p estimation errors are neither exactly normally distributed, nor
independent.
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Rainfall trends in the USA: data quality and prediction skill

Holger Rootzén

(joint work with Helga Olafsdottir, David Bolin, Richard Katz)

Is climate change making individual extreme rainfall events in northeastern United
States more frequent, more intense, or both? This paper discusses three aspects
of this question. In [2] we focused on data quality and developed a new method
which makes it possible to use high quality NOAA annual maxima series to answer
the question. Alternatively, the Peaks over Threshold method could be applied
directly to the daily GHCN data – but these are of lower quality, and then results
could also be of lower quality.

The second aspect is the choice of statistical model. The standard method is
to use goodness of fit tests, and we have done this in [2]. However an important
alternative which is broadly used in climate and weather science is to use scoring
rules. In [1] we constructed new scoring rules tailored to extremes and used these
and existing scoring rules to evaluate the model which we use to estimate trends
in extreme rainfalls in Norhteastern USA. Both our new scoring rules and existing
techniques ranked the method we used to analyze the rainfall data highest. But
for other problems different scoring rules may choose different models: this is e.g.
the case for a data set on air particle matter concentration in the Piedmont region
in Italy.

Even very good and relevant statistics is of little use if it is not communicated
to scientists and the public in an understandable and usable way. This is the third
– and important – topic of the talk: in the past the concepts of return levels and
return periods have been standard and important tools for engineering design. But
these concepts do not apply to a changing climate, whether local or global. And
further, nobody except hydrologists and statisticians can understand return levels
and return periods – and it is hard for them too. Hydrologists in the USA have
started to understand this. But, hydrologists in Europe and statisticians from all
around the world have not. In [3] we introduce the concept of Design Life Level is
defined as an upper quantile (e.g. 5%) of the distribution of the maximum value of
the hydrological variable (e.g. rainfall intensity) over the design life period. This
concept – or related ones – should be used in hydrology and climate science.

Our overall results are that extreme daily rainfall events in the USA are be-
coming more frequent but that there is little evidence of increasing trends in the
distribution of sizes of individual extreme daily rainfall events. The trends are
strongest in the northeastern United States where for many measuring stations
the frequency increase exceeds 150% for each 1°C of average temperature increase.
Our aim with this work is to inform infrastructure planning, both for protection
against high-impact catastrophes and for local planning of roads and sewers.
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