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applied perspective. From a mathematics perspective, challenging aspects
of the derivation, justification, and numerical integration of hierarchical re-
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ematical fluid dynamics on “rough path” stochastic modelling and “wild”
weak solutions of the Euler and Navier-Stokes equations.
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Introduction by the Organizers

The first section of Isaac Held’s seminal paper [1] on “The Gap between Simu-
lation and Understanding in Climate Modeling” is entitled “The need for model
hierarchies”. The author points out that, on the one hand, complex computer sim-
ulation models of the atmosphere-ocean system yield highly valuable information
in practice. On the other hand, owing to their ever increasing complexity, they
do not per se foster our understanding of the system’s important processes. In
contrast, Held states, understanding comes from breaking complexity down into
reduced or simplified descriptions of particular processes that involve a manage-
able number of fundamental concepts. This reduction in complexity allows us
to identify the principal causal interactions among them. Such reduced models
are traditionally formed in one of two ways: by reducing the complexity of the
equations being solved, for instance to isolate interactions operative on particular
time or space scales; or by reducing the complexity of the systems being solved,
e.g., by introducing symmetries not present in the real world. Such simplifications
give rise to model hierarchies on which, as Held concludes, we ought “to base our
understanding, describing how the dynamics change as key sources of complexity
are added or subtracted. Our understanding benefits from appreciation of the
interrelationships among all elements of the hierarchy”.

The development of model hierarchies, the study of their individual members,
and the synthesis of the insights gained in the process constitutes an ambitious and
inherently interdisciplinary research program: Clearly researchers in atmosphere-
ocean science know best what are the most important phenomena to be understood
next, the most pressing theoretical questions, or what are the most severe current
limitations of weather forecasting and climate simulation codes. The design of
reduced models, which would help capturing the essence of any of these open
questions and their expression in the context of simplified problems, benefits from
close cooperation of theorists from the applied side and applied mathematicians.
The latter, in particular, contribute their sophisticated model reduction toolkit.
Activities of this kind provide for a rich portfolio of serious mathematical questions
in PDEs, stochastics, numerical analysis, and scientific computing. The resolution
of these questions will primarily be in the hands of mathematicians but they also
contribute strongly to atmosphere-ocean science by rigorously consolidating the
basis on which its model hierarchy is built.

An interesting mathematical question in this context concerns, for instance, the
regime of validity of a given reduced dynamical model. Thus, once the convergence
of full-model solutions to those of a reduced model in the appropriate limit is
established, the practitioner will also ask how close to the limit we should be for
the reduced model to still provide relevant information. For example, Stommel’s
idealized model for multiple equilibria in ocean flows with heat and salinity [2], or
the anelastic [3] and pseudo-incompressible [4] models for atmospheric flows were
found to have a broader range of practical validity than that suggested by their
derivations, see [5, 6], respectively. In contrast, the classical quasi-geostrophic
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theory, see, e.g., [7] requires a non-trivial extension in order to capture some
practically important weather regimes [8].

The validity of any practically useful model of geophysical flows based on PDEs
is challenged by issues of under-resolution. Practical usefulness implies that pro-
cesses acting on scales smaller than a certain threshold are represented by some
effective parameterizations. Typical examples concern the net effects of turbulence
or those of cloud micro-physics on overall cloud dynamics. As a consequence, any
exact or numerical approximate solution of these models generally exhibits fluc-
tuations all the way down to the smallest scales, be they defined by the principal
design of the model or by the grid resolution in a numerical simulation. This again
raises an avalanche of serious mathematical questions: Do rigorous justifications
of reduced models allow for solutions spaces that include roughness near the lim-
iting small scales? Are numerical methods used in simulations sufficiently robust
under grid-scale perturbations? If one resorts to stochastic modelling to represent
the effects of unresolved scales, what are appropriate mathematical structures to
bring in the probabilistic effects? Should randomness be added through additional
source terms involving additive or multiplicative noise, or should one rather think
of stochastic components of flux fields as in fluctuating hydrodynamics [9] and in
recent suggestions by D. Holm and colleagues [10]? Is it sufficient to consider the
usual white noise–Brownian motion ansatz for stochastic effects in continuum me-
chanics, or do the nonlinearity and space-time extent of the underlying processes
call for advanced concepts such as rough paths, or regularity structures and para-
controlled distributions [11, 12, 13, 14]? And finally, are the recently discovered
“wild weak solutions” to the Euler and Navier-Stokes equations [15, 16] abstract
artefacts that allow mathematicians to better understand intricate properties of
the class of weak solutions to the fluid equations, or does the involved convex in-
tegration procedure open new avenues to the theoretical description of unresolved
scale processes?

This introduction has been adapted from the original Oberwolfach workshop
proposal. The organizers hope that the workshop has delivered on their promises,
and that the present workshop report will allow the interested reader to get a head-
start into the exciting scientific enterprise of “Model Hierarchies in Atmosphere,
Ocean, and Climate Sciences”.

Paola Cessi, Rupert Klein, Sam Stechmann, and Bjorn Stevens
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Abstracts

A simple model linking radiative-convective instability, convective
aggregation and large-scale dynamics

Peter Haynes

(joint work with Matthew Davison)

Coupling between dynamics and moisture (the dynamics affects the distribution
of moisture, the moisture affects latent and radiative heating that drives the dy-
namics) is a key aspect of the physics of the tropical atmosphere. Two topics that
continue to attract significant attention are convective aggregation [1], identified
as a behaviour in numerical simulations in convection-representing models , and
the Madden-Julian Oscillation (hereafter MJO) [2], identified in observations as a
dominant mode of intraseasonal (1-3 month) variability of the real tropical atmo-
sphere. Convective aggregation is a pattern of behaviour of a modelled tropical
atmosphere in which there is no imposed spatial inhomogeneity, but which exhibits
spontaneous organisation into regions of two types, one with active convection and
large-scale ascent, and the other with convection suppressed by large-scale subsi-
dence, with typical length scales of 100s km. The MJO is typified by growth of
a large-scale (several 1000 km) region of convection in the Indian Ocean, which
then propagates to the east, at a speed of about 5 ms−1, into the Western Pacific
and then decays.

My talk introduced a simple mathematical model to analyse the relation be-
tween the phenomenon of convective aggregation and larger scale variability, in-
cluding MJO-like behaviour, that results from coupling between dynamics and
moisture in the tropical atmosphere. The model is based on the single-layer dy-
namical equations coupled to a moisture field to represent the effects of latent
heating and radiative heating. The moisture variable evolves through the effect
of precipitation, horizontal convergence, nonlinear horizontal advection and diffu-
sion. Under the weak temperature gradient approximation (WTG) the equations
may be reduced to a reaction-diffusion equation for moisture, with the ‘reaction’
term determined by a combination of precipitation and heating. Under certain
conditions on the latter the system exhibits bistability, with a horizontally homo-
geneous state unstable to inhomogeneous disturbances and, as a result, localised
regions evolving towards either dry or moist states, with respectively divergence
or convergence in the horizontal flow. These regions undergo a coarsening process
in which length scales systematically increase. A similar reaction-diffusion equa-
tion for moisture has been derived under different physical assumptions [3, 4], and
coarsening interpreted in such a model as a representation of convective aggrega-
tion. In the simplest case coarsening proceeds to the domain scale. When thermal
and frictional damping and f -plane rotation are included in the single-layer dy-
namics, there is a length scale Ldyn that sets an upper limit for the applicability
of WTG and for the coarsening. The f -plane results provide a basis for inter-
preting the behaviour of the system on an equatorial β-plane, where the dynamics
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allows coherent equatorially confined zonally propagating disturbances, compris-
ing separate moist and dry regions. The key overall properties of the propagating
disturbances, the spatial scale and the phase speed, depend on nonlinearity in
the coupling between moisture and dynamics. The details of the model and the
resulting behaviour are described in [5].

With the model as described above the zonally propagating disturbances are
not ‘MJO-like’. However when the further ingredients, suggested in previous work
to be important aspects of the mechanism for the MJO, of moistening by boundary
layer convergence [6] and of the effects of latitudinal moisture gradients [7] , are
included in the model, the disturbances become more MJO-like in that phase
speeds characteristic of the MJO can be obtained and structures slope westward
as latitude increases in each hemisphere. (See Figure 1.)

Figure 1. Moisture distributions in propagating disturbances
when boundary-layer moistening (assuming boundary-layer mois-
ture Qbl) and latitudinal gradients of moisture (assuming second
latitudinal derivative Qyy) are included in the model. The left-
hand panels show steadily propagating finite-amplitude distur-
bances. The right-hand panels show the form of the most unstable
modes according to linear stability theory. Corresponding phase
speeds are given in the boxes.

The model described here, in which the moisture and dynamical fields vary
in two spatial dimensions and important aspects of nonlinearity are captured,
provides an intermediate model between theoretical models based on linearisation
and one spatial dimension and GCMs or convection-resolving models. Future
work will investigate the relevance of the model to the horizontal structures of
convective aggregation as domain size increases [8] and to the excitation of large-
scale convectively coupled waves [9].
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Mechanisms of Intertropical Convergence Zone (ITCZ) Edge
Intensification: Insight from Idealised Models

Martin S. Singh

(joint work with Julia M. Windmiller)

Recent observational campaigns have revealed that the Atlantic Intertropical Con-
vergence Zone (ITCZ) is often characterised by two separate convergence lines that
produce enhanced precipitation at its northern and southern edges [1]. The causes
of this “edge-intensification” remain relatively unexplored in the literature, but
a similar enhancement of precipitation is observed at the tropical “moist mar-
gin”, defined by a contour of vertically-integrated column moisture [2], raising the
possibility that edge-intensification is a general property of tropical precipitation
belts.

Here, we use convection permitting simulations of an idealised overturning cir-
culation to investigate the mechanisms producing edge-intensification in a mock-
Walker cell framework. The simulations are performed in a non-rotating channel
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domain of length 10 thousand kilometres with an imposed sinusoidal SST pattern
driving a large-scale overturning. Consistent with observational analyses, the ex-
tent of edge intensification is sensitive to the vertical profile of ascent, which is
varied here by controlling the imposed radiative cooling profile. We perform simu-
lations with radiative cooling that peaks either in the lower troposphere (“bottom-
heavy cooling”), which results in strong ascending motion in the lower troposphere,
or with radiative cooling that peaks in the upper troposphere (“top-heavy cool-
ing”), which results in weaker ascending motion in the lower troposphere. The
top-heavy cooling simulation produces a single peak in the mean precipitation
rate, while the bottom-heavy simulation produces two peaks (Fig. 1).

We investigate the causes of this “edge intensification” of the precipitation band
using mechanism denial experiments applied to the bottom-heavy case. Specifi-
cally, we turn off cold pools in the model by disallowing evaporation of rain in
the lowest 2 km of the model domain. This results in even stronger edge intensifi-
cation of precipitation, demonstrating that cold pools are not responsible for the
edge intensification. Secondly, we remove the effect of wind speed differences on
surface fluxes by homogenising the surface wind that is used to calculate surface
enthalpy fluxes. In this case, the precipitation peaks in the centre of the domain,
demonstrating that the coupling between surface winds and surface fluxes are key
to edge intensification.

The previous results suggest that the strong coupling between surface winds
and the large-scale circulation that is present when ascent is concentrated near
the surface is the reason that the bottom-heavy case results in edge intensification.
Observational studies have also found that the ITCZ itends to be edge intensified
when its associated ascent is bottom heavy [2]. Our results provide preliminary
evidence that a bottom-heavy ascent profile may cause edge intensification.

There are a number of open questions which we intend to pursue in future
research. These include:

(1) What sets the distance between convergence lines in the edge-intensified
case. Further simulations indicate that the separation distance and num-
ber of convergence lines is sensitive to the sea-surface temperature pro-
file imposed. Even with no sea-surface temperature gradient imposed,
convergence lines form (as in the well-known phemomenon of convective
aggregation), and we are working on a theory for their separation distance.

(2) What is the precise mechanism that results in convection not occurring
over the highest sea-surface temperature; can we develop a model that
predicts the occurrence of edge intensification?

(3) How are our results affected by rotation?

References
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Figure 1. Time- and zonal-mean precipitation rate for simula-
tions with (blue) bottom-heavy and (yellow) top-heavy imposed
radiative cooling profiles.

Fast jet stream winds get faster under climate change

Tiffany A. Shaw

(joint work with Osamu Miyawaki)

Earth’s upper-level jet streams influence the speed and direction of travel of
weather systems and commercial aircraft, and are linked to severe weather occur-
rence. Climate change is projected to accelerate the average upper-level jet stream
winds. However, little is known about how fast (> 99th percentile) upper-level jet
stream winds will change. Here we show that fast upper-level jet stream winds get
faster under climate change using daily data from climate model projections across
a hierarchy of physical complexity. Fast winds also increase ∼ 2.5 times more than
the average wind response. We show that the multiplicative increase underlying
the fast-get-faster response follows from the nonlinear Clausius–Clapeyron rela-
tion (moist-get-moister response). The signal is projected to emerge in both hemi-
spheres by 2050 when considering scenario uncertainty. The results can be used
to explain projected changes in commercial flight times, record-breaking winds,
clear-air turbulence and a potential increase in severe weather occurrence under
climate change.

Revitalizing climate science’s standard approach

Tiffany A. Shaw

(joint work with Bjorn Stevens)

The climate science consensus is the physical basis of signals we expect of a warm-
ing Earth. Many signals have been successfully predicted. As the Earth warms
more and more discrepancies between the real world and our expectations are ac-
cumulating. At the same time computational approaches are forgoing standard
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assumptions and hierarchical ideas. Taken together the weight of observation and
computation is disrupting the unity of ideas and assumptions that underlie the
consensus encompassed by theory and numerical climate prediction. Here we re-
view this unity of ideas and assumptions referred to as the standard approach of
climate science along with disruptions that have emerged in recent years. Op-
timally benefiting from the disruptions involves revitalizing elements that have
become disconnected as the approach has matured. This includes using signals to
our advantage, testing physical hypotheses, determining what we should be able
to explain and expect on what timescale and revitalizing the hierarchy.

Glacial Abrupt Climate Change as a Multiscale Phenomenon
Resulting from Monostable Excitable Dynamics

Georg Gottwald

Paleoclimate proxies reveal abrupt transitions of the North Atlantic climate dur-
ing past glacial intervals known as Dansgaard-Oeschger (DO) events. A central
feature of DO events is a sudden warming of about 10◦C in Greenland marking the
beginning relatively mild phases termed interstadials. These exhibit gradual cool-
ing over several hundred to a few thousand years until a final abrupt decline brings
the temperatures back to cold stadial levels. As of now, the exact mechanism be-
hind this millennial-scale variability remains inconclusive. We aim at providing a
dynamically consistent mechanism which gives rise to such abrupt climate changes
without invoking any external drivers such as freshwater hosing.

Using the framework of statistical limit laws of deterministic slow-fast chaotic
systems, we propose a multiscale setting which deterministically generates alpha-
stable noise. This is possible if either a fast process is intermittent with long
laminar durations or sporadically exhibits unconstrained large peaks. We illustrate
the rigorous theory behind these statistical limit laws in simple examples and then
use them to develop conceptual models for DO events.

In the first model abrupt climate changes emerge in a dynamic self-consistent
way through complex interactions of a slow ocean, a fast atmosphere and an inter-
mittent process sea-ice process on an intermediate timescale. The abrupt climate
changes are caused in our model by intermittencies in the sea-ice cover. The ocean
is represented by a Stommel two-box model, the atmosphere by a Lorenz-84 model
and the sea-ice cover by a deterministic approximation of correlated additive and
multiplicative noise (CAM) process. The key dynamical ingredients of the model
are given by stochastic limits of deterministic multi-scale systems and recent re-
sults in deterministic homogenisation theory. The deterministic model reproduces
statistical features of actual ice-core data such as non-Gaussian α-stable behaviour.
The proposed mechanism for abrupt millenial-scale climate change only relies on
the existence of a quantity, which exhibits intermittent dynamics on an intermedi-
ate time scale. We consider as a particular mechanism intermittent sea-ice cover
where the intermittency is generated by emergent atmospheric noise. However,
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other mechanisms such as freshwater influxes may also be formulated within the
proposed framework. This is work presented in [1].

Whereas this simple model reproduces many statistical features of DO events
it fails to reproduce the slow relaxation to the stadia state. We then set out to
describe a refined model which better models the heat exchange between the ocean
and the atmosphere which is impeded by the presence of an isolating seance cover.
In particular, we propose an excitable model to explain Dansgaard-Oeschger cy-
cles, where interstadials occur as noise-induced state space excursions. Our model
comprises the mutual multi-scale interactions between four dynamical variables
representing Arctic atmospheric temperatures, Nordic Seas’ temperatures and sea
ice cover, and the Atlantic Meridional Overturning Circulation. The model’s
atmosphere-ocean heat flux is moderated by the sea ice, which in turn is subject
to large perturbations dynamically generated by fast evolving intermittent noise.
If supercritical, perturbations trigger interstadial-like state space excursions dur-
ing which all four model variables undergo qualitative changes that consistently
resemble the signature of interstadials in corresponding proxy records. As a phys-
ical intermittent process generating the noise we propose convective events in the
ocean or atmospheric blocking events. Our model accurately reproduces the DO
cycle shape, return times and the dependence of the interstadial and stadial du-
rations on the background conditions. In contrast to the prevailing understanding
that DO variability is based on bistability in the underlying dynamics, we show
that multi-scale, monostable excitable dynamics provides a promising alternative
to explain millennial-scale climate variability associated with DO events. This
work appeared in [2].

We discuss how the occurrence of intermittency and/or sporadic large events
in a multi-scale setting can serve as a generic dynamical mechanism to generate
jump-like behaviour.
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Suppressing cold air events in warm climates: past and future

Eli Tziperman

Wintertime cold air outbreaks are periods of extreme cold, often persisting for
several days and spanning hundreds of kilometers or more. They are commonly
associated with intrusions of cold polar air into the midlatitudes, but it is unclear
whether the air mass’s initial temperature in the Arctic or its cooling as it travels
is the determining factor in producing a cold air outbreak.

By calculating air parcel trajectories for a pre-industrial climate model scenario,
we study the role of the origin and evolution of air masses traveling over sea ice and
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land and resulting in wintertime cold air outbreaks over central North America.
We find that not all Arctic air masses result in a cold air outbreak when advected
into the midlatitudes. We compare trajectories that originate in the Arctic and
result in cold air outbreaks to those that also originate in the Arctic but lead
to median temperatures when advected into the midlatitudes. While about one-
third of the midlatitude temperature difference can be accounted for by the initial
height and temperature in the Arctic, the other two-thirds is a result of differences
in diabatic heating and cooling as the air masses travel. Vertical mixing of cold
surface air into the air mass, while it travels, dominates the diabatic cooling and
contributes to the cold events. Air masses leading to cold air outbreaks experience
more negative sensible heat flux from the underlying surface, suggesting that pre-
conditioning to establish a cold surface is key to producing cold air outbreaks.

In spite of the mean warming trend over the last few decades and its amplifi-
cation in the Arctic, some studies have found no robust decline or even a slight
increase in wintertime cold air outbreaks over North America. But fossil evidence
from warmer paleoclimate periods indicates that the interior of North America
never dropped below freezing even in the depths of winter, which implies that the
maintenance of cold air outbreaks is unlikely to continue indefinitely with future
warming. To identify key mechanisms affecting cold air outbreaks and understand
how and why they will change in a warmer climate, we examine the development of
North American cold air outbreaks in both a pre-industrial and a roughly 8×CO2
scenario using the Community Earth System Model, CESM2. We observe a sharp
drop-off in the wintertime temperature distribution at the freezing temperature,
suppressing below-freezing conditions in the warmer climate and above-freezing
conditions in the pre-industrial case. The disappearance of Arctic sea ice and loss
of the near-surface temperature inversion dramatically decrease the availability of
below-freezing air in source regions. Using an air parcel trajectory analysis, we
demonstrate a remarkable similarity in both the dynamics and diabatic effects
acting on cold air masses in the two climate scenarios. Diabatic temperature evo-
lution along cold air outbreak trajectories is a competition between cooling from
longwave radiation and warming from boundary layer mixing. Surprisingly, while
both diabatic effects strengthen in the warmer climate, the balance remains the
same, with a net cooling of about −6 K over 10 days.
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Nonlinear Coupling Between Slow and Fast Components in Moist
Boussinesq Dynamics

Yeyu Zhang

(joint work with Yingshuo Peng, Leslie Smith, Sam Stechmann)

The coupled nonlinear evolution between slow and fast components in geophysical
fluid dynamics, including acoustic waves with a small Mach number or inertio-
gravity waves with small Froude and Rossby numbers, has been a significant topic
of interest for decades. In the moist Boussinesq system, for purely saturated flow
with rainfall but no phase changes, it can be shown that the slow modes evolve
independently as ǫ→ 0, similar to the dry dynamics [1]. However, phase changes
complicate the dynamics by altering buoyancy, which changes its functional form
across phase boundaries. Our study develops a fast-wave averaging framework
for the moist Boussinesq system [2], extending beyond dry dynamics to include
phase transitions between water vapor and liquid water. Analysis of the fast-wave
averaging framework [2], the simple ODE model [3], and numerical simulations [4]
shows that phase changes cause coupling between slow and fast waves.

The non-dimensional form of the moist Boussinesq model is given by the fol-
lowing equations:

(1)
Du

Dt
+ ǫ−1ẑ × u+ ǫ−1∇φ = ǫ−1(Hubu +Hsbs)ẑ, ∇ · u = 0,

where u is velocity, φ is effective pressure, and bu(bs) is buoyancy associated with
unsaturated (saturated) region.

(2)
Dθe
Dt

+ ǫ−1w = 0,
Dqt
Dt

− ǫ−1w −
∂qr
∂z

= 0,

where θe is equivalent potential temperature, qt is total water mixing ratio, and qr
is liquid water mixing ratio. The parameters ǫ represent rapid rotation and strong
stable stratification, typical of the mid-latitude atmosphere at synoptic scales.
bu = (θe + (ǫ − 1)qt), bs = (θe − ǫqt), and Hu and Hs are Heaviside operators
defined as Hu = 1 for qt < 0, Hu = 0 for qt ≥ 0, Hs = 1 − Hu. Phase changes
affect the system through piecewise linear buoyancy (b = Hubu + Hsbs), leading
to nonlinear waves near phase interfaces. A model of coupled ordinary differential
equations [3] illustrates the nonlinear waves (piecewise sinusoidal functions with
different wave frequencies π/Ns and π/Nu in the saturated and unsaturated re-
gions, respectively) that arise in the presence of a phase boundary, as shown in
the top panel of Figure 1. These waves have a non-zero time-averaged component,
unlike the linear waves in a dry system, which have a time average of zero. This
explains the non-zero time-averaged vertical velocity 〈w〉 and the coupling term
〈u(W ′) · ∇PVe〉 in the moist fast-wave averaging framework [2], where PVe is the
equivalent potential temperature (slowly varying component) and the subscript
(W ′) indicates the velocity field from wave components. A suite of numerical
simulations [3] is conducted to analyze the coupling term 〈u(W ′) · ∇PVe〉, using

small values ǫ = Fr = Ro = 1, 10−1, 10−2, 10−3. As shown in the bottom left
panel of Figure 1, for ǫ = 10−1 (blue curve), the influence of waves on the slow
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Figure 1.

component is relatively small, but does not decrease proportionally with ǫ as it
decreases to 10−2 and 10−3. This is evident when compared to the benchmark
red curve, representing the no phase change case. Additionally, we explore inverse
energy transfer to larger scales in strong rotating and stratified flows, considering
the effects of water and rapid cloud microphysics [4]. Our findings suggest that the
formation of large-scale coherent structures is influenced by nonlinear waves. As
shown in the bottom right panel of Figure 1, these nonlinear waves lead to coher-
ent updrafts and downdrafts (red and blue contours) roughly aligned with a slowly
varying component of phase boundaries 〈Hs〉 (yellow bands). This suggests that
the slow component is coupled to non-zero time averages of nonlinear waves (〈w〉),
indicating slow-fast coupling in moist Boussinesq dynamics with phase changes.
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Do atmospheric models need a partial differential equation for the
number of ice particles?

Axel Seifert

Ice clouds are crucial for the radiation budget and precipitation formation. Nev-
ertheless, many atmospheric models predict only the bulk ice water content but
not the number of ice particles. By doing so, they miss two important aspects
of clouds. Firstly, water vapor and ice are rarely in thermodynamic equilibrium
in the atmosphere. They form a metastable system that allows for high ice su-
persaturation and hysteresis. To describe this nonlinear system, ice water content
alone is not enough. The phase relaxation time depends primarily on particle size
and number, and therefore the number of ice particles is needed to describe non-
equilibrium behavior correctly [1]. Forecasting ice supersaturation, on the other
hand, is a prerequisite to predicting the formation of contrails. Long-lived contrails
form only in ice supersaturated regions and are important for the non-CO2 climate
effect of aviation. Secondly, ice clouds form mostly through heterogeneous ice nu-
cleation. Thus, the microphysical and radiative properties of ice clouds depend
on the number of available aerosol or ice nucleating particles. For example, Saha-
ran dust can affect the properties of cirrus clouds associated with synoptic-scale
storms and greatly modify radiative fluxes and surface temperature. Introduc-
ing only the additional equation for the number of ice particles the global ICON
model can describe most of this sensitivity due to Saharan dust. This improves
the forecasts of solar irradiance at the surface during Saharan dust events. A pre-
cise day-ahead estimate of solar irradiance and, thus, photovoltaic power is crucial
for the renewable energy market. Hence, introducing the number of ice particles
as an additional equation seems worthwhile. Interestingly, a sub-grid sensitivity
remains, which needs to be described by an additional parameterization of ’dust
cirrus’ [2] . To understand the time evolution of ice crystal number due to aggre-
gation and other sources and sinks, a hierarchy of microphysical models is applied.
The geometry of aggregate snowflakes can be studied using an aggregation model
that simulates the growth of individual snowflakes [3]. The growth of ice par-
ticles by depositional growth, aggregation, and riming can be investigated using
Monte-Carlo super-particle models [4, 5], which explicitly simulate the evolution of
the particle size distribution in a multi-dimensional phase space. Finally, machine
learning methods can be helpful to perform the coarse-graining to the desired ODE
system which can then be applied in weather and climate models [6, 7].

References
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A three-scale reduced effective framework for mesoscale cloud patterns

Franziska Glassmeier

(joint work with Benjamin Hernandez, Pouriya Alinaghi, Fredrik Jansson)

Due to their complex multiscale nature, clouds are a major source of uncertainty
in climate projections. Our models assume a scale gap between the scales of
cloud-formation and large-scale cloud-controlling factors. It is now clear that
this assumption does not hold, which explains why cloud-climate uncertainties,
especially rapid adjustments to cloud-mediated aerosol forcing and (sub)tropical
cloud feedbacks, emerge within the assumed gap. This mesoscale is where cloud
fields organize into striking patterns that cover hundreds of kilometers and evolve
over hours. We disentangle the mesoscale challenge by distinguishing three scales:
large-scale cloud-controlling factors such as sea-surface temperature, microscale
processes like rain formation, and the mesoscale self-organization of cloud pat-
terns.

A first promising example for capturing mesoscale self-organization as low-
dimensional, emergent behavior includes stratocumulus cloud decks over the sub-
tropical oceans. These cloud decks exhibit bi-stable behavior between a reflective,
high-cloud cover closed-cell state, and an inverse pattern of an open-cell state, char-
acterized by low cloud-cover and reflectivity. A Freidlin–Wentzell quasi-potential
suggests that pockets of open cells that can sometimes be observed embedded
within predominantly closed-cell decks can be understood as noise-induced tran-
sitions.

As second example, fields of shallow cumulus clouds in the trade-wind regions
are characterized by variability in their patterns of horizontal arrangement. We
explore the nature of such patterns by varying the initial spatial arrangement of
a cloud field in large-eddy simulations. Based on this data, we hypothesize that
mesoscale organization in these types of clouds may feature a Hopf bifurcation as
the cloud-droplet number parameter is varied.
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Lower bounds on irreducible imprecision in the climate system

Bjorn Stevens

It is well established that the equations governing the evolution of earth’s atmo-
sphere allow for deterministic predictability of about 2-3 weeks. After that even
infinitesimally small differences in initial conditions lead to large differences in
predictions - presumably as system trajectories diverge across the attractor. On
longer timescales predictability may be maintained for some aspects of the system,
but only in a probabilistic sense due to their conditioning by slowly evolving and
more inherently predictable components of the system - like the ocean or the soils.

On yet longer timescales the attractor (to the extent one exists) is thought to
be shaped by the boundary conditions - pros and cons of land use, greenhouse
gases etc., defining an invariant measure that governs the statistics of the sys-
tem. What is unknown is whether this attractor exists and how stable it is to
structural perturbations to the governing equations, for instance as arises from
the combination of their discretization and the parameterization of poorly under-
stood subsystems (ecology) or unresolved scales of motion. The extent to which
the invariant measure changes due to small changes in the structure of the system
limits the probabilistic predictability of the system and raises the question as to
whether “better” models make better predictions.

Emergent effective dynamics of warm cloud precipitation

Anna Frishman

(joint work with Shai Kapon and Nadir Jeevanjee)

Cloud observables such as precipitation efficiency and cloud lifetime are key quanti-
ties in weather and climate, but understanding their quantitative connection to ini-
tial conditions such as initial cloud water mass or droplet size remains challenging.
In the talk I presented a hierarchical approach to characterize such observables,
using an idealized bin microphysics scheme modeling gravitational coagulation and
fallout. In the spirit of previous works [1, 2, 3], we focus on the effective bulk dy-
namics describing the evolution of total cloud and rain water. In our treatment,
we separate the dynamics into a mass-conserving and fallout-dominated regime.
To model the accretion of cloud drops by rain drops we use a constant accretion
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rate, similarly to previous work [4]. We emphasize that this implies universal nor-
malized dynamics for the rain and cloud mass during the mass conserving stage,
and demonstrate this behavior in our cloud simulations. For the fallout-dominated
regime, we find that sedimentation can be modeled with a bulk fall speed which
is constant in time despite an evolving raindrop distribution. Combining the two
regimes reveals that the overall dynamics are governed by a single non-dimensional
emergent parameter µ , the ratio between effective accretion and sedimentation
time scales. The dependence on a clouds initial conditions, given by the initial drop
size distribution, is encoded in these two effective rates, which we infer for each
cloud in a vast range of cloud simulations. We find that cloud observables from the
simulations, such as cloud lifetimes and the accumulated rain mass, accordingly
collapse as a function of µ. We also find an unexpected relationship between cloud
water and accumulated rain, which comes out of our bulk modeling.

Beyond our idealized model, our findings could be relevant for part of a clouds
life cycle: after some rain drops have formed, in clouds where evaporation and con-
densation processes (which are not included in our modeling) are well separated
in time from accretion and rainfall, e.g. in mildly polluted clouds [5]. At earlier
times, during the autoconversion stage when the first few rain drops form, evapo-
ration and entrainment usually determine if the cloud would be able to develop a
rain population before dissipating away. Our model is therefore unrealistic in this
respect: the autoconversion stage does not play an important role in determining
the cloud observables, and we find that most of the clouds mass is converted to
rain for all our clouds. This highlights that our work is only the simplest first step,
and more realistic models are needed to test its direct applicability. In particu-
lar, it would be interesting to use a similar hierarchical approach in a model that
includes the clouds full life-cycle: one might then imagine a larger set of effective
rates, corresponding to a wider range of temporal regimes and processes. The
ratios between these rates would then give the relevant dimensionless parameters
determining the average cloud observables. Developing such a framework is an
exciting prospect for future work.
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Long-time behavior of the compressible
Navier-Stokes-(Fourier) system

Eduard Feireisl

(joint work with Agnieszka Świerczewska-Gwiazda)

We review some recent results concerning the long–time behaviour of solutions
to the Navier–Stokes–Fourier system describing the motion of a general viscous,
compressible and heat conducting fluid:

∂tρ+∇ · (ρ~u) = 0,

∂t(ρ~u) +∇ · (ρ~u⊗ ~u) +∇p(ρ, θ) = ∇ · S(∇~u) + ρ∇G,

∂t(ρe(ρ, θ)) +∇(ρe(ρ, θ)~u) +∇ · ~q(∇θ) = S(∇~u) : ∇~u− p(ρ, θ)∇ · ~u,

where

S(∇~u) = µ

(

∇~+∇t~u−
2

d
∇ · ~uI

)

+ η∇ · ~uI, µ > 0, η ≥ 0,

~q(∇θ) = −κ∇θ, κ > 0.

The problem is considered in a bounded spatial domain Ω ⊂ R3, and supplemented
with the non–conservative boundary conditions

~u|∂Ω = 0, θ|∂Ω = θB.

An iconic example is the celebrated Rayleigh–Bénard convection problem.

We report the following results concerning existence and long–time behaviour of
solutions.

(1) Under suitable constitutive restrictions, the problem admits global in time
weak solutions for any finite energy initial data. The class of weak solutions
complies with the weak–strong uniqueness principle, see [1], [2].

(2) The problem admits a bounded absorbing set in the trajectory space,
meaning the space of entire solutions defined for any time t ∈ (−∞,∞),
see [3, Theorem 3.1].

(3) The system admits a compact global attractor in the trajectory space, see
[3, Theorem 3.4].

As a direct consequence of the above mentioned results we can also show:

(1) Applying the abstract Krylov–Bogolyubov method, we deduce the exis-
tence of stationary statistical solutions, see [3, Theorem 3.4]. More pre-
cisely, any ω-limit set in the trajectory space supports a time shift invariant
measure.

(2) The time ergodic averages converge a.s. with respect to the invariant
measure. This can be seen as a special version of the ergodic theorem
valid for the Navier–Stokes–Fourier system.
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Generalised Lagrangian mean: theory and numerics

Jacques Vanneste

(joint work with Lois Baker, Andrew Gilbert, Hossein Kafiabad, Abhijeet Minz)

Because of their finite resolution, numerical models of the atmosphere and ocean
necessarily solve averaged equations, relying on parameterisations of unresolved
processes such as small-scale turbulence. Different averaging procedures lead to
different averaged models with different unresolved terms to parameterise. La-
grangian averaging, carried out at fixed particle label rather than the fixed posi-
tion of the traditional Eulerian averaging, is an advantageous procedure in that
it preserves the advective structure of the equations governing fluid motion. In
principle this simplifies the task of parameterisation.

The generalised Lagrangian mean (GLM) theory of Andrews & McIntyre pro-
vides a powerful formulation of Lagrangian averaging [1, 2]. In modern language
[3, 4], it can be described as follows. Denote by ϕ the flow map, such that
x = ϕ(a, t) is the position at time t of the fluid particle labelled by a, and by
¯̄ϕ the mean flow map (different definitions are possible for ¯̄ϕ). Writing the flow
map as the composition ϕ = Ξ ◦ ¯̄ϕ of the perturbation map Ξ and mean map, we
define the Lagrangian mean of any tensor τ as

(1) τL = Ξ∗τ ,

where the overbar denotes averaging and Ξ∗ is the pull-back by Ξ.
Lagrangian averaging applies straightforwardly to fluid equations when the ad-

vection terms are written in terms of the Lie derivative L. We take the Euler
equations for ideal incompressible fluids as a basic example. These equations read

(2) (∂t + Lu)ν = −dπ, div u = 0, ν = u♭.

Here u = ∂tϕ ◦ ϕ−1 is the velocity vector, ν its dual 1-form (the momentum,
with ν = udx + vdy + wdz in Euclidean space and Cartesian coordinates) and
π = p− 1

2 |u|
2. Applying the pull-back Ξ∗ to (2) and averaging leads to

(3) (∂t + L¯̄u)ν
L = −dπL,

where ¯̄u = ∂t ¯̄ϕ ◦ ¯̄ϕ−1 is the mean velocity and we assume that the average leaves
¯̄u unchanged. Eq. (3) is not closed since νL is not immediately related to ¯̄u.
The difference νL − ¯̄u♭ is (minus) the so-called pseudomomentum. It captures the
impact on the mean flow of the fluctuations eliminated by averaging and needs to
be parameterised.
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A practical form of averaging is time averaging, which filters out fast dynamics
such as high-frequency waves. Several specific time averages can be considered.
The simplest is the exponential mean which, for a function of time f(t) can be
equivalently defined as a convolution or as the solution of a differential equation:

(4) f̄(t) = α

∫ t

−∞

e−α(t−s)f(s) ds or ˙̄f = α(f − f̄),

where the parameter α > 0 is the inverse of the averaging time scale. In the GLM
context [5], we can choose the mean flow map as the component-wise exponential
average

(5) ¯̄ϕi(a) = α

∫ t

−∞

e−α(t−s)ϕi(a, s) ds.

The corresponding mean velocity can be shown to be given by

(6) ¯̄u(x, t) = α(Ξ(x, t) − x),

where the perturbation map Ξ satisfies

(7) ∂tΞ + Ξ∗ ¯̄u = u ◦ Ξ.

The Lagrangian mean of a tensor field τ is defined by

(8) ¯̄ϕ∗τL = α

∫ t

−∞

eα(t−s)ϕ∗τ(·, s) ds,

approximating (1). It satisfies

(9) (∂t + L¯̄u)τ
L = α(Ξ∗τ − τL).

We can solve (7)–(9) together with the partial differential equations governing
the dynamics of u and τ numerically to compute the Lagrangian mean τL on the
fly. We applied this approach to simulations of the rotating shallow-water system
in which a large-amplitude Poincaré wave is superimposed to a complex turbulent
flow. See Ref. [5] for details and Ref. [6] for the implementation of more advanced
temporal averages and their use for wave–mean-flow decomposition.
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Semiclassical near-inertial waves

Jörn Callies

(joint work with Scott Conn, Albion Lawrence)

Near-inertial waves often dominate velocities in the upper ocean after being reso-
nantly excited by a passing storm. It is important to understand the evolution of
these waves because they (1) can substantially deepen the mixed layer and thus
have a large impact on the thermal coupling with the atmosphere, (2) are a key
energy source for the internal-wave field in the interior ocean, (3) may extract
energy from the mesoscale eddy field, and (4) are important in search and rescue
operations.

In much of the world ocean, the evolution of near-inertial waves is strongly
modulated by the presence of mesoscale eddies. The wave evolution is typically
understood through either of two theories. Kunze [1] assumed a spatial-scale
separation between the waves and eddies to derive ray equations that describe
the wave propagation through an eddy field. Young and Ben Jelloul [2, YBJ]
criticized the spatial-scale separation assumption because the waves are forced by
storms that are larger than mesoscale eddies, not smaller. YBJ derived a field
equation for the evolution of the wave field, taking advantage of the separation of
time scales only.

This presentation has two parts. First, I will demonstrate that the YBJ model
can explain the observed evolution of near-inertial waves in the Northeast Atlantic
and that this match with observations can be achieved only if the interaction with
mesoscale eddies is taken into account. This provides an example of a compressed
model hierarchy, in which simple theory directly explains observations of the real
ocean. Second, I will clarify the relationship between YBJ’s theory and Kunze’s
ray equations. The YBJ equation describing the evolution of the near-inertial
wave field is a Schrödinger equation, and I will show that Kunze’s ray equations
correspond to the classical limit of weak wave dispersion. This classical limit can
be exploited independent of the scale of the atmospheric forcing and offers a post
hoc justification for Kunze’s scale-separation assumption. I will apply semiclassical
analysis to calculate eigenmodes for a set of increasingly complex examples.
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Modeling a hurricane boundary layer through matched asymptotics

Tom Dörffel

(joint work with Rupert Klein, Boualem Khouider)

Tropical cyclones (TCs) are a multiscale phenomenon that, for a comprehensive
understanding, require methods to resolve the processes on the individual scales.
Together with my coauthors, I am investigating the scale interaction that deter-
mines the dynamics of TCs, particularly the interaction of the bulk vortex with a
friction-dominated boundary layer closest to the ocean surface.

Flows in the atmosphere behave according to the dominant balances emerging
on different spatiotemporal scales [1]. This idea has been applied to investigate
the dynamics of TCs [2, 3]. The authors restricted their analysis to the bulk-
flow scaling regime above the boundary layer where the flow is frictionless and
balanced. An asymptotically consistent theory to incorporate the effects of a
frictional boundary layer is yet missing. Klein et al. [4] developed a theory on the
boundary layer beneath a balanced quasi-geostrophic (GQ) flow, which we take as
a blueprint to adapt to the case of a TC flow.

Similar to [4], three scaling regimes arise in the case of TCs, of which the friction
layer and the bulk flow are already established in the literature [2, 5, 6, 7, among
others]. The direct matching of the two regimes leads to inconsistencies, which
is why a third, intermediate layer is necessary. The convection-controlling layer
(CCL) turns out to play an important role that arises between the two regimes. It
acts as a transition regime between the friction layer and the bulk flow, cf. Fig. 1.

The friction layer, as the name suggests, is guided predominantly by friction-
ally driven convergent motions, where there is no significant contribution of moist
convection. In fact, the flow can be considered as dry adiabatic. The character-
istic flow pattern consists of an inward-directed flow right above the sea surface.
This flow turns over and is injected into the atmosphere above, cf. the lower part
of Fig. 1. Mathematically, the friction layer is necessary to meet the semi-slip
boundary conditions. Otherwise, these conditions could not be satisfied for the
frictionless regime of the bulk flow. The result is a balanced-vortex version of
the well-known Ekman pumping, which transports moist air into the atmosphere
above.

The bulk, in turn, is characterized by the overturning and outward-directed
secondary circulation (cf. the upper part of Fig. 1) that is due to moist convec-
tion. Air masses enter from below carrying moist entropy and angular momentum.
While the angular momentum is matched to the CCL, the moisture content (more
specifically, their convectively available potential energy) determines the trajec-
tory in the r-z plane. Vertical motions are guided by the moist diabatic heat
release obeying the weak-temperature gradient approximation. Radial motions
follow from mass continuity.

The CCL forms a layer between the friction layer and the bulk flow. From an
asymptotic point of view, it allows for potential temperature variations Θ(3) due
to diabatic heat release that are one order in ε1/2 larger than what is allowed in
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Figure 1. Structure of an axisymmetric tropical cyclone.
Shown is the overturning secondary circulation affected by the
physical properties manifesting in the three scaling regimes. On
the right, the interaction of the physical quantities within each
scaling regime is highlighted. Black arrows indicate the flow of
information subject to the matching conditions. Red arrows are
the input and output of the leading-order governing processes.

the bulk flow. By doing so, it is the CCL where the onsets of moist diabatic heat
release and free convection are located. The thermodynamic adjustments of the
CCL to the forcings of the bulk and friction layer regulate the release of diabatic
heat.

The CCL and the friction layer evolve asymptotically fast, i.e., they adapt im-
mediately to changes that the bulk flow prescribes. It is the angular momentum in
the z → 0 limit that drives the CCL and the friction layer. Angular momentum in
the bulk, however, is conserved and follows the streamlines of the secondary circu-
lation which start at the matching boundary between bulk and CCL. Considering
only that leading-order dynamics, there would be no pathway to intensification
since the controlling angular momentum at the bulk-CCL interface remains sta-
tionary.

The asymptotic analysis revealed that within the CCL there is a route to inten-
sification. At next-to-leading-order, the angular momentum balance is guided by
a second-order contribution to radially converging mass fluxes, depicted as dash-
dotted red arrows in Fig. 1. They allow transporting angular momentum from
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larger to smaller radii and with that intensifying the vortex. The systematic ap-
proach of asymptotic analysis shows how exactly this next-to-leading order CCL
flow enters the picture. It gives rise to the hypothesis that it is entrainment that
is responsible for these secondary effects. On the vortex core scale, entraining
air is dragged into individual cloud towers once air masses pass the level of free
convection. The accumulated effect of the individual cloud towers causes a radial
mean flow. This radial mean flow might be what causes the vortex to intensify in
the way described above.

The presented work shows the importance of representing entrainment in models
of numerical weather prediction in order to capture TC intensification. It remains
open, however, to verify the pathway as it was discovered by asymptotic analy-
sis. This will be accomplished by means of three-dimensional and high-resolution
simulation data and is subject to future work.
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Moisture and Math

Samuel Stechmann

(joint work with Leslie Smith, Parvathi Kooloth, David Marsico, Shukai Du)

Moisture and clouds are some of the most important quantities in weather and cli-
mate predictions. Nevertheless, our understanding of moist atmospheric dynamics
is much less advanced in comparison to dry atmospheric dynamics. In light of this,
I presented some results that aim to advance our theoretical understanding of fun-
damentals of geophysical fluid dynamics with moisture and clouds. In particular,
I presented results on energetics [6], conservation of potential vorticity [4, 5], and
the quasi-geostrophic approximation [8, 1]. Also, I briefly described preliminary
results (in joint work with David Marsico and Shukai Du) on numerical meth-
ods for the partial differential equations (PDEs) for atmospheric dynamics with
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moisture and clouds, and the quest to obtain second-order numerical accuracy.
The numerical accuracy with clouds is degraded in comparison to numerical accu-
racy without clouds, and the order of accuracy appears to be different in different
norms (e.g., L2 versus L∞ norms). Further understanding of regularity of solu-
tions, along the lines of recent PDE analysis results for other moist PDEs [2, 3, 7],
could be helpful for designing numerical methods and understanding order of ac-
curacy. Model hierarchies were involved in the presentation in the hierarchy of
complexity of moisture and cloud properties, and in the hierarchy of Boussinesq,
anelastic, and compressible fluid dynamics equations.
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Entropic optimal transport solutions of the semigeostrophic equations

Colin Cotter

(joint work with Jean-David Benamou, Hugo Malamut)

Numerical solution of the semigeostrophic equations is useful as a tool for verifying
and validating standard numerical approaches to equations with less approxima-
tions, in support of atmosphere model development, as well as in designing physics
parameterisations. In this work we revisit the “geometric algorithm” developed by
Mike Cullen and co-workers, described in [2]. This algorithm works in geostrophic
coordinates, obtaining the transformation back to physical coordinates at each step
by solving an optimal transport problem. The transport map then defines the vec-
tor field describing the instantaneous motion of the fluid particles in geostrophic
space. It also defines the reconstruction of the temperature and fluid velocity in
the physical domain.

In this work, we replace the solution strategy in the geometric algorithm by in-
troducing an entropic regularisation, making use of the multiscale acceleration to
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obtain a fast solver [3]. To provide a bit more detail, here we describe the formu-
lation for the semigeostrophic approximation of the vertical slice incompressible
Boussinesq equations with a out of plane constant linear temperature gradient s,
written in Lagrangian coordinates,

Ẋ(a, t)U := −f(Z(a, t)− z(X(a, t), Z(a, t)),

Ż(a, t)W := f(Z(a, t)− x(X(a, t), Z(a, t)),

where X is the horizontal coordinate, and Z is the vertical coordinate, f is the
(constant) Coriolis parameter, a is the Lagrangian coordinate, and the map from
geostrophic coordinates (X,Z) to physical coordinates (x, z) = T (X,Z) is defined
as the map T minimising

∫

G





1

2
(x−X)2 − Zz(X,Z)
︸ ︷︷ ︸

=c((x,z),(X,Z))




σ dX dZ,

where G is the domain of geostrophic coordinates. Here the minimisation is taken
over all maps that transform the density σ dX dZ to the Lesbesgue measure
dxd z. σ dX dZ is obtained as the determinant of the Jacobian of the transforma-
tion from physical to geostrophic coordinates, satisfying the continuity equation

σt + ∂X(Uσ) + ∂Z(Wσ) = 0.

To solve these equations, we have to find T , then use it to compute (U,W ), and
then use (U,W ) to transport σ, leading to a new optimal transport problem at
the next time instance.

In physical coordinates, the usual fluid dynamical variables can be diagnosed by
inverting the transformation since x−X(x, z) is proportional to the out of plane
velocity and Z(x, z) is proportional to the temperature.

To progress towards our solver, we first take the Kantorovich relaxation, seeking
a joint distribution Π on G×Ω (where Ω is the physical domain), that minimises

∫

G

∫

Ω

c((x, z), (X,Z)) dΠ((x, z), (X,Z)),

subject to the constraints that Π has nonnegative measure on any measurable
subset of G× Ω, and Π has marginals given by

∫

G

dΠ((x, z), (X,Z)) = dxd z,

∫

Ω

dΠ((x, z), (X,Z)) = σ dX dZ.

Then, we use the barycentric formula to obtain

T (X,Z) =

∫

Ω(x, z) dΠ((x, z), (X,Z))∫

Ω
dΠ((x, z), (X,Z))

.

The entropic regularisation of this problem seeks to minimise the functional,
∫

G

∫

Ω

c((x, z), (X,Z)) dΠ((x, z), (X,Z)) + ǫ

∫

G

∫

Ω

δΠ

δν
d ν,
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where ν = σ dX dZ × dxd z is the product measure between template and tar-
get. After passing to the Rockafellar dual formulation of this problem (exchanging
constraints and cost function), we obtain an optimisation problem for two poten-
tials, φ supported on G and ψ on Ω. Iterating the two corresponding optimality
conditions defines the Sinkhorn iteration. If we approximate both the template
and target measures by sums of Dirac measures, then this Sinkhorn iteration can
be easily implemented on a computer.

In my workshop talk I presented numerical results demonstrating the correctness
of the method. The method allows a large number of particles to be used (65536 in
our example) which goes well beyond previous versions of the geometric algorithm.
These numerical results can be found in [1].
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External forcings, self-organisation and limit cycles of shallow
cumulus convection

A. Pier Siebesma

(joint work with Pouriya Alinaghi)

The parameterised representation of shallow cumulus convection remains one of the
largest source of uncertainty for cloud representation and cloud feedback strength
in general circulation models. The traditional way of parameterising these subgrid
clouds is through finding semi-empirical relations between the relevant unresolved
cloud parameters such as cloud cover ac and liquid water path qc in terms of large
scale cloud controlling factors such as the horizontally averaged vertical profiles
of temperature, humidity and wind {φ1, φ2 . . . φn} and the large scale advective
tendencies {f1, f2, . . . fn} of these variables

(1) ac = F (φ1, φ2 . . . φn, f1, f2, . . . fn) qc = G (φ1, φ2 . . . φn, f1, f2, . . . fn)

Recent high resolution simulation studies and analyses suggest that shallow cumu-
lus convection is a fundamentally unstable process [1, 2]. Rather than converging
to a specific cloudy state (ac, qc) for a given mean state as suggested by (1),
shallow cumulus clouds tend to aggregate in moist patches that grow larger and
become wetter while other dry regions get dryer and also grow in size. During
this self-aggregation process also the macroscopic cloud parameters (ac, qc) keep
developing, in contrast with the traditional parameterization assumption (1).

In order to systematically explore the interplay between the large scale states and
the response of the shallow cumulus, roughly 100 Large Eddy Simulations on large
domains (150 × 150 km2) of each 60 hours simulation time have been executed
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Figure 1. Conceptualization of shallow cumulus convection evolution

(Botany dataset) [3]. This simulation ensemble has been carefully selected in
order to explore a representative range of all plausible mean states and forcings
{φ1 . . . φn, f1, . . . fn} that span up an hypercube as illustrated in Fig.1a.

While the simulations produce different cloud fractions and rain rates, most of
them develop qualitatively rather similar. Figure 1c shows snapshots of the top
view of the cloud albedo for different stages of a typical simulation. During the
non-precipitating phase (Figure 1bc, stage 1 and 2), the self-aggregation of the
clouds can be observed leading to a growth of the typical horizontal cloud length
scale Lc. This aggregation process continues until the cloud clusters have accumu-
lated enough condensed water to initiate precipitation. The resulting rain shafts
generate cold downdrafts that counteract the convective updrafts and create cloud
free regions (so called cold pools) that temporarily inhibit new cumulus convec-
tion. During this phase the cloud system enters into a limit cycle in which periods
with large cloud clusters (Lc )and small cloud free areas (Lo) alternate with pe-
riods with small cloud clusters and large cloud free areas. This limit cycle is also
visible in terms of the cloud macroscopic parameters (ac, qc) [4]. In the parlance
of mesoscale cloud patterns [5], these findings suggest: Sugar is a transient cloud
organization mode while Gravel and Flowers are alternating cloud organization
modes that together make up a limit cycle .

Obviously, these preliminary findings invoke many new questions such as

• What is the precise mechanism that cause these limit cycles?
• How do the different external forcings influence the limit cycles in size,
frequency and amplitude?

• How effective will the limit cycle behaviour respond to time-varying ex-
ternal forcings ( i.e. is the system in quasi-equilibium)?

• How will radiative effects from the diurnal cycle modify this limit cycle?
• How will the use of more realistic open boundary conditions influence the
occurrence of the cloud organisation modes?

• How relevant are these limit cycles for cloud feedback?
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On weak solutions for the inviscid primitive equations

Simon Markfelder

(joint work with Daniel W. Boutros, Edriss S. Titi)

The inviscid primitive equations of oceanic and atmospheric dynamics

∇h · u+ ∂zw = 0,(1)

∂tu+ u · ∇hu+ w∂zu+∇hp = 0,(2)

∂zp = 0(3)

are an important model in the field of geophysical fluid dynamics [8]. Here u and w
denote the two-dimensional horizontal and the scalar vertical velocity respectively,
while p is the pressure. All three unknowns u,w, p are functions of time t and the
three-dimensional spatial variable x = (x1, x2, z). Moreover ∇h denotes the hori-
zontal gradient, i.e. the gradient with respect to (x1, x2). The primitive equations
(1)-(3) can be derived as an asymptotic limit of the small aspect ratio (the ratio
between vertical and horizontal length scale) from the 3D Euler equations, see
e.g. [6].

Onsager conjectured in [7] that weak solutions of the Euler equations which
are Hölder continuous in space (uniformly in time) with Hölder exponent α > 1

3

conserve kinetic energy, while for any α < 1
3 there exists an α-Hölder continuous

weak solution which dissipates energy. Whereas the former was proven already
in the 1990’s (see [4]), it took until 2018 to prove the second part (see [5, 3]
and references therein). The technique which solved the latter is called convex
integration, which allowed to construct examples of weak solutions with the desired
properties.

Our goal is to formulate and prove an Onsager statement for the inviscid prim-
itive equations (1)-(3).
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In order to take their anisotropic structure into account, we introduce a new
notion of weak solutions for the inviscid primitive equations (1)-(3) in [1]. Roughly
speaking, the vertical velocity w of this new type of weak solutions is only required
to be a distribution. In [1] we state an analogue of Onsager’s conjecture in the
context of the inviscid primitive equations for both the classical (where all compo-
nents of the velocity are understood as functions) and the new notion (where the
vertical velocity w is treated as a distribution, see above) of weak solution. Also
in [1] we prove the conservation parts of the aforementioned conjectures, i.e. we
show that energy is conserved if the solution is sufficiently regular.

In [2] we develop a convex integration scheme to prove the existence and
nonuniqueness for the new type of weak solutions (more precisely, for a further
generalization of those), and also to exhibit examples of this kind of weak solutions
which do not conserve energy. This can be viewed as the first step towards proving
the dissipation parts of the Onsager-type conjectures from [1].

Surprisingly, our convex integration approach can be also applied to the two-
dimensional inviscid primitive equations, as well as the three-dimensional viscous
primitive equations, and the two-dimensional Prandtl equations.
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An introduction to rough paths

Martin Hairer

The theory of rough paths [1, 2] provides a deterministic theory of integration that
is flexible enough to cover the kind of stochastic integrals arising in the theory
of (smooth) stochastic differential equations, even with driving noises that are
rougher than Brownian motion. The main idea is to view the integrator W as a
rough path W which, in the case of regularity α ∈ (1/3, 1/2), consists of a pair
W = (W,W) where W ∈ Cα(R,Rn) is the “usual” integrator, while W : R2 →
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Rn⊗Rn is an “enhancement” satisfying the Hölder-type analytic bound ‖Ws,t‖ .

|t− s|2α, as well as the algebraic constraint

(1) Ws,t −Ws,u −Wu,t =Ws,u ⊗Wu,t ,

where Ws,t = Wt −Ws. The idea is that one should think of Ws,t as specifying

values for the integrals
∫ t

s
Ws,u ⊗ dWu, with the above constraint encoding the

facts that “constants can be pulled out of integrals” and “integrals are additive
under concatenation of integration domains”.

A natural class of integrands is then provided by functions that “locally look
likeW”, also called “controlled rough paths”. More precisely, a control rough path
consists of a pair (Y, Y ′) of α-Hölder continuous functions such that furthermore
the remainder Rs,t = Ys,t − Y ′

sWs,t satisfies the bound ‖Rs,t‖ . |t− s|2α.
One then defines the integral of Y against W by the limit of compensated

Riemann sums

(2)

∫ v

u

YrdWr = lim
|P|→0

∑

[s,t)∈P

(
YsWs,t + Y ′

sWs,t

)
,

where P denotes a partition of [u, v) into disjoint intervals. In this talk, we showed
how that notion of integral can be used to define solutions to “rough” differential
equations of the type

(3) dY = F (Y )dW ,

and how it can be used to analyse two-scale problems.
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Evaluating a multiscale asmptotic approximation for synoptic and
mesoscale motions in the midlatitude atmosphere

George Craig

(joint work with Tobias Selz, Mirjam Hirt)

Weather in the midlatitudes is dominated by phenomena on two scales. The first
is synoptic cyclones, on scales of order 1000 km, driven by the pole to equator tem-
perature gradient, and approximately following geostrophic balance. The second is
convective storms, on scales up to order 100 km, driven by conditional instability
in the vertical direction (where the stratification is rendered unstable by conden-
sation and release of latent heat in ascending air), and dominated by divergent
flows. In a comprehensive review of approximate equations for different atmo-
spheric regimes, [4] identified suitable single-scale asymptotic approximations for
advection-dominated motions on the midlatitude synoptic and meso-scales. These
are the quasi-geostrophic equations (QG) for nearly geostrophic motions on the



Model Hierarchies in Atmosphere, Ocean, and Climate Sciences 1767

synoptic scale, and the hydrostatic weak temperature gradient equations (WTG)
for motions with strong diabatic heating on the mesoscale.

In an earlier study, we used output of a high resolution weather prediction
model to compute a number of different dimensionless parameters as function of
length and time scale [2]. These included the Rossby number, which should be
small for quasi-geostrophic theory to apply, and a version of the Froude number,
which should be small for flows close to weak temperature gradient balance. These
parameters were indeed found to be relatively small on the respective scales identi-
fied by [4], confirming that the proposed leading order dynamics should be relevant
for motions on these scale. It should be noted however, that while the parameters
were small, they were not very small (Ro ∼ 0.2, Fr2 ∼ 0.5), indicating that while
the QG and especially the WTG approximations might be useful to gain insight,
they would not produce quantitatively accurate solutions.

Based on these early results, we then employed the method of multi-scale as-
ymptotic analysis to derive a two-scale asymptotic approximation to the equations
of motion, that would reproduce the leading order dynamics of the single-scale ap-
proximations and also introduce consistent scale interaction terms linking the two
regimes [3]. The motivation for this was threefold. First, we were interested in
large-scale control of thunderstorm movement, the basis of nowcasting. Second, we
hoped for insight into the upscale influence, or often lack of influence, of small-scale
perturbations introduced by stochastic parameterization schemes that model vari-
ability due to unresolved motions in weather prediction models. Finally we wished
to examine the processes of upscale error growth, causing the butterfly effect.

In Oberwolfach, some new results were presented, where we evaluated the ac-
curacy of the approximate mesoscale and synoptic equations using output of the
global ICON numerical weather prediction model, with a horizontal resolution of
about 10 km, 120 vertical levels, and an analysis region confined to a midlati-
tude band. The first task was to separate the atmospheric variables into different
space and time scale bands. Doing this, we immediately identified an incorrect
assumption in the formulation of [3], where it was assumed that the magnitudes
of the synoptic and mesoscale horizontal winds were comparable, when in fact
the mesoscale wind was at least an order of magnitude weaker. Fortunately, this
assumption is easy to change by setting the first term in the mesoscale horizontal
wind expansion to zero in the Appendix of [3] and following the subsequent steps
of the derivation. The resulting mesoscale equations are WTG balance for vertical
motion:

w2∂zθ = Qθ,3,

continuity:

∇m · ~v1,m +
1

p̄
∂z (p̄w2) = 0.

and the equation for the vertical component of mesoscale vorticity:

∂tmζm + ~v0,s · ∇mζm + f0∇m · ~v1,m + ~k · (∇mw2 × ∂z~v0,s) = ~k · ∇m ×Q~v,1.
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The synoptic equations express geostrophic and hydrostatic balance:

~k × ~v0,s = ∇sπ0, ∂zπ0 = θ0,

continuity of the ageostrophic wind:

∇s · ~v1,s +
1

p̄
∂z (p̄w3,s) = 0,

and the evolution of the QG potential vorticity

∂tsqs +∇s · (~v0,sqs) =
f0
p̄
∂z

(
p̄

∂zθ
Qθ4

)

.

As these equations show, the main downscale influence of the synoptic scale is an
advection that transports mesoscale vorticity features with the synoptic wind. Sur-
prisingly, there is no upscale influence of the mesoscale at leading order. The weak
temperature gradient approximation smooths the small scale thermal anomalies,
while the mesoscale wind is too weak to impact the stronger synoptic vorticity
field.

The quantitative evaluation of the terms in these equations confirmed that for
both scales of motion the equations were approximately satisfied, with one notable
exception. The magnitude of the residual in the mesoscale vorticity equation was
about 40% of the size of the retained terms, which is consistent with the expected
squared Froude number of about 0.5. On the other hand, the residual in the
synoptic QGPV equation was comparable in size to the other terms, and almost
exactly the negative of the diabatic heating term. This is not consistent with the
approximation and points to an incorrect assumption in the scaling. An interesting
possibility that emerged at the workshop is that rather than targeting QG dynam-
ics at leading order, it might be more appropriate to choose the semigeostrophic
approximation. This would introduce an adiabatic cooling term in the PV equa-
tion that would compensate the diabatic heating. However, the derivation of the
semigeostrophic approximation involves an unconventional scaling assumption [1],
and may be difficult to incorporate consistently in the multiscale analysis.

So what have we learned about the problems that motivated the study? First,
the synoptic advection of mesoscale features has been correctly identified as the
most important downscale influence. Second, the absence of upscale influences
due to the smoothing of mesoscale temperture perturbations by WTG dynamics
provides a theoretical explanation of why stochastic parameterizations in opera-
tional weather prediction systems must perturb the model on synoptic scales to
have an effect there, despite the strong impact of small-scale perturbations on the
mesoscale variability. The upscale growth of small initial errors has not yet been
addressed in this work.
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From Blocks to Nambu mechanics

Annette Rudolph

(joint work with Lisa Schielicke, Péter Nevir)

Atmospheric blocks are long-lasting weather patterns that block the westerly flow
for several days to months. These large-scale weather patterns can cause extreme
precipitation and draughts. The persistence of blocks can be explained by the
so-called point vortex theory. This discrete vortex theory for 2D adiabatic and
inviscid flows was introduced by [2] and [4]. [6] and [3] show that this concept
can be transferred to so-called omega blocks, where an anticyclone in the north is
accompanied by two cyclones southwest and southeast of the anticyclone. If they
lie on an equilateral triangle and if the sum of the circulations of the three vortices
is zero, the three vortices form a so-called relative equilibrium. The authors show
that the translational velocity of this vortex configuration is in the same order of
magnitude as the basic flow, which explains the stationarity of the omega block.
This concept, together with the kinematic vorticity number [11], leads to an algo-
rithm, that identifies an atmospheric block as well as each individual vortex of the
block. Based on this algorithm, [1] analyze the occurrence of the different blocks
(high-over-low and omega blocks) and show shifts in the seasons of the occurrence
of blocks, which can have huge impacts on e.g. vegetation.

Point vortex motion can also be viewed from the Nambu perspective. [8] in-
troduced a generalization of canonical Hamiltonian mechanics of discrete systems.
He generalized the bilinear, antisymmetric Poisson bracket to a trilinear, twice
antisymmetric bracket – now called the Nambu bracket. Regarding Nambu’s for-
mulation, the dynamics of a system withN degrees of freedom is described byN−1
conserved quantities. This is in contrast to Hamilton’s formulation, which only
considers the energy. Therefore, more physical information can be captured using
Nambu’s formalism. Regarding point vortex dynamics, two conserved quantities,
the energyH and the relative angular momentumM , can be used to formulate the
equation of motion in the three-dimensional phase space of the relative distances
ri, i = 1, 2, 3, r = (r1, r2, r3) between three point vortices:

ρ
dr

dt′
= ∇M ×∇H

where the time t is scaled by a constant factor α ∈ R, t′ = α, α = σ/2Γ1,Γ2,Γ3,
where Γi denotes the circulation of the i-th vortex, σ ∈ R. In this way, the
trajectory of three point vortices is given by the intersection line(s) of the two
surfaces that are given by the two conserved quantities [5].
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Figure 1. Nambu mechanics allows for a derivation of a Lie al-
gebra and Lie group based on multiple conserved quantities.

[9] transferred Nambu’s idea to continuous vortex flows in two and three spatial
dimensions. According to their representation of vortex flows, the kinetic energy
and a vortex-related quantity play an equal role in the representation of the vortex
motion. The choice of the vortex-related quantity depends on the spatial dimension
(2D: enstrophy, 3D: helicity). Let ξ be the 3D vorticity vector, h the helicity and
H the energy. For an arbitrary functional F that depends on the vorticity vector,
the time evolution under adiabatic, invsicid conditions is given by:

(1) {F , h,H} = −

∫

V

dτ

((

∇×
δF

δξ

)

·

(

∇×
δh

δξ

)

×

(

∇×
δH

δξ

))

.

The time evolution of the vorticity results from F = ξ. Moreover, the Nambu
bracket of the components of the momentum, the total flux of vorticity w.r.t the
helicity generate a Lie algebra [10] from which a Lie group for vortex flows can be
derived [7]. First applications of this group theoretical approach to splitting storms
suggest that this Lie group may be of interest for further research in the field of
turbulence. One example is that the 3D Nambu bracket that generate the Lie
algebra/Lie group is determined in terms of helicity (not in terms of the energy,
which can be added by another bracket). Therefore helicity can be considered
separately from the energy. Furthermore, the Nambu brackets are derived under
the assumption of conservative systems. Therefore, one hypothesis, which may be
a topic for further research, is that friction is only related to the direction of the
cascade and not to the mechanism of vortex splits. Fig. 1 provides an overview of
the topics and interrelationships addressed in the presentation.
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Rigorous analysis and numerical implementation of nudging data
assimilation algorithms

Edriss Titi

We introduce downscaling data assimilation algorithms for weather and climate
prediction on discrete coarse spatial scale measurements of the state variables (or
only part of them, depending on the underlying model). The algorithms are based
on linear nudging of the algorithms’ solution towards the coarse spatial scales
corresponding to the observed measurements of the unknown reference solution.
The algorithms are initialized arbitrarily and are known to converge at exponen-
tial rate toward the exact unknown reference solution. This indicates that the
dynamics of the algorithms are globally stable (not chaotic), unlike the dynamics
of the model that governs the unknown reference solution. Capitalizing on this
fact, we also show uniform in time error estimates of numerical discretizations of
these algorithms, which makes them reliable upon implementation computation-
ally. Furthermore, we present recent improvement of those algorithms by employ-
ing nonlinear nudging, which yields super-exponential convergence rate toward the
unknown reference solution.
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Atmospheric flow regimes: stochastic modelling and data clustering
for sensitivity studies and reduced stochastic models

Nikki Vercauteren

(joint work with Vyacheslav Boyko, Amandine Kaiser, Sebastian Krumscheid)

Multistability is a frequent feature in the climate system and leads to key challenges
for our ability to predict how the system will respond to transient perturbations of
the dynamics. As a particular example, the stably stratified atmospheric boundary
layer is known to exhibit distinct flow regimes that are believed to be metastable.
Numerical weather prediction and climate models encounter challenges in accu-
rately representing these flow regimes and the transitions between them, leading
to an inadequate depiction of regime occupation statistics. We use a hierarchy of
models to improve theoretical understanding of the system, specifically focusing on
the mechanisms that could lead to metastability and on the sensitivity of the sys-
tem to transient perturbations in the dynamics. The simplest models presented
were stochastic conceptual models, used as a tool to systematically investigate
what types of unsteady flow features may trigger abrupt transitions in the mean
boundary layer state. The numerical findings show that simulating intermittent
turbulent mixing may be key in some cases, where transitions in the mean state
follow from initial transient bursts of mixing.

Turbulent mixing is a parameterized process in atmospheric models, and the
theory underpinning the parameterization schemes was developed for homogeneous
and flat terrain, with stationary conditions. The parameterized turbulent mixing
lacks key spatio-temporal variability that induces transient perturbations of the
mean dynamics. This variability could be effectively included via stochastic pa-
rameterisation schemes, provided one knows how to define the strength or memory
characteristics of random perturbations. Towards that goal, we use a systematic
data-driven approach to quantify the uncertainty of parameterisations and inform
us on how and when to incorporate uncertainty using stochastic models. To en-
able such a systematic data-driven approach, methods from entropy-based learning
and uncertainty quantification were combined in a model-based clustering frame-
work, where the model is a stochastic differential equation with piecewise constant
parameters [1]. As a result, stochastic parameterisation can be learned from obser-
vations. The method is able to retrieve a hidden functional relationship between
the parameters of a stochastic model and the resolved variables. A reduced model
is obtained, where the unresolved scales are expressed as stochastic differential
equations whose parameters are continuous functions of the resolved variables.
Using field measurements of turbulence, the stochastic modelling framework is
able to uncover a stochastic parameterisation that represent unsteady mixing in
difficult conditions [2]. Such methodology will be explored for further derivation of
stochastic parameterisations, and should help to quantify uncertainties in climate
projections related to uncertainties of the unresolved scales dynamics.
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Identification of Atmospheric Blocking patterns: High-over-Low and
Omega Blocks

Lisa Schielicke

Blocking is a synoptic-scale, quasi-stationary atmospheric phenomenon in the mid-
latitudes, significantly influencing regional weather for days to weeks. Typically,
a blocking pattern consists of a high-pressure system poleward of one or two low-
pressure systems, obstructing the typical westerly flow. A two-vortex configuration
is known as a high-over-low or Rex block, while a three-vortex configuration is
called an Omega block, resembling the Greek letter Omega. Blocks are associated
with high-impact weather such as heatwaves and extreme precipitation events due
to their quasi-stationary nature.

Although many methods exist to identify blocked periods, a reliable method to
differentiate between high-over-low and Omega blocks has not been made publicly
available so far. In this work, I present a method that is able to differentiate
between these blocking patterns, assuming the associated vortices are synoptic in
scale (horizontal length scale of 1000 km) and behave like a point vortex ensemble.
The method provides information on block properties such as time, location, vortex
circulation, size, and blocking type. Additionally, it can pinpoint regions of high-
impact weather associated with blocks.

The process to identify the type of blocking has two steps. The first step is
based on a kinematic vortex identification technique (kinematic vorticity number
Wk method) that reliably extracts vortex properties from the three-dimensional
flow field, as demonstrated in previous studies [1, 4, e.g.]. The kinematic vorticity
number Wk is defined as the ratio of the local rotation rate ‖Ω‖ and strain rate
‖S‖ as

Wk =
‖Ω‖

‖S‖
with Ω =

1

2

(
∇v − (∇v)T

)
.S =

1

2

(
∇v + (∇v)T

)
(1)

Here, Ω and S are the antisymmetric and symmetric parts of the velocity gra-
dient tensor, respectively. A vortex is defined as a simply-connected region where
Wk > 1, indicating that rotation prevails over strain rate within the vortex. To
identify atmospheric vortices, the Wk number is calculated at each grid point of
the flow field. Subsequently, a vortex field is generated by setting each grid point
below a threshold (generally Wk ≤ 1) to zero and all other points to one. When
applied to two-dimensional data, the sense of rotation (cyclonic or anticyclonic)
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is used to distinguish between lows and highs. Additionally, the method allows
to determine vortex sizes, intensities (circulations) and their locations (circulation
centers).

Furthermore, to identify the blocking pattern, the method utilizes concepts
from point vortex theory. A point vortex is a vortex of zero size, located at a
specific point in the two-dimensional flow field. While its vorticity is infinitely high,
the vortex’s circulation remains constant. Each point vortex induces a circular
velocity field proportional to the vortex’s circulation and decreases inversely with
the distance from the vortex. The motion of a point vortex is determined by the
velocities induced by all other point vortices in the field. Additionally, a point
vortex ensemble moves around its center of circulation. Under certain conditions
– such as zero total circulation and specific configurations (a high on the poleward
side of the low in a high-over-low block or an equilateral triangle with two lows
in an Omega block) – a point vortex ensemble of two or three vortices will move
westward, countering the typical westerly flow of the midlatitudes.

In the second step of the identification method for high-over-low or Omega
blocking, we search for the blocking pattern that minimizes total circulation and
satisfies the vortex configuration according to point vortex theory. Starting with
a box that surrounds the high, we extend the box southward and search for the
minimum total circulation within this expanded box. Simultaneously, we search
for the minimum total circulation in a trapezoidal shape whose lower border is
also extended southward, while the sides are allowed to grow east- and westward.
Finally, we inspect the circulation directly south of the high and east- and westward
south of the high to determine if the block is a high-over-low or an Omega block.

In previous work, we have observed that the method provides reasonable values
for vortex properties and blocking motion speeds [3, 2]. Additionally, we have
investigated the transition probabilities between blocking and non-blocking states
in the Euro-Atlantic sector, along with their seasonal behavior and changes over
the 30-year period from 1990 to 2019 [5].

Currently, the identification method is tested on daily reanalysis (ERA5) and
seasonal forecast data, focusing on high-precipitation events in Europe. This work
is in collaboration with Annette Rudolph (TU Berlin, Germany) and Gregor Lecke-
busch (University of Birmingham, UK) and his team. The Python code for the
method will soon be made available.
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[1] L. Schielicke, P. Névir, U. Ulbrich Kinematic vorticity number–a tool for estimating vortex
sizes and circulations, Tellus A: Dynamic Meteorology and Oceanography 68,1 (2016),
29464.
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Statistical and dynamical models for Indian summer monsoon

Amit Apte

The Indian summer monsoon is a multiscale, multiphysics phenomena that ex-
hibits significant variability both in short (seasonal) and long (year-to-year) time
scales, as well as over multiple spatial scales [5, 1]. An understanding of the basic
dynamical system of the monsoon, including the role of the seasonal migration of
the inter-tropical convergence zone and the land-ocean temperature contrast, is an
important open problem in climate sciences [4]. We study two different types of
models that capture different aspects of this complex phenomena, though admit-
tedly do not directly address the issues mentioned above. The long-term goal is to
formulate methodologies for relating and drawing inferences from such disparate
models in order to better understand and predict tropical processes in general and
the monsoon in particular, at multiple scales from seasonal to decadal variability.

We propose [2, 3] a representation of the Indian summer monsoon rainfall in
terms of a probabilistic model based on a Markov random field consisting of dis-
crete state variables representing low and high rainfall at grid-scale and daily
rainfall patterns across space and in time. These discrete states are conditioned
on observed daily gridded rainfall data from the period 2000 to 2007.

Using Gibbs sampling of the posterior distribution for the discrete random
variables conditioned on the observed rainfall, we identify clusters (of the days and
locations) and then obtain the prominent rainfall patterns (spatial and temporal,
respectively). The spatial patterns are shown in figure 1.

Figure 1. Prominent canonical discrete patterns (CDP), and the
corresponding canonical rainfall patterns (CRP) identified by the
MRF model.

We also study a Markov chain model based on the transition between these pat-
terns and find relations to the active-break phases of the monsoon as well as
regional wet and dry spells during the monsoon season. The application of this
general methodology to other spatio-temporally varying processes is a problem of
general interest for future investigations.
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Atmospheric dynamics of giant planets

Yohai Kaspi

The giant planets of the Solar System, Jupiter, Saturn, Uranus and Neptune ex-
hibit some of the most striking dynamical phenomena in the Solar System, such
as multiple jet-streams, long-lived cyclones and turbulent convection. In this talk,
we will review the physical mechanisms governing the dynamics on these planets.
Particular focus will be given to recent new measurements from NASA’s Juno and
Cassini spacecraft, which have been orbiting Jupiter and Saturn, respectively, in
recent years.

On Jupiter the jet streams dominate the midlatitudes between 15° and 65°
latitude in both hemispheres. Poleward of these latitudes, the atmosphere is more
turbulent containing mainly floating cyclones and anticyclones, while equatorward
a broad eastward flow dominates the equatorial region. Over the past 8 years, with
now over 60 polar orbits of Jupiter, the Juno mission has revolutionized the way we
understand the Jovian atmosphere. It revealed details about these three distinct
regions, revealing very different dynamics in each of them. Here we will review
the dynamics of each of them.

The polar region: Juno’s IR mapper (JIRAM) revealed that the poles are dom-
inated by a system of cyclones surrounding a central polar cyclone with five cir-
cumpolar cyclones around the south pole and eight such cyclones around the north
pole. The cyclones are held together by vorticity dynamics balancing the overall
tendency of cyclones to drift poleward (beta-drift). In addition, the cyclones have
been observed to drift westward and oscillate over the duration of the mission,
which can be also explained by these dynamical considerations. We will review
the mechanisms driving the dynamics of these cyclones and discuss their stability
and long-term temporal behavior.

The midlatitudes: Juno’s gravity measurements, which remarkably have been
able to provide gravity harmonics up to J40, have revealed the overall depth of
the midlatitude jet-streams being 3000 km, and have confirmed previous theories
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Figure 1.

showing that the flows penetrate inward in a direction parallel to the spin axis.
This depth, deduced by the gravity measurements is consistent with the depth
where electrical conductivity rises due to the gas becoming denser with depth, and
thus hints to the role of the magnetic field in halting the flows at depth. We will also
show Cassini gravity measurements for Saturn revealing the Saturnian jets streams
are three times deeper, consistent with the mass of Saturn being only a third of
that of Jupiter and thus becomes of comparable density deeper. Juno’s microwave
measurements revealed that the midlatitude jets are accompanied by a series of
meridional circulation cells (similar to Earth’s Ferrel cells), which accompany each
one of the midlatitude jet-streams. The jets are held together by upgradient
Reynold stresses which drive these east and west flows and the same fluxes also
drive the meridional circulation. We will show the governing equations and the
consistency with the observations.

The equatorial region: Both Jupiter and Saturn have very strong zonal pro-
grade flows near the equator. The equatorial region on Jupiter reaches latitude
17° while on Saturn it reaches about 32° in both hemispheres. These values are
also consistent with the depth of the flows on both planets taking into account
the cylindrical projection of the 3000 and 9000 km depth of the flows on both
planets. The equatorial flows are also super-rotating, meaning that there must be
an angular momentum source in this region. We show how such flows can develop
and how the Reynolds stresses perpendicular to the rotation axis and converging
towards the equator can drive these flows as well. Thus, the gravity measurements
also provided an explanation to the nature of the superrotating equatorial flow and
how it compares to that of Saturn. Microwave and gravity measurements also al-
lowed putting constraints on Jupiter’s Great Red Spot, showing that it penetrates
between 300 and 500 km deep. In this talk, we will give an overview of these
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discoveries by Juno and provide an overview of the governing dynamics in each of
these regimes.

A hierarchy of models to understand the deep ocean structure
and circulation

Raffaele Ferrari

(joint work with Mason Rogers, Louis-Philippe Nadeau)

Recent theoretical work suggests that abyssal waters rise toward the surface pri-
marily along the sloping boundaries of ocean ridges and seamounts. These topo-
graphic features are characterized by vigorous turbulent mixing along the seafloor
generated by tidal flows sloshing waters over the corrugated topography [1, 2].
The goal of this presentation is to investigate the physics of the upslope flows and
discuss their relevance for the global ocean circulation.

We started by presenting new results from a recent observational campaign
conducted along the corrugated topography of the Rockall Trough, a 2000-deep
trough west of Ireland. The observational team injected a fluorescent dye at the
bottom of a canyon cutting through the eastern boundary of the trough. The
dye was then sampled over the next two days with fluorometers providing uncon-
trovertible evidence of a strong flow up the canyon slope at a rate of 100 m per
day, the largest upslope flow ever recorded in the abyssal ocean [3]. Concurrent
measurements from turbulent probes mounted along bottom-anchored moorings
showed that every tidal period a 200 m tall patch of turbulence developed along
the seafloor [4].

We proceeded to describe the physics that generates the observed turbulent
events. The turbulence appears to be triggered by an instability of the tidal flow
sloshing back and forth along the sloping canyon. The reversing tidal flow is gener-
ated by the semidiurnal tidal potential and varies linearly in the vertical between
0 and 20 cm/s over the 300 m depth of the canyon. The canyon water is stably
stratified, meaning that the water density decreases away from the seafloor. It is
well known that a steady horizontal sheared flow in a stratified fluid is unstable
to the Kelvin-Helmholtz instability [5, 6] if the shear is sufficiently strong. The
observed tidal shear is too weak to undergo the classical Kelvin-Helmholtz insta-
bility. We therefore explored the impact of a sloping boundary and a time-varying
sheared flow. The slope has a minor effect on the instability while the time depen-
dence does. Using Floquest theory we demonstrated that the sheared tidal flow is
unstable and that this instability triggers the turbulence events.

Next, we discussed how the turbulence drives an upslope flow. The turbulent
events mix the stratified water on a vertical scale of about 200 m. The turbulence
therefore mixes overlying lighter water with denser one along the seafloor. As the
bottom water gets lighter through mixing, it starts rising along the sloping seafloor
resulting in a net upslope flow. Scaling arguments and numerical simulations
confirmed that the mixing generated by the turbulence is sufficient to explain the
strength of the upslope flow.
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Last, we showed how the mixing along sloping topography and the resulting
upslope flows connect to the ocean abyssal circulation and density distribution.
Ocean waters sink into the abyss at high latitudes in response to strong air-sea
cooling and brine rejection, when waters freeze [7]. Modern estimates suggest that
about 30×106 m3 of water sinks into the abyss every second or about the equivalent
of the transport by 15 Amazon Rivers. The upslope flow along seamounts and
ridges represents the return branch of the abyssal sinking at high latitudes in what
is called the ocean overturning circulation. We derived the ocean area-averaged to
illustrate how this circulation sets the vertical distribution of density of the global
ocean. This step concluded a tour de force of ocean physics from centimeter scales
to thousands of kilometers.
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Understanding polar stratification in radiative-advective equilibrium

Rodrigo Caballero

(joint work with Timothy Merlis)

The concept of radiative-convective equilibrium (RCE) and its embodiment in
a single-column model [2, 3] is a cornerstone of climate science. RCE prevails
when the atmosphere is heated from below and atmospheric radiative cooling to
space is balanced by upward turbulent fluxes at the surface. In RCE, vigorous
convection constrains the atmospheric temperature profile to to roughly follow a
moist adiabat. As a result, the atmosphere becomes more strongly stratified in
response to positive radiative forcing, yielding a negative lapse-rate feedback.

The opposite limit to RCE is radiative-advective equilibrium (RAE), where
diabatic cooling is primarily balanced by lateral energy flux convergence [6, 1].
RAE prevails in the polar regions, especially in winter [4, 5]. Convection is absent
in RAE, and the controls on atmospheric temperature structure are less clear. Full
climate model simulations show strong destratification and a positive lapse-rate
feedback in response to warming, but we lack a robust conceptual picture of how
this response arises and how it relates to changes at lower latitudes [7, 8].
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Here, we develop a single-column model of RAE and use it to build such a
picture. The main novelty in the model is in the way lateral advective heating
Qadv is parameterized. We show that a simple relaxation formulation,

Qadv =
1

τ
(T in

e − Te),

where Te = T + LvC
−1
p q is the equivalent temperature in the polar column and

T in
e is a prescribed midlatitude profile, accurately captures advective heating in

observations. Because humidity q is strongly concentrated near the surface, the
perturbation T in

e profile is inherently bottom-heavy, and relaxation toward this
perturbation yields an overall destratification of the polar atmosphere. In addition,
increased upper-tropospheric humidity yields stronger cooling to space at upper
levels, further contributing to the overall destratification.

Furthermore, we introduce the concept of a “surface radiator fin”, whereby the
lower troposphere cools to the surface while the surface cools directly to space via
the water vapor window. The functioning of this radiator fin necessitates thermo-
dynamic disequilibrium between the surface and lower atmosphere, manifest as a
surface-based inversion of the temperature profile. We show that the expression

D = 〈T in
e 〉 −

(
Fs

σ w

)1/4

,

where 〈·〉 is a lower-tropospheric mean, Fs is surface forcing and w is a non-
dimensional measure of the spectral width of the water vapor window, qualitatively
predicts the change in disequilibrium D and in the intensity of the temperature
inversion. In response to global warming, a strong increase in surface forcing and
narrowing of the water vapor window overwhelms the increase in inflow tempera-
ture, yielding a strong decrease in D and weakening of the inversion. This explains
the strong near-surface destratification seen in climate models and in observations.

In summary, we identify three main mechanisms controlling the polar lapse-
rate response to warming: relaxation to a bottom-amplified inflow profile; upper-
level cooling by water vapor; and weakening of the surface radiator fin leading to
reduced surface inversion strength. As it happens, all three mechanisms imply a
destratification of the polar atmosphere in response to global warming.
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