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Abstract. The Calculus of Variations is at the same time a classical subject,
with long-standing open questions which have generated exciting discoveries
in recent decades, and a modern subject in which new types of questions
arise, driven by mathematical developments and emergent applications. It
is also a subject with a very wide scope, touching on interrelated areas that
include geometric variational problems, optimal transportation, geometric
inequalities and domain optimization problems, elliptic regularity, geometric
measure theory, harmonic analysis, physics, free boundary problems, etc. The
workshop will balance the traditional interests of past conferences with new
emerging perspectives. The topics described in this proposal are linked to
each other via the methods of Calculus of Variations that are employed, and
it is our belief that a meeting with such a large group of experts will lead to
substantial advances in these areas, as well as building bridges between them.

Mathematics Subject Classification (2020): 49-06.

License: Unless otherwise noted, the content of this report is licensed under CC BY SA 4.0.

Introduction by the Organizers

The workshop Calculus of Variations organized by Lia Bronsard (Hamilton),
Maria Colombo (Lausanne), László Székelyhidi (Leipzig) and Yoshihiro Tonegawa
(Tokyo) was very well attended with 41 in person participants, with broad geo-
graphic and gender representation. In this workshop we observed exactly what
we hoped for: a mixture of theoretical and applied problems of interest to all par-
ticipants. The large number of on-site participants allowed for a schedule where
all talks were in-person. The carefully weighed and prepared hygiene measures
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by the MFO staff and a schedule allowing for ample free discussion time led to a
productive, convivial atmosphere where participants interacted with new people,
new directions and new techniques, and were also able to advance in current and
new projects. Several talks included very recent, as yet unpublished results; a level
of timeliness that is almost never observed in virtual talks. In addition, a large
number of talks were blackboard talks and this was very much appreciated as it
leads to slower pace and better understanding of the presentations.

Overall we had 15 “long talks” of 45 minutes+ 15 minutes for discussions, as well
as 12 “short talks” of 25 minutes+5 minutes for discussions. In addition, there were
two 30 minute talks in a special evening session after dinner on Tuesday. This mix
of the format allowed us to offer many of the more junior participants to present
their work, as well as plenty of space between talks for informal discussions. MFO
is the perfect venue for this. In particular the short talks were very well received,
as their format make their delivery very dynamic.

One of the topical focus points of the workshop was the study of problems in
the calculus of variations which arise or are inspired by physical applications. Vin-
cent Millot presented new results (joint with T. Gabard) on the singular limit to
multiphase transitions for problems involving a fractional perimeter involving a
nonlocal term for vector valued functions. This problem present new features re-
lated to nonlocal minimal surfaces and some partial regularity and open questions
were presented. Radu Ignat presented the resolution of some conjecture related
to the minimality of the vortex solution for Ginzburg-Landau systems. When
considering N -dimensional maps, he presented the proof of the symmetry of the
ground state of the Ginzburg-Landau system when defined on the unit ball with
boundary data corresponding to a vortex of topological degree one and in the
general case when the singular parameter ε > 0. For N = 4, 5, 6, the same result
holds when considering curl-free maps. Hans Knüpfer presented fascinating results
on the Gamma limit for zigzag walls. Using Gamma convergence techniques, he
was able to recover observed zigzag walls in a supercritical regime for thin strip
with appropriate boundary conditions. Filip Rindler presented a new framework,
based on the notion of varifold, for the homogenization of elasto-plasticity driven
by dislocation motion, thus allowing this classical problem to be attacked by the
powerful tools of geometric measure theory. Angkana Rüland presented the state
of the art on the various scaling regimes between rigidity and flexibility for vari-
ational problems in elasticity arising in the context of shape-memory allows - an
exciting class of problems with close connections to the Nash-Kuiper theory of
isometric immersions.

Elise Bonhomme presented recent results on variational methods applied to dis-
crete models in brittle damage involving several parameters. Using very delicate
analysis to study the convergence rates to effective limit models, she was able to
characterize the appropriate effective models according to various limiting regime,
generalizing previous results by Babadjian, Iurlano and Rindler. Michael Novack
presented new impressive results (joint with F. Maggi, D. Restrepo and A. Sko-
robogatova) on soap films, Plateau’s laws and a connection with an Allen–Cahn
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free boundary problem. This result is the first to capture features of real soap film
and present a very important generalization of the homotopic spanning condition
of Harrison-Pugh that promises to be very helpful in the understanding of soap
films and other minimal surfaces problems. Dominik Stantejsky presented new
results on minimizing Harmonic Maps with Planar boundary anchoring. Using
a reflection method and new monotonicity formula derived for these new type of
boundary conditions, he was able (jointly with L. Bronsard and A. Colinet), to
study the symmetry and the regularity of minimizers and used it to describe the
location of point defects. Dean Louizos presented new technical results (jointly
with L. Bronsard and D. Stantejsky), related to a Γ convergence result for the
Landau-de Gennes functional for nematic liquid crystal where a colloid with pla-
nar anchoring is imposed in the presence of a weak magnetic field. In particular,
he was able to obtain the optimal orientation of general shapes, including mul-
tiply connected surfaces. Riccardo Cristoferi presented recent results (joint with
R. Ferreira, I. Fonseca and J. Iglesias) on the monotonicity of the jump set for
denoising models. His presentation (at 8pm) was very interactive albeit on a very
technical subject and very much appreciated by the audience. Finally, Marc Pe-
gon presented (joint with M. Goldman and B. Merlet) exciting results (at 8:30pm)
on an isoperimetric problem involving competition between the perimeter and a
nonlocal term related to the liquid drop model, in case of large masses, also very
well received by a large audience.

The research talks on the aspects involving minimal surfaces and free boundaries
were well represented and the audience could appreciate the connections to other
relatively distant fields as well. R. Tione (joint with J. Hirsch and C. Mooney)
presented a breakthrough result, namely the resolution of Lawson-Osserman con-
jecture for the two dimensional case which concerns the minimal graphs with Lip-
schitz regularity, employing a variety of techniques at the heart of the conference
theme, such as techniques arising in the context of elliptic differential inclusions,
the theory of quasiconformal mappings, a fine analysis of the codimension one case.
While many talks in free boundaries regarded minimizers of variational problems,
including the boundary regularity theory and global configurations, the workshop
featured important discussions and results regarding the analysis of stable config-
urations, which are as well very important to study and observed in nature. One
context where there are striking differences between our understanding of mini-
mizers vs stable solutions is the one of the Allen-Cahn equation, an approximation
of the minimal-surface equation which takes into account scale-dependent effects.
This was the context of J. Serra talk (joint with Chan, Fernandez-Real, Figalli).
He presented a work on the classification of stable solutions of the ”free-boundary
version” of the Allen-Cahn equation, namely an Alt-Caffarelli obstacle problem
for non-local setting. On the same theme, F. Franceschini (joint with A. Figalli)
described the kind of blow up of stable solutions to semilinear elliptic equations
at singular points, obtaining consequences on the dimension of the singular set.

U. Menne (joint with C. Scharrer) presented a fundamental result relating ge-
odesic diameter and curvature in the framework of geometric measure theory.
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A. Pigati (joint with G. De Philippis and A. Halavati) presented a recent work
showing a tilt-excess decay of abelian Higgs model motivated by Kelei Wang’s
work on the Allen-Cahn functional. Velichkov (joint with R. Ognibene) presented
regularity results for free interface up to the boundary for minimizing problem of
the sum of the principal eigenvalues.

Finally, there was a good selection of talks on recent progress on questions of
regularity for minimizers or critical points, where a recurring theme was the point
of view of differential inclusions. Tione’s talk, mentioned above, is a good example
of this. In a different direction, Xavier Lamy presented new results (jointly with
T. Lacombe) on C1 regularity for degenerate elliptic equations in the plane. He
showed very delicate and technical sufficient conditions for these equations that
ensures Lipschitzness implies C1. The emphasis on degenerate elliptic problems
was also the topic of Andre Guerra’s talk, focussing on the functional given by
det2X . Zhuolin Li discussed in her talk extensions of the classical partial regularity
theory for quasiconvex functionals to the A-quasiconvex case. Finally, Zemas
presented his recent groundbreaking work with S. Luckhaus on the stability of the
Möbius group.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648 “US Junior Oberwolfach Fellows”.
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An isoperimetric problem involving the competition between the perimeter
and a nonlocal perimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2149
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Abstracts

On the Lawson-Osserman Conjecture

Riccardo Tione

(joint work with Jonas Hirsch, Connor Mooney)

The area of (the graph of) a Lipschitz map v : B1 ⊂ Rm → Rn is measured by the
energy

A(v) =

∫

B1

√
det(idm +DvTDv)dx.

A stationary point u for this energy is called a minimal graph. In geometric terms,
this is equivalent to requiring that the graph of u is a minimal surface. Analyt-
ically, stationarity of u corresponds to the following system of partial differential
equations:





∑

i,j

∂

∂xi

(√
det ggij

∂ul

∂xj

)
= 0, l = 1,. . . , n,(1)

∑

i

∂

∂xi
(
√
det ggij) = 0, j = 1, . . . , m,(2)

where we have set g = idm+DuTDu. Equations (1) correspond to the require-
ment that u is a critical point for outer variations of this functional, while (2)
are the equations associated to inner (or domain) variations. Minimal graphs are
a classical subject of study. Regularity theory for weak solutions of the system
(1)-(2) for Lipschitz regular u is well-understood. If n = 1, this follows from the
De Giorgi-Nash-Moser theory (precisely because we are assuming u Lipschitz). If
n > 1, then solutions are smooth everywhere for m = 2, 3 [1, 2, 3] and partially
smooth for m = 4 [6]. From these works, we also deduce that the set of singular
points is of Hausdorff dimension at most m− 4.

In the celebrated paper [6], H. B. Lawson and R. Osserman conjectured that
equations (1) are enough to imply (2) for all m and n. In low dimensions m ≤ 3,
this is equivalent to conjecturing that (1) imply smoothness of u. The subject of
my talk was the solution to this conjecture in the case m = 2 (and arbitrary n),
recently obtained in the collaboration [5]. Our proof relies on a variety of tools and
observations, such as the theory of quasiconformal mappings, a fine analysis of the
codimension one case and techniques arising in the context of elliptic differential
inclusions introduced by V. Šverák [9]. It is important to observe that smoothness
of a solution to (1) cannot be deduced simply by convexity properties of the area
functional. Indeed, the area functional is polyconvex, namely it is a convex function
of the minors of the gradients. For such functionals, one cannot expect any general
regularity theory of solutions to the outer variations equations, as shown via convex
integration by L. Székelyhidi in [10] (see also [7]).
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Our work leaves open the obvious natural question of what happens for higher
dimensions. In this respect, it is interesting to draw a connection between the
Lawson-Osserman conjecture and the same problem arising for harmonic maps.
Indeed, in that theory, it has been shown by F. Hélein [4] that two-dimensional
weakly harmonic maps are smooth, while a counterexample by T. Rivière [8] has
shown that the same fails if m ≥ 3. However, nothing is known concerning the
Lawson-Osserman conjecture if m ≥ 3.
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[7] S. Müller and V. Šverák, Convex integration for Lipschitz mappings and counterexamples
to regularity, Ann. Math. 157 (2003), 715-742.

[8] T. Rivière, Everywhere discontinuous harmonic maps into spheres, Acta Math. 175 (1995),
197-226.
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Regularity up to the boundary for optimal partition problems

Bozhidar Velichkov

(joint work with Roberto Ognibene)

Setting. Fixed an integer N ≥ 1 and a bounded open set D ⊂ Rd with C1

boundary, we consider the optimal partition problem

(1) inf

{
N∑

i=1

λ1(Ωi) : Ωi ⊂ D − open and such that Ωi ∩ Ωj = ∅ for i 6= j

}
,

where λ1(Ωi) denotes the first Dirichlet eigenvalue on Ωi. It is immediate to check
that this problem can be re-written as

(2) min
{ N∑

j=1

∫

D

|∇uj|2 dx : uj ∈ H1
0 (D), uj ≥ 0,

∫

D

uiuj dx = δij

}
,
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the optimal sets Ωi being exactly the positivity sets {ui > 0}. Problems of this type
has been studied in several frameworks such as dynamics of populations (see for
instance [4, 5, 6]) and harmonic maps with values in singular spaces (see [3, 2, 7]).

Regularity in the interior of D. The regularity of the free interface

F :=

N⋃

i=1

∂Ωi ∩D, with (Ω1, . . . ,ΩN ) being a minimizer of (1),

has been extensively studied in the interior of D. We refer for instance to [1,
3, 2, 4, 5, 7] (and the references therein), where it was proved that the interior
interface F can be decomposed into the disjoint union of a regular set (a smooth
(d− 1)-dimensional manifold) and a singular set (a closed (d− 2)-rectifiable set).
The main steps in the interior regularity theory are the following:

• (Almost-)monotonicity of the Almgren’s frequency function

N(u;x0, r) :=
r
∑N

i=1

∫
Br(x0)

|∇ui|2
∑N

i=1

∫
∂Br(x0)

u2i
,

with respect to r > 0, for any x0 ∈ F and u = (u1, . . . , uN) solution to
(2). In particular, it implies that the limit

γ(x0) := lim
r→0

N(u;x0, r),

exists for every x0 ∈ F .
• Admissible frequencies. It is known that for every x0 ∈ F

γ(x0) ∈ {1} ∪ [1 + εd,+∞),

for some dimensional constant εd > 0. Moreover, in [9], we prove that in
every dimension the frequency gap is precisely 1/2, that is:

γ(x0) ∈ {1} ∪ [3/2,+∞).

The regular and the singular parts of the free interface are defined in terms
of the frequency function as follows: Reg(F) are the points of frequency
1, while Sing(F) are the points of frequency ≥ 1 + εd.

• Clean-up and smoothness of Reg(F). It was proved in [2] that around
any point x0 ∈ Reg(F) there are exactly two non-zero components ui and
uj . Moreover, by the optimality of u, the difference ui−uj solves a PDE in
that neighborhood. Then, by the classical elliptic regularity theory, ui−uj
is C1,α and by the implicit function theorem the free interface ∂Ωi ∩ ∂Ωj
is also smooth around x0.

Regularity up to the boundary ∂D. In [8], with Roberto Ognibene, we studied

• the behavior of the free interface F ⊂ D up to the fixed boundary ∂D;
• the regularity of F∂D := F ∩ ∂D (as a subset of ∂D).
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We introduce a family (ω1, . . . , ωN ) of relatively open subsets of ∂D such that:

ωi ∩ ωj = ∅ for i 6= j ,

N⋃

i=1

ωi = ∂D and F∂D =

N⋃

i=1

∂∂Dωi ,

which play the role of traces of the sets Ωi. Furthermore, F∂D can be decomposed
as disjoint union of a regular and singular parts, R∂D and S∂D, where

• R∂D is locally a (d− 2)-dimensional manifold of class C1, the modulus of
continuity of the normal derivative being given in terms of the one of ∂D;

• in a neighborhood of any point in R∂D, the interior free boundary F is
a (d − 1)-dimensional smooth manifold that approaches ∂D orthogonally
and is the interface between two components only (like in the picture on
the right in the figure below).

In particular, around points in R∂D, we are able to exclude pathological boundary
behavior such as on the left and the central figures below.

The analysis of F up to ∂D faces issues, of both technical and topological nature,
which are not present inside D: first, the monotonicity of the frequency function
is a major technical obstacle even when ∂D is C1,α smooth; second, even the
definition of the optimal partition on the boundary is not straightforward and
requires some fine analysis of the behavior of the eigenfunctions near ∂D; third,
the smoothness of the regular part of the free boundary cannot be deduced from
the implicit function theorem, but relies on decay rate of the blow-up sequences,
which we obtain through epiperimetric inequalities.

Open problems.

• Frequency gap at the boundary. In [8] we prove that the limit

γ(x0) = lim
t→0+

r
∑N

i=1

∫
Br(x0)∩D

|∇ui|2
∑N

i=1

∫
∂Br(x0)∩D

u2i
,

exists for every x0 ∈ F∂D and that

γ(x0) ∈ {2} ∪ [2 + δd,+∞),

for some dimensional constant δd > 0 (in dimension 2, δ2 = 1). The exact
value of δd is not known for d > 2. We conjecture that δd = 5/2 and is
achieved by three domains forming a triple junction of 3/2-points disposed
on a line that reaches ∂D orthogonally.
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• Full boundary regularity. In [8] we defined the set R∂D as the set of
boundary points of frequency γ = 2; moreover, in dimension d = 2 we
showed that the whole set F∂D is composed of a finite number of points
and that at each of these points the frequency γ is an integer. In particular,
it is not true that F∂D \ R∂D has codimension 2. This means that the
results above provide only partial description of the free boundary (the
situation is similar to the one in the regularity theory for the thin-obstacle
problem) and leads us to the following questions:
Let Reg be the set of all points x0 ∈ F∂D for which γ(x0) is an integer. Is
it true that Reg is a C1 submanifold of codimension 1 in ∂D? Is it true
that the remaining set F∂D \Reg has codimension 2 in ∂D?
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Rigidity of global solutions to the thin obstacle problem

Hui Yu

(joint work with Simon Eberle, Xavier Fernández-Real)

Let Ω denote a domain in Rd+1 := {(x, y) : x ∈ Rd, y ∈ R} that is symmetric
with respect to the hyperplane {y = 0}. The thin obstacle problem in Ω refers to
the following system

(1)





∆u ≤ 0 in Ω,

u ≥ 0 on Ω ∩ {y = 0},
∆u = 0 in Ω ∩ ({y 6= 0} ∪ {u > 0}).

Here the solution u denotes the height of an elastic membrane resting on an ob-
stacle at height 0 in {y = 0}. In this context, the contact set denotes the region
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where the membrane is supported by the obstacle, namely,

Λ(u) := {u = 0} ∩ {y = 0}.
This is one of the most well-studied elliptic free boundary problems. For

classical results, the reader might consult the monograph Petrosyan-Shahgholian-
Uraltseva [7]. For recent developments, the reader might refer to [1, 8, 9].

Most of previous results focus on local regularity properties of the solution as
well as the contact set.

In [5, 6], we begin the study of rigidity properties of global solutions to this problem
in the compact setting. To be precise, let u be a solution to (1) with Ω = Rd+1,
we aim to classify possible compact contact sets Λ(u).

For the classical obstacle problem, such a program has been completed in [2, 4].
Comparing with solutions to the classical obstacle problem, however, our solutions
to (1) lack certain important properties.

Firstly, solutions to the thin obstacle problem can grow at many different ho-
mogeneities. As a result, we need to stratify all solutions according to their rate
of growth. For m ∈ N, define

Smc := {u : u solves (1) in R
d+1 with compact Λ(u), and sup

|u|
1 + |x, y|m < +∞}.

Secondly, the measure ∆u is supported in sets of high co-dimensions and has
variable density.

Based on these, Eberle, Ros-Oton and Weiss conjectured in [3] that the global
solutions to (1) are not rigidit. To be precise, their conjecture reads

Conjecture. For each m ∈ N, there is u ∈ Smc such that Λ(u) is not an ellipse.

We confirm this conjecture for m ≥ 4 in [6]. Our results show that the contact
sets to global solutions of (1) are very flexible for large m.

Theorem 1 ([6]). Given a compact set K ⊂ {y = 0} and ε > 0, there is u ∈ ∪mSmc
such that

distH(K,Λ(u)) + distH(∂K, ∂Λ(u)) < ε.

Here distH denotes the Hausdorff distance between sets in {y = 0}.
Even when we restrict to specific order of growth m ∈ N, the contact sets can

still be quite flexible.

Theorem 2 ([6]). Given ε > 0 and a polynomial q ≥ 0 on {y = 0} of degree
m ≥ 4, there is u ∈ Smc such that

{q = 0} ∩B1 ⊂ Λ(u) ⊂ {q = 0}ε ∩BRd
.

Here {q = 0}ε denotes the ε neighborhood of {q = 0}, and Rd is a dimensional
constant.

The remaining question concerns the rigidity of Λ(u) for u ∈ S2
c . It turns out

here we have exactly the same rigidity as in the classical obstacle problem.
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Theorem 3 ([5]).

{Λ(u) : u ∈ S2
c } = {Ellipsoids in {y = 0}}.
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Minimizing constraint maps

Sunghan Kim

(joint work with Alessio Figalli, André Guerra, Henrik Shahgholian)

In this talk, we study energy minimizing constraint maps: these are the natural
extension of the obstacle problem in higher codimension, where one minimizes
the Dirichlet energy among maps that take value inside an open set M (so its
complement acts as an obstacle). Because of their vectorial character, they share
similarities with minimizing harmonic maps with target into manifolds, branch
points in minimal surfaces, and free boundary problems of obstacle-type.

Interestingly, constraint maps reveal an extremely rare interplay between the
free boundaries, the set of discontinuous points, and the set of branch points alto-
gether. Despite the long history of constraint maps since their initial appearance
in the literature, dating back to the 1970s by the work of Hilderbrandt [8, 9] and
Tomi [10, 11] and the partial regularity theory established in the 1980s by the work
of Duzaar and Fuchs [2, 3], the interaction between these apparently correlated
objects was addressed only recently by us [4] in a different but related setting.

The goal of this paper is to address the following fundamental question:

Does the free boundary meet the mapping singularities?
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The main result in our most recent work [5] asserts that minimizing constraint
maps are uniformly continuous in a uniform neighborhood of the free boundary,
provided the complement of the target manifold M c is uniformly convex. To
prove this, a key tool is a new quantitative unique continuation principle near
singularities, which is new even in the setting of classical harmonic maps and which
holds in great generality (also for nonconvex obstacles). Using degree theory, we
support the assumption of uniform convexity by providing examples of manifolds
with flat pieces where the map is discontinuous.

Yet another new feature in our problem is the so-called branch points, i.e.,
points where Du vanishes, producing degeneracy-like behavior for solutions to the
obstacle problem. It is worth noting that the regularity of the free boundary away
from the set of branch points is studied in [7, 6]. Nevertheless, the phenomenon of
branching is intrinsic in this vectorial problem and does not appear in the scalar
obstacle problem, unless dictated by external forces. By considering some class of
maps with special symmetries, we show in [5] that branch points can exist on the
free boundary and give rise to singularities to the free boundary itself.

Our work opens up uncharted territory regarding the interplay between free
boundaries and mapping singularities. Here, we propose a few open problems:

• What can be said beyond energy-minimality? Can we address the same
regularity issue, for example, in the case of stationary constraint maps?

• Related to the previous point, what can be said about the corresponding
heat flow problem? Note that energy-minimality is neither applicable in
the parabolic setting. The theory, aside from the partial regularity result
by Chen-Musina [1], is largely unexplored.

• Returning to energy-minimality, what is the sharp geometric condition
for obstacles that resolves the regularity issue near free boundaries? The
presenter conjectures that it holds for any convex obstacle with all but
one principal curvature being uniformly positive, and that this condition
is sharp.

• What can be said about target constraints lying on (compact) manifolds?
This problem already appears intriguing when the supporting manifold is
a sphere.
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Fractional multiphase transitions & nonlocal minimal partitions

Vincent Millot

(joint work with Thomas Gabard)

In the classical van der Waals-Cahn-Hilliard theory of phase transitions, two-phase
systems are driven by energy functionals of the form ε

∫
Ω
|∇u|2+ε−1

∫
Ω
W (u) with

ε ∈ (0, 1), where u : Ω ⊂ Rn → R is a normalized density distribution of the two
phases in the container Ω (a smooth and bounded open set), and the smooth
potential W : R → [0,∞) has exactly two global minima at ±1 with W (±1) = 0.
Critical points uε satisfy the scalar Allen-Cahn equation, and one is interested to
describe phase separation in the singular limit ε → 0. When ε is small, a control
on the potential implies that uε = ±1 away from a region whose volume is of
order ε. Formally, the transition layer from the phase −1 to the phase +1 has
a characteristic width of order ε, and it should take place along an hypersurface
which is expected to be a critical point of the area functional, i.e., a minimal
surface. For energy minimizing solutions, this picture has been justified first in [9]
through one of the first examples of Γ-convergence. The case of general critical
points has been treated much more recently in [6].

Multiple phase systems appear to be more involved as they rely on a vectorial
version of the Allen-Cahn equation, and their description in the singular limit is
not yet fully understood. In this case, one consider vector valued maps u : Ω → Rm

and the potentialW : Rm → [0,∞) vanishes at exactly d distinct points a1, . . . , ad
of Rm. Concerning minimizing solutions, their behavior as ε → 0 has again been
obtained through a Γ-convergence result in [1, 10]. It shows that uε → ai in
Ai, where the sets (A1, . . . , Ad) form a partition of the domain Ω minimizing a
geometric energy of the form

d∑

i,j=1,i6=j

αijHn−1
(
∂Ai ∩ ∂Aj ∩ Ω

)
,

with coefficients αij = αji > 0 determined through a generalized geodesic dis-
tance problem between ai and aj involving the potential W . In particular, these
coefficients satisfy the triangular inequality. In case of a strict triangle inequality
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between the αij ’s, the regularity theory for the boundaries of minimizing parti-
tions has been obtained in [7]. Concerning arbitrary critical points of the vectorial
Allen-Cahn equation, the result analogue to the scalar case is still unknown. Only
very recently, it has been obtained in dimension n = 2 in [2].

We are here interested in a non local analogue of the multiple phase transitions
theory where the elastic part of the energy is replaced by a fractional Dirichlet
energy leading to the fractional Allen-Cahn equation

(−∆)suε +
1

εs
∇W (uε) = 0 in Ω

(complemented with a suitable Dirichlet condition outside Ω), where (−∆)s de-
notes the usual fractional Laplacian of order s ∈ (0, 1/2) as defined in Fourier
space. In this range of order exponents s (< 1/2), a different geometric problem
appears in the limit ε → 0 compared to the classical case. The scalar case has
been handled in [8] where it is proven that uε → ±1 away from a region asymp-
totic to a stationary nonlocal minimal surface (or minimizing nonlocal minimal
surface in case uε is minimizing). The concept of nonlocal minimal surface has
been introduced in [3] and studied in terms of regularity theory.

The present study is the vectorial analogue of [8], i.e., the asymptotic analysis
of solutions (minimizing or not) of solutions of the vectorial fractional Allen-Cahn
equation. In this setting, phase separation still occurs and the limiting geometric
problem is again of the nature of nonlocal minimal surfaces. More precisely, as-
suming a uniform energy bound and a prescribed behavior outside Ω, uε → ai in
Ai, where the sets (A1, . . . , Ad) form a partition of the whole Rn, and (A1, . . . , Ad)
is stationary in Ω for the geometric energy

d∑

i,j=1

αij

(
Is(Ai ∩ Ω, Aj ∩ Ω) + Is(Ai ∩ Ω, Aj \ Ω) + Is(Ai \ Ω, Aj ∩ Ω)

)
,

with

Is(A,B) :=

∫∫

A×B

1

|x− y|n+2s
dxdy ,

and coefficients αij given by

αij := |ai − aj |2 .
In case uε is minimizing in Ω, then the limiting partition (A1, . . . , Ad) is minimizing
the nonlocal geometric energy in Ω.

We have also addressed the regularity issue of stationary or minimizing nonlocal
partitions. In case (A1, . . . , Ad) is stationary in Ω, then each Ai∩Ω is (essentially)
open and ∂Ai ∩ Ω has a Minkowski dimension equal to n − 1. For minimizing
partitions, much more can be said about the set of boundaries Σ := ∪iAi ∩ Ω.
The case of constant coefficients αij = 1 has been first treated in [4] showing
that Σ is locally a smooth hypersurface away from a set of (n − 2) Hausdorff
dimension. The same regularity has been shown for d = 3 in [5] for coefficients
satisfying the additivity condition αij = ci + cj with ci, cj > 0. On one hand
we have generalized the regularity of [4] to nearly constant coefficients, and on
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the other hand (and more interestingly) proved the same regularity result in the
case of three phases (d = 3) for coefficients satisfying one reversed strict triangle

inequality, e.g., α23 > α12+α13, for s close enough to 1/2. This is in sharp contrast
with the classical case [7] where the strict triangle inequality is required to derive
(partial) regularity. The regularity theory for general coefficients, satisfying or not
the triangle inequality, is still an open question.
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Variational methods applied to discrete models in brittle damage

Elise Bonhomme

In a numerical analysis [1], Allaire-Jouve-Van Goethem have conjectured that the
mechanical model of brittle damage introduced by Francfort and Marigo [4] -
within a specific scaling law and specified to the discrete setting where the to-
tal energies are restricted to piecewise affine continuous displacements - converges
to a model of fracture. On the other hand, Babadjian-Iurlano-Rindler have re-
cently proved in [3] that the conjecture fails when one considers the continuous
setting (without restriction to piecewise affine displacements). In this talk, I will
introduce Francfort-Marigo’s model of brittle damage in the discrete setting, in
different regimes where the damaged zone concentrates on vanishingly small sets,
and identify the nature of the effective models obtained by means of an asymptotic
analysis based on the Γ-convergence of the total energies (work in preparation).

More precisely, given ε and ηε > 0, we consider a linearly elastic material, whose
reference configuration is a bounded open set Ω ⊂ R2, which is composed of only
two phases: a damaged phase (where the elasticity of the medium is altered) and
a sound one, whose elasticity properties are given by ηε and 1 respectively. In-
troducing the characteristic function of the damaged region, χ ∈ L∞(Ω; {0, 1}),
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Francfort-Marigo’s model consists in defining the total energy associated to a dis-
placement u ∈ H1(Ω;R2) as the sum of the elastic energy stored inside the material
and a dissipative energy, taken as proportional to the volume of the damaged zone:

Eε(u, χ) =
1

2

∫

Ω

(ηεχ+ (1− χ)) |e(u)|2 dx+
κ

ε

∫

Ω

χdx,

where e(u) =
(
∇u+∇uT

)
/2 is the linearized elastic strain and κ/ε > 0 is the

material’s toughness in the damaged regions. Note that the elasticity coefficient
ηε of the weak material degenerates, while the diverging character of κ/ε forces
the damaged zones to concentrate on vanishingly small sets as ε ց 0. Here, we
consider the total energies restricted to couples (u, χ) ∈ C0(Ω;R2)×L∞(Ω, {0, 1})
in the finite element set

(u, χ) ∈ Xhε
(Ω),

for which there exists a triangulation Thε
of Ω, whose mesh-size is of order hε > 0,

such that u is affine and χ is constant on each of its triangle. Noticing that the
mesh-size imposes a minimal oscillation scale for the displacements, one can expect
that the scaling of hε with respect to the other parameters will influence the nature
of the limit models. Indeed, we obtain five effective models:

Regime Effective limit model
ε ≪ ηε or ε ≪ hε linear elasticity
hε ≪ ε and ηε ≪ ε trivial model
hε ≪ ε and ηε ∼ ε Hencky plasticity
hε ∼ ε and ηε ≪ ε brittle fracture (see [2])

hε ∼ ε ∼ ηε in between plasticity and brittle fracture

In particular, when the mesh-size is negligible with respect to ε and/or ηε, we
recover the three asymptotic models obtained in [3]. Formally, the discrete ap-
proximation is so fine that the asymptotic behaviour is qualitatively the same as in
the continuous setting. Whereas when hε is not negligible with respect to neither
ε and ηε, we recover the fracture model conjectured in [1] as well as an inter-
mediate model in between plasticity and fracture (according to the scaling of ηε
with respect to ε). Heuristically, fracture type models can only be asymptotically
obtained when we impose a sufficiently large oscillation scale on the displacements.
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Soap films, Plateau’s Laws, and an Allen-Cahn free boundary problem

Michael Novack

(joint work with Francesco Maggi, Daniel Restrepo, and Anna Skorobogatova)

The Plateau problem of minimizing area among surfaces with a given boundary
is the classical mathematical model for soap films and leads to theory of mini-
mal surfaces. Among the many versions of the Plateau problem, the choice of
a particular model often depends on the properties, such as the presence/type of
singularities, that one wishes to see in minimizers. The goal of the works [5, 6, 7] is
to analyze two related Plateau-type problems with the hope of capturing features
of soap films and minimal surfaces outside the scope of previous models.

In [5], joint with F. Maggi and D. Restrepo, our aim is to add a volume pa-
rameter v > 0, representing the amount of liquid in the soap film, to the Plateau
problem. Such a model would describe for example Plateau borders, which are
thickened tubes of liquid wetting a line of Y -point singularities and which play
an important role in film drainage. In the physical literature, films with positive
volume are known as “wet” films. They can be described mathematically as the
union of a “wet” region E of volume v > 0 (one may imagine E ≈ the Plateau
borders) and an interface K containing ∂E and the “dry” portions of the soap
film. We formulate the corresponding Plateau problem using the spanning condi-
tion of Harrison-Pugh [3] since it is allows for Plateau type singularities (Y - and
T -points) when v = 0. More precisely, for a fixed compact set W ⊂ Rn+1 and a
homotopically closed family C of smooth embeddings of S1 into Wc, we consider

inf
{
Hn(∂∗E \W) + 2Hn(K \ ∂∗E) : (K ∪ E) ∩ γ 6= ∅ ∀γ ∈ C, |E| = v,(1)

E ⊂ Wc is open, K ⊂ Wc is rel. closed, ∂E \W ⊂ K
}
;

in short, we minimize the surface tension energy of a wet soap film spanning a
wire frame. The main results of [5] are as follows:

• Existence: There exists a pair (K,E) such that (K,E) is minimal for (1).
• Regularity: There exists Σ of Hausdorff dimension at most n− 7 such that
(∂∗E \W) \Σ is smooth with constant mean curvature and K \ (∂E ∪Σ)
is smooth with zero mean curvature. Also, Γ = (∂E \ W) \ (∂∗E ∪ Σ)
is locally Hn−1-rectifiable, and, for any x ∈ Γ, there is r > 0 such that
K ∩Br(x) is a union of two C1,1 hypersurfaces touching tangentially at x.

• Convergence to the Plateau problem: Up to subsequences, a sequence en-
ergy measures associated to minimizers for (1) converges in the sense of
Radon measures to 2Hn S, where S is a minimizer for the Harrison-Pugh
Plateau problem

inf{Hn(S) : S ⊂ Wc is rel. closed, S ∩ γ = ∅ ∀γ ∈ C} .(2)

The existence of minimizers answers an open question from [4]. The difficulty is
fundamentally about compactness, that is, proving that the limit of a minimizing
sequence for (1) is an object in the same class. To address this, we generalize
the spanning condition “(K ∪ E) ∩ γ 6= ∅ ∀γ ∈ C” in a fashion that allows us
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to obtain compactness of energy bounded sequences in a larger class. Then we
prove that the minimizer in the larger class is in fact a pair (K,E) as in (1). The
compactness also yields the asymptotic convergence of (1) to the Plateau problem
(2) as v → 0. The reformulated spanning condition relies on a measure theoretic
notion of connectedness originally introduced in [1, 2] in the study of rigidity in
symmetrization inequalities. Regarding the regularity of K, the delicate part is
the analysis of Γ, which Allard’s regularity theorem only guarantees to have empty
interior. To prove that Γ is (n − 2)-rectifiable and that K can be resolved near
x ∈ Γ as two tangential C1,1 surfaces, a new comparison argument is used in
conjunction with the regularity of solutions to the double membrane problem.

The motivation for the second Plateau-type problem is the following rigidity
theorem [8]: the ε → 0 limit of any sequence {uε} of stable, bounded energy
solutions to the Allen-Cahn equation ε2∆uε =W ′(uε) is a smooth minimal surface
away from a singular set of co-dimension at least 8. In particular, Plateau-type
singularities cannot be approximated by stable solutions to Allen-Cahn, despite
the usefulness of Allen-Cahn in physical modelling. With the goal of modifying
Allen-Cahn to address this, consider the following diffuse interface analogue of (1):

inf{
∫

Wc

ε|∇u|2 +W (u)/ε :

∫

Wc

V (u) = v, {u = 1} spans W, 0 ≤ u ≤ 1} .(3)

The function u can be thought of as the density distribution of soap particles,
and V is a volume potential. With F. Maggi and D. Restrepo [6], we proved the
existence of minimizers, which are formally critical for the free boundary problem

(4)

{
ε2 ∆u =W ′(u)− ε λV ′(u) , on {u 6= 1} ,
|∂+ν u| = |∂−ν u| , on {u = 1} .

Furthermore, as ε → 0, minimizers converge to minimizers of (1). Together with
the convergence of (1) to (2) and the appearance of Plateau-type singularities in
minimizers of (2), this allows for the approximation of singular minimal surfaces
by minimizers for a diffuse interface free boundary problem.

Lastly, in forthcoming work with A. Skorobogatova and D. Restrepo, we study
the regularity of minimizers to (3) and their free boundaries. We prove:

if u minimizes (3), then u is locally Lipschitz and the free boundary {u = 1}
decomposes into Sing (u) ⊔ Reg (u), where Reg(u) is a smooth hypersurface and
Sing(u) has co-dimension 2.

In light of the transmission condition, the Lipschitz regularity is optimal. However,
since (4) is formal (the derivation of the usual Euler-Lagrange equations is compli-
cated by the spanning constraint), our arguments are based instead on three other
criticality conditions satisfied by minimizers: a modified equation that encodes
the possible singularities of ∆u along the free boundary {u = 1}, the inner vari-
ation version of the volume-constrained Allen-Cahn equation, and a differential
inequality.
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Minimality of the vortex solution for Ginzburg-Landau systems

Radu Ignat

We consider the Ginzburg-Landau system for N -dimensional maps defined in the
unit ball for some parameter ε > 0. For a boundary data corresponding to a vortex
of topological degree one, the aim is to prove the symmetry of the ground state of
the system. We show this conjecture for every ε > 0 in any dimension N ≥ 7, and
then, we also prove it in dimension N = 4, 5, 6 provided that the admissible maps
are gradient fields. It comes from a series of articles [8, 9, 5, 10, 6] in collaboration
with Luc Nguyen (Oxford), Mickael Nahon (Grenoble), Mircea Rus (Cluj), Valeriy
Slastikov (Bristol) and Arghir Zarnescu (Bilbao).

The Ginzburg-Landau model. Let BN ⊂ RN be the unit ball, N ≥ 2. For
u : BN → R

N , consider the Ginzburg-Landau functional for a parameter ε > 0:

Gε(u) =

∫

BN

1

2
|∇u|2 + 1

2ε2
W (1− |u|2) dx,

where W : (−∞, 1] → R+ is C1 convex, W (0) = 0, W (t) > 0 for t 6= 0. Typically,

W (t) = t2

2 . As ε → 0, the limit maps take values into the unit sphere SN−1, so

the limit model is the SN−1-harmonic map problem (HMP). Thus, our results are
expected to be closely related with those obtained for HMP.

We focus on critical points u of Gε for fixed ε > 0:

(1) −∆u =
1

ε2
W ′(1− |u|2)u in BN

under the boundary condition

(2) u(x) = x on ∂BN = S
N−1.



2134 Oberwolfach Report 37/2024

Such critical points u (e.g., minimizers) exist. In particular, by the maximum
principle, |u| ≤ 1 in BN and then, the standard elliptic theory yields u ∈ W 2,p ∩
C1,α for every p < ∞ and α ∈ (0, 1). Moreover, the topological constraint in (2)
implies that u has a zero point inside BN that plays an important role in this
theory. The main question concerns the uniqueness of solutions in (1) & (2).

The vortex solution. For every ε > 0, there exists a unique solution to (1) &
(2) that is invariant under the special orthogonal group SO(N), i.e., the group
action u 7→ uR(x) = R−1u(Rx) for every R ∈ SO(N) that keeps invariant the
functional Gε and the boundary condition (2). This is the so-called vortex solution
(of topological degree 1) given by

uε(x) = fε(|x|)
x

|x| , x ∈ BN \ {0}.

The radial profile fε : [0, 1] → R is the unique solution to the singular ODE:

(3)

{
−f ′′

ε − N−1
r f ′

ε +
N−1
r2 fε =

1
ε2W

′(1− f2
ε )fε in (0, 1),

fε(0) = 0, fε(1) = 1,

where r = |x| (see [3, 4, 7]). In particular, 1 > fε > 0 and f ′
ε > 0 in (0, 1). The

aim is to study the minimality of the vortex solution:

Question 1. Is uε(x) = fε(|x|) x|x| the (unique) minimiser of Gε under the bound-

ary condition (2) for every ε > 0?
For large ε, i.e., ε ≥ εconv, the functional Gε is strictly convex yielding unique-

ness in (1) & (2) (in particular, the positive answer to Question 1), see [1, 9]. For
ε < εconv, there are only some partial results. In dimension N = 2, Bethuel-Brezis-
Hélein [1] proved in the regime ε → 0 that a minimizer u of Gε under (2) has a
unique topological zero converging to the origin, while Pacard-Rivière [17] proved
that uε is the unique solution to (1) & (2) for very small ε > 0; we also mention
the work of Mironescu [16] for the corresponding blow-up problem in the domain
R2. In dimension N ≥ 3, we quote the works of Millot-Pisante [14] and Pisante
[18] for the blow-up problem in the domain RN . Finally, for the SN−1-harmonic
map problem, u∗(x) =

x
|x| is the unique minimizing harmonic map in BN under

(2) if N ≥ 3 (see Jäger-Kaul [11], Brezis-Coron-Lieb [2], Lin [13]).

Main results. Our first result gives a positive answer to Question 1 in dimension
N ≥ 7 (see [8, 9]):

Theorem 2. If N ≥ 7, then uε(x) = fε(|x|) x|x| is the unique minimiser of Gε
under (2) for every ε > 0.

Sketch of the proof. The idea is to linearize the potential energy in Gε. More
precisely, the convexity of W yields for every v ∈ H1

0 (B
N ,RN ):

(4) Gε(uε + v)−Gε(uε) ≥
1

2
Fε(v)
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where Fε(v) =
∫
BN |∇v|2 − 1

ε2W
′(1− |uε|2)|v|2 dx. To conclude, we need to prove

that for every ε > 0, Fε(v) =

∫

BN

Lεv · v dx ≥ 0, ∀v ∈ H1
0 (B

N ,RN ), where

Lε = −∆− 1
ε2W

′(1 − f2
ε ). Let ℓ(ε) = λ1(Lε, B

N ) be the first eigenvalue of Lε in

BN under zero Dirichlet condition. The conclusion follows by:

Lemma 3. If N ≥ 7, then ℓ(ε) ≥ cN = (N−2)2

4 − (N − 1) > 0, ∀ε > 0.

Sketch of the proof. For v ∈ C∞
c (BN \ {0},R), we use the Hardy decomposition

v = fεs. Integration by parts combined with (3) imply

Fε(v) =

∫

BN

Lεv · v =

∫

BN

(f2
ε |∇s|2 + s2Lεfε · fε) =

∫

BN

f2
ε

(
|∇s|2 − N − 1

r2
s2
)
.

The limit case ε → 0 follows from the fact that fε → 1 in (0, 1] combined with
Hardy’s inequality:
∫

BN

Lεv · v →
∫

BN

|∇s|2 − N − 1

r2
s2 ≥

∫

BN

( (N − 2)2

4
− (N − 1)

)s2
r2

≥ cN

∫

BN

s2.

For the general case ε > 0 (fixed), one decomposes s = φs̃ with φ = r−
N−2

2 and

obtains Fε(v) ≥ cN
∫
BN

v2

r2 yielding the conclusion of Lemma 3 together with the
uniqueness of the minimizer uε in Theorem 2. �

In dimension N ∈ [2, 6], the above argument does not yield the answer to
Question 1. Indeed, the first eigenvalue ℓ(ε) of Lε in BN becomes negative for
small ε > 0 if 2 ≤ N ≤ 6. However, the above argument improves the range of
ε where uε is the unique minimizer of Gε under (2) (with respect to εconv above
which Gε is strictly convex), see [5, 10]:

Lemma 4. If 2 ≤ N ≤ 6, then there is εN ∈ (0, εconv) such that ℓ(εN ) = 0 and
ℓ(ε) < 0 if ε < εN (resp. ℓ(ε) > 0 if ε > εN). In particular, if ε > εN , then the
vortex solution uε is the unique minimizer of Gε under (2).

The minimality of uε is still an open question if ε < εN and N ∈ [2, 6]. A
partial result is the local minimality of uε for every ε > 0. This is known in
dimension N = 2 thanks to the works of Mironescu [15] and Lieb-Loss [12], while
in dimension N ∈ [3, 6], this is proved by Ignat-Nguyen [5]:

Theorem 5. If 3 ≤ N ≤ 6, then uε = fε(|x|) x|x| is a local minimizer of Gε under

(2) for every ε > 0.

Sketch of the proof. The aim is to prove that for every ε > 0, Gε(uε+v)−Gε(uε) ≥
C‖v‖2H1 if ‖v‖H1 ≤ δ for some δ = δ(ε) > 0 and C = C(ε) > 0 small. For that,

we analyse the second variation of Gε at uε in direction v ∈ H1
0 (B

N ,RN ):

Qε(v) =
d2

dt2

∣∣∣∣
t=0

Gε(uε + tv) = Fε(v) +
2

ε2

∫

BN

W ′′(1− f2
ε )f

2
ε (v ·

x

|x| )
2 dx.

This is done by writing v(x) = s(x) x|x| + ṽ(x) for some scalar function s and a

tangent vector field ṽ(x) · x = 0 and then use the Hodge decomposition in the
tangent space TxS

N−1 for every x ∈ BN \ {0}: ṽ(r, ·) = v◦(r, ·) + /∇ψ(r, ·) on
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SN−1 where /∇ · v◦(r, ·) = 0 in SN−1 and ψ is a scalar function. The spectral
decomposition of s(r, ·) and ψ(r, ·) in L2(SN−1) yields a decomposition of v − v◦

in modes vk and furthermore, the following decomposition of the second variation

Qε(v) = Qε(v
◦) +

∑

k≥0

Qε(vk).

Using Hardy decompositions for each vk, we obtain Qε(v) ≥ C(ε)‖v‖2H1 for every

v ∈ H1
0 (B

N ,RN ) and ε > 0. An extra argument yields local minimality of uε. �

The Aviles–Giga model. Note that the vortex solution is a gradient field, i.e.,
uε = ∇φε for some radial function φε : B

N → R determined by φ′ε = fε in (0, 1).
Therefore, in dimension N ∈ [2, 6], it is natural to study the minimality of uε
restricted to the class of gradient fields.

Question 2. Is uε the (unique) minimizer of Gε over gradient fields

V = {u = ∇φ : φ ∈ H2(BN ,R), ∇φ = Id on ∂BN}?
This is the so-called Aviles-Giga model corresponding to the functional

Gε(∇φ) =
∫

BN

1

2
|∇2φ|2 + 1

2ε2
W (1− |∇φ|2) dx.

We are able to improve Theorem 3 to the dimensions N = 4, 5, 6 in this restricted
class V , see Ignat-Nahon-Nguyen [6].

Theorem 6. If N ≥ 4, then uε is the unique global minimizer of Gε over V for
every ε > 0.

Sketch of the first proof. As before, for every ∇ψ ∈ H1
0 (B

N ,RN ), we have Gε(uε+
∇ψ)−Gε(uε) ≥ 1

2Fε(∇ψ). As ∇ψ = 0 on ∂BN , we have

Fε(∇ψ) =
∫

BN

(∆ψ)2 − 1

ε2
W ′(1− f2

ε )|∇ψ|2 dx.

In the limit case ε→ 0, we expect that Fε(∇ψ) →
∫
BN (∆ψ)

2− N−1
r2 |∇ψ|2 and the

conclusion would follow by the Hardy inequality in V :
∫
BN (∆ψ)

2 ≥ KN

∫
BN

|∇ψ|2

r2

with KN =





N2/4 if N ≥ 5

N − 1 if N = 4

25/36 if N = 3

. For the general case ε > 0, we use a spherical

harmonic decomposition for ψ and based again on some Hardy decompositions,
we get Fε(∇ψ) ≥ 0 provided that N ≥ 4.

Sketch of the second proof if N ≥ 5: This second proof is based on the following
symmetrization of gradient fields. More precisely, for the stream function φ ∈
H1(BN ,R), we associate the radial function φ∗ = φ∗(r) defined by

φ′∗(r) =
(∫

SN−1

− |∇φ(rθ)|2dσ(θ)
)1/2

≥ 0, r ∈ (0, 1).
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As W is convex, Jensen’s inequality yields∫

BN

W (1− |∇φ|2) dx ≥
∫

BN

W (1− |∇φ∗|2) dx.

Moreover, if ∇φ = Id on ∂BN and N ≥ 5 then∫

BN

|∇2φ|2 dx ≥
∫

BN

|∇2φ∗|2 dx

with equality if and only if φ is radial. Thus, for every N ≥ 5 and any ε > 0,
Gε(∇φ) ≥ Gε(∇φ∗) ≥ Gε(uε = ∇φε). �

RN+1-valued vortex solutions. We can solve completely Question 1 when we
add one target dimension, i.e., the admissible maps are U = (u, UN+1) : BN →
RN+1 satisfying the boundary condition

(5) U(x) = (x, 0) ∈ S
N−1 × {0} on ∂BN .

We prove that for every ε > 0, minimizers of Gε under (5) are vortex type solutions
that are either non-escaping (i.e., their (N + 1)-component vanishes in BN ), or
they are escaping, i.e., their (N + 1)-component is positive (or negative) in BN ,
see Ignat-Rus [10].

Theorem 7. Every minimizer of Gε under (5) is symmetric of vortex type and
the following dichotomy holds for 2 ≤ N ≤ 6:

a) if ε ≥ εN , then the non-escaping vortex solution Ūε = (fε(|x|) x|x| , 0) is the

unique minimizer of Gε under (5).

b) if ε < εN , then the two escaping vortex solutions (f̃ε(|x|) x|x| ,±gε(|x|)) with

gε > 0 are the only minimizers of Gε under (5). In this case, the non-escaping
solution Ūε is unstable.

The idea is the following: point a) is implied by the proof of Theorem 2. For point
b), if an escaping critical point U = (u, UN+1) of Gε exists under (5), then it is a
minimizer and the set of minimizers is given by {(u,±UN+1)} (this phenomenon is
explained in [9]). Restricting to the class of symmetric vortex type maps, Lemma
4 implies that the non-escaping vortex solution Ūε is unstable if ε < εN and
therefore, an escaping symmetric vortex solution exists, which determines the set
of minimizers. Of course, by the proof of Theorem 2, the non-escaping vortex
solution Ūε is the unique minimizer of Gε under (5) in dimension N ≥ 7.
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On C
1 regularity for degenerate elliptic equations in the plane

Xavier Lamy

(joint work with Thibault Lacombe)

We show that Lipschitz solutions u of divG(∇u) = 0 in B1 ⊂ R2 are C1, for strictly
monotone vector fields G ∈ C0(R2;R2) satisfying a mild ellipticity condition. If
G = ∇F for a strictly convex function F , and 0 ≤ λ(ξ) ≤ Λ(ξ) are the two
eigenvalues of ∇2F (ξ), our assumption, stated loosely, is that the bad set B =
{λ = 0} ∩ {Λ = ∞} ⊂ R2, where ellipticity degenerates both from below and from
above, is finite. This extends results by De Silva and Savin [1] which assumed
either that set empty, or the larger set {λ = 0} finite. Our main new input is to
transfer estimates in {λ > 0} to estimates in {Λ < ∞} by means of a conjugate
equation. This also gives new results on the regularity of autonomous nonlinear
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Beltrami equations. When G is not a gradient, the ellipticity assumption needs
to be interpreted in a specific way and we provide an example highlighting the
nontrivial effect of the antisymmetric part of ∇G. We conjecture that, for any
general strictly monotone vector fields G ∈ C0(R2;R2) and any Lipschitz solution
u of divG(∇u) = 0, the function x 7→ dist(∇u(x),B) is continuous.
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On Minimizing Harmonic Maps with Planar Boundary Anchoring

Dominik Stantejsky

(joint work with Lia Bronsard and Andrew Colinet)

Motivated by experiments with nematic liquid crystal droplets [3], we study har-
monic maps that arise as minimizers of the one-constant approximation of the
Oseen-Frank energy subject to strong anchoring tangential boundary condition.
More precisely, we are interested in minimizers of the functional

E(n) =
1

2

∫

B1(0)

|∇n|2 dx ,

subject to the constraint |n| = 1 and the boundary condition n · ν = 0, where
ν = er is the normal vector of the domain B1(0) ⊂ R3.

Through a reflection method, we are able to study the regularity of minimizers
close to the boundary. For the case of flat boundaries, see [2].

Furthermore, we study the symmetry of minimizers. Assuming the existence of
an axis for cylindrical coordinates such that

∫

B1(0)

1

ρ2

(
nρ∂θnθ − nθ∂θnρ

)
dx ≥ 0 ,

we are able to show that minimizers must be equivariant.
We believe that our assumption is not necessary, and a stronger statement holds:

Conjecture. Every global minimizer must satisfy nθ ≡ 0 with respect to some
axis of symmetry.

The regularity result implies that all singularities must be point singularities.
Under the assumption nθ ≡ 0, these points can only occur on the axis of symmetry.

Adapting methods from [1], we show that in this situation no interior singu-
larities are possible and the only defects occur on the boundary at two antipodal
points.
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Nematic liquid crystal colloid with planar anchoring and a weak
magnetic field

Dean Louizos

(joint work with Lia Bronsard and Dominik Stantejsky)

We study minimizers of the non-dimensionalized Landau-de Gennes energy func-
tional on an exterior domain Ω ⊂ R3 given by

Eξ,η(Q) =

∫

Ω

1

2
|∇Q|2 + 1

ξ2
f(Q) +

1

η2
g(Q) dx ,

for two small parameters ξ, η > 0. In this setup we consider a particle immersed in
nematic liquid crystal where the surface of the particle is described by a manifold
M and Ω is the region in R3 exterior to M. Similar results have been obtained
for a homeotropic anchoring condition in [1] and [2], but in our setup we consider
tangential anchoring of the liquid crystal molecules. This study began with [3]
where M is taken to be the unit sphere and now we generalize to a larger class of
manifolds.

The aim is to understand the limiting energy of minimizers in the large-particle
limit, where we consider a regime corresponding to a weak magnetic field described
by the asymptotics

η

ξ
→ ∞ as ξ, η → 0 .

We are able to obtain estimates on the energy of minimizers Qξ,η in this regime
which allow us to study the possible defects that may occur. The estimates also
lead to the following limiting energy:

lim
ξ,η→0

ηEξ,η(Qξ,η) =

∫

M

4
√
24
(
1−

√
1− ν23

)
dH2 .

Using this energy we can examine a related optimization problem in which we
allow the orientation of M with respect to the magnetic field direction to vary.
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The dimension and behaviour of singularities of stable solutions to
semilinear elliptic equations

Federico Franceschini

(joint work with Alessio Figalli)

1. Setup

Let f : R → R be a convex, positive, increasing nonlinearity and Ω ⊂ Rn a bounded
smooth domain.

Definition 1. We say that u ∈ H1
loc(Ω) is a stable weak solution of

(1) −∆u = f(u),

if f ◦ u and f ′ ◦ u are in L1
loc(Ω) and, for all test functions φ ∈ C1

c (Ω), it holds∫

Ω

∇u · ∇φ =

∫

Ω

f(u)φ and

∫

Ω

|∇φ|2 ≥
∫

Ω

f ′(u)φ2.

By the mean value inequality, u is locally bounded from below in Ω.
By standard elliptic regularity,

u ∈ L∞
loc(Ω) =⇒ u ∈ C2,α

loc (Ω), for all α < 1.

As ⇐= holds as well, we define

reg(u) = “The largest open subset of Ω where u is locally bounded above”,

and sing(u) := Ω \ reg(u). If sing(u) = ∅, we say that u⋆ is a classical solution.
Concerning the behaviour of u around singular points, in this work we show

that, if 0 ∈ sing(u), then

lim sup
x→0

f ′(u(x))|x|2 ≥ c(n) > 0,

which is optimal thanks to the counterexamples of [13]. Concerning the size of
sing(u), we show that, for a large subclass of nonlinearities f , dim sing(u) ≤ n−10,
which is optimal thanks to classical counterexamples.

In the rest of this abstract we explain more in detail these results and explain
their relationship with two questions of Brezis.

2. Motivation

Weak stable solutions arise naturally as extremal solutions of the so called Gelfand
problem (see the book [9]): given a constant λ > 0 consider

(2)





−∆u = λf(u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

If we assume further that

f(0) > 0,

∫ ∞

1

dt

f(t)
<∞ and f(t)/t→ +∞ as t → +∞,

the main result concerning (2) can be summarized as follows
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Theorem 2 ([1, 3, 9, 11, 2])). There exists a constant λ⋆ ∈ (0,+∞) such that:

(i) For every λ ∈ (0, λ⋆), (2) has a unique weak stable solution uλ which is
bounded (and thus C2). Furthermore, uλ < uλ′ for λ < λ′ < λ⋆.

(ii) For every λ > λ⋆ there is no solution, not even in the following L1-weak
sense: u ∈ L1(Ω), f(u)dist(·, ∂Ω) ∈ L1(Ω), and

−
∫

Ω

u∆φdx = λ

∫

Ω

f(u)φdx for all φ ∈ C2(Ω) with φ|∂Ω = 0.

(iii) For λ = λ⋆ there exists a unique L1-weak solution u⋆, which is also the
unique weak stable solution in the sense of Definition 1. This solution is
called the extremal solution of (2) and satisfies uλ ↑ u⋆ as λ ↑ λ⋆.

We remark that, for λ ∈ (0, λ⋆) there could be many classical solutions to (2),
but only one is stable. For λ = λ⋆ instead, the weak solution is unique and it is
necessarily stable, but may, or may not, be classical.

The model cases to keep in mind are:

Example 3. If f(u) = eu, n ≥ 10 and Ω = B1 then u⋆ = −2 log |x| and λ⋆ =
2(n − 2). The restriction on n ≥ 10 comes from the sharp constant in Hardy’s
inequality: ∫

φ(x)2

|x|2 ≤ 4

(n− 2)2

∫
|∇φ|2.

Example 4. Assume f(u) = (1 + u)p, n ≥ 11, p ≥ pn and Ω = B1. Then
u⋆ = |x|−2/(p−1) − 1 and λ⋆ = 2(np− n− 2p)(p− 1)−2. Here pn > 1 is the root of

n− 2

2
=

pn
pn − 1

+

√
pn

pn − 1
.

2.1. Shape of singularities. In [1], inducting from these examples, Brezis asked:

“Open problem 4. Suppose u⋆ has an isolated singularity at x0 ∈ Ω. Is it true
that

(3) f ′(u⋆(x)) ≃ 1

|x− x0|2
as x→ x0 ?”

Concerning the lower bound, Villegas constructed ([13]) f and a radial u⋆ such
that

lim inf
r→0

f ′(u⋆(r))r2 = 0.

Our first contribution goes in the positive direction. For any u as in Definition 1
and convex, increasing and positive f :

Theorem 5 ([10]). There is a dimensional constant ε = ε(n) > 0 such that:

lim sup
r→0

r2−n
∫

Br\Bεr

f ′(u) < ε =⇒ 0 ∈ reg(u).

As an immediate corollary, if 0 ∈ sing(u) then

lim sup
x→0

f ′(u(x))|x|2 ≥ ε3 > 0.
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3. Size of the singular set

Concerning the regularity of u⋆, in [1], Brezis also asked:

“Open problem 1: Is there something “sacred” about dimension 10? More
precisely, is it possible in “low” dimensions to construct some f (and some Ω)
for which the extremal solution u⋆ is unbounded? Alternatively, can one prove in
“low” dimension that u⋆ is smooth for every f and every Ω?”

After many partial results ([12, 7, 4, 6, 14, 8, 5]), Cabré, Figalli, Serra and Ros-
Oton proved this conjecture in [3], in particular showing that all weak stable

solutions are bounded if n ≤ 9 and that their gradient is always ∇u ∈ L2+γ
loc (Ω),

with γ(n) > 0.
It is natural to conjecture that, in all dimensions dim sing(u) ≤ n − 10. This

cannot follow from a Federer-type dimension reduction, for example because no
monotonicity formula is available in this setting.

Instead, we prove that f ′(u) ∈ Lqloc for some q > 1. This, joined with Theorem 5
and a standard covering argument, shows that dim sing(u) ≤ n− 2q.

We need unfortunately some additional assumptions on f , the precise result is:

Theorem 6 ([10]). Let f ∈ C2(R) be convex, positive and increasing such that

(4) lim inf
t→+∞

f ′′(t)f(t)

f ′(t)2
> 0.

Let u be a weak stable solution as in Definition 1. Then f ′(u) ∈ Lq−loc(Ω) and
dim sing(u) ≤ n− 2q, where we set

(5) q := 1 + 2 lim inf
t→∞

log f(t) +
∫ t√ f ′′(s)

f(s) ds

log f ′(t)
.

For a “typical” f with (super)exponential growth, one finds q = 5. For a

“typical” f with p-growth one finds q =
p+

√
p(p−1)

p−1 , which is in accordance with

the critical exponent pn of Example 4.

This is of course heuristic, indeed the ratio
∫ t√ f ′′(s)

f(s) ds
/
log f ′(t) is very un-

stable by affine approximation of f (formally because
√
δ0 = 0).

3.1. Open questions. Concerning Brezis’ Open Question 4, it is not known
whether

lim sup
x→0

f ′(u⋆(x))|x|2 < +∞.

Nevertheless, by the stability inequality, the averaged version (as well as the “lim-
inf” version) is true: ∫

Br

f ′(u) ≤ Crn−2.

Concerning Theorem 6, we would like to relax the assumptions on f needed
to show that f ′(u) ∈ L5−

loc. Heuristically, one could hope to have only qualitative
assumptions involving f and f ′, instead of (4) and (5).
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On the one-phase problem

Xavier Fernández-Real

(joint work with Max Engelstein, Hui Yu)

In this talk, we give an introduction to the one-phase problem, and relate the
study of its properties to other problems in geometric analysis, such as minimal
surfaces, the obstacle problem, or the Alt–Phillips problem.

The classical one-phase problem is the study of nonnegative solutions (critical
points, stable points, or minimizers) of the Alt–Caffarelli functional

(1) JΩ(v) =

∫

Ω

|∇v|2 + |{v > 0}|, for v ≥ 0, v ∈ H1(Ω),

where Ω is a domain in Rn.
Motivated by models in flame propagation and jet flows, this energy was origi-

nally studied from a mathematical point of view by Alt and Caffarelli in [1]. Since
then, regularity of the minimizer and its free boundary has been extensively stud-
ied; see, for instance, [1, 3, 7, 9, 10]. We refer to [5] for a thorough introduction
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to the classical theory, and refer to [12] for a modern treatment of the one-phase
problem and related topics.

The study of (1) follows closely the steps originally done in the study of the
regularity theory for minimal surfaces (which nowadays also apply to many other
settings, such as the obstacle problem or the understanding of harmonic maps).
As such, the regularity of the free boundary follows by a blow-up argument and
classification of global solutions, once one observes that also a monotonicity for-
mula is available for this setting. However, contrary to what happens for minimal
surfaces, not all homogeneous blow-ups have been classified in low dimensions yet.

Even for minimizers, not all homogeneous global solutions to (1) (also known as
minimizing cones) have been fully classified. By the works of Caffarelli–Jerison–
Kenig [4] and Jerison–Savin [11], it is known that for n ≤ 4, the only homogeneous
minimizer1 is, up to a rotation, the half-plane solution

(2) u(x) = x+n .

While in dimension 7, De Silva-Jerison [6] provides a nonflat minimizing cone.
What happens in the remaining dimensions is still, nowadays, a mystery.

Inspired by the parallels with minimal surfaces, in the second half of the talk
we present recent results in collaboration with M. Engelstein and H. Yu.

The first result concerns the existence of Bernstein-type theorems for the one-
phase problem.

Originally, the Bernstein theorem for minimal surfaces reads as:

Theorem 1 (Fleming, DeGiorgi, Almgren, Simons, 1960s). Let Γ be a C2 minimal
graph in Rn for n ≤ 8. Then Γ is a hyperplane. Moreover, the statement does not
hold for n ≥ 9.

In our setting, we prove the following analogous result, where k∗0 is the lowest
dimensions for which non-trivial minimizing blow-ups appear:

Theorem 2 ([8]). Let u be a viscosity solution to the classical one-phase problem
in Rn, whose contact set {u = 0} is the subgraph of a continuous function (the
free boundary is a continuous graph). Then, if n < k∗0 + 1, up to a rotation we
have u = (xn)+, and in particular, the free boundary is a hyerplane.

Our technique is so versatile that can also be applied to the case of the thin
one-phase problem, for which we also need to develop the regularity theory up to
the fixed boundary.

As a consequence, by the results from Audrito–Serra, [2], we also obtain a char-
acterization of monotone global solutions to a wide class of semilinear equations:

Theorem 3 ([8]). Let u satisfy ∆u = f(u) in Rn for some f ≥ 0 compactly
supported with f(0) = 0 and f ′(0) > 0, and ∂nu > 0. Suppose, moreover, that

lim
xn→−∞

u(x′, xn) = 0 and lim
xn→+∞

u(x′, xn) = +∞.

Then, if n < k∗0 + 1, u is one-dimensional (level sets are hyperplanes).

1The result applies to a larger class called stable solutions for which one has positive density of
the contact set. They are critical points of the functional (1) with nonnegative second variations.
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The second recent result we have presented in this talk, concerns the generic
uniqueness and regularity of solutions to the one-phase problem:

In general, minimizers to the one-phase problem are not unique. In our recent
result, we show that, however, such a phenomenon is rare:

Theorem 4 ([10]). Minimizers of J0 are generically unique. That is, almost
every boundary datum admits a unique minimizer to J0.

We remark that genericity is understood in a measure-theoretic or prevalence
sense. That is, given a monotone family of boundary datum {ϕt}t∈(0,1), then the
set of t for which the corresponding family of minimizers with boundary datum
ϕt is non-unique is countable.

We also show a generic-type result for the regularity of free boundaries:

Theorem 5 ([10]). Free boundaries for minimizers of the one-phase or Alt–Caffa-
relli problem are smooth up to dimension k∗0 generically. That is, for almost every
boundary datum, the corresponding minimizer has a singular set of dimension
n− k∗0 − 1.

In fact, our results are a bit more general, and also apply to the Alt–Phillips
free boundary problem.

We finish the talk by stating an important conjecture for the one-phase problem,
whose minimal surface analogue has gathered some attention in the past months:

Conjecture 6. Let u be a global stable solution to the one-phase problem in Rn.
Then, if n ≤ 6, u is one-dimensional.
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Stable phase transitions: open questions and new results

Joaquim Serra

(joint work with Hardy Chan, Alessio Figalli, Xavier Fernández-Real)

Surface tension and similar forces give rise to area-minimizing interfaces in various
physical phenomena, which are readily observable at macroscopic scales.

However, the principle of surface area minimization does not hold uniformly
across all scales, as the underlying physical energies often vary with scale. For
instance, describing a soap film as an area-minimizing surface becomes implausible
at scales around 5 nanometers—the approximate size of a soap molecule.

This naturally raises the question: do all stable configurations in such scale-
dependent, area-like models necessarily resemble minimal surfaces at macroscopic
scales? Alternatively, can certain “microscopic effects” have observable conse-
quences at the macroscopic level?

To address this general, somewhat philosophical question more concretely, we
turn to a well-known example: the Allen-Cahn energy. This phenomenological
model exhibits scale-dependent behavior, approximating area minimization only
at larger scales. When restricted to a domain Ω ⊂ R3, it is given by

E(u; Ω) =

∫

Ω

|∇u|2 +W (u) dx,

where u : Ω → (−1, 1), and W (u) is a double-well potential with minima at ±1.
That is, W (u) = 0 for u = ±1, and W (u) > 0 for −1 < u < 1. Typical examples
of W (u) include (1− u2)2 or cos(πu/2).

Over the past two decades, the regularity theory for absolute energy-minimizing
minimal surfaces has been successfully extended to several scale-dependent models,
including the Allen-Cahn model (as shown by Savin in [4]). However, extending
these results to encompass all stable configurations —i.e. those ‘observable’ in
nature— remains a significant and challenging open question.

A function u : R3 → [−1, 1] is called stable critical point of E in R3 if

d

dt

∣∣∣∣
t=0

E(u ◦ φ; Ω) = 0 and
d2

dt2

∣∣∣∣
t=0

E(u ◦ φ; Ω) ≥ 0

for every domain Ω compactly supported in R3 and for every smooth variation
φ = φ(x, t), that is for any smooth function φ : R3×R → R3 such that φ(x, 0) = x
and φ(x, t) − φ(x) is compactly supported in Ω for every t.

Classifying stable critical points of E in R3 remains a long-standing open prob-
lem . Solving this problem would essentially close or complete the regularity theory
for stable phase transitions in three dimensions, using the deep regularity results
for stable critical points developed in [5].
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In the case where W (u) = 1(−1,1)(u) (that is, W (u) = 1 if −1 < u < 1 and
W (±1) = 0), critical points of the energy functional E solve a free boundary
problem. See [1, 2] and references therein for more details.

In an upcoming joint work with Chan, Fernández-Real, and Figalli, we establish
the following result:

Let u : R3 → [−1, 1] be a stable critical point of E, in the free
boundary case where W (u) = 1(−1,1)(u). Then D2u ≡ 0 in the
open set {−1 < u < 1}. In particular, the free boundaries are
parallel planes.

A key and challenging step in proving the above result is the classification of
stable solutions to the Alt-Caffarelli free boundary problem in R3, which shows
that such solutions have flat free boundaries. The Alt-Caffarelli problem naturally
arises from the free boundary Allen-Cahn equation after a blow-up.

The classification of stable solutions to the Alt-Caffarelli problem in R3 is a
subtle question. Indeed, there exist finite Morse index (and hence stable outside
from a compact set) solutions to this problem in Rn with non-flat free boundaries
for every n ≥ 2 (see [3]).
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On the monotonicity of the jump set for a denoising problem

Riccardo Cristoferi

(joint work with Rita Ferreira, Irene Fonseca, Josè Iglesias)

We consider a standard variational model for denoising of signals, the so called
ROF model. Let f ∈ L2(0, 1) and α ∈ (0,+∞), and consider the functional
Iα : BV (0, 1) → [0,+∞) defined, for u ∈ BV (0, 1), by

Iα(u) :=
1

2
‖u− f‖2L2(0,1) + αTV (u, (0, 1)).

Here, TV (u, (0, 1)) denotes the total variation norm of u in [0, 1]. For each α > 0,
we know that the minimization problem

min
u∈BV (0,1)

Iα(u).

admits a unique solution uα ∈ BV (0, 1).
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The goal of this investigation is to understand the behavior of Juα
, the jump set

of uα, with respect to α. In particular, we aim at proving that α 7→ Juα
is a

decreasing function. Namely, that

(1) Juα2
⊂ Juα1

,

for all α1 < α2 ∈ (0,∞). This behavior was conjectured in [1], and the problem
has been largely open for many years. The interest in this issue is that it sheds
light on the features of the ROF model, that can help practitioners with choosing
it over others based on what properties of the noiseless signal they care about.

The proof of the validity of (1) in the case where the initial data f is a piecewise
constant function was treated in [3]. Moreover, combining several works on the
monotonicity of the jump set for the TV flow, and the equivalence of this latter
with the functional Iα in the one dimensional scalar case, in [1] it is indicated
how obtain, in a rather intricate way, the result in the case the initial data f ∈
BV (0, 1) ∩ L∞(0, 1).

In this talk, we present a more direct proof of this result that also allows to
weaken the assumptions on f . The strategy of the proof relies on duality arguments
(see [2]). The advantage of this, is that we work with a geometric problem that,
roughly speaking, it allows to compare the energy of uα for different parameters
α’s.

Further investigations will tackle the higher dimensional case.
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An isoperimetric problem involving the competition between the
perimeter and a nonlocal perimeter

Marc Pegon

(joint work with Michael Goldman, Benôıt Merlet)

In this talk, I will present an isoperimetric problem in which the perimeter is
replaced by P − γPε, where γ ∈ (0, 1), P stands for the classical perimeter and Pε
is a nonlocal energy which converges to the perimeter as ε vanishes. This problem
is derived from Gamow’s liquid drop model for the atomic nucleus in the case
where the repulsive potential is sufficiently decaying at infinity and in the large
mass regime. I will discuss existence of minimizers, uniform (w.r.t. ε) regularity
of quasi-minimizers, and characterization of minimizers for small ε.
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Critical points of degenerate polyconvex energies

André Guerra

(joint work with Riccardo Tione)

Let Ω ⊂ R2 be a smooth, bounded domain, and consider the polyconvex energy

E[u] ≡
∫

Ω

g(detDu) dx, u : Ω → R
2,

where g ∈ C1(R) is strictly convex. Energies of this type where studied extensively
in the literature, for instance in connection with elastic fluids [3, 4, 5, 8, 9]. In [6],
we consider critical points of E, i.e. solutions of the Euler–Lagrange system

(1) div(g′(detDu) cof(Du)) = 0.

It is easy to see that any u ∈ C1(Ω,R2) solving (1) satisfies detDu = c in Ω,
for some c ∈ R. Our first result is that the same rigidity continues to hold for
Lipschitz solutions:

Theorem 1. Let g ∈ C1(R) be strictly convex and let u ∈ Lip(Ω,R2) solve (1).
Then there is c ∈ R such that detDu = c a.e. in Ω.

There is a simple proof of Theorem 1 when detDu ≥ δ > 0 a.e. in Ω [8], and
so the main difficulty is reducing to this case. To do so, we combine tools from
continuity equations and quasiconformal maps. To be more precise, using the
results of [1, 2] one can show that any Lipschitz solution of (1) is renormalized (in
the sense of DiPerna–Lions), i.e. that

div(β[g′(detDu)] cof(Du)) = 0 for all β ∈ C∞
c (R).

Equivalently, for a fixed β we can guarantee the existence of v ∈ Lip(Ω,R2) such
that

Dv = β[g′(detDu)] Du,

provided that Ω is simply connected. It is then easy to verify that v is a quasiregu-
lar map. The unique continuation properties of such maps, together with a suitable
choice of β, then yield the conclusion.

Theorem 1 gives a rigidity result for exact solutions of (1), but it is also in-
teresting to consider sequences of approximate solutions ; in this case, the natural
question is whether such sequences converge to an exact solution, and if so in
which sense. The following theorem provides the answer to this question:
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Theorem 2. Consider a sequence such that uj
∗
⇀ u in Lip(Ω,R2). If

div(g′(det Duj) cof(Duj)) = div(Fj), where Fj → 0 in L1(Ω),

then detDuj → detDu in L1(Ω) and, in particular, u solves (1).

This last result implies that the differential inclusion associated with (1) is
quasiconvex (i.e. it is closed under weak convergence), answering positively [7,
Question 10].
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On the homogenization problem for elasto-plasticity driven by
dislocation motion

Filip Rindler

(joint work with Paolo Bonicatto)

The homogenization problem in elasto-plasticity concerns the passage from dis-
crete to fields of dislocations. While much consensus exists on what the physical
laws are for the individual dislocations, it is not clear - and in fact one of the
most pressing open problems of solid mechanics - how to formulate laws for the
movement of dislocation fields and the corresponding elasto-plastic effects.

The main contribution of this work is to show that in a prototypical model
of small-strain, geometrically linear plasticity in single crystals and with rate-
independent dynamics, such a homogenization procedure from discrete dislocation
lines to dislocation fields can indeed be carried out.

We represent a (single) crystal specimen as occupying a bounded open Lipschitz
domain Ω ⊂ R3 at the initial time. A map u = u(t) : Ω → R3 describes the total
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displacement of the body at time t. A fundamental relation in linearized elasto-
plasticity is the geometrically linear splitting of the displacement gradient as

∇u = e+ p,

where e, p : Ω → R3 are the elastic and plastic distortion fields, respectively.
The elasticity of the specimen will lead to u being minimized over all candidate

deformations. Computing the Euler–Lagrange equation, noting that curl p cannot
be cancelled by any gradient ∇u, one obtains the following PDE system for the
geometrically-necessary distortion β due to the dislocations, which are represented
by curl p: 




−divEβ = 0 in Ω,

curlβ = −curl p in Ω,

nTEβ = 0 on ∂Ω.

Taking into account also further deformation that is not caused by dislocations
(but by external or internal forces), we now introduce the notion of the free (non-
dislocation) deformation as the remainder

fr[∇u− p] := ∇u− p− β,

where β is a solution to the above PDE system.
Following the approach of [2, 3, 4] we represent the movement of dislocations

via their slip trajectories in space-time. So, let Sb be a 2-dimensional integral or
normal current in R1+3, where b ∈ B =

{
±b1, . . . ,±bm} is a Burgers vector. We

then recover the dislocations for the Burgers vector b at a time t via slicing and
forgetting the t-coordinate, that is,

Sb(t) := p∗(S|t),
where p(t, x) := x. The space-time approach has many benefits, among them the
straightforward definition of the dislocation velocity via

gb := ⋆

(
p∗(S

b|t)
|∇Sbt(t, ·)|

)
,

where “⋆” denotes the Hodge star operation (which here transforms the 2-vector
p∗(S

b|t) to a normal vector that is orthogonal to the tangent space of the slice

Sb|t), and ∇Sb

t is the projection of the gradient of t(t, x) := t onto the tangent

space to Sb. Here we need of course assume that ∇Sb

t 6= 0 to make gb well-defined.
This condition is discussed at some length in [1], where it is shown to mean that
there is no jump part in the slip trajectories, not even a jump “smeared-out” in
space and time (the so-called Flat Mountain singularity).

If instead we were given a time-indexed family (Sb(t))t of slices, it would be

very difficult to determine the above quantity gb since |∇Sb

t| is not computable
directly from the slices. Nevertheless, the (quite nontrivial) Rademacher-type
differentiability result of [1] shows that such a formulation is essentially equivalent
to the space-time approach when Sb is Lipschitz-continuous in time, up to dealing
with a number of regularity issues. However, from an analytical point of view, the
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space-time formulation has many benefits due to the good compactness properties
of integral (and normal) currents.

Based on the preceding discussion, we then consider the total energy functional
to be given as

E(t, u, p, (T b)b) :=
1

2

∫

Ω

|fr[Du− p]|2E dx+
1

2

∑

b∈B

Mψb(T b)−
∫

Ω

f(t)u dx,

where E is a symmetric fourth-order elasticity tensor, |A|2
E

:= A : (EA) is the
associated quadratic form, and Mψb is the (possibly) anisotropic mass (length) of

the dislocation T b (an integral or normal 1-current).
The coercivity of E implies that for all times t, the plastic distortion p(t) is

a measure with the property that also curl p is a measure. This implies strong
restrictions on the singularities that can be present in p(t). Roughly, p(t) has the
same dimensionality, rectifiability, and polar rank-one properties (i.e., the validity
of Alberti’s rank-one theorem) as BV-derivatives. We cannot expect any regularity
beyond boundedness in mass for p since slips over surfaces are only representable
by measures p. It is well-known that such effects can occur in real materials as
slip lines.

The collection S = (Sb)b of slip trajectories also allows us to express the corre-
sponding evolution of plastic distortion via the plastic flow formula

pS(t) := p+
1

2

∑

b∈B

b ⊗ ⋆p∗(S
b (0, t)× R

3).

This plastic flow formula furthermore implies the consistency relation

curl p(t) = α(t) =
1

2

∑

b∈B

b⊗ Sb(t),

meaning that our flow retains the correct relationship between the plastic distor-
tion p(t) and the dislocation system (Sb(t))t for all times t (assuming it at the
initial time).

It is a crucial feature of the model introduced in the present work that the
dislocation evolutions are modelled using the space-time approach. In fact, the
more classical Kröner dislocation density tensor is not rich enough to account for all
effects that are of relevance. On the other hand, the space-tine internal variables,
from which the Kröner dislocation density can be recovered by integrating out the
additional information, contain just enough additional information to make the
discrete-to-field limit passage possible.

Technically, our main results shows the existence of Mielke–Theil energetic so-
lutions to the limit evolutionary system (involving dislocation fields) that are ob-
tained as limits of discrete evolutions (involving individual dislocation lines). Thus,
the limit model of elasto-plasticity driven by dislocation fields may be considered
to be well-justified from microscopic principles.
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A priori bounds for geodesic diameter

Ulrich Menne

(joint work with Christian Scharrer)

We presented selected results from our series [MS22, MS23, MS24] whose termi-
nology we employ. In particular, the geodesic diameter of a closed subset A of Rn

is the supremum of all numbers σ(a, x) corresponding to a, x ∈ A, where σ(a, x)
is the infimum of the set of lengths of continuous paths in A connecting a and x.

Always, suppose m and n are integers with 2 ≤ m ≤ n. The starting point
of our research was the following result of P. Topping (for immersions) which is
based on the monotonicity identity through the Sobolev inequality on M .

Theorem (see [Top08, 1.1]). Suppose M is a connected m dimensional compact
submanifold of class 2 of Rn.

Then, the geodesic diameter of M does not exceed

Γ
∫
M |h(M,x)|m−1 dH

m x,

where Γ is a positive real number determined by m.

In generalising this result, we had three aims:

(1) the transfer to the non-smooth setting,
(2) the inclusion of boundary in the treatment, and
(3) the applicability to geometric variational problems.

These aims were accomplished by means of our following theorem phrased in the
varifold setting which is the natural one due to the involvement of mean curvature.

Theorem (see [MS24, 7.4]). Suppose V and W are varifolds in Rn, dimV = m,
dimW = m− 1, ‖δV ‖ and ‖δW‖ are Radon measures,

Θ
m(‖V ‖, x) ≥ 1 for ‖V ‖ almost all x,

Θ
m−1(‖W‖, x) ≥ 1 for ‖W‖ almost all x,

‖δV ‖ ≤ ‖V ‖ x |h(V, ·)|+ ‖W‖, ‖δW‖ ≤ ‖W‖ x |h(W, ·)|,
(‖V ‖ + ‖W‖)(Rn) < ∞, V is indecomposable of type D(Rn,R), and d is the
geodesic diameter of spt ‖V ‖.
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Then, for some positive finite number Γ determined by m, there holds

d ≤ Γ
( ∫

|h(V, ·)|m−1 d‖V ‖+
∫
|h(W, ·)|m−2 d‖W‖

)
;

here, by convention, we stipulate
∫
|h(W, ·)|0 d‖W‖ = ‖W‖(Rn) regarding m = 2.

This includes the smooth case of a submanifold-with-boundary and entails the
immersed case by means of differential-topological density results. The implication
that the finiteness of the sum of the mean curvature integrals implies the finiteness
of d is new even whenW = 0. Aside of including boundary, the two most significant
challenges involved in establishing our preceding theorem were

(i) how to rephrase the connectedness hypothesis for varifolds; and,
(ii) how to handle the low summability of the mean curvature.

The following simple examples of varifolds comprised of countable sums of spheres
already capture the corresponding key phenomena.

Example. There exists an m dimensional varifold V in Rm+1 corresponding to a
countable sum of spheres such that spt ‖V ‖ is compact, ‖δV ‖ is a Radon measure
absolutely continuous with respect to ‖V ‖, hence ‖δV ‖ = ‖V ‖ x |h(V, ·)|, and

∫
|h(V, ·)|m−1 d‖V ‖ <∞ = d.

In fact, spt ‖V ‖ can be prescribed to equal the closure of any bounded open subset
of Rn if m < n, see [Men16, 14.1].

The indecomposability hypothesis in the theorem rules out such behaviour; in
that setting, the critical scaling is given by cylinders rather than spheres.

Example (see [MS23, 6.4, 6.5, 10.20]). Suppose V corresponds to the union of two
touching spheres. Then, V is decomposable but indecomposable of type D(Rn,R).

Indecomposability of type D(Rn,R) can be exploited by co-area type consid-
erations, see [MS23, 7.11, 7.12], and is entailed by connectedness of spt ‖V ‖ in
case δV is well-behaved, see [MS23, 10.20, 10.22]. Here, well-behaved means that
δV satisfies a dimensionally critical summability condition with respect to ‖V ‖
possibly in conjunction with a smooth Dirichlet or Neumann boundary condition,
see [MS23, 9.1, 9.16].

Our theorem admits a wide range of applications to geometric variational prob-
lems including several formulations of Plateau’s problem. For the Plateau problem
in the sense of Reifenberg, thoroughly studied by the group of G. David, we arrive
at the following corollary which combines our previous theorem with results of F.
Almgren, H. Pugh, and C. Labourie in [Alm76, Pug19, Lab22].

Corollary (see [MS24, Theorem B]). Suppose B is a nonempty compact connected
m dimensional submanifold of class 2 of Rn, G is a commutative group, L is
a subgroup of the (m − 1)-th Čech homology group of B with coefficients in G,
Č (B,L,G) denotes the family of compact subsets of Rn spanning L,

E ∈ Č (B,L,G), H
m(E) = inf

{
H

m(F ) :F ∈ Č (B,L,G)
}
,

A = spt(H m
xE), and d is the geodesic diameter of A.
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Then, for some positive finite number Γ determined by n, there holds

d ≤ Γ reach(B)−mH m−1(B)m/(m−1)
∫
B |h(B, b)|m−2 dH m−1 b;

here, by convention, we stipulate
∫
B
|h(B, b)|0 dH 1 b = H 1(B) regarding m = 2.

Due to the inevitable singularities of A, even finiteness of d is new. F. Almgren’s
study in [Alm76] ensures that E is (H m,m) rectifiable; H. Pugh’s isoperimetric
inequality in [Pug19] yields the natural estimate of H m(E) in terms of H m−1(B);
C. Labourie’s homological considerations in [Lab22] crucially entail

B ⊂ A;

and the m dimensional varifold V associated with E clearly satisfies spt δV ⊂ B.
With these results at hand, we merely require two observations to make our pre-
ceding theorem applicable to V : Firstly, refining W. Allard’s estimates regarding
boundary behaviour in [All75], we show that

‖δV ‖ ≤ ΓλH m−1
xB, where λ = reach(B)−m‖V ‖(E)

and Γ is a positive finite number determined by m, see [MS24, 8.12]. Secondly,
the study of connected components of A∼B in [Men16, 6.14] in conjunction with
the isoperimetric inequality allows to readily deduce connectedness of A from that
of B, see [MS24, 8.13].
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On Scaling Laws for Shape-Memory Alloys – Between Rigidity
and Flexibility

Angkana Rüland

(joint work with Janusz Ginster, Antonio Tribuzio, Barbara Zwicknagl)

In the modelling of many shape-memory alloys a striking dichotomy between rigid-
ity and flexibility emerges. On the one hand, if the surface energy is assumed to be
bounded (e.g., by imposing BV regularity on the deformation gradient), exactly
stress-free solutions are rather rigid [6, 8]. They obey the kinematic compatibility
conditions and often form microstructures such as simple laminates or crossing
twins which are also experimentally well documented [1]. If, on the other hand, no
additional surface energy constraints are imposed, in many settings a plethora of
highly non-unique solutions exists which can deviate substantially from the rigid
configurations [10, 5, 2, 14].

In this talk, based on the observations from [12], I adopt a scaling perspective
to infer finer information on this transition and the potential complexity of mi-
crostructures in situations between rigidity and flexibility. To this end, I consider
energies of the form

Eǫ(u) := Eel(u) + ǫEsurf (u), ǫ > 0.

Here Eel(u) encodes the elastic energy and is typically of the following form

Eel(u) =

∫

Ω

dist2(∇u,K)dx.

In this context Ω ⊂ Rn is the reference configuration, u : Ω → Rn models the
deformation and K ⊂ Rn×n denotes the stress-free strains which are typically

of the form K =
m⋃
j=1

SO(n)Uj for Uj = U tj ∈ R
n×n
>0 . The energy Esurf (u) is a

higher order penalization, e.g., Esurf (u) = ‖∇2u‖TV (Ω), penalizing the formation
of extremely fine structures. The constant ǫ > 0 is a material specific parameter,
which in many situations should be considered as being very small.

This talk particularly focuses on two settings: Firstly, I consider the situation of
the square-to-rectangular phase transformation with identity boundary conditions
which physically corresponds to austenite boundary conditions. In this setting, it
is possible to form quite flexible microstructures at extremely low energetic cost.
For instance, this includes the formation of self-similar star-type constructions
[3, 4] with an only linear scaling in ǫ > 0 and which are thus also of substantial
interest in nucleation phenomena. In addition to this qualitative information on
particular microstructures, in this setting, I discuss a scaling law quantifying the
Hadamard jump condition. In terms of scaling, this provides rather sharp informa-
tion on isoperimetric geometries. More precisely, I show that in generic domains
logarithmic losses to the linear scaling law occur, while in specific geometries which
are tailored to the well geometry it is possible to deduce linear scaling [7].

Secondly, I discuss a very rigid setting displaying a first (weak) transition be-
tween rigidity and flexibility. More precisely, I focus on the Tartar square and
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present an associated scaling law for it [9]. In this setting, dropping frame-
indifference, the set K consists of four matrices only. These are of a particular
structure ruling out the presence of rank-one connections and are such that the
associated 4-well problem in the exact setting is rigid, while in the approximate
setting it becomes flexible. The transition to flexibility is accompanied with the
formation of infinite-order laminates, a rather complex class of microstructures.
In this talk, I show how this is captured in a scaling law which is of subalgebraic
but superlogarithmic behaviour [13].

I further present various generalizations of these ideas and scaling laws.
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Stability aspects of the Möbius group of Sn−1

Konstantinos Zemas

(joint work with Stephan Luckhaus, Jonas Hirsch, André Guerra and
Xavier Lamy)

We discuss quantitative stability aspects of the class of Möbius transformations of
the sphere among maps in the critical Sobolev space W 1,n−1(Sn−1). The special
case of Sn−1-valued and the more general case of Rn-valued maps will be addressed.
In the latter, more flexible setting, unlike similar in flavour results for maps defined
on domains, not only a conformal deficit is necessary, but also a deficit measuring
the distortion of Sn−1 under the maps in consideration. The latter is introduced
as an associated isoperimetric deficit. In all cases, the corresponding stability
estimates are optimal in terms of the conformally invariant deficits and the distance
in Ẇ 1,n−1(Sn−1) to the Möbius group.
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Γ-limit for zigzag domain walls

Hans Knüpfer

(joint work with W. Shi)

Transition layers in the classical Aviles–Giga problem are typically one-dimensional.
In micromagnetism one also observes two-dimensional transition layers. One such
example is the so called zigzag wall observed in thin films. We derive the Γ-limit
to an anisotropic perimeter problem.

Generic Uniqueness and Multiplicity One Property for
area-minimizing Currents

Simone Steinbrüchel

(joint work with G. Caldini, A. Marchese, A. Merlo)

Finding the surface with least area among those having the same boundary is
called the Plateau Problem and has been an active topic of research for more than
hundred years now. Several mathematical models have been proposed to study
such surfaces. The one we focus on, are the area-minimizing integral currents
introduced by Federer and Fleming in the 60’s. Similarly to Sobolev functions,
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currents are functionals acting on differential forms and in case of smooth oriented
submanifolds, the action is given by integrating the differential form ω over the
manifold M

(1) T (ω) :=

∫

M

ω .

For such T , its operator norm (which we call mass) is then exactly the area of
M . Integral currents are the compactification of such “smooth” currents as in
(1). To be more precise, they integrate over a rectifiable set against an integer-
valued multiplicity function which counts how often a piece of the rectifiable set is
counted. Together with a bound on their mass and on the mass of their boundary,
they form a compact set of currents. This implies that when we fix the boundary,
we can minimize the mass and find an optimal integral current which we call
area-minimizing.

Together with G. Caldini, A. Marchese, and A. Merlo, we asked in [1] the
question of uniqueness, e.g. whether for a fixed boundary, there exists only one
area-minimizing integral current having this boundary. We were not the first
people working on this question. Namely, Morgan proved in [3] that there are very
symmetric examples where uniqueness failes. However, under some assumptions
(for instance connected boundaries and codimension one), such boundaries with
several minimizers are rare. Both Morgan’s and our result rely on regularity
theorems on the supporting set of the minimizer. We are using the recent result
[2] to prove that in the space of C3,α-boundaries, the set of boundaries with a
unique area-minimizing current, is residual. The main new aspect of our theory
compared to the one of Morgan relies on the fact that we can exclude the currents
with two-sided boundaries. In turn, this boils down to a taylor reminder estimate
implying that most C3,α-curves of dimension (m − 1) do not lie in a (relatively)
open set of a C3,β-manifold of dimension m. By construction, these remaining
currents then must have multiplicity one everywhere.
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Regularity in A -quasiconvex variational problems

Zhuolin Li

(joint work with Bogdan Rait, ă)

The notion of quasiconvexity was introduced by Morrey to investigate the scope
of the direct method of the calculus of variations, and the variational problems he
considered are of the following form:

F(u) =

∫

Ω

f(Du(x)) dx,

where u : Ω(⊂ Rn) → RN and f : RNn → R. Under suitable assumptions, the
quasiconvexity of f is equivalent to the lower semicontinuity of F [13], which,
together with its connection with coercivity [5], makes it the natural framework
for vectorial variational problems.

On the other hand, non-convex variational problems have been studied widely,
for instance in connection with continuum mechanics or with gradient flows (see,
for example, [1, 7, 2, 9, 4, 15]). Apart from the gradient operator D in F , more
general partial differential operators are involved in these problems, examples in-
cluding div, curl, E(Eu = 1

2 (Du+(Du)T )), and d (the exterior derivative operator).
In this talk, we consider constant rank operators. Given a homogeneous par-

tial differential operator A :=
∑

|α|=ℓAα∂
α with constant coefficients Aα ∈

Lin(Rd,Rm), it is said to have constant rank r ∈ N if rankA [ξ] = r for any
ξ ∈ Rn \ {0}, where A [ξ] =

∑
|α|=ℓAαξ

α is the symbol of A .

Under the constant rank condition, Fonseca and Müller proved the equivalence
of A -quasiconvexity and the lower semicontinuity of the corresponding functional
with respect to A -free sequences [10]. An integrand f : Rd → R is A -quasiconvex
if there holds ∫

(0,1)n
f(z + w(x)) dx ≥ f(z)

for any z ∈ Rd and any w ∈ C∞
c ((0, 1)n,Rd) with A w = 0. The result in [10] is

done for non-negative integrands, and was generalised to signed integrand in [12].
With the lower semicontinuity result, it is then possible to consider the following

variational problem

Iv0(w) =

∫

Ω

f(v0 + w(x)) dx, w ∈ C∞
c (Ω,Rd), A w = 0,

where f : Rd → R is strongly A -quasiconvex and of p-growth (|f(z)| ≤ L(1+ |z|p))
for some 1 < p < ∞, and v0 ∈ Lp(Ω,Rd) satisfies A v0 = 0. The direct method
can be applied, with the lower semicontinuity and coercivity of Iv0 , to obtain the
existence of (at least) one minimizer of Iv0 in Lp0,A (Ω,Rd) (the closure of the space

{w ∈ C∞
c (Ω,Rd) : A w = 0} in Lp(Ω,Rd)).

In this project, we investigate the regularity of the minimizers, and obtain the
following partial regularity result:
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Theorem 1. Suppose that Ω ⊂ Rn is a bounded open set, and the C2 integrand
f : Rd → R is strongly A -quasiconvex and of p-growth, where A is a constant rank
operator. Fix v0 ∈ Lp(Ω,Rd) with A v0 = 0, and suppose that w ∈ Lp0,A (Ω,Rd)

is a minimizer of Iv0 . Then there exists a closed subset Sw ⊂ Ω with Hn(Sw) = 0

such that v0 + w ∈ C0,α
loc (Ω \ Sw,Rd) for any α ∈ (0, 1).

For any minimizer w ∈ Lp0,A (Ω,Rd) of Iv0 , there exists w̃0 ∈ Lp(Ω,Rd) with
A w̃0 = 0 such that

Iv0(w) = inf{Fw0
(ϕ) : ϕ ∈ C∞

c (Ω,Re)},
where w0 = v0 + w̃0,

Fw0
(ϕ) =

∫

Ω

f(w0 + Bϕ(x)) dx,

and B is a potential operator (of constant rank and of k-th order) of A ([14]).
Moreover, v0+w can be locally expressed as Bu with someW k,p map u. Therefore,
we can consider the following variational problem

F(u) =

∫

Ω

f(Bu(x)) dx

instead, one illustrative prototype example of which is
∫
f(dβ). Partial regularity

results in this setting can also be found in [11] (where B is elliptic and p = 1),
and [6] (where B is C-elliptic and 1 < p <∞).

To show the partial regularity result, the excess decay estimate strategy is used
here. Compared to the classical situation (see, for example, [8]), there are extra
difficulties due to the degeneracy of constant rank operators. Given a function

u ∈ C∞
c (Rn), it is possible to recover D̂ku from B̂u in the frequency space, and

thus conclude the following estimate

‖u‖Lp ≤ C‖Dku‖Lp ≤ C‖Bu‖Lp

if B is an elliptic operator (see [3]). A local version of the above estimate can also
be shown by doing cut-off. This is, however, not possible for constant operators
since Bu only carries partial information ofDku. Consequently, the usual Poincaré
inequality is not expected here, and the linearised Euler-Lagrange system is not
elliptic, which make the excess decay estimate more challenging. We discuss in the
talk how to overcome the difficulties caused by the degeneracy mentioned above.
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[12] A. Guerra, B. Rait, ă, Quasiconvexity, null Lagrangians, and Hardy space integrability under

constant rank constraints, Archive for Rational Mechanics and Analysis 245 (2022), 279–
320.

[13] C.B. Morrey, Jr., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific
Journal of Mathematics 2 (1952), 25–53.
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A Savin-type theorem in codimension two

Alessandro Pigati

(joint work with Guido De Philippis, Aria Halavati)

Starting from the pioneering ideas of De Giorgi, Modica, Ilmanen, and Hutchinson–
Tonegawa, it was understood that smooth critical points u :M → R of the Allen–
Cahn energy

Eǫ(u) :=

∫

M

[
ǫ|du|2 + (1− u2)2

4ǫ

]

are effective diffuse approximations of minimal hypersurfaces in a given Riemann-
ian ambient (Mn, g). The Allen–Cahn functional is a well studied model for phase
transitions; a typical critical point u takes values in [−1, 1], with u ≈ ±1 (the pure
phases) except in a transition region of thickness ≃ ǫ, where most of the energy
concentrates. Roughly speaking, this region is an ǫ-neighborhood of a minimal
hypersurface, which acts as an interface between the two phases.

In codimension two, similar attempts have been made by looking at the same
energy for maps u : M → C, replacing u with |u| in the second term. This corre-
sponds to a simplified version of the Ginzburg–Landau model of superconductivity,
where one neglects the magnetic field. However, the asymptotic analysis of this
energy is substantially more involved, due to a slow energy density decay off the
zero set, and brought mixed results.

On the other hand, including the magnetic field and looking at the so-called
self-dual regime (also called critical coupling), we can consider the energy

Eǫ(u, α) :=

∫

M

[
|du− iαu|2 + (1− |u|2)2

4ǫ2
+ ǫ2|dα|2

]
.
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It differs from the previous energies by an additional variable, the one-form α ∈
Ω1(M ;R), which twists the Dirichlet term and appears in the Yang–Mills term
|dα|2 (the latter equals |F∇|2, where F∇ is the curvature of the unitary connection
∇ := d− iα on the trivial complex line bundle C×M).

This energy is well known in gauge theory, where it is often called U(1)-Yang–
Mills–Higgs, or simply abelian Higgs model. It received a thorough treatment in
dimension two, with a complete classification of critical planar pairs (u,∇) of finite
energy by Taubes. Recently, in [3], Stern and the speaker developed the asymptotic
analysis in arbitrary Riemannian manifolds, obtaining the precise codimension-two
analogue of the result by Hutchinson–Tonegawa.

Based on some new functional inequalities, Halavati recently obtained a quan-
titative refinement of the work of Taubes, who showed (among other facts) that
critical pairs on the plane minimize the energy among pairs with the same de-
gree at infinity: namely, in [2] a quantitative stability is proved. Together with
the main result from [3], this result is instrumental for the proof of the results
discussed below.

Since the work of De Giorgi and Allard [1], it is known that almost-flat minimal
submanifolds enjoy an improvement of flatness, i.e., they become even closer to
a plane at smaller scales, in a quantitative way. Iteration of this improvement of
flatness is the key mechanism in proving regularity of minimal submanifolds.

A related question, in the spirit of the classical Liouville theorem, is Bernstein’s
problem, predicting that minimal graphs Rn−1 → R are necessarily planar. More
generally, one can ask the same for area-minimizing hypersurfaces in Rn. In di-
mension n ≤ 7, by dimension reduction and classification of stable smooth cones,
several combined contributions proved that such hypersurfaces are flat at infinity.
In view of improvement of flatness, this gives an affirmative answer for n ≤ 7,
while for n ≥ 8 counterexamples were found (the dimension ranges are shifted up
by 1 for the special case of minimal graphs).

By analogy, De Giorgi conjectured that critical points u : Rn → R of the
Allen–Cahn energy with ∂u

∂xn
> 0 are just rotations of a one-dimensional solution

u = u(xn), when n ≤ 8; usually, one also adds the assumption that u(x′, xn) → ±1
as xn → ±∞, so that level sets u−1(λ) for λ ∈ (−1, 1) are graphs on Rn−1. After
some important partial results by others, in [4] Savin settled the conjecture. In
fact, his main contribution could be phrased as follows.

Theorem (Savin’s theorem). A local minimizer u for Allen–Cahn enjoys im-
provement of flatness. In particular, if any blow-down is a hyperplane, then the
blow-down is unique.

Here the blow-downs can be understood in terms of energy concentration, or
by looking at the blow-downs of the zero set {u = 0} with respect to the (local)
Hausdorff convergence of sets.

The previous statement implies the resolution of De Giorgi’s conjecture for
n ≤ 8: the classification of blow-downs can be directly exported from the setting
of minimal hypersurfaces; finally, using maximum principle techniques, from the
uniqueness of the blow-down one can deduce that u is one-dimensional.
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Savin’s approach uses viscosity techniques, resembling the Krylov–Safanov the-
ory in spirit. In particular, it is not always clear how one can extend these tech-
niques to the vectorial setting, where the maximum principle does not apply.
Recently, Wang [5] obtained a variational proof of Savin’s theorem, following the
strategy of Allard’s proof of excess decay for stationary varifolds. Inspired by
Wang’s approach, we obtained the following theorem.

Theorem. Savin’s result, as stated above, holds for critical pairs (u,∇) for Eǫ,
in any dimension n ≥ 2.

The following is the precise statement of the excess decay for critical points.

Theorem (Tilt-excess decay). For any n ≥ 3 and small enough 0 < ρ ≤ ρ0(n),
there exist constants ǫ0(n, ρ), τ0(n, ρ) such that the following holds. Let (u,∇) be
a critical point for Eǫ on the unit ball Bn1 ⊂ Rn, with ǫ ≤ ǫ0, u(0) = 0. If

∫

Bn
1

eǫ(u,∇) ≤ 2πωn−2 + τ0,

then at least one of the following statements is true: either

E1(u,∇, Bnρ , S̄) ≤ Cρ2E1(u,∇, Bn1 , S),

for some new (n− 2)-plane S̄ (where S minimizes excess on Bn1 ), or

E1(u,∇, Bn1 , S) ≤ max{Cǫ2| log E|2
√
E, e−K/ǫ},

where E = E(u,∇, Bn1 , S) and C = C(n), K = K(n) are independent of ρ.

Here E is the excess, which naturally splits into two parts, E1 and E2, measuring
how far a solution is from being two-dimensional and from solving the first order
vortex equations, respectively; in fact, E1 parallels the notion of excess in the
theory of varifolds and does not depend on the orientation of S, while E mimics
the stronger notion of excess in the setting of currents. While the previous result
establishes a quantitative decay only for E1, it is enough to obtain the main result.

Differently from the codimension one setting, where uniqueness of the blow-
down (with multiplicity one) implies via the maximum principle that u is one-
dimensional, at the present time we are not able to conclude that the solution u is
two-dimensional. We conjecture that it is always true in this low-energy regime,
up to change of gauge. On the other hand, our excess decay is strong enough to
give an affirmative answer in some cases, giving in particular a full analogue of
Savin’s theorem.

Theorem. The previous conjecture holds for critical points in dimension 2 ≤ n ≤
4, as well as for local minimizers in all dimensions n ≥ 2.

Compared to [5], there are several key differences which require substantially
new ideas. For instance, in order to construct the Lipschitz approximation, Wang
uses a generic level set of u. For the abelian Higgs model, level sets of u can be
arbitrarily irregular, due to gauge invariance. Rather, we rely on [2] in order to
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control in a fine way the behavior of u on many two-dimensional slices perpen-
dicular to the reference plane, e.g., to bound the distance of the zero set from a
certain “center of mass” of each slice.

In the case of minimizers, this refined control, used in a very involved gauge
fixing argument, allows us to deform a nearly flat minimizing pair (u,∇) in the
interior to gain a stronger decay of the excess. This improved decay proves our
conjecture in arbitrary dimension n, in the case of local minimizers.
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Boundary unique continuation of harmonic functions

Zihui Zhao

(joint work with Carlos Kenig)

The classical unique continuation theorem says: if a harmonic function u vanishes
at a point at infinite order (that is, near that point u decays to zero faster than
polynomials of any degree), then u must vanish everywhere in a connected set
containing that point. This is a fundamental property of harmonic functions, as
well as solutions to a large class of elliptic and parabolic PDEs. In the same spirit,
mathematicians are interested in quantitative unique continuation results, which
are to use the local information about the growth rate of a harmonic function
to study its global behaviors. In particular, we are interested in studying, for a
non-trivial harmonic function u, how big its singular set S(u) := {u = 0 = |∇u|}
and critical set C(u) := {|∇u| = 0} can be.

As is well known, the classical unique continuation property is in general false
at the boundary (even if the boundary is flat), so there are many new problems
and obstacles to study boundary unique continuation properties. More precisely,
the study of the size of the singular/critical set at the boundary is related to a
classical question asked by L. Bers: considering a domain Ω in Rn (with n ≥ 3)
and a harmonic function u in Ω, if both u and ∇u vanish on a boundary set with
positive surface measure (i.e. the (n−1)-dimensional Hausdorff measure restricted
to the boundary), does it necessarily follow that u must vanish everywhere in the
domain? In general, the answer is no even for the upper half-space (by a counter-
example of Bourgain and Wolff in [2]), unless one assumes a priori that u ≡ 0 on
a relative open set of the boundary. There have been many attempts to answer
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this question for different classes of domains, and so far the best known result is
the following theorem by Tolsa (see also related work in [4]):

Theorem 1 (Theorem 1.1 in [15]). Let Ω ⊂ Rn be a Lipschitz domain, B be a
ball centered on ∂Ω, and suppose that Σ := B∩∂Ω is a Lipschitz graph with slope
at most τ0 (τ0 is a small positive constant depending only on the dimension n).
Let u ∈ C(Ω) be a harmonic function in Ω. Suppose that u vanishes on Σ and
that

Hn−1({x ∈ Σ : ∇u(x) = 0}) > 0.

Then u ≡ 0 in Ω.

It is still an open question whether the same statement holds if we only assume
Ω is a Lipschitz domain (and remove the smallness assumption on the Lipschitz
constant).

On the other hand, it has been observed that the singular set of a harmonic
function (in the interior) is (n−2)-dimensional, see for example [6, 5, 10]; moreover,
the work of Cheeger, Naber and Valtorta in [3, 12] give quantitative estimates of
the (n − 2)-dimensional size of the singular/critical set. Inspired by this, Carlos
Kenig and I set out to give a fine estimate of the size of the singular/critical set at
the boundary, as in the setting of Bers and the above theorem by Tolsa. Roughly
speaking we prove the following theorem:

Theorem 2 (Theorem 1.1 in [7]). Let Ω ⊂ Rn be a C1-Dini domain, and B be a
ball centered in ∂Ω. Let u ∈ C(Ω) be a non-trivial harmonic function in Ω∩5B such
that u ≡ 0 on ∂Ω∩5B. Then the singular set S(u) := {x ∈ Ω : u(x) = 0 = |∇u(x)|}
satisfies that S(u) ∩B is (n− 2)-rectifiable, and

Hn−2(S(u) ∩B) ≤ C,

where C depends only on the dimension n and the upper bound of the growth
rate of u in 5B (or more precisely, the modified frequency function of u in the ball
5B).

The assumption that Ω is a C1-Dini domain means that locally, Ω is the re-
gion above the graph of a C1-function ϕ : Rn−1 → R, such that the modulus of
continuity of ∇ϕ satisfies a Dini condition. In particular, every C1,α domain with
α ∈ (0, 1) satisfies this assumption. It is worth remarking that in [9], we also
give countrerexamples (using the tools of harmonic measures) to illustrate that
C1-Dini domains is the optimal class of domains for which the singular set has
finite Hn−2-measure, even when the harmonic function is additionally assumed to
be non-negative.

For the full critical set C(u), the statement analogous to Theorem 2 does hold for
C1,α domains, which we prove in [11]. Our estimates of the size and structure of the
singular/critical set are inspired by the work of Naber and Valtorta (see [13, 14]),
which has since found many applications in geometric variational problems, as well
as the work of Adolfsson and Escauriaza [1] to tackle the difficulties arising from
the boundary.



2168 Oberwolfach Report 37/2024

In a follow-up work, we also use PDE methods to show that centered at every
boundary point, the harmonic function has an asymptotic expansion as follows:

Theorem 3 (Theorem 1.1 in [8]). Under the same assumption as in Theorem 2,
we have that for every x ∈ ∂Ω ∩B, there exists r > 0 such that

u(y) = PN (y − x) + ψ(y − x) in Br(x) ∩ Ω,

where PN is a non-trivial homogeneous harmonic polynomial of degree N ∈ N, the
error term ψ satisfies

|ψ(z)| ≤ C|z|Nθ(|z|), |∇ψ(z)| ≤ C|z|N−1θ(|z|),
and θ(r) → 0 as r → 0, with a decay rate determined by the Dini parameter of
the domain Ω.

Lastly but not least, it is worth mentioning that our studies of the singu-
lar/critical set achieve the sharp dimensions and regularities, but the volume
bound depends exponentially on the growth rate of the function. The latter is
far from being optimal. It is a challenging open question, even in the interior
(for an elliptic operator with Lipschitz coefficient matrix), to achieve the optimal
dependence on the growth rate. This has only been done in the two-dimensional
case, see [16] (interior case) and [11] (boundary case).
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A variational approach to generalized Newtonian Navier-Stokes

Richard Schubert

(joint work with Christina Lienstromberg, Stefan Schiffer)

We study the non-Newtonian Navier–Stokes system

(1)





∂tu+ (u · ∇)u = −∇π + div
(
2µ(|ǫ(u)|)ǫ(u)

)
, t > 0, x ∈ Td

divu = 0, t > 0, x ∈ Td

u(0, x) = u0(x), x ∈ Td,

describing the flow of an incompressible viscous non-newtonian fluid on the d-
dimensional torus Td, d ≥ 2. Here, ǫ = ǫ(u) = 1

2 (∇u +∇uT ) denotes the rate-of-
strain, and the function µ : [0,∞) → R+ is the strain-dependent viscosity of the
fluid.

For η > 0 we define the functional

Iη(u) =

∫ ∞

0

∫

Td

e−t/η
(

1
2 |∂tu+ (u · ∇)u|2 + 1

ηW (ǫ(u)) + C4

4 |∇u|4
)
dxdt,

where W is such that DW (ǫ) = 2µ(|ǫ|)ǫ and with p-growth and p-coercivity.
Minimizing this functional corresponds to an elliptic regularization of (1) as can
be seen from the Euler-Lagrange equation. In [3] we prove the following

Theorem 1 (Existence of Leray–Hopf solutions). Let p > 2d
d+2 . For each η > 0 the

functional Iη possesses a minimiser uη in the energy class of Iη. Moreover, there
exists a subsequence uη (not relabeled) that converges weakly to a Leray–Hopf
solution of the non-Newtonian Navier–Stokes system (1).

The linear case W (ǫ) = 1
2µ0|ǫ|2 was already considered in [1] and the case

p > 3d+2
d+2 in [2]. For such p > 3d+2

d+2 , we actually obtain, refining [2], that the
convergence is strong and that the limiting solution satisfies an energy equality.

The main challenge is the passage to the limit in the nonlinear viscosity term
which is simplified by both linearity and by strong convergence (p > 3d+2

d+2 ). In

the case of genuine weak convergence (p < 3d+2
d+2 ), in order to separate effects of

concentration (which are not harmful) and oscillation, and based on the concept
of (solenoidal) Lipschitz-truncation (see for example [4]) for parabolic problems,
we introduce a novel elliptic-parabolic truncation that might be of independent
interest for other elliptic regularizations of parabolic problems.
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The stability of Sobolev’s inequality: best constants and optimizers

Tobias König

The Sobolev inequality

(1)

∫

Rn

|∇u|2 dx ≥ Sn

(∫

Rn

|u| 2n
n−2 dx

)n−2

n

,

with optimal constant Sn > 0, is optimized precisely by constant multiples of the
bubble functions

(2) Bz,λ(x) = λ
n−2

2 (1 + λ2|x− z|2)−n−2

2 , x ∈ R
n, λ > 0,

by classical results of Aubin [1] and Talenti [17].
Answering a question by Brezis and Lieb [6], Bianchi and Egnell have shown

the quantitative stability of (1) in the ground-breaking work [3]. Namely, there is
cBE > 0 such that
(3)

EBE(u) :=
∫
Rn |∇u|2 dx− Sn

(∫
Rn |u| 2n

n−2 dx
)n−2

n

d(u,M)2
≥ cBE for all u ∈ Ḣ1(Rn),

where M = {cBz,λ : c ∈ R, z ∈ Rn, λ > 0} is the manifold of Sobolev optimizers
and d(u,M)2 = infh∈M

∫
Rn |∇(u − h)|2 dx.

The Ḣ1 norm used to define the distance d(u,M) is the strongest possible for
this purpose. Likewise, the quadratic exponent of the distance d(u,M) is optimal
in (3) and cannot be replaced by a smaller power. On the other hand, it is a
major open question to determine the value of the best constant cBE . The proof
from [3] proceeds by compactness and thus gives no information on cBE . It has
long been informally conjectured that the sharp constant cBE in (3) is attained
(uniquely) in the limit of sequences of functions converging to some Bz,λ, leading
to the explicit value cBE = 4

n+4 =: cspecBE determined by the spectral gap of an
associated linearized operator.

Very recently, advances concerning the value of cBE have been made in two
different directions. On the one hand, Dolbeault, Esteban, Figalli, Frank and Loss
[11] have obtained the first-ever explicit lower bound on cBE through a refined
local analysis near M together with a delicate symmetrization procedure involv-
ing competing symmetries [9] and continuous Steiner symmetrization [8]. On the
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other hand, in [14] we show the strict inequality cBE < 4
n+4 . This inequality

comes as a surprise because it falsifies the above-mentioned conjecture that cBE is
attained near M. In the follow-up paper [15], we prove the existence of optimizers
for (3). The proof from [15] applies the classical strategy by Brezis and Lieb [5]
by exploiting a subtle convexity property of the functional EBE . Besides the in-

equality cBE < 4
n+4 , the strict inequality cBE < 2− 2

n−2

n (this value corresponds

to the value of EBE for two non-interacting bubbles) is needed to conclude. Differ-
ently from structurally simpler inequalities like Sobolev’s inequality, the Yamabe
problem [2] or the Brezis–Nirenberg problem [7], here two different ’compactness
thresholds’ need to be beaten in order to ensure strong convergence of an opti-
mizing sequence. This reflects the more complicated structure of the functional
EBE, which allows two non-interacting bubbles to be reasonable competitors for
the infimum that can only be excluded through the refined asymptotic analysis

leading to cBE < 2− 2
n−2

n .
It remains an open problem to characterize the optimizers of cBE and even to

determine their basic qualitative properties. A major obstacle is the lack of efficient
symmetrization techniques for EBE : since EBE does not decrease in general under
symmetric-decreasing rearrangement, it is unclear whether optimizers of cBE are
radial. Since EBE(u) < EBE(|u|) for every u ∈ Ḣ1(Rn), it might even occur that
optimizers change sign. (This is somewhat reminiscent of the stability inequality
for the isoperimetric inequality [13, 12], whose optimizer in the planar case n = 2
is conjectured to be a certain non-convex ’mask-shaped’ set [4].)

Under the condition that n ≥ 2, all of the above remains true if one replaces
(1) by the fractional Sobolev inequality ‖(−∆)s/2u‖2L2(Rn) ≥ Sn,s‖u‖2

L
2n

n−2s (Rn)
for

s ∈ (0, n/2), and (3) by its analogous fractional stability inequality proved in [10].
If n = 1 and s ∈ (0, 1/2), however, the perturbative argument from [14] can no
longer be used to prove that the best stability constant satisfies cBE(s) < cspecBE (s).
Indeed, this argument relies on choosing a degree-two spherical harmonic ρ on Sn

with
∫
Sn
ρ3 6= 0; such ρ exists for n ≥ 2, but not for n = 1. In [16] I showed that

this problem is not technical: unlike for n ≥ 2, one has in fact EBE(u) ≥ cspecBE (s)
in a neighborhood of Ms for every n = 1 and s ∈ (0, 1/2). This dimensional
dichotomy is rather surprising and leads to the conjecture that in the latter case
one must have cBE(s) = cspecBE (s) and optimizers do not exist.
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Dimension of the singular set of 2-valued stationary graphs

Luca Spolaor

(joint work with Jonas Hirsch)

In his groundbreaking work [1], Allard proved that the singular set of stationary
integral varifolds is meager. Since then little to no progress has been made on
the question of the optimal dimension of the singular set for integral stationary
varifolds. In joint work with J. Hirsch we answer this question under two assump-
tions: multiplicity 2 and Lipschitz graphicality. Moreover we do this by applying
Almgren’s strategy for the first time to the stationary setting, that is without any
minimizing (nor stability) assumption.

Given a domain Ω ⊂ Rm, we consider Lipschitz multiple valued functions f
from a domain Ω ⊂ Rm to the space of Q-points in Rn (see [7, 4] for the relevant
definitions).

Definition 1. Given a function a multivalued function f from a set Ω, we say
that a point x ∈ Ω is regular if there exists a neighborhood B ⊂ Ω of x and Q
analytic functions fi : B → Rn such that

f(y) =

Q∑

i=1

δfi(y) for almost every y ∈ B ,

and either fi(x) 6= fj(x) for every x ∈ B or fi ≡ fj. The singular set of f is the
complement in Ω of the set of regular points.
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Our main result is the following optimal dimensional bound on the singular set
of stationary 2-valued Lipschitz maps.

Theorem 2 (Dimension of the singular set). Let f be a 2-valued map from Ω ⊂
Rm open, and assume it is Lipschitz map and its graph is a stationary varifold.
Then the dimension of the singular set of f in Ω is at most m − 1 and all the
points in the regular part of f have either multiplicity 1 or 2. Furthermore, in the
second case the dimension of the singular set is in fact at most m− 4. Moreover
both dimensional bounds are optimal.

In codimension 1 and under the additional assumption of stability of the regular
part, works of Schoen-Simon, Wicramasekera, Minter andMinter-Wickramasekera,
provide beautiful partial results. When the varifold is associated to an area min-
imizing current, then a celebrated result of Almgren [2], later revisited by De
Lellis-Spadaro [7, 4, 3, 5, 6], shows that the optimal dimension of the singular set is
(m−2). Recently De Lellis-Minter-Skorobogatova and Krummel-Wickramasekera,
proved that in fact such singular set is (m − 2) rectifiable. When the varifold is
associated to an area minimizing current mod p, then work of De Lellis-Hirsch-
Marchese-Stuvard shows that the optimal dimension of the singular set is (m− 1),
with a finer description achieved in codimension 1 in work of De Lellis-Hirsch-
Marchese-Spolaor-Stuvard, combined with a result of Minter-Wickramasekera.
Our situation is somewhat more similar to this case, at least in the fact that
for stationary varifolds the singular set can be of dimension (m − 1) and branch
points can occur, however the minimizing assumption is used crucially in these
works, while it’s missing in our setting.

In the stationary case, for C1,α multivalued maps, works of Simon and Wickra-
masekera, and Krummel and Wickramasekera investigate the size and the struc-
ture of the branching set. Our situation is more general as the singular set can be
of codimension 1 due to the Lipschitz regularity assumption as opposed to C1,α.

Let us mention quickly the main new ideas of the proof. By standard arguments
using monotonicity formula and dimension reduction, it is enough to understand
the size of the branching set, that is the collection of points where at least one
blow-up is a plane with multiplicity. To understand such set we use Almgren’s
approach [2] in the revisited form of De Lellis and Spadaro [3, 5, 6]. In order to do
that, except for minor technicalities, the main difficulties are: the construction of
a small Lipschitz approximation to the graph of f with errors that are superlinear
in the excess, the development of a suitable linearization theory for stationary
graphs and of unique continuation and regularity theories for multivalued maps
that arise through such linearization (in particular which are stationary, but not
necessarily minimizing for the Dirichlet energy), and a suitable capacity argument
to reach a contradiction at the linearized level.

To overcome these difficulties, one of the main new ingredients of our proof with
respect to Almgren’s approach is a higher integrability estimate for the Dirichlet
energy of f . Such an estimate was crucial in the new proof of Almgren’s theorem
by De Lellis and Spadaro. In particular it allows us to prove the existence of a
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superlinear in the excess small Lipschitz approximation. Our proof of the higher
integrability is completely different than De Lellis and Spadaro’s, since our current
is not minimizing. In particular this is where we use crucially the Q = 2 assump-
tion. Extending a similar estimate to higher Q is the only missing ingredient to
removing the Q = 2 constraint in Theorem 2. A tempting conjecture is that the
higher integrability holds true as well for any Q ≥ 2.

Moreover, in order to have good compactness properties for stationary se-
quences, we build the theory of multivalued generalized gradient Young measures
and we study their regularity and unique continuation type properties under var-
ious assumptions of stationariety: this seems to be the correct linear problem in
the stationary setting and it allows us to prove for example a strong Dir-stationary
approximation to the graph of f . We believe that this new notion will be useful
in investigating further regularity properties of stationary varifolds, as it provides
the right tools to linearize the problem in the absence of strong convergence in
energy.

Finally we revisit the capacity argument of [6], replacing it with a weaker, but
more general, argument that doesn’t require any stronger regularity than Sobolev.
This is needed, since we cannot guarantee that our final blow-up sequence con-
verges to a strong solution, but only to a measure solution, as the higher inte-
grability statement is not preserved when subtracting averages from multivalued
functions.

Finally we conclude with three open questions, in what we believe to be their order
of difficulty, that seem like natural next steps after our theorem.

• Can Theorem 2 be extended to any multiplicity Q ≥ 2?
• For Q = 2, can the Lipschitz assumption be removed from Theorem 2, to
handle for instance the case of stationary currents in multiplicity 2?

• For Q = 2, can the graphicality assumption be removed altogether from
Theorem 2, to handle the general case of stationary varifolds in multiplicity
2?
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