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Introduction by the Organizers

The workshop Arithmetic geometry, organized by Bhargav Bhatt (Princeton), Ana
Caraiani (London), Gerd Faltings (Bonn) and Peter Scholze (Bonn), was well
attended by over 45 participants from various backgrounds. It covered a wide
range of topics in number theory and algebraic geometry, with some focus on
p-adic questions.

One major theme at the workshop was the categorical local Langlands program
over l-adic fields, in the formulation of Fargues–Scholze. This featured heavily
in the talks of Hamann, Hansen, Koshikawa and Zhang. Hansen talked about a
strategy to prove the categorical local Langlands conjecture of Fargues–Scholze for
many groups. He sketched how these ideas can be used to give a complete proof in
the case of GL2. Koshikawa talked about a generalization of Fargues’s conjecture
on the existence of eigensheaves to cover the case of A-parameters and A-packets.
The approach to this is via the spectral side of the conjectured equivalence, where
one can construct generalized eigensheaves inspired by the geometric approach
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of Adams–Barbasch–Vogan for real groups. Hamann discussed Eisenstein series
functors over the stack of G-bundles on the Fargues-Fontaine curve. The talk fits
into the context of a longer-term project that aims to understand these functors,
which geometrize the classical notion of parabolic induction. The focus in this talk
was on establishing geometric analogues of more classical properties of parabolic
induction. Finally, Zhang talked about aspects related to global Shimura varieties,
namely the construction of Igusa stacks for Shimura varieties of Hodge type. She
discussed applications to the Mantovan product formula, Eichler–Shimura rela-
tions and torsion vanishing results.

The theme of Shimura varieties recurred in the talks of Lee, Shankar and Sweet-
ing. Lee talked about constructing integral models for the action of the spherical
Hecke algebra by correspondences on Shimura varieties of abelian type. This has
applications to a conjecture of Fakhruddin and Pilloni in the setting of coherent
cohomology. Ananth Shankar introduced the notion of special point on the charac-
teristic p fiber (in the sense of Bakker–Shankar–Tsimerman, for p sufficiently large)
of a Shimura variety of exceptional type. This in turn leads to a well-behaved no-
tion of (µ-)ordinary locus. Sweeting discussed certain Tate classes on the product
of a Siegel modular threefold and a modular curve, which arise from endoscopy
and which she showed arise from algebraic cycles in the globally generic case. In
non-generic cases she showed that the Tate classes arise from Hodge cycles.

Another important theme was the p-adic Simpson correspondence, with talks
by Andreatta and Heuer. Improving upon the previous work of Faltings, Heuer
was able to prove a general p-adic Simpson correspondence for all proper smooth
rigid-analytic varieties over an algebraically closed complete extension C of Qp.
In Heuer’s formulation, one gets an equivalence between v-vector bundles (also
known as “generalized representations”) and Higgs bundles, depending on the
choice of a lift to B+

dR/ξ
2 and an exponential for C. There remains the question of

which Higgs bundles correspond to actual representations, i.e. local systems. The
naive expectation is that these are semistable Higgs bundles with vanishing Chern
classes. Andreatta explained a result that this expectation is too optimistic, even
in the case of trivial Higgs field.

Anschütz explained how one can get a 6-functor formalism with Qp-coefficients
for rigid-analytic varieties, by using nuclear modules on the Fargues–Fontaine
curve. An application of these results is towards duality theorems for the pro-
étale Qp-cohomology, which forms a Banach–Colmez space.

In a similar direction, Rodŕıguez Camargo defined analytic de Rham stacks,
which make it possible to talk about (analytic) D-modules even on spaces without
differentials, such as perfectoid spaces. Again, this yields a 6-functor formalism,
and this has applications to locally analytic representations of p-adic groups via
Beilinson–Bernstein localization, and to the theory of p-adic automorphic forms.

Groechenig explained how to extend the theory of p-adic integration to cer-
tain algebraic stacks, with applications to enumerative questions. The explicit
computation involves some interesting formulas, involving plethystic logarithms.
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The cohomology theories used in p-adic geometry are usually not A1-invariant.
Thus, an extension of Voevodsky’s theory of motives to the non-A1-invariant con-
text is desired, and Iwasa gave a very compelling answer. Using it, one can un-
conditionally define an integral variant of crystalline cohomology (which in the
presence of a good compactification agrees with log-crystalline cohomology).

Also of motivic nature was Efimov’s talk, who explained the rigidity of the stable
∞-category of localizing motives. This makes it possible to define refined version
of (negative or topological) cyclic homology, taking values in nuclear modules over
certain E∞-rings. Efimov explained the computations which naturally lead to
overconvergent theories.

Dimitrov explained the proof of irrationality of L(2, χ3), the first result of this
type since Apéry’s proof of irrationality of ζ(3). The proof makes use of novel
arithmetic holonomy bounds.

Esnault explained an application of the theory of ℓ-adic companions to the
geometry of the space of local systems on a complex variety, in particular to the
question of integral points, leading to new restrictions on fundamental groups of
complex varieties.

Gee discussed what the reductions of crystalline Galois representations of fixed
Hodge–Tate weights can look like by formulating and answering an analogous
question for crystalline Breuil–Kisin modules.

Finally, Kisin considered the number of isomorphism classes of abelian varieties
with bounded Faltings height in a given isogeny class considered over an algebraic
closure of a fixed number field. Assuming the Mumford–Tate conjecture for the
abelian varieties in this isogeny class, he explained a proof that the number of
isomorphism classes is finite.

During the conference, many active discussions took place. As just one example,
discussions between Faltings and Heuer led to an improved understanding of the
situation, namely the choice of certain base points in the formulation of Heuer’s
result is actually not necessary.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Diophantine aspects of the Betti moduli space

Hélène Esnault

(joint work with Johan de Jong)

For X a smooth quasi-projective variety over the field of complex numbers C,
and r a natural number ≥ 1, one defines the coarse Betti moduli space MB(X, r)
of semi-simple local systems of rank r. It is constructed as the GIT quotient
by GLr of the moduli space M�

B (X, r) = Hom(π1(X(C), x),GLr), framed by the
choice of the base point x, where π1(X(C), x) is the topological fundamental
group based at x. Then MB(X, r) is defined over Spec(Z). As π1(X(C), x)
is finitely presented, in particular finitely generated, MB(X, r) is of finite type
over Z. We can decorate MB(X, r) by fixing a natural number δ ≥ 1 and re-
questing the local systems to have determinant of order dividing δ. This yields a
closed subscheme MB(X, r; δ) →֒ MB(X, r) over Spec(Z) depending only on the
topological invariant π1(X(C)), the isomorphism class of π1(X(C), x). We can
also fix a good compatification X →֒ X̄ of X and request the local systems to
have quasi-unipotent monodromies at infinity with finite order eigenvalues, say
λij , j = 1, . . . , r and i indexing the components of X̄ \X . This yields the closed
embedding MB(X, r; δ, λij) →֒ MB(X, r; δ) which is now no longer a topological
invariant but depends on the varietyX , as the elements of π1(X(C)) corresponding
to loops around X̄ \X depend on X .

A general problem, posed notably by Sarnak, is to understand when those
moduli spaces admit an integral -that is Z̄-valued- point. The scheme MB(X, r; δ)
admits an integral point, the trivial local system. So we refine problem by asking
whenMB(X, r; δ) orMB(X, r) admits an integral point which over Q̄ is irreducible.
We can also extend the problem to MB(X, r; δ, λij) for which it is no longer a
property of π1(X(C)) solely.

A corollary of our main theorem [2, Theorem 1.1] says the following.

Theorem 1. Assume the set MB(X, r; δ, λij)(C) is non-empty and consists of
irreducible C-local systems. If MB(X, r; δ, λij) and MB(X, r; δ, λij) ⊗Z Q̄ are ir-
reducible, then MB(X, r; δ, λij) has a Z̄-local system (which over Q̄ is then irre-
ducible).

As π1(X(C), x) is finitely generated, the Z̄-local systems in the conclusion are
defined over a number ring O and the underlying representation ρ : π1(X(C), x)→
GLr(O), localized at any finite place v of O, factors through the étale fundamental
group, yielding an ℓ-adic local system on X , where ℓ is the residual characteristic
of v. Rumely’s theorem, see [11, Theorem 1] and [10, Theorem 1.7], asserts that
the conclusion is equivalent to X having a rank r absolutely irreducible ℓ-adic local
system with decoration (δ, λij) for all prime numbers ℓ. This formulation is the
one we prove in general without assumption on the geometry of the Betti moduli
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space, except for the existence of an irreducible rank r complex local system with
decoration (δ, λij).

Theorem 2. Assume the set MB(X, r; δ, λij)(C) contains an irreducible local sys-
tem. Then for any prime number ℓ, MB(X, r; δ, λij) has a Z̄ℓ-local system which
over Q̄ℓ is irreducible.

Again we remark that to have a Z̄ℓ-local system of rank r with the decorations
(δ, λij) is equivalent to having an ℓ-adic local system of rank r with the decorations
(δ, λij).

On the other hand, an application of de Jong’s conjecture [1] proved by Gaits-
gory [8] in general (for p ≥ 3) is the following proposition.

Proposition 3 ([5]).

∪λij∈µ∞
MB(X, r; δ, λij) ⊂MB(X, r; δ)

is Zariski dense.

This enables one to transpose the statement of Theorem 2, which depends on
X , to the right hand side, which depends only on π1(X(C)).

Definition 4 ([2]). A finitely presented group π is weakly integral if whenever
there is an irreducible representation ρ : π → GLr(C) with determinant of finite
order dividing δ ∈ N≥1, then for all prime numbers ℓ, there is a representation

ρℓ : π → GLr(Z̄ℓ)

with determinant of order dividing δ ∈ N≥1 which is irreducible over Q̄ℓ.

Theorem 5. If X is smooth quasi-projective over C, then π1(X(C)) is weakly
integral.

As there are finitely presented groups which are not weakly integral -the first
example was constructed by Breuillard- Theorem 5 yields an obstruction for a
finitely presented group to be the topological fundamental group of a smooth
complex quasi-projective variety. See [2], [7] for details.

The proof of Theorem 2 relies on two main building blocks. Construct using
algebraic geometry and de Jong’s conjecture [1], the proof of which relies on the
geometric Langlands program, a tame arithmetic ℓ-adic local system over a mod p
reduction XF̄p

of X , for p large, with the decoration (δ, λij). The second ingredient

consists in using Deligne’s companions in a way initiated in [4], to produce on XF̄p

ℓ′-adic tame local systems of the same rank with the same decorations (δ, λij).
The proof of the existence of the companions relies on the Langlands program on
XF̄p

when X has dimension 1 as proved by L. Lafforgue [9]. In general in higher

dimension it has been completed by Drinfeld [3]. See [6] for a broader discussion
and references in there. Finally go back to the topological fundamental group via
Grothendieck’s specialization homomorphism.
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A 6-functor formalism with values in solid quasi-coherent sheaves on
the Fargues–Fontaine curve

Johannes Anschütz

(joint work with Arthur-César Le Bras, Lucas Mann)

Let p be a prime. This talk presented a cohomology theory with Zp- or Qp-
coefficients in p-adic geometry. The construction of this formalism is motivated
by potential applications in p-adic versions of Fargues’ program ([3]) We start by
recalling the ℓ-adic case where ℓ 6= p is another prime. Let Perfd be the category
of perfectoid spaces over Zp, and PerfFp the full subcategory of perfectoid spaces
over Fp. We equip both with the v-topology. In [5] Scholze has made the powerful
observation that small v-stacks on PerfFp allow a reasonable geometry. Most
notably there exists a 6-functor formalism Y 7→ Dét(Y,Z/ℓ

n) calculating étale
cohomology. Here, Dét(Y,Z/ℓ

n) is defined by v-descent: If Y = S is a strictly
totally disconnected perfectoid space, then Dét(Y,Z/ℓ

n) ∼= D(Sét,Z/ℓ
n) is just

the usual derived category of étale sheaves on S, and this category is shown by
Scholze to satisfy v-descent.

The formalismDét(−,Z/ℓn) can be applied to several interesting small v-stacks.

(1) For an adic spaceX over Zp letX
⋄ be the small v-sheaf sending S ∈ PerfFp

to the set {(S♯ ∈ Perfd, ι : (S♯)♭ ∼= S, α : S♯ → X}/isom. of isomorphism
classes of untilts of S overX . In particular, PerfFp/Spd(Zp)

∼= Perfd (using

the notation Spd(−) = Spa(−)⋄). If X is analytic, then D+
ét(X,Z/ℓ

n) ∼=
D+(Xét,Z/ℓ

n).
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(2) Scholze proves the non-trivial result that Dét(Spd(Fp),Z/ℓ
n) ∼= D(Z/ℓn).

(3) Let G be a reductive group over Qp, and let BunG be the small v-stack

over Fp of G-torsors on the Fargues–Fontaine curveXS . Here the Fargues–
Fontaine curve is constructed as follows: If S = Spa(R,R+) is affinoid
perfectoid with pseudo-uniformizer π ∈ R, then

Y[0,∞),S := Spa(W (R+)) \ V ([π]),

and

Y(0,∞),S := Y[0,∞),S \ V (p), XS := Y(0,∞),S/ϕ
Z,

where ϕ is induced by the Frobenius on R+.
The inclusion j1 : [Spa(Fp)/G(Qp)] → BunG of the open substack of

trivial G-torsors induces a fully faithful embedding

j1,! : Dét([Spa(Fp)/G(Qp)],Z/ℓ
n) ∼= D(Rep∞Z/ℓnG(Qp))→ Dét(BunG,Z/ℓ

n),

where Rep∞Z/ℓnG(Qp) is the abelian category of smooth Z/ℓn-representa-

tions ofG(Qp). The embedding j1,! lies at the heart of Fargues’ geometriza-
tion program for the local Langlands correspondence.

(4) Another central object in Fargues’ program is the small v-sheaf Div1 ∼=
Spd(Qp)/ϕ

Z. Base changed to Fp its Dét(−,Z/ℓn) identifies with smooth
Z/ℓn-representations of the Weil group WQp of Qp.

The aim of this project is to construct a p-adic analogue of Y 7→ Dét(Y,Z/ℓ
n).

With mod p coefficients a reasonable candidate was constructed by Mann in [4].

Theorem 1 (Mann). Fix a perfectoid space S = Spa(R,R+) and a pseudo-
uniformizer π ∈ R.

(1) There exists a unique hypercomplete v-sheaf T ∈ Perfd/S 7→ Da
�(O

+
T /π)

such that Da
�
(O+

T /π) = Da
�
(A+/π) if T = Spa(A,A+) is totally discon-

nected.
(2) T 7→ Da

�
(O+

T /π) extends to a 6-functor formalism on small v-stacks with
good properties, e.g., if S = Spd(Cp), then Spa(Cp〈T±1〉)⋄ → S is coho-
mologically smooth.

(3) If π|p, then T 7→ Da
�(O

+
T /π)

ϕ calculates Fp-cohomology and there exists a
fully faithful functor

RH: Dét(T,Fp)
overconvergent → Da

�(O
+
T /π)

ϕ.

Here, ϕ denotes the Frobenius and (−)ϕ the category of ϕ-modules.

Notably Theorem 1 implies Poincaré duality for Fp-cohomology on rigid-analytic
varieties over Cp. The notation (−)a refers to almost mathematics, and the nota-
tion D� to solid modules in the sense of Clausen and Scholze ([6]). In our project
we extend now Theorem 1 to O+-modules on arbitrary perfectoid spaces. This
has among others the advantage of removing the necessity of a perfectoid base S
as in Theorem 1.
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Theorem 2.

(1) There exists a unique hypercomplete v-sheaf T ∈ Perfd 7→ Da
�̂
(O+

T ) such

that Da
�̂
(O+

T ) = Da
�̂
(A+) for T = Spa(A,A+) if there exists a morphism

f : T ♭ → T0 of finite dimtrg to a totally disconnected perfectoid space T0.
(2) T 7→ Da

�̂
(O+

T ) extends to a 6-functor formalism on small v-stacks with

good properties.

Similar statements hold for D
�̂
(OT ) := ModOT (D

a
�̂
(O+

T )).

We note that the respective ϕ-module categories still calculate Fp-cohomology.

Here, the ”�̂” refers to a slight, but important modification of the category of solid
modules. Namely, D

�̂
(A+) := Ind(CA+) with CA+ ⊆ D�(A

+) the full subcategory
spanned by completions of compact objects. This formalism applies to any adic
ring instead of A+. Given a stably uniform adic space Z we let D

�̂
(Z) be the

analytic descent of the U = Spa(B,B+) → ModBD�̂
(B+) for U ⊆ Z open and

affinoid.
For Zp-coefficients we use Theorem 2 to prove the following main theorem.

Theorem 3.

(1) There exists a unique hypercomplete v-sheaf S ∈ PerfFp → D[0,∞)(S) such
that for any S with a morphism g : S → S0 of finite dimtrg to a totally
disconnected perfectoid space S0, we have D[0,∞)(S) ∼= D

�̂
(Y[0,∞)).

(2) S 7→ D[0,∞)(S) extends to a 6-functor formalism on small v-stacks.

(3) If f : Y ′ → Y is cohomologically smooth for Da
�(O

+
(−)/π) (over some im-

plicit base), then f is cohomologically smooth for D[0,∞)(−) if it is !-able
for D[0,∞)(−).

(4) There exists a fully faithful functor

RHZp : Dnuc(Y,Zp)→ D[0,∞)(Y/ϕ
Z).

In particular, D[0,∞)((−)/ϕ
Z) calculates pro-étale cohomology with Zp-

coefficients.

We make some remarks.

(1) Replacing YS,[0,∞) by YS,(0,∞) yields a formalism D(0,∞)(−) with similar
properties, e.g., there exists a fully faithful functor

RHQp : Dnuc(Y,Qp)→ D(0,∞)(Y/ϕ
Z),

i.e., D(0,∞)((−)/ϕ
Z) calculates pro-étale cohomology with Qp-coefficients.

(2) RHZp induces an equivalence of dualizable objects, but RHQp not.
(3) If S has a morphism of finite dimtrg to a totally disconnected perfectoid

space S0, then D(0,∞)(S/ϕ
Z) ∼= D

�̂
(XS).

(4) The category Dnuc(Y,Zp) is a category of “overconvergent Zp-sheaves”
satisfying v-descent. For example, if Y = S is strictly totally disconnected,
then Dnuc(S,Zp) ∼= Dnuc(C(S,Zp)).
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Theorem 3 implies Poincaré duality for pro-étale cohomology with Zp- and Qp-
coefficients. Another consequence is the following: If g : X ′ → X is a proper,
smooth morphism of rigid-analytic varieties over Cp, then for f = g⋄ : X ′,⋄ →
X⋄ the pushforward f∗ : D(0,∞)(X

′,⋄/ϕZ) → D(0,∞)(X
⋄/ϕZ) preserves dualizable

objects (aka perfect complexes by a result of Andreychev [1]). This has a funny
application: Let G/Qp be a reductive group. Then there exists a natural tensor
functor from finite dimensional algebraic representations of G to dualizable objects
in D(0,∞)(BunG). Composing with a minuscule Hecke operator (if it exists) yields

a functor to dualizable objects in D(0,∞)(BunG ×Div1). This generalizes the fact

that the pro-étale cohomology of the Lubin–Tate local system on P1
Cp

is naturally

underlying a finite complex of Banach–Colmez spaces.
Coming back to the examples of the beginning, we note the following theorem

of Zillinger (+ε).

Theorem 4 (Zillinger+ε).

(1) D(0,∞)(Spd(Fp)) ∼= D�(AnSpec(Qp))
(2) D(0,∞)([SpdFp/G(Qp)]) ∼= D�(AnSpec(Qp)/G(Qp))

In particular, the (rather wild) category D�(AnSpec(Qp)/G(Qp)) of “continu-
ous G(Qp)-representations” embeds into D(0,∞)(BunG). In contrast, D(0,∞)(Spd

(Fp)/ϕ
Z) is the derived category of solid isocrystals, which shows that it was a

good decision to base the formalism on YS,(0,∞) or YS,[0,∞) instead of XS. The
value of D[0,∞)(−) on Spd(Fp) is more mysterious than D�(Zp). We can also

note that D(0,∞)(Div1) yields a derived category of ”continuous GalQp -equivariant
vector bundles on the Fargues–Fontaine curve XC♭p

” as discussed in the work of

Hellmann–Hernandez–Schraen on an analytic Emerton–Gee stack ([2]). It seems
to be an interesting question to analyze to which extend the results in [3] can be
transfered to p-adic coefficients using the formalisms D[0,∞)(−) or D(0,∞)(−).
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The Reduction modulo p of Crystalline Breuil–Kisin Modules

Toby Gee

(joint work with Mark Kisin)

Our motivation is the following question (which is in turn motivated by ques-
tions about congruences between modular forms of different weights): Let ρ :
Gal(Qp/Qp) −→ GLn(Qp) be a crystalline Galois representation, of Hodge–
Tate weights h1 ≥ h2 ≥ · · · ≥ hn. Then what are the possibilities for ρ :
Gal(Qp/Qp) −→ GLn(Fp), the (semisimplified) reduction modulo p?

Write Ip for the inertia subgroup of Gal(Qp/Qp). There is a simple classification

of the absolutely irreducible representations Gal(Qp/Qp) −→ GLd(Fp), and using
this one can read off from ρ|Ip a multiset of n “inertial weights”.

In particular, if ρ is a direct sum of characters, then

ρ|Ip ∼= ⊕
n
i=1ω

mi

where ω is the mod p cyclotomic character (of order p−1), and the inertial weights
of ρ are by definition m1, . . .mn. If h1, . . . , hn ∈ [0, p], then a theorem of Gee–Liu–
Savitt [GLS14] shows that after possibly reordering, we can take mi = hi (note
that the mi are only well-defined modulo p− 1).

However, if the hi are not all contained in an interval of length p, this need no
longer hold. For example, Berger–Breuil [BB05] showed that if n = 0 and h1, h2 =
0, h with p+ 1 ≤ h ≤ 2p− 1, then ρ|Ip ∼= 1⊕ ωh (in which case we can again take

mi = hi), or alternatively ρ|Ip ∼= ω ⊕ ωh−1; and both of these possibilities can
occur for each such h.

Our first main result is the following.

Theorem 1. If ρ is a direct sum of characters, then we can choose integers m1 ≥
· · · ≥ mn such that ρ|Ip ∼= ⊕

n
i=1ω

mi , and in addition:

(1) for each 1 ≤ k ≤ n, we have

k∑

i=1

hi ≥
k∑

i=1

mi,

with equality for i = n, and
(2) there is a permutation σ ∈ Sn such that mi ≡ hσ(i) (mod p) for all i.

Here the first condition was already guaranteed by a theorem of Levin–Wang-
Erickson [LWE20], but the second is new.

For example, in the context of the result of Berger–Breuil, we see that the
two possibilities for {m1,m2} permitted by Theorem 1 are {h, 0} and {p, h− p},
which is consistent with the results of [BB05] because ωp ⊕ ωh−p = ω ⊕ ωh−1.
Furthermore, using the Breuil–Mézard conjecture, one can show that Theorem 1
is best possible for n = 2 (for any choice of h1, h2). It is unclear whether or not
to expect that it is best possible for n > 2.

We deduce Theorem 1 from a similar statement for Breuil–Kisin modules, which
we now state. After twisting by a power of the cyclotomic character, we may
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suppose that the hi are non-negative. Then by a theorem of Kisin [Kis06], we may
associate to ρ a Breuil–Kisin module. By definition, the reduction modulo p of
this Breuil–Kisin module is a free Fp[[u]]-module M of rank n, together with an
Fp[[u]]-module homomorphism

ΦM : Fp[[u]]⊗ϕ,Fp[[u]] M→M,

whose cokernel has finite Fp-dimension (where the tensor product is with respect
to the Frobenius endomorphism x 7→ xp of Fp[[u]]).

Let r1 ≥ · · · ≥ rh be the non-negative integers such that

cokerΦM
∼= ⊕ni=1Fp[u]/u

ri.

Theorem 2.

(1) For each 1 ≤ k ≤ n, we have

k∑

i=1

hi ≥
k∑

i=1

ri,

with equality for i = n, and
(2) there is a permutation σ ∈ Sn such that ri ≡ hσ(i) (mod p) for all i.

Again, the first part of the theorem was already guaranteed by the work of
Levin–Wang-Erickson [LWE20], but the second part is new. The proof uses the
theory of prismatic F -gauges due to Bhatt–Lurie [Bha22]; the integers ri and hi
both admit interpretations in terms of the dimensions of the graded pieces of
filtrations onM, and the theorem ultimately follows from a consideration of graded
modules over the Weyl algebra Fp[x,

d
dx ], using an argument that we learned from

Jacob Lurie. Finally, we deduce Theorem 1 from Theorem 2 by reducing to the
case that the Breuil–Kisin module M is semi-simple.
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Techniques of projective bundle homotopies

Ryomei Iwasa

(joint work with Toni Annala, Marc Hoyois)

I report my joint project with Toni Annala and Marc Hoyois to innovate motivic
homotopy theory beyond A1-homotopy invariance. The references are [AI, AHI,
AHI2]. While A1-homotopy theory has had great success in introducing homotopi-
cal approach to algebraic geometry, it has the obvious drawback that it cannot
capture non-A1-homotopy invariants such as crystalline cohomology, syntomic co-
homology, and algebraic K-theory of non-regular schemes. We have succeeded in
enlarging A1-invariant motivic stable homotopy theory so that all relevant coho-
mology theories are representable while maintaining a certain homotopy invariant
called the projective bundle homotopy invariance. More precisely, we constructed
an ∞-category MSS of motivic spectra over a scheme S, and we proved that the
projective bundle homotopy invariance holds in MSS . Below I explain its con-
struction and formulate this homotopy invariance.

We consider the ∞-category Sh(SmS ; Sp) of Zariski sheaves of spectra on the
category SmS of smooth S-schemes, and consider its full subcategory Shebe(SmS ;
Sp) consisting of those sheaves that satisfy elementary blowup excision, i.e., send
the blowup square

Pn−1X Bl{0}XA
n
X

{0}X AnX

to a cartesian square of spectra for X ∈ SmS and n ≥ 2. The key point is that
Pn/Pn−1 is equivalent to (P1)⊗n up to elementary blowup excision. Then the ∞-
category MSS of motivic spectra over S is defined to be the formal inversion of the
pointed projective line P1 in Shebe(SmS ; Sp) as a presentably symmetric monoidal
∞-category;

MSS := Shebe(SmS ; Sp)[(P
1)−1].

It is equipped with a symmetric monoidal functor

Σ∞P1(−)+ : SmS → MSS .

To put the definition in a slightly deferent way, MSS together with Σ∞
P1(−)+ is

universally characterized by the three axioms: Zariski descent, elementary blowup
excision, and P1-invertibility. Intuitively, the last two conditions guarantee that
the motivic stable homotopy type of the projective space Pn is “correct”.

Every motivic spectrum E ∈ MSS defines a bigraded cohomology theory by the
formula

Ep,q(X) := π2q−pmap(Σ−q
P1 Σ

∞
P1X+, E)

for X ∈ SmS . Then a huge variety of cohomology theories of schemes are repre-
sentable by motivic spectra in this way, including crystalline cohomology, prismatic
cohomology, and syntomic cohomology.

The following is the projective bundle homotopy invariance in MSS .
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Theorem ([AHI, Theorem 4.1]). Let E be a finite locally sheaf on X ∈ SmS and
s a section of V(E)→ X. Then there is a homotopy h(s) in MSS between the two
composites

X V(E) P(E ⊕ O).
s

0

The homotopy h(s) is functorial in (S,X, E , s) and is the identity when s = 0.

This theorem allows us to do “homotopy theory” in algebraic geometry while
keeping the affine line A1 non-contractible. For example, using projective bun-
dle homotopies, we proved an equivalence Grssn ≃ BGLn in MSS ([AHI, Theo-
rem 5.1]). Another nice use of projective bundle homotopies is a construction of
Gysin map due to Longke Tang. For a finite locally free sheaf E on X ∈ SmS , we
define the Thom spectrum ThX(E) of E to be P(E ⊕ O)/P(E). Then, for a closed
immersion Z → X between smooth S-schemes, Tang constructed a Gysin map

gys: X+ → ThZ(NZ/X)

in MSNis
S , the Nisnavich version of MSS . His Gysin map plays a crucial role in

the Atiyah duality established in [AHI2]. Note that the Thom spectrum ThX(E)
is tensor-invertible in MSX , and thus ThX(−E) makes sense. Then our version of
Atiyah duality is as follows.

Theorem ([AHI2, Corollary 5.15]). Every smooth projective S-scheme X is du-

alizable in MSNis
S with the dual ThX(−ΩX/S).

I describe some applications of Atiyah duality. We rewrite the notation as

MSS = MSNis
S . Consider the full subcategory MSA

1

S of MSS spanned by A1-
invariant motivic spectra; which is exactly Voevodsky’s category of motivic spec-

tra. We denote the unit object in MSA
1

S by 1A1 and consider 1A1-modules;

Mod1
A1
(MSS) →֒ MSA

1

S .

This inclusion has both left and right adjoints by abstract nonsense. We think
about the right adjoint, denoted by E 7→ E† and called the A1-colocalization.

Let E be a 1A1-module in MSS . For a dualizable object A in MSS , we have
E†(A) ≃ E(A), where E(A) denotes the mapping spectrum map(A,E) in MSS and
same for E†(A). Then it follows from Atiyah duality that the A1-colocalization
of E does not change the value on smooth projective S-schemes. Furthermore, if
U ∈ SmS has a strict normal crossings compactification (X,D), then E†(U) can
be regarded as the logarithmic E-cohomology of (X,D).

Let us take crystalline cohomology as an example. For a perfect field k of
characteristic p > 0, we have a motivic spectrum HW (k)crys over k that represents
crystalline cohomology. It is naturally a 1A1-module and thus its A1-colocalization
HW (k)crys,† makes sense. Then:

(i) HW (k)crys,†[1/p] represents Berthelot’s rigid cohomology.
(ii) If U ∈ Smk has a strict normal crossings compactification (X,D), then

HW (k)crys,†(U) is identified with the existing logarithmic crystalline coho-
mology of (X,D).



Arithmetic Geometry 1871

In particular, it implies that the logarithmic crystalline cohomology is independent
of the choice of compactification. This has been a fundamental open question since
the late 80’s.
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The p-adic Simpson correspondence via moduli spaces

Ben Heuer

In this talk, we discuss recent developments in the moduli-theoretic formulation
of p-adic non-abelian Hodge theory in geometric and arithmetic setups.

Let C be a complete algebraically closed extension of Qp. Let X be a connected
smooth proper rigid space over C. Scholze associates to X the v-site Xv of the
diamond X♦ [14], whose underlying category PerfC is given by perfectoid spaces
over C . It is equipped with a natural structure sheaf OXv . Our goal is to answer:

Question 1. Can we describe the category VB(Xv) of v-vector bundles, i.e.
finite locally free sheaves on (Xv,OXv ), in terms of more classical objects on Xan?

By a Theorem of Kedlaya–Liu, v-vector bundles are equivalent to vector bundles

on the pro-étale site (Xproét, ÔXproét
) of [13]. There is moreover a pullback functor

VB(Xan)→ VB(Xv)

which is fully faithful, but it turns out that it is not essentially surjective outside
of trivial cases. Let us give an example of how v-vector bundles arise “in nature”:

Example 2. For any Qp-local system L on X, the sheaf L ⊗Qp O is a v-vector
bundle on X. More generally, this works for C-local systems (appropriately de-
fined). As a consequence, there is for any choice of base point x ∈ X(C) a fully
faithful functor

RepC(π1(X, x)) →֒ VB(Xv)

where RepC(π1(X, x)) is the category of continuous representations of the étale
fundamental group of X on finite dimensional C-vector spaces.

1. The p-adic Simpson correspondence

Our first main result describes v-vector bundles in terms of the following more
classical objects of Hodge theory:

Definition 3. A Higgs bundle on X is a pair (E, θ) where

• E is a vector bundle on Xan,



1872 Oberwolfach Report 33/2024

• θ ∈ End(E)⊗Ω1
X(−1) is a Higgs field, i.e. it induces a morphism of OX-

algebras SymΩ1∨
X (1)→ End(E). Here (−1) and (1) denote Tate twists.

Theorem 4 (p-adic Simpson correspondence, [5]). Choices of a B2 := B+
dR/ξ

2-lift
X of X and of an exponential C → 1 +mC induce an exact tensor equivalence

S : VB(Xv)↔ {Higgs bundles on X}.

For any v-vector bundle V on X, we moreover have a comparison of cohomologies

RΓv(X,V ) = RΓDol(X,S(V )).

This was first proved by Faltings when X is a curve [3]. Our proof in [5] hinges
on analytic moduli spaces of pro-étale invertible sheaves on spectral varieties.

In the case of V = O, the cohomological comparison recovers the Hodge–Tate
decomposition of Faltings and Scholze via the Primitive Comparison Theorem
[13]. The perspective that the p-adic Simpson correspondence generalises this
decomposition to more general coefficient systems is one reason why this subject
is also called “p-adic non-abelian Hodge theory”.

Question 5. Under the equivalence S of Theorem 4, which Higgs bundles corre-
spond to representations via the embedding described in Example 2?

This is expected to be a very difficult question. The answer is known in the
case of line bundles [6] and abeloid varieties [8], where it is already quite subtle.
In fact, the answer in these cases is in terms of moduli spaces of v-line bundles.

2. Moduli spaces in the case of curves (joint with Daxin Xu)

Following [7], one can define moduli stacks on PerfC for either side of the p-adic
Simpson correspondence, which turn out to be small v-stacks: Let n ∈ N and set

Bunv,n : PerfC → Grpds, S 7→ {v-vector bundles on X × S of rank n},

Higgsn : PerfC → Grpds, S 7→ {Higgs bundles on X × S of rank n}.

Assume now that X is a smooth projective curve, then in joint work with Xu [9],
we show that Bunv,n is an étale twist of Higgsn. To make this more precise, let

An :=
⊕n

i=1H
0(X,Ω⊗iX (−i))⊗Ga

be the Hitchin base of rank n, then we have the classical Hitchin fibration

H : Higgsn → An.

In [7], we explain that there is an analogous morphism

H̃ : Bunv,n → An.

One way to define this is by sending any v-vector bundle to the characteristic
polynomial of the canonical Higgs field of Pan and Rodŕıguez Camargo [12].

Let now Z → X × An be the universal spectral curve and let P be the étale
Picard stack of the relative curve Z → An. Then by the theory of “abelianization”,

P acts naturally on H, and it turns out that there is an analogous action on H̃.
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Theorem 6 ([9]). There is a canonical P-torsor L and a canonical and natural
equivalence of v-stacks

Bunn,v = Higgsn ×
P L.

Choices of a B2-lift of X and an exponential induce a splitting An(C) → L(C)
which induces a homeomorphism |Bunv,n(C)| ∼= |Higgsn(C)|.

Thus the choices in Theorem 4 admit a geometric interpretation in terms of
moduli spaces, namely they trivialise a twist on C-points.

3. The arithmetic non-abelian Hodge correspondence

We now switch to an arithmetic setup, namely let X be a proper smooth rigid
space over Qp.

Question 7. Can we describe the category VB(Xv) in this case?

This question was first studied by Liu–Zhu for local systems [10], then by Tsuji
[15], He [4], Min–Wang [11] and in joint work with Anschütz–Le Bras [2]. But in
fact, one could say that work on this question already starts with the work of Sen,
as the following example demonstrates:

Example 8. Let X = Spa(Qp) and set Cp = Q̂p. Then any v-vector bundle is
trivialised by the cover Spa(Cp) → Spa(Qp), a GQp := Gal(Cp|Qp)-torsor on Xv.
Hence v-vector bundles on Spa(Qp) are equivalent to continuous finite dimensional
semi-linear Cp-representations of GQp . These are described by Sen theory.

In general, one can describe v-vector bundles in terms of the following class of
objects, which incorporates the data of both Higgs bundles and Sen modules:

Definition 9. A Higgs–Sen bundle on X is a triple (E, θ, φ) where

• E is a vector bundle on X,
• θ : E → E ⊗ ΩX is a Higgs field,
• φ : E → E is an OX-linear morphism,

subject to the condition that the following diagram commutes:

E E ⊗ Ω

E E ⊗ Ω.

θ

φ φ⊗id+id

θ

Note the additional +id on the right (a shadow of the Tate twist in Definition 3).

Like in the geometric setup, one can now define moduli stacks for these objects,
but we need to take a different test category: Let RigsmQp,ét be the site of smooth
rigid spaces over Qp with the étale topology. Then for any n ∈ N, we set

Bunv,n : RigsmQp,ét → Grpds, S 7→ {v-vector bundles on X × S of rank n},

HigSenn : RigsmQp,ét → Grpds, S 7→ {Higgs–Sen bundles on X × S of rank n}.
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Once again, it turns out that these admit natural “Hitchin maps”

H : HigSenn → An, H̃ : Bunn,v → An

where the first is given by sending (E, θ, φ) to the characteristic polynomial of φ.
Let Z → X×An be the spectral variety defined by interpreting the coordinates

of An as coefficients of a characteristic polynomial. Like before, we define P to be
the relative Picard stack of Z → An. It turns out that there are natural actions
of P on Bunv,n and HigSenn. We can now state our third main theorem:

Theorem 10 (work in progress). There is a canonical P-torsor L and a canonical
equivalence

Bunv,n = HigSenn ×
P L.

Moreover, there is a canonical splitting of L → An over the “small” locus of An.

The base case of X = Spa(Qp) thus gives a geometrisation of Sen theory.

References

[1] A. Abbes, M. Gros, and T. Tsuji. The p-adic Simpson correspondence, volume 193 of Annals
of Mathematics Studies. Princeton University Press, 2016.
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On a p-adic version of Narasimhan and Seshadri’s theorem

Fabrizio Andreatta

Let R be a complete discrete valuation ring, with fraction field K of characteristic
0, uniformizer π and residue field k = R/(π) ∼= Fp. Fix an algebraic closure K of

K and let R be the integral closure of R in K. Let OCp be the p-adic completion

of R and Cp := OCp [p
−1]. Let C → Spec(R) be a smooth proper morphism

of relative dimension 1 with geometrically connected fibers, of genus g ≥ 1, and
generic fiber CK . Let CK be the base change of CK to K and let x be K-valued
point of C.

Work of G. Faltings [Fa] associates to continuous representations ρ : π1
(
CK , x

)
→

GLr(Cp) of the geometric fundamental group of CK a Higgs bundle (Eρ, θρ). Here,

Eρ is a vector bundle of rank r on CCp and θρ ∈ Hom
(
Eρ, Eρ⊗OCCp

Ω1
CCp/Cp

)
(the

Higgs field). This is the so called p-adic Simpson correspondence. We refer the
reader to the work of A. Abbes, M. Gros and T. Tsuji [AGT] for a complete and
detailed account of Faltings’ approach, developing the necessary foundations, and
to work of B. Heuer [He] for a different and independent approach using vector
bundles on Scholze’s pro-étale and v-sites. Motivated by the result of Narasimhan
and Seshadri [NS], in §5 of his paper Faltings remarks that any Higgs bundle con-
structed in this way is semistable of degree 0 and asks whether the converse is
true; see also [Xu, Conjecture 1.1.8] or [He, Question 1.3]:

Question: Is every semistable Higgs bundle over CCp of degree 0 in the image of
the p-adic Simpson correspondence?

Thanks to work of Faltings [Fa], C. Deninger and A. Werner [DW] and of D. Xu
[Xu] the evidence supporting a positive answer are the cases r = 1 and arbitrary
genus and g = 0 or g = 1 and arbitrary rank r; see [Xu, Thm. 1.1.7]. In this
paper, we answer this question for Higgs bundles with trivial Higgs field:

Theorem: Assume that p > r(r − 1)(g − 1), that g ≥ 2 and r ≥ 2. Let F be
a locally free sheaf on C ⊗R OCp such that Fk := F ⊗OCp

k is a stable sheaf of

OCk -modules of degree 0. Then, its generic fiber FCp is in the image of the p-adic
Simpson correspondence if and only if Fk is strongly semistable.

Recall that a vector bundle on Ck is called strongly semistable if it is semistable
and its pull-back by any positive power of the absolute Frobenius on Ck is again
semistable.

The Theorem provides a negative answer to Faltings’ question already for r = 2,
g ≥ 2 and p > 2g − 2 thanks to work of Joshi and Pauli [JP].

Strategy of proof: The starting point of our analysis are the works of Deninger-
Werner [DW] and of Xu [Xu]. The latter relates the work of Deninger-Werner
and that of Faltings, see [Xu, Thm. 1.1.6 & 1.1.7], characterizing in this way the
vector bundles on CCp (with 0 Higgs field) that are in the image of the Simpson
correspondence as those having potentially strongly semistable reduction. We can
then rephrase our theorem as follows:
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Theorem: Suppose that p > r(r− 1)(g− 1), that g ≥ 2 and r ≥ 2. Let F be a
locally free sheaf on C ⊗R OCp such that Fk is stable of degree 0. Then, FCp has
potentially strongly semistable reduction if and only if Fk is strongly semistable.

The first ingredient in our proof of this result is Raynaud’s theory of reduction of
Galois covers [Ra]. The second ingredient is Seshadri’s theory of semistable sheaves
on semistable curves over k. The third key input is the study of subbundles of the
push-forward of stable vector bundles under a (power of) Frobenius on curves in
positive characteristic p using the bound on p in the Theorem and work of X. Sun
[Su] and refinements of K. Joshi and C. Pauly [JP].
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p-isogenies with G-structure

Si Ying Lee

(joint work with Keerthi Madapusi)

This is a project which is currently work in progress.

1. Motivation

Let p be a prime. Let ShK(G,X) be an abelian type Shimura variety which is of
hyperspecial level at p, with reflex field E. Let v be a prime above p. Following
the work of Kisin [Kis10], we have a smooth integral model SK(G,X) over OEv
of ShK(G,X).

Let H(G) denote the spherical Hecke algebra at p. Given a double coset
1G(Zp)gpG(Zp)) ∈ H(G), one can consider ShgpKg−1

p ∩K
(G,X), with its two pro-

jection maps to ShK(G,X). This algebraic correspondence gives rise to an action
of H(G) on various cohomology groups of ShK(G,X).
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Observe that in the case where (G,X) is of Hodge type, after choosing a Hodge
embedding, ShgpKg−1

p ∩K
(G,X) can be interpreted as the space of isogenies of

abelian varieties with p-power degree which preserve additional structure, and
whose map on the p-adic Tate modules is given (up to choice of trivialization of
the Tate module) by gp.

One can try to extend this description integrally, to consider various stacks
of p-isogenies with G-structure which are defined over OEv . One key motivation
for doing so is that such a construction would provide a geometric formalism for
the integral action of the Hecke algebra at p. Such integral Hecke actions have
been conjectured in various instances by others, and we mention two here: The
conjecture of Fakhruddin-Pilloni [FP23] on the Hecke action on integral coherent
cohomology of SK(G,X), and the conjecture of Li-Rapoport-Zhang [LRZ23] on
the Hecke action on Gillet-Soulé K-groups of Rapoport-Zink spaces. In both
instances we also observe that in order for such a stack of p-isogenies to give rise
to an action of the Hecke algebra, we require that the projection maps are both
local complete intersection (lci) morphisms.

2. Construction

Our construction is local, and we first construct spaces of isogenies over the
stack of (n-truncated) (G,µ)-apertures, as defined by Gardner-Madapusi-Mathew
[GMM24] following the work of Drinfeld [Dri23] for n = 1. We briefly review the
definition of an n-trucated (G,µ)-aperture here.

Following the work of Bhatt-Lurie and Drinfeld, for any p-complete commuta-
tive ring R, we may define the syntomification Rsyn whose coherent cohomology
computes the (p-adic) syntomic cohomology of R, as well as the Nygaard filtered
prismatization RN . By construction, for all R, we have a map

xNdR : A1/Gm × SpecR →֒ RN .

For any positive integer n, we can consider the derived base change of R over
Z/pnZ, denoted by R/Lpn. We then define an n-truncated (G,µ)-aperture over R
to be a G-torsor over (R/Lpn)N whose pullback via xNdR to BGm× Spec κ for any
geometric point of SpecR/Lpn is isomorphic to the canonical G-torsor induced by
µ.

Let BTG,µn denote the moduli stack of n-truncated (G,µ)-apertures. Over this
stack, using m-isogeny models, we can construct stacks IsogZ,n equipped with m

projection maps to BTG,µn .

Definition 2.1. An n-isogeny model is a triple (Z, j, n) where Z is a separated
finite type Zp-scheme with non-empty generic fiber and an action of Gn+1 such
that j is an isomorphism

j : GnQp
∼
−→ ZQp ,

which is equivariant for the action of Gn+1
Qp

, where the action on the source is the

right action of Gn+1
Qp

given by

(h0, . . . , hn−1) · (g0, . . . , gn) = (g−10 h0g1, g
−1
1 h1g2, . . . , g

−1
n−1hn−1gn).
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We have the following key example of a 1-isogeny model, for G = GLn:

Example 2.2. For all r ∈ Z, let Zrn → SpecZp be the scheme given by

Zrn(C) = {(A0, A1) ∈Matn(C)
2 : A0A1 = A1A0 = prIn}.

The action of GL2
n is given by

(A0, A1) · (g0, g1) = (g−10 A0g1, g
−1
1 A1g0).

Now, given another integer s ∈ Z, we obtain an isomorphism

js : Z
r
n,Qp

≃
−→ GLn,Qp

(A0, A1) 7→ psA0.

Observe now that if (Z1, j1,m1) and (Z2, j2,m2) are isogeny models for G then
so is (Z1×Z2, j1× j2,m1 +m2), with the action of Gm1+m2+1 being obtained via
the map

Gm1+m2+1 → Gm1+1 ×Gm2+1

(g1, . . . , gm1+m2+1) 7→ ((g1, . . . , gm1+1), (gm1+1, . . . , gm1+m2+1)).

In particular, observe that from the example of a 1-isogeny model for GLn, for
r = (r0, . . . , rm−1) and s = (s0, . . . , sm−1), we have an m-isogeny model given by

(Zr0n × . . .× Z
rm−1
n , js0 × . . .× jsm−1 ,m).

We also observe that the free abelian group on the set of isogeny models forms
a ring, with the multiplicative structure given by taking

(Z1, j1,m1) · (Z2, j2,m2) = (Z1 × Z2, j1 × j2,m1 +m2).

We denote this by Hgeom(G). This should be thought of as a geometric realization
of the spherical Hecke algebra, but we note that this multiplicative structure is
not commutative.

We can relate Hgeom(G) with H(G), as follows. We can associate to an m-
isogeny model an element of the spherical Hecke algebra. Observe that we have
maps

Z(Zp) →֒ Z(Qp)
∼
−→
j
G(Qp)

m mult
−−−→ G(Qp),

and thus for any m-isogeny model (Z, j,m) we can consider the element

ϕ̃(Z,j,m) := mult∗1j(Z(Zp)).

One can show that this defines a surjective map

ϕ̃ : Hgeom(G)→ H(G).

Now, we can use the construction of [GMM24] to attach to a smooth m-isogeny
model Z a stack XZ := (X ⋄Z , X

◦
Z) over Zsyn

p , from which we construct the stack
IsogZ,n. More generally, we only need (X ⋄Z , X

◦
Z) to be 1-bounded as defined in

[GMM24, §4.8]. From XZ one can construct a moduli functor IsogZ . Roughly
speaking, for any p-complete commutative ring R, this is the functor of sections of
X ⋄Z whose pullback via xNdR is given by a section of X◦Z . The 1-bounded condition
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is a condition on the deformation theory, and roughly implies that the weights of
an associated cotangent complex are not less than -1.

Now, taking limits over n, we can define

BTG,µ
∞ := lim

←
n

BTG,µn IsogZ,∞ := lim
←
n

IsogZ,n.

Moreover, by construction, we have m+1 projection maps πi : IsogZ,∞ → BTG,µ
∞ .

We first recall the following theorem of Imai-Kato-Youcis [IKY23] and Madapusi
[Mad22] (revised version), which should be viewed as syntomic realization map:

Theorem 2.3. We have a formally étale map

̂SK(G,X)→ BTG,µ
∞ .

Now, we may for each πi, form the following (derived) Cartesian square:

̂p− IsogZ,i
̂SK(G,X)

IsogZ,∞ BTG,µ∞ .
πi

We want to algebrize the above derived formal scheme ̂p− IsogZ,i: to do this, ex-
actly as in the main construction in [Mad22], if the projection maps πi are proper,
it suffices to glue this formal scheme to a scheme over the generic fiber, which is
determined by j(Z(Zp)). As a consequence, we have the following construction of
the global space of isogenies attached to Z, with the following properties:

Theorem 2.4. For all isogeny models (Z, j,m) which are 1-bounded, with proper
projection maps, and all i = 0, . . . ,m, there is a derived scheme p − IsogZ,i over
OEv together with a quasi-smooth map

p− IsogZ,i → SK(G,X),

such that

(i) If m = 1, then p − IsogZ,i is classical, flat over OEv , and a local complete
intersection;

(ii) We have isomorphisms p − IsogZ,i ≃ p − IsogZ,j for all i 6= j, and thus for
all i, j, the following diagram is Cartesian:

̂SK(G,X) ̂p− IsogZ,i
̂SK(G,X)

BTG,µ∞ IsogZ,∞ BTG,µ∞ .
πiπj

In order to show (i), we do a dimension count to show that the underlying
classical scheme of p − IsogZ,i has the correct expected dimension, from which
being lci and flat easily follow. To show (ii), we reduce to the case where m = 1,
from which we can deduce the existence of the isomorphism from flatness.
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Note that in the casem = 1, for unitary PEL Shimura varieties at a split prime,
the example of the 1-isogeny models for GLn given above should recover the open
and closed subspace of p − Isog parametrizing p-power isogenies with degree r
and whose inverse has denominator bounded by ps. Here, we denote by p − Isog
the space of isogenies with p-power degree respecting endomorphism, polarization
and prime-to-p level structure, as defined by Wedhorn [Wed00]. The spaces of
p-isogenies we construct here should be considered as generalizations of various
connected components of p− Isog. In the case of m > 1, what we construct should
be considered as generalizations of m-iterated derived fiber products of p− Isog.

We expect that this construction will allow us to construct the Hecke actions
as conjectured by Fakhruddin-Pilloni and Li-Rapoport-Zhang. Namely, we expect
that since the various spaces are lci, we can construct cohomological correspon-
dences attached to various isogeny models, and get an action of Hgeom(G) on
various invariants. We believe that in both this situations, this action factors
through the map ϕ̃, inducing an action of H(G).
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Some new applications of G-functions to arithmetic geometry.

Vesselin Dimitrov

(joint work with Frank Calegari and Yunqing Tang)

André’s refinement of the Siegel–Shidlovsky theorem on special values of E-func-
tions can be expressed like a statement in the language of commutative algebra:

Theorem 1. The ring of all E-functions with Q-coefficients generates a (count-
ably infinite) free submodule of Q((x)) over Q[x, 1/x].

My talk attempted to address a robust, but partly conjectural, G-functions
counterpart (in a restricted form attached to a pseudoconcave formal-analytic

arithmetic surface Ṽ in the sense of Bost) of this type of statement, as an alge-

braization problem on integrable connections over Ṽalg = Spec(O(Ṽ)).
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This is the subject of arithmetic holonomy bounds, both rational and integral,
currently being developed in collaboration with Frank Calegari and Yunqing Tang
with inspiration from the work of Bost and Charles. One application is to a Q-
linear independence proof of 1, ζ(2), L(2, χ−3) whereas here I reported instead on
some applications to arithmetic geometry proper, such as the following “integral
converse theorem” and its own consequences:

Theorem 2. For Dirichlet series with (almost) integer coefficients, the classical
(Hecke–Weil) GL2-converse theorem holds without any character twists.

The categorical local Langlands program

David Hansen

(joint work with Lucas Mann)

This talk is a report on joint work in progress with Lucas Mann. Our goal is to
formulate a program to prove the categorical local Langlands conjecture (CLLC)
of Fargues–Scholze [3] for many groups.

We begin by briefly recalling the setup for this conjecture. Fix a finite extension
E/Qp and a connected reductive quasisplit groupG/E. Fix also a prime ℓ 6= p. On
the automorphic side, the main geometric player is the stack BunG of G-bundles on
the Fargues–Fontaine curve. This behaves like a smooth Artin stack of dimension
zero. Moreover, it has a stratification indexed by the Kottwitz set B(G) whose

strata BunbG are essentially the classifying stacks of the locally profinite groups
Gb(E). Here Gb is an inner form of a Levi in G.

With specific technical effort, Fargues–Scholze defined a category D(BunG) :=
Dlis(BunG,Qℓ) of constructible ℓ-adic sheaves on BunG. Similar categories are

defined for each stratum, which satisfy equivalences D(BunbG)
∼= D(Gb(E),Qℓ)

where the right-hand side denotes the derived category of the usual category of
smooth Gb(E)-representations. There are then some obvious functors

D(Gb(E),Qℓ)
ib!
⇄
i∗b

D(BunG)

relating sheaves on BunG with representations of the groups Gb, and in fact
D(BunG) is semi-orthogonally decomposed into the categories D(Gb(E),Qℓ). We
note in particular that for b = 1, G1 = G, and i1! embeds smooth G(E)-representa-
tions fully faithfully into sheaves on BunG.

On the spectral side, the main player is the stack ParG of ℓ-adically continuous
L-parameters φ : WE → LG(Qℓ). It is a little subtle to make this notion pre-
cise, but after pinning down its meaning, this turns out to be a very reasonable
space: by independent works of Fargues–Scholze, Zhu, Hellmann, and Dat–Helm–
Kurinczuk–Moss, we know that ParG is a reduced Artin stack which is a global lci
of pure dimension zero over SpecQℓ, and each connected component is the quo-
tient of an affine variety by a reductive group action. Moreover, ParG comes with
a canonical map ParG → BĜ.
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There are then two closely related sheaf categories on the spectral side: the usual
quasicoherent derived category QCoh(ParG), and the slightly larger category of
ind-coherent sheaves IndCoh(ParG). These are related by a pair of adjoint functors

QCoh(ParG)
Ξ
→֒ IndCoh(ParG)

Ψ
։ QCoh(ParG).

We note that Ψ is an equivalence on the “obvious” copies of Coh contained in its
source and target, but this fails very badly for Ξ.1

A priori, these two sides are unrelated. However, Fargues–Scholze constructed
a canonical ⊗-action of QCoh(ParG) on D(BunG), usually called “the spectral
action”. Given F ∈ QCoh(ParG) and A ∈ D(BunG), we write F ∗A for the object
obtained by acting via F on A. Very roughly, this action is normalized by the
requirement that V ∗ (−) = TV (−), where on the left V ∈ RepĜ is regarded as a

vector bundle on BĜ and then pulled back to a vector bundle on ParG, and on the
right TV denotes a Hecke operator acting on sheaves on BunG, constructed via a
suitable form of geometric Satake.

To state the categorical conjecture, we need one more piece of data, namely
a choice of Whittaker datum. This is a pair (B,ψ) where B = TN ⊂ G is a

Borel and ψ : N(E) → Qℓ
×

is a nondegenerate character. From this we form

the Whittaker representation Wψ = c− ind
G(E)
N(E)ψ, where c− ind denotes smooth

induction with compact support. Via the functor i1!, we extend this to a sheaf
i1!Wψ on BunG, and then consider the functor

aψ : QCoh(ParG)→ D(BunG)

F 7→ F ∗ i1!Wψ

given by acting spectrally on this sheaf. We can now formulate the categorical
local Langlands conjecture after Fargues–Scholze.

Conjecture 1. The functor aψ is fully faithful, and extends to an equivalence of
categories Lψ : D(BunG) ≃ IndCoh(ParG) such that the diagram

QCoh(ParG)
aψ

//

Ξ

((◗
◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

D(BunG)

≀ Lψ

��

IndCoh(ParG)

commutes.

In fact, this conjecture can be sharpened quite a bit.

Proposition 2. The equivalence Lψ is unique if it exists, and it exists if and only
if the functor cψ - the right adjoint of aψ - restricts to give an equivalence

cψ : D(BunG)
cpct ∼→ Coh(ParG),

in which case Lψ is simply the ind-completion of this equivalence.

1We write Coh where many people would write D
b,qc

coh
. With this notation, it is literally true

that IndCoh = Ind(Coh) for ParG.
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Our goal is to prove this sharpened form of CLLC for many groups. For general
groups, this is a hopeless task at present, because the conjecture simply carries
too much information. However, for groups where we have a solid understanding
of classical local Langlands, we are in much better shape.

Definition 3. A quasisplit groupG is well-understood if there is a knownB(G)basic
local Langlands correspondence for G and all its Levi subgroups, which satisfies
some standard expected properties (finite fibers, Whittaker-normalized, expected
parametrization of discrete L-packets and the endoscopic character identites for
them), and which agrees up to semisimplification with the Fargues–Scholze con-
struction of L-parameters.

This is quite a lot to demand, but actually many groups are well-understood at
present, including GLn (for any E), as well as GSp4, SO2n+1, and the unramified
form of U2n+1 (all with some restrictions on E).

To make progress for this class of groups, we also need one more piece of control:
we assume that the functor cψ is compatible with Eisenstein series (in a precise
sense). In “classical” geometric Langlands, this is a recent result of Faergeman–
Hayash. In the present setting, the case of G = GL2 was proved by Hamann, and
the general case is work in progress of Hamann–DH–Mann. We will assume this
compatibility in what follows, but we only need it as a black box. We can now
state our first result.

Theorem 4. The categorical local Langlands conjecture is true for GL2.

This is a specialization from much more general results.

Theorem 5. Let G be any well-understood group, with a fixed choice of Whittaker
datum.

i. There is a unique continuous functor Lψ : D(BunG) → IndCoh(ParG)
preserving compact objects and making the diagram

D(BunG)
Lψ

//

cψ

''❖
❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

IndCoh(ParG)

Ψ

��

QCoh(ParG)

commute. The functor Lψ is QCoh(ParG)-linear and compatible with
Eisenstein series.

ii. The functor Lψ has a QCoh(ParG)-linear continuous right adjoint Rψ :
IndCoh(ParG) → D(BunG) compatible with constant terms, which also
preserves compact objects.

iii. If aψ is fully faithful, then Rψ is fully faithful.

For GLn, we can say much more.

Theorem 6. Assume G = GLn.

i. The functor Lψ ◦ i1! coincides with the fully faithful embedding D(GLn(E),

Qℓ)→ IndCoh(ParGLn) constructed by Ben-Zvi–Chen–Helm–Nadler [1].
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ii. The functors aψ and Rψ are fully faithful.
iii. We have Rψ ◦ Ξ = aψ.
iv. On compact sheaves, we have the duality compatibility Dtw.GS ◦ Lψ =

Lψ−1 ◦ DBZ, where Dtw.GS denotes Chevally-twisted Grothendieck–Serre
duality, and DBZ is the Bernstein–Zelevinsky (“miraculous”) duality on
BunG.

We note that parts ii.-iv. depend crucially on part i.
For GLn, this reduces the whole conjecture to the conservativity of Lψ . In

“classical” geometric Langlands, this conservativity was a recent breakthrough of
Faergeman–Raskin [2], but their microlocal techniques do not seem to adapt to
our setting.

To go further, we import some idea from geometric Langlands theory “with
restricted variation”. Let D(BunG)fin ⊂ D(BunG) denote the full subcategory of
sheaves A such that ∑

b∈B(G),n∈Z

lengthHn(i∗bA) < +∞.

Let Coh(ParG)fin ⊂ Coh(ParG) denote the full subcategory of objects which are
supported set-theoretically on finitely many closed fibers of the map from ParG to
its GIT quotient. It is easy to see that if the full CLLC is true, then it restricts
to an equivalence D(BunG)fin ≃ Coh(ParG)fin. This also has a strong converse.

Theorem 7. If G is well-understood, Lψ and Rψ restrict to an adjoint pair of
functors between D(BunG)fin and Coh(ParG)fin, and if either of those restricted
functors is an equivalence, then the full CLLC is true for G.

For GLn, this reduces the whole conjecture to showing that the (fully faithful!)
functor Rψ : Coh(ParG)fin → D(BunG)fin is essentially surjective. For GL2, we are
(barely) able to check this by hand, taking advantage of the compatible gradings
on the source and target by semisimple L-parameters. Up to twist, the only
parameters which cause difficulty are the trivial L-parameter, where we make use
of Bezrukavnikov’s theory of perverse coherent sheaves on the nilpotent cone, and
the semisimplification of the Steinberg parameter, where we make heavy use of an
exhaustive table of RHom’s between explicit generating sheaves on the coherent
side, which was computed independently by Bertoloni Meli and Koshikawa.

In the talk I had almost no time to discuss the proofs. Let me briefly mention
some key new ideas here:

• Very strong finiteness theorems for spectral constant term functors.
• A new theory of “admissible” ind-coherent sheaves, which comes with its
own intrinsic stability properties and duality functor.
• New duality theorems for the spectral action.
• A spectral analogue of the fact that “ps− id∗ annihilates antitempered
D-modules”.

Using these ingredients, we are able to give an explicit formula for Rψ|Coh(ParG)fin

purely in terms of the spectral action and various dualities on both sides. This is
the crucial source of control in many of our results.
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A-parameters and eigensheaves

Teruhisa Koshikawa

(joint work with Alexander Bertoloni Meli)

Fix distinct prime numbers p, ℓ. Let E be a finite extension of Qp, and G a
quasi-split reductive group over E.

The most refined form of the categorical local Langlands conjecture has been
proposed in the work of Fargues–Scholze [5, Conjecture I.10.2]. Technically speak-
ing, we also fix a square root of q (the cardinality of the residue field of E) in Qℓ,
and a Whittaker datum to normalize the conjectural equivalence.

Conjecture (Fargues–Scholze). There exists an equivalence

Dlis(BunG,Qℓ) ∼= IndCoh(Z1(WE , Ĝ)Qℓ/Ĝ)

that interchanges TV (−) and V ⊗− for V ∈ Rep(Ĝ), where TV is the Hecke operator

of Fargues and Scholze, and V is the associated vector bundle on Z1(WE , Ĝ)
Qℓ
/Ĝ.

Before the joint work with Scholze, Fargues [4] has originated the geometrization
of the local Langlands with his conjecture on Hecke eigensheaves for discrete L-
parameters. Here is a slightly modified version of (a part of) the conjecture:

Conjecture (Fargues). Let φ be a discrete L-parameter of G. There exists Fφ ∈
Dlis(BunG,Qℓ) satisfying the following properties.

(1) Fφ is an Hecke eigensheaf, i.e., for every V ∈ Rep(Ĝ),

TV (Fφ) ∼= V ⊗Qℓ
Fφ.

(2) Fφ is perverse; see [8, Proposition 1.2.1] for the definition of the perverse
t-structure.

(3) For any basic point b ∈ B(G) and the open immersion ib : BGb(E) →֒
BunG,

i∗bFφ
∼=

⊕

π∈Πφ(Gb(E))

π〈π,e〉,

where 〈π, e〉 is the dimension of the representation of the centralizer of φ
corresponding to π under the local Langlands conjecture for extended pure
inner forms.
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(4) The pushforward along the Hodge–Tate period map from the perfectoid
compact Shimura variety, or rather from the Igusa stack, is related to
eigensheaves.

The property (4) is called the local-global compatibility in [4], and is inspired
by results of Caraiani and Scholze. However, the original statement does not seem
to be precise enough and it is somehow nontrivial to make a reasonable conjecture
along this line (already in the above setup) that is consistent with conjectures of
Arthur and Kottwitz; this was discussed intensively after the workshop.

In fact, it has been observed by several people that the above conjecture should
hold in greater generalities. The optimal class seems to be the one of generic L-
parameters in the sense that the monodromy of the corresponding Weil–Deligne
parameter is maximal possible with the same semisimplification. See [8, Section
3] for some related discussion based on the categorical local Langlands conjecture
and the generalized coherent Springer sheaves.

We propose that a variant of the conjecture should hold for A-parameters, also
known as Arthur parameters:

Definition. Fix an isomorphism ι : Qℓ ∼= C. A map

ψ : WE × SL2 × SL2 →
LG(Qℓ)

is an A-parameter with respect to ι if the restriction of ψ toWE is an L-parameter,
the restriction of ψ to SL2 × SL2 is algebraic, and ι(ψ(WE)) is bounded.

In fact, one should work with a broader class of parameters independent of ι
that includes all generic L-parameters. For the purpose of exposition, we restrict
ourselves to the above setting.

We conjecture that a variant of eigensheaf exists for any A-parameter:

Conjecture. Let ψ be an A-parameter with respect to ι. There exists Fψ ∈
Dlis(BunG,Qℓ) satisfying the following properties.

(1) For a given V ∈ Rep(Ĝ), let V ◦ψ ∼=
⊕

i∈Z Vi be the weight decomposition
with respect to Gm in the second SL2, where Vi is the weight i space. There
exists an isomorphism

TV (Fψ) ∼=
⊕

i

Vi ⊗Qℓ
Fψ[−i].

(2) Fψ is perverse.
(3) Assume G is semisimple, in which case Gb is a pure inner form of G for

any basic b. There exists a decomposition

i∗bFψ ∼=
⊕

π∈Πι◦ψ(Gb(E))

π〈π,e〉,

where the left hand side is regarded as a C-representation via ι and Πι◦ψ is
the p-adic Adams–Barbasch–Vogan packet with parametrization discussed
in [3], and 〈π, e〉 is the dimension of the representation corresponding to
π.
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(4) Again, the pushforward along the Hodge–Tate period map from the perfec-
toid compact Shimura variety, or rather from the Igusa stack, is related to
eigensheaves.

We realized, not surprisingly, that the variant of eigenproperty (1) above is
not completely new. See [6, 7] in a more classical context or more recent [2].
In particular, the modification of the eigenproperty in (1) is regarded in [2] as a
special case of shearing, and we do so as well. Note that Property (3) makes sense
only when we know some version of the classical local Langlands conjecture as the
Adams–Barbasch–Vogan packets need such an input.

Here is one evidence towards the conjecture:

Theorem. Let ψ be an A-parameter with respect to ι. There exists a nonzero

ind-coherent sheaf Fψ on Z1(WE , Ĝ)Qℓ/Ĝ satisfying

V ⊗Fψ ∼=
⊕

i

Vi ⊗Qℓ
Fψ[−i].

In particular, the categorical local Langlands conjecture would imply that there
exists a nonzero Fψ ∈ Dlis(BunG,Qℓ) satisfying the property (1).

If ψ is tempered, i.e., trivial on the second SL2, the construction of the above
ind-coherent sheaf is not difficult, and it is essentially obtained from the regular
representation of the centralizer of ψ; see [8, Section 3.1]. In general, our construc-
tion of these ind-coherent sheaves is very much inspired by [1], where the authors
compare, in the unipotent case, the categorical local Langlands conjecture and the
p-adic Adams–Barbasch–Vogan theory via the Koszul duality. This is also one
reason why we think the property (3) should hold.

It would be possible to make sense of properties (2) and (3) in a suitable sense
purely on the spectral side, and we are currently working on (formulating such
statements and) verifying these properties. For instance, this can be checked for
GL2, and this example led us to the general conjecture.

Acknowledgements. TK was supported by JSPS KAKENHI Grant Number
24K16895.
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Hodge type Igusa stacks and cohomology of Shimura varieties

Mingjia Zhang

(joint work with Patrick Daniels, Pol van Hoften, Dongryul Kim)

Igusa stacks are geometric objects akin to Shimura varieties. Scholze predicted
their existence, motivated by questions related to local-global compatibility in the
Langlands program. In [2], the author has constructed Igusa stacks for some PEL-
type Shimura data. The current project [1] extends this to Hodge type Shimura
data. This geometric result enables us to apply the geometric local Langlands
correspondence of [3] to study the ℓ-adic cohomology of Shimura varieties.

More precisely, let (G,X) be a Hodge type Shimura datum with Hodge cochar-
acter µ and reflex field E. Fix a prime number p, a place v of E above p and
set E = Ev, G = GQp . We consider the Shimura variety attached to (G,X) over
E, i.e. a tower of algebraic varieties {ShK}K for K running through neat com-
pact open subgroups of G(Af ). Fixing Kp, we denote by ShKp the inverse limit
limKp→1 ShKpKp . Let ℓ 6= p be a prime that does not divide the order of π0(ZG),
where ZG is the center of G. We consider a torsion noetherian Zℓ-algebra Λ
containing a fixed square root of p. Our main cohomological results are as follows:

Theorem 1 (Mantovan’s product formula). There exists a filtration on
RΓ(ShKp,E ,Λ) by complexes of smooth representations of G(Qp) ×WE , labeled

by the Kottwitz set B(G,µ−1), whose graded pieces are given by

RΓ(Igb,Λ)op ⊗L
Cc(Gb(Qp),Λ) RΓc(G, b, µ).

Here Igb denotes a perfect Igusa variety over Fp; Gb is an inner form of a Levi
of G determined by b, and up to shifts and twists, RΓc(G, b, µ) is the cohomology
of a local Shimura variety attached to the datum (G, b, µ). This describes the
structure of RΓ(ShKp,E ,Λ) and extends results of [4, 6]. Compared to [5], we do
not make extra assumptions on the Hodge type Shimura data.

Let WE ⊂ Gal(Qp/Qp) be the Weil group of E and fix the prime-to-p level Kp.

Theorem 2 (Eichler-Shimura relation). Assume G is unramified, and fix a Iwa-
horic in a hyperspecial subgroup Ip ⊂ Kp ⊂ G(Qp). Let HKp be the corresponding
spherical Hecke algebra with Λ coefficient. Then the inertia subgroup of WE acts
unipotently on RΓ(ShIpKp,E,Λ), and for any lift σ of the Frobenius, the relation

Hµ(σ) = 0 holds, where Hµ(X) ∈ HKp [X ]1 is a renormalized Hecke polynomial.

This result generalizes the classical Eichler-Shimura relation for modular curves,
confirming Blasius-Rogawski’s conjecture [9, Section 6] for Hodge type Shimura
varieties and extends the work of [10]. It shows that at all unramified primes, the
Frobenius eigenvalues are constraint to the roots of the Hecke polynomials, and
thus provide much information about the cohomology of the Shimura variety (over
E) as a global Galois representation. Note that most previous works only consider

1where HKp identifies with the center of HIp via Bernstein isomorphism
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Shimura varieties at hyperspecial level. It is therefore a novelty that we establish
this result at Iwahoric levels. Our proof is strongly influenced by [7, 8].

Theorem 3 (“Generic” part). Assume G is unramified and “well-understood”2,
Kp is hyperspecial and ShK is compact. Then for a generic L-parameter φ, the
isotypical part RΓ(ShK,E ,Λ)φ

3 is concentrated in the middle degree.

Here we use the notion of “generic” in the sense of [11], which is inspired
by [12, 13, 14]. This result shows analogy to the phenomenon that tempered
automorphic representations only occur in the middle degree in the cohomology
of locally symmetric spaces attached to compact Shimura varieties, albeit with
torsion coefficients. Our approach follows and extends [6].

All the above results are consequences of our main geometric result below.
To our surprise, given this geometric input, the cohomological consequences follow
formally from the setup of [3], with a minimal amount of extra effort. One therefore
wonders how much more the categorical local Langlands correspondence can be
exploited to provide information about the global Langlands correspondence, as a
first approximation of which, about the cohomology of Shimura varieties.

We write Perfv for the v-site of perfectoid spaces over Fp. The (good reduction
locus of the) Shimura variety will be considered as a sheaf on Perfv and denoted

by Sh♦,◦
Kp . Let BunG be the stack of G-bundles on the Fargues-Fontaine curve with

its Beauville-Laszlo map BL : GrG → BunG, from the B+
dR-affine Grassmannian

for G. We restrict BL to the minuscule Schubert cell GrG,µ−1 .

Theorem 4. There exists a functorial (in Shimura data) construction of an “Igusa
stack” IgsKp on Perfv, together with a Cartesian diagram

Sh♦,◦
Kp GrG,µ−1

IgsKp BunG,µ−1 ,

π♦
HT

BL

πHT

where the top row is the Hodge-Tate period map. Furthermore, for all ℓ 6= p, IgsKp

is ℓ-cohomologically smooth of dimension 0 with constant dualizing sheaf.

Let us give some ideas how this is used to prove Theorem 1 to 3. Theorem
1 is direct: BunG,µ−1 has a Newton stratification labeled by B(G,µ−1), and the
theorem follows by identifying the stratum corresponding to b ∈ B(G,µ−1) of the

Cartesian diagram. In particular, horizontally the fiber is the Igusa variety Igb

while vertically the fiber is the local Shimura variety attached to (G, b, µ). For
Theorem 2 and 3, we consider the complex

F := RπHT,∗Λ ∈ D(BunG,µ−1 ,Λ).

It is not hard to check that there is a G(Qp)×WE-equivariant isomorphism

i∗1TµF [−d](−
d
2 ) ≃ RΓ(ShKp,E ,Λ),

2As defined in David Hansen’s talk, see the corresponding abstract in this proceeding.
3Defined as in [6, Section 4].



1890 Oberwolfach Report 33/2024

where Tµ is the Hecke operator attached to µ, and i1 : BG(Qp) →֒ BunG is the

open immersion of the neutral stratum. This reduces the problem of studying
RΓ(ShKp,E ,Λ) to studying F and the functor i∗1Tµ individually. Indeed, Theorem

3 follows by showing F is perverse for a t-structure on D(BunG,µ−1 ,Λ) while i∗1Tµ
(whose target identifies with the derived category of smooth G(Qp)-representations
with usual t-structure) is perverse t-exact on generic objects.

Let XĜ be the stack of L-parameters for G. Theorem 2 uses the spectral action
of [3, Section X], a Λ-linear action of the∞-category of perfect complexes onXĜ on
D(BunG,Λ). In particular, the Hecke operator Tµ acts as (the spectral action of)
a vector bundle Vµ on XĜ. This leads to an action of the endomorphism algebra of

Vµ on RΓ(ShKp,E ,Λ) = i∗1TµF [−d](−
d
2 ). Since WE acts on Vµ via the universal

L-parameter, through this it also acts on RΓ(ShKp,E,Λ). One can show that
this spectral WE -action coincides with the natural WE-action coming from the
structure map of ShKp to SpecE. Now any Frobenius lift, as an endomorphism
of Vµ, has a characteritic polynomial with coefficients in the spectral Bernstein
center. Passing to Iwahoric levels, the latter acts on RΓ(ShKpIp ,Λ) through the
Iwahoric-Hecke algebra, and this polynomial reduces to the Hecke polynomial.
The theorem follows.
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Special points on Shimura varieties defined over characteristic p and
p-adic fields

Ananth Shankar

(joint work with Benjamin Bakker, Jacob Tsimerman)

Ag and Shimura varieties of abelian type. Let Ag denote the moduli space
of principally polarized abelian varieties. A point x ∈ Ag is said to be special if
the abelian variety Ax associated to x has CM, i.e. if its Endomorphism algebra
contains a degree 2g CM algebra. This definition applies to points defined over
fields of any characteristic. Grothendieck proves that every special point x ∈
Ag(C) is defined over Q, and such a point has (potentially) good reduction at all

places. Further, an arbitrary Q-valued point of Ag is not special.
Moving to the case of positive characteristic, Tate in [12] proves that every

abelian variety over a finite field is CM, and therefore every point x ∈ Ag(Fp)
is a special point. There are also examples of abelian varieties whose minimal
field of definition has positive transcendence degree over Fp that have CM – in
other words, a word-to-word characteristic p analogue of Grothendieck’s theorem
is false. Such abelian varieties necessarily cannot admit CM lifts to characteristic
zero. A natural question that arises from these phenomena is the following:

Question: Does every abelian variety over a finite field admit a CM lift to char-
acteristic zero?

Serre-Tate show that the answer is yes for ordinary abelian varieties, and in
fact ordinary abelian varieties admit canonical CM lifts. Work of Deuring shows
that the answer remains yes for almost ordinary1 abelian varieties. Honda-Tate
show that the answer is yes but only up to isogeny, i.e. that an abelian variety
over a finite field is isogenous to an abelian variety that admits a CM lift. All
these results are also true at the level of principally polarized abelian varieties –
i.e. at the level of points in Ag.

However, the answer to the question in general is no! In [9], Oort shows the
existence of abelian varieties over finite fields that do not admit CM lifts. In
[2], Chai-Conrad-Oort prove stronger results, and demonstrate the existence of
supersingular abelian varieties that do not admit CM lifts. In [6], the authors show
that the set of points in Ag(Fp) that admit lifts to special points are contained in
finitely many central leaves (see [10]) for the definition of central leaves.

These theorems all have analogues in the setting of Shimura varieties of Hodge
(and abelian) type. Let S be a Shimura variety of Hodge2 type and let p be a
prime of good reduction for S. The notion of a point being special is the same
as for Ag, and therefore Tate’s theorem shows that every Fp-point of S is special.
The results about lifts to special points is by no means formal, as the results for
Ag a-priori only yield that an Fp-point of S admits a CM lift to some point in

1A g-dimensional abelian variety A is said to be almost ordinary if the étale part of A[p] has
rank g − 1.

2The same results hold for Shimura varieties of abelian type.
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Ag. However, the results of [8], [7], and [11] show Fp-valued points of S contained
in the µ-ordinary locus (analogue of the ordinary locus) admit canonical lifts to
special points. Kisin [5] proves a CM-lifting upto isogeny theorem for such Shimura
varieties. The negative results of [9], [2], and [6] formally apply to this setting.

Along similar lines, work of Ito-Ito-Koshikawa [4] and Yang [13] independently
show that non-supersingular K3 surfaces admit CM lifts to characteristic zero, and
in [6], the authors show that only finitely many supersingular K3 surfaces admit
CM lifts. These results make no reference to polarizations, and therefore do not
follow from the case of Ag.

Exceptional Shimura varieties. Let (G,X) denote a Shimura datum that is
of exceptional type (i.e. not of abelian type) with reflex field E. Let S/E denote
the Shimura variety associated to (G,X). For sufficiently large primes p, we may
reduce S mod v where v is a place of E dividing p. A representation V of G gives
rise to motivic data on S. Specifically, we obtain a filtered flat bundle (satisfying
Griffiths transersality), ℓ-adic étale local systems, and a Fontaine-Laffaile module
(by work of Esnault-Groechenig [3]) at large enough primes p.

It is a-priori unclear how to even define the notion of special points in positive
characteristic. In characteristic zero, the definition of special points defined is
Hodge theoretic and therefore doesn’t generalize. As S is not known to carry
families of varieties, Tate’s theorem does not apply. The results of [9], [2] and [6]
show that defining a point to be special if it is the mod p reduction of a special
point in characteristic zero is not reasonable.

However, a complex point being special can be detected at the level of Hecke
correspondences. To that end, we let τh denote the Hecke correspondence for some
h ∈ G(Qℓ). We make the following definition.

Definition 1. Let K be a field and let x ∈ S(K) be some point. Then x is special
if there exists a finite set of points {x1, x2, . . . xn} and infinitely many primes ℓ
and split maximal tori Tℓ ⊂ G⊗Qℓ, such that τh(x)∩{x1 . . . xn} is non-empty for
every h ∈ Tℓ(Qℓ).

This definition is equivalent to the classical definitions in characteristic zero.
The advantage of this definition is that it applies equally well in any characteristic.
With this in hand, we prove the following results in [1].

Theorem 1 (Bakker-S-Tsimerman). Let p be a prime large enough prime.

(1) The ℓ-adic Frobenius conjugacy class at every closed point x ∈ S(Fq) is

semisimple. Further, every Fp-point of S is a special point.
(2) The µ-ordinary locus of S mod v is non-empty.
(3) Every µ-ordinary Fp-point of S admits a canonical lift to a characteristic

zero special point of S.
(4) Let x and y be ordinary points whose ℓ-adic Frobenii are conjugate. Then

the canonical lifts of x and y give rise to isomorphic rational Hodge struc-
tures.

The last part of this theorem should be regarded as an ordinary analogue of
Tate’s isogeny theorem.
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Analytic prismatization

Juan Esteban Rodŕıguez Camargo

(joint work with Johannes Anschütz, Arthur-César le Bras and Peter Scholze)

Prismatic cohomology [5] is a unifying integral p-adic cohomology theory for p-
adic formal schemes. In [6] and [4] Drinfeld and Bhatt-Lurie have introduced
a geometrization of prismatic cohomology in the form of the prismatization of
formal schemes. As consequence, the comparison between prismatic cohomology
with other integral cohomology theories (eg. de Rham, crystalline, Hodge-Tate)
is explained from geometric features of the prismatization.

Motivated from the integral theory of the prismatization, some recent devel-
opments on the p-adic Simpson correspondence [1, 2], the theory of solid locally
analytic representations of p-adic Lie groups [9, 10] and its novel interactions with
p-adic automorphic forms [8, 11], we have been pursuing a theory of analytic
prismatization that is adapted to rigid geometry instead. In the process to realize
this picture we work in the framework of condensed mathematics and analytic
geometry of Clausen and Scholze.

Let C be a complete algebraically closed non-archimedean field over Qp and
X a smooth rigid space over C (or a more general adic space). Consider YC =
Spa(Ainf(OC))\V (p[p♭]) the Y -curve attached to C. The (rational) analytic prisma-
tization of X (relative to YC) is a suitable Frobenius equivariant analytic stack
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over YC

f : X∆/YC ,an → YC .

The analytic prismatic cohomology (relative to YC) is nothing but the (derived)

pusforward of the structural sheaf of X∆/YC ,an along f .

In order to describe X∆/YC ,an and explain its relationship with other cohomol-
ogy theories we need three key constructions:

• Let X♦ be the diamond attached to X . Via descent from perfectoids one
can construct an analytic stack YX♦ over YC which informally can be un-
derstood as a family of Y -Fargues-Fontaine curves over X♦. The theory
of solid quasi-coherent sheaves on YX♦ is (essentially) the one constructed
by Anschütz-le Bras-Mann in their forthcoming work on a six functor for-
malism for v-stacks with values in quasi-coherent sheaves over Fargues-
Fontaine curves. Furthermore, they proved a Riemann-Hilbert corre-
spondence for Qp-local systems and étale vector bundles in the Fargues-
Fontaine curve FFX♦ := YX♦/ϕ.

It turns out that there is a natural map of analytic stacks over YC

YX♦ → X∆/YC ,an

• Given Z an adic space (or more general analytic stacks overQp), in [12] it is
defined the analytic de Rham stack ZdR,an, an analytic analogue of Simp-
son’s de Rham stack in algebraic geometry [13]. Quasi-coherent sheaves on
the analytic de Rham stack of X , also called analytic D-modules, are an
enhancement of the category of coadmissible D-cap modules of Ardakov-
Wadsley [3]. The analytic de Rham stack has the virtue that even spaces
without differentials (like perfectoid spaces or Fargues-Fontaine curves)
have a good theory of analytic D-modules. For a general analytic stack Z
one has a natural map towards its analytic de Rham stack

Z → ZdR,an.

For a morphism Z → W of analytic stacks one defines the relative de
Rham stack of Z over W to be the pullback

ZdR/W,an W

ZdR,an W dR,an.

• Finally, the analytic Hodge-Tate stack of X is defined to be the pullback

XHT/C,an X∆/YC ,an

AnSpec(C) YC .

The analytic Hodge-Tate stack has a natural map XHT/C,an → X , when
X is a perfectoid space this map is an isomorphism.
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The following theorem summarizes the main rational cohomology comparisons
for X :

Theorem 1 (In progress). Let X be an adic space over Qp and consider the
diagram of Frobenius-equivariant analytic stacks over YC

YX♦ X∆/YC,an (X∆/YC,an)dR/YC ,an

YC

f g

π

Let x ∈ YC be the Hodge-Tate point corresponding to the divisor HT : AnSpec(C)→
YC and let U = YC\{ϕ−n(x) : n ∈ N}.

The following hold:

(1) de Rham comparison. We have an equivalence of analytic de Rham
stacks

(YX♦)dR/YC ,an
∼
−→ (X∆/YC ,an)dR/YC ,an.

Moreover, on the open locus U ⊂ YC the natural map

X∆/YC ,an|U
∼
−→ (X∆/YC ,an)dR/YC ,an|U

is an equivalence. In particular, the fiber at ϕ(x) ∈ YC of π is isomorphic
to the analytic de Rham stack XdR/C,an.

(2) Hodge-Tate comparison. Let X be a smooth rigid space over C and let
XHT/C,an be its analytic Hodge-Tate stack. Let TX be the tangent space

of X and T †X ⊂ TX the overconvergent neighbourhood of the zero section.

Then the natural map XHT/C,an → X is a gerbe banded by T †X(1) where
(1) refers to a Tate twist.

(3) Proétale comparison. Let X be a smooth rigid space. Let X∆
perf

/YC ,an=

lim
←−ϕ

X∆/YC ,an be the perfection of the analytic prismatization and write

f ′ : YX♦ → X∆
perf

/YC ,an for the induced map. Then the pullback f
′∗ :

D(X∆
perf

/YC ,an)→ D(YX♦) of solid quasi-coherent sheaves is fully faithful
and gives rise an equivalence of vector bundles.

To conclude we briefly mention some extensions of the analytic prismatization
to a somehow integral analytic theory and the expected relationship with the
analytic prismatization of Drinfeld and Bhatt-Lurie.

• We expect the equivalence of vector bundles of Theorem 1 (3) to also
hold for perfect and pseudo-coherent complexes. The smooth hypothesis
is sufficient though we do not know exactly for which class of rigid spaces
the theorem holds.
• One can define an extension of the analytic prismatization to suitable
analytic stacks with a pseudo-uniformizer over Zp, also taking values in
analytic stacks over Zp. Some additional (expected) features are the fol-
lowing:
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– The Hodge-Tate stack admits an extension to characteristic p. This
theory is an analytic analogue of the Hodge-Tate stack for schemes
over Fp which is related to the Ogus-Vologodsky correspondence.

– We expect this theory to also capture an incarnation of rigid coho-
mology when taking the generic fiber of the prismatization of a rigid
space in characteristic p.

– The mod p-fiber of the analytic prismatization of rigid spaces over
Qp is expected to compute (pro)étale cohomology modulo p. Further-
more, its theory of solid quasi-coherent sheaves should make appear
the theory of locally analytic representations modulo p and decom-
pleted (ϕ,Γ)-modules.

• Let I be the Hodge-Tate divisor. Given a p-adic formal scheme X, we
expect the prismatization of Drinfeld and Bhatt-Lurie to be recovered from
the (p, I)-adic completion of the analytic prismatization of X. In this way
the analytic prismatization will be a decompletion of the prismatization.
• The analytic prismatization provides a way to implement the geometriza-
tion of the p-adic Langlands program for locally analytic representations
following [7]. We expect this theory to give some light on the still myste-
rious properties of the correspondence.
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[11] J. E. Rodŕıguez Camargo, Locally analytic completed cohomology, Preprint, arXiv:
2209.01057 [math.NT] (2022)
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Eisenstein Series over Fargues-Fontaine curves

Linus Hamann

(joint work with David Hansen and Peter Scholze)

Let ℓ 6= p be distinct primes and G/F a quasi-split connected reductive group
over a non-archimedean local field. We fix a Borel B with maximal torus T , and
a parabolic P ⊂ G which we assume to be standard with respect to the choice of
Borel. We write M for the Levi factor and N for the unipotent radical. Given a
smooth representation (πM , V ) ofM(F ) on a Fℓ-vector space V , we recall that we
can form the parabolic induction

iGP (πM ) := {f : G(F )→ V |f(mng) = δ
1/2
P (m)π(m)f(g)},

where f is assumed to be locally constant and invariant under right translation by a

compact open subgroup of G(Qp), δ
1/2
P is the modulus character of P , m ∈M(F ),

n ∈ N(F ), and g ∈ G(F ). The vector space iGP (πM ) has the structure of a smooth
G(F )-representation.

Theorem 1. The following is true.

(1) The functor iGP (−) takes admissible (resp. finitely generated and projec-
tive) smooth representations of M(F ) to admissible (resp. finitely gener-
ated and projective) smooth representations of G(F ).

(2) The functor iGP (−) admits a left adjoint given by the Jacquet module rGP , as
well as a right adjoint given by the Jacquet module of the opposite parabolic
rGP− .

(3) We have natural isomorphisms

Dcohi
G
P (−) ≃ i

G
P−Dcoh(−)

and

(rGP (−))
∨ ≃ rGP−((−)∨),

where (−)∨ denotes smooth duality and Dcoh denotes Bernstein’s cohomo-
logical duality functor (cf. [1, Definition 5.1]).

For an account of such results in very general coefficient systems (which in this
level of generality was only proven very recently, by using the Fargues-Scholze
correspondence and its properties!), we point the reader to [4].

We study the analogues of these foundational results in the context of the ge-
ometrization of the local Langlands correspondence of Fargues-Scholze [3]. To
understand this, we have the following dictionary between classical smooth repre-
sentation theory and the geometric local Langlands correspondence.

• The category of smooth representations of G(F ) on Fℓ-vector spaces is
replaced by the category D(BunG) := D(BunG,Fℓ) of étale Fℓ-sheaves on
BunG.
• The subcategory of admissible representations is replaced by the full sub-
category DULA(BunG) ⊂ D(BunG) of sheaves which are ULA over the
point.
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• The subcategory of finitely generated projective representations is replaced
by the subcategory of compact objects Dω(BunG) ⊂ D(BunG) inside the
compactly generated category D(BunG).
• The smooth duality functor is replaced by Verdier duality denoted

D : DULA(BunG)
≃
−→ DULA(BunG)

op.

• The cohomological duality Dcoh Bernstein is replaced by the categorical
Bernstein-Zelevinsky duality of Fargues- Scholze, denoted

DBZ : D(BunG)
ω ≃−→ D(BunG)

ω,op.

One can recover the classical notions in smooth representation theory from their
geometric analogues. In particular, the moduli stack BunG admits a open Harder-
Narasimhan (abbv. HN) strata j1G : Bun1GG →֒ BunG corresponding to the locus

defined by the trivial G-bundle. Moreover, one has an isomorphism Bun1GG ≃
[∗/G(F )] between the neutral HN-strata and the classifying stack attached to

G(F ). This gives rise to an isomorphism D(Bun1G
G ) ≃ D(G(F ),Fℓ), where D(G(F ),

Fℓ) denotes the left-complete derived category of smooth representations, as well
as a fully faithful embedding

j1G!(−) : D(G(F ),Fℓ) →֒ D(BunG).

One can check that the above notions restrict to the classical ones when applied
to this full subcategory.

It remains to explain what the parabolic induction functors iGP (−) and Jacquet
module functors rGP (−) correspond to under this dictionary. This is given by
studying the diagram

BunM
qP
←−− BunP

pP
−−→ BunG

induced by the diagram of groups

M ← P → G.

The moduli stack BunP is ℓ-cohomologically smooth of some fixed pure ℓ-dimension
after pulling back to a connected components of BunM . We denote the function
given by this ℓ-dimension by dim(BunP ). We define

ICBunP := q∗P (∆
1/2
P )[dim(BunP )],

where ∆
1/2
P is a sheaf given by a choice of square root of the modulus character. It

is a Theorem [5, Theorem 1.5] that IC⊗2BunP
is the dualizing sheaf on BunP , which

implies that ICBunP is Verdier self-dual on BunP . Using this, we then define the
Eisenstein functors

nEisP !(−) := pP !(q
∗
P (−)⊗ ICBunP )

and

nEisP∗(−) := pP∗(q
∗
P (−)⊗ ICBunP ),

as well as the constant term functors

CTP∗(−) := q∗(p
!(−)⊗ IC−1BunP

)
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and

CTP !(−) := q!(p
∗(−)⊗ ICBunP ),

which satisfy the adjunction relationships

(CTP !, nEisP∗) and (nEisP !,CTP∗).

These recover the classical Jacquet and parabolic induction functors after restrict-
ing to the locus defined by the trivial bundle. In particular, if j1M denotes the
inclusion of the neutral HN-strata inside BunM , one easily verifies the following.

Lemma 2. We have natural isomorphisms

(1) EisP !j1M !(−) ≃ j1G!i
G
P (−),

(2) EisP∗j1M !(−) ≃ j1G∗i
G
P (−),

(3) j∗1MCTP !(−) ≃ rGP j
∗
1G(−), and

(4) j∗1MCTP∗(−) ≃ rGP−j∗1G(−).

This motivates our main theorem which is the geometrization of the results
discussed in Theorem 1.

Theorem 3. [2, Theorem 1.1.1] For a parabolic P ⊂ G with Levi factor M , the
following is true.

(1) The functor EisP ! preserves compact objects. If A ∈ D(BunM ,Λ) is ULA
and supported on finitely many connected components, then EisP !(A) and
EisP∗(A) are ULA.

(2) The functor CTP∗ preserves ULA objects. If A ∈ D(BunG,Λ) is compact,
then CTP !(A)|BunαM

is compact for all α ∈ π0(BunM ).
(3) There is a canonical isomorphism of functors CTP !

∼= CTP−∗.
(4) We have the following duality isomorphisms:

i. DBZEisP !
∼= EisP−!D

M
BZ on compact objects.

ii. DVerdEisP !
∼= EisP∗D

M
Verd on all objects.

iii. DMVerdCTP !
∼= CTP∗DVerd on all objects.
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Tate classes and endoscopy for GSp4

Naomi Sweeting

Let g be a classical cuspidal eigenform of weight two for GL2; then g has a Galois
representation, constructed by Deligne as a quotient

H1(X1(N)Q,Qℓ) ։ ρg

for some sufficiently large level N . However, ρg also appears in the étale cohomol-
ogy of many other Shimura varieties; this talk dealt in particular with the Shimura
variety SK(GSp4), which is a three-dimensional moduli space of principally polar-
ized abelian surfaces with some level structure determined by an open compact
subgroup K ⊂ GSp4(Af ). Consider the decomposition of the étale cohomology

H3
et(SK(GSp4)Q,Qℓ) =

⊕
ΠKf ⊗ ρΠf ,

with Πf the finite part of an automorphic representation of GSp4 and ρΠf a
Galois representation. When it is nonzero, ρΠf is typically four-dimensional and
irreducible [1]. But for certain Πf corresponding to endoscopic Yoshida lifts, ρΠf
will be a Tate twist of the two-dimensional representation ρg [3]; by Poincaré
duality and the Kunneth formula, one deduces the existence of Galois-invariant
étale cohomology classes in middle degree four on the product SK(GSp4)×X0(N).

The main question of this talk is when these classes arise from algebraic cycles,
as predicted by the Tate conjecture. It turns out that a natural special cycle class
on SK(GSp4) accounts for some, but not all, of the Galois-invariant classes: it
only sees the ones corresponding to globally generic automorphic representations
of GSp4 [2]. The automorphic representations of GSp4 are organized by the Lang-
lands program into L-packets, each of which has a unique generic member, so the
failure of the special cycle to generate all of the Tate classes of interest is closely
related to the existence of nontrivial packet structure on GSp4. In fact, an anal-
ogous result holds over totally real fields, and for Galois-invariant classes in étale
cohomology with coefficients in certain automorphic local systems.

In the non-generic case, it is not known whether the Tate classes arise from alge-
braic cycles, because it is quite difficult to construct (or work with) algebraic cycles
that are not special. However, one can at least show that all the Galois-invariant
classes arise from Hodge classes under the Betti-étale comparison isomorphism
[2]. These Hodge classes are constructing using non-tempered theta lifts on the
group GSp6. The strategy is inspired by the groundbreaking work of Ichino and
Prasanna [4], which showed that Tate classes reflecting the Jacquet-Langlands
transfer between inner forms of GL2 also arise from Hodge classes. In the second
half of the talk, I gave a schematic overview of the theory of theta lifting, which I
then used to sketch a proof of the main results.
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p-adic integrals and plethystic logarithms

Michael Groechenig

(joint work with Dimitri Wyss, Paul Ziegler)

Let F denote a non-archimedean local field of mixed characteristic and OF its ring
of integers with residue field k = Fq. It was observed by Weil [9] that for a smooth
OF -scheme there exists a canonical measure µ on X(OF ) with the property

µ(sp−1(x̄)) = q− dimx̄Xk ,

where x̄ ∈ X(k), sp : X(OF )→ X(k) denotes the specialisation map, and dimx̄Xk

refers to the Krull dimension of the local ring OXk,x̄. The construction of this
measure utilises that the set of F -points X(F ) is endowed with the structure of
an F -analytic manifold, on which we have a well-defined integration theory of
densities (= p-adic absolute values of top-degree differential forms).

This elementary construction can be of great use for certain point-counting
problems over finite fields. Indeed, if X/OF is smooth and of pure relative dimen-
sion d, we have

µ(X(OF )) =
|X(k)|

qd
.

That is, the volume of X(OF ) counts the numbers of k-points of the special fibre
Xk. This insight was exploited by Batyrev [2] to show that birational Calabi-Yau
varieties (assumed to be smooth and projective) have equal zeta function over
finite fields, and thus, equal Betti numbers. As was noticed by Ito [7], the same
strategy can be used to infer equality of Hodge numbers.

Analogues of Weil’s canonical measure (henceforth referred to as p-adic inte-
gration) can also be defined for certain singular varieties. A well-understood case
is given by coarse moduli spaces X/OF of a smooth and tame DM-stack X/OF .
In this case, there exists a canonical measure µorb, a refined specialisation map
sp : X(OF )→ Iµ̂X (k) = Maps(Bkµ̂,Xk), which is defined almost everywhere, and
allows us to state the following analogous relation to point-counting:

µorb(sp
−1(ȳ)) =

q−w(ȳ)

|AutIµ̂X (k)(ȳ)|
.

The weight function w appearing above, takes values in the rationals and only
depends on the tangential µ̂-action associated to a point of Iµ̂X (k).

This formula is closely related to the McKay correspondence, in the context of
which a motivic analogue was first studied by Denef–Loeser [5] and Yasuda [10].
The p-adic formula above was established (under additional technical assumptions)
in our previous work [6], and in the generality above by Angelinos [1] in his thesis.
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As a consequence one obtains that the total volume X(OF ) can be expressed
in terms of a weighted point-count of the twisted inertia stack Iµ̂X :

µorb(X(OF )) =
∑

ȳ∈Iµ̂X (k)

q−w(ȳ).

In [6] this p-adic volume formula was applied to the moduli DM-stack of G-

Higgs bundles (with additional assumptions to guarantee smoothness) M̃♥G. In

this case, the twisted inertia stack can be shown to be a disjoint union
⊔
LH M̃

♥,
where H ranges over the endoscopic groups of LG. The p-adic volume of the coarse
moduli space and related p-adic integrals can then be used to offer a proof of the
fundamental lemma (as established in Ngô’s [8]).

In ongoing work in progress we aim to understand what happens to Weil’s
formula in the presence of non-quotient singularities as they arise in moduli spaces
of objects in abelian categories (e.g., Higgs bundles, coherent sheaves on projective
varieties, quiver representations, etc). We have a satisfactory understanding of the
analogue of Weil’s formula for the case of moduli spaces of objects in hereditary
abelian categories with symmetric Euler forms (satisfying additional assumptions
to be omitted here).

As a first step, one may consider a linear quotient stackM = [U/GLN ], where
U is a smooth algebraic OF -space together with a map M → M assumed to be
an isomorphism over a dense-open W ⊂ M with complement of codimension at
least 2. In addition one may assume M to be an adequate moduli space ofM.

One can then show that there exists a canonical measure µ on M(OF ), for
which we have an analogue of Weil’s formula. Furthermore, if M is endowed
with a Gm-gerbe α, we can integrate the Hasse invariant of α with respect to this
measure. If the mapM→ M satisfies the so-called cyclic lifting property, which
asserts that a map Spec(OF )→M can be lifted toM after applying a root stack
construction to the domain, then we obtain

∫
e2πiHasse(α)dµ = − lim

T→∞

∑

N≥1

( ∑

ȳ∈IµNM(k)

hα · q
−w(ȳ)

)
TN ,

where hα : IµNM(k) → µN (C). It is an open problem to understand for which
class of stacks the cyclic lifting property is satisfied. We know it to hold in all
examples of interest.

The right-hand side can be understood more concretely under the additional
assumption thatM is the Gm-rigidification of a moduli stack of objects in a heredi-
tary symmetric abelian category (e.g., representations of a symmetric quiver). This
part of our ongoing work in progress is now entirely combinatorial and takes place
over finite base fields. By virtue of its construction as a Gm-rigidification, M is
endowed with a Gm-gerbe α represented by the unrigidified stack of objects M.
This gerbe is also known as the obstruction gerbe, as it measures the obstruction
to the existence of a universal family of objects onM.

Given a k-linear abelian category A satisfying the aforementioned assumptions
with a moduli stack of objects M, we construct a λ-ring of counting functions
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CF (M). Although counting functions can be realised as functions on the set
of isomorphism classes of M(k̄), their precise definition will be omitted here for
brevity. We remark that at every k-point ofM a counting function can be evaluated

as an element of Q
N
. The ring structure is defined using convolution of counting

functions with respect to the direct sum operation ⊕.
Our main result then expresses the counting function analogue of the right-hand

side of our volume formula

F : x̄ 7→ ±L
(x̄,x̄)+1

2 · lim
T→∞

∑

N≥1

( ∑

β : µN→Aut(x̄)

hα · q
−w(β)

)
TN

as a plethystic logarithm

F

L1/2 − L−1/2
= Log

( L(·,·)/2

|Aut(·)|

)
.

This relation is reminiscent of identities arising in Donaldson-Thomas theory (see
the work of Davison–Meinhardt [4]). For the abelian categories considered here,
it confirms the suggestion of work by Carocci–Orecchia–Wyss [3] that the p-adic
integral of the Hasse invariant of the obstruction gerbe α should be related to BPS
invariants.
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Refined variants of (topological) Hochschild homology

Alexander I. Efimov

In this talk I introduce the refined variants of (topological) Hochschild homology
and give examples of their computation. As a special case, we recover the (2-
periodized) rigid cohomology of smooth algebraic varieties over a perfect field of
positive characteristic.
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We first explain the general idea. Let k be a commutative ring. We consider
the negative cyclic homology as a functor

(1) HC− : dgcattrk → Modû -k[[u]].

Here the source is the ∞-category of small triangulated idempotent-complete dg
(differential graded) categories over k. The variable u has cohomological degree 2,
and the target of (1) is the category of u-complete dg modules over k[[u]].

The functor (1) is a finitary localizing invariant in the terminology of [BGT13].
This means that it takes short exact sequences of categories to exact triangles, and
it commutes with filtered colimits. It follows that we can consider the negative
cyclic homology as a functor from the category of localizing motives over k (the
target of the universal finitary localizing invariant):

(2) HC− : Motlock → Modû -k[[u]].

The category Motlock has a natural symmetric monoidal structure. In the forth-
coming paper [E1] we prove the following result.

Theorem 1. ([E1]) The symmetric monoidal category Motlock is rigid (in the sense
of Gaitsgory and Rozenblyum).

For a precise definition of rigidity for large (presentable) monoidal categories we
refer to [GR17, Definition 9.1.2]. Informally, Theorem 1 states that the category

Motlock looks like ind-completion of a small rigid category (for small symmetric
monoidal categories rigidity means that every object is dualizable).

Now, the target of the functor (2) is not rigid, because the unit object k[[u]]
is not compact. We can replace it with its rigidification, i.e. a universal rigid
presentable symmetric monoidal category with a symmetric monoidal (colimit-
preserving) functor to Modû . This rigidification is given by the category of nuclear
modules Nuc(k[[u]]) – a version of the category of nuclear solid modules defined
in [CS20]. We obtain the refined negative cyclic homology functor

HC−,ref : Motlock → Nuc(k[[u]]).

More precisely, the category Nuc(k[[u]]) can be described as a full subcategory
of the ind-completion Ind(Modû -k[[u]]), generated (via colimits) by the formal
colimits of sequences of trace-class maps. We refer to the forthcoming paper [E2]
for details on this version of the category of nuclear modules.

The following general result is the consequence of the proof of Theorem 1.

Proposition 2. Let A be a proper (associative, unital) dg algebra over k (proper-
ness means that A is a perfect k-module). Choose a sequence of finitely presented
dg k-algebras A1 → A2 → . . . such that A ∼= lim

−→
n

An. Then we have

HC−,ref(A) ∼= “lim
−→
n

”HC−(An).

Using Proposition 2, we can compute the refined negative cyclic homology of
the affine line, for simplicity in characteristic zero.
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Proposition 3. Suppose that k is a Q-algebra. Then we have

HC−,ref(k[x]) ∼= k[[u]]⊕ “
⊕

n≥1

”k[1].

Proposition 3 allows to define the functor HP ref on the category of A1-invariant
localizing motives

HP ref : Motloc,A
1

k → Nuc(k((u))).

Here the category Nuc(k((u))) is the quotient of Nuc(k[[u]]) by the full subcategory
Modu-tors -k[[u]].

Note that we have a fully faithful inclusion Mod -k[[u]] ⊂ Nuc(k[[u]]). Identifying
usual k[[u]]-modules with the corresponding nuclear modules, we have the following
description of HP ref for smooth algebraic varieties.

Theorem 4. Suppose that k is a field of characteristic zero, and let X be a smooth
algebraic variety over k. Then we have

HP ref(Perf(X)) ∼= HP (Perf(X))

– the usual 2-periodized de Rham cohomology.

The situation is more interesting for schemes over a perfect field k of character-
istic p > 0. In this case we consider the topological negative cyclic homology as a
functor

TC− : dgcattrk → Modû -TC
−(k).

Here u is an element of π−2TC
−(k), where we use the well known identification

π∗TC
−(k) ∼=W (k)[u, v]/(uv − p),

see [NS18]. Arguing as above, we obtain the refined version of TC− :

TC−,ref : dgcattrk → Nuc(TC−(k)).

A more subtle computation for the affine line yields the functor on the category
of A1-invariant localizing motives:

TP ref : Motloc,A
1

k → Nuc(TP (k)[
1

p
]).

The dualizable objects of the latter category are simply the 2-periodic perfect dg
vector spaces over the field W (k)[ 1p ]. We have the following result.

Theorem 5. Let k be a perfect field of characteristic p. Let X be a smooth algebraic
variety over k. Then we have

TP ref(Perf(X)) ∼= RΓrig(X/W (k)[
1

p
])((u))

– the 2-periodized rigid cohomology of X.

We conclude with the following examples of computations, returning to the case
of Q-algebras.
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Proposition 6. Let k = Q[x]. Then the idempotent E∞-algebra HC−,ref(Q[x±1]/
Q[x]) ∈ Nuc(Q[x][[u]]) is identified with the algebra of overconvergent functions on
the subset ⋂

n>0

{|u| ≤ |x|n 6= 0} ⊂ Spa(Q[x][[u]],Q[x][[u]]).

Strictly speaking, we don’t have an actual adic space (since u has cohomological
degree 2), but the above geometric description still makes sense.

Proposition 7. Let k = Q[x], and we identify Q with Q[x]/(x). Then the object
HP ref(Q/Q[x]) ∈ Nuc(Q[x]((u))) is naturally an idempotent E∞-algebra, which is
identified with the algebra of overconvergent functions on the subset

⋂

ε>0

{|x| ≤ |u|1−ε} ⊂ Spa(Q[x]((u)),Q[x][[u]])
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Heights in the isogeny class of an abelian variety

Mark Kisin

(joint work with Lucia Mocz)

Let A be an abelian variety over a number field K, with algebraic closure K̄.
Assuming the Mumford-Tate conjecture for A, we show that the isogeny class of
A over K̄ contains only finitely many isomorphism classes of bounded Faltings
height. As the Mumford-Tate conjecture is known for many abelian varieties, our
theorem is unconditional in those cases.

There is a connection between this result, and the unramified Fontaine-Mazur
conjecture: If G is the Mumford-Tate group of A, then after replacingK by a finite
extension, the Galois action on the Tate module of A induces a representation
̺p : Gal(K̄/K) → G(Qp), by a result of Deligne. The Mumford-Tate conjecture
says that ̺p has Zariski dense image. Let GGal denote the Zariski closure of ̺p,
and let Gur ⊂ GGal be the smallest (normal) subgroup containing the images of
all inertia subgroups at p.

What we use in the proof of the theorem is that Gur = GGal, which follows from
the Mumford-Tate conjecture. This statement is a special case of the unramified
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Fontaine-Mazur conjecture (consider any faithful representation of GGal/Gur). On
the other hand, by combing the theorem with an argument of Faltings, one can
recover a case of the unramified Mazur conjecture: Let Kur/K be the maximal
extension unramified at all primes w|p. Then the analogue of Faltings’ theorem on
the Tate conjecture for abelian varieties holds with Kur in place of K.

The proof of the theorem uses arguments from p-adic Hodge theory. In partic-
ular, in the case where one considers a sequece of p-power isogenies, it uses the
classification of p-divisible groups of Scholze-Weinstein.

Reporter: Bence Hevesi
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