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Introduction by the Organizers

The workshop Riemann Surfaces: Random, Flat, and Hyperbolic Geometry, was
aimed at bringing together the communities working on metric and dynamical
aspects of Riemann surfaces with the usually disjoint community working on ran-
dom geometry. The workshop was comprised of 20 research talks by participants
(50min + questions), and of a session of 5-minute presentations by early career
researchers. A core topic of the workshop was the behaviour of surfaces as genus
increases to infinity - both for hyperbolic surfaces and for flat surfaces, and also for
related combinatorial models. The study of geometric properties was frequently
combined with analyzing random and statistical aspects.

Random surfaces and large genus asymptotics. Both large genus aspects
and random aspects may be grouped according to whether they are studied for
hyperbolic or flat surfaces. Added value usually comes from comparing the two
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aspects, for example closed hyperbolic geodesics and saddle connections on flat
surfaces. Additionally, probabilistic methods often provide a tool that allows for
actual asymptotic solutions of enumerative problems.

On the hyperbolic side, a long-standing question is to determine the spectral
gap of a closed Riemann surface, the first non-zero eigenvalue of the Laplacian.
Anantharaman reported on a recent breakthrough, determining the optimal spec-
tral gap with high probability, with respect to the Weil-Peterson measure on the
moduli of Riemann surfaces of large genus. Petri used contructions from random
graph theory to construct (hyperbolic) Riemann surfaces with large systoles. Er-
landsson explained that long random multicurves equidistributed on the space of
geodesic currents, with respect to the Thurston measure.

Louf provided a comparison of statistics of the lengths of simple closed curves in
the hyperbolic setting with the setting of random graphs embedded in a Riemann
surface. Again, the similarity between these settings becomes apparent in the large
genus limit.

A square-tiled surface with many squares is a good approximation to a flat sur-
face (a Riemann surface together with a holomorphic differential), and Delecroix
explained the state of the art in determining the asymptotic shape of the statistics
of the number of cylinders on a square-tiled surface in large genus. Randecker
refined counting results for saddle connections with length bounds to distribution
questions for the length statistics on flat surfaces of large genus. Rafi consid-
ered the large genus limits of flat surfaces as a whole, in the sense of Benjamini-
Schramm.

The talk of Budd was complementary in the sense of constructing random sur-
faces, in fact disks from sides a random set approaching a two-dimensional Brow-
nian bridge and analyzing the area statistics.

Flat surfaces. There are (still) many open questions on the geometry of flat
surfaces and their moduli spaces. Many questions also remain on how to relate
the flat geometry with the hyperbolic geometry on the underlying moduli of curves
in a fixed genus. The focus is often on statistical aspects such as (equi)distribution
of geodesics and their lengths.

A prime example in this direction, combining aspects of hyperbolic and flat
geometry, was the talk of Farre. He presented a solution to Mirzakhani’s question
on the equidistribution of twist tori. These are defined using pants decomposition,
i.e. hyperbolically, while the solution is by appyling the orhogeodesic foliation to
build flat surfaces and using the breakthrough classification result for invariant
measures on flat surfaces, by Eskin, Mirzakhani and Mohammadi.

Several talks addressed the central counting problems for saddle connections on
flat surfaces and their asymptotics, the Siegel-Veech constants. Aulicino presented
formulas for Siegel-Veech constants of flat surfaces that are cyclic covers. Fairchild
related the count of pairs of saddle connections to moments of the Siegel-Veech
transforms. Masur refined the problem to the count of saddle connections that
avoid a given saddle connection.
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Progress on the classification problems for invariant subvarieties of moduli
spaces of flat surfaces was presented by Winsor for the closure of the leaves of
isoperiodic forms.

The topology of the moduli space of flat surfaces was addressed in the talks
of Chen and Gadre. Chen gave a stratification of these spaces by the singularity
type of a certain contraction, in order to relate the topology in some cases to that
of hyperplane complements. Gadre showed that geodesic flow trajectories capture
the full fundamental group of those moduli spaces.

Intersection theory on the moduli spaces. Besides statistical questions, many
problems on flat and hyperbolic Riemann surfaces are of enumerative nature and
thus accesible through techniques relying on intersection theory.

Schmitt defined the logarithmic Chow ring as a generalization of the usual
Chow ring of the moduli space of curves and showed how it can be used to capture
enumerative invariants related to Hurwitz numbers.

The moduli space of cone surfaces should provide a bridge between the flat
and the hyperbolic world, as explained by Sauvaget. The volumes of these moduli
spaces can be computed by intersection theory, the Masur-Veech volumes in some
range of angle parameters, and Weil-Petersson volumes in a complementary set of
angle parameters.

Lewaniski gave an overview of the topological recursion and its multitude of
applications, from Witten’s conjecture to recent progress on enumerative problems,
like JT gravity. Another application of topological recursion was presented by
Bouttier to count maps (i.e. cellular embeddings of graphs) with tight boundaries.

A complementary talk of Deroin on Toledo invariants of quantum representa-
tions of the mapping class group provided examples of hyperbolic structures on
lower genus moduli spaces of curves.

In a lively session packed with concise presentations the younger generation
presented the following results, providing ample material for discussion during the
subsequent afternoon free of talks.

Speaker Topic

Sam Freedman Veech Fibrations

Simon Barazer Oriented ribbon graphs and acyclic
decomposition

Kai Fu Siegel-Veech measures

Mingkun Liu Length spectra of random maps: a

Teichmiiller theory approach

Victor le Guilloux | Average counting of closed geodesics on
hyperbolic surfaces

Nihar Gargava Dense lattice packings

Sahana Vasudevan | Triangulated surfaces in moduli space
fibrations
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Edmond Covanov Spectrum of pseudo-Anosov mapping classes

Miguel Prado Veech Counting isoresidual differentials on
the Riemann sphere

Vivian He Counting curves intersecting a fixed
measured lamination

Ivan Yakoulev Counting functions for metric ribbon graphs

Riccardo Giannini | Monodromy kernel for some strata of

translation surfaces

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Spectral gap of random hyperbolic surfaces
NALINI ANANTHARAMAN
(joint work with Laura Monk)

Let X be a closed, connected, oriented surface of genus g, with a hyperbolic metric
chosen at random according to the Weil-Petersson measure on the moduli space
M, of Riemannian metrics. This measure is known to be finite, of total mass V;;
we normalize it to be a probability measure, denoted by ]P’XVP. The aim of this work
is to establish asymptotic results true with high probability, i.e. with probability
going to 1 in the large genus limit ¢ — +o0. In particular, let Ay = A\1(X) be
the first non-zero eigenvalue of the Laplacian on X, known as its spectral gap. In

[1], we proved that for o = § and € > 0 arbitrary, we have

(1) Py (Algi—a2—5> P alil

In other words, we proved that, for any € > 0, we have \; > % — ¢ with high
probability. Two previous independent papers due to Wu—Xue [6] and Lipnowski-
Wright [4] proved (1) for v = 1, i.e. that A\; > % — ¢ with high probability.

In this talk we explain a strategy to prove ( ) for arbitrarily small «. This
allows to conclude that, for any € > 0, we have \; > i — ¢ with high probability.
In light of Huber’s work [3] proving that lim sup, sup y ¢ pq, A1(X) < i, this means
that typical hyperbolic surfaces of large genus have an almost optimal spectral
gap. This is joint work with Laura Monk.

The starting point of our analysis is, without surprise, the trace formula proven
by Selberg in [5]. It relates the spectrum of the Laplacian

Ao(X) =0< A (X) < M(X) < ... —> +00

on a closed connected oriented hyperbolic surface X of genus g, to the lengths of
all its periodic geodesics. It reads, for a smooth even function H : R — R,

“+o0
2) > H(ry(X)=(g-1) /H ) tanh(rr)rdr + ) Z#
j=0 veg X)k 1 251nh (%)

e for all j, r;(X) € RUi[—1/2,1/2] is a solution of \;(X) = § +r;(X)? -
the left-hand side of the formula is thus called the spectml side;

e the Fourier transform H is defined by H fR Ye~rlde;

e the first term on the right-hand side is the so-called topological term, refer-
ring to the fact that this term only depends on the genus g (in particular,
when studying random hyperbolic surfaces of genus g, this term is deter-
ministic);

e G(X) is the set of primitive oriented periodic geodesic on X and £(7y)
stands for the length of the smooth curve v in X.
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The sum over periodic geodesics is called the geometric term of the trace for-
mula. In the formula, the integer k represents the number of times the primi-
tive geodesic is run over: the sum Ez:; thus describes non-primitive periodic
geodesics.

We draw the attention to the fact that non-simple geodesics appear in the
geometric term. Dealing with non-simple closed geodesics in the Selberg trace
formula is one of the core challenges faced when taking the average of the Selberg
trace formula for random Weil-Petersson surfaces.

The Selberg trace formula holds for a class of “nice” functions H. For our
purposes, we will only consider functions H of compact support, in which case
both sums are absolutely convergent. More precisely, let H : R — R> be a fixed
smooth even function, with compact support [—1, 1], such that His non-negative
on RUi[—24,1]. For any L > 1, we shall apply the trace formula to Hy,(¢) := H(£).
The function Hy, has support [—L, L], so that the geometric term only involves
periodic geodesics of length ¢(v) < L. Note that Hy, still has non-negative Fourier
transform. The parameter L will be taken to grow to +o00 as g — oo.

Eigenvalues \; < % correspond to purely imaginary 7;, which are responsible
for terms such that Hy(r;) grows roughly like For the first non-trivial

eigenvalue, corresponding to j = 1, this is expressed in the following lemma:

elrj‘L.

Lemma 1 ([1, Lemma 3.10]). Let o € (0,3). For any 0 < e < 1 —a?, there exists
a constant Co e > 0 such that, for any hyperbolic surface X, any L > 1,

1 N
M(X) < i o —c =  Hp(r(X))> Cyeeldtdk,

The Selberg trace formula holds for any hyperbolic surface X, and if X is
random, then both sides also become random. Lemma 1 provides us with the
beginning of a strategy to prove probabilistic lower bounds on A;. Suppose we
want to prove that A\; > % — a? — ¢ with high probability. First, we use Lemma 1
to write

1 N
]P’;NP ()\1 < i o 5) < IE”;NP (HL(rl) > Caﬁee(a“)L) .

Then, the Markov inequality yields

EWF [An(ry)]
1 g L\"1
WP 2
(3) Py (MS;—O& —6) S G @Il

In order to imply (1), it is thus sufficient to prove that, for some choice of L =

(4) ENY [Ho(ry)] = ofelet)E),

where by o() we mean that the ratio between the left-hand side and right-hand
side converges to 0 as ¢ — oo. It is in our interest to take L as small as possi-
ble, because we are summing over periodic geodesics of lengths in [0, L], and the
number of such geodesics is known to grow exponentially in L. At this stage of
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the discussion, L(g) can grow arbitrarily slowly, but will be forced to grow at a
certain rate in the coming lines.

To control the left-hand side of (4), we can use the Selberg trace formula (2)
and the positivity of Hy,, to write

()

“+oo
IEJ;NP [FIL (r1 )} <(g-— 1)/RPAIL (r) tanh(7r)rdr + EXVP Z 62(7.) ZIL((]ZfS)Y;)
YEG(X) k=1 S { =57

Let us acknowledge the necessary presence of the deterministic topological term,
growing linearly in g on the right-hand side: if we are to prove (4), this term forces
us to take L > l(‘jig . Hence our discussion always takes place at logarithmic scales
in g. The crux of the analysis lies in the choice of the multiplicative constant: the
smaller @ we aim at, the larger multiplicative constant we need. In particular,
a = 0 requires to take L > lofg for any arbitrary ¢ > 0. With this in mind, we
take from now on L = Alogg with A fixed.

In our proof we try to bound the right-hand side of (5), in which all the topolo-

gies of periodic geodesics appear. The key steps of the proof are the following.

e First, we define a notion of volume functions associated to arbitrary topolo-
gies of closed geodesics, extending the volume polynomials investigated by
Mirzakhani for simple geodesics. We provide an expression and an asymp-
totic expansions in powers of g~! for these volume functions.

e Then, we prove that the coefficients appearing in these expansions sat-
isfy the Friedman—Ramanujan property, a newly defined notion related to
on-average cancellations in the trace method. This statement yields the
crucial argument to prove (1) and is the focus of an upcoming article.

e Finally, we explain the necessity to discard a set of “tangled surfaces” of
small but non-zero probability : the exponential proliferation of topologies
of closed geodesics in tangled surfaces is responsible for the failure of the
naive trace method. We solve this issue by conditioning our argument on
the set of tangle-free surfaces. This delicate step is made possible by a
new kind of Moebius inversion formula [2].
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Siegel-Veech Constants for Cyclic Covers of Generic
Translation Surfaces

DAvID AULICINO

(joint work with Aaron Calderon, Carlos Matheus, Nick Salter,
and Martin Schmoll)

1. INTRODUCTION

It was found by [7, 5] that the number of cylinders on a translation surface grows
quadratically with exact asymptotics. Define

B area’(cyl)
Nuwoar (Xow), L) = 3 Sorss:
cylC(X,w) ’
w(eyl)<L

In particular, it follows from [5] that the following limit exists for almost every
(X,w) in its ambient space M (i.e., SLa(IR)-orbit closure).

. Nareas (X,w), L)
Careas (M) - Lh—>néo 7TL2
We consider the following family of covers of translation surfaces. Let (X,w) €
H(x) be a generic translation surface with n > 2 marked points ¥ C X. Let
‘H denote a component of H(x). We consider branched covers of (X,w) so that
T (X \ X,p0) = Sym(d) has image in a cyclic group Z/dZ. It follows from the
Hurewicz theorem that covers are classified by elements of H'(X \ ;Z/dZ).

From this, the mapping class group induces an action on H*(X \ ¥;Z/dZ),
and we denote by M(«a) the locus of all cyclic covers with branching specified by
a € HY(X \ 3;Z/dZ). Equivalently, M(«) is the SLz(R)-orbit closure of a cyclic
cover of a generic surface in H (k) with branching specified by «a.

Let d; € Z/dZ denote the local monodromy about p; € ¥. Then for all p; € ¥
consider the tuple (di,...,d,), which we denote by 4. Let M; denote the locus
of cyclic covers with branching specified by §. If « is compatible with §, we can
consider the (not necessarily proper) subset M;(a).

Define dups to be the largest divisor of d relatively prime to ged(dy, ..., dy, d).
Finally, define d,¢; = d/daps.

Theorem 1. For even degree cyclic covers of translation surfaces, the space Mg
s not necessarily connected. If H is not a hyperelliptic component, then Mgy has
at most two components and there exists an invariant that classifies them. If H is
hyperelliptic, then there are at most g + 1 components, where g is the genus and
there exists an invariant that classifies them.
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With this classification we compute explicit formulas for the ratio appearing in
Theorem 2 below. For Theorem 2, we state the result in the case where there is
one connected component.

Define the Jordan totient function to be the number of primitive m-tuples,
which is given by the formula

B, (d) :dmlg <1 - p%) .

Theorem 2. If M; is connected, (which includes the cases where d is odd and
genus is one), then for all s > 0,

e~ ma | 20 (5w [ 2 (5%))

D‘dTel aldabs

where ® is the Fuler totient function.

We remark that this formula and its variations for the other components facil-
itate the explicit computation of cgreqs (M) as follows. By [1], there is an explicit
formula for ¢qreqs (H)) in terms of ¢y (H). By [6], recursive formulas are given for
computing ¢, (H) for all H.

A remarkable invariance appears as a corollary of our main theorem. Regardless
of which component M(«) that we consider, the following formula holds.

Theorem 3. Let M(«) be a locus of degree d branched cyclic covers over (X,w) €
H with branching specified by «. Then

Carea® (M (O‘)) 1

Carea3 (H) B d
2. PROOF SKETCH AND IDEAS

There are two main parts to the proof. The first concerns classifying the connected
components of loci of cyclic covers in M. This involves extending work of [3] in the
non-hyperelliptic case, and a separate argument is used to classify the components
in the hyperelliptic case.

Furthermore, substantial very precise information is needed. The key to com-
puting Siegel-Veech constants is the Siegel-Veech formula, and by [6], this can
be accomplished by computing a ratio of volumes - namely that of the principal
boundary to that of the entire space. For these volumes, we need to know the
cardinality of the orbit of an element of H!(X \ X;Z/dZ) under the induced ac-
tion of the mapping class group, but what is much more involved is computing the
cardinality of an orbit of such an element where the lift of a cylinder is specified.

With these cardinalities computed, we can proceed to computing the Siegel-
Veech constants. We apply the Siegel-Veech formula and are able to derive a single
closed formula for all possible cases. This formula is in terms of the quotients of
the orbits with a fixed cylinder monodromy to that of the full orbit. To derive this
general expression, we make very strong number theoretic assumptions on these
quotients and justify a posteriori that they are always satisfied.
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On the enumeration of maps with tight boundaries
JEREMIE BOUTTIER
(joint work with Emmanuel Guitter, Grégory Miermont)

Maps, in the combinatorial sense, are cellular embeddings of graphs into surfaces,
considered up to homeomorphism. In this talk we consider orientable maps, whose
topology is characterized by a pair of integers (g, n), where g is the genus and n the
number of boundaries. For a given topology we consider the problem of counting
maps according to the distribution of their face degrees: this is a classical problem
first investigated by Tutte, who solved it for genus g = 0 and even face degrees [1]
(throughout the talk we restrict to maps with even face degrees for simplicity). The
case of other topologies can be treated via the formalism of topological recursion,

reviewed for instance in [2]. Precisely, it gives an effective way to compute the

(9)

generating function F,? .1, of maps of genus g with n boundaries of lengths

Li,...,Ly, or equ1valently the grand generating function
F[(,g) I
Willaroovn) = ) —porsty,
LiLy>1 1

via a recursion on minus the Euler character 2g +n — 2.

In our project, we are investigating the enumerative properties of maps with
tight boundaries. Here, by tight boundary we mean that its contour is a path of
minimal length in its homotopy class. Denoting by Te(lg,)...,en of maps of genus g
with n tight boundaries of lengths ¢4,...,¢,, we introduce the so-called trumpet
decomposition [3] which gives a relation between F (f) 1, and T(g) y, . It gives a

combinatorial interpretation to the so-called Zhukovsky tmnsformatzon

2(2) = y(z +27)
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which plays a key role in [2]. Namely, we find that we have the series expansion

WT(L-") (x(z1), . x(zn)d (21) ... 2/ (2n) =

(_i> (_i> 5 T .,
0z1 0z, s (721)61 ce (fyzn)gn~

IRERE}

Here v is a certain series which is related to the generating function of pointed
rooted planar maps, corresponding to the “initial data” for the topological recur-
sion.

As a byproduct, we find that Te(lg,)...,en is of the form v+ ¢ times a polynomial
of degree 3g+n—3is £2,...,¢%2. We also find recursions satisfied by these quantities
as n varies, which have a nice combinatorial/geometric interpretation.

The second part of the talk is devoted to the case of pairs of pants (g, n) = (0, 3),
for which the series Te(ﬁ)e% ¢, 18 equal to yhrtletls times a quantity independent of
the boundary lengths. Such a simple formula calls for a combinatorial interpreta-
tion, and we provide a bijective proof [4]. Interestingly, it seems to be a discrete
analogue of a classical construction in hyperbolic geometry, which consists in build-
ing a pair of pants (with its hyperbolic metric) by gluing a pair of ideal triangles
with appropriate shifts. Whether our bijective approach can be extended to other
topologies remains an intriguing open question.
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Uniform random flat disks
TiMoTHY BUDD

Recent developments in the physics literature in the context of two-dimensional
quantum gravity, and Jackiw—Teitelboim (JT) gravity in particular, have led to
natural questions concerning random flat metrics on the disk. Notably, Frank
Ferrari recently asked [5, 6] whether there exist solvable discrete models of n-sided
self-overlapping polygons possessing a continuous scaling limit as n — oo towards a
random flat metric on the disk with fractal boundary. A self-overlapping polygon
here will be understood as a translation structure on the disk with a piecewise
linear boundary consisting of n segments. Unless otherwise stated, there is no
restriction on the interior angles of self-overlapping polygons, which may thus
exceed 2m. We present two combinatorial families of self-overlapping polygons
for which the enumeration problem is solved and we describe some statistical
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properties of uniformly sampled such disks, hinting at the existence of a universal
scaling limit.

For the first family, we consider n-sided self-overlapping polygons with fixed side
set, i.e. the set of n vectors in R? \ {0} corresponding to the boundary segments
oriented in counterclockwise direction. We say an n-element set Z, C R?\ {0}
that sums to zero is generic if for any pair of non-empty disjoint subsets U,V C Z,,
such that U UV # Z,, the sums of U and V are linearly independent.

Theorem 1 ([2]). For n > 3 and a fized generic set Z,, the number of self-
overlapping polygons with side set Z,, is (n — 2)!.

An example of the (n — 2)! self-overlapping polygons sharing a particular side set
Z, forn=>51is

R P E P NTg 2N

We provide two proofs for this simple result, both of which have their own ad-
vantage when it comes to studying more precises statistics. The first relies on an
inclusion-exclusion argument involving the complex of convex diagonalizations [4]
of a self-overlapping polygon. The second proof is based on an explicit bijection
between self-overlapping polygons and certain walks in the plane with increment
set Z,. To be precise, assuming without loss of generality that (x,0) € Z, for
some x > 0, we consider the walks whose first step is (z,0) and that stay in the
upperhalf plane. By a simple cyclic permutation argument, the number of such
walks is indeed (n — 2)!.

In light of this bijective result it is natural to consider a sequence of random sets
(Zn)n>3, such that the uniform random walk with increment set Z, approaches
a standard two-dimensional Brownian bridge. For concreteness, let Z,, be the
set of increments of such a Brownian bridge sampled at n equally spaced times,
which is almost surely generic. A natural statistic to consider is the area of the
self-overlapping polygon, for which the inclusion-exclusion method provides the
following result.

Theorem 2 ([2]). The expectation value of the area of the uniform self-overlapping
polygon with side set Z,, is asymptotic to % logn + C + 0,(1) as n — oo for a
known constant C = 0.0285.. ..

Numerical experiments suggest that this random area, upon subtraction of
% log n, converges in distribution as n — oo, but this remains an open problem.

When the side set is not generic and/or one imposes constraints on the interior
angles, other enumeration methods are called for. An example is the class of
rectilinear disks, in which the only allowed interior angles of the self-overlapping
polygons are 7/2 and 3w/2. The moduli space of 2n-sided rectilinear disks of
fixed perimeter is (2n — 3)-dimensional and carries a natural volume measure
corresponding locally to the Lebesgue measure on 2n — 3 independent side lengths.
A rectilinear disk carries a natural tiling by rectangles obtained by drawing for each
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37 /2 corner the two rays inward that extend the adjacent sides. For almost every
disk this tesselation has the combinatorial structure of a rigid quadrangulation
with 2n corners. A rigid quadrangulation is a planar map in which all bounded
faces are quadrangles, the outer face (called the boundary) is a simple face of
arbitrary degree, 1, 2 or 3 quadrangles meet at every vertex on the boundary
and exactly 4 quadrangles meet at every other vertex. Every ray, i.e. maximal
path along non-boundary edges going straight at every inner vertex, is required to
connect a pair of boundary vertices where 3, respectively 2, quadrangles meet.

L

y 4 y

rectilinear disk tiling by rectangles  rigid quadrangulation

The volume of the moduli space of rectilinear disks of fixed perimeter is directly
related to the enumeration of rigid quadrangulations.

Theorem 3 ([3]). The generating function of rigid quadrangulations (with a dis-
tinguished /2 corner) is + — % — L R(z) = 2? + 52® +332% + - - -, where R(x) is
the power series solution to

1 26\
Zk——H<k> Rla)™" =a.
k=0

The proof relies on a bijection between rigid quadrangulations with 2n corners
and rooted planar Eulerian orientations with n — 1 edges (or colorful Z-labeled
rooted quadrangulations with n — 1 faces). The enumeration of the latter class of
maps was obtained by Bousquet-Mélou and Elvey Price in [1].
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A further stratification of strata of differentials
DAwEI CHEN
(joint work with Fei Yu)

Given a positive integral partition g = (mq,...,m,) of 2g — 2, let H(u) be the
stratum of holomorphic differentials on smooth complex curves whose orders of
zeros are prescribed by the signature u. Up to scaling of C*, the stratum H(u) pa-
rameterizes pointed smooth curves (C, z1,...,2,) where Y | m;z; is a canonical
divisor of C.

For each (C, z1, ..., 2,) € H(u), we perform a u-weighted blowup for the isotriv-
ial family C' x C at the marked points z; in the central fiber C, and then contract
the proper transform of Cjy. The resulting singularity s is an isolated Gorenstein
curve singularity with n rational branches and a C*-action. We propose to further
decompose the stratum H(u) according to the isomorphism classes of these sin-
gularities s. For example, by the work of Pinkham, when s is a monomial curve
singularity, the corresponding locus picks up (C,z2) where the Weierstrass semi-
group of z in C' is determined by the monomial exponents in the parameterization
of s.

As an application, certain deformation spaces of such singularities can help
us understand the topology of H(u) and, in particular, connect to the K(m,1)
conjecture of Kontsevich—Zorich. Along this circle of ideas, several cases have been
studied, including ADE singularities which correspond to some hyperelliptic and
low-genus strata, due to Deligne, Looijenga—Mondello and Giannini, among others.
As another application, we can systematically study this kind of singularities from
the viewpoint of the log minimal model program for the Deligne-Mumford moduli
space of curves, initially predicted by Alper—Fedorchuk—Smyth.

What we do not know (yet) about square-tiled surfaces in large genus?
VINCENT DELECROIX

We present several results and conjectures concerning the cylinder decomposition
of square-tiled surfaces in large genus.

INTRODUCTION: SQUARE-TILED SURFACES

Square-tiled surfaces, holonomy and k-differentials on Riemann sur-
faces. We consider quadrangulations of a compact surface S. In this text these
are called square-tiled surfaces to emphasize that we consider the induced metric
on the surface obtained by making each quadrilateral isometric to the unit square
[0,1] x [0,1] in R?. The metric is everywhere flat except possibly at the vertices
where there is a conical singularity.

The parallel transport of the metric induces a holonomy map m1 (S\V) — Z/4Z.
This allows to distinguish three kinds of square-tiled surfaces
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(1) Abelian square-tiled surfaces whose holonomy is trivial,
(2) quadratic square-tiled surfaces whose holonomy is 27 /47,
(3) quartic square-tiled surfaces whose holonomy is Z/47Z.

An example of each kind is provided in Figure 1.

FIGURE 1. The three kinds of monodromies of quadrangulations.
(A) An Abelian square-tiled surface in Q) My 1(2). (B) A qua-
dratic square-tiled surface in Q) M, 3(2,—1,—1). (C) A quartic
square-tiled surface in Q) Mg 5(2, —1, -3, -3, —3).

An Abelian, quadratic and quartic square-tiled surfaces give rise respectively to an
Abelian, quadratic or quartic differentials on the underlying surface by considering
dz = dx +/—1dy, dz? or dz* on each unit square. Hence the terminology.

The second important invariant of square-tiled surfaces is given by the degree
of vertices or equivalently the angle of the conical singularities. Given the angles
2-qq-7,...,2 ay-m of the conical singularities different from 27 we consider the
following vector p = (u1, ..., tn)

(1) for an Abelian square-tiled surface p; = +(c; —2),

(2) for a quadratic square-tiled surface p; = (o — 2),

(3) for a quartic square-tiled surface p; = a; — 2.
The number p; corresponds to the degree of vanishing of the differential: in the
neighborhood of the vertex corresponding to «;, an Abelian, quadratic or quartic
square-tiled differential can be written z#idz* where k is respectively 1, 2 or 4. We

denote by Q(k)/\/lg,n(u) the moduli space of k-differentials with singularity pattern

!

Let us emphasize that here we ignore vertices with angle 27 that gives rise
to regular point for the differential. In particular, each stratum Q") (u) contains
infinitely many (isomorphism classes of) square-tiled surfaces.

Note that a k-differential for k£ = 2,4 admits a k-fold cover which is an Abelian
differential. The resulting differential admits a Z/kZ symmetry. See Figure 2.

INote that for k = 1 the differentials are holomorphic. While for £ = 2 we allow simple poles
and for k£ = 4 we allow simple, double and triple poles. This can be phrased by saying that we
only consider meromorphic k-differentials of finite area.
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FI1GURE 2. The covering of the surface from Figure 1b.

Cylinder decompositions. An Abelian differential admits a one-parameter fam-
ily of vector fields vg: each direction 6 makes (globally) sense in the surface. In
particular, one has well-defined left, right, up and down directions.

The horizontal flow (associated to vp) and the vertical flow (associated to v /2)
are completely periodic: either trajectories hit a conical point in both past and
future or it is periodic. In other words, the surface decomposes into cylinders (or
beam of trajectories) separated by singular layers.

We associate a third invariant to an Abelian square-tiled surface: the multiset
of areas of the cylinders normalized so that it sums to one. In Figure la both
the horizontal and vertical cylinder decompositions gives the vector A""#(S) =
Avert(S) = 1{1,2}.

Note that by taking k-covering, one can define cylinders for k-differentials for
quadratic and quartic differentials.

PROBLEM 1: CYLINDER DECOMPOSITIONS IN LARGE GENUS

We consider limits of square-tiled surfaces when the number of squares N and the
genus g tend to infinity. In this first problem we first let IV tend to infinity and
then let ¢ tend to infinity.

When letting N tend to infinity, we have the following result which is very close

in spirit to Mirzakhani results on counting multicurves with respect to topological
types.
Theorem 1 ([1]). For each stratum Q%) (u) of Abelian or quadratic differen-
tials, we consider the multiset of cylinder areas A™7*(S) and Av*"*(S) as S
run through the (finite) set of square-tiled surfaces with at most N squares en-
dowed with the uniform measure’>. As N tend to infinity, the joint distribution
(APoriz(S), Avert(S)) converges to a product measure vy, ® Vi, on pairs of finite
multisets.

In a work in progress we describe a similar result for quartic differentials (though
in this context there is a single vector A(S) to consider).
The behaviour of v, as the genus tend to infinity is very intriguing. For now,

we only have a complete answer for the principal strata of quadratic differentials
QB Mg aga(17974).

2It is actually more natural to weight each square-tiled surface with the weight 1/| Aut(S)|
but it makes no difference when taking limits.
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Theorem 2 ([3, 4, 5]). When g tends to infinity, the measures vy (145-4) describing

the areas of cylinder decomposition in the principal stratum Q(Q)Mg,4g,4(l49’4)
satisfy the following

(1) the expectation of the length of the multiset is asymptotic to log(g)/2

(2) (macroscopic limit) the large components behave as a Poisson-Dirichlet
process with parameter 1/2

(3) (microscopic limit) when multiplied by 4g—4, the small components behave
as a Poisson point process with intensity

—Zcoshx/n—l —ZC zn

Conjectures generalizing Theorem 2 are stated for all strata of quadratic and
Abelian differentials. Though, the proof crucially uses an explicit description of
Vg, that only holds in the special case of QI M, 4,_4(1%97%), see [2].

PROBLEM 2: CYLINDERS OF INTERMEDIATE AREA

As stated in Theorem 2, in the large genus asymptotics we have a good under-
standing of macroscopic cylinders (the ones with an area proportional to the area
of the surface) and the microscopic ones (the ones with an area proportional to the
area of the surface divided by g). However, it seems delicate to understand the full
spectrum of area: for example how many cylinders are there with renormalized
area between 1/,/g and 2/,/g7

PROBLEM 3: DIAGONAL LIMIT N = |ag]|

In Theorem 2 the limit in N (the number of squares) is taken first and then the
limit in ¢ is considered. It is highly interesting to try to understand the behavior of
random square-tiled surfaces with N = |ag] squares where « is some parameters
and ¢ tends to infinity.
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Toledo Invariants of Quantum Representations of the Mapping
Class Group

BERTRAND DEROIN

The moduli spaces M, ,, of genus g curves with n marked points, do not seem
to have interesting geometric structures in general, nor their partial compactifica-
tions. However, some very interesting curiosities happen in particular cases. For
example, the Torelli map sending a curve to its Jacobian provides the compact
type partial compactification of Mo and M3 with a structure locally modelled on
the Siegel spaces. Other examples have been studied by Deligne and Mostow: they
build complex hyperbolic structures on certain partial compactifications of M,
when g = 0 and a finite list of n’s, using hypergeometric integrals. In all these
examples, a key role is played by the holonomy of the corresponding structure: a
linear representation of the corresponding mapping class group Mody .

The original motivation of this work is to investigate wether quantum repre-
sentations might provide interesting new geometric structures on moduli spaces
and/or their partial compactifications. Quantum representations are projective
representations from the mapping class groups to the projective linear group of
a vector space called the conformal block arising from a modular category. A
consequence of the topological construction is that they take values in a projec-
tive pseudo-unitary group PU(p, ¢) for some integers p,q. We find the following
examples:

For (g,n) € {(0,4),(1,1),(0,5),(1,2),(1,3),(2,1)}, there exists a certain compact-

ification Mgy, of Mg carrying a complex hyperbolic structure whose holonomy
is the quantum representation associated to SO(3) Quantum Field Theory of level
5.

The corresponding compactifications of M, ,, are obtained from Deligne-Mum-
ford’s one by taking the fifth root over the boundary, and by contracting the
elliptic tail divisor. It turns out that this produces a smooth orbifold in general,
unless in the case (g,n) = (2,0). The complex hyperbolic structure comes from
classical uniformization of curves in the first two examples, and in the (0,5) and
(1,2) cases was known to Hirzebruch/Deligne-Mostow and Livne respectively. The

. —
last two ones are genuinely new. We note that the natural forgetful map M; 3 —

-—< . . . .
M2 produces a dominant morphism between complex hyperbolic manifolds of
dimension 3 and 2, answering by the negative to a problem of Siu.

The proof consists in computing Toledo invariants of the Fibonacci quantum rep-
resentations: we put this computation in a broader context, replacing them with
any Hermitian modular functor and extending the Toledo invariant to a full series
of cohomological invariants beginning with the signature p — q. We prove that
these invariants satisfy the axioms of a Cohomological Field Theory and compute
the R-matrix at first order (hence the usual Toledo invariants) in the case of the
SU2/S03-quantum representations at any level.
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Long Random Multicurves
VIVEKA ERLANDSSON

Let S be an orientable finite-type surface of negative Euler characteristic, say of
genus g with r punctures. A multicurve « on S is a finite union of free homotopy
classes of (always closed) curves, possibly with positive weights. If S is equipped
with a hyperbolic metric then there is a unique geodesic in each homotopy class
and we define the length of v to be the (weighted) sum of the lengths of its
components. The mapping class group Map(S) = Homeo™ /{homotopy} acts on
the set of multicurves in a natural way, and we say that two multicurves are of
the same type if they lie in the same orbit.

Given a multicurve y° Mirzakhani obtained the asymptotic growth of the num-
ber of multicurves of type v° and of hyperbolic length at most L [10, 11]:

(1) #{v of type 1°[£(y) < L} ~ C - L¥970+"

where C' > 0 is a constant depending on the hyperbolic metric and v° (see [10, 6]
for more details on the constant) and ~ denotes precise asymptotics, that is, the
ratio of the two sides goes to 1 as L — oo.

Mirzakhani first proved (1) in the case that v° is simple in [10] and then, using
very different methods, for general 4° in [11]. In the simple case, she deduced
it from the convergence of a certain family of measures on the space ML(S) of
measured laminations (which can be viewed as the completion of weighted sim-
ple curves under a natural identification). In joint work with Juan Souto, and
motivated by the ideas in [10] we gave a new proof of (1) using convergence of
analogous measures, but now in a setting that also allows for non-simple curves.

Instead of ML(S) we consider the space C(S) of geodesic currents, a nice topo-
logical space containing (under appropriate identifications) all multicurves as well
as measured laminations (in fact, it can be obtained as the closure of weighted
curves). We then consider the following family of measures on C(S): given a
multicurve v and L > 0, set
o 1

~ [69—6+2r
v type v°

mz 5%’7
where ¢, denotes the Dirac measure centered at p. We show in [6] that these
converge to a multiple of a natural measure, the Thurston measure mrpy:

Theorem 1. For any multicurve v° on S there exists ¢ = c¢(y9) such that
m)° — ¢ My
in the weak-* topology on C(S) as L — oo.

Again, we refer to [10, 6] for more information on the constant ¢ and we stress
that Mirzakhani already proved Theorem 1 in [10] in the case v° is simple and
viewing the measures on ML(S).

The asymptotics (1) follow easily from Theorem 1 by evaluating the measures
at the unit ball with respect to the hyperbolic length function on C(.S). That this
length function extends continuously from curves to currents is a result by Bonahon
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[2]. In fact there are many length functions that extend nicely to currents (those
induced by negatively curved metrics or Euclidean structures [12, 4], word length
with respect to standard generators of m1(S) [5], extremal length with respect to
conformal structures [9], to mention a few) and Theorem 1 implies that (1) also
holds when the length is replaced by any such length. More precisely, to any
F : C(S) = R which is continuous, positive, and homogeneous in the sense that
F(cA) = c¢F(A) for all ¢ > 0, which we refer to as a nice length function.

Being able to count multicurves of fixed type, ordered with respect to a nice length
function, allows one to talk about a random multicurve: choose one uniformly at
random among those of length at most L and let L go to infinity. What properties
could you expect? For example, if we think of a multicurve v = > v; as a labeled
multicurve ¥ = (y1,...7%) and take a nice length function F'; how do the vectors
(F(v1),...,F(y)) distribute in R*? This question was studied by Mirzakhani
for hyperbolic length and pair of pants decompositions [11] and was generalized
both by Liu [8] and Arana-Herrera [1] to simple multicurves. In [7] we generalize
their distribution results to any multicurve and to any nice length function. More
precisely, writing R = Aj, x R>g, where A} is the standard (k — 1)-simplex, and

LG o0) = (g (FOn o FO0). 5 P00

we consider the probability measures on Ak X R>q given by

m(’?oaLaF) ’Y ,L F Z 5]LF(L’Y)

7 type ¥°

where M (5°, L, F) denotes the number of labeled multicurves of type ¥° of F-
length at most L and prove that:

Theorem 2. For every labeled multicurve ¥° = (77,...,75) and any nice length
function F,

m(y°, L, F) — pso @ ((6g — 6+ 2r) - %9772 dt)

as L — oo in the weak-* topology on Ay X R>o, where dt is the standard Lebesgue
measure and pyo is a probability measure of Ay, independent of F.

The measure pyo can in theory, and in some instances explicitly, be computed
(see [7] for more details).

As mentioned above, Theorem 2 was already proved in [11, 8, 1] for simple
multicurves and the hyperbolic metric, however, their methods involve studying
the dynamics of the earthquake flow, while we instead generalize Theorem 1 to
study the distribution of labeled multicurve inside the product space C(S)*F =
C(S) x -+ x C(S) of so-called k-currents: for a labeled multicurve ¥° and L > 0
we study the measures

o 1
m(*y aL) = ,69—6+2r Z 4

v type ¥°

;Y‘

o=
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on C(S)*. Using similar arguments which prove convergence on C(S) of the mea-

sures mﬁo we show that these measures converge on C*(S), which we then can use

to deduce Theorem 2.

Theorem 3. For any labeled multicurve 7° € C*(S) there exists a measure gz
on Ay such that

m(f‘y"’, L) — D, (q:;o X mThu)

where D : Ay, x ML(S) — C(S)* is given by D : ((a;), A) = (a1, ...,ax\) and the
convergence is with respect to weak-* convergence on C(S)¥.

Again, the measure g5 can in theory be computed and we refer to [7] for
more details and a couple of examples where it is explicitly done. The measure
pyo in Theorem 2 is the probability measure corresponding to gyo, that is py. =
g5 /|lg5°l]-

We emphasize that the measure pso is independent of the length function F,
and in particular, if we restrict to hyperbolic metrics independent on which point
in Teichmiiller space we consider. This, of course, was also the case in the earlier
work on simple multicurves [11, 8, 1] which was very cleverly exploited by Liu and
Delacroix in [3] to study large genus asymptotics. For example, they managed to
answer questions such as: Given a random simple multicurve on a surface of genus
g, what percentage of the total length does its longest component have as g — co?
It would be very interesting to study similar questions for general multicurves,
that is, investigate how the measures p5o (say, as we take the union of all ¥° with
at most ¢ self-intersections) in Theorem 2 vary with g. However, to be able to do
S0, these measures must first be much better understood.
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Siegel Veech Transforms: Using Second Moments to Count Pairs
SAMANTHA FAIRCHILD

Consider a translation surface (X,w) where X is a compact Riemann surface and
w is a non-zero holomorphic 1-form. See for example Figure 1 where two Riemann
surfaces are given by complex translations gluing a polygon in the plane, and the
holomorphic one form is locally dz with a zero when the angle around a vertex is
more than 27. For more information see [7]. Let G = SLa(R) act linearly in the
plane. The Veech group T' C G stabilizes (X,w). A Veech surface is a translation
surface whose Veech group is a nonuniform lattice: a discrete subgroup so that
G/T is not compact, but has finite volume.

We study the dynamics of the straight line flow on a translation surfaces (X, w).
Special trajectories of the flow are saddle connections, which start and end at zeroes
of w with no zeroes in between. Given a saddle connection 7, we can define it’s
holonomy vector v, = f7 dw € C. Define

A, = {vy|7 is a saddle connection}.
To understand the distribution, we can first ask about the growth of the function
Nu(R) =#{z € A, : |z| < R}.

Following Masur’s seminar bounds [8] showing the quadratic growth of N, (R),
over 20 years, [5, 9, 11, 12] showed the exact growth rate of N, (R) with quanti-
tative error terms. To better understand the distributions of A,,, we now want to
investigate how pairs of holonomy vectors interact.

Siegel-Veech transforms. To understand N, (R), a common technique is to use
the Siegel-Veech transform: given h a bounded function with compact support on
C, the Siegel-Veech transform is a map on translation surfaces

hsv(w) = > h(v).
VEA,
Notice that if h is the characteristic function of the ball of radius R, then N, (R) =

hsv (w)
We now define a more generalized Siegel-Veech transformed used to detect
pairs. Given f a bounded function with compact support on C?, the Siegel-Veech

theta-transform is
Orw)= > flxy)
X,yEAL
Notice if f(x,y) = h(x)h(y) for h € B.(C), then Of(w) = hgv(w)?, thus Oy
is a generalized second moment of the Siegel-Veech transform. The average value
of hgy was well studied by [11], and the key result given in [6, 2] is a mean value
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FIGURE 1. On the top left is the square torus where opposite
sides are identified by translation, and below is the golden L whose
side length is the golden ratio ¢ = 1*'2—‘/5 A saddle connection
is a straight line flow starting and ending at vertex. The corre-
sponding holonomy vector v, € C keeps track of the horizontal
and vertical displacement. The graphs on the right plot holonomy
vectors corresponding to saddle connections of length at most 100.

formula for ©; when w is a Veech surface, in which case A, is a finite disjiont
union of orbits of I' [10]. Hence one can hope to say more, and in particular to
specify results to individual surfaces.

Results for Veech Surfaces. Instead of stating the mean value formula for Oy,
we will focus on sharing the applications of the result for the case of Veech surfaces.
If (X,w) is a Veech surface, [10, 3] gives

(1) Nu(R) = c,R*+ 0 (R*™°),

where the power-saving 6 = §(I") is explicit. The first application recovers a
(nearly) optimal count for typical shapes.
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Theorem 1 ([2]). Let Q@ C R? be a bounded Borel set that contains the origin and
consider its dilates Qr = R - Q. Then for almost every' linear transformation g
we have

|A(Aw) N Q|| det(A)] = o |QR? + O (RH 1og3/2(R)) :
where 6 = §(T') is as in 1 and € > 0.

Weak uniform discreteness. For the second application, recall that a discrete pla-
nar set is n-uniformly discrete if |A, N B,(x)| < 1 for all x € R%. When I is
non-arithmetic, [13] showed that A, is not uniformly discrete. The next theorem
quantifies the failure of uniform discreteness when (X, w) is a nonarithmetic Veech
surface.

Theorem 2. For any Veech surface, for each € > 0 there is an n > 0 such that
A,NBg:|A,NB > 2
msup L€ A 0Bt |4 0 By (o) 2 2} _
R—o0 |Aw N BR|

E.

This has a remarkable application proved in the appendix of [2].

Theorem 3. For any Veech surface, for Lebesgue almost every pair (6,v) €
St x S, the translations flows in directions 6 and v are disjoint, and thus not
isomorphic.

This provides the first family of surfaces other than branched covers of tori for
which the flows in almost every pair of directions are not isomorphic. If Theorem
3 could be extended to all surfaces, we would even be able to recover the result of
Chaika and Forni that there is a weakly mixing billiard in a polygon [4].

Counting pairs with bounded determinant. The same arguments also recover an
upper bound on pairs of saddle connections with bounded determinant. For a
vector x € R?, set

Dpa(x) ={y € R”:|y| < [x| and [x Ay| < D}.
For a typical surface M, the second author with Athreya and Masur [1] showed
that for D > 0 there is a non-explicit constant C'p > 0 so that

lim {(x,y) € Sm x Sm :x € B, ¥y € Dp.1(x)|
R—o0 R2

=Cp.

Theorem 4. Let M be a Veech surface. For any D > 0, there are constants Cyy
and ¢ depending only on M so that

lim sup {(x,y) € Sm xSv :x € Bgr, y € Dp1(x)}]
R—o0 R?

<Cu(D +c¢).

Note we have two terms in the upper bound. This comes from the fact that when
D is small, there are essentially only parallel pairs, and thus a constant multiple of
the Siegel-Veech constant cr will be dominating (cf. [1, Theorem 1.2]). However
for D large, we have an upper bound which is asymptotically linear in D. There

NWith respect to the Euclidean metric induced by the matrix representation of A.
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is much we still don’t know about the distribution of saddle connections, which
we will study in future work.
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Equidistribution in moduli space and the orthogeodesic foliation
JAMES FARRE
(joint work with Aaron Calderon)

1. TWIST TORI

Given a pants decomposition P of a closed oriented surface S of genus g > 2 and
a positive length vector L € REO, we consider the twist torus

TP(L) - Mg

of hyperbolic metrics with pants of type P whose lengths are given by L. Then
Tp(L) is an immersed (finite quotient) of a torus of dimension 3g — 3, equipped
with a natural homogeneous probability measure 7p (L) in the class of Lebesgue.
For t — +o0, Tp(e~'L) exits the end of M,.

Question 1 (Mirzakhani). How do twist tori Tp (e*L) distribute in M, ast — co?

With Aaron Calderon, we prove that twist tori equidistribute on average to a
limiting measure that depends on P and L.
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Theorem 2 ([4]). Given L and P, there is a Borel probability measure  on M,
such that

T,
lim — L) dt =
i 7 [ (eh) de =
in the weak-* topology on probability measures on M.

Moreover, 1 is the Mirzakhani measure in the Lebesgue measure class if, for all

curves a,b,c C P that bound a pair of pants, we have L(a) + L(b) # L(c).

The Mirzakhani measure is absolutely continuous with respect to the Weil—-
Petersson volume measure on M, with density function

X € Mg — B(X) = NThurston({EX(A) S 1})’

where frhurston 1S the Thurston measure on the space ML of measured lamina-
tions, and £x : ML — Ry is the hyperbolic length function.

The strategy of our proof is to translate the question into the language of the
PSL(2,R)-action on strata of holomorphic quadratic differentials using the or-
thogeodesic foliation construction. We then use powerful tools from Teichmiiller
dynamics to tackle the translated problem. We prove that the orthogeodesic fo-
liation construction and its inverse are continuous enough to again translate the
solution back to the original setting and conclude.

2. THE ORTHOGEODESIC FOLIATION

To a hyperbolic metric X € T(S) and a measured geodesic lamination A € ML,
the orthogeodesic foliation Oy (X) is constructed geometrically from the support of
A and the hyperbolic geometry of X. The transverse measure on O, (X) measures
“length along A,” and there are isolated singularities of O,(X) at points in the
complementary components of A\ in X that have more than one shortest path to
a leaf of X. See [2] for details of the construction. Thurston’s construction of the
horocycle foliation for maximal geodesic laminations coincides with ours (up to
measure equivalence) in the case that the support of A cuts X into ideal triangles.

Denote by P7T, the flat ML-bundle over 7T,, the Teichmiiller space of isotopy
classes of hyperbolic metrics on S. The quotient by the mapping class group is
PM,. Let QT4 be the complex vector bundle of holomorphic quadratic differ-
entials over 7,. Each such point corresponds to a singular flat metric on S with
isolated singularities where there is excess angle a positive integer multiple of 7
and distinguished real and imaginary measured foliations whose leaves are vertical
and horizontal, respectively.

Theorem 3 ([2]). There is a (unique) mapping class group equivariant bijection
O:PTy— AT,

such that O(X, \) has imaginary foliation measure equivalent to A and has real
foliation isotopic to Ox(X); it is an extension of Mirzakhani’s map defined on
pairs (X, ), where A is mazimal [7].

The map O is not everywhere continuous (as was pointed out by Mirzakhani
[7]), but the set of points which are points of continuity are fairly ubiquitous.
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Theorem 4 ([3]). Suppose A, — X in the measure topology and in the Hausdorff
topology on geodesic laminations. Then O(X,, \,) = O(X,\) as n — oo in QT
if and only if X, = X € 7Ty.

Using this theorem together with establishing some conditions which conver-
gence in the measure topology of measured laminations implies Hausdorff conver-
gence of their supports, we obtain the following.

Theorem 5 ([3]). For every stratum Q of unit area holomorphic quadratic differ-
entials, every point without horizontal saddle connections is a point of continuity
for O~ 1.

Lebesgue almost every point is a point of continuity for O.
An elementary result from measure theory gives the following.

Corollary 6 ([3]). Let Q be a stratum of unit area holomorphic quadratic dif-
ferentials. Let v, be a sequence of Borel probability measures on Q that converge
weak-x to some v giving zero mass to quadratic differentials with a horizontal sad-
dle connection. Then the sequence of Borel probability measures O; v, on PM,
converges weak-+ to O v,

Let py, be Borel probability measures on PM, that converge weak-+ to a mea-
sure p in the class of Lebesgue. Then O.u, — Oyp on the principal stratum of
quadratic differentials.

3. SKETCH OF PROOF OF THE MAIN THEOREM
First, the twist torus Tp(e'L) lifts to a torus
Tp(e'L) = (Tp(e'L), P/e'l|L]1) € PM,,

i.e., every surface is equipped with the pants curves of P, weighted so that their
total hyperbolic length is 1. Then O(Tp(etL)) is a flat twist torus in a stratum Q
of unit are holomorphic quadratic differentials. The corresponding flat surfaces are
glued together from horizontal cylinders coming from the curves of P with small
height and long length, as t — co. The stratum component can be read off of P
and L; the condition that L(a) + L(b) # L(c) for all curves a,b,c C P bounding
pants ensures that the flat twist torus lands in the principal stratum.

The Lebesgue measure 7p(etL) lifts and pushes forward by O to a Lebesgue
measure on the flat twist torus. The Teichmiiller geodesic flow g; satisfies (g; o
0).7p(L) = O.7p(e'L), and these measures are invariant for the Teichmiiller

horocycle flow. Seminal work of Eskin, Mirzakhani, and Mohammadi [5, 6] gives
that

1 T
?/ (g0 O)7p(L) dt — v
0

weak-x as T — 0o, and v is an measure supported on an affine invariant subman-
ifold. In particular, v gives zero mass to quadratic differentials with a horizontal
saddle connection. Thus we can apply Corollary 6 to see that

Lt ~1
= Tp(e'L) dt — O v.
T Jo
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Pushing this down to My, we recover the equidistribution result from Theorem 2.
The only thing left to do is identify v. This is achieved by applying recent work
of Apisa-Wright [1] that high rank affine invariant submanifolds are large. We
estimate the rank of the support of v using certain cylinder deformations [8]. The
details are carried out in [4, Section 5].
We do not know if the following statement holds true.

Conjecture 7. As t — oo, we have that (g; 0 O),.7p (L) converges weak-* to the

Masur—Veech—Smillie measure on the stratum component into which O(T'p(L))
lands, so that the averaging step in Theorem 2 can be removed.
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The Diagonal Flow, Topology, and Lyapunov Exponents
VAIBHAV GADRE

By the Gauss—Bonnet theorem, an orientable finite type surface with negative
Euler characteristic cannot support a flat metric; it does support a flat metric
outside a finite set of singular points with the expected ”excess angle” concentrated
at these singular points. The subclass of singular flat metrics that arise from
holomorphic abelian or meromorphic (with simple poles) quadratic differentials are
important in many contexts, such as, for example, billiards in rational polygons.
Suppose that S is an oriented surface with finite genus and finitely many marked
points. Such a surface carries a conformal structure by charts to C with holo-
morphic transitions. The Teichmiiller space is the space of marked conformal
structures on S. The mapping class group Mod(S) is the group of orientation-
preserving diffeomorphisms of S up to isotopy. Mod(S) acts on Teich(S), and the
quotient is the moduli space M of Riemann surfaces. The cotangent bundle of
M is the moduli space of meromorphic quadratic differentials on S with simple
poles at marked points and only at marked points. This includes the squares of
holomorphic 1-forms (abelian differentials). Contour integration of a square-root
of a quadratic differential defines charts from S to C. The transition functions are
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now of the form z — £z + ¢, that is translations or half-translations. This defines
a singular flat metric on S with singularities only at the zeroes and poles of the
differential.

The moduli space of such differentials is stratified by the orders (of the differen-
tials) at the singularities and if the orders allow it, whether or not the differentials
are squares of abelian differentials. The components of the strata were classified
by Kontsevich—Zorich [16], Lanneau [17] and Chen—-Msller [7]. Periods of a ho-
mology basis relative to the singularities (zeroes and poles of the differentials)
defines charts on these moduli spaces. The SL(2,R)-action on C = R? preserves
the form of the transition functions. Hence it descends to an action on each stra-
tum component. See the survey [13] by Forni-Matheus for background and more
details.

There are many viewpoints on these moduli spaces and the interplay between
the many viewpoints produces striking results. A prime example is the celebrated
result (combining work of Eskin—-Mirzakhani [8], Eskin-Mirzakhani-Mohammadi
[9] and Filip [11]) that SL(2,R) orbit closures, which a priori are dynamical ob-
jects, are also special algebraic sub-varieties given by linear equations in period
coordinates.

The diagonal part of the SL(2, R)-action is the Teichmiiller flow. The Kontsevich—
Zorich (KZ) cocycle is the dynamical cocycle that arises from the symplectic mon-
odromy action on the absolute homology of S. Teichmiiller flow is ergodic, in
fact exponentially mixing, but these properties are subtle as the flow is not uni-
formly hyperbolic. Therefore, whether the absolute homology cocycle is also rich
is a very pertinent question. The famous Kontsevich—Zorich (KZ) conjecture [15]
asserts that the absolute cohomology cocycle has a simple Lyapunov spectrum
asymptotically. For abelian differentials, this conjecture was proved by Forni in
genus two [12] and Avila—Viana [3] for all abelian components. The general case
for quadratic strata was open until now.

With Bell-Delecroix—Gutierrez—Romo—Schleimer [4], we resolve the KZ conjec-
ture in the above generality (in technical terms, separately for the plus and minus
pieces). Our solution is based on a key new idea that relates the dynamics directly
to the topology (specifically, the fundamental group) of a stratum component. As a
result, the proof is uniform across stratum components and simplifies Avila—Viana
in a crucial way.

While stratum components or linear invariant subvarieties are typically orb-
ifolds, they admit finite manifold covers. The space C™°' of rooted differentials
(differentials with a marked horizontal separatrix) over a component C is a tradi-
tionally used finite manifold cover. We arrive at the chain of homomorphisms

71 (CT%) — 79 (C) — 7P (M) = Mod(S) & Aut(H,(S;7Z)) = Sp(29, 7).

The image in Mod(S) is the modular monodromy defined using the (flat)
Gauss—Manin connection and the whole composition gives the symplectic mon-
odromy. The Avila—Viana criterion for Lyapunov simplicity boils down to “al-
most Bernoulli” (alternatively called approximate product structure) properties
for the flow on C™°" and a certain notion of “largeness” (existence of pinching
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and twisting elements) for the cocycle. The Teichmiiller flow lifted to C*°°% can be
coded by interval exchange transformations (IET) as a suspension flow over the
Rauzy-Veech renormalisation on the IET parameter spaces. The almost-Bernoulli
properties for the coding require quantitative estimates for an acceleration of the
renormalisation (see Avila—Gouézel-Yoccoz [1] for abelian strata). Avila—Viana
verify the required cocycle largeness directly for abelian strata.

In our work, we prove largeness a lot further up the above sequence. Namely, we
consider the flow group G (U, qg), namely the subgroup of 71 (C*°%) generated by
almost closed Teichmiiller geodesic segments starting and ending in a contractible
open set U containing the base-point gyp. Going deeper into IET theory, we prove:

Theorem 1. Suppose that C is a component of a stratum of abelian/quadratic
differentials and C™°t a component of rooted differentials over C. Suppose U is a
contractible open set in C™°t containing a base-point qo. Then

G(U, q0) = m(C™", qo).

By following along the sequence above, the largeness of the flow group enables
us to verify cocycle largeness from the monodromy instead of using loops in Rauzy
diagram. By work of Benoist, Zariski density implies the largeness property. By
using Filip’s work on algebraic hulls [10], we prove Zariski density of the symplec-
tic monodromy of all stratum components (abelian or quadratic). This leads to
our proof of the Kontsevich—Zorich conjecture for all strata of abelian/quadratic
differentials, namely:

Theorem 2. Suppose that C is a component of a stratum of abelian/quadratic
differentials. Then the plus and minus Kontsevich—Zorich cocycles over C have a
simple Lyapunov spectrum.

While we prove Zariski density of the symplectic monodromies, the explicit
description of the monodromies (and Rauzy—Veech groups) is still open, specifi-
cally the question if they are finite index subgroups of the symplectic group and if
so precisely which ones? This information is known for abelian strata (and some
quadratic strata) through works of Avila-Matheus—Yoccoz [2] and Gutierrez-Romo
[14]. A related question is to describe modular monodromies as explicit subgroups
of Mod(S). For abelian strata, Calderon—Salter show that the modular mon-
odromy is a framed mapping class group (the stabiliser of a framing) giving a spin
mapping class group over the closed surface [5, 6]. For quadratic strata, we expect
it to be the stabiliser of a line field giving a similar spin description over the closed
surface.
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Topological recursion and applications
DANILO LEWANSKI

Let us package Witten’s 1-class correlators in a single generating series: let ¢4 (for
d > 0) be a set of formal variables and set

(1)

h29—2+n n

Z(to,t1,t2,...;h) = exp Z o Z <Td1"'Tdn>gthi

g>0,n>1 ’ di,...,d,>0 i=1
2g—2+n>0
The generating series Z arises as a partition function in topological 2D quantum
gravity. The string and dilaton equations may be written as differential operators
annihilating Z.
Define the differential operators

t2
(2) Ll_h——h2 >t —0 ,
>1 8t’“1
) ) 2k+1 0 1
(3) Lo_haT—h Z 3 tka—thrﬂ

k>0
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For n > 1, these are given by

d (2n + 2k + 1) d
(4) L,="h —h2<kz( it
>0

8tn+1 2n + 3)”(2]6 — 1) 8tk+n

1 20+ N2+ 1)1 92
t3 X ( (273+(3)” ) Dt.0t )
a,b>0 8 atth
a+b=n—1
Theorem 1 (Witten’s conjecture/Kontsevich’s theorem). The differential opera-
tors (Ly)n>—1 annihilate the partition function Z:

(5) L, Z=0 Vn > —1.

Moreover, the above system of equations (known as Virasoro constraints) uniquely
determine all intersection numbers.

We remark that Witten’s original formulation of his conjecture states that Z is
the unique tau-function of the Korteweg—de Vries (KdV) hierarchy satisfying the
string equation L_; Z = 0. The KdV hierarchy is an infinite sequence of partial
differential equations which extends in a certain sense the KdV equation. The
equivalent statement in terms of Virasoro constraints was proved by R. Dijkgraaf,
H. Verlinde, E. Verlinde.

The Virasoro constraints are equivalent to the following topological recursion
for Witten’s correlators:

n

(2d; + 2y, — 1N _
(6) (7ay - Ta,)y =D By + 11 (2d, — 1)1 (Tdy+dm—1Tds =" Tdy " " Tdy )

m=2
1 (2a+1)!!(2b+1)!!<
+ = Z (TaTbTdy """ Td,, ) g
1 2 nlg—1
2 =, eatn
Y ), ).
g1t+92=9

Lula={d2,...,dn }

Moreover, the above recursion is equivalent to the Eynard-Orantin topological
recursion formula on the Airy spectral curve:

22 dz1dzo
Pl = — = = —
( ) {E(Z) 92 ) y('z) Z, WO,Q(ZDZ?) (Zl _ Z2)2
producing the correlators
" m(2d; + 1)
(1) wgn(z1,. 5 20) = (=1) Z (T, "'Tdn>gHWdzi-
diye.ydn >0 i=1 “i

di+---+dp=39g—3+n
Through resurgence techniques one can compute the large genus asymptotic

Witten’s correlators:
n

®) (4T, [+ =

i=1

2n—1 '(2g — 2 n )
o ((%9)2921—11 ) (1+0(g™)-
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Another example is given by the Cohomological Field Theory (CohFT) associ-
ated with the spectral curve

(9)
(Pl’ 2(2) = —f log(2) — log(1 — 2), y(z) = —log(2), B(z1,2) = &)

(21 — 22)

is the triple Hodge A(1)A(f)A(—f —1). This is the CohFT underlying the framed
topological vertex and the topological recursion formula for the triple Hodge class
is nothing other than the BKMP remodelling conjecture for the vertex. The large
framing limit recovers the so-called Lambert curve that computes Hurwitz num-
bers.

Another example is given by JT gravity. In this model the path integral of
the theory is over the space of hyperbolic metrics (rather than the space of com-
plex structures). In other words, the ‘correct’ moduli space is that of hyperbolic
structures:

with n labelled geodesics boundaries

X is a hyperbolic surface of genus g
of lengths L1,...,L,

where X ~ X' if and only if there exists an isometry from X to X’ preserving the
labelling of the boundary components.

The space Mhyp( ) is a smooth real orbifold of dimension 2(3g —3 +n). More-
over, for all L € R’} it is homeomorphic (as a smooth real orbifold) to the moduli
space of smooth Riemann surfaces:

(11) MPP(L) = Mg, .

For any fixed L € R” , the moduli space ./\/lhyp( ) comes equipped with a natural
symplectic form, called the Weil-Petersson form and denoted wwp. In particular,
we can define the volumes

39g—3+n

12 VWP (L, :/ _Ywe
(12) O

Under the homeomorphism ./\/lhyp( ) &2 My ., the Weil-Petersson form extends
as a closed form to Mg,n and defines the cohomology class

1 n
2 2
(13) 2m°k1 + 3 E_l L; ;.

An immediate consequence of the above result is that the Weil-Petersson vol-
umes are finite (this was not obvious because M}!}?’T{“(L) is not compact) and is a
symmetric polynomial in boundary lengths squared whose coefficients are inter-
section numbers involving 1)-classes and exp(272k1):

2d
(14 AACEND Y “1sz S

di,...,dn>0
di+-+d,<39g—3+n
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These intersection numbers are precisely in the form of CohFT correlators, and as
such can be computed by topological recursion. The spectral curve

ledZQ
s WO,Q(ZhZQ) = m

22 sin(27z)

1) (P e = 50 =

produces topological recursion correlators associated with Weil-Petersson volumes:

(16)  wgn(21yeeey2n) =dsy -+ ds, <H/O dLiez’iLi> VI (L, ..., L)
i=1

Metric maps and hyperbolic surfaces in large genus
BAPTISTE LOUF
(joint work with Svante Janson)

We start with the following two results about counting small curves in large genus:

Theorem 1 (Mirzakhani—Petri [7]). Let N;yp(x, y) be the number of simple closed
geodesics of length € [x,y] in a random' hyperbolic surface of genus g. As g — oo,

we have
Y cosh(t) — ldt)

N:yp(x,y) 2 Poisson </ ;

Theorem 2 (Janson-L. [6], Barazer-Giacchetto-Liu [2]). Let No™(x,y) be the
number of simple closed geodesics of length € [x,y] in a random?® metric map (or
ribbon graph) surface of genus g and one face of perimeter 12g. As g — 0o, we

have
Y cosh(t) — 1
Ngcomb(x, Y) <, Poisson (/ %dt)

Although a Poisson law is often expected, the fact that the parameters match
in both cases in a surprising coincidence! It is tempting to search for more links
between these two models of large genus surfaces . ..

Geometric questions. The strongest possible equivalence would be that in some
sense, the two models become “the same” in the large genus limit. This could be
made possible if one sees the map as the gluing of a polygon, i.e. a random
hyperbolic surface could be constructed as the gluing of a hyperbolic polygon
whose law we control well. This would entail a nice asymptotic parametrization
of the moduli space M.

In order to find a good candidate for the construction, one can look for a
“canonical” embedded one face map in a hyperbolic surface. One possible guess
is the “spine” of a surface (see [3] for references).

Lunder the Weil-Petersson measure.
2under the Lebesgue measure.
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Question 3. What is the law of the spine of a random hyperbolic surface as
g — oo 7 What are other nice ways to construct a one face map on a hyperbolic
surface 7

One of the key tools of the proof of [6] is Chapuy’s bijection between one faced
maps and decorated trees [4].

Question 4. Is there a nice geometric adaptation of Chapuy’s bijection to con-
struct random surfaces 7

Enumerative questions. A more modest question would be to find a better
explanation of the following enumerative fact, which is key to Theorems 1 and 2:

Theorem 5. Fixz n and ly,ls,...n,l, then as g — oo, we have the following
convergence of these volume ratios:

hyp
VIR0 ) vhy
g,n ) ytn g—1,n+2 .
—w ~ | |S(€¢) and L
gm =1 Vg:n

Veomh (129 — 6,41, ...

g chsz-kz (129)
Veomt (129 — 6)

) u
~27" 1 S) and £ — ~ 4,
E Vit (12g)

. sinh /2
with S(x) = —gmm/;/ )

These two results look very similar, however their proofs are independent and
the calculations do not involve the same quantities.

Question 6. Find a unified proof of these identities, and more volumes for which
this is true.

Interpolating between Theorems 1 and 2. Since metric maps can be seen as
hyperbolic surfaces with a very large boundary [5], we make the following conjec-
ture that, in some sense, interpolates betweens Theorems 1 and 2.

Conjecture 7. Let NgL" (z,y) be the number of simple closed geodesics of length
€ [z,y] in a random hyperbolic surface of genus g with one boundary of size L.
There exists a continuous, increasing function r satisfying r(0) = 1 and r(c0) = oo
such that, as g — o0

Y _
NgL-" (z,9) 4, Poisson (/ %dt) if Ly =o(g)
NE(r(e)z, r(c)y) % Poisson ( / %c@ il

L L Y cosh(t) — 1
NgL-q (1—2ggx, E‘Zy) 4, Poisson (/ %dt) if Ly >>g
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Counting saddle connections on meromorphic Abelian differentials
HowARD MASUR
(joint work with David Aulicino, Huiping Pan, Weixu Su)

We let (X,w) be a translation surface of genus g > 2. This means X is a Riemann
surface and w is a holomorphic 1-form on X. We assume it lies in a hyperelliptic
stratum H(hyp). This means that there is a hyperelliptic transformation 7 : X —
X so that 7(w) = —w.

Examples of hyperelliptic strata are H(2) and H(1,1) in genus 2. In addition,
the stratum H(2k —2) for k > 3 has a hyperelliptic component as does the stratum
H(k — 1,k —1) for k > 3. Let d be the complex dimension of a hyperelliptic
component.

Next we let 8 be a saddle connection on (X, w) which we will assume is invariant
under the involution; namely 7(8) = 5.

We then let A(L, ) be the set of saddle connections « that are interiorly disjoint
from S of length at most L. The goal is to find bounds on |A(L, 8)|, the cardinality
of A(L, B).

One motivation for this problem as indicated by the title is suppose we have
a finite genus but infinite area translation surface with a cusp, or equivalently a
meromorphic Abelian differential, and one wants to count the number of saddle
connections. Such a translation surface has a cusp neighborhood with bound-
ary that consists of one or more saddle connections. Any geodesic crossing this
boundary ends at the cusp so the counting of saddle connections is the same as
counting on a closed surface those saddle connections that miss one or more saddle
connections.

Let me state the theorems that I will discuss in the talk. For the upper bound
we have:
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Theorem 1. For any (X,w) € H(hyp) and invariant saddle connection 3 there
is a constant C' such that

d—2
L L
AL, B)] < C-2 (1og —) .
18l 18|
Remark 2. In the above theorem, if we only count the number of a € A(L, f)
that are not invariant under 7, then the exponent of the log is d — 3.

For the lower bound, at this point we only have a result in ¢ = 2. First we
recall there is a Lebesgue measure p (called MV measure) on a stratum.

Theorem 3. Given an invariant saddle connection B on any set E of positive u
measure of (X,w) € H(2) or (X,w) € H(1,1), for u almost every (X,w) € E there
is a constant C' such that for L big enough

L L\%2
IA(L,ﬁ)IZCmCogm) .

Remark 4. We remark that the exponents for upper and lower bounds coincide.

There are some obvious questions that remain:

(1) We would like to extend the lower bound to all hyperelliptic strata.

(2) Can one find corresponding upper and lower bounds for all strata?

(3) Can one remove the almost everywhere statement in the lower bound or
are there examples where the given lower bound does not hold?
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Random surfaces with large systoles
BrAM PETRI

The systole of a closed hyperbolic surface, or of any Riemannian manifold that
possesses closed geodesics, is the length of its shortest closed geodesic. It is known,
due to work by Mumford [17], that the systole, as a function on the moduli space
My of closed hyperbolic surfaces of genus g > 2, admits a maximum. What this
maximum is and how it behaves as a function of g is a classical question.

The answer to this question is however only known in genus 2. In that case, the
maximum is uniquely realized by the Bolza surface — the unique closed Riemann
surface of genus 2 with 48 automorphisms, as proved by Jenni [9]. In higher
genus, there several conjectures due to Schmutz [23], that remain open to this
day. Multiple local maxima in low genus have been found by Schmutz [22] and
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Hamenstadt [8] and more recently Fortier Bourque and Rafi [5] have produced
infinite sequences.

The next natural question is what the asymptotic behavior of the maximal
systole is as the genus tends to infinity. Using the fact that the area of a disk in
the hyperbolic plane grows exponentially as a function of its radius, one obtains
that the maximal possible systole is at most logarithmic as a function of the genus.
This trivial bound has been improved by Bavard and more recently Fortier Bourque
and Petri [4]. Infinite sequences of surfaces whose systole grows logarithmically
as a function of their genus are also known. The first such construction is due to
Buser—Sarnak [3] and by now, several constructions are known [1, 11, 19, 20, 10].
However, even the question of whether the sequence

max{systole(X); X € Mg}
log(g)
admits a limit, is currently open. The results above imply that its limit inferior is
at least 1% (due to Katz—Sabourau) and at most 2.

Our joint work with Mingkun Liu is about the question whether random con-
structions of hyperbolic surfaces can be used to attack this problem.

First of all, there are multiple well-studied models of random hyperbolic surfaces
[2, 7, 15, 14]. However, unfortunately the systoles of these random surfaces usually
don’t grow [18, 16, 14, 13, 21]

As such, if one wants random surfaces with large systoles, new constructions
are needed. In our work with Mingkun, we present two such constructions, both
inspired by ideas from graph theory [6, 12]. We obtain sequences random surfaces
of growing area, whose systoles grow logarithmically as a function of their area.
This also yields a new deterministic result, it allows us to prove a lower bound
on the maximal systole of a closed orientable hyperbolic surface of a given genus,
improving Katz—Sabourau’s recent lower bound.
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Benjamini-Schramm limits of high genus translation surfaces
KASRA RAFI
(joint work with Lewis Bowen, Hunter Vallejos)

We prove that the sequence of Masur-Smilie-Veech (MSV) distributed random
translation surfaces with area equal to genus, Benjamini-Schramm converges as
genus tends to infinity. This means: for any fixed radius » > 0, if X, is an
MSV-distributed random translation surface with area g and genus g and o is a
uniformly random point in X, then the radius-r neighborhood of 0 in X, converges
in distribution.

Benjamini-Schramm convergence is a notion of convergence for sequences of
(random) finite graphs and finite-volume manifolds. A sequence (X;); of random
finite-volume manifolds Benjamini-Schramm converges to a random pointed man-
ifold (X0, poo) if, when p; is a random point in X; chosen uniformly, then the
law of (X, p;) converges to the law of (Xoo, poo) in the space of Borel probability
measures on the space of pointed manifolds, where we use the weak topology on
the former and the pointed Gromov-Hausdorff-Prokhorov topology on the latter.
This convergence notion admits natural generalizations to manifolds endowed with
extra structure, such as abelian differentials. Intuitively, Benjamini-Schramm con-
vergence is a characterization of what it is like to live on X; at a typical point, as
i — 0.
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We show that the Benjamini-Schramm limit of a random translation surface
is the Poisson translation plane, with intensity 4. One can construct a Poisson
translation plane of intensity I > 0 in the following way. Let C, be a copy of
the complex plane and set o to be 0 € C,. Sample a Poisson point process II, of
intensity [ in C,. At each point z € II,,, we make a cut along the ray [1, o] -z and
take the path-metric completion. We call this a slit-plane. Let C, be a copy of the
complex plane. Cut C, along the ray [0, oo]-z and take the path-metric completion.
Now glue this to the slit-plane by identifying boundary-components in a holonomy-
preserving manner. We have now constructed the depth 1 approximation to the
Poisson translation plane.

Now, on each C,, we take another Poisson point process I1, of intensity [, all
jointly independent, and perform the exact same procedure. Continuing this pro-
cess forever ends with a Poisson translation plane of intensity [. We make this
process rigorous with what we call a holonomy tree, which more or less accom-
plishes for translation planes what period coordinates accomplish for finite type
translation surfaces.

Along the way, we obtain bounds on local geometric properties, such as the
probability that the random point o has injectivity radius at most r, that may be
of independent interest.

Large genus asymptotics for lengths of saddle connections
ANJA RANDECKER
(joint work with Howard Masur, Kasra Rafi)

For random hyperbolic surfaces of large genus, a lot is known about their geometric
properties since the seminal work of Mirzakhani [1]. The situation is very different
for translation surfaces — much fewer results have been shown on the geometric
properties of random large-genus surfaces.

In our work, we study the distribution of the lengths of saddle connections,
that is, the lengths of geodesic segments between zeros of the abelian differen-
tial. Mirzakhani and Petri have previously shown for hyperbolic surfaces that the
number of closed geodesics with lengths in a given range converges to a random
variable with Poisson distribution [2]. A similar statement is also true for transla-
tion surfaces, for a different length scale and with a different mean of the Poisson
distribution. More specifically:

Given a translation surface (X,w) of genus ¢ and an interval [a,b] C R4, let
Ny, a,p)(X,w) denote the number of saddle connections on (X,w) with lengths in

the interval [9, 9]
9’9

Theorem 1. Let [a1,b1],[az,b2], ..., [ak, bk] C Ry be disjoint intervals. Then, as
g — 00, the vector of random variables

(Ngi(lhbl]’ - '7N97[ak7bk]) : Hg(l’ s 1) = ng
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converges jointly in distribution to a vector of random variables with Poisson dis-
tributions of means A4, p,], where

A[aﬂhbi] = 87T(b72 - a12)
fori=1,... k. That is,

k Ft b‘]e*/\mm
lim Py (Ng,jay,01] = 71, s Ny fapn) = 1) = | [ 20—

g—o0 paler n;!

Note that the theorem is only stated for the principal stratum Hgy(1,...,1) of
translation surfaces of genus g where all zeros are simple. However, as other strata
of translation surfaces of genus g are part of the boundary of the principal stratum,
the theorem is also true when considering the probability of having short saddle
connections on the whole space of translation surfaces of genus g.

The proof of the theorem follows the same strategy as the one in [2], based
on the method of moments. For this, we determine the factorial moments of the
random variable Ny [, by describing a simultaneous collapsing procedure for all
the saddle connections in the given range, and we argue that the situation where
this collapsing is possible is generic.
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Enumerative geometry and isomonodromic foliations
ADRIEN SAUVAGET

1. INTRODUCTION

Let g and n be two non-negative integers such that 2g — 2 +n > 0. The moduli
space of smooth complex curves (Riemann surfaces) of genus g with n marked
points is denoted M, ,,. This space is a smooth complex orbifold (a generalization
of manifolds) of complex dimension 3g —3 +n

The study of Mg, can be approached from various perspectives, and connec-
tions between these viewpoints have provided valuable tools for understanding
the geometry of M, ,. A notable example of such a connection is found in the
work of Mirzakhani, who related intersection numbers of so-called tautological
classes (complex analytic/algebraic viewpoint) to Weil-Petersson volumes (sym-
plectic/hyperbolic viewpoint). In particular, her work led to a new proof of Wit-
ten’s conjecture (see the next section), and provided an expression for the number
of “long” closed geodesics on random hyperbolic surfaces in terms of intersection
numbers [5, 6, 7].
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Here we report recent results and problems towards new interplays between
enumerative geometry and isomonodromic foliations. We emphasize two problems

e Flat geometry: how to compute Masur-Veech and Veech volumes in pres-
ence of isomonodromic foliations?

e Hyperbolic geometry: how to relate the properties of isomonodromic foli-
ations to cohomological computations?

2. ENUMERATIVE GEOMETRY

The moduli space of curves admits a standard compactification M, ,, constructed
in the 60’s by Deligne and Mumford by adding divisors that classifies singular
complex curves [2]. This compactification is smooth, so well-suited to compute
integrals, and intersection numbers of cohomology classes.

An important property of M, , is the existence of a universal curve w: Cyp, —
My, whose fiber over a point is a complex curve in the class associated with
the given point. Besides, there exists sections o1,...,0, of the fibration 7w that
map a class of marked curves to the i-th marking. The cohomology class 1; €
H?(Mg.n, Q) is Chern class of the line bundle

O, 0 [Fy
where wz 7 is the relative co-tangent line. Here, enumerative geometry will
Con/Mg,n ;
be understood as the study of rational numbers of the form

[ awut b e
gn
where « is a cohomology class that depends of the problem that we study (e.g. Hur-
witz numbers, Gromov-Witten invariants, Quasi-maps, Landau-Ginzburg models).
In 1991, Witten conjectured that such integrals with o = 1 are computed by in-
duction on g and n [10]. This conjecture was soon proved by Kontsevich [4],
and several other proofs were given over time. All the proofs of this foundational
results begin by expressing these integrals from a different point of view: e.g.
Weil-Petersson volumes in the case of Mirzakhani’s proof mentioned above.

3. MODULI SPACES OF CONE SURFACES

Let a = (a1,...,an) be a vector in RZ. Here, a surface of type (g, a) is the datum
of (C,x1,...,2n,n) where (C,z1,...,2,) where is a compact real surface of genus
g with n distinct points, and 7 is Riemannian metric with constant curvature
with cone singularities of angle 2ma; at z; for all 4. Depending on the sign of
the curvature, such surfaces can be obtained (up to a scalar) by gluing geodesic
polygons in either the disk, the plane or the sphere, along sides of equal lengths.
We denote by M, ,(a) the moduli space of cone surfaces of type (g,a) up to
isometries and scaling. These spaces are canonically endowed with structure of
real orbifolds. Moreover, Trovyanov showed that

Mg.n e Mg n(a)
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if la] < 29— 2+ n (i.e. for flat or hyperbolic surfaces). Besides the moduli
space My, one may be interested in the Teichmiiller space, i.e. the universal
cover Ty n(a)Mygyn(a) which is defined as a moduli space of cone metrics on a
reference surface. Moreover, if G = PSL(2,R) or C x S!, the group of isometries
of the hyperbolic disk and the plane respectively, then we define =, ,,(a) to be the
character variety with relative conditions prescribed by a: the space of morphism
from the fundamental group of reference (punctured) surface to G (up to the action
of G by adjunction) with boundary conditions given by imposing that the image
of loops around the punctures are mapped to rotations of angles prescribed by a.
Then the monodromy morphism is the C* morphism

Mon: Tgn(a) — Zgn(a).

This is a local isomorphism in general, unless a has an integral entry. In this case,
Mon is a submersion and the fiber of a point is a complex manifolds. This defines a
foliation on 7y, (a) that descends to Mg ,(a), this is the isomonodromy foliation.

4. FLAT SURFACES

Here we assume that |a|] = 2g — 2+ n. Then M, ,(a) is endowed with with a
canonical measure, known as Veech measure. If k is a positive integer such that ka
is integral, then can also consider the moduli space Mg ,,(a, k) C Mg, defined as
the set of marked curves (C, 1, . . ., x,) satisfying: there exists a k-differential with
singularities of order ka; — k at x; for all . This space is canonically embedded in
Mg n(a) as the sub-space of flat surfaces with rotational part of the monodromy
valued in the group of k-th roots of unity. Besides, this space is also endowed with
a canonical measure, the Masur-Veech measure.

If @ is rational and without integral coordinate, then the volumes of M, ,,(a)
and Mg, (a, k) were both computed in [8] and expressed as integrals of cohomol-
ogy classes over Mg,n. However, if a has integral coordinates, i.e. in presence of
isomonodromic foliations/deformations, then these volumes are unknown in gen-
eral (i.e. beyond k& = 1 and 2 by different methods). A conjecture was proposed
in [1] and generalized in [8] to express these volumes as integrals of cohomology
classes. The integrated cohomology class involves one 1-class for each of the inte-
gral coordinates of a, suggesting that 1-classes could be thought as Chern classes
of the tangent line along isomorphic deformations.

5. HYPERBOLIC SURFACES

In the hyperbolic setting, and for small values of a, the space Mg ,,(a) shares com-
mon features with the moduli space of hyperbolic surfaces with geodesic bound-
aries: it has a canonical symplectic form (the Weil-Petersson form), with Darboux
coordinates (the Frenchel-Nielsen Coordinates), an expression of the volume in
terms of intersection numbers, and all surface satisfy a McShane-type identity
allowing for the inductive computation of the volumes, based on the results of
Mirzakhani for moduli spaces of surfaces with boundaries.
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For a general value of a, these properties fail, although M, ,,(a) is still endowed
with a canonical symplectic form. In [9], an expression of the volume is conjectured
for a general value of a generalizing all previous results for special choices of g and
a. At vectors a with integral coordinates, the symplectic form degenerates, thus
the volume vanishes. As we expect that the Weil-Petersson form is the pull-back of
Goldman’s symplectic form on the character variety (this holds for n = 0 by [3]),
this vanishing is due to the existence of fibers positive dimension in Mon, i.e. of
isomonodromic deformations. In return this vanishing may be used to provide
a new proof of Witten’s conjecture as explained in [9]. From here, two types of
problem occur

e Can we exploit such bridge for other enumerative problems/isomonodromic
systems?

e Conversely, can we exploit known results about H*(M, Q) to describe the
properties of the isomonodromic foliation?
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Enumerative Invariants from Log Intersection Numbers
JOHANNES SCHMITT

Enumerative geometry counts geometric objects satisfying a list of properties. An
important method in the area is to obtain these counts as intersection numbers
on a suitable moduli space M. In the talk I explain how logarithmic intersection
theory can be used in different examples to define intersection numbers which are
independent of the precise choice of this space M. After a discussion of (double)
Hurwitz numbers, we’ll also see a new class of invariants - called k-leaky double
Hurwitz descendants - defined in joint work with Cavalieri and Markwig. I discuss
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some of their properties, show tropical formulas calculating them and present some
questions on their enumerative interpretation.

1. INTRODUCTION

The goal of enumerative geometry is to count geometric objects with specified
properties. Intersection theory provides a framework for such enumerative prob-
lems. Ideally, one constructs a suitable moduli space M parametrizing the objects
of interest, and then represents the desired counts as intersection numbers of appro-
priate cycle classes on M. For example, if one wants to count objects satisfying
two properties A and B, one can consider the closed subsets S4 and S of M
parametrizing objects satisfying the respective properties. If M is smooth and
compact, one can compute the intersection number

Nap = /M[SA] - [SBl,

where [S4] and [Sp] are the Poincaré duals of the fundamental classes of S4 and
Sp. If S4 and Sp intersect transversely, then N4 p should be the desired count.
However, difficulties arise when the objects to be counted intersect in the boundary
of the moduli space, which may parameterize degenerate objects not of primary
interest. This motivates the use of blow-ups to resolve these boundary intersections
and the development of intersection theory that is agnostic to the specific blow-up
chosen.

2. COMPACTIFYING STRATA OF k-DIFFERENTIALS

As a concrete example in the talk, we consider the problem of compactifying the
strata of k-differentials. Fix g,n,k > 0 and a vector A = (aq,...,a,) € Z"™ with
> a; = k(29 —24n). The stratum DRS(A) C M., parametrizes smooth pointed
curves (C,p1,...,pn) such that there exists a meromorphic k-differential  on C

with divisor
n

(1) div(n) = > (ai — kps
i=1
This condition can be reformulated in terms of line bundles:

(2) (we®)®F = Oc <Z aipz) ,

where wlcog =we ® O¢ (Y., pi) is the log canonical bundle. Several approaches

to compactifying these strata have been proposed:
(1) Naive closure: Take the closure of DRS(A) inside M, ,,. This often leads
to highly singular spaces.
(2) Multi-scale differentials: Construct a smooth compactification MSS(A)
by hand, as done in [1, 4]. The space MS’;(A) parameterizes stable curves
C together with a multi-scale k-differential. The data of this differential
combines additional combinatorial data on the stable graph of C (called
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an enhanced level graph), with geometric data such as twisted differentials
on the components of C, prong matchings at the node, and an equivalence
relation defined by rescaling ensembles.

(3) Closure in a log blow-up: Take the closure of DRS(A) inside a suitable
log blow-up (i.e. iterated boundary blow-up) of M, ,. This approach,
developed in joint work [7] with Chen, Grushevsky, Holmes, and Moller,
leads to spaces that are closely related to the moduli spaces of multi-scale
differentials.

There exists a natural log blow-up H; 4 of M, ,, such that the closure of DRS(A)

inside H; 4 recovers the moduli space of multi-scale differentials for k = 1:
A0

—_— M 4
(3) DRy(A) "7 = MS (A).

This is expected to hold for higher k as well. Moreover, the moduli space MS’; (A)
admits a modular interpretation in the language of log geometry. It is a union of
components of the moduli space DR4(A) parametrizing log curves (C,p1,...,pn)
together with an isomorphism of line bundles

(4) (we®)®F = Oc (Z aiPi) (a),

i=1
where o is a piecewise linear function on the log curve C and O¢ () is an associated

line bundle. This main component can be cut out by additionally requiring a
Global Residue Condition on twisted differentials induced by the isomorphism

(4)-

3. LocARITHMIC CHOW RINGS AND THE LOGARITHMIC DOUBLE
RAMIFICATION CYCLE

To develop an intersection theory that is independent of the specific log blow-up
chosen, we introduce the notion of the logarithmic Chow ring logCH" (M, ,,). This
ring describes the intersection theory of all log blow-ups of Mgm simultaneously.
An element of logCH* (M, ,) is given by a pair (J/W\, a), where M is a log blow-
up of M, ,, and a € CH* (]\/4\) Two pairs (]\//.7, a) and (]\//.7’,0/) are equivalent if
there exists a common log blow-up M" dominating both M and M’ such that
the pullbacks of a and o/ to M" coincide. The logarithmic double ramification
cycle logDR,(A) is defined as the class of the moduli space DRy(A) inside the log

blow-up M; 4, equipped with its virtual fundamental class:
(5) logDR,,(A) = [(M,, 4, [DRy(A)]""")] € logCH? (M.,,).

4. APPLICATIONS TO HURWITZ NUMBERS

In the case k = 0, the stratum DRg (A) parametrizes covers of P! with prescribed

ramification profiles over 0 and co. Let A = (ay,...,a,) € Z™ be a vector with
Sa; = 0. We write A = AT — A~ where AT and A~ are the positive and
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negative parts of A. Then DRS(A) parametrizes covers f : C — P! such that
the ramification profile over 0 is given by A" and the ramification profile over
oo is given by A~. The double Hurwitz number H,(A) counts such covers with
fixed simple branch points elsewhere. Double Hurwitz numbers satisfy several
interesting properties:
e They are piecewise polynomial in the entries of A.
e They admit wall-crossing formulas describing how the polynomials change
across the walls.
e They can be computed via character formulas, cut-and-join equations,
topological recursion, and tropical geometry.

A theorem of Cavalieri, Markwig, and Ranganathan expresses double Hurwitz
numbers as intersection numbers involving the logarithmic double ramification
cycle and a specific class bry(A) € logCH* %" (M, ,,) encoding the fixed branch
points:

Theorem 1. [3] The double Hurwitz number Hy(A) is given by

(6) H,(4) = [

logDR(A) - bry(A).
M o

The proof involves degenerating the target P! into a chain of P's and analyzing
the corresponding degeneration of the covers. This leads to a combinatorial for-
mula in terms of tropical covers, which are graphs mapping to the dual graph of
the degenerate target, satisfying certain balancing conditions at the vertices and
encoding the ramification profiles at the edges. The double Hurwitz number is
then expressed as a weighted sum over tropical covers:

1
(7) Hg(A):zr:m H Ke,

| ee E(T)

where the sum is over tropical covers I, Aut(T") is the automorphism group of T,
E(T) is the set of edges of T', and k. is the multiplicity associated to the edge e.

5. GENERALIZATION TO k-DIFFERENTIALS

The formula for double Hurwitz numbers can be generalized to arbitrary k. This
leads to the definition of k-leaky double Hurwitz numbers H 5 (A) and their descen-

dants H _(’;(A;e)7 which involve intersections with w-classes. The k-leaky double
Hurwitz number H, g(A) is defined by

(s) i) = |

logDR(A) - bry(A),
Mg 4

where brg(A) is the same class as in the case k = 0. The k-leaky double Hurwitz
descendants H, 5 (4;e) are defined by

o
Mg a

9) H;(A; e) = / logDR,(A) - br§ (A) - sz'ei7



2418 Oberwolfach Report 41/2024

where e = (e1,...,e,) is a vector of non-negative integers and bry(A) is a variant
of the branch class with codimension 2g — 3 4+ n — |e]. These numbers interpolate
between double Hurwitz numbers (when e = 0) and intersection numbers involving
the usual double ramification cycle (when e is maximal). They satisfy piecewise
polynomiality properties and admit wall-crossing formulas. Moreover, they can be
expressed as sums over tropical covers with ”leaks” at the vertices, reflecting the
discrepancy between the multiplicities of zeros and poles of k-differentials.

6. ENUMERATIVE MEANING AND FUTURE DIRECTIONS

A major open question is to find an enumerative interpretation of the k-leaky
double Hurwitz numbers for £k > 0. One approach is to consider counting k-
differentials with prescribed periods or residues. For example, in genus 0, certain
residue conditions lead to enumerative problems whose solutions exhibit striking
similarities to the k-leaky double Hurwitz numbers.

Specifically, consider the case ¢ = 0, k = 1, and A = (d, —b1,...,—b,) with
d= n—l—l—z?':l b; and b; > 0. Let DRg(A) be the locus of curves (C, p1, ..., Pn+1)
equipped with a meromorphic 1-differential n such that

n+1
div(n) = (d —1)p1 — Z(bl + 1)pi.
=2
Inside DRJ(A), consider the locus DR}(A) where the residues of 7 at the poles
D2, - - -, Pnt+1 are linearly dependent to a fixed vector ¥ = (ra,...,7p4+1) € C™ with

E?;gl r; = 0. For generic 7, the cardinality of DR} (A) is given by

(10) [IDRy(A)| = (d =1)(d=2)---(d = (n-2)),

see [6, 2, 5]. On the other hand, the 1-leaky double Hurwitz number H}(A) is
given by

(11) H&(A)z(n—l)!(d—%) (d—%)---(d—n;2>.

The structural similarity between these formulas suggests a potential connection
between the enumerative problem involving residue conditions and the k-leaky
double Hurwitz numbers.

Question 2. Is there an interesting enumerative problems for k-differentials in
arbitrary genus g and profile A of zeros and poles? Does it have some relationship
to the number Hg(A)?

REFERENCES

[1] M. Bainbridge, D. Chen, Q. Gendron, S. Grushevsky, and M. Méller, The moduli space of
multi-scale differentials, arXiv e-prints, page arXiv:1910.13492, (2019).

[2] A. Buryak and P. Rossi, Counting meromorphic differentials on CP!, Lett. Math. Phys.,
114 (2024), 97.

[3] R. Cavalieri, H. Markwig, and D. Ranganathan, Pluricanonical cycles and tropical covers,
arXiv e-prints, page arXiv:2206.14034, (2022).



Riemann Surfaces: Random, Flat, and Hyperbolic Geometry 2419

[4] M. Costantini, M. Méller, and J. Zachhuber, The area is a good enough metric, Ann. Inst.
Fourier (Grenoble), 74(2024), 1017-10509.

[5] D. Chen and M. Prado, Counting differentials with fized residues, arXiv e-prints, page
arXiv:2307.04221, (2023).

[6] Q. Gendron and G. Tahar, Isoresidual fibration and resonance arrangements, Lett. Math.
Phys., 112(2022), 33.

[7] D. Holmes, S. Molcho, R. Pandharipande, A. Pixton, and J. Schmitt, Logarithmic double
ramification cycles, arXiv e-prints, page arXiv:2207.06778, (2022).

Isoperiodic forms and invariant subvarieties of moduli space
KARL WINSOR

Fix an integer g > 2, and let k = (k1, ..., k,) be a partition of 2¢g — 2 with positive
integer parts. Let QMg(k) be the associated stratum of holomorphic abelian
differentials (X, w) with zero orders k1, ..., k,. The stratum QM (k) admits local
period coordinates modelled on Hom(H; (X, Z(w);Z),C), where Z(w) is the set
of zeros of w. By varying (X,w) € QM (k) while fixing the integrals of w along
closed loops, one obtains a holomorphic foliation called the isoperiodic foliation of
QOMg(k). We presented work in progress establishing a rigidity theorem for leaf
closures of the isoperiodic foliation.

In the generic stratum QM (12972), work of Calsamiglia-Deroin-Francaviglia
[4] provides a complete classification of isoperiodic leaf closures, and in particular
shows they are always suborbifolds. Their approach uses degeneration arguments
to induct on genus, and builds on an observation of McMullen [8] to address base
cases in low genus. Let Per(w) be the additive subgroup of C formed by the
integrals of w along closed loops. Riemann’s bilinear relations imply that Per(w)
contains a lattice in C, so its closure A is isomorphic to one of C, R+4Z, or Z +iZ.
Let QXM (k) be the subset of differentials (Y,7) of area a > 0 such that Per(n)
is contained in A and meets every connected component of A. If A = R + iZ, this
means Per(n) is not contained in R+imZ for some integer m > 1, and if A = Z+iZ,
this means Per(w) = A. Calsamiglia-Deroin-Francaviglia’s result shows that all
isoperiodic leaf closures in the generic stratum are given by connected components
of QA M, (12972) for some a > 0 and some closed subgroup A C C. We generalized
this result to all strata, with a couple of caveats.

First, isoperiodic leaves have complex dimension n — 1. When n = 1, leaves are
points and are always closed. Second, most strata QM (k) with 1 < n < 2g — 2
contain algebraic subvarieties arising from covering constructions that are unions
of isoperiodic leaves. An example in the stratum QM,(5,1) arises from branched
double covers of differentials in Q2 M3 (2) branched over the zero and over a regular
point. These subvarieties are also invariant under the action of GL™(2,R) on
strata. The main result presented in our talk was the following.

Theorem 1. Fiz g > 3, and let QMg (k) be a stratum with n > 1 zeros. There
is an algebraic subvariety ¥V C QM (k) of positive codimension, such that if L is
an isoperiodic leaf that is not contained in V, then the closure of L is a connected
component of QQMQ(/{) for some a > 0 and some closed subgroup A C C.
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Our result is obtained by classifying leaf closures in a nonempty open GL™ (2, R)-
invariant subset of each component of QM (x), and then applying the rigidity the-
orems of Eskin-Mirzakhani-Mohammadi [5] and Filip [7] which tell us that closed
GL™(2,R)-invariant subsets of strata are algebraic subvarieties. By restricting
attention to an open GL™(2,R)-invariant subset, we can exploit configurations
of saddle connections that are only guaranteed to exist on a typical differential,
see [6]. Our approach involves moving along isoperiodic leaves to find many such
configurations related by Dehn twists. In special cases, one can obtain more in-
formation about V using classification results for GL™ (2, R)-orbit closures, see for
instance [1], [2], [3]. In many strata for which the numerology of the zero orders
prevents the existence of the above type of covering construction, one can show
that V can be taken to be empty.
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