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Introduction by the Organizers

The workshop Homotopical algebra and higher structures, organized by Michael
Batanin (Prague), Andrey Lazarev (Lancaster), Muriel Livernet (Paris) and Mar-
tin Markl (Prague) was a workshop with 41 participants attending in person. It
represented a geographically broad selection of pure mathematicians based in Eu-
rope, Asia, North and South America, and Australia. Particular care was taken
to promote an appropriate gender balance among participants and speakers of the
workshop.

We were given the opportunity to organize the workshop in a hybrid format
but, after careful deliberation, decided not to take it. Most participants seem to
appreciate the opportunity to come to Oberwolfach in person and take advantage
of the unique and stimulating atmosphere at the Institute. As always, we observed
lots of mathematical conversations held in large and small groups during lunch
breaks and in the evenings.
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On each day of the workshop there were three 55 minutes talks in the morn-
ing. The afternoon schedule was more varied; on Monday, Tuesday and Thursday
afternoons we had five 55 minutes talks in total and also three shorter half-hour
talks. On Wednesday, following a time-honoured tradition, participants went on
a hike in Black Forest in the afternoon, and the Friday schedule included only
three morning talks as (partially due to the interruptions with trains around the
Hausach area) most participants opted to leave shortly after lunch.

In addition to regular talks, a ‘gong talk show’ was held on Tuesday from
7:45 p.m. to 9 p.m. during which talks of 5 minutes’ duration were delivered, with
an additional allowance of one minute for questions after each talk. There were no
breaks between talks and the schedule was strictly enforced by the sound of a gong
at the end of each five minutes or one minute slot. This format proved to be quite
popular among the participants, and six out of ten speakers managed to finish
their talks on time without being stopped by the gong (an impressive feat). As a
result, all participants who were willing to give a talk, had the opportunity to do
so (albeit in this unusual format). If we happen to organize another Oberwolfach
workshop, this is a feature that we would definitely want to keep.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Centers and homotopy centers of non-symmetric operads . . . . . . . . . . . . . 2255

Viktoriya Ozornova (joint with Amar Hadzihasanovic, Félix Loubaton,
Martina Rovelli)
Equivalences of higher categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2256

Matt Booth (joint with Andrey Lazarev)
Global Koszul duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2259

Dimitri Ara (joint with Léonard Guetta)
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THR of Poincaré ∞-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2273

Ralph M. Kaufmann
New Developments in Feynman Categories: Bar and Koszul . . . . . . . . . . 2275

Julie Bergner (joint with Brandon Shapiro, Inna Zakharevich)
2-Segal spaces and algebraic K-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2279

Félix Loubaton
Effectivity in an arbitrary (∞, n)-categories. . . . . . . . . . . . . . . . . . . . . . . . . 2280

Sarah Whitehouse (joint with Muriel Livernet)
Spectral sequences via presheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2281



2254 Oberwolfach Report 39/2024

Yunhe Sheng (joint with Andrey Lazarev, Rong Tang)
Homotopy theory of post-Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2284

George Raptis
Higher homotopy categories and their uses . . . . . . . . . . . . . . . . . . . . . . . . . . 2285

Dominik Trnka
Operadic 2-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2287
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Abstracts

Triangulated categories from triangulated surfaces

Bernhard Keller

In Fock–Goncharov’s approach [7] to higher Teichmüller theory, higher Teich-
müller spaces are obtained from cluster varieties V (S,G) associated with pairs
consisting of a marked surface S and a split semi-simple (real) Lie group G.
The varieties V (S,G) were constructed by Fock-Goncharov [7] for type A and
by Goncharov-Shen [8] for all Dynkin types. In this expository talk, we report on
the ongoing project of categorifying these cluster varieties using triangulated and
extriangulated categories [11], respectively their dg enhancements known as exact
dg categories [3, 1, 2]. The talk is based on recent work by Merlin Christ [6, 5, 4],
by Miantao Liu [10] and by Yilin Wu [12] as well as on by now classical results of
Haiden–Katzarkov–Kontsevich [9].

References
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Université Paris Cité.
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No. 109040, 112.

Centers and homotopy centers of non-symmetric operads

Florian De Leger

(joint work with Maroš Grego)

In the first part of the talk, we will recall the idea of the Baez-Dolan plus construc-
tion [1], then explain how hyperoperads, as we defined them in [4], look like. We
will then explain how, just like the planar trees version of the dendroidal category
Ωp [6] naturally extend the simplex category ∆, hyperoperads naturally extend
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non-symmetric operads. Finally we will recall the main result of our paper [4]
which is a triple delooping result for multiplicative hyperoperads analogous to the
double delooping result of Turchin [7] and Dwyer-Hess [5].

In the second part of the talk, we will define a notion of centers and homotopy
centers of non-symmetric operads analogous to the notion of centers and homotopy
centers of monoids given by Batanin and Markl in [3]. We will explain how this
notion extends the classical notion of centers of a monoid. As we will explain, we
believe that there is an action of the little 3-disks operad on the homotopy center
of a non-symmetric operad. This conjecture is the analogue of the result from
Batanin and Berger about the action of the little 2-disks operad on the homotopy
center of a monoid [2]. We will then proceed to give the plan for the proof of our
conjecture.
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arXiv:2309.15055 (2023)
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[6] I. Moerdijk and B. Toën, Simplicial Methods for Operads and Algebraic Geometry, Springer
Science & Business Media (2010)

[7] V. Turchin, Delooping totalization of a multiplicative operad, Journal of Homotopy and
Related Structures 9 (2014), 349–418.

Equivalences of higher categories

Viktoriya Ozornova

(joint work with Amar Hadzihasanovic, Félix Loubaton, Martina Rovelli)

In my talk, I discussed the relation of three sorts of higher categories for gen-
eral natural number n: We can consider strict n-categories, weak n-categories or
(∞, n)-categories.

One can give an informal description which would fit any of these mathematical
objects. Any of them should have some objects, (1-)morphisms between these
objects, then 2-morphisms between 1-morphisms, and so on. One would expect
to have some source, target and composition operations for morphisms, satisfying
some appropriate unitality, associativity and interchange laws. So far, it may
sound that the aforementioned three kinds of higher categories are in fact the
same.

The magic lies once in the ‘and so on’ part and once in the little word ‘ap-
propriate’. On the one hand, both ‘strict’ and ‘weak’ higher categories refer to
the fact that ‘and so on’ stops at the dimension n of the morphisms, while ∞
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of (∞, n)-categories refers to the fact that the process of going higher and higher
never stops; the dimension n here refers to the fact that all the higher morphisms
are assumed to be appropriately invertible.

On the other hand, the ‘appropriate’ compatibility laws could be just equalities
(leading to strict n-categories) or witnessed by higher morphisms, which should
in turn satisfy some coherence conditions. While the strict notion is indisputable,
the other two allow for some amount of flexibility in encoding the notion.

Maybe surprisingly at the first glance, the weaker notions ought always be
considered as some homotopical notion. One variant asks for considering the
corresponding (∞, 1)-category; a more structured version which is often more con-
venient for (∞, n)-categories is formulating statements in the language of model
categories. Barwick and Schommer-Pries [BSP21] give an axiomatic description
of the (∞, 1)-category of (∞, n)-categories. Many implementation, in particular
in the language of model categories, have been exhibited and are known to be
equivalent; e.g. featuring the work of Joyal [Joy08b], Lurie [Lur09b], Bergner–
Rezk [BR13, BR20], Ara [Ara14], Barwick [Bar05], Haugseng [Hau18], Gepner–
Haugseng [GH15], Rezk [Rez01, Rez10], Loubaton [Lou22b], just to name a few.

The case of weak n-categories is in turn subtle. While for n = 2, the notion of
the bicategory is both quite explicit and (maybe not independently) rather wide-
spread, the notion becomes increasingly subtle as n grows. There are explicit
definitions for weak 3-categories (aka tricategories) and some work on explicit
definition for weak 4-categories (aka tetracategories) by Trimble, but for n > 4, the
situation is quite hopeless. Instead, for the homotopy theory of weak n-categories,
one can use - as in [GH15] - a localization of (∞, n)-categories, and it was shown
by Haugseng [Hau15] that this coincides with the notion of weak n-categories
provided by Tamsamani [Tam99]; also related work was done by Paoli [Pao19].

The relationship of strict n-categories, weak n-categories and (∞, n)-categories
is sometimes subtle and our understanding depends a lot on the value of n. I will
first report on the largest value - namely n = 2 - where we have a quite complete
understanding, and then speculate on possible further developments for n > 2.

There are various homotopical embeddings for the homotopy theory of strict 2-
categories as constructed e.g. by Lack [Lac02, Lac04] into the homotopy theory of
(∞, 2)-categories, e.g. by Rovelli and the author [OR21a], by Campbell [Cam20],
by Gagna–Harpaz–Lanari [GHL22], by Moser [Mos20], and probably others. In a
joint work with Moser and Rovelli, we were able to clarify the relationship of these
constructions:

Theorem 1. [MOR22] All 2-categorical nerves are equivalent and satisfy the uni-
versal property given by Gepner–Haugseng.

It turns out that the notion of a coherent equivalence within a 2-category is
crucial to define and to understand the corresponding nerve.

How do we reach higher dimensions? To construct a (somewhat explicit) model
of the nerve, it would be helpful to have a corresponding notion of equivalence.
(One could also work with a more abstract notion based on the model structure
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due to Lafont–Métayer–Worytkiewicz [LMW10] but for explicit calculations, one
needs an explicit model.)

Theorem 2. [HLOR24] There is an explicit model ωEn of fully coherent n-equiva-
lence.

While ‘explicit’ is not a strictly mathematical term, one thing which can be
said in a more precise fashion is that the resulting n-category is finitely generated
in every given degree.

Now recall that there is a model of (∞, n)-categories based on presheaves on
a variant t∆ of the usual simplicial category ∆ (some of it discussed in [OR20]).
One can define a potential nerve for n-categories as a right adjoint to the left Kan
extension of the functor t∆ → nCat given by n-truncated orientals On[•] on ∆
and by [k]t 7→ On[k] ∐

Ck

Σk−1ωEn on the additional objects of t∆. Work in progress

building upon recent work by Henry–Loubaton [HL23] indicates that the obtained
adjunction should yield a Quillen pair between corresponding model categories.
It is ongoing work to investigate (fully) faithfulness of the resulting ∞-adjunction
for various values of n.
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Global Koszul duality

Matt Booth

(joint work with Andrey Lazarev)

The theory of conilpotent Koszul duality has its roots in Quillen’s comparison
between the commutative and Lie approaches to rational homotopy theory [11].
The modern formulation of conilpotent Koszul duality, due to Positselski and
Lefèfvre-Hasegawa, is as a Quillen equivalence between the categories of augmented
dg algebras and conilpotent dg coalgebras [7, 9]. The functors in question are

the bar construction B : dgAlgaug → dgCogconil, which roughly sends A to
a twist of the tensor coalgebra on its augmentation ideal Ā, and its left adjoint
Ω : dgCogconil → dgAlgaug, defined analogously. The model structure on dg
algebras here is the usual one - weak equivalences are the quasi-isomorphisms,
fibrations are the degreewise surjections - but important here is both that the
weak equivalences in dgCogconil are created by Ω, and that they are strictly
stronger than the quasi-isomorphisms.1

One should think of this algebra-coalgebra Koszul duality as a noncommutative
version of the derived-geometric Lurie–Pridham correspondence between formal
moduli problems and dg Lie algebras [10, 8]. Indeed, in characteristic zero, dg Lie
algebras are Koszul dual to cocommutative conilpotent dg coalgebras, which - fol-
lowing a philosophy going back to Hinich [5] - one should think of as formal moduli

1The cofibrations in dgCogconil are the degreewise injections.

https://arxiv.org/abs/2207.08504v2
https://arxiv.org/abs/0905.0462v2
https://arxiv.org/abs/2206.00660v1
https://arxiv.org/abs/2007.01848v5
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problems.2 At a high level, one should think of this as calculus - a formal moduli
problem has a ‘linearisation’ to its tangent complex, which is a dg Lie algebra, and
working formally locally ensures that one can always go back via integration. From
this perspective, the above Quillen equivalence shows that augmented dg algebras
control noncommutative deformation problems via a similar sort of calculus.3

Two natural questions arise: firstly, is there a version of ‘nonconilpotent Koszul
duality’, and secondly, what kind of deformation-theoretic interpretation should
this have? Conilpotency in our coalgebras corresponds to the fact that our formal
moduli problems accept Artinian local dg algebras as input. So if we want to
drop conilpotency (and also the (co)augmentations), our resulting notion of de-
formation problems should accept all finite dimensional algebras as input. In the
commutative world, every finite dimensional algebra splits as a product of local
algebras, but this is false in noncommutative geometry (think of, for example,
matrix algebras), so these moduli problems should contain interesting ‘genuinely
noncommutative’ data that allows separate points to communicate.

Dropping the (co)augmentations corresponds to introducing curvature on the
other side of the bar-cobar adjunction.4 Essentially, a curved algebra is like a
dg algebra but instead of asking that the differential squares to zero we ask that
d2(x) = [h, x] for some degree two ‘curvature element’ h (in particular, a curved
algebra with zero curvature is the same thing as a dg algebra). Morphisms of
curved algebras have two components: an algebra morphism and a change of
curvature term.5 This means, for example, that the natural inclusion dgAlg →
cuAlg is not full. Curved coalgebras are defined similarly.

When removing the conilpotency assumption, one needs to replace the bar
construction B by the extended bar construction B̌; loosely this is a completion
of the usual bar construction.6 For dg algebras the properties of the extended
bar construction were first worked out in detail by Anel and Joyal [1] and in the
curved setting, Guan and Lazarev [4] showed that there is an adjunction

Ω : cuCog←→ cuAlg : B̌.

2a.k.a. ‘formal stacks’ or ‘derived deformation functors’.
3This works over any base field, essentially since dg algebras always model E1-algebras. In

positive characteristic, dg Lie algebras are not the correct objects to use, and one must instead
use Brantner and Mathew’s partition Lie algebras [3].

4A fact well known to Positselski, who also gives a Quillen equivalence between conilpotent
curved coalgebras and all dg algebras [9].

5A curved algebra is a curved A∞-algebra with only three nonzero operations m0,m1,m2,

and a morphism is then the same as an A∞ morphism with only two components f1, f2.
6Heuristically, B̌ is like B but where one replaces the ‘cofree conilpotent coalgebra’ functor -

which is the tensor coalgebra functor - with the ‘cofree coalgebra’ functor, which is much wilder.
For example, the cofree coalgebra on a one-dimensional vector space has dimension at least as
large as the number of closed points in A1

k - a sharp contrast to the tensor coalgebra, which

always has dimension ℵ0.
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Our main theorem is that the categories cuAlg and cuCog admit model structures
making the above adjunction into a Quillen equivalence.7 As the notion of quasi-
isomorphism does not make sense for curved (co)algebras, we need to formulate
a new type of weak equivalence, the Maurer–Cartan equivalences. An MC
element in a curved algebra is an element x of degree one with dx+x2+h = 0. We
denote the set of MC elements in E by MC(E), and we caution that this set may
be empty!8 Just as in the dg case, MC elements in the convolution algebra mediate
the bar-cobar adjunction: if C is a curved coalgebra and A is a curved algebra, then
the graded vector space hom(C,A) admits the structure of a curved algebra, and
there are natural bijections cuCog(C, B̌A) ∼= MChom(C,A) ∼= cuAlg(ΩC,A). If
E is any curved algebra, we define a dg category MCdg(E) ⊆ Tw(E) whose objects
are the MC elements of E and whose hom-complexes are given by two-sided twists.
Abbreviating MCdg(C,A) := MCdg hom(C,A), we can thus view MCdg(C,A) as

a dg category of maps C → B̌A (equivalently, ΩC → A). We then say that a map
f of curved algebras is an MC equivalence if for all9 curved coalgebras C, the
induced map MCdg(C, f) is a quasi-equivalence (a.k.a. Dwyer–Kan equivalence)
of dg categories. MC equivalences for curved coalgebras are defined analogously.

We show that cuCog is a model category, where the cofibrations are the in-
jections and the weak equivalences are the MC equivalences. Moreover, we show
that cuAlg is a model category, where the fibrations are the maps p inducing
fibrations MCdg(C, p) for all curved coalgebras C, and the weak equivalences are
the MC equivalences.10 Finally, we show that the extended bar-cobar adjunction
is a Quillen equivalence.11

Following [1], we also show that cuCog is a closed symmetric monoidal model
category under ⊗, and that cuAlg is model enriched over cuCog. The external
homs are given by setting hom(ΩC,A) = B̌ hom(C,A) and then Kan extending
in the first variable. We moreover show that our Koszul duality equivalence is
compatible with both the curved and uncurved versions of conilpotent Koszul du-
ality, as well as Holstein and Lazarev’s categorical Koszul duality [6]; in particular
we show that the left adjoint of the MCdg functor gives a Quillen coreflection of
dgCat into cuAlg, and hence that the homotopy theory of dg categories fully
faithfully embeds into that of dg algebras.

7Strictly, cuAlg is not cocomplete as it lacks an initial object, so we formally add one; dually
we must also finalise cuCog.

8We have MC(E) ∼= cuAlg(k,E), and this set is nonempty precisely when E is curved

isomorphic to a dg algebra; in fact, this gives an equivalence cuAlgk/ ≃ dgAlg.
9It is actually enough to test against all finite dimensional curved coalgebras.
10To partly alleviate this apparent asymmetry, a key intermediate step is to show that a

morphism i of curved coalgebras is an injection if and only if, for all curved algebras A, the map
MCdg(i, A) is a fibration. The rough idea of the proof is to reduce to cosquare-zero extensions
and finite dimensional cosemisimple coalgebras. Whilst every fibration of algebras is a surjection,
the converse is not true, and so some asymmetry remains.

11Using the results of [4] it is relatively straightforward to show that the corresponding ∞-
categories are equivalent; the difficult part of [2] consists of actually constructing the model
structures.
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Finally, we study the global analogue of noncommutative formal moduli prob-
lems, which we call Maurer-Cartan stacks, defined as the left exact∞-functors
from cuAlgfd to any finitely complete ∞-category. These are geometric objects
modelled on (curved) profinite completions, rather than pro-Artinian completions.
We give (pro)representability results for MC stacks valued in simplicial sets and
in dg categories, and moreover show that these are compatible with Pridham and
Lurie’s (pro)representability results for formal moduli problems.
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Higher lax functorialities of the Grothendieck construction

Dimitri Ara

(joint work with Léonard Guetta)

The classical Grothendieck construction defines, for every small category I, a
functor

ş

I
: Hom(I, Cat)→ Cat

sending a functor F : I → Cat , from I to the category of small categories Cat , to
the so-called Grothendieck construction

ş

I
F of F . Here Hom denotes the cartesian

internal Hom of Cat . In particular, its morphisms are (strict) natural transforma-
tions. But the functorialities of the Grothendieck construction are more general.
First, if F,G : I → Cat are two such functors and α : F ⇒ G is a lax transforma-
tion (that is, roughly speaking, a transformation in which the naturality squares
only commute up to an oriented 2-cell), then one can still integrate α to obtain
a functor

ş

I
α :

ş

I
F →

ş

I
G. Second, the construction is also functorial in I.
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Putting all these together, we get a functoriality

I
u //

F

��
✺✺

✺✺
✺✺

✺✺
✺ J

G

��✠✠
✠✠
✠✠
✠✠
✠

Cat

α 3;♥♥♥ ♥♥♥ 7→
ş

I
F

ş

(u, α)
//
ş

J
G ,

where α is a lax transformation.
The purpose of this text, based on our paper [1], is to share some ideas about

the higher generalizations of these functorialities, more precisely, in the setting
of strict ω-categories. Let’s denote by ω-Cat the ω-category of strict ω-categories
(with the cartesian enrichment). If F : I → ω-Cat is a strict ω-functor, where I is
a strict ω-category, then a Grothendieck construction

ş

I
F was defined by Warren

in his work on the model of strict ω-groupoids for dependent type theory [4].
Nevertheless, the definition of Warren is unsatisfactory as it relies on explicit

(and complicated) formulas. We propose to define the Grothendieck construction
of F : I → ω-Cat as the ω-category

ş

I
F endowed with a universal 2-square

ş

I
F

||②②
②②
②②

!!❈
❈❈

❈❈
❈❈

D0

cD0 ##●
●●

●●
●

γ +3 I

F||②②
②②
②②
②

ω-Cat ,

where D0 denotes the terminal ω-category, cD0
the constant ω-functor of value D0

and γ a lax transformation. This type of universal 2-squares was already studied
by myself and Maltsiniotis [2], and is related to the classical comma construction,
usually denoted u ↓ v. More precisely, we have

ş

I
F = cD0

↓F ,

where ↓ denotes the lax comma construction. Although these definitions are ab-
stract, explicit formulas can be extracted and we recover from this abstract point
of view the formulas of Warren.

Let’s now come back to the functorialities of the Grothendieck construction1.
The universal property of the Grothendieck construction immediately gives a func-
toriality

I //

F

��
✾✾

✾✾
✾✾

✾✾
✾✾

J

G

��✆✆
✆✆
✆✆
✆✆
✆✆

ω-Cat

2:❧❧❧❧ ❧❧❧❧ 7→
ş

I
F //

ş

J
G ,

1Note that in the paper this text is based on [1] we address the more general question of the
functorialities of the comma construction.
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where the 2-cell represents a lax transformation. Working a bit harder, one can
get a functoriality

I ))
55

F

��
✾✾

✾✾
✾✾

✾✾
✾✾ �� J

G

��✆✆
✆✆
✆✆
✆✆
✆✆

ω-Cat

)1
=E❘bn ❘❘

❘❘❘❘
7→

ş

I
F

((

66��
ş

J
G ,

where the 2-cells represent lax transformations and the 3-cell represents a lax
2-transformation (also known as a lax modification). And now comes the question:
what is the general statement?

The answer to this question uses the language of Gray ω-categories, which
we introduced with Maltsiniotis in our work on the join construction and the
slices [3]. Indeed, the diagrams above involving 0-cells, 1-cells, 2-cells and 3-cells
actually live in ω-Catlax, in which 0-cells are strict ω-categories, 1-cells are strict
ω-functors, 2-cells are lax transformations, 3-cells are lax 2-transformations, and
so on. But ω-Catlax is not an ω-category! Indeed, if

A
&&

88 B
&&

88 Cα
��

β
��

are two lax transformations, then there are a priori two ways of composing them:

(t(β) ∗0 α)) ∗1 (β ∗0 s(α)) and (β ∗0 t(α)) ∗1 (s(β) ∗0 α) ,

where s and t denote the source and the target. In general, these two lax transfor-
mations are different! In other words, ω-Catlax do not satisfy the exchange rule.
What is true is that there is a (non-invertible) canonical lax 2-transformation

(t(β) ∗0 α)) ∗1 (β ∗0 s(α))
β◦α

❴ *4 (β ∗0 t(α)) ∗1 (s(β) ∗0 α) .

This means that ω-Catlax is some kind of lax ω-category. Formally, ω-Catlax is
what we call a Gray ω-category2, that is, a category enriched in ω-Cat endowed
with the lax Gray tensor product. Morphisms of Gray ω-categories are called Gray
ω-functors.

It is now tempting to think that the Grothendieck construction is a Gray
ω-functor of target ω-Catlax. But what would be the source Gray ω-category?
Or, in other words, in which Gray ω-category do the triangles and cones we drew
on the previous page are 1-cells and 2-cells? Obviously, in some kind of Gray
ω-category of strict ω-categories over ω-Cat . More generally, we prove that if
C is a Gray ω-category and c is an object of C, then there is a natural Gray
ω-category C/c of objects of C over c. In particular, we can consider the Gray
ω-category ω-Catlax/ω-Cat .

2Actually, a skew Gray ω-category but we will not be precise about that in this text.
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We can now finally answer our question:

Theorem. The Grothendieck construction defines a Gray ω-functor

ş

: ω-Catlax/ω-Cat → ω-Catlax .
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Davydov-Yetter cohomology: some tools and some applications

Christoph Schweigert

(joint work with Matthieu Faitg, Azat Gainutdinov, Jonas Haferkamp)

Davydov-Yetter (DY) cohomology originally assigned to a monoidal functor F :
C → D between k-linear monoidal categories C and D a cochain complex of k
vector spaces. 3-cocycles in the DY cochain complex for the identity monoidal
functor idC describe deformations of associators of the monoidal category C. 2-
cocycles in the complex for a monoidal functor F describe deformations of of the
monoidal structure on F .

Coefficients for DY cohomology were introduced in [2]; they take their values
in a monoidal category ZF (D) which for F the identity monoidal functor reduces
to the Drinfeld center. DY cohomology with coefficients allows to describe defor-
mations of mixed associators of module categories over monoidal categories. DY
cohomology with coefficients also allows to describe deformations of braidings [4].
Moreoever, using coefficients, a conceptual understanding of Ocneanu rigidity can
be achieved.

The coefficients also give rise to a pair of adjoint functors ZF (D)
→
← D which,

for F a right exact functor and D a finite tensor category, form a resolvent pair, so
that DY cohomology can be expressed as relative cohomology [3]. From the general
theory of relative cohomology, we obtain long exact sequences which allow to
reduce the computation of DY-cohomology to a problem in representation theory.
Based on this insight, concrete examples can be computed both by hand and in
GAP [1] The project will be continued and more conceptual and computational
tools will be developed in [4].
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A directed approach to higher categories

Simona Paoli

Higher categories are motivated by the desire to model structures arising in dif-
ferent areas such as homotopy theory, mathematical physics, logic and computer
science. Intuitively, a weak higher category consists of objects (also called 0-cells),
and higher cells (also called higher morphisms) in dimensions 1, · · · , n, · · · , which
are associative and unital up to invertible cell in the next dimension, in a coherent
way. There are several classes of higher categories: weak n-categories have cells
in dimensions up to n, and they are called weak n-groupoids when there are weak
inverses. Weak ω-categories have cells in all dimensions and are called weak ω-
groupoids when there are weak inverses. An important class of weak ω-categories
consist of the (∞, n)-categories in which morphisms are weakly invertible after
dimension n.

Several different combinatorial machineries (also called models of higher cat-
egories) have been developed to make this intuitions into precise mathematical
structures; recently, model-independent approaches have also been developed.
Several models are based on the simplicial category ∆ and its products: for in-
stance Segal n-categories and complete n-fold Segal spaces, based on functors
[∆n−1op

, Spaces] satisfying additional conditions, are models of (∞, n)-categories;
Tamsamani n-categories and weakly globular n-fold categories [2], based on func-
tors [∆n−1op ,Cat ] satisfying additional conditions, are models of weak n-categories.

There are some disadvantages in the simplicial approaches: one is that the
category ∆nop

is not an inverse category, which makes it difficult to formalize
these models into type theory.

Instead of ∆ we seek to use a direct category so that morphisms only go in
one direction, but which is still capable of encoding compositions and units. The
wide subcategory ∆mono of ∆ on the injective maps is a direct category. However,
this encodes only compositions: X ∈ [∆op

mono, Set] such that the Segal maps are
isomorphisms is a semi-category. We want a direct category which is intermediate
between ∆mono and ∆. The fat delta ∆, introduced by Joachim Kock [1], serves
this purpose.

This approach also allows to keep the structure of compositions and units quite
separated, and hence to use it to formulate models of higher categories which are
minimally weak: such a model, proposed by J.Kock, is called fair n-categories Fairn,
and is based on functors [∆n−1op ,Cat ] satisfying additional conditions. These
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model weak n-categories in which compositions are strictly associative but only
weakly unital. The interchange laws are also strict.

It is not known to date if this model satisfies the homotopy hypothesis. This
was conjectured by J.Kock [1] as a way to formulate the Simpson’s weak units
conjecture that every good model of weak n-categories (that is, one that satisfies
the homotopy hypothesis) should be suitably equivalent to a minimally weak one.

In this talk I have presented a study of the case n = 2 [3] and explained a
direct comparison between Fair2 and the category Cat2wg of weakly globular double
categories [4]. This result sheds new light on the way weak units are encoded in
Cat2wg in the so called weak globularity condition. It also paves the way to higher
dimensions.

I have also presented several directions for future work. One is about the
Simpson’s weak units conjecture. Weakly globular double categories have been
generalised in [2] to the category Catnwg of weakly globular n-fold categories which
was proved there to satisfy the homotopy hypothesis. Therefore one way to for-
mulate the Simspon’s conjecture is that fair n-categories are equivalent to weakly
globular n-fold categories.

Another direction for future work is the use of ∆ to model (∞, 1)-categories in
a way similar to Segal categories and complete Segal spaces.
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Lax additivity, lax matrices, and mutation

Tobias Dyckerhoff

(joint work with Christ-Walde, Kapranov-Schechtman)

Several recent developments (c.f. [7, 6, 5, 3, 1]) suggest the possibility of sys-
tematically categorifying certain aspects of homological algebra, replacing abelian
groups by stable ∞-categories. In a nutshell, the following table can serve as a
basic guide for this type of “stable categorification”:
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classical categorified

abelian group A stable ∞-category A

element x ∈ A object X ∈ A

y − x cone(X
f
→ Y )

ř

(−1)ixi tot( X0 X1 · · · Xn
d d d )

direct sum decomposition
C ∼= A⊕B

semiorthogonal decomposition
C ≃ 〈A,B〉

...
...

Additive categories provide a basic axiomatic framework for homological algebra:

Definition 1. A category C is called semiadditive if

(1) C is enriched in abelian monoids,
(2) C has finite products and coproducts.

It is called additive if, in addition,

(3) for every pair A,B ∈ C of objects, the monoid C(A,B) is an abelian group.

The prototypical example of an additive category is, of course, the category
of abelian groups. We propose the notion of a lax additive (∞, 2)-category as a
counterpart for the categorified context:

Definition 2 (Christ-D.-Walde). An (∞, 2)-category C is called semiadditive if

(1) C is enriched in (∞, 1)-categories with colimits,
(2) C has lax colimits and limits.

It is called lax additive if, in addition,

(3) for every pair A,B ∈ C of objects, the (∞, 1)-category C(A,B) is stable.

The prototypical example of a lax additive (∞, 2)-category is given by pre-
sentable stable ∞-categories with colimit-preserving functors.

A basic phenomenon within an additive category is that, for objects A and B,
their product and coproduct

A×B B A ∐B B

A and A,

are in fact canonically isomorphic (and hence referred to as direct sums). From
this comparison isomorphism combined with the universal properties of product
and coproduct results a matrix calculus to describe morphisms between direct
sums and their compositions.
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As analogous categorified universal constructions in a lax additive (∞, 2)-category
C, consider a pair of objects A, B, along with a 1-morhpism F : A → B. The
relevant universal constructions associated to this data are characterized by the
universal cones depicted in Figure 1.

lax-lim

A B
F

lax-colim

A B
F

oplax-lim

A B
F

oplax-colim

A B
F

Figure 1. The four lax cones with base given by a functor
F : A → B.

Theorem (Lax Additivity, [2]). In any lax additive (∞, 2)-category, the four lax
universal constructions from Figure 1 exist and are canonically equivalent.

From an axiomatic perspective, the canonical equivalence of these four universal
constructions captures the essence of what seems to make lax additive (∞, 2)-
categories a suitable context for categorified homological algebra (just like additive
categories are used for classical homological algebra).

As in its 1-categorical analog, the equivalence between the various universal
constructions yields a “lax matrix calculus” to describe morphisms between them
and their compositions. For example, given 1-morphisms F : A0 → A1 and
G : B0 → B1 in C, a 1-morphism

oplax-colimF −→ lax-colimG

can be described by a lax matrix








α00 α01

α10 α11









with components αij ∈ C(Aj ,Bi) connected by morphisms a Grothendieck con-
struction of the diagram C(A•,B•). The multiplication formula for









α00 α01

α10 α11



















β00 β01

β10 β11










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yields the lax matrix










[α00β00 → α01β10] [α00β01 → α01β11]

[α10β00 → α11β10] [α10β01 → α11β11]











where a square bracket denotes the cone of the morphism it encloses.
In [4], this lax matrix calculus is used as a computational approach to inves-

tigate mutations of semiorthogonal decompositions (SODs). The analysis of the
corresponding lax coordinate change matrices leads to criteria for higher period-
icity properties of such SODs. The entries in the resulting lax matrix products
can be expressed as explicit complexes of functors (higher spherical twists) which,
remarkably, turn out to be categorifications of Euler’s classical continuants.
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Reflexive homology and involutive Hochschild homology as
equivariant Loday constructions

Birgit Richter

(joint work with Ayelet Lindenstrauss)

A non-equivariant Loday construction LX(R) combines a finite simplicial set X
and a commutative ring R into a simplicial commutative ring. For the circle, its
homotopy groups are the Hochschild homology groups of R. Other important
cases are higher dimensional spheres and tori.

Equivariantly for a finite group G, the input is a finite simplicial G-set and a G-
commutative monoid: ForG-spectra these are genuine commutativeG ring spectra
and for G-Mackey functor they are given by G-Tambara functors. We defined
equivariant Loday constructions LGX(−) in these settings in [5]. In the following

we will specialize to the group of order 2, C2, to fixed point Tambara functors Rfix

of a commutative ring R with C2-action, and to the one-point compactification of
the real sign-representation, Sσ. For well-behaved genuine commutative C2-ring
spectra A we identified LC2

Sσ (A) with the Real topological Hochschild homology of
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A, THR(A), in [5]. In the talk, I explained a corresponding result for fixed point
Tambara functors [4].

Involutive Hochschild cohomology was defined by Braun [1] and the correspond-

ing homology theory, iHHk
∗(A;M), for associative k-algebras with anti-involution

A and involutive A-bimodules M was developed by Fernàndez-València and Gian-
siracusa. We identify the latter with the homotopy groups of the C2/C2-level of
our Loday construction [4]:

Theorem. If 2 is invertible in R and if R is flat as an abelian group, then

π∗L
C2

Sσ (R
fix)(C2/C2) ∼= iHHZ

∗(R;R).

Daniel Graves explored reflexive homology in [3]. This is the homology theory for
the crossed simplicial group ∆R, where Rn = C2 acts on the simplicial category ∆
by reversing the simplicial structure. He showed that for a field of characteristic
zero, k, involutive Hochschild homology and reflexive homology, HR+,k

∗ (A;M) of
an associative k-algebra with anti-involution and an involutive A-bimodule M
agree. We prove the following comparison result [4]:

Theorem. If 2 is invertible in R and if R is flat as an abelian group, then

π∗L
C2

Sσ (R
fix)(C2/C2) ∼= HR+,Z

∗ (R;R).

In particular, this identifies iHH∗ and HR+
∗ in this generality. We also obtain

identifications relative to an arbitrary commutative ground ring k under similar
flatness conditions if 2 is invertible.

For an arbitrary finite group G there is no meaningful way for G to act on ∆.
We propose

π∗L
G
SG(R

fix)(G/G)

as a suitable homology theory for commutative rings R with G action if the order
of G is invertible in R and if R is flat. Here, SG is the unreduced suspension of G
and G acts on SG by permuting the arcs.

References

[1] C. Braun, Involutive A∞-algebras and dihedral cohomology, J. Homotopy Relat. Struct. 9
(2014), 317–337.
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Kaledin classes and formality criteria

Coline Emprin

The idea of formality originated in the field of rational homotopy theory. In
this context, a simply connected topological space is formal if one can recover all
the information related to its rational homotopy type from the cohomology ring.
More precisely, Sullivan [6] constructs a commutative differential graded algebra
(cdga) denoted Apl(X), whose quasi-isomorphism class faithfully characterizes the
rational homotopy type of X . By definition, the space X is then formal if there
exists a zig-zag of cdga quasi-isomorphisms relating Apl(X) to its cohomology
H(X ;Q). A central formality result is given by Deligne, Griffiths, Morgan, and
Sullivan in [1], where they prove that any compact Kälher manifold is formal. This
notion of formality generalizes to a wide range of algebraic structures. Let us fix a
commutative ground ring R and a chain complex A over R. A differential graded
algebraic structure ϕ on A (e.g. an associative algebra, a Lie algebra, an operad,
etc.) is formal if it is related to its homology by a zig-zag

(A,ϕ)
∼
←− ·

∼
−→ · · ·

∼
←− ·

∼
−→ (H(A), ϕ∗) ,

of quasi-isomorphisms, i.e. morphisms inducing isomorphisms in cohomology.
Kaledin classes were introduced by Kaledin [3] as an obstruction theory fully char-
acterizing the formality of associative algebras over a characteristic zero field. The
work of Kaledin was extended by Lunts [4] for homotopy associative algebras over
a Q-algebra and by Melani and Rubió [5] for algebras over a binary Koszul operad
in characteristic zero. One can ask for the formality of a wide range of other alge-
braic structures: operads themselves, structures involving operations with several
inputs but also several outputs such as dg Frobenius bialgebras, dg involutive Lie
bialgebras etc. Such structures are encoded by generalizations of operads: colored
operads and properads. This aim of the present talk is to present a generalization
of Kaledin classes construction established in [2] to study formality of

· any algebra encoded by a groupoid colored operad or properad;
· over any commutative ground ring R.

On the one hand, this enables us to recover and incorporate previous results into
a single theory. On the other hand, this allows us to address new formality prob-
lems, such as the formality of algebras over properads and formality results with
coefficients in any commutative ring. Thus, we use the resulting Kaledin classes
to establish new formality criteria such as formality descent results, an intrinsic
formality criterium or formality in families. Finally, this also leads to formality
criteria in terms of chain level lifts of certain homology automorphisms. More pre-
cisely, we settle conditions on an homology automorphism so that the existence a
chain level lift implies formality. This condition is, for example, satisfied by the
Frobenius action in the ℓ-adic cohomology of any smooth projective variety thanks
to the Weil conjectures and Riemann hypothesis for finite fields. This leads to the
following result.
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Theorem. Let V be a groupoid and let P be a V-colored operad in sets. Let p be a
prime number. Let K be a finite extension of Qp and let K →֒ C be an embedding.
Let X be a P-algebra in the category of smooth and proper schemes over K of good
reduction, i.e. for which there exists a smooth and proper model X over the ring
of integers OK . The dg P-algebra of singular chains C∗(Xan,Q) is formal.
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THR of Poincaré ∞-categories

Julie Rasmusen

Unimodular symmetric bilinear forms have long been objects of widespread inter-
est, the classification of these however, still remains out of reach, even for simple
rings such as the integers. Ideas from K-theory suggests a simplification where
one considers for a sufficiently nice ring R, the abelian group GW0(R) obtained by
group completion of the monoid, consisting of isomorphism classes of finitely gen-
erated projective R-modules equipped with unimodular symmetric bilinear forms.
This group is commonly known as the Groethendieck-Witt group, and can be
decomposed into a K-theoretic and L-theoretic part through the exact sequence

K0(R)C2

hyp
−−→ GW0(R)→ L0(R)→ 0.

Here hyp refers to the map assigning to a projective module P it’s hyperbolisa-
tion P⊗homR(P,R) equipped with the evaluation form, and L0(R) is the cokernel
of this map. Similarly to how Quillen extended K0 to the higher K-groups, both
GW0 and L0 has been given a more homotopy-theoretic refinement GW, L. By
work of Karoubi and Schlichting, these fit into a fiber sequence, extending the
above exact sequence into a long exact sequence, but only if 2 is a unit in R.

In the recent paper [1], this theory was moved into the setting of stable ∞-
categories, with one of the goals to establish this fiber sequence also in the case
where 2 is not a unit in R. Instead of considering a ring R, they instead consider so
called Poincaré ∞-categories, generalising the idea that symmetric bilinear forms
can be thought of as extra structure on the perfect derived category Dp(R).

Definition 1. A Poincaré ∞-category (C, Ϙ) consists of a small stable ∞-category
C equipped with a reduced functor Ϙ : Cop → Sp, such that the following holds:

https://arxiv.org/abs/2404.17529
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• The induced functor BϘ : Cop×Cop → Sp given by BϘ(x, y) = fib(Ϙ(x⊕y)→
Ϙ(x)⊕ Ϙ(y)) is exact and representable in each variable.
• The unit ev : idC ⇒ D2

Ϙ
of the adjunction DϘ ⊣ DϘ : Cop → C, induced by

the representing objects of BϘ, is an equivalence.
• The induced functor ΛϘ := cofib((BϘ ◦ ∆)hC2

→ Ϙ), where ∆ denotes the
diagonal, is exact.

A key example of a Poincaré ∞-category is the symmetric forms (Dp(R), Ϙs),
with Ϙs(P ) = mapR⊗R(P ⊗ P,R)hC2 , where map denotes the mapping spec-
trum. We can consider it’s so called space of forms, consisting of pairs (P, q) with
P ∈ Dp(R) and q ∈ Ω∞

Ϙ
s(P ). Noting that Ω∞

Ϙ
s(P ) ≃ MapR⊗R(P ⊗ P,R)

hC2 ,
we see that this recovers the above setting. Using this as input, they continue by
constructing the Groethendieck-Witt spectrum GW(C, Ϙ) and the L-theory spec-
trum L(C, Ϙ), and establishes the desired fiber sequence, generalising the previously
know result.

Theorem. For (C, Ϙ) a Poincaré ∞-category there exists a fibre sequence in Sp

K(C)hC2
→ GW(C, Ϙ)→ L(C, Ϙ).

Furthermore, there exists a C2-spectrum KR(C, Ϙ) with K(C) the underlying spec-
trum, and

KR(C, Ϙ)C2 ≃ GW(C, Ϙ), ΦC2KR(C, Ϙ) ≃ L(C, Ϙ).

An important tool for understanding algebraic K-theory is Topological Hochschild
Homology, which for a sufficiently nice ring (spectrum) R is defined as THH(R) :=
R ⊗R⊗RR R ≃ |Ncy

· (R)|. Intuitively, this can be thought as tensoring R with
itself in a circle, and turning this circle leads to an S1-action, making this into
a genuine S1-spectrum. Extending this to the case where R is equipped with an
anti-involution, one can refine this to a genuine C2-spectrum by in addition using
the reflection of the circle. This leads to Real Topological Hochschild Homology,
which is given by THR(R) = R ⊗NR R, where NR is the Hill-Hopkins-Ravenel
norm. Using this C2-action, it was shown in [2] that

ΦC2THR(R) ≃ ΦC2R⊗R ΦC2R,

A natural question is now, how one could extend this to the setting of Poincaré
∞-categories? One of the immediate problems is that instead of having a spectrum,
we have a stable ∞-category. However, a key property of stable ∞-categories is
that their mapping space have a canonical refinement to a mapping spectrum,
which can be shown to lead to a spectral enrichment. Following the approach in
[2], this can be used to extend THR to this new setting:

Theorem (J. Rasmusen). There exists a functor

ΦC2THR : Catp∞ → Sp,

which on a Poincaré ∞-category (C, Ϙ) is given by
∣

∣

∣

∣

[n] 7→ colim
c0,...,cn∈obC

ΦC2C(c0, DϘc0)⊗ C(c1, c0)⊗ · · · ⊗ C(cn, cn−1)⊗ ΦC2C(DϘcn, cn)

∣

∣

∣

∣
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Through an appropriate version of Morita invariance, this can be shown to
generalise the known settings:

• ΦC2THR(Dp(R), Ϙgs) ≃ ΦC2R⊗R ΦC2R
• ΦC2THR(Dp(R), Ϙs) ≃ RtC2 ⊗R ΦC2R.
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New Developments in Feynman Categories: Bar and Koszul

Ralph M. Kaufmann

Summary. We present new results about Feynman categories based on a formal-
ism developed with Michael Monaco. A main set of results is joint with Micheal
Monaco and Yang Mo about three different bar resolutions for strong monoidal
functor out of Feynman categories, generalizing the work of Muriel Livernet for op-
erads. These are linked to results is the Koszulness for cubical Feynman categories
and generalizations which are joint with Ben Ward. The originally announced re-
sults on Hopf algebras will be discussed elsewhere.

1. Categories as bimodule monoids and operad like structures. Follow-
ing the philosophy of [9, 8, 7], which goes back to MacLane [10], a category is con-
structed in three steps by objects, their isomorphisms and then general morphisms.
One can expand and formalize as follows: fix a symmetric monoidal enrichment
category E which is cocomplete. let B be a category, that of basic morphisms, e.g.
isomorphisms, and call a functor Bop × B → E a B–bimodule (in E). Bi–module
morphisms are natural transformations. The standard examples are (i) HomC , if
C is enriched over E , is a C–bimodule, (ii) for B = Iso(C), the underlying groupoid,
HomC : Bop × B → E (we will call this restriction ρC) and (iii) for B = Cdisc the
underlying discrete category, the restriction HomC : Copdisc × Cdisc → E , we will
call these bi–modules ρCdisc

. B–bimodules form a monoidal category under the

plethysm product ρ1�ρ2(X,Z) =
şY ∈B

ρ1(Y, Z)⊗ρ2(X,Y ), with unit u = HomB.
Unital monoids in this monoidal category define category C(ρ) with objects

given by those of B and morphisms HomC(ρ)(X,Y ) = ρ(X,Y ) with a left and
a right action of the morphisms of B. Composition is given by the monoidal
structure and this descends to the coend by associativity. The identity maps are
given by the unital structure. This association is an equivalence of categories.
The example relevant to operad–like theories being (ii) above. The action is then
given by (σ, σ′)(φ) = σ′φσop. Note that in the groupoid case, we can turn the
right action of σop into a left action of σ−1. This yields an internal category in
groupoids, cf. [9].
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If B is a (symmetric) monoidal category, we require that ρ is a lax monoidal
functor—the examples (i)–(iii) work in this case as well. As a lax monoidal functor
there are morphisms µρ : ρ⊗ ρ→ ρ–the key example is

Hom(X,Y )⊗Hom(X ′, Y ′)→ Hom(X ⊗X ′, Y ⊗ Y ′)
A monoidal bimodule monoid (MBM) is then defined by a monoidal natural
transformation γ : ρ�Bρ → ρ.1 This implies the interchange relation: Writing
γ(φ, ψ) = φψ and µ(φ, ψ) = φ⊗ψ it reads (φ1 ⊗ ψ1)(φ2 ⊗ ψ2) = (φ1φ2)⊗ (ψ1ψ2).
The data of a unital MBM defines a monoidal category C(ρ). For example, if
B = S the monoidal groupoid whose objects are natural numbers with addition,
and Hom(n, n) = Sn, the symmetric group, with Hom(n,m) = ∅ if n ‰ m. The
S–bimodules are precisely PROPs as defined by MacLane [10].

An algebra is a functor α ∈ [B, Ê], where Ê is tensored over E , together with a
natural transformation m : ρ�Bα → α which is an action. Note, ρCdisc

algebras
are equivalent to a functors from C. In the monoidal case, α is required to be
strong monoidal. The free ρ–algebra on a functor α is given by ρ�Bα. If α is a
monoidal functor, ρ�Bα is lax monoidal but not necessarily strong monoidal.

Definition. A unital MBM, is called hereditary if the following natural monoidal
tranformation of functors Bop × B × B → E is an isomorphism.

(ρ⊗ρ)�B×Bu(id×µB)
(1)
→ ρ(µB×µB)�B×Bu(id×µB)

(2)
→ ρ(id×µB)�Bu ≃ ρB(id×µB)

where (1) is induced by µρ and (2) is defined by the universal property of the
coend.

For example, a PROP is hereditary if and only if it is the PROP generated by
an operad. Note that the condition above is exactly condition (ii’) for a (strict)
Feynman category [11] and is closely related to Getzler’s pattern condition [12].

Theorem. If ρ is hereditary and α is strong, then ρ�Bα is strong.

2. Special Categories. These observations let us rephrase the definition of a
strict Feynman category F which is a monoidal category such that (i) the isomor-
phisms are free monoidal Iso(F) ≃ V⊗, (ii’) ρF is hereditary and (iii) the slice
categories are essentially small. These conditions ensure that the forgetful functor
G from strong monoidal functors F → E to functors V → E has a left free adjoint
F and these former functors are equivalent to algebras over the monad T = GF .
A standard example is Ens, that is finite sets. Condition (ii) can be weakened to
the condition that for a monoidal category ρM = ν⊗M is a free monoidal MBM.
This condition defines a unique factorization category UFC [8]. It is a consequence
that Iso(M) ≃ V⊗. A pre–hereditary2 UFC satisfies an additional condition that
implies that ν is a two–sided ideal under γ, cf. [8].—examples are cospans [13].

3. Baez–Dolan type plus constructions. Baez–Dolan type plus construc-
tions or opetopes [14] allow one to put algebras and MBMs into relation. The
classical example is that given an operad an algebra over an operad is an algebra

1The lax–monoidal structure of ρ�Bρ is induced by 2,3 interchange on the domain and
monoidal structure of B via the universal property of colimits

2this condition is called hereditary in the first version.
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over the Ens hereditary MBM defined by ρO(n, 1) = O(n), while an operad itself
is a functor from the Feynman category of operads, which is a plus construction
[14, 11]. Formalizing the relationship of ρO to ρEns as a natural transformation
between bimodules, one arrives at slice categories, which in the unital case corre-
spond to so–called indexed enrichments of categories.

In [8], we constructed plus constructions for categories which corepresent slice
categories over ρC , in the category and the monoidal case. In the latter there is are
two constructions classifying lax or strong monoidal transformations. The strong
monoidal version M+ for a monoidal category M generalizes the constructions
of [14, 11, 9]. The upshot is that for any functor M+ corepresents ρM–MBMs
which are strong over ρM. There is a unital version called gcp, which corepresents
indexed enrichments, that is the slice category over M with respect to strong
monoidal functors. A structural result is

Theorem [8]. M+ is a Feynman category if and only ifM is a UFC.

This says that ρF algebras have a definition as Iso(M) MBMs, the classic example
being operads being plethysm monoids in the classical sense as Iso(Ens) = S3

4. Bar constructions. In [15], M. Livernet compared three bar constructions
(1) The original Ginzburg-Kapranov bar construction BGK [16], (2) the bar res-
olution of an operad as an algebra over the monad of trees BL, and (3) the bar
resolution of an operad as a plethysm monoid, cf. [17] Bo. The formulation of (2)
is given slightly differently in [15] as a bar construction over an category of trees,
which in light of section (1) can be understood as the resolution of an algebra
over the monad T = GF . The key new observation is that Livernet’s categories of
trees are equivalent to the slice categories that appear in the left Kan extension.
Fresse gave a levelization map l : BGK → B0 and Livernet defined an inclusion
BGK → BL which factors as l followed by an explicit quasi–isomorphism. The in-
clusion uses the identifcation of BGK with a Koszul complex based on the category
of trees.

The generalization of the bar construction BGK for operads cyclic and modular
operads is given in [5, 6], and was generalized in [11] to B(α) for strong monoidal
functors α out of cubical Feynman categories. These are special Feynman cate-
gories with a non–negative degree function on morphisms, such that (1) isomor-
phisms are the only degree 0 morphisms, (2) the degree 1 morphisms together with
the isomorphisms generate all morphisms under composition and tensor, and (3)
every degree n morphism is decomposable in n! ways up to isomorphism into de-
gree 1 morphisms. The Feynman categories for operads, cyclic operads, modular
operads are all cubical. Generalizing the results of [15]:

Theorem [3]. Every cubical Feynman category is Koszul.

Theorem [4]. (1) Using the interpretation of Livernet’s categories of trees as slice
categories, the bar construction BL for a ρF algebra α is possible in any Feynman

3To relate this product to that of species, one must induce up from Sop–modules to S—
bimodule on the left side : α⊗�Sα
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category as Balg := B(ρF , ρF , α). This can be identified with the bar resolution
of an algebra over the monad T = GF . (2) Using the Theorem above for a cubical
Feynman category the bar construction of [11] B(α) can identified with the Koszul
complex K(ρF , ρF , α) this maps via a quasi–isomorphism to Balg(α). (3) For a
Feynman category F =M+,gcp which is the gcp plus construction of a UFC M ,
there is a bar construction of α as a MBM ρα over ρM and a bar construction
Bmon = B(ρα, ρα, ρα). If F is cubical there is a levelization map B(α) → Bmon

as an averaging of insertions of units factors the map to Balg .

5. Generalization of Cubical Koszulness. Together with B. Ward we could
extend cubical Koszulness in the following way—rephrased using the new language.

Theorem. [2] If ρF = ρ1�Iso(F)ρ2 where ρi are MBMs with a distribute law
satisfying the assumptions of the Diamond Lemma, and both are Koszul, so is ρF .

The motivating example is the Feynman category for Schwarz Modular operads
[1], which are the non–connected version of modular operads.
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2-Segal spaces and algebraic K-theory

Julie Bergner

(joint work with Brandon Shapiro, Inna Zakharevich)

The theory of 2-Segal spaces is a generalization of the theory of (1-)Segal spaces.
While a Segal space models the data of a category up to homotopy, one can think
of a 2-Segal space as a weaker structure, where composition of morphisms need
not always exist or be unique, yet is still associative in an appropriate homotopical
sense. More precisely, a 2-Segal space is a simplicial space X : ∆op → SSet such
that certain maps

Xn → X2 ×X1
· · · ×X1

X2
looooooooooomooooooooooon

n−1

associated to triangulations of (n+ 1)-gons for n ≥ 3 are all weak equivalences of
simplicial sets.

As shown by Dyckerhoff and Kapranov [3] and Gálvez-Carrillo, Kock, and Tonks
[4], a central example of a 2-Segal space that is not a Segal space is the output of
Waldhausen’s S•-construction when applied to an exact category, which plays an
important role in algebraic K-theory. Given the fact that these two sets of authors
had quite different motivations and approaches to studying 2-Segal spaces, the fact
that they both came to this particular family of examples suggests that it is central
to the subject.

However, the S•-construction does not require the full structure of an exact
category but only the following features: the existence of two distinguished classes
of morphisms (admissible monomorphisms and admissible epimorphisms), a zero
object, and the fact that pushout and pullback squares coincide. In joint work
with Osorno, Ozornova, Rovelli, and Scheimbauer, we wanted to know the most
general input to the S•-construction that resulted in a 2-Segal space. While Dyck-
erhoff and Kapranov had already generalized to proto-exact categories, which are
characterized by the features listed above, our insight was that one could general-
ize to the setting of double categories, where the two kinds of morphisms need not
have a common ambient category. In particular, a double category consists of ob-
jects, horizontal morphisms, vertical morphisms, and squares, forming categories
in various appropriate ways.

Moving to a homotopical setting, the analogue of a double category is a double
Segal space, and we ask for those that are pointed (having the analogue of a zero
object) and be stable (the double-categorical analogue of pushout and pullback
squares agreeing). We proved that the S•-construction gives an equivalence of
homotopy theories between pointed stable double Segal spaces and reduced 2-
Segal spaces [1]. Thus, pointed stable double Segal spaces can be regarded as a
kind of universal input for algebraic K-theory.
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From another point of view, Campbell and Zakharevich sought to axiomatize
a general input for algebraic K-theory that encompassed examples such as the
K-theory of varieties [2]. Their general input is known as a CGW category, and
also takes the form of a double category satisfying other conditions. They and
other authors have sought to understand when, for example, key theorems such as
Additivity, hold in this broad context.

A natural question is what the relationship is between CGW categories and
pointed stable double Segal spaces. In this project, we prove that every CGW
category can be thought of as a pointed stable double Segal space in a straightfor-
ward way, using a reformulation of the axiomatization of CGW categories. Since
it is not the case that every pointed stable double Segal space is a CGW category,
the more difficult question is to characterize those that are.

The key to answering this question uses a generalization of the classifying dia-
gram of Rezk [5]. Given a small category, its classifying diagram is the simplicial
space NC whose space of n-simplices is given by the nerve of the groupoid of chains
of n composable morphisms in C. Since a CGW category instead has the structure
of a double category, we generalize the classifying diagram construction to one that
takes a double category D to a bisimplicial space ND in an analogous way. Then
CGW categories can be characterized as the pointed stable double Segal spaces
that look like classifying diagrams of suitable double categories.
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Effectivity in an arbitrary (∞, n)-categories.

Félix Loubaton

It is well known that there is an equivalence

Surj(A) ≃ Cong(A)

where Surj(A) denotes the (∞, 1)-category of surjections between ∞-groupoids
whose domain is A, and where Cong(A) is the (∞, 1)-category of internal groupoids
∆→∞-grd whose ∞-groupoid of objects is A.
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Moreover, we have a very explicit description of this equivalence. Given a
surjection p : A→ B, the associated congruence is the simplicial object

Cn(p) := A×B A×B · · · ×B A

(i.e., a fibered product over B).
We then say that congruences in ∞-grd are effective.

We can now wonder what is the (∞, 1)-categorical analogue of the effectiveness
of ∞-groupoids. By this, we mean finding a notion of surjection and congruence
such that the (∞, 2)-category of surjections whose domain is an (∞, 1)-category
A is equivalent to the (∞, 2)-category of congruences on A.

The right notion of surjectivity for (∞, 1)-categories corresponds to the idea of
essential surjectivity. A few simple examples make it clear that, given a surjection
p : A→ B, the simplicial object that allows one to reconstruct B is given by

Clax
n (p) := A

→
×B A

→
×B . . .

→
×B A

where
→
×B denotes the lax cartesian product. This simplicial object should be

considered the prototypical example of an (∞, 1)-congruence.
Following this intuition, we define an (∞, 1)-congruence as an internal category

F : ∆ → (∞, 1)-cat such that F[1] → F0 × F0 is a two-sided fibration fibered in
groupoids (roughly, a morphism C → A × B is a two-sided fibration if its fibers
depend contravariantly on A and covariantly on B).

We then recover the equivalence

Surj(A) ≃ Cong(A)

which sends a surjection p to Clax
• (p). We say that (∞, 1)-congruences in (∞, 1)-cat

are effective.

The generalization of the notions of surjection and congruence to the case of
(∞, n)-categories is quite natural. We say that a morphism is a surjection if
it is essentially surjective, and an internal category F : ∆ → (∞, n)-cat is an
(∞, n)-congruence if F[1] → F0 × F0 is a two-sided fibration fibered in (∞, n− 1)-
categories. Once again, we have an equivalence

Surj(A) ≃ Cong(A)

but this time, the equivalence involves the (∞, n)-categories of Gray cylinders in
A. We say that (∞, n)-congruences in (∞, n)-cat are effective.

Spectral sequences via presheaves

Sarah Whitehouse

(joint work with Muriel Livernet)

This talk presented the work of [6]. We study the category SpSe of spectral
sequences and its homotopy theory. Since SpSe is neither complete nor cocomplete,
it does not admit model category structures. In [5, Theorem 5.3.1], we established
a weaker homotopical framework, that of an almost Brown category, and exhibited
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such a structure, SpSer, on SpSe for each r ≥ 0. The class of weak equivalences
is given by maps of spectral sequences which are quasi-isomorphisms on page r.
Here, we situate SpSe as a subcategory of the category ESpSe of extended spectral
sequences and exhibit various model category structures on this category. This
setting provides a new perspective on the category of spectral sequences and its
homotopy theory and we deduce consequences for the infinity category of spectral
sequences.

To this end, we introduce and study a category of linear presheaves closely
related to the category of spectral sequences SpSe. This is the category LWB of
linear witness books, a linear presheaf category built from suitable disc objects.
Intermediate between these two categories is the category of extended spectral
sequences ESpSe, motivated by the wish to view SpSe as a subcategory of a con-
venient bicomplete category. There is a choice involved here, as we weaken the
requirement in spectral sequences that a page is isomorphic to the homology of the
previous one. Here we simply require a map, but not that it be an isomorphism.
We have chosen that the maps go from a page to the homology of the previous one.
In some sense, this choice effectively gives preference to colimits over limits. It fits
well with the notion of witness cycles and boundaries appearing in our previous
work [3]. Another motivation for our choice is that it is likely to be better behaved
in terms of monoidal structure. Although we do not pursue that direction here,
we note that Brotherston has shown that, on the category of filtered complexes,
model structures which are closely related to spectral sequences are monoidal [2].

It turns out that ESpSe is bicomplete. Colimits are calculated pagewise, but
to understand limits is less straightforward. Here the linear presheaf category of
linear witness books plays a vital role, together with a pair of adjoint functors
(Q,N ). The terminology of linear witness books is chosen because the objects
of this category can be viewed as having pages like those of a spectral sequence,
with witness maps from a page to the previous one, as well as degeneracy maps in
the other direction. This means objects have extra data, compared with spectral
sequences, witnessing how elements end up on the r-page.

We establish an adjunction Q ⊣ N of functors between LWB and ESpSe and
use its properties to identify subcategories (LWB)e and (LWB)s of LWB equivalent
to ESpSe and SpSe respectively. As (LWB)e is a full reflective subcategory of LWB

it has all (small) limits and colimits and thus so does ESpSe.
This setting offers insight into décalage for spectral sequences. We study trunca-

tion functors on the underlying category D on which we take our linear presheaves.
The embedding of a suitably truncated version of D into D has both a left and a
right adjoint. This triple of adjoint functors gives rise to a chain of five adjoint
functors on LWB. Of these, we show that the leftmost three are internal to (LWB)e

and so there is a corresponding triple of adjoints on ESpSe. These also restrict to
SpSe. In particular we obtain a shift functor on ESpSe or SpSe with both a left
adjoint LDec and a right adjoint Dec, two versions of décalage. The terminology
is explained by noting that these functors are suitably compatible with Deligne’s
functors Dec∗ and Dec for filtered complexes [4]. Although décalage in this sense



Homotopical Algebra and Higher Structures 2283

is always closely connected to the study of spectral sequences, we are not aware
of other work defining décalage functors directly on the category of spectral se-
quences, as we do here. Nonetheless, reference is quite often made to décalage of
a spectral sequence and there are various important instances of this relationship.
For example, Rognes notes in [8] that it is common to call the Whitehead tower
spectral sequence the décalage of the Atiyah–Hirzebruch spectral sequence.

The homotopical part of the work extends the study of the homotopy theory of
spectral sequences initiated in [5]. For each r ≥ 0, we study spectral sequences with
r-quasi-isomorphisms as a relative category, denoted (SpSe, Er). Having situated
spectral sequences inside the bicomplete category of extended spectral sequences
ESpSe, we establish model category structures there, restricting to the relevant
structure on spectral sequences.

For each r ≥ 0, we show the existence of a model category structure on ESpSe,
restricting to recover the corresponding underlying almost Brown category struc-
ture on SpSe. Indeed there are two flavours of such model structures; in both the
fibrations are those maps f that are surjective on pages 0 to r. There is a model
category structure ESpSer where the weak equivalences are those maps such that
the component on the r-page is a quasi-isomorphism. And there is another ESpSe′r,
where the weak equivalences are those maps such that the component on the r-page
is a quasi-isomorphism and the components on all higher pages are isomorphisms.
As relative categories, both ESpSer and ESpSe′r restrict to (SpSe, Er).

The methods of proof use the category LWB. For the first family of structures,
we obtain a cofibrantly generated model category structure on LWB by transfer
of a projective-type model structure on the category of r-bigraded complexes and
then modify this in order to produce a version LWBr which is closely related to the
relevant structure on SpSe. This model structure is then transferred to produce
ESpSer. The second family of model structures is established by directly checking
the axioms, making use of the existence of the first family.

These model structures have the following relationships to each other. We show
that the model categories ESpSer for different r are all Quillen equivalent via shift
and décalage functors and indeed, these are all Quillen equivalent to a projective-
type model category structure on the category of 0-bigraded complexes. Similarly,
the model categories ESpSe′r for different r are all Quillen equivalent. The identity
functor ESpSe′r → ESpSer is a right Bousfield localization which is not a Quillen
equivalence. Thus we provide a right delocalization of (a model category Quillen
equivalent to) the projective model structure on 0-bigraded complexes, a bigraded
version of chain complexes.

The model category ESpSe′0 has the important feature that SpSe0 is a homo-
topically full subcategory, in the sense that any object weakly equivalent to a
spectral sequence is itself a spectral sequence. In [1] Barwick and Kan provide a
model category structure on the category of relative categories, Quillen equivalent
to Rezk’s complete Segal space model structure on simplicial spaces, thus estab-
lishing another model for a homotopy theory of homotopy theories. Results of
Meier [7] allow us to conclude that (SpSe, E0) is a fibrant relative category in this
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model. Our result can therefore be viewed as establishing an infinity-category of
spectral sequences. And, via the shift-décalage adjunction, for each r the relative
category (SpSe, Er) has (SpSe, E0) as a fibrant replacement.
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Homotopy theory of post-Lie algebras

Yunhe Sheng

(joint work with Andrey Lazarev, Rong Tang)

Homotopy invariant algebraic structures play a prominent role in modern mathe-
matical physics [9]. Historically, the notion of A∞-algebras, which was introduced
by Stasheff in his study of based loop spaces [8], was the first such structure. Rele-
vant later developments include the work of Lada and Stasheff about L∞-algebras
in mathematical physics [6] and the work of Chapoton and Livernet about pre-Lie∞
algebras [5]. A strong homotopy algebra is typically a Maurer-Cartan element in
a certain differential graded (dg) Lie algebra (or possibly an L∞-algebra) and its
Maurer-Cartan twisting is called the cohomology of said strong homotopy algebra;
it is known to control its deformation theory.

The notion of a post-Lie algebra has been introduced by Vallette in the course
of study of Koszul duality of operads [10]. Munthe-Kaas and his coauthors found
that post-Lie algebras also naturally appear in differential geometry and numerical
integration on manifolds [7]. Meanwhile, it was found that post-Lie algebras play
an essential role in regularity structures in stochastic analysis [3, 4].

A Rota-Baxter operator on a Lie algebra was introduced as the operator form
of the classical Yang-Baxter equation. To better understand the classical Yang-
Baxter equation and related integrable systems, the more general notion of an
O-operator (also called relative Rota-Baxter operator) on a Lie algebra was in-
troduced by Kupershmidt. Relative Rota-Baxter operators naturally give rise to
pre-Lie algebras or post-Lie algebras [1, 2].

https://arxiv.org/abs/2402.09207
https://doi.org/10.48550/arXiv.2406.02777
https://www.uio.no/studier/emner/matnat/math/MAT9580/v23/documents/chromatic.pdf


Homotopical Algebra and Higher Structures 2285

Guided by Koszul duality theory, we consider the graded Lie algebra of coderiva-
tions of the cofree conilpotent graded cocommutative cotrialgebra generated by a
graded vector space V . We show that in the case of V being a shift of an un-
graded vector space W , Maurer-Cartan elements of this graded Lie algebra are
exactly post-Lie algebra structures on W . The cohomology of a post-Lie algebra
is then defined using Maurer-Cartan twisting. The second cohomology group of a
post-Lie algebra has a familiar interpretation as equivalence classes of infinitesimal
deformations. Next we define a post-Lie-infty algebra structure on a graded vector
space to be a Maurer-Cartan element of the aforementioned graded Lie algebra.
Post-Lie-infty algebras admit a useful characterization in terms of L-infty-actions
(or open-closed homotopy Lie algebras). Finally, we introduce the notion of ho-
motopy Rota-Baxter operators on open-closed homotopy Lie algebras and show
that certain homotopy Rota-Baxter operators induce post-Lie-infty algebras.
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Higher homotopy categories and their uses

George Raptis

The homotopy category C[W−1] of a category with weak equivalences (C,W) (‘ho-
motopy theory’) is a fundamental construction in abstract homotopy theory that is
characterized by a universal property in the context of ordinary categories. Classi-
cally, this used in order to descend to a homotopy invariant context (with respect
to W), where categorical properties are invariant under weak equivalence, and it
forms a natural domain for the definition of derived functors. Homotopical al-
gebra has long revealed the great limitations of this construction, in connection
with problems of homotopy coherence, the study of homotopy invariant algebraic
structures, the properties of interesting invariants of homotopy theories, such as
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algebraic K-theory, and so on. Still, both the properties of the homotopy category
C[W−1] (leading, for example, to the theory of triangulated categories) and ques-
tions about C[W−1] potentially determining further structure encoded in (C,W)
(e.g., rigidity theorems, derived tilting theory, approximation theorems, K-theory
of triangulated categories or derivators, and so on) have been extensively studied.

Despite its significant drawbacks, the construction of the homotopy category ad-
mits a corrected refinement that is essentially based on the same principle but in
a higher categorical context: the ∞-localization C[W−1]∞ reveals the homotopy
theory encoded in (C,W) and is characterized by a universal property in the con-
text of ∞-categories (see, for example, [2]). This also suggests an intermediate
object: between C[W−1]∞ and C[W−1] lies the homotopy n-category (see [5]) –
this is characterized similarly by a universal property in the context of n-(that
is, (n, 1)-)categories. In practice, this is obtained by a suitable truncation of the
(derived) mapping spaces in the same way that the classical homotopy category is
obtained by passing to the components of these mapping spaces.

The tower of higher homotopy categories associated to a given∞-category bridges
the gap between the ∞-category and its classical homotopy category. Higher ho-
motopy categories define a natural sequence of intermediate refinements for the
problem of comparing (naive) homotopy commutativity with (enhanced) homo-
topy coherence. This talk reviewed recent work concerning the properties and
uses of higher homotopy categories that is part of a research project that aims
to address similar questions about higher homotopy categories as the ones indi-
cated above for the classical homotopy category. Specifically, it aims to study
the properties of homotopy n-categories (with an eye towards notions of “higher
triangulated categories”), make a comparative analysis of their relationship with
homotopy theories (e.g., via invariants like K-theory), and obtain generalizations
of results that link together previously unconnected results for well-behaved ∞-
categories and for their homotopy categories (e.g., adjoint functor theorems). In
more detail, the following topics were presented and discussed in the talk.

• The construction and main properties of the homotopy n-category were re-
viewed, especially, in connection with a notion of higher weak (co)limit that was
introduced in [9] and further developed in joint work with H. K. Nguyen and C.
Schrade [8]. These properties lead to a proposal for a notion of a stable n-category
with nice properties, as conjectured by Antieau [1], that contains the homotopy
n-categories of stable∞-categories. Moreover, for n ≥ 2, the (ordinary) homotopy
category of a stable n-category is canonically triangulated – the case n = ∞ is
well known, see [6]. (The analysis reveals the case n = 1 of triangulated categories
to be somewhat special in an interesting way.)

• The definition of K-theory for higher homotopy categories (and related n-
categories), based on Waldhausen’s S•-construction and using instead higher weak
pushouts, was discussed. The main comparison result states that the compar-
ison map from the usual algebraic K-theory to the K-theory of the homotopy
n-category is n-connected [9]. This recovers and generalizes the classical fact that
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the Grothendieck group can be recovered from the triangulated homotopy cate-
gory.

• (based on joint work with H. K. Nguyen and C. Schrade [8]) n-categorical
generalizations of the classical Brown representability theory were presented. In
particular, these apply to the homotopy n-category of a presentable ∞-category
(for n ≥ 2, unless it is stable) and link together in a clarifying way classical Brown
representability theorems (and the corresponding adjoint functor theorems) for
n = 1 [3, 4] with adjoint functor theorems (and the associated representability
theorems) for n =∞ [5, 7].

• The higher determinacy (or rigidity) of a (presentable) ∞-category in terms
of its homotopy n-category was briefly discussed. Interestingly, for n ≥ 2, the
problem of rigidity/determinacy of a homotopy theory can also be formulated in
the unstable context, despite the lack of triangulated structures, simply based on
the refined categorical properties of higher homotopy categories. A main result
(work in preparation) concerning the rigidity of the ∞-category of spaces was
presented.
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Operadic 2-categories

Dominik Trnka

The theory of operadic categories was introduced in [BM15] and further devel-
oped in [BM23a, BM23b] and [BM24]. The last of the above mentioned works
focuses only on ‘unary’ operadic categories which themselves describe a lot of
known structures. On one hand, every discrete decomposition space is a unary op-
eradic category [GKW21]. On the other hand, operads of certain unary operadic
categories are monoids, categories, sharades, &c. For simplicity we shall consider
only unary operadic categories.

https://arxiv.org/abs/1812.01526
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The notion of Grothendieck construction, discrete fibration and categorical fi-
bration is well known. In the operadic context, the operadic Grothendieck con-
struction for Set-valued operads, as well as discrete operadic fibrations were in-
troduced already in the first paper [BM15]. It was shown that for an operadic
category O, the operadic Grothendieck construction of an O-operad produces a
discrete operadic fibration over O, and this assignment forms a part of an equiva-
lence

O-oper(Set) ≃ DoFib(O)
between Set-valued O-operads discrete operadic fibrations over O. Our goal is to
establish a correspondence

O-oper(Cat) ≃ oFib(O)

between categorical O-operads and operadic functors into O with certain lifting
properties, which we call operadic fibrations. Over time it became clear that the
framework of operadic (1-)categories is not sufficient, and that we need to introduce
(unary) operadic 2-categories. The definition is motivated by the characterisation
of unary operadic categories of [GKW21].

Definition. A unary operadic 2-category is a pair O = (X,C ) of a 2-category C

and a simplicial set X , such that the upper décalage of X is the 2-categorical nerve
of C :

dec⊤X ∼= N C .

Morphisms of unary operadic 2-categories are just morphisms of their underlying
simplicial sets.

Equivalently, a unary operadic 2-category is a 2-category C together with a

normalised lax functor
š

x∈C
C /x

ϕ
−→ C from a coproduct of lax slices, together

with a set U of chosen local lali-terminal objects uc in each connected component
c of C , such that certain conditions hold. Here, local lali-terminal means that
for every object x in the component c of C , the category C (x, uc) has a terminal
object and require that the terminal object of C (uc, uc) is the identity on uc. The
conditions are essentially 2-categorical extension of the ones of [BM24].

Next, we define categorical operads of unary operadic 2-categories and their
operadic Grothendieck construction. For simplicity we shall consider only 1-
connected operads, i.e. operads having only the identity operation in every trivial
arity. For a monoidal category V , considered as a 1-objects 2-category, the lax
slice V

△ := BV /∗ has a natural structure of an operadic 2-category.

Definition. A 1-connected categorical O-operad P is an operadic functor P : O→
Cat△.

A categorical O-operad P is thus a collection of categories Px, indexed by objects
x ∈ C , such that Puc

= 1, the terminal category, for every c ∈ π0(C ). We denote
the unique object of Puc

by ec. The collection is further equipped with functors

Py × Pϕ(f)
Pf
−−→ Px,

for every map f : x → y in C which satisfy the following associativity and unit
laws. We use the notation a ·f b for Pf (a, b).
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– For any lax triangle α in C,

x y,

z

f

h g
α

and objects a ∈ Pz, b ∈ Pϕ(g), c ∈ Pϕ(f),

(a ·g b) ·f c = a ·h (b ·ϕ(α) c).

– For any object x ∈ C and a ∈ Px,

a ·1x
eϕ(x) = a,

eπ(x) ·ux
a = a.

Definition. The operadic Grothendieck construction
ş

O P = (XP,CP) is a pull-

back of P along π△ : (∗//Cat)△ → Cat△, where ∗ denotes the terminal category.

ş

O P (∗//Cat)△

O Cat△

y

π△

P

The construction can be extended to non-1-connected operads and the assignment
ş

O induces a fully faithful functor O-oper(Cat)→ uOpCat/O.
We present a simple example: Let ⊙ be the terminal category with one object ∗

and one morphism 1∗. It is an operadic 2-category with ϕ(1∗) = ∗ and U = {∗}.
Categorical ⊙-operad P is a strict monoidal category and moreover

ş

⊙
P ∼= P

△.

In machine learning the (1-)category P
△ is known as the ‘Para’ construction of a

monoidal category [FST21]. We conclude with the following result.

Theorem. There is a one-to-one correspondence of categorical O-operads and
split operadic fibrations over a unary operadic 2-category O, i.e. operadic functors
into O, which satisfy certain lifting properties.

The properties are operadic analogues of the lifting properties of classical cat-
egorical split fibrations.

References

[BM15] M.A. Batanin and M. Markl. Operadic categories and duoidal Deligne’s conjecture.
Advances in Mathematics, 285:1630-1687, 2015.

[BM23a] M.A. Batanin and M. Markl. Operadic categories as a natural environment for Koszul
duality, Compositionality, 5(3), 2023.

[BM23b] M.A. Batanin and M. Markl. Koszul duality for operadic categories, Compositionality,
5(4), 2023.

[BM24] M.A. Batanin and M. Markl. Operads, operadic categories and the blob complex,
Applied Categorical Structures, 32(1), 2024.
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A research program for higher V-topoi

André Joyal

(joint work with Mathieu Anel)

Recall from [2] that a topos can be defined to be a left exact localization of the
category of presheaves [Cop, Set] on a small category C. Recall that every locally
small category E admits a locally small free cocompletion (=completion under
colimits) y : E → P (E), and that a locally presentable category E is a topos
if and only if the colimit functor P (E) → E is left exact. Category theory has
a natural extension to ∞-categories. The notion of topos was extended to ∞-
categories in [10], [11] and [6]. Let us denote by S the ∞-category of spaces (=
∞-groupoids). An∞-topos is defined to be left exact (accessible) localization of the
∞-category of ∞-presheaves [Cop,S] on a small ∞-category C. Recall that every
locally small ∞-category E has a locally small free cocompletion y : E → P (E),
and that a presentable ∞-category E [6] is an ∞-topos if and only if the colimit
functor P (E)→ E is left exact. The theory of enriched categories [4] has a natural
extension to enriched ∞-categories [7] and [3]. Our goal is to develop an enriched
version of the notion of ∞-topos [1]. Let V be a presentable smc (=symmetric
monoidal closed) ∞-category. A V-topos can be defined to be an (accessible)
left exact V-localization of the V-category of V-presheaves [Cop,V ] on a small V-
category C. This definition is incomplete, since the notion of finite V-limit was
left undefined. In order to complete the definition, we shall suppose that the smc
∞-category V is ω-presentable in following sense: (i) the underlying ∞-category
Vo is ω-presentable; (ii) the tensor product A⊗B of ω-compact objects A,B ∈ V
is ω-compact; (iii) the unit object I ∈ V is ω-compact. We then say that a V-limit
(=weighted limit) {W,F} is finite if the weight W : J → V [3] is ω-compact in
the ∞-category of weights Wt(V). Every V-category E has a free cocompletion
under V-colimits y : E → P (E), and we have P (E) = [Eop,V ] when E is small. We
conjecture that a presentable V-category E is a V-topos if and only if the colimit
functor P (E) → E is left exact. This conjecture is connected to the existence of
a (pseudo) distributive law QωP → PQω between the free cocompletion monad
P : VCAT → VCAT and the free finite completion monad Qω : VCAT → VCAT.
More generally, a V-scale is defined to be a class of V-weights, or equivalently to
be a full subcategory of Wt(V). There is a notion of α-colimits and a dual notion
of α-limits for any V-scale α; a V-category E is α-cocomplete if and only if the
opposite V-category Eop is α-complete. A V-category E has a free α-cocompletion
y : E → Pα(E) and a free α-completion yo : E → Qα(E) = Pα(Eop)op. If τ
is the largest scale, then Pτ (E) = P (E) and Qτ (E) = Q(E). We may say that

an α-complete V-category (resp. α-continuous V-functor) is α-lex. Let VCATQα

be the category of α-lex V-categories and α-lex V-functors. We say that the
V-scale α is distributive if the functor P : VCAT → VCAT induces a functor
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P : VCATQα → VCATQα . If α is distributive, we say that a V-category E is
an α-logos if E is α-lex, V-cocomplete and the colimit functor P (E) → E is α-
lex. Let us denote the category of α-logoi by αLOG, where a morphism is a
cocontinuous α-lex V-functor. If the scale α is distributive and A is an α-lex
V-category, then the Yoneda functor y : A → P (A) exhibits the α-logos freely

generated by A. Hence the left adjoint to the forgetful functor αLOG→ VCATQα

is induced by the functor P : VCAT → VCATP , where VCATP is the category
of cocomplete V-categories and cocontinuous V-functors. If K is a V-category,
then the composite yyo : K → Qα(K) → PQα(K) exhibits the α-logos freely
generated by K. Hence the endofunctor PQα has the structure of a monad and
we have αLOG = VCATPQα . The monad structure of PQα can be obtained from
a (pseudo) distributive law γ : QαP → PQα [8]. By construction, the V-functor
γ(K) : QαP (K)→ PQα(K) is the unique α-lex V-functor extending the V-functor
P (yo) : P (K) → PQα(K) along the V-functor yo : K → Qα(K). The largest
scale τ is distributive and a τ -logos is a completely distributive ∞-category [9].
We conjecture that if the smc ∞-category V is ω-presentable, then the scale ω(V)
of ω-compact weights is distributive. Moreover a presentable V-category E is a
V-topos if and only if it is an ω(V)-topos. The ∞-category of small ∞-categories
Cat∞ is presentable and cartesian closed. An (∞, 2)-category can be defined to
be ∞-category enriched over Cat∞. Hence the general theory of V-topoi can be
applied to the theory of (∞, 2)-topoi [5]. In a future paper in collaboration with
Simon Henry, we shall describe sufficient conditions on a scale α to be distributive.
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Higher Segal spaces and partial groups

Philip Hackney

(joint work with Justin Lynd)

Our purpose is to explain and explore a new connection between the d-Segal spaces
of Dyckerhoff and Kapranov and the partial groups of Chermak. The former ob-
jects have applications (when d = 2) in representation theory, geometry, combi-
natorics, and elsewhere, and are closely connected to ∞-operads, Span-enriched
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A∞-algebras, and operadic categories. The latter objects played a key role in
Chermak’s proof of the existence and uniqueness of centric linking systems for
saturated fusion systems, a major recent result in p-local finite group theory.

Partial groups

Partial groups [C] are akin to groups, but where the n-fold multiplications G×n →
G are replaced by partial functions. These may be concisely described as ‘reduced
spiny symmetric sets’ by [HL], as we now explain. Let Υ be the category with the
same objects [n] = {0, 1, . . . , n} as the simplicial category ∆, but with arbitrary
functions as morphisms. A symmetric (simplicial) set is a functor X : Υop → Set.
Groupoids may be identified with those symmetric sets X such that the Segal
maps

Xn → X1 ×X0
· · ·
n
×X0

X1

are bijections for all n ≥ 2. A spiny symmetric set is a symmetric set X such that
the Segal map is an injection for all n ≥ 2, and a partial group is the same thing as
a spiny symmetric set with X0 a point. The partially-defined n-fold multiplication
is defined by the span X×n

1 ←֓ Xn → X1 where the map on the right is given
by the endpoint-preserving map [1]→ [n]. Every group G can be considered as a
partial group, by identifying it with the associated symmetric set BG.

Every nonempty symmetric subset of BG is a partial group, and many im-
portant partial groups arise in this way. (Though not every partial group may
be embedded into a group.) For example, BcomG ⊆ BG has n-simplices those
[g1| · · · |gn] ∈ BGn = G×n where gigj = gjgi for all i, j (see [AG]). Let us give
another fundamental class of examples:

Example. Suppose G acts on a set V , and U is a subset of V . Then G ‘acts
partially’ on the set U , and we let E be the simplicial set with n-simplices of the
form

u0 u1 · · · un
g1 g2 gn

with ui ∈ U and gi · ui−1 = ui. This E is a groupoid with object set E0 = U , and
we let L ⊆ BG be the image of the map E → BG.

For instance, consider the action of G by conjugation on the set V of subgroups
of G, and let U ⊆ V be the set of nontrivial subgroups in a fixed Sylow p-subgroup
of G. The most important class of partial groups are the localities, which are
modeled on this situation.

Higher Segal conditions

Higher Segal conditions are certain exactness conditions associated to a simplicial
object, generalizing the usual Segal condition which underlies some models for
(∞, 1)-categories. The 2-Segal conditions first appeared in [DK], while the d-Segal
conditions for d > 2 are explored in [P, W].
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The d-Segal conditions1 can be phrased in terms of a simplicial object X having
a small number of associated cubes being (homotopy) limit cubes (of dimension
⌈d2⌉ + 1). Write i ≪ j to mean i < j − 1. The 1-Segal condition is that (1) is a
pullback for all n ≥ 2, the 2-Segal condition is that the squares (2) are pullbacks
whenever 0 ≪ i ≪ n, and the 3-Segal condition is that the cube (3) is cartesian
whenever 0≪ i≪ n.

(1)

Xn Xn−1

Xn−1 Xn−2

y

d0

dn dn−1

d0

(2)

Xn Xn−1 Xn Xn−1

Xn−1 Xn−2 Xn−1 Xn−2

y

di

d0 d0

y

di

dn dn−1

di−1 di

(3)

Xn Xn−1

Xn−1 Xn−2

Xn−1 Xn−2

Xn−2 Xn−3

dn

d0

di
d0

di

dn−1

d0

dn−1

di−1

di−1

dn−2

d0

For the 4-Segal condition, one replaces the cubes (3) associated with integers
0≪i≪n by cubes associated with 0≪i≪j(<n) and (0<)i≪j≪n. The 5-Segal
condition concerns the four dimensional cubes associated to 0≪i≪j≪n, and so
on. A d-Segal object is automatically (d+1)-Segal, so one could wonder about the
minimal d (if any) for a simplicial object to be d-Segal. For partial groups, this
will turn out to always be odd. Let us give an indication of why this is true.

Theorem (H–Lynd). If a symmetric set is 2-Segal, then it is 1-Segal.

Proof. The symmetric group action implies that for n ≥ 3, square (1) is isomorphic
to any of the squares in (2). The n = 2 instance of square (1) is a retract of the
n = 3 instance of square (1). Thus (1) is a pullback for all n ≥ 2. �

Definition. The degree of a partial groupX , denoted deg(X), is the least positive
integer k such that X is (2k−1)-Segal.

Groups are precisely the degree 1 partial groups. One can show that BcomG is
3-Segal, hence has degree 1 or 2. There are rich families of partial groups (arising
from the example above) attaining arbitrarily high degree.

A primary method for calculating deg(X) is to consider sufficiently nice actions
of X on various sets U . Such an action can be encoded as a map ρ : E → X
satisfying certain properties, where E is a groupoid with E0 = U . (This includes
E → L from our example.) This gives rise to a closure operator A 7→ Ā on E0

defined in terms of simplices ofX which act on all elements of A ⊆ E0. A collection

1For d odd, we only consider the lower d-Segal conditions.
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Γ of nonempty subsets of E0 is independent if the set
č

Λ⊂Γ
|Γ\Λ|≤1

ď

Λ

is empty, and h(ρ) is defined to be the size of the largest independent Γ ⊆ 2E0 .

Theorem (H–Lynd). deg(X) ≤ h(ρ).

Corollary. The degree of a finite partial group is finite.

Proof. A partial group X is said to be finite just when X1 is a finite set. Every
finite partial group is finite-dimensional as a symmetric set by [HM], and hence has

finitely many nondegenerate simplices. The canonical map E =
š

nd(X)Υ
n ρ
−→ X

is a nice action of X on the finite set E0. It follows that h(ρ) is finite. �

We have now explained the rudiments of the connection between partial groups
and higher Segal structures, by realizing partial groups as symmetric simplicial
sets. We introduced a new invariant for partial groups – the degree – and a
method for producing upper bounds for this invariant. In future work, we will
calculate the degree for a number of important classes of examples, providing a
source of interesting d-Segal spaces for large d.
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Stable Lie algebra homology and wheeled operads

Vladimir Dotsenko

Following Quillen, algebraic K-theory assigns to a ring R a sequence of groups
Ki(R) which are certain homotopy invariants of the group

GL(R) = lim
n→∞

GLn(R)

of infinite invertible matrices. If R contains Q, one can show that these groups are
the primitive elements of the Hopf algebra given by the group homology of GL(R).
This suggests that, if one replaces the groups GLn(R) by the Lie algebras gln(R),
the Lie algebra homology of gl(R) = limn→∞ gln(R) gives an infinitesimal version
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of the K-theory of R. A celebrated result proved independently by Loday–Quillen
[4] and Tsygan [3] states that for a unital ring containing Q the primitive elements
of the Hopf algebra given by the Lie algebra homology of gl(R) is given, up to a
degree shift, by the cyclic homology of R.

Suppose now that O is an arbitrary operad (the case of a ring R corresponds to
an operad supported on elements of arity one). Then we can replace GLn(R) by
AutO(x1, . . . , xn), the automorphism group of a finitely generated free O-algebra.
There are several reasonable candidates for the infinitesimal approximation of that
group (for which we used gl(R)): for instance, one may look at the Lie algebra
Der(O(x1, . . . , xn)) of all derivations, or at the Lie algebra SDer(O(x1, . . . , xn)) of
all derivations with zero divergence, for the general notion of divergence for deriva-
tions of free algebras recently introduced by Powell [11]. Homotopy invariants of
the group

lim
n→∞

Aut(O(x1, . . . , xn))

being extremely hard to compute, one can start with those infinitesimal versions.
In fact, to obtain a nontrivial question, it is preferable to consider augmented oper-
ads, use the augmentation to “remove” derivations of degree zero (corresponding to
linear changes of variables) and thus focus on the Lie algebras Der+(O(x1, . . . , xn))
and SDer+(O(x1, . . . , xn)).

To state our main result, we shall need the notion of a wheeled operad. Going
back to work of Merkulov [6] (see also [10]), historically wheeled operads first
appeared as particular cases of wheeled PROPs. However, we believe that they
deserve to be explored as objects in their own merit, with a definition that is more
elegant than that of a general wheeled PROP. Specifically, a wheeled operad is a
two-coloured linear species U = Uo ⊕ Uw, where:

- Uo is an operad,
- Uw is a right Uo-module,
- ∂(Uo) is given a trace map

tr : ∂(Uo)→ Uw,

which is a morphism of right Uo-modules and vanishes on the commutators
in the twisted associative algebra ∂(Uo).

Here ∂(Uo) is the “derivative species” which declares one of the inputs of opera-
tions “special”. Compositions in the special input makes that species a twisted
associative algebra (a left module over the associative operad).

Stable limit of the homology of the Lie algebras of derivations of O(x1, . . . , xn)
as dim(V )→∞ is best understood via the notion of mixed representation stabil-
ity [12] going back to the work of Brylinski [13], Feigin and Tsygan [8, Chapter 4]
and Hanlon [7]. Let us recall the necessary basics that apply in our context.
Consider a sequence of gln-modules Vn equipped with maps Vn → Vn+1 that are
injective for large n and consistent with the embeddings gln →֒ gln+1. We further
assume that the image of Vn in Vn+1 generates all of Vn+1 under the action of
gln+1 for large enough n. This sequence is said to be mixed representation stable if
for all partitions α, β, the multiplicity of the irreducible gln-module V (α, β) with
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highest weight
ÿ

i

αiei −
ÿ

j

βjen+1−j

in Vn is eventually constant. This sequence is said to be uniformly mixed rep-
resentation stable if all multiplicities become eventually constant simultaneously:
there is some N such that for all partitions α, β, the above multiplicity does not
depend on n for n ≥ N . The language of wheeled operads and PROPs allows us
to write a very short and compact formula for multiplicities of irreducible modules
as follows.

Theorem. Let O be an augmented operad. For each i ≥ 0, the homology groups
Hi(Der+(O(x1, . . . , xn)), k) and Hi(SDer+(O(x1, . . . , xn)), k) are uniformly mixed
representation stable. More precisely, for n → ∞, and for any two partitions
α ⊢ p, β ⊢ q:

• the multiplicity of V (α, β) in H•(Der+(O(x1, . . . , xn)), k) stabilizes to
(

Pc(B	(O))(q, p) ⊗ Sα ⊗ Sβ
)

Sq×Sp

• the multiplicity of V (α, β) in H•(SDer+(O(x1, . . . , xn)), k) stabilizes to
(

Pc(B	(O	))(q, p)⊗ Sα ⊗ Sβ
)

Sq×Sp

Here B	(O)) is the wheeled bar construction of the operad O viewed as a
wheeled operad (with all trace maps equal to zero), B	(O)) is the wheeled bar
construction of the wheeled completion of the operad O, and Pc is the coPROP
completion of a wheeled cooperad.

Examining this result in particular cases suggests that (positive parts of) the
Lie algebras of divergence zero derivations are much better behaved homologically
than the Lie algebras of all derivations, in particular they are stably Koszul for
the associative operad and the Lie operad. However, even the more complicated
answer for the Lie algebras of all derivations is somewhat tractable, and raises
many natural questions about generators and relations of these Lie algebras, which
we hope to study in further work.
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Graph complexes and models of chain En-operads in odd characteristic

Benoit Fresse

This talk is based on a work in progress.
There are several usual models of En-operads. In the setting of the rational ho-

motopy theory, a model of En-operads, used by Kontsevich to prove the formality
of En-operads in characteristic zero, is given by a differential graded (co)operad of
graphs (see [5]). The construction of this cooperad of graphs can be formalized by
using a twisting procedure, which reflects a fiberwise integration process of semi-
algebraic differential forms on Fulton-MacPherson operads. The main purpose of
this talk is to explain the definition of an analogue of the graph cooperad model
of En-operads in characteristic different from 2.

The construction of this odd characteristic analogue of the cooperad of graphs
involves particular E∞-algebra structures governed by the surjection operad. Re-
call briefly that the surjection operad, denoted by E in these notes, is a chain
operad spanned in arity r and degree d by the sequences u = (u(1), . . . , u(r + d))
such that u(t) ∈ {1, . . . , r}, for t = 1, . . . , r+d. In the chain complex E(r), we also
take u ≡ 0 when the mapping t 7→ u(t) does not surject over the set {1, . . . , r} or
when we have a repetition u(t) = u(t + 1) in the sequence u. The differential of
the surjection operad is given by the omission of terms in sequences and the op-
eradic composition operations extend the operadic composition of permutations.
The normalized cochain complex N∗(X) of any simplicial set X is equipped with
a natural E-algebra structure (see e.g. [1]).

We make the following claim:

Theorem.

(1) Let A and B be a pair of E-algebras. Let A ∨ B denote the coproduct of
A and B in the category of E-algebras. We have a natural deformation
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retract in the category of chain complexes

A⊗B
∇ // A ∨B
∆

oo H
__ ,

where ∇ carries a ⊗ b ∈ A ⊗ B to the product of the elements a and b in
A ∨B, while ∆ is induced by an Alexander-Whitney diagonal map on the
underlying chain complexes of the surjection operad. The natural trans-
formation ∆ is strongly symmetric monoidal (while ∇ is only symmetric
up to homotopy).

(2) In the case of the normalized cochain algebras of simplicial sets A =
N∗(X), B = N∗(Y ), the map ∆ makes the following diagram commute

N∗(X) ∨N∗(Y )
pr∗X +pr∗Y //

∆
))

N∗(X × Y )

∇∗

vv♠♠♠
♠♠♠

♠♠♠
♠♠♠

N∗(X)⊗N∗(Y )

,

where the right hand side diagonal arrow is yielded by the usual Eilenberg–
MacLane morphism, and we consider the morphisms pr∗X : N∗(X) →
N∗(X × Y ), pr∗Y : N∗(X)→ N∗(X × Y ), induced by the canonical projec-
tions prX : X × Y → X, prY : X × Y → Y .

We rely on this result to construct a cooperad in chain complexes EGracn such
that:

EGracn(r) =
ł

ij

E(ωij),

for each arity r, where we take, for each pair {i, j} ⊂ {1, . . . , r}, a free E-algebra
E(ωij) on one generator ωij of degree n − 1. We can represent the elements of
this cooperad as tensors u ⊗ γ, where γ is a graph based at vertices ◦1, . . . , ◦r,
with edges ek = ◦ik−◦jk corresponding to factors ωikjk , and where u ∈ E(m) is an
element of the surjection operad whose inputs are in bijection with the edges of
our graph ek, k = 1, . . . ,m. For instance the tensor

(1, 3, 1, 2, 4)
looooomooooon

u

⊗

◦2
e4
❄❄

❄

❄❄
❄❄

◦1

e1
e2

e3 ◦3
looooooooomooooooooon

γ

∈ EGracn(3)

corresponds to the monomial u(ω12, ω12, ω13, ω23) with u = (1, 3, 1, 2, 4) ∈ E(4) in
the E-algebra EGracn(3) = E(ω12) ∨ E(ω13) ∨ E(ω23).

We have natural morphisms of cooperads such that

EGracn(r) =
ł

ij

E(ωij)
(1)
−−→

ł

ij

N∗(Sn−1
ij )

(2)
−−→ N∗(

ą

ij

Sn−1
ij )

(3)
−−→ N∗(En(r)),

for each arity r, where we consider the variant of the above cooperad of graphs
defined by taking a coproduct of copies of the cochain algebra of the n− 1-sphere
N∗(Sn−1

ij ) = N∗(Sn−1) (instead of the free E-algebras E(ωij)), we take the operad
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in simplicial sets given by the product
Ś

ij S
n−1
ij of the copies of the sphere Sn−1

ij =

Sn−1 and the associated cochain cooperad N∗(
Ś

ij S
n−1
ij ), and En is a model of

En-operad in simplicial sets with En(0) = ∗ (we can take for instance the Barratt-
Eccles operad model of [1] for this operad En).

We proceed as follows to construct the morphisms of this sequence (1-3). We
use the assumption that 2 is invertible in our ring of coefficients to pick a represen-
tative of the fundamental class of the sphere ω ∈ Nn−1(Sn−1) whose image under
the action of the antipode satisfies τ∗(ω) = (−1)nω. We then form the coproduct
of the morphisms of E-algebras φij : E(ωij)→ N∗(Sn−1

ij ), which carry the genera-

tor ωij to this element ω ∈ Nn−1(Sn−1
ij ) in our copy of the cochain algebra of the

sphere, in order to define the first morphism (1) of our sequence, and we consider
the morphisms pr∗ij : N

∗(Sn−1
ij )→ N∗(

Ś

ij S
n−1
ij ) induced by the canonical projec-

tions prij :
Ś

ij S
n−1
ij → Sn−1

ij in order to get our second morphism (2). We again
rely on the result of the previous theorem to ensure that these morphisms preserve
cooperad structures (the invariance assumption on our cochain ω with respect to
the action of the antipode ensures that the first morphism preserves the symmetric
structures of our cooperads). We eventually use the equivalence En(2) ∼ Sn−1 and
the map ψij : En(r) → En(2) such that ψij(w) = w(∗, . . . , 1

i
, . . . , 1

j
, . . . , ∗) to get

a morphism of operads in simplicial sets such that ψ : En(r) →
Ś

ij S
n−1
ij . We

take the morphism of cochain cooperads induced by this morphism of simplicial
operads to get the third morphism (3) of our sequence.

We prolong this sequence of morphisms by using the Koszul duality of En-
operads in chain complexes (see [3]), which implies the existence of a quasi-
isomorphism of cooperads

N∗(En)
∼
−→ B(ΛnEn),

where B(−) denotes the operadic bar construction, the notation Λ refers to the
operadic suspension, and En is a model of En-operads in chain complexes (e.g. we
can take the operad of chains on the Barratt-Eccles operad model of En-operads
En = N∗(En), as in loc. cit.) We accordingly have a sequence of morphisms:

(*) EGracn → N∗(En)→ B(ΛnEn)
ǫ∗−→ B(ΛnCom),

where we also adopt the notation Com for the commutative operad and we consider
the morphism induced by the augmentation ǫ : En → Com.

For any cooperad C, we have a bijection between the morphisms φα : C →
B(ΛnCom) and the set of Maurer-Cartan elements in a differential graded preLie
algebra with divided powers Dfm(C,ΛnCom) such that:

Dfm(C,ΛnCom) = Hom(C,ΛnCom),

where we take the differential graded hom-object of maps of symmetric sequences
α : C → ΛnCom (see [6]). We use a cooperad version of the general twisting
procedure of [2] to associate a twisted cooperad TwcC to any such Maurer-Cartan
element α ∈MC(Dfm(C,ΛnCom)).
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We apply this construction to the case C = EGracn. We then get cooperad
morphisms:

TwcEGracn → TwcN∗(En)→ TwcB(ΛnEn),

by functoriality of the twisting construction. We also have a cooperad morphism
π∗ : TwcB(ΛnEn) → B(ΛnEn) induced by composites with arity zero operations
∗ ∈ En(0) at the level of the operad En.

We can identify the elements of the cooperad TwcEGracn with tensors u ⊗ γ,
where γ is a graph in which we split the set of vertices into a subset of internal
vertices, usually denoted in black •1, . . . , •k, and a subset of external vertices
◦1, . . . , ◦r, which correspond to operadic inputs in Twc

EGracn.
We have Dfm(EGracn,Λ

nCom) =
ś

r(EGracn(r)Σr
)∨, where we take the dual

(−)∨ of the modules of graphs EGracn(r) (moded out by the action of the sym-
metric group). We let Dfm(EGracn,Λ

nCom)conn denote the submodule spanned
by the connected graphs inside Dfm(EGracn,Λ

nCom). We can check that this
submodule is preserved by the preLie algebra structure with divided powers on
Dfm(EGracn,Λ

nCom). We then make the following crucial observation:

Claim (Theorem in the case n = 2. Conjecture in the case n > 2).

(1) The Maurer-Cartan element α ∈ Dfm(EGracn,Λ
nCom), which corresponds

to the morphism φα : EGracn → B(ΛnCom) yielded by our sequence (*),
satisfies α ∈ Dfm(EGracn,Λ

nCom)conn. This relation implies that we can
form a well-defined cooperad in chain complexes by taking the quotients

EGraphscn(r) = TwcEGracn(r)/ ≡,

where we mod out the complex TwcEGracn(r) by relations such that u⊗γ ≡ 0
when the graph γ contains a connected components of internal vertices.

(2) The morphism TwcEGracn → B(ΛnEn), which we deduce from the map π∗ :
TwcB(ΛnEn)→ B(ΛnEn) at the level of the bar construction, cancels these
elements such that u⊗ γ ≡ 0, and therefore induces a morphism

Twc
EGracn

��

// TwcN∗(En) // TwcB(ΛnEn)

π∗

��

EGraphscn // B(ΛnEn)

on our quotient cooperad EGraphscn = TwcEGracn/ ≡.

We then obtain:

Theorem (depending on the validity of the conjectured property of the claim in
the case n > 2). The morphism of cooperads yielded by the above construction
defines a quasi-isomorphism:

EGraphscn
∼
−→ B(ΛnEn),

and hence the cooperad of graphs EGraphscn defines a model of En-cooperad in
chain complexes through the Koszul duality of En-operads.
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The cooperad EGraphscn is a generalization of the (co)operad of graphs defined
in [5]. We also refer to [7] for a thorough study of this characteristic zero version
of the (co)operad of graphs, which we usually denote by Graphscn. We have,
according to this reference, an action of a Lie algebra of graphs GC2

n on the
cooperad Graphscn, and one can prove that this differential graded Lie algebra
GC2

n is quasi-isomorphic to the deformation complex of the object Graphscn in the
category of Hopf cooperads. We can use the latter result to compute the homotopy
of the space of homotopy automorphisms of the rationalization of En-operads
(see [4]). When we forget about Hopf structures, we still have a result asserting
that the deformation complex of the graph cooperad Graphscn is quasi-isomorphic,
as a chain complex, to the symmetric algebra generated by the n+1-fold suspension
of the differential graded module GC2

n (up to an extra degree shift).
In our setting, the role of the differential graded Lie algebra of graphs GC2

n is
yielded by the preLie algebra with divided powers:

EGC2
n = Dfm(EGracn,Λ

nCom)conn

which we equip with a twisted differential determined by our Maurer-Cartan el-
ement α ∈ Dfm(EGracn,Λ

nCom)conn. We can equip this extended graph com-
plex EGC2

n with the structure of an L∞-algebra with divided powers and we also
have an action of this L∞-algebra with divided powers on the chain cooperad
EGraphscn = TwcEGracn/ ≡. We conjecture that the deformation complex of the
object EGraphscn (in the category of chain cooperads) is equipped with a natural
En+2-algebra structure and that the action of the L∞-algebra EGC2

n on EGraphscn
gives rise to a quasi-isomorphism UEn+2

(EGC2
n)

∼
−→ Dfm(EGraphscn,EGraphscn),

where UEn+2
(−) denotes the enveloping En+2-algebra functor from the category of

L∞-algebras (with divided powers) to the category of En+2-algebras. This conjec-
ture is consistent with the computation of the deformation complex of the graph
cooperad Graphscn as a chain complex in characteristic zero.
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Enriched categorical Koszul duality and Calabi-Yau structures

Julian Holstein

(joint work with Andrey Lazarev, Manuel Rivera)

In joint work with A. Lazarev [1] we showed there is a Koszul duality between
differential graded (dg) categories and a class of curved coalgebras. This gener-
alizes L. Positselski’s non-homogeneous Koszul duality between dg algebras and
conilpotent curved coalgebras [4], which itself was a generalization of the classical
duality between augmented dg algebras and conilpotent dg coalgebras. We work
over a ground field k throughout.

Categorical Koszul duality is given by generalized bar and cobar constructions
and takes the form of a Quillen equivalence between suitable model categories of
pointed curved coalgebras and dg categories:

Ω : cuCoaptd∗ ↔ dgCat′ : B

Here dgCat′ is a (Quillen equivalent) modification of dgCat and we may consider
the Dwyer-Kan model structure or the Morita model structure on dgCat′ and
obtain two different model structures on cuCoaptd∗ . Koszul duality also induces
an equivalence between the derived category of a dg category and the coderived
category of its cobar construction.

One technical ingredient of independent interest is that we consider dg cate-
gories as dg monoids in bicomodules over the cosemisimple coalgebra spanned by
the objects. This allows us to treat dg categories as one would treat algebras (and
in particular perform a bar construction).

We show furthermore that the normalized chain complex functor transforms the
well-known Quillen equivalence between quasi-categories and simplicial categories
into our Koszul duality. Thus pointed curved coalgebras are a linearization of
quasi-categories. This allows us to give a conceptual interpretation of the dg
nerve of a dg category and its adjoint. As an application, we prove that the
category of representations of a quasicategory K is equivalent to the coderived
category of comodules over C∗(K), the chain coalgebra of K. A corollary of this is
a characterization of the category of constructible dg sheaves on a stratified space
as the coderived category of a the chain coalgebra of exit paths.

Categorical Koszul duality is compatible with many further structures. In fur-
ther work with A. Lazarev [2] we construct a monoidal model structure on the

category of pointed curved coalgebras cuCoaptd∗ and show that the cobar functor to

dgCat′ is quasi-strong monoidal. We also show that dgCat′ is a cuCoaptd∗ -enriched
model category. As a consequence, the homotopy category of dgCat′ is closed
monoidal and is equivalent as a closed monoidal category to the homotopy cate-
gory of cuCoaptd∗ . This remedies the well-known defect that the category of small
dg categories dgCat, though it is monoidal, does not form a monoidal model cate-
gory. In particular, this gives a conceptual construction of a derived internal hom
in dgCat, recovering the dg category of A∞-functors as proposed by Kontsevich

In work in progress with M. Rivera we show that categorical Koszul duality
furthermore exchanges smooth and proper Calabi-Yau structures on dg categories
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and pointed curved coalgebras. (We have learnt that there is independent work
in progress by M. Booth, J. Chuang and A. Lazarev that obtains very similar
results.)

Concretely let A be a smooth dg category quasi-equivalent to ΩC for C ∈
cuCoaptd∗ . Then a smooth n-Calabi-Yau structure on A is a class η in negative cyclic
homology HNn(A) which induces a weak equivalence A! → A[n] of A-bimodules.
(A class in HHn(A) inducing such a weak equivalence is known as a weak n-
Calabi-Yau structure.) Then A has an n-Calabi-Yau structure if and only if there
is a classs in negative cocyclic homology in coHNn(C) ∼= HNn(A) that induces a
weak equivalence C∗ → C[n] of C-bicomodules. We call this a proper Calabi-Yau
structur on C by analogy with the definition of a proper Calabi-Yau structure on
a proper dg category.

Applying our result to the coalgebra of chains on an oriented n-manifold this
recovers the n-Calabi-Yau structure on the dg algebra of chains on the loop space
from Poincaré duality with coefficents (and vice-versa). Similarly Poincaré duality
with coefficients for the a unimoduler n-dimensional Lie algebra g gives rise to an
n-Calabi-Yau structure on the universal envelopping algebra of a finite-dimensional
g. As far as we are aware previously only a weak n-Calabi-Yau structure on U(g)
was known [3].
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Universidad de Talca
Campus: Avda. Lircay s/n
Camino Lircay s/n
3460 000 Talca, Maule
CHILE

Prof. Dr. Claudia I. Scheimbauer

Department Mathematik
Technische Universität München
85748 Garching bei München
GERMANY

Prof. Dr. Christoph Schweigert

Universität Hamburg
Fachbereich Mathematik
Bereich Algebra und Zahlentheorie
Bundesstraße 55
20146 Hamburg
GERMANY



Homotopical Algebra and Higher Structures 2307

Dr. Yunhe Sheng

Department of Mathematics
Jilin University
No. 2699, Qianjin Street
Changchun 130012
CHINA

Annika Tarnowsky

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
GERMANY

Dominik Trnka

Dept. of Mathematics
Masaryk University
662 95 Brno
CZECH REPUBLIC

Prof. Dr. Sarah Whitehouse

University of Sheffield
School of Mathematics and Statistics
Hicks Building
Hounsfield Road
Sheffield S3 7RH
UNITED KINGDOM






