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A priori bounds for geodesic diameter. Part I.
Integral chains with coefficients

in a complete normed commutative group

Ulrich Menne and Christian Scharrer

Abstract. As service to the community, we provide – for Euclidean space – a basic
treatment of locally rectifiable chains and of the complex of locally integral chains. In
this setting, we may beneficially develop the idea of a complete normed commutative
group bundle over the Grassmann manifold whose fibre is the coefficient group of
the chains. Our exposition also sheds new light on some algebraic aspects of the
theory. Finally, we indicate an extension to a geometric approach to locally flat chains
centring on locally rectifiable chains rather than completion procedures.

1. Introduction

Throughout the introduction,m is a nonnegative integer, n and d are positive integers, U is
an open subset of Rn, and G is a complete normed commutative group. Our notation
is based on H. Federer’s treatise [11]; see Section 1.4. In particular, Iloc

m .U /, R loc
m .U /,

and F loc
m .U / denote the commutative groups of those m-dimensional currents in U which

locally are integral, rectifiable, and flat, respectively.

1.1. Overview

The primary goal of this first paper of our series is to provide a self-contained exposition
with complete proofs of all basic facts for locally rectifiable chains and locally integral
chains in U with coefficients in G to be employed in the third and final paper (see [21]).
The Euclidean setting allows us to beneficially employ the concept of m-dimensional
approximate tangent planes in Rn through the usage of rectifiable varifolds and the study
of the complete normed commutative group bundle G.n;m;G/ over the Grassmann mani-
fold G.n;m/ with fibre G; the latter is an idea originating from F. Almgren Section 2.4
and Subsection 2.6 (d) in [3]) and T. De Pauw and R. Hardt (Section 3.6 in [9]) which is
not developed in those works.
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In comparison to W. Fleming [13] and T. De Pauw and R. Hardt [9, 10], five distinctive
features of our approach may be summarised as follows. Firstly, all our classes of chains are
based on local chains.1 Secondly, we freely use algebraic properties of commutative groups
and topological properties of normed commutative groups following N. Bourbaki. Thirdly,
the closure theorem – or the boundary rectifiability theorem, in the terminology of L.
Simon – in the context of integer coefficients (i.e., for rectifiable currents) plays a central
role in our construction of integral chains with coefficients in a general complete normed
commutative group. Fourthly, we construct the chain complex of simple locally integral G
chains as starting point for a closure procedure – based on pairs of locally rectifiable G
chains – leading to locally integral G chains. By a simple locally integral G chain, we
mean a locally rectifiable G chain which is expressible as finite sum of products of locally
integral Z chains (isomorphically, locally integral currents) with elements of G. Our choice
is motivated by the favourable closedness properties of this chain complex under restriction,
push forward, and slicing; traditionally, polyhedral chains or Lipschitz chains serve as
starting point to construct flat G chains by means of completion. Fifthly, we indicate how
the concepts of locally integral G chain and locally rectifiable G chain can be used to
construct the chain complex of locally flat G chains by taking a suitable quotient – again
based on pairs of locally rectifiable G chains; previous approaches firstly define the chain
complex of flat G chains and obtain integral G chains as a subcomplex. Thus, in our
proposed treatment, locally rectifiable G chains are central for both constructions: that of
locally integral G chains, and that of locally flat G chains.

The group of rectifiableG chains, as defined by T. De Pauw and R. Hardt in Section 3.6
of [9], is isomorphic to ours of locally rectifiable G chain with finite mass, see 3.5. For
G D R, our concepts are isomorphic to those of H. Federer [12]; see 5.1 and 7.3. For
G D Z=dZ, our integral G chains are isomorphic to the corresponding subgroup, Idm.U /,
of flat chains modulo d as defined by H. Federer in 4.2.26 of [11]; see 5.2.

1.2. Outline by section

Preliminaries. In this section, we gather six strings of preparations: Firstly, we summarise
basic properties of normed commutative groups in 2.1–2.5; in particular, we recall that
it may happen that G is isomorphic to Z as commutative group but not so as normed
commutative group, see 2.3. Secondly, we make some measure-theoretic preparations
in 2.6–2.12. Thirdly, we construct two auxiliary functions of class1 in 2.14–2.16. The
second string and the third string will be employed throughout this series of papers, see 2.13
and 2.17. Fourthly, in analogy to

Fm.U / D ¹QC @R W Q 2 Rm.U /;R 2 RmC1.U /º;

we represent Floc
m .Rn/ as quotient vector space in 2.18–2.20. Fifthly, in 2.21–2.24, we

similarly exhibit F loc
m .U / as quotient commutative group. Sixthly, we study weights of

rectifiable m varifolds in 2.25–2.37; this includes the area formula – including a version
for G valued functions – in 2.27 and 2.31, the coarea formula in 2.33, and the Cartesian
product in 2.36.

1B. White indicated the extension of key elements of the theory of [13] to the local setting in the Appendix
of [26].
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Rectifiable chains. We begin by defining and studying the complete normed commutative
group bundle G.n;m;G/ over G.n;m/ with fibre G in 3.1–3.4. This allows to introduce
the necessary operations for locally rectifiable G chains – addition, right-multiplication
on G.n;m;Z/ with members of G, push forward, slicing, and Cartesian product – firstly
on the level of the bundle. Then, the complete normed commutative group

R loc
m .U;G/

of m-dimensional locally rectifiable G chains in U is defined using equivalence classes
of certain H m measurable G.n;m;G/ valued functions in 3.5. To each S in R loc

m .U;G/

correspond the weight kSk of anm-dimensional rectifiable varifold in U and a representing
function (i.e., a member of the equivalence class S )

*

S I

the role of the latter is analogous to the product Θm.kQk; �/ EQ for Q 2 R loc
m .U /. When-

ever kSk is absolutely continuous with respect to the weight � of some m-dimensional
rectifiable varifold in U , there exists a representing function of S which is adapted to �,
see 3.5; for instance,

*

S is adapted to kSk. This concept allows to combine the results on
the bundle G.n; m; G/ with those on rectifiable varifolds to study the afore-mentioned
operations on R loc

m .U;G/ in 3.6–3.8.

Integral chains. We construct the complete normed commutative group Iloc
m .U; G/ of

m-dimensional locally integral G chains in U and the corresponding boundary operator @G
in six steps.

Step 1 (integer coefficients). To define the subgroup Iloc
m .U;Z/ of R loc

m .U;Z/ and the
boundary operator @Z corresponding to Iloc

m .U;Z/, we employ the canonical isomorphism
of commutative groups R loc

m .U / ' R loc
m .U;Z/ in 4.1.

Step 2 (algebra lemma). For homomorphisms i WA! B of commutative groups, we estab-
lish an equivalent condition to i ˝ 1H being univalent (i.e., injective) for every commutative
group H in 4.2; this is accomplished by expressing H as inductive limit of its finitely gen-
erated subgroups and employing the structure theorem for finitely generated commutative
groups. We also recall that, contrary to the category of vector spaces, univalentness of i
does not imply the same for the homomorphism i ˝ 1H , see 4.3.

Step 3 (application of the closure theorem for rectifiable currents). In 4.4, we verify the
condition obtained in Step 2 for the inclusion map i of Iloc

m .U; Z/ into R loc
m .U; Z/ by

means of the closure theorem for rectifiable currents (see Theorem 4.2.16 (2) in [11] or
Theorem 30.3 in [23]). This amounts to verifying, for every positive integer d , we have
Q 2 Iloc

m .U / whenever Q 2 R loc
m .U / and dQ 2 Iloc

m .U /.

Step 4 (simple locally rectifiable G chains). In 4.5, we use the canonical multiplication

� W R loc
m .U;Z/ �G ! R loc

m .U;G/;

to obtain the induced homomorphism

�U;m;G W R
loc
m .U;Z/˝G ! R loc

m .U;G/;

whose image is dense in R loc
m .U;G/. Based on the structure theorem for finitely generated
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commutative groups, we next prove that

�U;m;G is univalent

in 4.6. In case G is finite, we deduce

R loc
m .U;Z/˝G ' R loc

m .U;G/;

see 4.8.

Step 5 (simple locally integral G chains). By Steps 3 and 4, the composition of homo-
morphisms

Iloc
m .U;Z/˝G

i ˝ 1G // R loc
m .U;Z/˝G

�U;m;G // R loc
m .U;G/;

where i W Iloc
m .U; Z/ ! R loc

m .U; Z/ is the inclusion, is univalent; its image consists, by
definition, of all m-dimensional simple locally integral G chains in U . By univalentness,
the boundary operator @G of this chain complex may be defined by

@G.S � g/ D .@Z S/ � g; for S 2 Iloc
m .U;Z/ and g 2 G,

in 4.9; this is in accordance with the previous definition in case G D Z.

Step 6 (closure operation). We let

Iloc
0 .U;G/ D R loc

0 .U;G/:

Whenever m � 1, the complete normed commutative group Iloc
m .U;G/ is defined in 4.11 as

closure of the subgroup of

R loc
m .U;G/ �R loc

m�1.U;G/

consisting of all pairs .S; @G S/ corresponding to m-dimensional simple locally integral G
chains S in U ; the boundary operator

@G W Iloc
m .U;G/! Iloc

m�1.U;G/

is then induced by the shift operator mapping .S; T / 2 R loc
m .U;G/ �R loc

m�1.U;G/ onto
.T; 0/ if m � 2 and onto T if m D 1. Clearly, @G is continuous. We then show in 4.13
that the canonical projection of R loc

m .U;G/ �R loc
m�1.U;G/ onto its first factor, restricted

to Iloc
m .U;G/, is univalent; this allows us to subsequently

identify Iloc
m .U; G/ with a dense subgroup of R loc

m .U; G/ so that @G extends the
boundary operator on simple locally integral G chains.

In this process, establishing that we have T D 0 whenever .0; T / 2 Iloc
m .U; G/ is

ultimately reduced to the case that U D Rn and that sptkT k is a compact subset of an
.m � 1/-dimensional vector subspace.
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During Steps 1–6, we keep track in 4.1, 4.5, and 4.10 of how the operations push for-
ward, Cartesian product, and slicing on rectifiable G chains interact with the intermediately
constructed boundary operators. This is crucial: firstly, in the identification of Iloc

m .U;G/

with a subgroup of R loc
m .U;G/ carried out in Step 6, whence the properties of these oper-

ations for Iloc
m .U; G/ in 4.13 and the homotopy formula in 4.16 follow, and secondly, in

proving in 4.18 that the restriction operators rmWR loc
m .V;G/! R loc

m .U;G/ satisfy

rmŒIloc
m .V;G/� � Iloc

m .U;G/

and commute with @G , whenever U � V � Rn and V is open.
To compare with classical examples, we define (see 3.5 and 4.17) the subgroups

Rm.U;G/ D R loc
m .U;G/ \ ¹S W sptkSk is compactº;

Im.U;G/ D Iloc
m .U;G/ \ ¹S W sptkSk is compactº:

Moreover, Steps 1, 2, and 4 allow us to define the subgroup Pm.U; G/ of R loc
m .U; G/

consisting of all m-dimensional polyhedral G chains in U , see 4.5.

Classical coefficient groups. We compare our treatment of rectifiable and integral G
chains with that of the classical cases G D R in [12] and G D Z=dZ in 4.2.26 of [11].
In 5.1, we provide canonical isomorphisms – commuting with the boundary operators,
restriction, push forward, Cartesian product, and slicing – showing that

R loc
m .R

n;R/ ' Floc
m .R

n/ \ ¹Q W Q has positive densitiesº:

This isomorphism maps Iloc
m .Rn;R/ \ ¹S W S is simpleº onto the

real linear span of Iloc
m .R

n/ in Floc
m .R

n/:

For m � 1, we determine the closure of these groups to obtain

Iloc
m .R

n;R/ ' Floc
m .R

n/ \ ¹Q W Q and @Q have positive densitiesºI

this is based on the deformation theorem for members of the group on the right from [12]
and the resulting approximation theorem by push forwards of m-dimensional real polyhed-
ral chains in Rn by diffeomorphisms of class 1 of Rn.

Similarly, relying on the approximation theorem for members of Idm.Rn/ from 4.2.26
in [11], we construct canonical isomorphisms

Rm.Rn;Z=dZ/ ' Rd
m.R

n/; Im.Rn;Z=dZ/ ' Idm.R
n/;

Im.Rn;Z=dZ/ \ ¹S W S is simpleº '
®
.Q/d W Q 2 Im.Rn/

¯
in 5.2; in particular, R. Young’s structural result

Idm.R
n/ D ¹.Q/d W Q 2 Im.Rn/º

in Corollary 1.5 of [27] may be restated by saying that every S 2 Im.Rn;Z=dZ/ is simple.
To clarify the literature regarding the impossibility of an analogous structural result for
Idm;K.R

n/ for general compact subsetsK of Rn, we include in 5.3 an unpublished correction
listed by H. Federer.
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Constancy theorem. To construct an example of a one-dimensional indecomposable
integral G chain whose associated rectifiable varifold is decomposable in the second paper
of our series (see Example 6.8 in [20]), we provide a constancy theorem for m-dimensional
locally integral G chains whose boundary lies outside of an m-dimensional connected
orientable submanifold M of class 1 of U in 6.1. In the model case that m D n and

M D Rm \ ¹x W ai < xi < bi for i D 1; : : : ; mº;

where �1 < ai < bi < 1 for i D 1; : : : ; m, the constancy theorem yields that T in
Im.Rm; G/, satisfying sptk@G T k � BdryM , equals Q � g, for some g 2 G, where Q in
Im.Rm;Z/ corresponds to .L m xM/ ^ e1 ^ � � � ^ em 2 Im.Rm/. We prove the general
case and the model case by simultaneous induction on m. This is mostly based on H.
Federer’s arguments for the classical coefficient groups in 4.1.31 (2) and 4.2.3 of [11] – see
also the end of 4.2.26 on p. 432 of [11] –, which we adapt and merge by means of our
restriction operators rm, see 6.2 and 6.3.

Flat chains. To conclude the development of the present paper, we indicate in 7.1 how
to extend our approach to include a chain complex of locally flat G chains. Namely, we
construct complete normed commutative groups F loc

m .U; G/ together with continuous
boundary operators @G such that Pm.U;G/ is dense in F loc

m .U;G/ and

F loc
m .U;G/ D

®
S C @G T W S 2 R loc

m .U;G/; T 2 R loc
mC1.U;G/

¯
:

In fact, F loc
m .U;G/ is defined to be the quotient�

R loc
m .U;G/ �R loc

mC1.U;G/
�ı
Hm;

where the closed subgroup Hm of R loc
m .U;G/ �R loc

mC1.U;G/ is given by

Hm D
�
Iloc
m .U;G/ � Iloc

mC1.U;G/
�
\ ¹.S; T / W S C @G T D 0º:

Finally, we obtain (in 7.2 and 7.3) canonical isomorphisms

F loc
m .U;Z/ ' F loc

m .U / and F loc
m .Rn;R/ ' Floc

m .R
n/I

these are based on the representations of F loc
m .U / and Floc

m .Rn/ recorded earlier.

1.3. Remarks

Constancy theorem. The case that M , for some cubical subdivision of Rn, equals the
m-skeleton minus the .m � 1/-skeleton (e.g., M DW0m �W0m�1) is a basic ingredient
for deformation theorems. For general G and such M , a constancy theorem was first
formulated by W. Fleming in Lemma 7.2 of [13] for compactly supported normal G chains;
however, similar to H. Federer for classical coefficient groups in 4.2.3 of [11] and T. De
Pauw and R. Hardt for general G in Theorem 6.3 of [10], we avoid unspecific references to
topology in our argument.
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Possible continuation of these notes. Besides extending the various operations studied
for R loc

m .U;G/ to F loc
m .U;G/, one would surely intend to add notions for a Borel regular

measure kSk and for the support of S associated with S in F loc
m .U; G/ and to obtain

suitable deformation theorems. In this regard, we would expect the representation

F loc
m .U;G/ D

®
S C @G T W S 2 R loc

m .U;G/; T 2 R loc
mC1.U;G/

¯
to be particularly expedient. For G D Z or G D R, the deformation theorems in 4.2.9
of [11] and in Section 4 of [12], respectively, form the key ingredients in proving the
above isomorphisms for F loc

m .Rn; G/ which, for these G, yield an affirmative answer to
the following question. Assuming m � 1,

is Iloc
m .Rn; G/ equal to R loc

m .Rn; G/ \
®
S W @G S 2 R loc

m�1.R
n; G/

¯
?

If successful, these extensions would yield a geometric approach to F loc
m .U;G/ with

R loc
m .U;G/ and the complete normed commutative group bundle G.n;m;G/ taking the

centre stage instead of functional analytic completion procedures.

Background. A notion of flat G chains in Euclidean space was first introduced by W.
Fleming in [13]; for the special case G D Z=dZ, H. Federer provided an alternative
approach to W. Fleming’s theory in 4.2.26 of [11]. Returning to general G, the first six
sections of [13] form the foundation for B. White’s improved deformation theorem and his
subsequent rectifiability theorem of flat chains in [24] and [25]. These developments are
comprised in [9], where T. De Pauw and R. Hardt extended them to general metric spaces.

Development of these notes. Originally, we intended to draw from the most general and
self-contained account [9] of T. De Pauw and R. Hardt for our applications in the third
paper of our series (see [21]). The present notes then grew out of an attempt to provide to
the reader – with the due simplifications entailed by the Euclidean setting – the relevant
definitions from [9]. Focusing on local chains and employing the bundle G.n; m; G/
appeared to be natural choices in approaching rectifiable chains in this context. Defining
the relevant operations on R loc

m .U;G/ then also entailed the inclusion of some seemingly
well-known but hard-to-cite properties of rectifiable varifolds. Next, the ambition to provide
a direct route to locally integral G chains – without prior construction of F loc

m .U;G/ by
completion – raised the question whether (see Steps 2–5) certain canonical homomorphisms
were univalent and whether (see Step 6) the group Iloc

m .U;G/ constructed could in fact be
identified with a subgroup of R loc

m .U; G/. The proof of consistency with previous work
on chains with classical coefficient groups and the related correction of 4.2.26 in [11]
dutifully followed. The simplification of an example in the second paper of our series (see
Example 6.8 in [20]) then gave rise to adding the constancy theorem in the submanifold
setting; thereby, the adaptation of the existing proof strategies to our context led to the
study of the restriction operators. Finally – with our primary goal obtained –, we realised
that our approach could be extended to yield a viable definition for F loc

m .U;G/. Thus, we
decided to indicate this direction which entailed documenting the seemingly well-known
but hard-to-cite representations of F loc

m .U / and Floc
m .Rn/.

W. Fleming’s approach. As a possible alternative to constructing the afore-mentioned
direct route, we also considered to simply draw from W. Fleming’s original theory in [13],
which is formulated in the Euclidean setting. However, studying the first four sections
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thereof, we found that some parts of the treatment required to be formalised, expanded, and
(at times) corrected to become entirely satisfactory. We accordingly deemed it advisable to
avoid just referring the reader to [13] for proofs. Nonetheless, we have been inspired by
W. Fleming’s work – for instance, regarding how to identify Iloc

m .U;G/ with a subgroup of
R loc
m .U;G/, see 4.14 –, and we believe that our notes could in fact be partially of assistance

to readers intending to study the paper [13].

H. Federer’s approach. H. Federer’s treatment of the case G D Z=dZ and ours of
general G share the essential role of the case of integer coefficients. Noting

d Im.Rn/ � dFm.Rn/ � Fm.Rn/ \ ¹T W T � 0 mod dº;

his quotient approach to flat chains modulo d leads to the following commutative diagram:

Im.Rn/=d Im.Rn/ //

univalent
��

Rm.Rn/=dRm.Rn/ //

'

��

Fm.Rn/=dFm.Rn/

onto
��

Idm.Rn/
� // Rd

m.Rn/
� // F d

m.Rn/:

The two horizontal arrows in the top row are univalent by the closure theorem (see The-
orem 4.2.16 (2) (3) in [11]); the two horizontal arrows in the bottom row are inclusions;
the middle vertical arrow is an isomorphism by [11], p. 430, which corresponds2 to our
isomorphism �Rn;m;Z=dZ; hence, the left vertical arrow is univalent; and the right vertical
arrow is onto by definition of F d

m.Rn/.

R. Young’s structural results. In Corollary 1.6 of [27], R. Young then established that the
left and right vertical arrows in the preceding commutative diagram are isomorphisms. As
the isomorphisms A˝ .Z=dZ/ ' A=dA, corresponding to commutative groups A, form a
natural transformation, the following commutative diagram – in which all horizontal arrows
are univalent – results:

Im.Rn/˝ .Z=dZ/ //

'

��

Rm.Rn/˝ .Z=dZ/ //

'

��

Fm.Rn/˝ .Z=dZ/

'

��
Idm.Rn/

� // Rd
m.Rn/

� // F d
m.Rn/:

2Correspondence refers to the commutative diagram below, where i WRm.Rn/! R loc
m .Rn/ is the inclusion,

and �Rn;m and �Rn;m;d are the isomorphisms of 4.1 and 5.2, respectively:

Rm.Rn/=dRm.Rn/

'

��

'

// Rm.Rn/˝ .Z=dZ/
univalent

i˝1Z=dZ // R loc
m .Rn/˝ .Z=dZ/

' �Rn;m˝1Z=dZ

��
R loc
m .Rn;Z/˝ .Z=dZ/

' �Rn;m;Z=dZ

��
Rd
m.Rn/ '

�Rn;m;d // Rm.Rn;Z=dZ/ � // R loc
m .Rn;Z=dZ/:
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1.4. Notation

Our notation follows [19]; thus, we are largely consistent with H. Federer’s terminology in
geometric measure theory (see [11], pp. 669–676) and W. Allard’s notation for varifolds
(see [2]). We mention two exceptions: whenever f is a relation, we employ f ŒA� to mean
¹y W .x; y/ 2 f for some x 2 Aº and, whenever T is an m-dimensional vector subspace
of Rn, the canonical projection of Rn onto T is denoted by T\. Additionally, following
H. Federer, see p. 414 of [12], we say anm-dimensional locally flat chainQ in Rn has posit-
ive densities if and only ifQ is representable by integration and Θ�m.kQk; x/ > 0 for kQk
almost all x; by Section 1 in [12], this concept yields the analogue for real coefficients to
that of m-dimensional locally rectifiable currents in Rn for integer coefficients.

2. Preliminaries

2.1 Definition. Suppose G is a commutative group.
Then, a function � WG ! ¹r W 0 � r <1º is termed a group norm on G if and only if

��1Œ¹0º� D ¹0º and, whenever g; h 2 G, we have

�.g/ D �.�g/ and �.g C h/ � �.g/C �.h/:

We associate with such � the metric �WG �G ! R on G, defined by �.g; h/ D �.g � h/
for g; h 2 G, and often write jgj instead of �.g/.

2.2 Remark. Defining sWG � G ! G by s.g; h/ D g � h for g; h 2 G, we see that
Lip s � 1 with respect to the metric on G �G with value

�.g; g0/C �.h; h0/ at ..g; h/; .g0; h0// 2 .G �G/2:

In particular, G is a topological group; it is complete as uniform space if and only if �
is complete. If H is a closed subgroup of G and pWG ! G=H is the quotient map, then
dist. � ;H/ ı p�1 constitutes a group norm on G=H which induces the quotient topology
and p is an open map; if G is complete, so is G=H , and we have Lipf D Lip.f ı p/
whenever f maps G=H into some metric space. Whenever H is another normed commut-
ative group, we endow G �H with the group norm whose value at .g; h/ 2 G �H equals
jgj C jhj 2 R. Taking the standard group norm on Z, the canonical bilinear map from
Z �G into G, mapping .d; g/ 2 Z �G onto d � g 2 G, is Lipschitzian on bounded sets.

2.3 Example. If we have G D R=Z, r 2 R � Q, and H is the subgroup of G generated
by ¹r C d W d 2 Zº, then G is a complete normed group by 2.2, and H is infinite and
therefore dense in G by Corollary to Proposition 11 in Section 1.5, Chapter 7, of [5] in
conjunction with Proposition 1 in Section 2.1, Chapter 3, of [4]; hence, H is isomorphic
to Z as commutative group but not so as normed commutative group, because H has no
isolated points.

2.4 Definition. Suppose G is a complete normed commutative group, f is a function
whose domain contains a set A with values in G, and

P
a2A jf .a/j <1.

Then, extending finite summation, we define the sum
P
Af, also denoted by

P
a2Af .a/,

in G by requiring that, for whenever ">0, there exists a finite subset C of A such thatˇ̌P
A f �

P
B f

ˇ̌
� " for every finite subset B of A containing C .
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2.5 Remark. If hWA! Y , then
P
A f D

P
y2Y

P
h�1Œ¹yº� f .

2.6 Definition. Whenever � measures X and f is a ¹y W 0 � y � 1º valued function
whose domain contains � almost all of X , we define the measure � xf over X by

.� xf /.A/ D
Z �
A

f d� for A � X:

2.7 Remark. Basic properties of this measure are listed in 2.4.10 of [11]. Moreover, if f
is � measurable, then

.� xf /.A/ D inf
®
.� xf /.B/ W A � B , B is � measurable

¯
for A � X I

if additionally X is a topological space, � is Borel regular, and ¹x W f .x/ > 0º is � almost
equal to a Borel set, then � xf is Borel regular.

2.8 Remark. If X is a locally compact Hausdorff space, � is a Radon measure over X ,
and 0 � f 2 Lloc

1 .�/, then � xf is a Radon measure over X , provided X is the union of a
countable family of compact subsets of X . The supplementary hypothesis “provided . . .
of X” may not be omitted; in fact, one may take f to be the characteristic function of the
set constructed in 9.41 (e) of [14] .

2.9 Definition. Whenever � measures X , Y is a topological space, and f is a Y valued
function with dmnf � X , we define the measure f#� over Y by

f#�.B/ D �.f
�1ŒB�/ for B � Y :

2.10 Remark. This slightly extends 2.1.2 in [11], where dmnf D X is required.

2.11 Lemma. Suppose � is a Radon measure over a locally compact Hausdorff space X ,
Y is a separable metric space, f is a � measurable Y valued function, and X is � almost
equal to the union of a countable family of compact subsets of X .

Then, f#� is a Borel regular measure over Y .

Proof. Clearly, all closed subsets of Y are f#� measurable by 2.1.2 in [11]. To prove
the Borel regularity, we employ Lusin’s theorem in 2.3.5 of [11] to reduce the problem
to the case C D spt � is compact and f jC is continuous. Then, supposing B � Y and
" > 0, we employ 2.2.5 in [11] to choose an open subset U of X with f �1ŒB� � U and
�.U / � "C f#�.B/, define an open subset V of Y by V D Y � f ŒC � U �, and verify
that

B � V; f �1ŒV � � U [ .X � C/;

whence it follows f#�.V / � "C f#�.B/.

2.12 Remark. In the context of Radon measures and proper maps, a related statement is
available from 2.2.17 in [11].

2.13 Remark. Apart of 2.27 and 2.36 below, 2.7, 2.8, or 2.11 will also be employed in 3.5
and in 4.5, 7.11, 7.13, 9.11, 9.13, and 9.16 of [20].
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2.14 Theorem. Suppose A is a closed subset of Rn.
Then, there exists a nonnegative function f WRn ! R of class1 such that

A D ¹x W f .x/ D 0º; Di f .x/ D 0 whenever x 2 A and i a positive integer;

and ¹x W f .x/ � yº is compact for 0 < y <1:

Proof. We abbreviate U D Rn � A, assume U ¤ ¿, apply the construction in 3.1.13
of [11] with ˆ D ¹Rn � Aº, arrange the elements of the resulting set S in a univalent
sequence s1; s2; s3; : : :, and, taking "i D inf¹2�i ; exp.�3=h.si //º, define gWU ! R by

g.x/ D

1X
iD1

"ivsi .x/ for x 2 U :

For every positive integer j , we then estimate

kDj g.x/k � .129/mVjh.x/�j exp.�1=h.x// for x 2 U ;

¹x W g.x/ � 2�j º �
Sj
iD1 B.si ; 10h.si //:

Therefore, we may take f to be the extension of g to Rn by 0.

2.15 Remark. A special case of the preceding theorem is employed in 8.1 (2) of [2] to
demonstrate the sharpness of the regularity theorem in Section 8 of [2].

2.16 Corollary. Suppose U is an open subset of Rn and E0 and E1 are disjoint relatively
closed subsets of U .

Then, there exists f 2 E .U;R/ satisfying Ei � Int¹x W f .x/ D iº for i 2 ¹0; 1º and
0 � f � 1.

Proof. We choose, for i 2 ¹0; 1º, disjoint relatively closed sets Ai with Ei � IntAi and,
by 2.14, applied with A replaced by Rn � .U � Ai /, also gi 2 E .U;R/ satisfying gi � 0
and ¹x W gi .x/ D 0º D Ai , and take f D g0=.g0 C g1/.

2.17 Remark. Apart of 2.21 below, 2.14 or 2.16 will also be employed in 4.5, 4.13,
and 4.18, as well as in 6.15 and 7.7 of [20] and in 7.3 of [21].

2.18 Theorem. Suppose m is a nonnegative integer, n is a positive integer, Z 2 Fm.Rn/,
K is a compact subset of Rn, and sptZ � IntK.

Then, there exist Q 2 Fm;K.Rn/ and R 2 FmC1;K.Rn/, both with positive densities,
such that Z D QC @R.

Proof. We choose compact subsets B and C of Rn with sptZ � IntB , B � IntC , and
C � IntK, and notice that Z 2 Fm;B.Rn/ by 4.1.12 in [11]. Employing Theorem 4.1.23
in [11] with K replaced by B , we construct Pi 2 Pm;C .Rn/ satisfying

1X
iD1

FC .Pi / <1 and
1X
iD1

Pi D Z:



U. Menne and C. Scharrer 40

Using Lemma 4.2.23 in [11] with V D IntK and X D Pi , we pick Ri 2 PmC1.Rn/ with
sptRi � K and

1X
iD1

�
M.Pi � @Ri /CM.Ri /

�
<1:

We define

Q D

1X
iD1

.Pi � @Ri / 2 Fm;K.Rn/;

as well as

R D

1X
iD1

Ri 2 FmC1;K.Rn/;

with Z D QC @R by means of FK convergent series and 4.1.12 in [11]. Finally, noting
that Rn is countably .kQk;m/ rectifiable and countably .kRk;mC 1/ rectifiable,Q and R
have positive densities by condition (V) in Section 1 of [12].

2.19 Corollary. Suppose that m is a nonnegative integer, n is a positive integer, and
Z 2 Floc

m .Rn/.
Then, there exist Q 2 Floc

m .Rn/ and R 2 Floc
mC1.R

n/, both with positive densities, such
that Z D QC @R.

Proof. In view of 4.1.12 in [11], this follows from 2.18 employing a suitable partition of
unity; for instance, one may apply the construction in 3.1.13 of [11] with ˆ D ¹Rnº and
Lemma 3.1.12 in [11] with U D Rn, h.x/D 1=20 for x 2 Rn, �D 0, and ˛ D ˇ D 20.

2.20 Remark. Defining the linear map L from Fn;m onto Floc
m .Rn/, where

Fn;m D
�
Floc
m .R

n/ � Floc
mC1.R

n/
�
\ ¹.Q;R/ W Q and R have positive densitiesº;

by L.Q;R/ D QC @R for .Q;R/ 2 Fn;m, we obtain a vector space isomorphism

Fn;m= kerL ' Floc
m .R

n/:

2.21 Lemma. Suppose m is a nonnegative integer, n is a positive integer, U is an open
subset of Rn, A is a relatively closed subset of U , S is an open subset of U , Z 2F loc

m .U /,
W 2 Fm.U /, and

A \ sptZ � S; A \ spt.Z �W / D ¿:

Then, there exist Q 2 Rm.U / and R 2 RmC1.U / such that

sptQ [ sptR � S and A \ spt.Z �Q � @R/ D ¿:

Proof. We pickX 2Rm.U / and Y 2RmC1.U / withW D X C @Y , observe that we may
choose an open subset T of U with

A � T; .ClosT / \ sptZ � S; T \ spt.Z �W / D ¿;

and obtain, from 2.16, a locally Lipschitzian function f WU ! R with

f .x/ � 0 for x 2 T \ sptZ and f .x/ � 1 for x 2 U � S .
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Noting T \ spt.X C @Y / � sptZ, we employ 4.2.1, 4.3.1, 4.3.4 and 4.3.6 in [11] to select
0 < y < 1 with hY; f; yi 2 Rm.U / and

T \ spt
�
X x¹x W f .x/ > yº C @.Y x¹x W f .x/ > yº/ � hY; f; yi

�
� sptZ:

Thus, we may take Q D X x¹x W f .x/ � yº C hY; f; yi and R D Y x¹x W f .x/ � yº
because T \ spt.X C @Y �Q � @R/ � T \ ¹x W f .x/ � yº \ sptZ D ¿.

2.22 Theorem. Suppose m and n are integers, m � 0, n � 1, U is an open subset of Rn,
and Z 2 F loc

m .U /.
Then, there exist Q 2 R loc

m .U / and R 2 R loc
mC1.U / such that Z D QC @R.

Proof. Assume U ¤ ¿. Let ˆ denote the class of all open subsets T of U such that,
for some W 2 Fm.U /, we have T \ spt.Z �W / D ¿; hence

S
ˆ D U . We define the

function hWU ! ¹r W 0 < r <1º by

h.x/ D
1

20
sup¹inf¹1; dist.x;Rn � T /º W T 2 ˆº for x 2 U :

Applying the construction in 3.1.13 of [11], we obtain a set S such that, arranging its
elements into an univalent sequence s1; s2; s3; : : : in U , we have U D

S1
iD1 B.si ; 5h.si //

and
card¹i W B.x; 10h.x// \ B.si ; 10h.si // ¤ ¿º � .129/n for x 2 U :

Next, we construct R1; R2; R3; : : : in Rm.U / and Q1;Q2;Q3; : : : in RmC1.U / satis-
fying sptQi [ sptRi � B.si ; 10h.si // for every positive integer i and

Ki \ sptZi D ¿ for every nonnegative integer i ;

where we abbreviated

Ki D

i[
jD1

B.sj ; 5h.sj // and Zi D Z �

iX
jD1

.Qj C @Rj /I

in fact, this is trivial for i D 0 and, ifR1; : : : ;Ri�1 andQ1; : : : ;Qi�1 with these properties
have been constructed for some positive integer i , then, noting that

Ki \ sptZi�1 � B.si ; 5h.si //;

we may take Qi and Ri to be the currents furnished by applying 2.21 with A, S , and Z
replaced by Ki \ B.si ; 10h.si //, U.si ; 10h.si //, and Zi�1 because

.Ki � B.si ; 10h.si /// \ sptZi � Ki�1 \ sptZi�1 D ¿:

Let Q D
P1
iD1Qi and R D

P1
iD1 Ri . If T is open and Clos T is a compact subset

of U , then T � Ki for some i , hence T \ spt.Z �Q � @R/ D ¿.

2.23 Remark. Defining the homomorphism � from R loc
m .U / �R loc

mC1.U / onto F loc
m .U /

by �.Q;R/ D QC @R for .Q;R/ 2 R loc
m .U / �R loc

mC1.U /, we obtain an isomorphism�
R loc
m .U / �R loc

mC1.U /
�ı

ker � ' F loc
m .U /:
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2.24 Remark. For the flat G chains of [13], a representation analogous to those of 2.18,
2.19, and 2.22 was obtained in Proposition 2.1 of [1].

2.25 Theorem. Suppose � is a Radon measure over an open subset X of Rn, m is a
nonnegative integer, X is countably .�;m/ rectifiable, and

Θ�m.�; a/ <1 for � almost all a:

Then, � is the weight of some member of RVm.X/ and, whenever R is a compact
m-rectifiable subset of X and f maps a subset of X into R� , we have that, for H m almost
all a 2 R with Θm.�; a/ > 0,

Tanm.�; a/ D Tanm.H m xR; a/ is an m-dimensional vector space;

.�;m/ ap Df .a/ D .H m xR;m/ ap Df .a/:

Proof. Whenever R is a compactm-rectifiable subset of X , noting H m.R/ <1, we infer
�.R \ ¹a WΘm.�; a/ D 0º/ D 0 from 2.10.19 (1) in [11]. It follows that

Θ�m.�; a/ > 0 for � almost all a:

Next, suppose f maps a subset of X into R� , R is a compact m-rectifiable subset of X ,
and the Borel sets Ri are defined by

Ri D R \ ¹a W 1=i <Θ�m.�; a/ < iº

whenever i is a positive integer; hence, there holds

H m xRi � � xRi � 2mi H m xRi

by 2.10.19 (1) (3) in [11], and

Θm.� xX � Ri ; a/ D 0; Θm.H m xR � Ri ; a/ D 0;

for H m almost all a 2 Ri by 2.10.19 (4) in [11], whence we infer

Tanm.�; a/ D Tanm.� xRi ; a/
D Tanm.H m xRi ; a/ D Tanm.H m xR; a/ 2 G.n;m/;

.�;m/ ap Df .a/ D .� xRi ; m/ ap Df .a/
D .H m xRi ; m/ ap Df .a/ D .H m xR;m/ ap Df .a/

for H m almost all a 2 Ri by Theorem 3.2.19 in [11]. The function mapping � almost
all a 2Ri onto Tanm.�; a/2G.n; m/ therefore is � xRi measurable by Lemma 3.2.25
and 3.2.28 (2) (4) in [11]. Thus, defining V 2 Vm.X/ with kV k D � by

V.k/ D

Z
k.x;Tanm.�; x// d� x for k 2 K .X �G.n;m//;

we notice that, for � almost all a, we have

V .a/.ˇ/ D ˇ.Tanm.�; a// for ˇ 2 K .G.n;m//

by Theorems 2.8.18 and 2.9.13 in [11]. Since � DH m xΘm.�; �/ by 2.8 (5) in [2], we
have V 2 RVm.X/ by Theorem 3.5 (1a) in [2], and the conclusion follows.
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2.26 Remark. Recalling Theorem 3.5 (1b) in [2], we infer the following assertion: if also �
satisfies the hypotheses of 2.25 with � replaced by �, then, we have that, for H m almost
all a with Θm.�; a/ > 0 and Θm.�; a/ > 0,

Tanm.�; a/ D Tanm.�; a/ is an m-dimensional vector space
and .�;m/ ap Df .a/ D .�;m/ ap Df .a/.

2.27 Theorem. SupposeX and Y are open subsets of Rn and R� , respectively, f WX ! Y

is locally Lipschitzian, m is a nonnegative integer with m � n and m � �, V 2 RVm.X/,
f j sptkV k is proper, and gWY ! R� is a locally Lipschitzian map.

Then, a member W of RVm.Y / may be defined by

W.k/ D

Z
A

k.f .x/; im.kV k; m/ ap Df .x// .kV k; m/ ap Jm f .x/ dkV k x

whenever k 2 K .Y �G.�;m//, where A D ¹x W .kV k; m/ ap Jm f .x/ > 0º and

.kV k; m/ ap Jm f D
V

m.kV k; m/ ap Df
I

in particular, we have kW k D f#.kV k x.kV k; m/ ap Jm f /. Moreover, for H m almost all
y 2 Y , there holds

Θm.kW k; y/ D
X

x2f �1Œ¹yº�

Θm.kV k; x/;

and, if f .x/ D y and Θm.kV k; x/ > 0, then

im .kV k; m/ ap Df .x/ D Tanm.kW k; y/ is an m-dimensional vector space;

g is .kW k; m/ approximately differentiable at y, and

.kV k; m/ ap D.g ı f /.x/ D .kW k; m/ ap Dg.y/ ı .kV k; m/ ap Df .x/:

Proof. As k
V
mLkD k

V
m.L ı T\/k for T 2G.n;m/ andL 2Hom.T;R�/, the legitimacy

of the definition of W and the equation for kW k follow from Lemma 4.5 (1) (2) in [18],
2.8, 2.11, and 2.2.3 and 3.2.28 (4) in [11]. To prove the remaining conclusions, we firstly
consider the special case that V is associated with a compact subset K of X which is
contained in an m-dimensional submanifold of class 1 of Rn, and

either .kV k; m/ ap Jm f .x/ D 0 for H m almost all x 2 K;

or f jK is univalent and .f jK/�1 is Lipschitzian:

If the second alternative holds, then, noting that .kV k; m/ ap Jm f .x/ > 0 for H m almost
all x 2 K by Corollaries 2.10.11 and 3.2.20 in [11], we infer from Lemma 3.2.17 in [11],
in conjunction with 2.10.19 (4), Rademacher’s theorem in 3.1.6, and 3.1.19 (4) in [11], that

Tanm.H m xf ŒK�; f .x// D im .H m xK;m/ ap Df .x/ 2 G.n;m/;
.H m xK;m/ ap D.g ı f /.x/

D .H m xf ŒK�;m/ ap Dg.f .x// ı .H m xK;m/ ap Df .x/
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for H m almost all x 2 K. Therefore, for both alternatives, W is the rectifiable varifold
associated with f ŒK� by Corollary 3.2.20 in [11]. As the characteristic functions of K and
f ŒK� are H m almost equal to Θm.kV k; �/ and Θm.kW k; �/, respectively, by 2.10.19 (4)
and Theorem 3.2.19 in [11], the conclusion in the special case now follows by Corol-
lary 2.10.11 in [11] and Theorem 3.5 (1b) in [2]. In the general case, we use 3.5 (1) in [15],
2.2.3 and Lemma 3.2.2 in [11], and 2.26 to express V D

P1
iD1 ciVi for some 0 < ci <1

and some varifolds Vi satisfying the conditions of the special case, whence we deduce
the conclusion by Theorem 3.5 (2) in [2] in conjunction with Corollary 2.10.11 in [11],
Theorem 3.5 (1b) in [2], and 2.26.

2.28 Remark. If f is of class1, then W D f#V as defined in 3.2 of [2]; thus, we extend
the definition of f#V to encompass the presently considered maps f .

2.29 Remark. If additionally � � m, Z is an open subset R�, gW Y ! Z is locally
Lipschitzian, and g ı f j sptkV k is proper, then

.g ı f /#V D g#.f#V / 2 RVm.Z/:

Allowing for the case m > �, we leave the term f#V undefined, but we are still assured
that .g ı f /#V D 0, because H m.imf / D 0 implies H m.im.g ı f // D 0.

2.30 Corollary. If additionally u is kV k x.kV k; m/ ap Jm f integrable, then�
kV k x.kV k; m/ ap Jm f /

�
.u/ D

Z X
M\f �1Œ¹yº�

Θm.kV k; �/u dH m y;

where M D ¹x WΘm.kV k; x/ > 0º.

Proof. If u is the characteristic function of a kV k measurable set B over X , then

Θm.kV k xB; x/ DΘm.kV k; x/u.x/ for H m almost all x 2 X

by Theorems 2.8.18 and 2.9.11 in [11] and Theorem 3.5 (1b) in [2]; whence, recalling
Corollary 2.10.11 in [11] and 2.26, we infer the conclusion by applying 2.27 with V
replaced by V xB �G.n;m/. Next, considering the subcase A D B , the assertion extends
to kV kx.kV k;m/ap Jm f measurable setsB . Therefore, the general case follows by means
of the usual approximation procedure, see 2.1.1 (6) (10), Theorems 2.3.3 and 2.4.4 (6), and
Corollary 2.4.8 in [11].

2.31 Corollary. Suppose additionally G is a complete separable normed commutative
group, v is a G valued kV k x.kV k; m/ ap Jm f measurable function,

jv.x/j �Θm.kV k; x/ for kV k x.kV k; m/ ap Jm f almost all x;

and M D ¹x WΘm.kV k; x/ > 0º.
Then, an H m measurable function � may be defined by

�.y/ D
X

x2M\f �1Œ¹yº�

v.x/ 2 G whenever y 2 Y ;

where H m refers to the m-dimensional Hausdorff measure over Y .
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Proof. We recall Corollary 2.10.11 in [11] and Theorem 3.5 (1b) in [2]. As M is countably
.H m; m/ rectifiable, the function N.f jB \M; �/ is H m measurable whenever B is a
Borel subset of X by Corollary 3.2.20 in [11]. This implies the conclusion in the special
case that vWM ! G is a Borel function with finite image and jv.x/j �Θm.kV k; x/ for
x 2M . In the general case, there exists a sequence w1; w2; w3; : : : of functions satisfying
the conditions of the special case and

lim
i!1

wi .x/ D v.x/ for kV k x.kV k; m/ ap Jm f almost all x:

Since H m
�
f ŒM \ ¹x W .kV k; m/ ap Jm f .x/ D 0º�

�
D 0, the conclusion follows.

2.32. If T2G.n;m/ is associated with the simplem vector �2
V
mRn and h2 Hom.T;R�/

satisfies
V
� h ¤ 0, then, cf. Theorem 4.3.8 (3) in [11], kerh is associated with

� x
V�

.h ı T\/.!/ whenever 0 ¤ ! 2
V� R� :

2.33 Theorem. Suppose X is an open subset of Rn, f WX ! R� is locally Lipschitzian,
m is an integer, � � m � n, V 2 RVm.X/, the prefix ap denotes .kV k; m/ approximate
differentiation, and ap J� f D k

V
� ap Df k. Moreover, suppose W is a function such that

y 2 dmnW if and only if y 2 R� and�
H m�� xf �1Œ¹yº�

�
xΘm.kV k; �/

is the weight of some Z 2 RVm��.X/ and such that in this case W.y/ D Z.
Then, the following two statements hold.

(1) The function W is L � measurable and, for L � almost all y, we have

Tanm��.kW.y/k; x/ D ker ap D f .x/ for kW.y/k almost all x:

(2) If g is kV k x ap J� f integrable, thenZ
g d.kV k x ap J� f / D

“
g dkW.y/k dL � y:

Proof. Denoting the statement that results from replacing kW.y/k in (2) by

�.y/ D
�
H m�� xf �1Œ¹yº�

�
xΘm.kV k; �/

by .2/0 and recalling Theorem 2.10.25 in [11] as well as Theorem 3.5 (1b) in [2], we read-
ily deduce .2/0 from 3.5 (2) in [15], whence, in conjunction with 2.10.19 (3) and The-
orem 3.2.22 (2) in [11], we infer that �.y/ D kW.y/k for L � almost all y by 2.25. Using
Lemma 3.2.25 and 3.2.28 (2) (4) in [11] and 2.32, we deduce that the function mapping
a 2 A onto ker ap D f .a/ 2 G.n;m � �/ is kV k xA measurable from Lemma 4.5 (1) (2)
in [18], where AD ¹a W ap J� f .a/ > 0º. In view of Example 2.23 in [19] and .2/0, we may
thus define an L � measurable Vm��.X/ valued function Z such that, for L � almost all y,

Z.y/.k/ D

Z
k.x; ker ap D f .x// d�.y/ x whenever k 2 K .X �G.n;m � �//

and it remains to show that Z.y/ is rectifiable for L � almost all y. Recalling 2.26, this
follows from 3.5 (1) in [15] in the special case that f is of class 1 to which the general case
may be reduced by means of Lemma 11.1 in [19].
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2.34 Remark. If C is an L � Vitali relation, then, for L � almost all y,

W.y/.k/ D .C / lim
S!y

L �.S/�1
Z
f �1ŒS�

k.x; ker ap D f .x// d.kV k x ap J� f / x

whenever k 2 K .U �G.n;m � �// by Theorem 2.9.8 in [11] in conjunction with The-
orem 3.5 (1b) in [2] and Example 2.23 in [19]. Thus, in case � D 1 and kδV k is a Radon
measure, we recall Theorem 2.8.17 in [11] and Remark 8.5, Example 8.7, Lemma 8.29,
and Theorem 12.1 in [19] to similarly conclude

kV @¹x W f .x/ > yºk D
�
H m�1 xf �1Œ¹yº�

�
xΘm.kV k; �/ for L 1 almost all y:

2.35 Remark. For X D Rn, the statement of 2.33 is analogous to those for flat chains
with positive densities in Theorems 4.3.2 (2) and 4.3.8 (2) (3) in [11] with U D Rn.

2.36 Theorem. Suppose X and Y are open subsets of Rn and R� , respectively, m and �
are nonnegative integers, m � n, � � �, � and � are the weights of some members of
RVm.X/ and RV�.Y /, respectively, and

M D ¹x WΘm.�; x/ > 0º; N D ¹y WΘ�.�; y/ > 0º:

Then, there holds

.H m xM/ � .H � xN/ DH mC� x.M �N/

and M �N is H mC� almost equal to ¹z WΘmC�.� � �; z/ > 0º.

Proof. We letZD¹z WΘmC�.� ��;z/> 0º and recall 2.4.10 in [11] and Theorem 3.5 (1b)
in [2]. By Theorem 3.6 (1) (2) in [15], we have � � � DH mC� xΘmC�.� � �; �/ and

ΘmC�.� � �; .x; y// DΘm.�; x/Θ�.�; y/ for � � � almost all .x; y/I

in particular, we have H mC�.Z � .M �N//D 0 and, since ΘmC�
� .� ��;.x;y// > 0 for

.x;y/2M �N by Fubini’s theorem, see 2.6.2 (2) in [11], also H mC�..M �N/�Z/D 0.
Finally, �

� xΘm.�; �/�1
�
�
�
� xΘ�.�; �/�1

�
D
�
.� � �/ xΘmC�.� � �; �/�1

�
may be verified by means of Fubini’s theorem, see 2.6.2 (4) in [11], and 2.7.

2.37 Remark. By 3.2.24 in [11], for general Borel subsets M of Rn and N of R� which
are countably .H m; m/, respectively .H �; �/, rectifiable, it may happen that

.H m xM/ � .H � xN/ ¤H mC� x.M �N/:

3. Rectifiable chains

3.1. Suppose m and n are nonnegative integers, n � 1, G is a normed commutative group,
the function ˇW

V
m Rn !

J
2

V
m Rn satisfies ˇ.�/ D � ˇ �=2 for � 2

V
m Rn, and the

Grassmann manifolds Go.n;m/ and G.n;m/ are canonically isometrically identified with
subsets of

V
m Rn and

J
2

V
m Rn, respectively, as in 3.2.28 (1) (4) of [11]. Abbreviating
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˛ D ˇjGo.n;m/, we recall from 3.2.28 (3) (4) in [11] that ˛ is an open map from Go.n;m/

onto G.n;m/ and

j˛.�/ � ˛.�0/j2 D j� � �0j2.1C � � �0/=2 for �; �0 2 Go.n;m/I

hence, Lip ˛ D 1 if m � n, Lip ˛ D 0 if m > n, and Lip
�
.˛jU/�1

�
< 1 whenever

U � Go.n;m/ with diamU < 2.
We endow the set B D Go.n;m/ �G with the metric R such that

R
�
.�; g/; .�0; g0/

�
D j� � �0j C jg � g0j for .�; g/; .�0; g0/ 2 B ,

and study the quotient � ofB induced by the action of the two-element subgroup ¹1B ;�1Bº
of isometries of B . Taking pWB ! � to be the canonical projection of B onto � , we define
maps P W� ! G.n;m/, N W� ! R, and

C W .� � �/ \ ¹.;  0/ W P./ D P. 0/º ! �

by requiring that, whenever .�; g/; .�; g0/ 2 B , we have

P.p.�; g// D ˛.�/; N.p.�; g// D jgj and p.�; g/C p.�; g0/ D p.�; g C g0/:

For T 2 G.n;m/, the set H D P�1Œ¹T º� endowed with addition Cj.H �H/ and group
normN jH forms a normed commutative group. Next, noting that infRŒ� 0�D dist.b; 0/
for b 2  , we define a metric �W� � � ! R on � by

�.;  0/ D infRŒ �  0� for ;  0 2 �:

Clearly, Lipp � 1, the metric � induces the quotient topology on � , and p is an open map.
Moreover, whenever f maps � into some metric space, there holds Lipf D Lip.f ı p/,
hence

Lipp D 1 D LipP if m � n; Lipp D 0 D LipP if m > n:

Whenever .�; g/; .�0; g0/ 2 B , we notice that

�
�
p.�; g/; p.�0; g0/

�
D inf¹j� � �0j C jg � g0j; j� C �0j C jg C g0jº
� inf¹j� � �0j C jg � g0j; 2 � j� � �0jº:

Thus, for U � Go.n;m/ with diamU < 2, the map .pj.U �G//�1, whose domain equals
P�1Œ˛ŒU ��, is locally Lipschitzian, whence we infer that the Lipschitzian map

 U D p ı
�
.˛jU/�1 � 1G

�
from ˛ŒU � �G onto P�1Œ˛ŒU ��

possesses a locally Lipschitzian inverse; moreover, we have

P. U .T; g// D T; .N ı  U /.T; g/ D jgj;  U .T; g/C  U .T; g
0/ D  U .T; g C g

0/

for T 2 ˛ŒU � and g; g0 2 G. Therefore, the maps N and

C W .� � �/ \ ¹.;  0/ W P./ D P. 0/º ! �

are locally Lipschitzian; also, if G is complete, so are the domains of these maps.
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Whenever � is a � valued function, we let j� j D N ı � . If also � is a � valued function,
� C � shall be the function with domain

.dmn �/ \ .dmn �/ \ ¹x W P.�.x// D P.�.x//º

and value �.x/C �.x/ at x in its domain. Henceforward, we will denote the metric space �
by G.n;m;G/, P by πG.n;m;G/, and the function N by j � j.

3.2. Suppose m and n are nonnegative integers, n � 1, G is a complete normed commutat-
ive group, and, for such G, the map pG WGo.n;m/�G! G.n;m;G/ denotes the quotient
map and the Cartesian product G.n;m;Z/ �G is endowed with the metric whose value at
..ı; g/; .ı0; g0// 2 .G.n;m;Z/ �G/2 equals

�.ı; ı0/C jg � g0j; where � is the metric on G.n;m;Z/:

Then, we define a map �WG.n;m;Z/ �G ! G.n;m;G/ by requiring

�.pZ.�; d/; g/ D pG.�; d � g/ for � 2 Go.n;m/, d 2 Z, and g 2 G:

Using the maps U of 3.1 withG replaced by Z, we verify that � is locally Lipschitzian and
that �j

�
π�1G.n;m;Z/Œ¹T º��G

�
!π�1G.n;m;G/Œ¹T º� is bilinear for T 2G.n;m/. Henceforward,

we will denote �.ı; g/ by ı � g and, whenever � is a G.n;m;Z/ valued function and g 2 G,
we will designate by � � g the function with the same domain as � and value �.x/ � g at
x 2 dmn � . We also note that

jı � gj � jıjjgj for ı 2 G.n;m;Z/ and g 2 G with equality if jıj � 1:

3.3. Supposem is a nonnegative integer, n is a positive integer,G is a normed commutative
group, and Y is a normed space. Then, we endow

G.n;m;G; Y / D ¹.; h/ W  2 G.n;m;G/; h 2 Hom.πG.n;m;G/./; Y /º

with a metric whose value at ..; h/; . 0; h0// 2 G.n;m;G; Y /2 equals

�.;  0/C kh ı .dmn h/\ � h0 ı .dmn h0/\k;

where � is the metric on G.n;m;G/. If G and Y are complete, so is G.n;m;G; Y /.
Whenever � is a positive integer, we employ the quotient maps

p W Go.n;m/ �G ! G.n;m;G/ and q W Go.�;m/ �G ! G.�;m;G/

to define the map

P W G.n;m;G;R�/ \
®
.; h/ W

V
m h ¤ 0

¯
! G.�;m;G/

so that, whenever T 2 G.n;m/, g 2 G, h 2 Hom.T;R�/,
V
m h ¤ 0, and T is associated

with � 2 Go.n;m/, we have

P.p.�; g/; h/ D q

� V
m.h ı .dmn h/\/.�/ˇ̌ V
m.h ı .dmn h/\/.�/

ˇ̌ ; g�:
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Clearly, dmnP is an open subset of G.n;m;G;R�/. Employing the maps  U of 3.1, we
readily verify that P is a locally Lipschitzian function. Henceforth, we will denote P.; h/
by h# . We also note that, whenever .; h/; . 0; h/ 2 G.n; m; G;R�/ satisfy

V
m h ¤ 0

and πG.n;m;G/./ D πG.n;m;G/.
0/, we have

jh# j D j j; πG.�;m;G/.h#/ D im h; h#. C 
0/ D h# C h#

0;

.i ı h/# D i#.h#/ whenever i 2 Hom.im h;R�/ and
V
m i ¤ 0;

where � is a positive integer, and

h#.ı � g/ D .h#ı/ � g whenever .ı; h/ 2 G.n;m;Z;R�/,
V
m h ¤ 0, and g 2 G:

Similarly, whenever � is a positive integer and � � m, we employ the quotient maps
pWGo.n;m/�G!G.n;m;G/ and r WGo.n;m� �/�G!G.n;m� �;G/ and recall 2.32
to define

Q W G.n;m;G;R�/ \
®
.; h/ W

V�
h ¤ 0

¯
! G.n;m � �;G/

so that, whenever T 2 G.n;m/, g 2 G, h 2 Hom.T;R�/,
V�

h ¤ 0, and T is associated
with � 2 Go.n;m/, we have

Q.p.�; g/; h/ D r

�
� x
V�

.h ı .dmn h/\/.!/ˇ̌
� x
V�

.h ı .dmn h/\/.!/
ˇ̌ ; g� whenever 0 ¤ ! 2

V� R� :

Clearly, dmnQ is an open subset of G.n;m;G;R�/. Employing the maps  U of 3.1, we
readily verify that Q is a locally Lipschitzian function. Henceforth, we will denote Q.; h/
by  xh. We finally note that, whenever .; h/; . 0; h/ 2 G.n;m;G;R�/ satisfy

V�
h ¤ 0

and πG.n;m;G/./ D πG.n;m;G/.
0/, we have

j x hj D j j; πG.n;m��;G/. x h/ D ker h; . C  0/ x h D  x hC  0 x h

and that, whenever .ı; h/ 2 G.n;m;Z;R�/,
V�

h ¤ 0, and g 2 G, we have

.ı � g/ x h D .ı x h/ � g:

3.4. Suppose m and � are nonnegative integers, n and � are positive integers,

p W Go.n;m/ � Z! G.n;m;Z/; q W Go.�; �/ �G ! G.�; �;G/;

and r WGo.nC �;mC �/ �G ! G.nC �;mC �;G/ are the quotient maps,

P W Rn ! Rn � R� ; Q W R� ! Rn � R� ;
P.x/ D .x; 0/ and Q.y/ D .0; y/ for .x; y/ 2 Rn � R� ;

and Rn � R� ' RnC� . Then, we define a map

� W G.n;m;Z/ �G.�; �;G/! G.nC �;mC �;G/

so that, whenever � 2 Go.n;m/, � 2 Go.�; �/, d 2 Z, and g 2 G, we have

�.p.�; d/; q.�; g// D r
�V

mP.�/ ^
V
�Q.�/; d � g

�
:
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Employing the maps  U of 3.1 with .n; m; G/ replaced by .n; m; Z/ and .�; �; G/,
respectively, we readily verify that � is locally Lipschitzian and that

�
ˇ̌�
π�1G.n;m;Z/Œ¹Sº� � π�1G.�;�;G/Œ¹T º�

�
! π�1G.nC�;mC�;G/Œ¹S � T º�

is bilinear whenever S 2 G.n;m/ and T 2 G.�; �/. Henceforward, we will denote �.ı; /
by ı �  and, whenever � and � are G.n;m;Z/ and G.�; �;G/ valued functions, respect-
ively, we will designate by � � � the function with domain dmn � � dmn � and value
�.x/ � �.y/ at .x; y/ 2 dmn � � dmn � . We finally note

jı �  j � jıjj j with equality if G D Z or G D R or jıj � 1;
ı � .ı0 � g/ D .ı � ı0/ � g

for ı 2G.n;m;Z/, ı0 2G.�;�;Z/,  2G.�;�;G/, and g 2G.
�
Defining G.0; 0;G/'G

and allowing for � D 0, the � operation of 3.2 could be considered a special case of the
present � operation with � D � D 0.

�
3.5. Supposem and n are integers,m � 0, n � 1, U is an open subset of Rn, H m refers to
the m-dimensional Hausdorff measure over U , and G is a complete normed commutative
group. Then, we let L.U;m;G/ denote the set of all G.n;m;G/ valued functions � such
that the following conditions are satisfied: dmn � � U , M D ¹x W j�.x/j > 0º is H m

measurable, � is H m xM measurable, for some separable subset Z of G.n;m;G/, we
have �.x/ 2 Z for H m almost all x 2M ,Z

K\M

j� j dH m <1 whenever K is a compact subset of U ;

U is countably .�;m/ rectifiable, and Tanm.�; x/ D πG.n;m;G/.�.x// for � almost all x,
where we abbreviated the measure .H m xM/ x j� j over U by �; hence, � is a � meas-
urable function and � is the weight of some member of RVm.U / by 2.7, 2.2.3 in [11],
and 2.26. Elements � and � of L.U;m;G/ are termed equivalent if and only if the func-
tions � j¹x W j�.x/j > 0º and � j¹x W j�.x/j > 0º are H m almost equal; the resulting set of
equivalence classes is denoted by

R loc
m .U;G/

and its members are called m-dimensional locally rectifiable G chains in U . Whenever
S 2 R loc

m .U;G/, we denote by kSk the Radon measure over U , which is equal to

.H m x¹x W j�.x/j > 0º/ x j� j for � 2 S;

and we employ Theorems 2.8.18 and 2.9.13 in [11] to define the function
*

S

to be the member of S characterised by requiring that, for � 2 S and a 2 U , we have
a 2 dmn

*

S if and only if

Θm.kSk; a/ > 0 and .kSk; V / ap lim
x!a

�.x/ 2 G.n;m;G/

and in this case
*

S.a/ equals that approximate limit, where V is the kSk Vitali relation
given by V D ¹.x;B.x; r// W x 2 U; 0 < r < dist.x;Rn � U/º.
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In casem>n, we haveL.U;m;G/D ¹¿º, hence R loc
m .U;G/ contains a single element,

and, if S 2 R loc
m .U;G/, then kSk D 0 and

*

S D ¿.
The considerations of this paragraph rely on 2.26 and on Theorem 3.5 (1b) in [2]. We

have
kSk DH m xΘm.kSk; �/ for S 2 R loc

m .U;G/:

For � 2 L.U;m;G/, we say that � is adapted to � if and only if � is the weight of some
member of RVm.U / if m � n, � is the zero measure over U if m > n, the domain of �
is H m almost equal to ¹x WΘm.�; x/ > 0º, and

πG.n;m;G/.�.x// D Tanm.�; x/ for � almost all xI

for instance,
*

S is adapted to kSk for S 2 R loc
m .U; G/. If S 2 R loc

m .U; G/ and A is kSk
measurable, then we define S xA 2R loc

m .U;G/ by requiring � jA 2 S xA whenever � 2 S ;
hence, kS xAk D kSk xA. Next, we define the sum

S C T 2 R loc
m .U;G/

of S and T in R loc
m .U;G/ by requiring

� D .
*

S C
*

T / [
�*
S j.U � dmn

*

T /
�
[
�*
T j.U � dmn

*

S/
�
2 S C T:

We infer
kS C T k D .kSk C kT k/ x j�j=‚ � kSk C kT k;

where ‚ DΘm.kSk; �/CΘm.kT k; �/, and note � C � belongs to S C T and is adapted
to � whenever � in S and � in T are both adapted to �; for instance, to � D kSk C kT k.
It follows that

.S C T / xA D S xAC T xA whenever A is kSk C kT k measurable,

and that R loc
m .U;G/ is a commutative group which is a complete topological group when

endowed with the group norm with value
1X
iD1

inf¹2�i ; kSk.Ki /º at S 2 R loc
m .U;G/;

whereKi DU \ ¹x W jxj � i;dist.x;Rn �U/� 1=iºI hence, ifA1;A2;A3; : : : is a disjoint
sequence of kSk measurable sets, then S x

S1
iD1Ai D

P1
iD1 S xAi : We also let

Rm.U;G/ D R loc
m .U;G/ \ ¹S W sptkSk is compactº:

Finally, with respect to the group norm whose value at S equals kSk.Rn/,

R loc
m .R

n; G/ \ ¹S W kSk.Rn/ <1º

is a complete normed commutative group; its members correspond to the m-dimensional
rectifiable G chains of Section 3.6 in [9]. We also notice that if G is equal to a finite direct
sum of cyclic groups with their standard group norm, then

R loc
m .R

n; G/ \
®
S W both kSk and .

*

S/#kSk have compact support
¯

is a subgroup thereof; if m � n, then its members correspond to the G varifolds of dimen-
sion m in Rn, as defined in Section 2.4 and Subsection 2.6 (d) of [3].
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3.6. Suppose that m is a nonnegative integer, n and � are positive integers, U and V are
open subsets of Rn and R� , respectively, G is a complete normed commutative group,
S 2 R loc

m .U;G/, f WU ! V is locally Lipschitzian, f j sptkSk is proper,

� D f#
�
kSk x k

V
m.kSk; m/ ap Df k

�
;

and Y D ¹y W Tanm.�; y/ 2 G.�;m/º.
Then, using 2.26, 2.27, 2.31, and the maps  U of 3.1 with n replaced by �, we obtain

an H m xY measurable function � , defined on a subset of Y by

�.y/ D
X

x2.dmn
*
S/\f �1Œ¹yº�

�
.kSk; m/ ap Df .x/

�
#

�*
S.x/

�
whenever y 2 Y ;

where the summation is understood to be computed in the complete normed commutative
group π�1G.�;m;G/Œ¹Tanm.�; y/º�, we define f#S in R loc

m .V;G/ by requiring that � belongs
to f#S and we have

kf#Sk D � x j� j=Θm.�; �/ � �; sptkf#Sk � f ŒsptkSk�:

Applying 2.30 to the characteristic function u of U \ ¹x W f .x/¤ g.x/º, we see that if also
gWU ! V is locally Lipschitzian, gj sptkSk is proper, and g.x/ D f .x/ for kSk almost
all x, then f#S D g#S . Employing 2.26 and 2.27, we verify that, if � in S is adapted to �,
f j spt� is proper,  D f#.� xk

V
m.�;m/ ap Df k/, and‡ D ¹� W Tanm. ;�/ 2G.�;m/º,

then Y is H m almost contained in ‡ and the function �, defined on a subset of ‡ by

�.�/ D
X

x2.dmn�/\f �1Œ¹�º�

�
.�;m/ ap Df .x/

�
#.�.x// whenever � 2 ‡;

where the sum is computed in π�1G.�;m;G/Œ¹Tanm. ; �/º�, belongs to f#S and is adapted
to  ; in particular, � is adapted to �. Therefore, we firstly obtain

.f#S/ xB D f#.S xf �1ŒB�/ whenever B is f#kSk measurable;

as in this case f �1ŒB� is kSk measurable by 2.1.5 (1) (4) in [11], secondly, in view of 3.3
and 3.5,

f#.S C T / D f#S C f#T

whenever also T 2 R loc
m .U;G/ and f j sptkT k is proper, and thirdly, using 2.5, 2.27, 2.29,

and 3.3,
.g ı f /#S D g#.f#S/

whenever also � is a positive integer, W is an open subset of R�, gW V ! W is locally
Lipschitzian, and g ı f j sptkSk is proper. Finally, the homomorphism

f# W R
loc
m .U;G/ \ ¹T W sptkT k � C º ! R loc

m .V;G/

is continuous whenever C is a relatively closed subset of U such that f jC is proper.
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3.7 . Suppose m and � are nonnegative integers, n and � are positive integers, U and
V are open subsets of Rn and R� , respectively, G is a complete normed commutative
group, S 2 R loc

m .U;Z/, and T 2 R loc
� .V; G/. Then, in view of Theorem 3.5 (1b) in [2],

Theorem 3.6 (1) (2) in [15], 2.26, 2.36, and 3.4, we define the Cartesian product

S � T 2 R loc
mC�.U � V;G/

by requiring it to contain
*

S �
*

T;

we have kS � T k � kSk � kT k with equality if G D Z or G D R or Θm.kSk; x/ � 1

for H m almost all x 2 U , and we notice that, if � in S is adapted to �, � in T is adapted
to �,

M D ¹x WΘm.�; x/ > 0º; and N D ¹y WΘ�.�; y/ > 0º;

then, dmn.
*

S �
*

T / is H mC� almost contained in M �N and .� jM/ � .� jN/ belongs to
S � T and is adapted to � � �; hence,

*

S �
*

T is adapted to kSk � kT k.
�
Examples with

H mC�.dmn.� � �/� .M �N// > 0 are readily constructed by means of 3.2.24 in [11].
�

Therefore, we may verify that

� W R loc
m .U;Z/ �R loc

� .V;G/! R loc
mC�.U � V;G/

is a continuous bilinear operation using 3.4 and 3.5. Finally, if qWU � V ! V satisfies
q.x; y/ D y for .x; y/ 2 U � V and sptkSk is compact, then

q#.S � T / D 0 if m > 0 and q#.S � T / D
�P *

S
�
� T if m D 0;

where the isomorphism G.n; 0;Z/ ' Z induced by the map  ¹1º of 3.1 is used.

3.8. Suppose �,m, and n are positive integers satisfying � �m, U is an open subset of Rn,
G is a complete normed commutative group, S 2 R loc

m .U;G/, and f WU ! R� is locally
Lipschitzian. Then, defining a G.n;m � �;G/ valued function � on a subset of U by

�.x/ D
*

S.x/ x.kSk; m/ ap Df .x/ whenever x 2 U

and employing the notation of 3.5, we infer

� jf �1Œ¹yº� 2 L.U;m � �;G/ for L � almost all y

from 2.33; for such y, we may define hS; f; yi to be the unique member of R loc
m��.U;G/

containing � jf �1Œ¹yº�, so that in particular,

Tanm��.khS; f; yik; x/ D ker .kSk; m/ ap Df .x/ for khS; f; yik almost all x:

Moreover, for L � almost all y, we additionally have

khS; f; yik D
�
H m�� xf �1Œ¹yº�

�
xΘm.kSk; �/:

Using 2.26 and 2.33, we verify that, if � in S is adapted to �, XD¹x WΘm.�; x/>0º,
� is a G.n;m � �;G/ valued function, dmn � � X , and

�.x/ D �.x/ x.�;m/ ap Df .x/ for H m almost all x 2 X;
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then, for L � almost all y, the function �jf �1Œ¹yº� belongs to hS; f; yi and is adapted
to .H m�� x f �1Œ¹yº�/ xΘm.�; �/; in particular, the function � jf �1Œ¹yº� in hS; f; yi is
adapted to khS; f; yik for L � almost all y. In view of 2.33, 3.3, and 3.5, we deduce that,
if A is kSk measurable and T 2 R loc

m .U;G/, then, for L � almost all y,

hS xA; f; yi D hS; f; yi xA and hS C T; f; yi D hS; f; yi C hT; f; yi:

Finally, takingKi DU \ ¹x W jxj � i;dist.x;Rn �U/� 1=iº, we will show that, whenever

1X
jD1

1X
iD1

inf¹2�i ; kSj k.Ki /º <1

for some Sj 2 R loc
m .U;G/, there holds

lim
j!1
hSj ; f; yi D 0 for L � almost all yI

in fact, whenever "i > 0 satisfy "i Lip.f jKi /� � 1 and ˆWR� ! ¹t W 0 < t � 1º satisfiesR
ˆ dL � D 1, applying 2.33 (2) yieldsZ

inf¹2�i ; "ikhSj ; f; yik.Ki /ºˆ.y/ dL � y � inf¹2�i ; kSj k.Ki /º:

4. Integral chains

4.1. Whenever m and n are integers, m � 0, n � 1, and U is an open subset of Rn, we
employ the quotient map pWGo.n;m/ � Z! G.n;m;Z/ and Theorem 4.1.28 in [11] to
define

�U;m W R
loc
m .U /! R loc

m .U;Z/

by letting �U;m.Q/ 2 R loc
m .U;Z/ contain � WX ! G.n;m;Z/ given by

�.x/ D p
�
EQ.x/;Θm.kQk; x/

�
for x 2 X;

where X D ¹x W 0 <Θm.kQk; x/ 2 Z and EQ.x/ 2 Go.n;m/º, whenever Q 2 R loc
m .U /;

hence, k�U;m.Q/k D kQk, � is adapted to kQk, and �U;m yields an isomorphism of
commutative groups. For such m and U , these isomorphisms have the following four
properties whenever Q 2 R loc

m .U /: Firstly, if A is kQk measurable, then

.�U;m.Q// xA D �U;m.Q xA/

by 4.1.7 in [11] and 3.5; secondly, if � is a positive integer, V is an open subset of R� ,
f WU ! V is locally Lipschitzian, and f j sptQ is proper, then

f#.�U;m.Q// D �V;m.f#Q/

by the first property, 3.6, and 4.1.7, 4.1.14, and 4.1.30 in [11]; thirdly, if � and � are
nonnegative integers, � � 1, V is an open subset of R� , and R 2 R loc

� .V /, then

�U;m.Q/ � �V;�.R/ D �U�V;mC�.Q �R/
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by 4.1.8 in [11] and 3.7; and, finally, if � is a positive integer, � � m, and f WU ! R� is
locally Lipschitzian, then

h�U;m.Q/; f; yi D �U;m��.hQ;f; yi/ for L � almost all y

by the first property, 3.8, and 4.1.7, 4.3.1, and Theorems 4.3.2 (2) and 4.3.8 in [11].
Next, whenever m and U are as before, we let

Iloc
m .U;Z/ D �U;mŒI

loc
m .U /�; Pm.U;Z/ D �U;mŒPm.U /�

and, if m � 1, we employ @W Iloc
m .U /! Iloc

m�1.U / to define the homomorphism

@Z W Iloc
m .U;Z/! Iloc

m�1.U;Z/

such that
@Z ı �U;m D �U;m�1 ı @:

Requiring the monomorphisms mapping S 2 Iloc
m .U;Z/ onto

.S; @Z S/ 2 R loc
m .U;Z/ �R loc

m�1.U;Z/ if m � 1; S 2 R loc
m .U;Z/ if m D 0

to be isometric, the groups Iloc
m .U;Z/ are endowed with the structure of complete normed

commutative groups. For S 2 Iloc
m .U;Z/ with m � 1, we have

@Z.@Z S/ D 0 if m � 2; sptk@Z Sk � sptkSk;

if � is a positive integer, V is an open subset of R� , f WU ! V is a locally Lipschitzian
map, and f j sptkSk is proper, then we have f#S 2 Iloc

m .V;Z/ with @Z.f#S/ D f#.@Z S/

by 4.1.7 in [11], and, if f WU ! R is locally Lipschitzian, then there holds

S x¹x W f .x/ > yº 2 Iloc
m .U;Z/;

@Z.S x¹x W f .x/ > yº/ D hS; f; yi C .@Z S/ x¹x W f .x/ > yº

for L 1 almost all y by 4.2.1, 4.3.1, and 4.3.4 in [11]. From 4.1.8 in [11], we infer that,
if additionally � is a nonnegative integer, � is a positive integer, and V is an open subset
of R� , we have S � T 2 Iloc

mC�.U � V;Z/ and

@Z.S � T / D .@Z S/ � T C .�1/
m
� .S � @Z T / if m > 0 < �;

@Z.S � T / D .@Z S/ � T if m > � D 0; @Z.S � T / D S � @Z T if m D 0 < �

whenever S 2 Iloc
m .U;Z/ and T 2 Iloc

� .V;Z/. Finally, we let

Im.U;Z/ D Iloc
m .U;Z/ \ ¹S W sptkSk is compactº:

4.2 Lemma. Suppose f WB ! A is a homomorphism of commutative groups.
Then, the following two conditions are equivalent.

(1) Whenever d is a nonnegative integer, the homomorphism

fd W B=dB ! A=dA;

induced by f , is univalent.
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(2) Whenever G is a commutative group, the homomorphism f ˝ 1G is univalent.

Proof. The homomorphisms fd correspond to f ˝ 1Z=dZ via the canonical isomorphisms
B=dB ' B ˝ .Z=dZ/ and A=dA ' A˝ .Z=dZ/ noted in Corollary 2 to Proposition 6
in Section 3.6, Chapter II, of [6]. If these homomorphisms are univalent, then so are
the homomorphisms f ˝ 1G whenever G is a finitely generated commutative group by
Proposition 7 in Section 3.7, Chapter II, of [6] and Theorem 2 on p. 19 of Chapter VII
in [8], whence we deduce the validity of (2) by Corollary 4 to Proposition 7 in Section 6.3,
Chapter II, of [6].

4.3 Remark. The conditions imply that f is univalent but the converse does not hold; in
fact, one may take A D Z, B D 2Z, f the inclusion map, and G D Z=2Z by Remark to
Corollary to Proposition 5 in Section 3.6, Chapter II, of [6].

4.4 Example. If f is the inclusion map of a pair .A; B/ and the conditions of 4.2 hold,
then we shall identify B ˝G with the subset .f ˝ 1G/ŒB ˝G� of A˝G. We will prove
that, whenever m is a nonnegative integer, C � U � Rn, U is open, C is closed relative
to U , we may take the pair .A;B/ to equal

.Im.U;Z/;Pm.U;Z//;
�
Iloc
m .U;Z/; Im.U;Z/

�
;

�
R loc
m .U;Z/;Rm.U;Z/

�
;�

Iloc
m .U;Z/; I

loc
m .U;Z/ \ ¹S W sptkSk � C º

�
;

.Rm.U;Z/; Im.U;Z//; or
�
R loc
m .U;Z/; I

loc
m .U;Z/

�
:

We recall 4.1. Then, concerning the first pair, we verify that, if d is a positive integer,
Q 2 Im.U /, and dQ 2Pm.U /, thenQ 2Pm.U /, by employing the representation of the
image of dQ in Pm.Rn/ by oriented convex cells obtained in 4.1.32 of [11]; concerning
the last two pairs, localising by means of slicing in the case of the last pair, we similarly
make use of the closure theorem, see 4.2.16 (2) in [11]; and the remaining pairs trivially
satisfy the conditions.

4.5. Suppose m is a nonnegative integer, n is a positive integer, U is an open subset of Rn,
and G is a complete normed commutative group. Then, we may define a bilinear operation
from R loc

m .U;Z/ �G into R loc
m .U;G/ by requiring that

S � g 2 R loc
m .U;G/

contains � � g whenever � in S2R loc
m .U;Z/ and g 2G; hence, kS � gk� jgjkSkwith equal-

ity if Θm.kSk; x/ D 1 for kSk almost all x. For S 2 R loc
m .U;Z/ and g 2 G, we notice the

following four properties. IfA is kSkmeasurable, then .S � g/xAD .S xA/ � g; if � is a pos-
itive integer, V is an open subset of R� , f WU ! V is locally Lipschitzian, and f j sptkSk
is proper, then we have f#.S � g/ D .f#S/ � g I if � is a nonnegative integer, � is a positive
integer, V is an open subset of R� , and T 2 R loc

� .V;Z/, then .S � T / � g D S � .T � g/;
and, if � is a positive integer, � � m, and f WU ! R� is locally Lipschitzian, then we have
hS � g; f; yi D hS; f; yi � g for L � almost all y.

Next, recalling 4.4, we will study the homomorphism

�U;m;G W R
loc
m .U;Z/˝G ! R loc

m .U;G/;
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characterised by

�U;m;G.S ˝ g/ D S � g for S 2 R loc
m .U;Z/ and g 2 G.

Clearly, �U;m;Z is the canonical isomorphism R loc
m .U;Z/˝ Z ' R loc

m .U;Z/,

�U;m;G ŒR
loc
m .U;Z/˝G� D R loc

m .U;G/ if G is finite;

and
�U;0;G ŒR0.U;Z/˝G� D R0.U;G/:

In general, noting �U;m;G ŒR loc
m .U;Z/˝ G� is dense in R loc

m .U; G/ and that Im.U;Z/ is
dense in R loc

m .U;Z/, we obtain that

�U;m;G ŒIm.U;Z/˝G� is dense in R loc
m .U;G/:

Whenever S 2 �U;m;G ŒIloc
m .U; Z/ ˝ G� and C is a relatively closed neighbourhood of

sptkSk in U , there holds S 2 �U;m;G Œ.Iloc
m .U;Z/ \ ¹T W sptkT k � C º/˝G�; in fact, this

is readily verified using 2.16 and 4.1. Finally, we let

Pm.U;G/ D �U;m;G ŒPm.U;Z/˝G�:

4.6 Theorem. Suppose m is a nonnegative integer, n is a positive integer, U is an open
subset of Rn, G is a complete normed commutative group, and �U;m;G is as in 4.5.

Then, �U;m;G is a monomorphism.

Proof. Suppose � 2 ker �U;m;G . Then, for some finitely generated subgroup H of G, we
have � 2 im.1R loc

m .U;Z/ ˝ i/, where i WH ! G is the inclusion map. In view of Theorem 2
on p. 19 of Chapter VII in [8], there exist integers r and s with 0 � r � s and integers dt
with dt � 2 such that

A D

rM
tD1

.Z=dtZ/˚
sM

tDrC1

Z ' H (as commutative groups):

Choosing ht 2 H corresponding to a generator of the t-th summand of A under this
isomorphism for t D 1; : : : ; s, we express

� D

sX
tD1

St ˝ i.ht / for some St 2 R loc
m .U;Z/:

Selecting �t in St adapted to � D
Ps
tD1kStk, we infer that

Ps
tD1 �t � i.ht /, which

belongs to 0 2 R loc
m .U;G/, is adapted to � by 3.5. The preceding isomorphism then yields

�t .x/ � i.ht / D 0 2 π�1G.n;m;G/Œ¹Tanm.�; x/º� for t D 1; : : : ; s

for � almost all x; hence, we have

�t .x/ 2 dtπ
�1
G.n;m;Z/Œ¹Tanm.�; x/º� for t D 1; : : : ; r;

�t .x/ D 0 2 π�1G.n;m;Z/Œ¹Tanm.�; x/º� for t D r C 1; : : : ; s

for such x. Finally, for t D 1; : : : ; r , we infer St ˝ i.ht / D 0, as St 2 dtR loc
m .U;Z/ and

dt � ht D 0, whereas, for t D r C 1; : : : ; s, we clearly have St D 0.
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4.7 Remark. Since S D 0 or d D 0 whenever S 2 R loc
m .U;Z/, d 2 Z, and d � S D 0,

we infer from Proposition 1 in Section 2.3, Chapter I, of [7] that 1R loc
m .U;Z/ ˝ i is a

monomorphism. In view of 2.3, we also note that H may fail to be isomorphic to A as
normed group, when A is endowed with the standard group norm.

4.8 Remark. If G is finite, then �n;m;G accordingly induces isomorphisms

Rm.U;Z/˝G ' Rm.U;G/ and Pm.U;Z/˝G 'Pm.U;G/

by 3.5, 4.4, and 4.5.

4.9 Corollary. Whenever m is a positive integer, there exists a unique homomorphism
(see 4.1 and 4.5)

@G W �U;m;G ŒIloc
m .U;Z/˝G�! �U;m�1;G ŒIloc

m�1.U;Z/˝G�

such that @G.S � g/ D .@Z S/ � g for S 2 Iloc
m .U;Z/ and g 2 G. Moreover, in the case

G D Z, this homomorphism agrees with

@Z W Iloc
m .U;Z/! Iloc

m�1.U;Z/:

Proof. In view of 4.6, it is sufficient for the principal conclusion to recall from 4.4 that
the canonical homomorphism from Iloc

m .U;Z/˝G into R loc
m .U;Z/˝G is univalent. The

postscript is then readily verified by means of 4.5.

4.10 Remark. Employing 4.1 and 4.5 with suitable relatively closed neighbourhoods C of
sptkSk in U , we verify that, whenever S2 �U;m;G ŒIloc

m .U;Z/˝G�, we have @G.@G S/D 0
if m � 2, sptk@G Sk � sptkSk, and

f#S 2 �V;m;G ŒIloc
m .V;Z/˝G�; with @G.f#S/ D f#.@G S/;

whenever � is a positive integer, V is an open subset of R� , and f WU ! V is a locally
Lipschitzian map such that f j sptkSk is proper; in fact, for the last equation, suitability
of C amounts to properness of f jC . Finally, from 4.1 and 4.5, we infer that, if � is a
nonnegative integer, � is a positive integer, V is an open subset of R� , then

S � T 2 �U�V;mC�;G ŒIloc
mC�.U � V;Z/˝G�;

@G.S � T / D .@Z S/ � T C .�1/
m
� .S � @G T / if m > 0 < �;

@G.S � T / D .@Z S/ � T if m > � D 0; @G.S � T / D S � @G T if m D 0 < �

for S 2 Iloc
m .U; Z/ and T 2 �V;�;G ŒIloc

� .V; Z/ ˝ G�, and, recalling 3.5 and 3.8, that, if
f WU ! R is locally Lipschitzian and S 2 �U;m;G ŒIloc

m .U;Z/˝G�, then

S x¹x W f .x/ > yº 2 �U;m;G ŒIloc
m .U;Z/˝G�;

@G.S x¹x W f .x/ > yº/ D hS; f; yi C .@G S/ x¹x W f .x/ > yº

for L 1 almost all y.
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4.11 Definition. Suppose m is a nonnegative integer, n is a positive integer, U is an open
subset of Rn, and G is a complete normed commutative group.

Then, we define the complete normed commutative group Iloc
m .U;G/ of m-dimensional

locally integral G chains in U to be the subgroup (see 4.5)

Clos
®
.S; @G S/ W S 2 �U;m;G ŒIloc

m .U;Z/˝G�
¯

of R loc
m .U; G/ �R loc

m�1.U; G/, if m � 1, and Iloc
m .U; G/ D R loc

m .U; G/, if m D 0. In the
case m � 1, we recall 4.9 and 4.10 to define the continuous homomorphism

@G W Iloc
m .U;G/! Iloc

m�1.U;G/

by @G.S; T / D .T; 0/ if m � 2 and @G.S; T / D T if m D 1 for .S; T / 2 Iloc
m .U;G/.

4.12 Remark. Defining the monomorphisms (see 4.9)

�U;m;G W �U;m;G ŒIloc
m .U;Z/˝G�! Iloc

m .U;G/;

�U;m;G.S/ D .S; @G S/ if m � 1; �U;m;G.S/ D S if m D 0;

whenever S 2 �U;m;G ŒIloc
m .U;Z/˝G�, we employ 4.10 to verify that, if m � 1, then

@G �U;m;G.S/ D �U;m�1;G.@G S/ for S 2 �U;m;G ŒIloc
m .U;Z/˝G�:

In the case G D Z, the map �U;m;G is an isometry between Iloc
m .U;Z/, as defined in 4.1,

and Iloc
m .U;G/, as defined in 4.11, by 4.9. In the general case, the next theorem will allow

us to subsequently identify Iloc
m .U;G/ with a dense subgroup of R loc

m .U;G/ by showing
that the homomorphism mapping .S; T / 2 Iloc

m .U; G/ onto S 2 R loc
m .U; G/ is univalent;

the isometric isomorphism �U;m;Z will then correspond to the identity map on Iloc
m .U;Z/

justifying our notation for G D Z.

4.13 Theorem. Suppose m and n are positive integers, U is an open subset of Rn, and G
is a complete normed commutative group.

Then, the following eight statements hold.

(1) If .0; T / 2 Iloc
m .U;G/, then T D 0.

Henceforward, we will identify Iloc
m .U; G/ with the image of the monomorphism

mapping .S; T / 2 Iloc
m .U;G/ onto S 2 R loc

m .U;G/.
(2) The subgroup Iloc

m .U;G/ is dense in R loc
m .U;G/.

(3) The subgroup �U;m;G ŒIloc
m .U;Z/˝G�, see 4.5, is dense in Iloc

m .U;G/, and the bound-
ary operator @G W Iloc

m .U;G/! Iloc
m�1.U;G/ yields the unique continuous extension of

@G W �U;m;G ŒIloc
m .U;Z/˝G�! �U;m�1;G ŒIloc

m�1.U;Z/˝G�;

see 4.9.

(4) If m � 2, then @G.@G S/ D 0 for S 2 Iloc
m .U;G/.

(5) For S 2 Iloc
m .U;G/, we have sptk@G Sk � sptkSk.

(6) If � is a positive integer, V is an open subset of R� , f WU ! V is locally Lipschitzian,
S 2 Iloc

m .U;G/, and f j sptkSk is proper, then

f#S 2 Iloc
m .V;G/ and @G.f#S/ D f#.@G S/:
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(7) If S 2 Iloc
m .U;Z/, � is a nonnegative integer, � is a positive integer, V is an open

subset of R� , and T 2 Iloc
� .V;G/, then S � T 2 Iloc

mC�.U � V;G/ and

@G.S � T / D .@Z S/ � T C .�1/
m
� .S � @G T / if m > 0 < �;

@G.S � T / D .@Z S/ � T if m > � D 0;

@G.S � T / D S � @G T if m D 0 < �:

(8) If S 2 Iloc
m .U;G/ and f WU ! R is locally Lipschitzian, then there holds

S x¹x W f .x/ > yº 2 Iloc
m .U;G/;

@G.S x¹x W f .x/ > yº/ D hS; f; yi C .@G S/ x¹x W f .x/ > yº

for L 1 almost all y.

Proof. The statement (4) is trivial. We will prove the following three assertions.
(9) If .S; T / 2 Iloc

m .U;G/ and f WU ! R is locally Lipschitzian, then

.S x¹x W f .x/ > yº; hS; f; yi C T x¹x W f .x/ > yº/ 2 Iloc
m .U;G/

for L 1 almost all y.
(10) If .S; T / 2 Iloc

m .U; G/ and C is a neighbourhood of spt.kSk C kT k/ which is
relatively closed in U , then

.S; T / 2 Clos
®
.R; @G R/ W R 2 �U;m;G ŒIloc

m .U;Z/˝G�; sptkRk � C
¯
:

(11) If .S;T / 2 Iloc
m .U;G/, � is a positive integer, V is an open subset of R� , f WU ! V is

locally Lipschitzian, and f j spt.kSkC kT k/ is proper, then .f#S;f#T / 2 Iloc
m .V;G/.

For (9) and (11), the special case that S 2 �U;m;G ŒIloc
m .U;Z/˝G� and T D @G S was

noted in 4.10. The general case of (9) then follows by approximation by means of 3.5
and 3.8. Applying 2.16 with E0 D U � IntC and E1 D spt.kSk C kT k/, we deduce (10)
from 4.10, again using 3.5 and 3.8. Selecting a relatively closed neighbourhood C of
spt.kSk C kT k/ in U such that f jC is proper, the general case of (11) follows from the
special case by approximation based on 3.6, 4.10, and (10).

To prove (1) in the casem> n, it suffices to note that Iloc
m .U;Z/ and thus also im�U;m;G

and its closure Iloc
m .U;G/ are trivial groups.

To prove (1) in the case m � n, we suppose there were .0; T / 2 Iloc
m .U; G/ such

that T ¤ 0. Six further properties could be assumed. Firstly, compactness of sptkT k
by (9); secondly, U D Rn by (11); thirdly, kT k.M/ > 0, whereM D ¹x C g.x/ W x 2 P º
for some P 2 G.n; m � 1/ and some gW P ! P? with Lip g < 1, see Kirszbraun’s
theorem 2.10.43, 3.1.19 (5), and Theorem 3.2.29 in [11]; fourthly, M D P by (11); fifthly,
kT k.M/ > kT k.Rn �M/ by applying (9) with f .x/ replaced by jx � aj for some a 2 Rn
with

lim
r!0C

kT k.B.a; r/ �M/

kT kB.a; r/
D 0;

see Theorems 2.8.18 and 2.9.11 in [11]; and, sixthly, sptkT k �M by applying (11) with f
replaced by M\, as .M\/#T ¤ 0 would be ensured by the facts

.M\/#.T xM/ D T xM and k.M\/#.T x Rn �M/k.Rn/ � kT k.Rn �M/;
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see 3.5 and 3.6. Then, taking a compact neighbourhood C of sptkT k, we could employ (10)
to secure Ri 2 �U;m;G ŒIloc

m .Rn;Z/˝ G�, with sptkRik � C for every positive integer i
such that

lim
i!1

.Ri ; @G Ri / D .0; T / in R loc
m .R

n; G/ �R loc
m�1.R

n; G/

and, recalling 3.6, additionally require that sptkRik �M by applying 3.6 and 4.10 with f
replaced by M\. Since M 2 G.n;m � 1/, this would imply Ri D 0 and thus @G Ri D 0
for every positive integer i , in contradiction to T ¤ 0.

Having established (1), the remaining conclusions pose no difficulty: (2) is implied
by 4.5; 4.12 yields (3); (5) may be inferred from (9); (6) follows from (5) and (11); (7) is
deduced from 3.7, 4.10, and (3); finally, (8) reduces to (9).

4.14 Remark. The proof of (1) was inspired by [13], p. 163.

4.15 Remark. If S 2 Iloc
m .U;G/ and C is a neighbourhood of sptkSk which is relatively

closed in U , then S belongs to the closure of �U;m;G ŒIloc
m .U;Z/˝G�\ ¹T W sptkT k � C º

in Iloc
m .U;G/ by (5) and (10).

4.16 Corollary. Suppose additionally that � is a positive integer, V is an open subset
of R� , A is an open subinterval of R, 0 2 A, t 2 A, hWA � U ! V is locally Lipschitzian,
f WU ! V and gWU ! V satisfy

f .x/ D h.0; x/ and g.x/ D h.t; x/ for x 2 U ;

S 2 Iloc
m .U;G/, and hj.spt Œ0; t� � sptkSk/ is proper.

Then, there holds h#.Œ0; t� � S/ 2 Iloc
mC1.V;G/ and

g#S � f#S D @G h#.Œ0; t� � S/C h#.Œ0; t� � @G S/; if m � 1;

g#S � f#S D @G h#.Œ0; t� � S/; if m D 0I

here, Œ0; t� in Iloc
1 .A/ is identified with �A;1.Œ0; t�/ in Iloc

1 .A;Z/, see 4.1.

Proof. Recalling 3.6 and 3.7, it suffices to compute the boundary of the chain

h#.Œ0; t� � S/ 2 Iloc
mC1.V;G/

by means of 4.13 (5) (6) (7).

4.17 Definition. Suppose m and n are integers, m � 0, n � 1, U is an open subset of Rn,
and G is a complete normed commutative group.

Then, we let Im.U;G/ D Iloc
m .U;G/ \ ¹S W sptkSk is compactº.

4.18 Theorem. Suppose n is a positive integer, U � V � Rn, i WU ! V is the inclusion
map, U and V are open, G is a complete normed commutative group, and

rm W R
loc
m .V;G/! R loc

m .U;G/; whenever m is a nonnegative integer;

are characterised by
*

T jU 2 rm.T / for T 2 R loc
m .V;G/.

Then, there holds
rmŒIloc

m .V;G/� � Iloc
m .U;G/

and, in case m � 1, also @G rm.T / D rm�1.@G T / whenever T 2 Iloc
m .V;G/. In particular,

we have i#ŒIm.U;G/� D Im.V;G/ \ ¹T W sptkT k � U º.
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Proof. Clearly, rm are continuous homomorphisms. Assuming m � 1, we thus define the
closed subgroup H of Iloc

m .V;G/ to consist of those T 2 Iloc
m .V;G/ with

.rm.T /; rm�1.@G T // 2 Clos¹.S; @G S/ W S 2 Im.U;G/º;

where the closure is taken in R loc
m .U;G/ �R loc

m�1.U;G/. Employing 4.13 (6), we readily
verify i#ŒIm.U;G/� � H . Recalling 4.1, we infer�

�V;m;G ŒIloc
m .V;Z/˝G�

�
\ ¹T W sptkT k is a compact subset of U º � i#ŒIm.U;G/�

from 4.5; hence, Im.V;G/ \ ¹T W sptkT k � U º � H by 4.15.
To proveH D Iloc

m .V;G/, we next suppose T 2 Iloc
m .V;G/ and obtain a locally Lipschit-

zian map f WV ! R such that U D ¹x W f .x/ > 0º and the set ¹x W f .x/ � yº is compact
for y > 0 from 2.14. By 4.13 (8), L 1 almost all y belong to the set Y of y 2R with
T x¹x W f .x/ > yº 2 Iloc

m .V;G/ and

@G.T x¹x W f .x/ > yº/ D hT; f; yi C .@G T / x¹x W f .x/ > yºI

therefore, we conclude T 2H because 02Clos.Y \ ¹y W y >0º/. As Iloc
m .U;G/ is isometric

to the subgroup ¹.S; @G S/ W S 2 Iloc
m .U;G/º of R loc

m .U;G/ �R loc
m�1.U;G/ and Iloc

m .U;G/

is complete, the conclusion follows.

5. Classical coefficient groups

5.1 Example. Whenever m is a nonnegative integer and n is a positive integer, we employ
the quotient map pWGo.n;m/ �R! G.n;m;R/ and Section 1 of [12] to define isomorph-
isms (of commutative groups)

�n;m W Floc
m .R

n/ \ ¹Q W Q has positive densitiesº ! R loc
m .R

n;R/

by letting �n;m.Q/ 2 R loc
m .Rn;R/ contain � WX ! G.n;m;R/ given by

�.x/ D p
�
EQ.x/;Θm.kQk; x/

�
for x 2 X;

where X D ¹x W 0 <Θm.kQk; x/ <1 and EQ.x/ 2 Go.n;m/º, whenever Q is an m-di-
mensional locally flat chain in Rn with positive densities. The formal properties of �Rn;m
listed in the first paragraph of 4.1 are shared by �n;m and have the same proof; moreover,
we have �n;m.rQ/ D �Rn;m.Q/ � r for Q 2 Iloc

m .Rn/ and r 2 R. Recalling 4.5 and 4.9, we
infer that

Pm.Rn;R/ D �n;mŒPm.Rn/�;

�Rn;m;RŒIloc
m .R

n;Z/˝ R� D �n;mŒDn;m�;

where Dn;m is the real linear span of Iloc
m .R

n/ in Floc
m .R

n/;

and, if m � 1, that

@R �n;m.Q/ D �n;m�1.@Q/ for Q 2 Dn;m:
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Next, we define commutative groups by

In;m D Floc
m .R

n/ \ ¹Q W Q and @Q have positive densitiesº if m � 1;

In;0 D Floc
0 .R

n/ \ ¹Q W Q has positive densitiesº:

Clearly, we have Iloc
0 .R

n;R/ D �n;0ŒIn;0�. For m � 1, we will establish that

Iloc
m .R

n;R/ D �n;mŒIn;m� with @R �n;m.Q/ D �n;m�1.@Q/ for Q 2 In;m:

Defining the group norm � on In;m by

�.Q/ D

1X
iD1

�
inf¹2�i ; kQkB.0; i/º C inf¹2�i ; k@QkB.0; i/º

�
for Q 2 In;m;

we note that �n;m maps Dn;m isometrically onto �Rn;m;RŒIloc
m .Rn;Z/˝ R�. Recalling that

�Rn;m;RŒIloc
m .Rn;Z/˝ R� is dense in Iloc

m .Rn;R/ and Iloc
m .Rn;R/ is complete, it therefore

suffices to prove that Dn;m is � dense in In;m, since In;m is � complete. Observing that
Fm.Rn/ \ In;m is � dense in In;m by 4.2.1, 4.3.1, and Theorem 4.3.8 in [11], this is a
consequence of the deformation theorem obtained in Section 4 of [12]; in fact, employing
Section 4 in [12] instead of the deformation theorem 4.2.9 in [11] in its derivation, one
readily verifies that one may replace Im.Rn/ and Pm.Rn/ by Fm.Rn/\ In;m and Pm.Rn/,
respectively, in the approximation theorem 4.2.20 in [11], and clearly we have g#P 2Dn;m
whenever P 2 Pm.Rn/ and gWRn ! Rn is Lipschitzian.

5.2 Example. Here, we relate the present treatment to 4.2.26 in [11]. Whenever m is a
nonnegative integer, n and d are positive integers, and U is an open subset of Rn, we let
pWGo.n;m/ � .Z=dZ/! G.n;m;Z=dZ/ denote the quotient map and define �U;m;d to
be the composition of isomorphisms

Rd
m.U / ' Rm.U /=dRm.U /

' Rm.U /˝ .Z=dZ/ ' Rm.U;Z/˝ .Z=dZ/ ' Rm.U;Z=dZ/;

where the inverse of the first isomorphism thereof is induced by the homomorphism map-
pingQ 2Rm.U / onto .Q/d 2Rd

m.U /, the second is canonical, the third is �U;m ˝ 1Z=dZ,
and the fourth is induced by �U;m;Z=dZ; see pp. 426 and 430 of [11], Corollary 2 to Pro-
position 6 in Section 3.6, Chapter II, of [6], 4.1, and 4.8, respectively. If Q 2 Rm.U / and
S D �U;m;d

�
.Q/d

�
, then the function � WX ! G.n;m;Z=dZ/, defined by

�.x/ D p
�
EQ.x/;Θm.kQk; x/ � 1

�
for x 2 X;

where X D ¹x W EQ.x/ 2 Go.n;m/ and 0 <Θm.kQk; x/ 2 Zº and 1 2 Z=dZ, belongs
to S . We readily verify the following three properties for Q 2 Rm.U / with q D .Q/d .
Firstly, k�U;m;d .q/k D kQkd ; secondly,

.�U;m;d .q// xA D �U;m;d .q xA/ whenever A is kQkd measurableI

and, thirdly,
f#.�U;m;d .q// D �U;m;d .f#q/
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whenever � is a positive integer, V is an open subset of R� , and f WU ! V is locally
Lipschitzian. Recalling 4.5 and 4.9, we obtain that

Pm.U;Z=dZ/ D �U;m;d ŒPd
m.U /�;

�U;m;Z=dZŒIm.U;Z/˝ .Z=dZ/� D �U;m;d Œ¹.Q/d W Q 2 Im.U /º�;

@Z=dZ �U;m;d .q/ D �U;m�1;d .@q/ whenever q D .Q/d , Q 2 Im.U /, and m � 1:

Clearly, I0.U;Z=dZ/ D �U;0;d ŒId0 .U /�. For m � 1, we will establish that

Im.U;Z=dZ/ D �U;m;d ŒIdm.U /�;

@Z=dZ �U;m;d .q/ D �U;m�1;d .@q/ for q 2 Idm.U /:

We abbreviate

D D ¹.Q/d W Q 2 Im.U /º and E D �U;m;Z=dZŒIm.U;Z/˝ .Z=dZ/�;

define the group norm � on Im.U;Z=dZ/ by

�.S/ D .kSk C k@Z=dZ Sk/.U / for S 2 Im.U;Z=dZ/;

and notice that �U;m;d jD is an isometry (onto E) with respect to Nd and � . One may
readily infer the conclusion by combining the following four assertions, to be shown
for every compact subset K of U . Firstly, Idm.U / \ ¹r W sptd r � Kº is Nd complete;3

secondly, Im.U;Z=dZ/ \ ¹S W sptkSk � Kº is � complete; thirdly, each q 2 Idm.U / with
sptd q � IntK belongs to the Nd closure of D \ ¹r W sptd r � Kº; and, fourthly, each
S 2 Im.U;Z=dZ/ with sptkSk � IntK belongs to the � closure of E \ ¹T W sptkT k �Kº.
The first two are elementary, the fourth follows from 4.15, and the special case U D Rn
of the third is a consequence of the approximation theorem (4.2.20)d on p. 432 of [11].
Observing that i# induced by the inclusion map i WU ! Rn maps maps D and Idm.U / onto
¹.Q/d WQ 2 Im.Rn/; sptdQ � U º and Idm.U /\ ¹r Wsptd r � U º, respectively, the general
case of the third reduces to the special case thereof.

Finally, we record the structural theorem

Idm.U / D ¹.Q/
d
W Q 2 Im.U /º

from Corollary 1.5 in [27]; in fact, the cited source treats the main case U D Rn to which
the case U ¤ Rn is readily reduced (for instance, by means of 4.5).

5.3 Remark. In line with the list of corrections to [11] that H. Federer maintained and
distributed, we mention that, in contrast with the structural theorem, it had been known that

¹.Q/dK W Q 2 Im;K.U /º

is in general a proper subset of Idm;K.U /; in fact, we will show that, taking S and f as
on p. 426 of [11], m D d D 2, U D R6, and K D sptS , an example is furnished by .S/2K .

3As is implicit in 4.2.26 in [11], we define sptd t for t 2 Fd
m.U / by requiring sptd .T /d D sptd T for

T 2 Fm.U /.
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Clearly, S 2 R2;K.R6/ and F 2
K.@S/ D 0, so that we have .S/2K 2 I22;K.R

6/. Moreover, if

Q 2 F2;K.R6/ and .Q/2K D .S/
2
K ;

then, since R3;K.R6/ D ¹0º so that F2;K.R6/ D R2;K.R6/, that FK.R/ DM.R/ when-
ever R 2 F2;K.R6/, and that 2F2;K.R6/ is FK closed in F2;K.R6/, we conclude

Q � S 2 2R2;K.R6/;

whence we infer that

Θ2.kQk; x/ is an odd integer for H 2 almost all x 2 K:

Using that B D f ŒS2� is a nonorientable connected compact two-dimensional submanifold
of class1 of R6, we construct c > 0 such that M.@.Q xCj // � cj�1 for every positive
integer j , where Cj D f ŒR3 \ ¹x W jxj D j�1=2º�, so that

M.@Q/ �

1X
jD1

M.@.Q xCj // D1I

in fact, since F3;B.R6/ � F3;B.R6/ D ¹0º by 4.1.15 in [11], we notice FB.R/ DM.R/

for R 2 F2;B.R6/ by 4.1.24 in [11] and FB.R/ DM.R/ for R 2 F2;B.R6/, whence we
firstly deduce that

inf¹M.@R/ W R 2 F2;B.R6/;M.R/ D 1º > 0

by 4.1.31 (2) and the compactness theorem 4.2.17 (1) in [11], and then that we may take c
to be the infimum of the set of numbers M.@R/ corresponding to all R 2 R2;B.R6/ such
that Θ2.kRk; x/ is an odd integer for H 2 almost all x 2 B , because c > 0 by the closure
theorem 4.2.16 (2) and the compactness theorem 4.2.17 (2) in [11].

5.4 Remark. The preceding remark shall complete the literature as H. Federer’s list of
corrections – which does not contain proofs of the above statements – remains unpublished,
and the corrections in Remark 2.5 in [22] and Section 4 of [16] are not entirely satisfactory.
Regarding [16], a revised version will appear in [17].

6. Constancy theorem

6.1 Theorem. Suppose m and n are positive integers, U is an open subset of Rn, M is a
connected m-dimensional submanifold of class 1 of U , � is an m vector field orienting M ,
G is a complete normed commutative group, S 2 Iloc

m .U;G/,

M \ sptkSk ¤ ¿; sptk@G Sk � U �M;

and .sptkSk/ �M is closed relative to U .
Then, for some nonzero member g of G, there holds (see 4.1)

sptkS � �U;m..H m xM/ ^ �/ � gk � U �M:
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Proof. We firstly establish that if either m D 1 or m > 1 and the statement of the theorem
holds withm replaced bym� 1, then the following assertion holds: if �1 < ai < bi <1

for i D 1; : : : ; m,

C D Rm \ ¹x W ai � xi � bi for i D 1; : : : ; mº;

and T 2 Im.Rm; G/ satisfies sptk@G T k � BdryC , then there exists g in G with

T D �Rm;m.Œa1; b1� � � � � � Œam; bm�/ � g:

We abbreviate

B D Rm \ ¹x W x1 D b1º and I D �R;1.Œ0; 1�/;

and define f WRm ! Rm and hWR � Rm ! Rm by

f .x/ D .a1; x2; : : : ; xm/;

h.t; x/ D .1 � t /f .x/C tx D ..1 � t /a1 C tx1; x2; : : : ; xm/

for .t; x/ 2 R � Rm. We see from 4.16 that

T D h#.I � ..@G T / xB//I

in fact, in view of 3.6, we conclude that f#T D 0, that h#.I � T / D 0, and likewise, since
H m.hŒR� ..BdryC/� B/�/D 0, that h#

�
I � ..@G T /x.Rm � B//

�
D 0. IfmD 1, then

B D ¹b1º and there exists g 2 G with .@G T / xB D �R;0.Œb1�/ � g and

T D �R;1
�
h#.Œ0; 1� � Œb1�/

�
� g D �R;1.Œa1; b1�/ � g;

both by 4.1 and 4.5. If m > 1, then, assuming T ¤ 0, denoting the standard basis of Rm by
e1; : : : ; em, and taking n D m,

U D Rm \ ¹x W x1 > a1, ai < xi < bi for i D 2; : : : ; mº; M D B \ U;

�.y/ D e2 ^ � � � ^ em for y 2M; S D rm�1.@G T / 2 Iloc
m�1.U;G/, see 4.18;

hence B \ BdryC and M D U \ BdryC are H m�1 almost equal, @G S D 0 by 4.13 (4),
and ¿¤ sptkSk �M since T ¤ 0, we apply the statement of the theorem withm replaced
by m � 1 to infer, for some g 2 G, that

S D �U;m�1
�
.H m�1 xM/ ^ �

�
� gI

thus,
.@G T / xB D �Rm;m�1

�
.H m�1 xM/ ^ �

�
� g

D �Rm;m�1
�
�#.Œa2; b2� � � � � � Œam; bm�/

�
� g;

where �WRm�1 ! Rm is defined by �.y/ D .b1; y1; : : : ; ym�1/ for y 2 Rm�1, so that 4.1
and 4.5 yield

T D �Rm;m
�
h#.Œ0; 1� � �#.Œa2; b2� � � � � � Œam; bm�//

�
� g

D �Rm;m.Œa1; b1� � � � � � Œam; bm�/ � g;
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because h.t; �.y// D ..1 � t /a1 C tb1; y1; : : : ; ym�1/ for .t; y/ 2 R � Rm�1.
Secondly, we will show that the special case nDm and U DM D Rm of the statement

of the theorem holds for m whenever the assertion of the first paragraph holds for this m.
Abbreviating

Cr D Rm \ ¹x W jxi j � r for i D 1; : : : ; mº;

we see that L 1 almost all positive real numbers belong to the setA of 0 < r <1 satisfying
S xCr 2 Im.Rn;G/ and sptk@G.S xCr /k � BdryCr by 4.13 (8). The assertion of the first
paragraph then yields ˛WA! G with

S xCr D �Rm;m
�
.L m xCr / ^ �

�
� ˛.r/ for r 2 A:

Recalling 3.5 and 4.5, we compute

�Rm;m
�
.L m xCr / ^ �

�
� .˛.s/ � ˛.r//

D S x.Cs � Cr / � �Rm;m
�
.L m x.Cs � Cr // ^ �

�
� ˛.s/

whenever r; s 2 A and r < s and conclude that im˛ consists of a single point g 2 G, that
S D �Rm;m.L m ^ �/ � g, and that g ¤ 0.

It remains to prove that the statement of the theorem holds form whenever the assertion
of the first paragraph holds for this m. For this purpose, we consider the class � of all
.V; h/ such that V is an open subset U , h 2 G, and

M \ V ¤ ¿; V \ sptkSk �M; .H m xM \ V / ^ � 2 R loc
m .U /;

V \ spt
S � �U;m�.H m xM \ V / ^ �

�
� h
 D ¿:

To establish M D
S
¹M \ V W .V; h/ 2 �º, we suppose a 2M , recall that nontrivial

open balls in Rm are diffeomorphic to Rm, and employ 3.1.19 (4) in [11] in constructing
an open subset V of U with a 2 V , V \ sptkSk �M , and H m.M \ V / <1 as well as
maps �WV ! Rm and  WRm ! V of class 1 such that

� ı  D 1Rm ; M \ V D im :

We observe that  and �j im are proper, and choose an orientation � of Rm such that

 #.L
m
^ �/ D .H m xM \ V / ^ � 2 R loc

m .V /

by means of 4.1.31 in [11] and 3.6. As V \ sptk@G Sk D ¿ by our hypothesis and 4.13 (4),
we may apply 4.18 (with the roles ofU and V exchanged) to obtain S 0D rm.S/2 Iloc

m .V;G/

with @G S 0 D 0. Defining T D �#S
0 2 Iloc

m .Rm; G/ with @G T D 0 by 4.13 (6), the special
case yields h 2 G with

T D �Rm;m.L
m
^ �/ � h:

Noting  ı �j im D 1im , we conclude

S 0 D  #T D �V;m
�
.H m xM \ V / ^ �

�
� h

by 3.6 and 4.5, whence we infer .V; h/ 2 �.
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If .V1; h1/ and .V2; h2/ belong to � and M \ V1 \ V2 ¤ ¿, then h1 D h2; in fact, we
have H m.M \ V1 \ V2/ > 0 and, by 3.5 and 4.5, we have

V1 \ V2 \ spt
�U;m�.H m xM \ V1 \ V2/ ^ �

�
� .h1 � h2/


� spt

�U;m�.H m xM \ V1/ ^ �
�
� h1 � �U;m

�
.H m xM \ V2/ ^ �

�
� h2


with the latter set not meeting V1 \ V2. Since M \ sptkSk ¤ ¿, we can select a nonzero
g 2 G with

‡ D � \ ¹.V; h/ W h D gº ¤ ¿

and infer that
S
¹M \ V W .V; g/ 2 �º is a nonempty, relatively open and relatively closed

subset of M , hence equals M . We conclude ‡ D �. Since g ¤ 0 and

kSk xV D .H m xM \ V /jgj for .V; g/ 2 �

by 4.5, we also have .H m xM/ ^ � 2 R loc
m .U / and the conclusion follows.

6.2 Remark. The preceding theorem is modelled on 4.1.31 (2) in [11] where the case
G D R is treated. In the present case, orientability of M must be part of the hypotheses
(rather than the conclusion) by p. 432 in 4.2.26 of [11] and 5.2.

6.3 Remark. The special case U DRn andM anm-dimensional cube is a basic ingredient
of deformation theorems. For G D Z or G D R, this follows from the constancy theorem
derived in 4.1.4 and 4.1.7 of [11]. An alternative approach for G D R, designed to be
extendable to G D Z=dZ, is given in 4.2.3 of [11]. However, the flat chain X x Rm � H
constructed in that proof does not belong to the domain of  # as claimed; this is easily
circumvented for G D R but requires some further arguments for G D Z=dZ. To avoid
this difficulty and as our boundary operator @G is not yet defined on all of R loc

m .U;G/, the
present proof (applicable to locally integral chains only) merges the extensions of 4.1.31 (2)
and 4.2.3 in [11] to general G in a simultaneous inductive argument by means of the
restriction operators rm constructed in 4.18. Finally, in the context of the flat G chains
of [9], a different approach to the special case is chosen in Theorem 6.3 in [10] on which
a constancy theorem for chains in Lipschitz submanifolds of complete separable metric
spaces (see Theorem 7.6 in [10]) is based.

7. Flat chains

7.1 . Suppose n is a positive integer, U is an open subset of Rn, and G is a complete
normed commutative group. Whenever m is a nonnegative integer, we note

Hm D
�
Iloc
m .U;G/ � Iloc

mC1.U;G/
�
\ ¹.S; T / W S C @G T D 0º

is a closed subgroup of R loc
m .U;G/ �R loc

mC1.U;G/ by 4.13 (1) (4) and recall 2.2 to define
the complete normed commutative group F loc

m .U; G/ of m-dimensional locally flat G
chains in U to be the quotient�

R loc
m .U;G/ �R loc

mC1.U;G/
�ı
Hm:
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Since the composition of canonical continuous homomorphisms

R loc
m .U;G/! R loc

m .U;G/ �R loc
mC1.U;G/! F loc

m .U;G/

is univalent, we will henceforth identify R loc
m .U;G/ with its image in F loc

m .U;G/. When-
ever m is a positive integer, noting that the continuous homomorphisms

bm W R
loc
m .U;G/ �R loc

mC1.U;G/! R loc
m�1.U;G/ �R loc

m .U;G/;

defined by bm.S;T /D.0;S/ for .S;T /2R loc
m .U;G/�R loc

mC1.U;G/, satisfy the conditions
bmŒHm��Hm�1 by 4.13(4), bm ıbmC1 D 0, and .@G S;�S/2Hm�1 for S 2 Iloc

m .U;G/,
they induce continuous quotient homomorphisms

@G W F
loc
m .U;G/! F loc

m�1.U;G/;

with @G.@G S/ D 0 for S 2 F loc
mC1.U;G/, such that the diagram

Iloc
m .U;G/

//

@G

��

R loc
m .U;G/

// F loc
m .U;G/

@G

��
Iloc
m�1.U;G/

// R loc
m�1.U;G/

// F loc
m�1.U;G/

commutes. Whenever m is a nonnegative integer, we notice that the quotient homomorph-
ism of R loc

m .U;G/ �R loc
mC1.U;G/ onto F loc

m .U;G/ maps

.S; T / 2 R loc
m .U;G/ �R loc

mC1.U;G/ onto S C @G T 2 F loc
m .U;G/I

in particular,

F loc
m .U;G/ D

®
S C @G T W S 2 R loc

m .U;G/; T 2 R loc
mC1.U;G/

¯
;

and we record that
Pm.U;G/ is dense in F loc

m .U;G/I

in fact, to prove the second assertion, recalling 4.1, 4.5, and 4.9, we notice that the subgroup
�U;m;G ŒIm.U;Z/˝G� is dense in F loc

m .U;G/ and observe that Rn may be replaced by U
in Corollary 4.2.21 of [11].

7.2 Example. Suppose m is a nonnegative integer, n is a positive integer, and U is an open
subset of Rn. Recalling 2.23 and 4.1, the commutative groups F loc

m .U / and F loc
m .U;Z/

are isomorphic via

F loc
m .U / '

�
R loc
m .U / �R loc

mC1.U /
�ı

ker � ' F loc
m .U;Z/;

where the second isomorphism is induced by �U;m � �U;mC1; in fact, �U;m � �U;mC1 maps

ker � D
�

Iloc
m .U / � Iloc

mC1.U /
�
\ ¹.Q;R/ W QC @R D 0º

onto �
Iloc
m .U;Z/ � Iloc

mC1.U;Z/
�
\ ¹.S; T / W S C @Z T D 0º:
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The preceding isomorphisms

F loc
m .U / ' F loc

m .U;Z/

commute with the boundary operators @ and @Z. Finally, topologising the commutative
group F loc

m .U / as in 4.3.16 of [11], they also are homeomorphisms because 2.16 and 2.22
allow us to employ slicing to verify that basic neighbourhoods of 0 in F loc

m .U / are given
by the family of sets

�
�
.R loc

m .U / �R loc
mC1.U // \ ¹.Q;R/ W .kQk C kRk/.W / < ıº

�
corresponding to all pairs .W; ı/ such that W is open, ClosW is a compact subset of U ,
and ı > 0.

7.3 Example. Proceeding as in 7.2, with 2.23 and 4.1 replaced by 2.20 and 5.1, we obtain
an isomorphism of chain complexes with

Floc
m .R

n/ ' F loc
m .Rn;R/:
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