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Chaos for foliated spaces and pseudogroups

Ramón Barral Lijó

Abstract. We generalize “sensitivity to initial conditions” to foliated spaces and
pseudogroups, offering a definition of Devaney chaos in this setting. In contrast to
the case of group actions, where sensitivity follows from the other two conditions of
Devaney chaos, we show that this is true only for compact foliated spaces, exhibit-
ing a counterexample in the non-compact case. Finally, we obtain an analogue of the
Auslander–Yorke dichotomy for compact foliated spaces and compactly generated
pseudogroups.

1. Introduction

There are several definitions of chaos for dynamical systems (Li–Yorke chaos, positive
entropy, etc.), but in this article we will consider only Devaney’s, first introduced in [13].

Definition 1.1 (Devaney chaos). A continuous map f WX ! X on a metric space .X; d/
is chaotic if

(i) for all non-empty open U; V � X , there is n � 0 such that

f n.U / \ V ¤ ;

(f is topologically transitive),
(ii) the set of periodic points is dense in X (f has density of periodic points), and
(iii) there is c > 0 such that, for every x 2X and r > 0, there are y 2B.x; r/ and n � 0

satisfying
d.f n.x/; f n.y// � c

(f is sensitive to initial conditions).

This definition can be readily adapted for group actions G Õ X by substituting g 2G
in place of f n (n 2N/ above. (We will adhere to the convention where 0 2 N.) Topo-
logical transitivity conveys the indecomposability of the dynamical system, whereas (ii),
according to Devaney himself, provides “an element of regularity” ([13], p. 50). Sensitiv-
ity to initial conditions, for its part, expresses what is commonly known as the “butterfly
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effect”. This rough sketch may lead to the impression that (iii) alone imbues this definition
with its chaotic nature; surprisingly, it was proved later that this condition is, in fact,
redundant.

Theorem 1.2 ([7]). If a continuous map f WX ! X on a metric space .X; d/ satisfies (i)
and (ii), then it also satisfies (iii).

This result was later generalized to topological group and semigroup actions [25, 31].
The reader should bear in mind that these results hold even when the phase space is not
compact.

If the local behaviour of f around a point x is not sensitive to initial conditions, then
there is an assignment " 7! ı."/ such that

d.x; y/ < ı."/ H) d.f nx; f ny/ < " for every y 2X; n2N;

and we say that x is a point of equicontinuity. If the set of points of equicontinuity is dense
in X , we call the dynamical system almost equicontinuous; if every point is of equicon-
tinuity with the same modulus " 7! ı."/, then the system is equicontinuous. This rough
opposition between chaos and equicontinuity is rigorously formulated by the Auslander–
Yorke dichotomy.

Theorem 1.3 (Auslander–Yorke dichotomy, see Corollary 2 in [6]). Let X be a compact
space and let f WX ! X be a continuous map such that .X; f / is minimal. Then f is
either equicontinuous or sensitive to initial conditions.

After this brief review, we can state the aim of the present paper: to study topological
chaos for foliations and their generalization, foliated spaces; as we will see, this requires
considering pseudogroups too. Recall that a foliated space is a topological generalization
of a foliation where the choice of local transversal models is not restricted to manifolds:
they are only required to be Polish spaces (see Section 2.5). The Smale–Williams attractor
provides an example of a foliated space that is not a foliation – it is locally homeomorphic
to the product of the real line and the Cantor set.

Thus, our work fits into the broader field of topological dynamics for foliated spaces,
which has received much attention of late. The most studied foliation dynamics are the
equicontinuous, featuring the celebrated tools of the Molino theory for Riemannian foli-
ations [28]. Equicontinuity was generalized to foliated spaces and pseudogroups in [3,
24, 28, 30, 33] with varying degrees of generality, the methods of [3] in particular being
a main source of inspiration for this paper. Molino’s theory itself has also been general-
ized in [4, 14, 15], giving rise to the study of wild solenoids and Cantor actions, which
have a complicated interplay between local and global behavior [2, 22, 23, 26]. There has
been some recent work on complex dynamics, concerning Fatou–Julia decompositions for
holomorphic foliations [5, 17].

In order to analyze foliated spaces from a dynamical point of view, we regard them
as generalized dynamical systems where the leaves play the role of the orbits; as the title
of [11] reads, they are dynamical systems “in the absence of time.” We may identify the
paper on topological entropy for foliations by Ghys, Langevin, and Walczak [18] as the
first study on chaotic foliations, even though the word “chaos” is never mentioned. In fact,
it looks like the term “chaotic foliation” has only appeared twice in the literature; its debut
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was in the context of general relativity, where Churchill was trying to provide a definition
of chaos invariant by relativistic reparametrizations of time:

Definition 1.4 (Churchill chaos, [11]). A foliation is chaotic if
(i) there is a dense leaf,
(ii) the set of compact leaves is dense, and
(iii) there are at least two different leaves.

Items (i) and (ii) correspond to items (i)–(ii) in Definition 1.1, whereas (iii) avoids the
trivial scenario where the foliation consists of a single leaf. Churchill did not include a
foliation-theoretic definition of sensitivity: only foliations by curves arising from a flow
were considered.

More recently, Bazaikin, Galaev, and Zhukova have provided the following definition
of chaos for foliations:

Definition 1.5 (Bazaikin–Galaev–Zhukova chaos, [9]). A foliation is chaotic if
(i) there is a dense leaf, and
(ii) the set of closed leaves is dense.

They have used this definition to study chaos for Cartan foliations, relating it to con-
ditions in their holonomy pseudogroups and global holonomy groups. Of course, their
definition coincides with Churchill’s when the ambient manifold is compact and there
are at least two different leaves. Again, it does not take into account sensitivity to initial
conditions.

Regarding examples of chaotic foliated spaces (according to the definitions above),
besides those appearing in [9, 11], the author was involved in the recent study of a hyper-
bolic version of the cut-and-project method of tiling theory [1]. This yields Delone subsets
of R whose continuous hulls, which are naturally foliated spaces, are chaotic with respect
to the natural action by translations.

This discussion motivates the first contribution of the present paper: we introduce a
suitable definition of sensitivity to initial conditions for foliated spaces. We phrase this
definition in terms of holonomy pseudogroups, which have long been used as dynam-
ical models for foliations. A pseudogroup in a topological space X is a collection of
homeomorphisms between open subsets of X containing the identity and closed under
composition, inversion, restriction, and combination of partial maps (see Section 2.2).
H. Nozawa and the author [8] have developed a slightly different dynamical model in
order to define sensitivity and Devaney chaos for closed saturated subsets of the Gromov
space of pointed colored graphs. These subsets resemble singular foliations by graphs and
do not admit a holonomy pseudogroup in the usual sense. On a very related note, Flores
and Mǎntoiu [16] have recently studied the topological dynamics of groupoid actions.

After some preliminary results in Section 2, we discuss our definition of sensitivity for
pseudogroups in Section 3.1: showing first why a naive approach fails, we follow the ideas
present in [3] in order to arrive at Definition 3.9. We also provide definitions for almost
equicontinuity and density of periodic orbits, making use of the latter to define Devaney
chaos as follows:
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Definition 1.6 (Devaney chaos for pseudogroups). A pseudogroup G Õ X is chaotic
if it is topologically transitive, has density of periodic orbits, and is sensitive to initial
conditions.

The next results test whether this new definition of sensitivity constitutes a satisfac-
tory generalization of the original one. We start by examining pseudogroups generated by
group actions.

Theorem 1.7. If G is a finitely generated group acting on a compact Polish space X ,
then the action is sensitive to initial conditions if and only if the pseudogroup generated
by the action is.

We also show in Section 3.4 that the conditions on G and X are necessary for the
result to hold. So, in general, sensitivity of the pseudogroup induced by a group action is
strictly stronger than sensitivity of the group action itself.

Theorem 1.8. There are group actions G Õ X that are sensitive to initial conditions but
such that the pseudogroup generated by the action is not, where either

• G is the free group on two generators and X D T2 � Z, where T2 is the 2-torus, or

• G is the free group on countably many generators and X D T2.

These actions are constructed using linked twists, a family of classical examples of
chaotic dynamical systems (see Section 2.6 and the references therein). We will later recy-
cle these counterexamples in the proof of Theorem 1.16.

We continue in Section 3.5 with our three main contributions regarding pseudogroup
dynamics. Our first result addresses the following issue: if we are to use pseudogroups
as dynamical models for foliated spaces, all our new definitions must be invariant by
(Haefliger) equivalences. This is because the holonomy pseudogroup of a foliated space
is only well defined up to equivalence (see Sections 2.3 and 2.5).

Theorem 1.9. Sensitivity to initial conditions, density of periodic orbits, Devaney chaos,
and almost equicontinuity are invariant by equivalences of pseudogroups acting on locally
compact Polish spaces.

The corresponding result for equicontinuity was proved in [3]. The main difficulty
in Theorem 1.9 is proving the invariance of sensitivity. The reason why this is not trivial
is that sensitivity and almost equicontinuity involve a metric, which is a global object;
equivalences, however, are made up of local homeomorphisms, so we have to put in some
work to construct a global metric using the information carried over by the local maps.

Our next objective will be to study whether Theorems 1.2 and 1.3 extend to the
pseudogroup setting. We manage to do so for compactly generated pseudogroups (see
Section 2.4 for the definition of compact generation).

Theorem 1.10 (Auslander–Yorke dichotomy for pseudogroups). Let G be a compactly
generated and topologically transitive pseudogroup acting on a Polish space. Then G is
either sensitive to initial conditions or almost equicontinuous. Moreover, if G is minimal,
then it is either sensitive to initial conditions or equicontinuous.
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Theorem 1.11. If G is a compactly generated and topologically transitive pseudogroup
acting on a Polish space which has density of periodic orbits, then it is sensitive to initial
conditions.

Even though Theorem 1.2 holds for actions on non-compact spaces, we exhibit in
Section 3.6 a non-compactly generated, countably generated pseudogroup that is topologi-
cally transitive and has density of periodic orbits, but it is not sensitive to initial conditions.
This shows that compact generation cannot be dropped in Theorem 1.11.

At this point, we turn our attention to studying chaos for foliated spaces. By virtue
of Theorem 1.9, we can define almost equicontinuity and sensitivity using the holonomy
pseudogroup.

Definition 1.12. A foliated space is sensitive to initial conditions or almost equicontinu-
ous if its holonomy pseudogroup is.

Regarding density of periodic orbits and Devaney chaos, we encounter an additional
subtlety: it is easy to check that density of periodic orbits for the holonomy pseudogroup
implies density of closed leaves, but one might also consider the stronger condition of
density of compact leaves. We choose the latter option because the counterexample we
exhibit in Theorem 1.16 satisfies this stronger condition. On the other hand, we run into the
problem that density of compact leaves cannot be formulated as a equivalence-invariant
property of the holonomy pseudogroup (see Example 2.11).

Definition 1.13. A foliated space is chaotic if it is topologically transitive, it has a dense
set of compact leaves, and it is sensitive to initial conditions.

Note that, by the previous discussion, chaoticity of the foliated space is strictly stron-
ger than chaoticity of the holonomy pseudogroup. We show in Section 4.1 an explicit
example of this behavior.

Our next step is to extend Theorems 1.2 and 1.3 for compact foliated spaces, where
density of compact leaves and of closed leaves coincide. By the previous discussion, these
results follows immediately from Theorems 1.11 and 1.10.

Theorem 1.14. Let X be a compact Polish foliated space. If X is topologically transitive
and has density of compact leaves, then it is sensitive to initial conditions.

Theorem 1.15. Let X be a compact and topologically transitive Polish foliated space.
Then X is either sensitive to initial conditions or almost equicontinuous. Moreover, if X
is minimal, then it is either sensitive to initial conditions or equicontinuous.

In analogy to the case of pseudogroups, where we need compact generation in The-
orem 1.11, compactness cannot be dropped in Theorem 1.14; a simple counterexample
with totally disconnected transversals is constructed in Section 4.2. One might wonder
whether it is possible to find similar counterexamples among non-compact foliations, per-
haps with smooth transversal dynamics. We conclude the paper in Sections 4.3 and 4.4
with the following counterexample.

Theorem 1.16. There is a foliation by surfaces on a smooth 4-manifold that is topo-
logically transitive and has a dense set of compact leaves, but is not sensitive to initial
conditions. This foliation is C1 and transversally affine.
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We can offer the following geometrical interpretation of the lack of sensitivity in The-
orem 1.16. For this non-compact, smooth 4-manifold M , there is a locally finite foliated
atlas .Ui ; �i / (where �i WUi ! R2 � Ti and Ti � R2 are the local transversals) satisfying
the following condition: every holonomy transformation is an affine map, and there is a
leaf L such that every holonomy transformation h between transversals Ti ! Tj induced
by a path in L is an isometry with respect to the Euclidean metric on Ti ; Tj � R2.

The results of this paper confirm that our definition of chaos is the right one if we
restrict our attention to compactly generated pseudogroups and compact foliated spaces.
However, as soon as we drop compactness, it seems to become a strong condition, at least
when compared to the case of group actions. Even though it is invariant by equivalences
and it is phrased in a way that mirrors other pseudogroup dynamical properties in the
literature, it is an open question whether one can find a definition better suited to the non-
compact case. The examples in Sections 3.6 and 4 suggest that perhaps one should require
only a meager set of equicontinuity points. The author ignores whether this condition
could extend the notion of sensitivity to actions of countably generated pseudogroups
satisfactorily.

2. Preliminaries

2.1. Metric spaces

In this paper, we consider metric functions d WX �X ! Œ0;1� that may attain an infinite
value. A metric on a topological space is said to be compatible if the underlying topology
agrees with that generated by the open balls. A topological space is Polish if it is separable
and it admits a compatible complete metric; that is, one where every Cauchy sequence
converges. All topological spaces will be implicitly assumed to be Polish.

A shrinking of an indexed open covering ¹U˛º˛ 2A of some topological space is a
covering ¹V˛º˛ 2A with the same index set and such that V˛ � U˛ for every ˛2A. A cov-
ering ¹U˛º˛ 2A of X is locally finite if every point x 2X has an open neighborhood W
that intersects only finitely many of the sets U˛ . We will make use of the following result
(see, e.g., p. 227 of [29]):

Lemma 2.1 (Shrinking lemma). Let X be a Polish space. If ¹Unºn2N is a locally finite
countable open covering of X , then ¹Unºn2N admits a shrinking.

2.2. Partial maps and pseudogroups

Let X and Y be topological spaces. A partial map from X to Y is a map f WA ! Y

with domain a subset A � X . Given a partial map f , let dom f and im f denote the
domain and image of f , respectively. We say that a partial map f from X to Y is a
partial homeomorphism if dom f � X and im f � Y are open and f W dom f ! im f

is a homeomorphism; we denote by Ph.X; Y / the set of partial homeomorphisms from X

to Y . From now on, we use f .A/ as shorthand for f .A \ dom f /, where f 2 Ph.X; Y /
and A � X .

Given f 2 Ph.X; Y / and g 2 Ph.Y;Z/, the composition gf 2 Ph.X;Z/ is defined by

domgf D f �1.domg/; .gf /.x/ D g.f .x//:
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Given f 2 Ph.X; Y / and an open set U � domf , the restriction f jU has domain U and
image f .U /.

Let ¹fi j i 2 I º be a family of maps in Ph.X; Y /, and suppose that

(2.1) .fi /jdomfi\domfj D .fj /jdomfi\domfj for every i; j 2 I:

Then the combination
S
i 2 I fi is defined by

dom
� [
i 2 I

fi
�
D

[
i 2 I

.domfi /;
� [
i 2 I

fi

�
.x/ D fi .x/ for x 2 domfi :

For f; g 2 Ph.X; Y /, we say that f extends g, or f is an extension of g, if

domg � domf and f jdomg D g:

For brevity, we use Ph.X/ to denote the set Ph.X;X/.

Definition 2.2. A subset G � Ph.X/ is a pseudogroup if the following conditions are
satisfied:

• Group-like axioms:
(i) idX 2 G ,
(ii) if f 2 G , then f �1 2G (closure under inversion), and
(iii) if f; g 2G , then fg 2 G (closure under composition).

• Sheaf-like axioms:
(iv) if f 2 G and U � dom f is open, then f jU 2 G (closure under restrictions),

and,
(v) if ¹fi ; i 2 I º is a family of maps in G satisfying (2.1), then

S
i 2 I fi 2G . (clo-

sure under combinations).
The last axiom can be reformulated as follows:

(v)0 if f 2 Ph.X/ is such that every x 2 dom f has some open neighborhood Ux
with f jUx 2G , then f 2G .

If G � Ph.X/ is a pseudogroup, we say that G acts on X and we denote it by G Õ X .
The G -orbit of a point x 2X is the subset Gx D ¹gx j g 2 G º. If ¹Giºi 2 I is a collection
of pseudogroups acting on X , then

T
i 2 I Gi � Ph.X/ is also a pseudogroup. A subset

S � G generates G if G is the smallest pseudogroup containing S ; equivalently, G is the
intersection of all the pseudogroups in Ph.X/ that contain S . Let G be a pseudogroup
acting on X , and let U be an open subset of X . Then the restriction

G jU D ¹f 2 G j domf � U; imf � U º

is a pseudogroup acting on U .
One can find in the literature definitions of pseudogroup that omit Axiom (v) (see,

e.g., [21]). The reason is that, by allowing combinations, a pseudogroup might have too
many maps to satisfy reasonable dynamical properties (see Definition 3.7 and Lemma 3.8);
this motivates the following definition.

Definition 2.3. A pseudo�group is a subset � � Ph.X/ satisfying Axioms (i)–(iv) in
Definition 2.2.
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This terminology was introduced by S. Matsumoto in [27]. For S � Ph.X/, let hSi �
Ph.X/ denote the set consisting of finite compositions and inversions of elements in S ,
and let S� � Ph.X/ denote the set of partial homeomorphisms obtained from S by com-
position, inversion, and restriction to open subsets; equivalently,

S� D ¹sjU W s 2 hSi; U � dom s openº

and S� is the smallest pseudo�group containing S .

Lemma 2.4. Let G Õ X be a pseudogroup and let S � G . Then S generates G if and
only if, for every g 2 G and x 2 dom g, there is an open neighborhood U of x such
that gjU 2S�.

Proof. Let H � Ph.X/ denote the set of maps that result from combining families of maps
in S� using Axiom 2.2(v). In other words, H is the pseudogroup generated by S . Then S
generates G if and only if H D G ; i.e., every map in G can be obtained as the combination
of a family of maps in S�, but this follows from the hypothesis and Axiom 2.2(v)0.

Corollary 2.5. Let S be a generating set for G Õ X , let d be a compatible metric on X ,
let g 2G , and let K � domg be compact. Then there is " > 0 such that, for every x 2K,
the restriction of g to Bd .x; "/ belongs to S�.

2.3. Equivalences

If we are to use pseudogroups to study foliated spaces, the right notion of isomorphism is
that of equivalence, sometimes also referred to as Haefliger or étale equivalence.

Definition 2.6. Let G Õ X and H Õ Y be pseudogroups. An equivalence ˆW .X;G /!
.Y;H / is a collection of partial homeomorphisms ˆ � Ph.X; Y / satisfying the following
conditions:

(i) ¹dom� j � 2 ˆº and ¹im� j � 2 ˆº are open coverings of X and Y , respectively.
(ii) If � 2 ˆ and U is an open subset of dom�, then �jU 2ˆ.
(iii) Let � 2 Ph.X;Y /. If there is an open covering ¹Uiºi 2 I of dom� such that �jUi 2ˆ

for every i 2 I , then � 2 ˆ.
(iv) If g 2 G , h2H , and � 2 ˆ, then h�g 2ˆ.
(v) If �; 2 ˆ, then  �1� 2 G and  ��1 2H .

The following properties follow immediately from the definition.

Lemma 2.7. LetˆW .X;G /! .Y;H / and‰W .Y;H /! .Z;I/ be equivalences. Then the
inverse

ˆ�1 WD ¹��1 j � 2ˆº � Ph.Y;X/

and the composition

‰ ıˆ WD ¹ ı � j � 2 ˆ;  2 ‰º � Ph.X;Z/

are equivalences .Y;H /! .X;G / and .X;G /! .Z; I/, respectively.
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Lemma 2.8. Let G ÕX be a pseudogroup and let U �X be an open set that meets every
G -orbit. Then

ˆ WD ¹g 2 G j domg � U º

is an equivalence ˆW .U; G jU /! .X; G /; in particular, G is an equivalence .X; G /!
.X;G /.

Proof. Item (i) in Definition 2.6 follows from the assumption that U meets every G -orbit,
whereas (ii)–(v) hold because G is a pseudogroup.

Pseudogroup equivalences are maximal families in the following sense.

Lemma 2.9. Let ˆ;‰ be equivalences .X;G /! .Y;H /. If ˆ � ‰, then ˆ D ‰.

Proof. Let  2‰. Since ¹im � j � 2 ˆº covers Y , there is a family ¹�iºi 2 I � ˆ such
that ¹im�iºi 2 I covers im . Moreover, since �i 2‰ by hypothesis, we have ��1i  � G

by Definition 2.6(v), and then  jim�i D �i .�
�1
i  / belongs to ˆ by Definition 2.6(iv).

Finally,  is the combination of the family ¹ jim�i ºi 2 I , so  2ˆ by Definition 2.6(iii).
This shows ‰ � ˆ because  was chosen arbitrarily.

Lemma 2.10. Let G Õ X and H Õ Y be pseudogroups, and let † � Ph.X; Y / be a
family of maps such that

(i)
S
�2† dom� � X meets every G -orbit;

(ii)
S
�2† im� � Y meets every H -orbit; and,

(iii) if �,  2 †, g 2G , and h 2 H , then  �1h� 2 G and  g��1 2H .

Then there is a unique equivalence ˆW .X;G /! .Y;H / containing †.

Proof. Let ˆ � Ph.X; Y / consist of the combinations of maps of the form h�g, where
g2G , h2H , and � 2†; thenˆ is an equivalence: Axiom 2.6(i) follows from (i) and (ii),
Axiom 2.6(ii)–(iv) follow from the definition of ˆ, and Axiom 2.6(v) follows from (iii).
Finally, Lemma 2.9 yields uniqueness.

We will refer to the equivalence given by Lemma 2.10 as the equivalence generated
by †. We say that two pseudogroups are equivalent if there is an equivalence from one
to the other; this is a reflexive, symmetric, and transitive relation by Lemmas 2.7 and 2.8.
The reader should be mindful that equivalence of pseudogroups is a very lax condition, as
the next example shows.

Example 2.11 ([20], p. 277). Let G be the pseudogroup on R generated by the translation
t 7! t C 1, and let H be the pseudogroup on S1 generated by the identity map. Consider
the natural projection map � WR! R=Z Š S1. Then

ˆ WD ¹�jU j U � R open; �jU WU ! �.U / is a homeomorphismº

is an equivalence from .R;G / to .S1;H /.

Finally, if X and Y are C i -manifolds1 for some i 2N [ ¹1; !º, we say that a family
A � Ph.X; Y / is C i if all the maps in A are C i in the usual sense. In this way we obtain

1The notation C! means that the manifold or map is analytic
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a definition of C i -pseudogroups and equivalences, and the notion of being a C i -pseudo-
group is then invariant by C i -equivalences. Similarly, if X and Y are affine manifolds,
we can define affine pseudogroups and equivalences, and being an affine pseudogroup is
invariant by affine equivalences.

2.4. Compact generation

Definition 2.12. Let G ÕX be a pseudogroup. A system of compact generation is a triple
.U; F; zF /, where

(i) U is a relatively compact open set of X meeting every G -orbit,
(ii) both F � G jU and zF � G are finite and symmetric,
(iii) F generates G jU , and
(iv) there is a bijection f 7! Qf (f 2 F , Qf 2 zF ) where Qf is an extension of f and

domf � dom. Qf / for every f 2F .

We say that G is compactly generated if it admits a system of compact generation; note
that compact generation implies that X is locally compact. This property is invariant by
equivalences [19]. The main family of examples of compactly generated pseudogroups,
which moreover gave birth to the definition, consists of holonomy pseudogroups of com-
pact foliated spaces (see next section). As a simpler example, we could mention the
pseudogroup generated by the action of a finitely generated group on a compact space.

Contrary to most of the references in the subject, we consider the set of extensions zF
as part of the generating set. Note that the symmetry condition of both F and zF is included
for simplicity.

From now on, for every map f 2hF i, f D fn � � �f1 with fi 2F , we denote by Qf 2h zF i
the composition Qfn � � � Qf1. For notational convenience, we will assume from now on that
Qf �1 D ef �1. Properly speaking, the map Qf depends not only on f , but on the represen-

tation f D fn � � � f1; we will incur in this slight abuse of notation anyway because this
subtlety will be of no relevance to our proofs.

Lemma 2.13. Let G be a compactly generated pseudogroup, let x 2X , and let S be a
generating set. Then there is a system of compact generation .U; F; zF / with x 2U and
zF � � S�.

Proof. We begin by showing that we can choose .U; F; zF / with x 2 U . Indeed, let
.V;H; zH/ any system of compact generation and let g 2 G be any map with x 2 dom g

and g.x/2V . LetW;W 0 be relatively compact open neighborhoods of x withW �W 0 �
domg. Then .V [W;H [ ¹gjW º; zH [ ¹gjW 0º/ is a system of compact generation.

Let us show now that we may take .U; F; zF / with zF � � S�. Let .U; H; zH/ satisfy
x 2U . WriteH D ¹fiºi 2 I ; then, for every i 2 I , there is a finite open cover ¹Vi;j ºj 2Ji of
domfi and a shrinking ¹Wi;j ºj 2Ji such that Qf jVi;j 2S

� for every j 2Ji by Corollary 2.5.
Then

.U; F; zF / WD .U; ¹ Qfi jWi;j\U º; ¹
Qfi jVi;j º/

is a system of compact generation satisfying the desired conditions.
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2.5. Foliated spaces

Let X be a Polish space and let F be a partition of X . Then .X;F / is a foliated space
of leafwise class C k (k 2N [ ¹1º) and dimension n2N if X admits an atlas of charts
.Ui ; �i /, where ¹Uiº is an open covering of X and the maps �i are homeomorphisms
�i WUi ! Rn �Zi (for Zi Polish), and with coordinate changes of the form

�i �
�1
j .xj ; zj / D .xi .xj ; zj /; zi .zj //;

where zi W�j .Ui \ Uj /! Zi is continuous and xi W�j .Ui \ Uj /! Rn is of class C k on
every plaque. Remember that the plaques of the chart .Ui ;�i / are the sets ��1i .Rn � ¹ziº/.
Moreover, we require that the equivalence relation induced by F coincides with the tran-
sitive closure of the relation “being in the same plaque”; it follows that F partitions X
into subsets which, when endowed with an appropriate topology called the leaf topol-
ogy, become connected C k-manifolds of dimension n: the leaves of the foliated space. If
.X;F / is a foliation of dimension n, codimension m, and class C k;l (see p. 32 of [10]),
then it is an n-dimensional foliated space of leafwise class C k , the transversal models Zi
are C l -manifolds of dimension m, and the maps zi are of class C l .

The holonomy pseudogroup serves as a dynamical model for the foliated space X :
let ¹.Ui ; �i / j i 2 I º be a locally finite atlas, let pi denote the composition of �i with
the projection Rn �Zi ! Zi , and let Z D

`
i 2 I Zi . The transversal components of the

change of coordinate maps

hi;j Wpj .Ui \ Uj /! pi .Ui \ Uj /; hi;j .zj / D zi .zj /;

generate a pseudogroup in Z, called the holonomy pseudogroup of X . Note that we are
only considering holonomy pseudogroups induced by locally finite atlases so that the
transversal space Z is Polish and the pseudogroup is countably generated.

The holonomy pseudogroup depends on the choice of atlas ¹.Ui ; �i / j i 2 I º, but dif-
ferent choices give rise to equivalent pseudogroups (in the case of foliations of class C k;l ,
C l -equivalent pseudogroups). Thus, from now on, we restrict ourselves to considering
properties of pseudogroups that are invariant by equivalences; this justifies our abuse of
language when we talk about “the” holonomy pseudogroup of X .

Lemma 2.14 ([20]). If X is a compact foliated space, then its holonomy pseudogroup is
compactly generated.

If X is a foliation of codimension m and it admits an atlas such that the transversals
have an affine structure and the maps hi;j are all affine, then it is a transversally affine
foliation and its holonomy pseudogroup is also affine.

A matchbox manifold is a compact foliated space admitting an atlas with totally dis-
connected transversals.

2.6. Toral linked twist maps

Let T2 WD R2=Z2 be the 2-torus, whose points we will simply denote as pairs .x; y/,
where x; y 2 R2. For an interval A D Œa; b� with 0 � a < b � 1, let HA be the horizontal
closed annulus defined by

HA D ¹.x; y/2T2
j a � y � bº;
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and let VA be the corresponding vertical closed annulus

VA D ¹.x; y/2T2
j a � x � bº:

For any integer m > 1, we have the horizontal and vertical twist maps, defined on HA
and VA, respectively, by

.x; y/ 7! .x C �m.y/; y/ and .x; y/ 7! .x; y C �m.x//;

where

�m.t/ D
m.t � a/

.b � a/

is the only affine map satisfying

�m.a/ D 0 and �m.b/ D m:

Note that �m depends of course on the choice of interval A, but we leave it implicit to
avoid cumbersome notation. Toral linked twists can be constructed with more general
maps �m (see, e.g., [13]), but in this paper we restrict our attention to the linear case for
the sake of simplicity.

A toral linked twist is the composition of horizontal twist maps on a finite number of
horizontal annuli with vertical twists on a finite number of vertical annuli. Let yH1; : : : ; yHk
be a collection of closed intervals in Œ0; 1� such that every intersection yHi \ yHj with i ¤ j
consists of at most one common endpoint, and let yV1; : : : ; yVl be another such collection.
Let H1; : : : ; Hk be the horizontal closed annuli induced by the intervals yH1; : : : ; yHk ;
similarly, let V1; : : : ; Vl be the vertical closed annuli induced by yV1; : : : ; yVl . Choose two
sequences of positive integers

m1; : : : ; mk and n1; : : : ; nl ;

and, for i D 1; : : : ; k, let hi denote the horizontal mi -twist map on Hi ,

hi .x; y/ D .x C �mi .y/; y/:

Define the vertical ni -twist maps vj , 1 � j � l , similarly; see Figure 1 for an illustration.
We combine the horizontal twists hi into one map Th and the vertical twists into

another map Tv as follows:

Th.x; y/ D

´
hi .x; y/ if .x; y/2Hi for some 1 � i � k;
.x; y/ elseI

Tv.x; y/ D

´
vi .x; y/ if .x; y/2Vi for some 1 � i � l;
.x; y/ else:

The linked twist map corresponding to our choice of intervals and integers is then T D
Tv ı Th.

We review some of the basic properties that will be of use later. First, note that T is
the identity on T2 nM , where

M D H1 [ � � � [Hk [ V1 [ � � � [ Vl :
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Also, T is affine (hence smooth) on T2 n�, where

� D @H1 [ � � � [ @Hk [ T
�1
h .@V1/ [ � � � [ T

�1
h .@Vl /

and @ denotes the topological boundary. Finally, we will also employ the following result.

Theorem 2.15 (Theorem A in [12]). The restriction of the toral linked twist map T to M
is topologically transitive and sensitive to initial conditions.

Figure 1. The horizontal (left, Th) and vertical (middle, Tv) components of a linked twist; the
red lines are the images of the circles represented by the vertical (left) and horizontal (middle)
boundary segments. They involve two and one intervals, respectively. The shaded area on the right
represents M .

2.7. Equicontinuous pseudogroups

Definition 2.16 (Definition 7.1 in [3]). LetX be a topological space. Let ¹.Ui ; di / j i 2I º
be a family of metric spaces such that ¹Uiº is an open covering of X and every di is a
compatible metric on Ui . We say that ¹.Ui ; di /º is a cover of X by quasi-locally equal
metric spaces if there is an assignment " 7! ı."/ such that, for every i; j 2 I , every point
z 2Ui \ Uj has an open neighborhood Ui;j;z � Ui \ Uj satisfying

di .x; y/ < ı."/ H) dj .x; y/ < "

for every " > 0 and x; y 2Ui;j;z . Two such covers ¹.Ui ; di /º and ¹.Vj ; d 0j /º are equivalent
if their union is again a cover by quasi-locally equal metric spaces; an equivalence class
of covers is called a quasi-local metric space.

Proposition 2.17 (Theorem 15.1 in [3]). If X is Hausdorff and paracompact, then every
cover by quasi-locally equal metric spaces is equivalent to a metric; that is, equivalent to
a cover of the form ¹.X; d/º.

Definition 2.18 (Definition 8.4 in [3]). Let G be a pseudogroup acting on a Polish spaceX .
We say that G is equicontinuous if there are a cover by quasi-locally equal metric spaces
¹.Ui ; di / j i 2 I º, a generating pseudo�group � , and an assignment " 7! ı."/ such that

di .x; y/ < ı."/ H) dj .sx; sy/ < "

for every i; j 2 I , s 2 � , x; y 2 dom s \ Ui and sx; sy 2Uj .
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Note that if the above condition is fulfilled with a cover by quasi-locally equal metric
spaces, then it is also fulfilled with any other equivalent cover, so we can regard equicon-
tinuity as a property of the quasi-local metric.

By the previous results, Definition 2.18 is equivalent to the following.

Definition 2.19. A pseudogroup G Õ X is equicontinuous if there exist a generating
pseudo�group S , a compatible metric d , and an assignment " 7! ı."/ such that

d.x; y/ < ı."/ H) d.sx; sy/ < "

for every s 2S and x; y 2 dom s.

Proposition 2.20 (Lemma 8.8 in [3]). Being equicontinuous is invariant by equivalences
of pseudogroups.

3. Pseudogroup dynamics

3.1. Sensitivity and chaos

The aim of this section is to introduce our definition of Devaney chaos for pseudogroups;
first, we need to obtain suitable analogues of conditions (i)–(iii) in Definition 1.1.

Definition 3.1. A pseudogroup G Õ X is topologically transitive if, for all non-empty
open subsets U; V � X , there is some g 2G with

g.U / \ V ¤ ;:

Definition 3.2. A pseudogroup G Õ X is point transitive if there is some x 2X such
that Gx is dense in X .

Lemma 3.3 (cf. Proposition 1.1 in [32] and Proposition 4.5 in [16]). Point transitivity
implies topological transitivity for every pseudogroup G Õ X ; if X is separable and
Baire, then the converse also holds.

Proof. To show that point transitivity implies topological transitivity, let Gx be a dense
orbit and let U; V be non-empty open sets. Then there are g; h 2 G with g.x/ 2 U ,
h.x/2V , and therefore hg�1.U / \ V ¤ ;.

Suppose now that G is topologically transitive but there is no dense orbit, and let
¹Unºn2N be a countable base for X . For every x 2X , there is some Un.x/ such that
Gx \ Un.x/ D ;. For each n, Vn D

S
g2G g.Un/ is a dense open set because G is topo-

logically transitive, so X n Vn.x/ is a closed and nowhere dense set containing x. Thus,
X D

S
n2N X n Vn is a countable union of closed and nowhere dense sets, contradicting

the assumption that X was Baire.

Recall that we are working with Polish (hence, Baire) spaces, so topological transitiv-
ity and point transitivity coincide.

Regarding density of periodic points, one may be tempted to use the following naive
definition: G Õ X has density of periodic points if the union of finite G -orbits is dense
in X . Unfortunately, Example 2.11 shows that this condition is not invariant by equiva-
lences, so we need to reformulate it as follows.
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Definition 3.4. A pseudogroup G Õ X has density of periodic orbits if there is an open
set U � X meeting every G -orbit and such that the set of finite G jU -orbits is dense in U .

Lemma 3.5. Having density of periodic orbits is invariant by equivalences.

Proof. Let G Õ X be a pseudogroup with density of periodic orbits, let U � X be an
open set meeting every G -orbit and such that the finite G jU -orbits are dense, and let
ˆW .X;G /! .Y;H / be an equivalence of pseudogroups.

Since U is a paracompact space, we can find a subset ˆ0 � ˆ such that ¹dom� j � 2
ˆ0º is a locally finite family and

S
�2ˆ0

dom� D U . We claim that

V D
[
�2ˆ0

im�

satisfies the statement in Definition 3.4. Clearly, V meets every H -orbit, so let us prove
that finite H jV -orbits are dense in V .

LetW � V be any open set and choose �0 2 ˆ0 with im�0 \W ¤ ;. ��10 .W / � U ,
so there is some y 2 ��10 .W / such that G jU .y/ is finite. Since ¹dom � j � 2 ˆ0º is a
locally finite family and G jU .y/ is finite, there are only finitely many maps in ˆ0 defined
on G jU .y/, so

Ay WD ¹�.z/ j � 2 ˆ0; z 2G jU .y/º

is a finite set.
Let us show that H jV .Ay/ D Ay . For every h�.z/, h2H jV , there is some  2ˆ0

with h�.z/2 im , and therefore, by Definition 2.6(v),

z0 WD  �1h�.z/2G jU .z/ D G jU .y/:

Hence h�.z/ D  .z0/ with z0 2G jU .y/, showing that H jV .Ay/ D Ay .
We have proved that every open set W � V meets an H jV -invariant finite set Ay ,

so H has density of periodic orbits.

Corollary 3.6. If G Õ X has density of periodic orbits and W � X is a relatively com-
pact open set meeting every orbit, then the finite G jW -orbits are dense in W .

Proof. Let U �X be an open set satisfying the statement of Definition 3.4, and let F � G

be a finite set satisfying W � ¹im f j f 2F º and
S
f 2F dom f � U . Since W meets

every G -orbit, V WD
S
f 2F f

�1.W / also meets every G -orbit; moreover, V � U , so the
set of finite G jV -orbits is dense in V . Hence ˆ0 D ¹f jf �1.W / W f 2 F º is a finite set
satisfying W D

S
�2ˆ0

im�, and, arguing as in the proof of the previous proposition, we
get that the set of finite G jW -orbits is dense in W .

Finally, we come to the definition of sensitivity for pseudogroups. A naive approach
would suggest the following definition.

Definition 3.7 (Naive sensitivity). G ÕX is sensitive if there is c > 0 such that, for every
x2X and r > 0, there are g2G and y2B.x; r/with x;y2 domg and d.g.x/;g.y//� c.

However, the following lemma shows that this condition is too weak to model our idea
of sensitivity.
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Lemma 3.8. Any topologically transitive pseudogroup G on a perfect Polish space X
satisfies Definition 3.7.

Proof. SinceX is perfect, we can choose two non-empty open setsW1 andW2, and c > 0,
satisfying

d.W1; W2/ � 2c:

Let x 2X and r > 0 be arbitrary, and choose 0 < s < r such that V D B.x; r/ n B.x; s/
is non-empty; such s exists because X is perfect. By topological transitivity, there are
maps g1 and g2 in G such that

g1.V / \W1 ¤ ; and g2.V / \W2 ¤ ;I

by restricting to open subsets if necessary, we may assume dom g1; dom g2 � V and
imgi � Wi for i D 1; 2. Let hi , i D 1; 2, be the partial map with domain

dom hi D domgi [ B.x; s/

defined by
hi jdomgi D gi and hi jB.x;s/ D idB.x;s/ :

Axiom 2.2(v) ensures that hi belongs to G . By construction, we have that x; y1 2 domh1,
x; y2 2 dom h2 and d.h1.y1/; h2.y2// � 2c: The triangle inequality now yields that, for
some i 2 ¹1; 2º, we have

d.hi .x/; hi .yi // D d.x; hi .yi // � c:

This argument shows that the problem originates from Axiom 2.2(v) (closure under
combinations). Following the ideas in [3], which in turn can be traced back to previous
works (see [21, 27]), we phrase our definition of sensitivity for pseudogroups in terms of
generating pseudo�groups. We also quantify over all compatible metrics in order to make
it a topological condition.

Definition 3.9. Given a metric d on X and a generating pseudo�group � for a pseu-
dogroup G Õ X , we say that G Õ X is (� ,d )-sensitive to initial conditions if there is a
sensitivity constant c WD c.� ; d / > 0 such that, for every x 2X and r > 0, there are s 2�

and y 2 dom s with
d.x; y/ < r and d.sx; sy/ � c:

We say that G Õ X is sensitive to initial conditions if it is (� ,d )-sensitive to initial con-
ditions for every choice of � and d .

Note that c clearly varies with the choice of metric and pseudo�group: if we fix d and
choose a sequence of pseudo�groups Sn such that all sets im sn (s 2 Sn) have diameter
less than 1=n, then c.d; Sn/ # 0.

In order to provide some intuition for this definition, let us consider the case of a
Z-action induced by a homeomorphism f on some topological space X . If the Z-action
is sensitive to initial conditions (with respect to the classical definition for group actions),
there is c > 0 so that, for every x 2X and ı > 0, there are y 2B.x; r/ and z 2Z satisfying
d.f z.x/; f z.y// > c. However, the absolute value of z will diverge as ı ! 0. In the
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case of the pseudogroup induced by this action, it might happen that, for some generating
pseudo�group � , the domain of every map s2� that agrees with f z on some open set is so
small that it does not contain any such y, and therefore the maps in � cannot bear witness
to the sensitivity of the action. This is precisely why we must quantify over all generating
pseudo�groups. Coming back to the example at hand, given a covering ¹Uiº of X by
open sets, the restrictions ¹f jUi º are a generating pseudo�group for the pseudogroup
induced by the action. Note that, by composing maps, the diameters of the domains of
the compositions might grow smaller and smaller. In this case, sensitivity means that,
for every covering ¹Uiº, there is some positive c (which depends on the cover) so that,
for every point x 2X , we can find points y arbitrarily close to x that have compositions
f jUin ı � � � ı f jUi1 defined on x and y and satisfying

d.f jUin ı � � � ı f jUi1 .x/; f jUin ı � � � ı f jUi1 .y// > c:

Having obtained analogues of Definition 1.1(i)–(iii), we can introduce our definition
of Devaney chaos for pseudogroups.

Definition 3.10. A pseudogroup G Õ X is chaotic if it is topologically transitive, has
density of periodic orbits, and is sensitive to initial conditions.

3.2. Equicontinuous points

In this subsection, we will generalize to the setting of pseudogroups some dynamical
notions expressing regularity; we will need them in order to prove the Auslander–Yorke
dichotomy.

Definition 3.11. A point x 2X is .S; d/-equicontinuous for a generating set S and a
metric d on X if there is an assignment " 7! ı."/ so that

d.x; y/ < ı."/ H) d.s.x/; s.y// < "

for every s 2S� and y 2X with x; y 2 dom s. We say that a point x is equicontinuous if
it is equicontinuous for some choice of S and d .

We will refer to any assignment " 7! ı satisfying the above condition as a modulus of
equicontinuity for .S; d/.

Definition 3.12. The pseudogroup G Õ X is almost equicontinuous if there are S and d
so that the set of .S; d/-equicontinuous points is dense in X .

Lemma 3.13. If x 2X is .S; d/-equicontinuous, then every y 2Gx is .S; d/-equicontin-
uous (perhaps with a different modulus).

Proof. Let y2Gx. Since S is a generating set for G , there is some s2S� so that s.x/D y.
For every " > 0, let ı0."/ > 0 be small enough so that

B.y; ı0."// � im s and s�1.B.y; ı0."/// � B.x; ı."//:

Then, for every t 2S�, the restrictions of t and tss�1 to dom t \B.y; ı0."// coincide, and
thus

t .B.y; ı0."/// D tss�1.B.y; ı0."/// � ts.B.x; ı."///:
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Since ts 2S� and ı 7! " is a modulus of equicontinuity for .S; d/, we obtain

t .B.y; ı0."/// � B.t.y/; "/:

3.3. Dynamics and compact generation

We begin with some preliminary results for compactly generated pseudogroups. The fol-
lowing proposition reveals that, for every system of compact generation .U; F; zF / and
every point x 2U , either the pseudo�group h zF i displays sensitivity to initial conditions
on x, or every map in hF i defined on x has an extension in h zF i whose domain contains a
ball of a fixed radius � > 0.

Proposition 3.14. Let G be a compactly generated pseudogroup on X , let d be a com-
patible metric, let .U; F; zF / be a system of compact generation, and let

� WD �.U; F; zF / D sup¹r > 0 j B.u; r/ � dom Qf ; 8f 2F; u2 domf º > 0:

Then, for every x 2U ,

(i) either there is � > 0 such that B.x; �/ � dom Qf for every f 2 hF i with dom f \

B.x; �/ ¤ ;;
(ii) or for every r > 0, there are y 2B.x; r/ and Qf 2 h zF i satisfying

x; y 2 dom Qf ; d. Qf .x/; Qf .y// � �=2:

Proof. Suppose that (i) does not hold, so that, for every r > 0, there are f 2 hF i and
y;z2B.x; r/ satisfying z2 domf � dom Qf , y … dom Qf . Let f D fn � � �f1, where fi 2F
for i D 1; : : : ; n. Let j be the largest index 0 � j < n satisfying B.x; r/ � dom Qfj � � � Qf1.
This means that there is y 2 dom Qfj � � � Qf1 such that

Qfj � � � Qf1.y/ … dom QfjC1:

But z 2 dom QfjC1 � � � Qf1, so

d. Qfj � � � Qf1.y/; Qfj � � � Qf1.z// � �

by the definition of � . Now the triangle inequality yields either

d. Qfj � � � Qf1.x/; Qfj � � � Qf1.y// � �=2; or d. Qfj � � � Qf1.x/; Qfj � � � Qf1.z// � �=2:

The following result, which will be of use later, is a generalization of the well-known
fact that equicontinuity and uniform equicontinuity agree for actions on compact spaces.

Lemma 3.15. Let G be a compactly generated pseudogroup. If there are a metric d and
a generating pseudo�group � such that every point is a point of .� ; d /-equicontinuity,
then G is equicontinuous.

Proof. Let .U; F; zF / be a system of compact generation with zF � � (Lemma 2.13). By
Proposition 3.14, for every x 2U there is �x > 0 such that Ux WD B.x; �x/ � U and

Ux � dom Qf for every f 2 hF i with domf \ Ux ¤ ;:
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The sets Ux , x 2U , form an open cover of U . Since G jU is equivalent to G , it must also
be compactly generated, so choose some relatively compact open subset V � U meeting
every orbit, and choose a finite family ¹Uxºx 2 I covering V . Shrink every Ux to obtain
another finite covering ¹Vxºx 2 I of V and such that Vx � Ux for every x 2 I .

Let " > 0 and cover each set Vx .x 2 I / by finitely many balls B.zx;j ; ızx;j ."=2//,
where zx;j 2Ux and ızx;j is a modulus of .� ; d /-equicontinuity at zx;j . Let ı0."/ be a
Lebesgue number for all these coverings; that is, if u; v are contained in some Vx for
some x 2 I and d.u; v/ < ı0."/, then there is some j such that u; v 2B.zx;j ; ızx;j ."=2//.

Let us now show that G jV is equicontinuous with respect to the cover by quasi-local
metric spaces .Vx ; d /x 2 I (see Definition 2.16). We first choose hF ijV as a generating
pseudo�group for G jV , and let x; y 2 I , u; v 2Vx and f 2 hF i be such that f u; f v 2Vy .
Then we need to show that

d.u; v/ < ı0."/ H) d.f u; f v/ < " for every " > 0:

By our choice of ı0."/, there is some z WD zx;j so that u; v 2B.z; ız."=2//. Moreover, we
have already established that Ux � dom Qf , so Qf z is well defined. Now we get

d.f u; Qf z/; d.f v; Qf z/ < "=2;

so d.f u; f v/ < " by the triangle inequality.
We have proved that G jV is equicontinuous with respect to the cover by quasi-local

metric spaces ¹.Uxi ; dxi /º. Since G jV is equivalent to G , the result follows by Proposi-
tion 2.20.

Proof of Theorem 1.7. Let us prove that, if the actionGÕX is sensitive, then the induced
pseudogroup G is sensitive too, the converse implication being trivial. Let cG > 0 be a
sensitivity constant for G Õ X , let H D ¹f1; : : : ; fnº � G be a symmetric finite gener-
ating set (in the group-theoretic sense), let d be a metric on X , and let � be a generating
pseudo�group for G . SinceH � G and � generates G , Lemma 2.4 yields a finite sequence
of open coverings of X ,

zUi D ¹ zUi;j º; i D 1; : : : ; n;

such that
Qfi;j WD .fi /j zUi;j 2 � for every i; j I

furthermore, we may assume that every zUi is finite because X is compact. Let Ui D

¹Ui;j º be a shrinking of zUi , let fi;j WD .fi /jUi;j , and let

F D ¹fi;j º and zF D ¹ Qfi;j º:

Then .X; F; zF / is a system of compact generation for G .
Let us show that .S; d/ is sensitive with constant cF WD min¹�=2; cGº, where � WD

�.X; F; zF / is given by Proposition 3.14 (note that its value does not depend on x). If
.X; F; zF / satisfies Proposition 3.14(ii) at every point in X , then we are done, so suppose
that Proposition 3.14(i) holds for some x 2X and � > 0. Since G is sensitive, there are

g D fik � � � fi1 2G
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and y 2B.x; �/ with d.g.x/; g.y// � cG . Clearly, there is a sequence j1; : : : ; jk such
that x 2 dom h, where h D fik ;jk � � � fi1;j1 . But B.x; �/ � dom Qh by Proposition 3.14(i),
whence y 2 dom Qh and

d. Qh.x/; Qh.y// � cG � cF :

This shows that G is .� ; d /-sensitive and, since both � and d were arbitrary, the result
follows.

3.4. Sensitive group actions whose induced pseudogroups are not sensitive

In this section, we construct the counterexamples of Theorem 1.8. Let us start by defining
a family of linked twists on the 2-torus T2. Let pz (z 2 Z) denote the following integer-
indexed sequence of real numbers:

pz D

´
1 � 2�1�z if z � 1;
2z�2 if z � 0:

Let
H D ¹.x; y/2T2

j 1=4 � y � 3=4º

and
Vz D ¹.x; y/2T2

j pz � x � pzC1º .z 2Z/:

Let ThWT2 ! T2 be the horizontal twist defined by

Th.x; y/ D

´
.x C 2.y � 1

4
/; y/ if .x; y/2H;

.x; y/ elseI

and, for m 2 N, let Tv;mWT2 ! T2 be the vertical twist:

Tv;m.x; y/ D

´
.x; y C 22Cjzj .x � pz// if .x; y/2Vz ; jzj � m;
.x; y/ else:

Letting Tm D Tv;m ı Th, we obtain a sequence of linked twist maps on T2.
By Theorem 2.15, Tz is topologically transitive on

Mz D H [
[
jzj�m

Vz ;

and is the identity on T2 nMm for every m 2 N. Note that, by the definition of the
sequence pz , we have

(3.1)
[
m�0

Mm D T2
n
�
¹0º � .Œ0; 1=4/ [ .3=4; 1�/

�
:

Moreover, Tm is affine on T2 n�m, where

�m WD @H [
[
jzj�m

T �1h .@Vz/:
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Lemma 3.16. Let .p=q; r=s/2T2 be a point with rational coordinates. Then, for every
m � 0, its Tm-orbit is contained in the finite set°� l1

d
;
l2

d

�
j l1; l2 2 ¹0; : : : ; d � 1º

±
;

where d D lcm.q; s; 2mC2/.

Proof. Follows from the definition of Th and Tv;m.

We are now in position to introduce our examples. We begin by showing that an
action G Õ X with G finitely generated but X non-compact might be sensitive, while
the induced pseudogroups is not. Let X D T2 � Z and let

�..x; y/; z/ D .Tjzj.x; y/; z/; �..x; y/; z/ D ..x; y/; z C 1/:

Proposition 3.17. The subgroup of Homeo.X/ generated by � and � is sensitive as a
group action. The pseudogroup generated by � and � , however, is not sensitive to initial
conditions (in the sense of Definition 3.9).

Proof. We start by proving that the induced group action is sensitive. Let d be a com-
patible metric on X that restricts to the standard flat metric dz on every T2 � ¹zº Š T2.
Choose c > 0 such that

• the action of T0 on M0 is c-sensitive (with respect to d0), and
• c < 1=8.

Let ..x; y/; z/2X , and let U � ¹zº be a neighborhood of ..x; y/; z/. By (3.1),
S
zMjzj

is dense in T2, so there is n > 0 such that

�n.U � ¹zº/ \ .MnCz � ¹nC zº/ ¤ ;:

Since TnCz is topologically transitive on MnCz , there is m > 0 so that

�m �n.U � ¹zº/ \ .M0 � ¹nC zº/ ¤ ;;

and therefore
��n�z �m �n.U � ¹zº/ \ .M0 � ¹0º/ ¤ ;:

Let �D ��n�z�m�n for the sake of simplicity. Since the action of T0 is c-sensitive onM0,
if �..x; y/; z/2M0 � ¹0º, then there are l > 0 and ..u; v/; z/2U � ¹zº such that

d.� l�..x; y/; z/; � l�..u; v/; z// � c:

If �..x; y/; z/ …M0 � ¹0º, then, since the action of T0 is topologically transitive on M0,
there are l > 0 and ..u; v/; z/2U � ¹zº such that

� l�..u; v/; z/2
h3
8

, 5
8

i2
� ¹0º:

But Œ1=4; 3=4� �M0 and �..x; y/; z/ …M0 � ¹0º, so

d.� l�..x; y/; z/; � l�..u; v/; z// �
1

8
� c:



R. Barral Lijó 260

Let us now show that the pseudogroup G generated by � and � is not sensitive. Con-
sider the point ..0; 0/; 0/ 2X . Note that, since .0; 0/ … Mm for every m 2N, � is the
identity on a neighborhood of ..0; 0/; z/ for every z 2Z. For each z 2Z, let Uz andOz be
open neighborhoods of .0; 0/ such that Oz � T2 nMjzjC1 and Uz � Oz . Now let

U D
[
z2Z

.T2
n U z/ � ¹zº; O D

[
z2Z

Oz � ¹zº;

and consider the pseudo�group � generated by

F D ¹� jU ; � jO ; � jU ; � jOº:

Clearly, � generates G . Since

G ..0; 0/; 0/ D ¹..0; 0/; z/ j z 2 Zº;

the only maps in F that are defined on the orbit of ..0; 0/; 0/ are � jO and � jO , which are
isometries (recall that � jO D id jO ), so we have that every map in � defined on ..0; 0/; 0/
is an isometry with respect to d , and therefore G is not sensitive to initial conditions.

We have constructed the first counterexample of Theorem 1.8. We can repurpose this
machinery to obtain the second counterexample: an action F! Õ T2 that does not satisfy
Theorem 1.7, where F! is the free group with countably many generators. Define the
action by mapping a sequence freely generating F! to the sequence Tm,m � 0. The proof
that F! Õ T2 is sensitive and the pseudogroup is not sensitive is virtually identical to
Proposition 3.17, so we leave the details to the reader.

3.5. Main results

In this section we will prove Theorems 1.9, 1.10, and 1.11, in that order. We begin with
the following preliminary result, which follows arguments from Lemma 8.8 and Theo-
rem 15.1 in [3].

Proposition 3.18. Let G act on a locally compact and separable metric space .X; d/, let
� � G be a generating pseudo�group, and let ˆW .X; G /! .Y;H / be an equivalence.
Then there is a generating pseudo�group T for H and a metric d 0 on Y satisfying the
following condition: if there are x 2X , "; ı > 0 such that

d.x; u/ < ı H) d.sx; su/ < "

for every u2X and s 2� with x;u2 dom s, then, for every y 2 ˆ.x/ there is ıy > 0 such
that

d 0.y; v/ < ıy H) d 0.ty; tv/ < "

for every t 2 T with y; v 2 dom t .

Proof. We begin by proving the following preliminary result.

Claim 1. There is a subset ŷ 0 � ˆ such that

(a) dom� and im� are relatively compact for every � 2 ŷ 0,

(b) the map  �1� belongs to � for every �; 2 ŷ 0, and

(c) ¹im� j � 2 ŷ 0º is a locally finite open covering of Y .
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First note that, since Y is a locally compact and separable metric space and ˆ is an
equivalence, we can find a sequence, �1; �2; : : :, in ˆ such that

• every �n has an extension Q�n 2 ˆ with dom�n � dom Q�n,
• dom Q�n and im Q�n are relatively compact for every n � 1, and
• ¹im�n j n � 1º and ¹im Q�n j n � 1º are locally finite open coverings of Y .

We define now by induction on n an increasing sequence of finite subsets ŷ 0;n � ˆ
(n � 1) so that  �1� belongs to � for all �; 2 ŷ 0;n and

im�1 [ � � � [ im�n �
[

� 2 ŷ 0;n

im�:

Let ŷ 0;1D¹�1º and, for n>1, assume that we have defined ŷ 0;n�1 satisfying the required
properties. Lemma 2.4 yields a finite open covering ¹Uiºi 2 I of dom�n such that every Ui
is relatively compact and the restriction of  �1 Q�n to every Ui belongs to � for every
 2 ŷ 0;n�1. Letting

ŷ
0;n D ŷ 0;n�1 [ ¹ Q�njUi j i 2 I º;

we get
im�n �

[
i 2 I

Q�n.Ui / D
[
i 2 I

im. Q�njUi /:

The induction hypothesis now yields

im�1 [ � � � [ im�n �
[

�2ŷ 0;n

im�:

Let us show by cases that  �1� belongs to � for all �;  2 ŷ 0;n. If �;  2 ŷ 0;n�1,
then it follows from the induction hypothesis, so assume first that � D Q�njUi for some
i 2 I . If  is also of the form Q�njUj for some j 2 I , then  �1� is the identity on its
domain, so  �1� 2� . If, on the other hand,  2 ŷ 0;n�1, then  �1� D  �1 Q�njUi 2� by
the definition of Ui . The only case remaining is when � 2 ŷ 0;n�1 and  D Q�njUi for some
i 2 I , which follows from the previous argument because � is symmetric. This completes
the proof of Claim 1 by taking ŷ 0 D

S
n
ŷ
0;n.

We now turn to the task of defining ˆ0 and the generating pseudo�group T . Let
¹V O� j

O� 2 ŷ 0º be a shrinking of the covering ¹im O� j O� 2 ŷ 0º; that is,
S
O�2ˆ0

V O� D Y

and V O� is an open set satisfying V O� � im O� for every O� 2 ŷ 0.

Claim 2. For every x 2X , there is a open neighborhood Ux of x such that

Ux \ V O� ¤ ; H) Ux � im O�

for every O� 2 ŷ 0.

Since ¹im O� j O� 2 ŷ 0º is locally finite by Claim 1(c),

Ux D
� \
O�2ŷ 0; x 2 im O�

im O�
�
n

� [
O�2ŷ 0; x…V O�

V O�

�
is an open set that satisfies the required properties, proving Claim 2.
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For every O� 2 ŷ 0, let ¹Pi j i 2 I O�º be a locally finite open covering of the open set V O�
such that every Pi satisfies

Pi \ V O ¤ ; H) Pi � im O 8 O 2 ŷ 0;(3.2)

diam O��1.Pi / < d. O��1.Pi /; dom O� n O��1.V O�//:(3.3)

From now on, given O� 2 ŷ 0 and i 2 I O� , let �i be shorthand for O�jPi . Let

ˆ0 D ¹�i j O� 2 ŷ 0; i 2 I O�º;

T D ¹ j s�
�1
i j �i ;  j 2 ˆ0; s 2 �º [ ¹id jU W U open in Yº:

It is elementary to check that T is a pseudo�group, so let us prove that T generates H .
Let h2H and let x 2 dom h. By the definitions of ¹V O� j � 2 ŷ 0º and ¹Pi j i 2 I O�º, the
collection

¹Pi j i 2 I O� ; � 2
ŷ
0º D ¹im�i j i 2 I O� ;

O� 2 ŷ 0º

is an open covering of Y . Therefore, there are �i , j 2ˆ0 so that x2 im�i , f .x/2 im j .
Thus �1j h�i 2 G by Definition 2.6(v). Since � generates G , there must be an open neigh-
borhood U of ��1i x so that the restriction of  �1j h�i to U belongs to � by Lemma 2.4.
Then h coincides with  j s��1i 2 � over �i .U /. We have proved that, for every h 2H

and x 2 dom h, the restriction of h to some open neighborhood of x belongs to T , so T

generates H by Lemma 2.4.
We now prove some preliminary results needed to define the metric d 0. For each

O� 2 ŷ 0, let D O� W im O� � im O� ! R�0 be the metric defined on the open set im O� by

D O�.x; y/ D d.
O��1x; O��1y/. If u; v 2 im O� for some O� 2 ŷ 0, let

D.u; v/ D sup¹D O�.u; v/ j O� 2 ŷ 0; u; v 2 im O�º:

A pair .u; v/2Y � Y is admissible if there is O� 2 ŷ 0 such that u; v 2V O� and

¹u; vº \ V O ¤ ; H) ¹u; vº � im O ; 8 O 2 ŷ 0:

Let Su;v be the set of sequences .z0; : : : ; zn/ of arbitrary finite length with z0 D u and
zn D v, and such that .zi�1; zi / is an admissible pair for every i D 1; : : : ; n. The following
properties are elementary:

.u; u/2Su;u;(3.4)
.z0; : : : ; zn/2Su;v H) .zn; : : : ; z0/2Sv;u;(3.5)

.z0; : : : ; zm/2Su;v

.zm; : : : ; zmCn/2Sv;w

µ
H) .z0; : : : ; zmCn/2Su;w :(3.6)

Set

(3.7) d 0.u; v/ D

´
1 if Su;v D ;;
inf.z0;:::;zn/2Su;v

Pn
kD1D.zk�1; zk/ if Su;v ¤ ;:

It follows from (3.4)–(3.6) that d 0 is a pseudometric in Y . To prove that it is actually a
metric, we need the following result.
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Claim 3. Let O� 2 ŷ 0, let u2V O� , and let v 2Y be such that Su;v ¤ ;. Then

d 0.u; v/ �

´
min¹D O�.u; v/;D O�.u; im O� n V O�/º if v 2V O� ;
D O�.u; im O� n V O�/ if v … V O� :

Let .z0; : : : ; zn/2Su;v . Suppose first that ¹zi�1; ziº � V O� for every i D 1; : : : ; n, then

nX
kD1

D.zk�1; zk/ �

nX
kD1

D O�.zk�1; zk/ � D O�.z0; zn/ D D O�.u; v/

by the triangle inequality. Assume now that m is the first index in ¹1; : : : ; nº satisfying
zm … V O� . Since .zm�1; zm/ is an admissible pair and zm�12 im�i � V O� , we get zm2 im O�.
Therefore

nX
kD1

D.zk�1; zk/ �

mX
kD1

D O�.zk�1; zk/ � D O�.z0; zm/ � D O�.u; im O� n V O�/I

this completes the proof of Claim 3.

Claim 4. d 0 is a compatible metric on Y .

Let us prove that d 0 is a metric: Let u; v 2 Y be such that d 0.u; v/ D 0, so Su;v ¤ ;.
Take any O� 2 ŷ 0 such that u2V O� . Since

D O�.u; im O� n V O�/ > 0;

it follows from Claim 3 that v 2V O� and D O�.u; v/ � d
0.u; v/ D 0. But D O� is a metric on

im O�, so u D v as desired.
Let us show that d 0 is a compatible metric. We start by showing that every neighbor-

hood in X contains a d 0-ball, so let U be a neighborhood of x. Since ¹im O� j O� 2 ŷ 0º is a
locally finite cover, we may assume

¹ O� 2 ŷ 0 j x 2V O�º D ¹
O�1; : : : ; O�nº

for some n2N. The metrics D O�i are compatible over im O�i , so we can find some r > 0
satisfying

BD O�i
.x; r/ � U and d.BD O�i

.x; r/; im O�i n V O�i / > r

for every i D 1; : : : ; n; then, for every y 2Bd 0.x; r/,

r > d 0.x; y/ � D O�i .x; y/

by Claim 3, so y 2BD O�i .x; r/ and hence y 2U .
Consider now a ball Bd 0.x; r/. Choose a neighborhood U of x small enough so that

U � V O�i and U � BD O�i
.x; r/
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for i D 1; : : : ; n. This means that .x; u/2Sx;u for every u2U , so

d 0.x; u/ � D.x; u/ D sup
i

D O�i .x; u/ < r:

Hence U � Bd 0.x; r/, proving Claim 4.
Let "; ı > 0, x 2X and y 2ˆ.x/ be as in the statement of the theorem. By definition

of T , every map that is not the identity is of the form j s �
�1
i , where s2� and j ;�i 2ˆ0

for some O ; O�2 ŷ 0. Recall that the notation  j means that  j is of the form O jPj , where
¹Pj j j 2 I O º is a locally finite covering of V O . Since the covering ¹V O� j O�2 ŷ 0º was also
locally finite, there are only finitely many points in X that are sent to y by a map in ˆ0;
denote them by x1; : : : ; xn. Moreover, since ˆ is an equivalence, all these points lie on
the same orbit, so we can find a uniform ıy satisfying

(3.8) d.xl ; u/ < ıy H) d.sxl ; su/ < "

for every l D 1; : : : ; n, u2X and s 2 � with xl ; u2 dom s.
Let t 2T satisfy y 2 dom t , and let v 2 dom t \ Bd 0.y; ıy/. Let t D  j s��1i , then, in

particular, (3.8) is also satisfied for xl D ��1i .y/, which belongs to the set x1; : : : ; xn.
Now y; v 2 dom t implies y; v 2 im�i D Pi � V O� . Hence ¹y; vº 2Sy;v by (3.2) and

D O�.y; v/ < D O�.y; im O� n V O�/

by (3.3), so Claim 3 yields

D O�.y; v/ � d
0.y; v/ < ıy ;

and therefore
d.xl ; u/ < ıy

by the definition of D O� , where u D ��1i v.
Let �k 2ˆ0 be such that ty; tv 2 im�k . Then

d.��1k ty; �
�1
k tv/ D d..�

�1
k  j /sxl ; .�

�1
k  j /su/:

Since ��1
k
 j 2 � by Claim 1(b) and d.xl ; u/ < ıy , we have

D O�.ty; tv/ D d.�
�1
k ty; �

�1
k tv/ < ":

The covering ¹im O� j O� 2 ŷ º is locally finite, so again there are only finitely many
maps such that ty and tv are contained in their image. In particular, this implies that
D.ty; tv/ < " since we are taking the maximum of a finite set of values smaller than ".
Both sx and su belong to dom j � V O , so (3.7) yields

d 0.ty; tv/ � D.ty; tv/ < ":

Corollary 3.19. Being sensitive to initial conditions is invariant by equivalences of pseu-
dogroups acting on locally compact spaces.
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Proof. Suppose that the pseudogroup G is not sensitive; then there are a metric d and a
generating pseudo�group � such that, for every " > 0, there are x" and ı" with

d.x"; u/ < ı" H) d.s.x"/; s.u// < "

for all u2X and s 2 � with x"; u2 dom s.
Let .Y;H / be a pseudogroup, and let ˆW .X;G /! .Y;H / be an equivalence. Propo-

sition 3.18 yields a generating pseudo�group T for H and a metric d 0 on Y . Letting
y" 2 ˆ.x"/, Proposition 3.18 yields

d 0.y"; v/ < ı";y" H) d 0.t.y"/; t.v// < "

for every " > 0, v 2Y and t 2 T with y"; v 2 dom t ; this shows that H is not sensitive to
initial conditions.

We have shown that if G is not sensitive, then neither is H ; the result now follows
from the symmetry of the equivalence relation for pseudogroups.

Corollary 3.20. Let ˆW .X; G /! .Y;H / be an equivalence of pseudogroups acting on
locally compact spaces. If x 2X is a point of .� ; d /-equicontinuity for G , then, with the
notation of Proposition 3.18, every y 2ˆ0x is a point of .T ; d 0/-equicontinuity for H . In
particular, G is almost equicontinuous if and only if H is.

Proof. The first assertion follows immediately from Preposition 3.18 and the definition
of equicontinuous point. Suppose now that the points of .� ; d /-equicontinuity are dense
in X ; then they are also dense in the open set

S
�2ˆ0

dom �. Since ˆ0 sends points of
.� ; d /-equicontinuity to points of .T ; d 0/-equicontinuity and ¹im� j � 2 ˆ0º is an open
covering of Y , the points of .T ; d 0/-equicontinuity are dense in Y .

Corollaries 3.19 and 3.20 together with Lemma 3.5 yield Theorem 1.9.
We turn our attention to the Auslander–Yorke dichotomy for pseudogroups, which we

will subsequently use to prove Theorem 1.11.

Proof of Theorem 1.10. Suppose that G is not sensitive; thus, there are a metric d and a
generating pseudo�group � so that, for every n2N, there are xn2X and ın > 0 satisfying

(3.9) d.xn; y/ < ın H) d.s.xn/; s.y// < 1=n

for every y 2X and s 2 � with xn; y 2 dom s.
Using Lemma 2.13, choose a system of compact generation .U; F; zF / with zF � � ;

note that any point in Gxn still satisfies (3.9), perhaps with a different ın, so we may
assume without loss of generality that the sequence xn is contained in U . We also have
1=n < �.U; F; zF / for n large enough, and now Proposition 3.14 yields the existence of a
sequence rn > 0 such that

(3.10) domf \ B.xn; rn/ ¤ ; H) B.xn; rn/ � dom Qf

for every f 2hF i. We will suppose, by passing to a subsequence if necessary, that every xn
satisfies (3.10); moreover, we will also assume by decreasing rn that B.xn; rn/ � U and
that rn < ın.
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Note that

(3.11) diamf .B.xn; rn// <
2

n

for every f 2F . Indeed, otherwise there would be some f 2F with

B.xn; rn/ � dom Qf and diam Qf .B.xn; rn// �
2

n

by (3.10). But then the triangle inequality would yield d. Qf .xn/; Qf .y// � 1=n for some
y 2B.xn; rn/ � B.xn; ın/, contradicting (3.9).

Let
Vn D

[
f2hF i

f .B.xn; rn// for n � 1;

which are clearly open subsets of U . Moreover, topological transitivity implies that every
Vn is dense in U , so by the Baire category theorem,

T
n Vn is also a dense subset of U .

Let us show that every x 2
T
n�1 Vn is a point of .F �; d /-equicontinuity. Assume for

the sake of contradiction that there is c > 0 such that, for every r > 0, there are f 2F �

and y 2B.x; r/ such that

for x; y 2 domf; d.f .x/; f .y// � c:

Choose m large enough so that 2=m < c=2. Since x 2
T
n�1 Vn, there is some g 2F �

such that g.x/2B.xm; rm/. By assumption, there are also y 2X and f 2F � satisfying

y 2 domg \ domf; g.y/2B.xm; rm/ and d.f .x/; f .y// � c:

But then
d.fg�1.y0/; fg�1.x0// D d.f .x/; f .y// � c

for x0 D g.x/, y0 D g.y/, and now (3.10) and the triangle inequality yield

max¹d. Qf Qg�1.xm/; Qf Qg�1.x0//; d. Qf Qg�1.xm/; Qf Qg�1.y0//º � c=2 > 2=m;

contradicting (3.11).
We have proved that, if G Õ X is topologically transitive and not sensitive to initial

conditions, then there is a metric d on X and a system of compact generation .U; F; zF /
such that the set of points of .F �; d /-equicontinuity is dense in U . Since G is equivalent
to G jU by Lemma 2.8, Corollary 3.20 yields that G is almost equicontinuous.

If G is minimal, then it is trivial to check that
T
n�1 Vn D U , so by the previous

argument there are d and .U; F; zF / so that every point in U is a point of .F �; d /-
equicontinuity. The result then follows by Lemma 3.15 and Proposition 2.20.

Proof of Theorem 1.11. Let � be a generating pseudo�group for G and let d be a com-
patible metric. By Theorem 1.10 (Auslander–Yorke dichotomy for pseudogroups), it is
enough to show that, for every .� ; d /, the set of points of .� ; d /-equicontinuity is empty.
Let .U; F; zF / be a system of compact generation for G satisfying zF � � .
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Suppose for the sake of contradiction that x 2U is a point of .� ; d /-equicontinuity.
Then it must satisfy Proposition 3.14(i) with some � > 0. By Definition 3.4 and Corol-
lary 3.6, there are points

q1 2B.x; �=2/ and q2 2B.x; �=2/ n Gq1

with finite G jU -orbits. Letting

" <
1

2
d.G jU q1;G jU q2/

and using the triangle inequality, we can choose a point q 2 ¹q1; q2º satisfying

(3.12) d.x;Gq/ > ":

For every n � 1, let pn be a point in B.x; �=n/ with finite G jU -orbit. Since Gpn \

B.x;�/ is finite, there is a finite setKn � hF i satisfying that, for every y2Gpn \B.x;�/,
there is k 2Kn with ky D pn; moreover, since y 2B.x; �/, each map k 2Kn may be
extended to a map Qk 2h zF i with B.x; �/� dom Qk. For each n, let zKn denote the collection
of all such extensions. Since zKn is a finite set of maps, there is a neighborhood Wn of q
so that Wn � B.x; �=2/ and Qk.Wn/ � B. Qk.q/; "=4/ for every Qk 2 zKn.

As G jU is topologically transitive, there are maps fn and points vn 2B.x; �=n/ such
that fnvn 2Wn; again, B.x; �/ � dom Qfn for all n. If d. Qfnvn; Qfnpn/ � �=2 for infinitely
many n, then the triangle inequality yields

max¹d. Qfnx; Qfnpn/; d. Qfnx; Qfnvn/º �
�

4
,

showing that x is not a point of .� ; d /-equicontinuity; this is a contradiction. Hence, we
may assume d. Qfnvn; Qfnpn/ < �=2 for n large enough. In particular, since Qfnvn 2Wn �
B.x; �=2/, we have Qfnpn 2B.x; �/, so there are maps kn in Kn satisfying

knfn.pn/ D pn and B.x; �/ � dom Qkn Qfn

for n large enough. Now we have

(3.13) max¹d. Qkn Qfnpn; Qkn Qfnx/; d. Qkn Qfnx; Qkn Qfnvn/º �
"

4

for n large enough because, otherwise, the triangle inequality and Qkn Qfnpn D pn would
yield

d.x; Qknq/ � d.x; pn/C d. Qkn Qfnpn; Qkn Qfnx/C d. Qkn Qfnx; Qkn Qfnvn/C d. Qkn Qfnvn; Qknq/

<
"

4
C
"

4
C
"

4
C
"

4
D ";

contradicting (3.12). The inequality in (3.13) and the fact that the sequences ¹vnº and ¹pnº
converge to x are at odds with the assumption that x was a point of .� ; d /-equicontinuity.
Since x was an arbitrary point, we infer that the set of points of .� ; d /-equicontinuity is
empty, as desired.
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3.6. A non-compactly generated, countably generated and topologically transitive
pseudogroup that is not sensitive

In this section, we construct a counterexample showing that compact generation cannot
be dropped in the statement of Theorem 1.11.

Let Y D ¹0; 1ºZ, which is a Cantor set. We use the greek letters ˛; ˇ; : : : to denote
elements of Y and the notation ˛ D .˛i /i 2Z; ˇ D .ˇi /i 2Z. Let � W Y ! Y be the shift
function, defined by

.�.˛//i D .˛iC1/:

Let G denote the subgroup of Homeo.Y / generated by � , endowed with the obvious
action G Õ Y . It is well-known that the action G Õ Y is topologically transitive and has
density of periodic orbits.

The point � WD .: : : ; 0; 0; 0; : : : / is a fixed point of G. For n � 0, let

Un D ¹˛ 2Y j ˛i D 0 for ji j < nº:

Note that U0 D Y and that ¹Unº is a system of clopen neighborhoods for �. We also have

(3.14) �.UnC1/; �
�1.UnC1/ � Un for all n � 0:

Let X D ¹.n; ˛/ 2 N � Y j ˛ 2Unº; that is, X is the disjoint union
F
i�0 Ui . Let

f; g 2 Ph.X/ be defined by

f .n; ˛/ D .n; �.˛//; domf D ¹.n; ˛/2X j �.˛/2Un n UnC2º;(3.15)
g.n; ˛/ D .nC 1; ˛/; domg D ¹.n; ˛/2X j ˛ 2UnC1º:(3.16)

In other words, f is defined for pairs .n; ˛/ with ˛i D 0 for i D �n; : : : ; nC 1 but
there is an index in the segment Œ�n � 1; n C 3� where ˛ takes the value 1. Note that
domf , imf , domg, and img are clopen subsets of X . Finally, let G be the pseudogroup
generated by f and g.

Lemma 3.21. For every .n; ˛/2X , G .n; ˛/ D ¹.m; ˇ/2X j ˇ 2G˛º.

Proof. It follows trivially from the definitions of f and g that every point in G .n; a/ is of
the form .m;ˇ/2X for some ˇ2G˛, so let us prove the reverse inclusion. First note that,
since � is a fixed point of G, the lemma is trivial for ˛ D �, so assume ˛ ¤ �; clearly, it
is enough to show that

(3.17) ¹.m; �.˛//2Xº � G .n; ˛/;

so let us prove it. Let .m; ˛/2X , we will show first that

(3.18) there is k 2N such that .k; ˛/; .k; �.˛//2X:

Since ˛¤�, there is a largest l � 0 such that �.˛/2Ul . If l D 0, then .0;�.˛//2U0 nU2,
so .0; ˛/2 domf by (3.15); if l � 1, then ˛ 2Ul�1 by (3.14). We chose l so that �.˛/ …
UlC1, .l � 1; ˛/2 dom f and f .l � 1; ˛/ D .l � 1; �.˛// by (3.15), proving (3.18) and
yielding

.m; �.˛// D gm�kfgk�n.n; ˛/:

This shows (3.17).
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Corollary 3.22. G is topologically transitive and has density of periodic orbits.

Proof. Let us prove transitivity first. By Lemma 3.3, it is enough to show that there is a
dense orbit; choose ˛2Y with a denseG-orbit, then G .0;˛/ is dense inX by Lemma 3.21.

In order to prove density of periodic orbits, let .m; ˇ/ 2X and let V � Um be an
open neighborhood of ˇ in Y ; we will prove that there is a periodic point .0; ˛/ with
G .0; ˛/ \ ¹mº � V ¤ ;. Since the finite G-orbits are dense, there is some periodic ˛ 2Y
such that ˛ ¤ � and G˛ \ V ¤ ;, so G .0; ˛/ \ ¹mº � V ¤ ; by Lemma 3.21. Let us
show that .0; ˛/ has a finite G -orbit. Indeed, there is some k such that G˛ … Uk , so the set

¹.m; �n.˛// j �n.˛/2Unº

is finite, and therefore .0; ˛/ is a periodic point by Lemma 3.21.

Lemma 3.23. .0; �/ is a point of equicontinuity for G .

Proof. Let S be the generating set ¹f; f �1; g; g�1º. Then .0; �/ … dom h for h2S , and
the result follows.

4. Foliated dynamics

4.1. A non-chaotic foliated space with chaotic holonomy pseudogroup.

Using a construction inspired by Example 2.11, we will show that density of periodic
orbits in the holonomy pseudogroup does not imply density of compact leaves. Chaos for
foliated spaces is, therefore, a stronger condition than chaos for pseudogroups, at least
with our definitions.

Think of T2 as the quotient R2=Z2 and consider Arnold’s cat map f W T2 ! T2,
which is obtained by factoring the linear map

Qf WR2 ! R2; Qf .x; y/ D .2x C y; x C y/

through the quotient � WR2 ! T2.
It is well known that the cat map f is chaotic, so by Theorem 1.7, the pseudogroup

G Õ T2 generated by f is chaotic too. It is also easy to check that the suspension foli-
ation2 induced by the representation �1.S1/ ! Homeo.T2/ sending a generator to f
satisfies Definition 1.13 and is, therefore, chaotic.

Consider now the pseudogroup H Õ R2 generated by Qf and the integer translations.
As in Example 2.11,

ˆ WD ¹�jU j U � R2 open; �jU WU ! �.U / is a homeomorphismº

is an equivalence ˆW .R2;H / ! .T2; G /; H is then a chaotic pseudogroup by Theo-
rem 1.9. Let S denote the closed surface of genus three, whose fundamental group has
presentation

�1.S/ D ha1; b1; a2; b2; a3; b3 j Œa1; b1�Œa2; b2�Œa3; b3�i;

2See Section 3.1 in [10] for an introduction to suspension foliations.
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and consider the suspension foliation X induced by the representation

�W�1.S/! Homeo.R2/

defined by

�.a1/ D Qf ; �.a2/ D Œ.x; y/ 7! .x C 1; y/�;

�.a3/ D Œ.x; y/ 7! .x; y C 1/�; �.b1/ D �.b2/ D �.b3/ D id :

The holonomy pseudogroup is obviously equivalent to H , hence chaotic. The foliated
space does not have any compact leaves, however, because all H -orbits are infinite, so X
is not a chaotic foliated space according to Definition 1.13.

4.2. A non-compact topologically transitive foliated space with density of compact
leaves which is not sensitive

This section shows that compactness cannot be omitted in the statement of Theorem 1.14.
Let us use the pseudogroup G ÕX from Section 3.6 to obtain a topologically transitive

foliated space with density of compact leaves, but with an equicontinuous leaf. We start
by constructing a directed graph Z, which can be defined as a pair Z D .V .Z/; E.Z//
where V.Z/ is the vertex set and E.Z/ � V.Z/ � V.Z/ is the set of directed edges. We
think of z as the origin and z0 as the end vertex of the directed edge .z; z0/2E.Z/.

Let V.Z/ D X , and let E.Z/ consist of all edges of the form ..m; a/; f .m; a//

and ..n; b/; g.n; b// for .m; a/ 2 dom f and for .n; b/ 2 dom g. Let Y denote the set
¹domf; imf; domg; imgº, and define the map

�WX ! 2Y ; �.x/.A/ D

´
1 if x 2A;
0 else,

where A2 Y . Under the usual identification of maps in 2Y and subsets of Y , �.x/ is the
subset of Y containing exactly the elements of Y that contain x. Since dom f , im f ,
dom g, and im g are clopen, the sets ��1.C / for C � Y form a partition of Y by clopen
sets. Choose disjoint open balls in the two-sphere S2 indexed by the elements A2Y , and
denote them by BA.

For C � Y , let SC WD S2 n
S
A2C BA, and denote the boundary circles in SC by �A

(A2C ). Let

Y1 D

G
C�Y

��1.C / � SC and Y2 D E.Z/ � S � Œ0; 1�:

Assume that we have fixed identifications of the boundary circles �A with S. Let X
be the following quotient of Y1 tY2: for each ..m; a/; h.m; a//2E.Z/ with h 2 ¹f; gº,
identify

¹..m; a/; h.m; a//º � S � ¹0º � ¹..m; a/; h.m; a//º ��domh;

¹..m; a/; h.m; a//º � S � ¹1º � ¹..m; a/; h.m; a//º ��imh:
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First, note that, locally, the space looks like the product of R2 times a Cantor set, and
is therefore a matchbox manifold. Take any point u2S2 that is not contained in any BA,
A2Y ; the image by the quotient map � WY1 tY2 ! X ofG

C�Y

��1.C / � ¹uº Š X � ¹uº � Y1

meets every connected component of X, and is therefore a transversal meeting every leaf.
Every path in X is homotopic to the concatenation of paths of the form �.�/, where � is
either a path contained in a plaque ¹.n; a/º � SC �Y1 for .n; a/2��1.C /, C � Y , or the
path t 2 Œ0; 1� 7! ...n; a/; h.n; a//; s;˙t / for ..n; a/; h.n; a//2E.Z/ and s a point in a
boundary circle. For � of the first type, �.�/ is contained in the same plaque, so it induces
an identity transformation on the transversal; for � of the second kind, the path begins
in the plaque corresponding to the point .u; .n; a// and ends at the point .u; h˙1.n; a//,
where h is either f or g. So these paths induce f , f �1, g or g�1 on the transversal, and
we see that the holonomy pseudogroup is equivalent to G Õ X .

We conclude that X is a topologically transitive matchbox manifold and the leaf corre-
sponding to .0;01/2X is a leaf of equicontinuity by Lemma 3.23. Moreover, the periodic
points of the action on X correspond to compact leaves in X, so we also have density of
compact leaves.

4.3. An affine pseudogroup

Before embarking on the proof of Theorem 1.16, we need to obtain a modified version
of the pseudogroup in Section 3.4. The reason is that we will construct the foliated space
counterexample with a particular representative of the holonomy pseudogroup in mind,
but we cannot use the pseudogroup of Section 3.4 because all its orbits are infinite.

We start by fixing the following notation:

(4.1) l�n D
1

3 � 21Cn
, r�n D

1

3 � 2n
, lCn D 1 � r

�
n and rCn D 1 � l

�
n ;

and then we fix the following intervals in order to define a sequence of toral linked twists:

H D ¹.x; y/2T2
j 1=6 � y � 5=6º;

V0 D ¹.x; y/2T2
j 1=6 � x � 5=6º;

V �n D ¹.x; y/2T2
j l�n � x � r

�
n º for n � 1;

V Cn D ¹.x; y/2T2
j lCn � x � r

C
n º for n � 1:

Let ThWT2 ! T2 be the horizontal twist defined by

(4.2) Th.x; y/ D

´
.x C 6.y � 1

6
/; y/ if .x; y/2H;

.x; y/ elseI
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and, for m 2 N, let Tv;mWT2 ! T2 be the vertical twist:

(4.3) Tv;m.x; y/ D

8̂̂̂<̂
ˆ̂:
.x; y C 6.x � 1=6// if .x; y/2V0;
.x; y C 3 � 21Cn.x � l�n // if .x; y/2V �n ; n � m;
.x; y C 3 � 21Cn.x � lCn // if .x; y/2V Cn ; n � m;
.x; y/ else:

Finally, let
Tm D Tv;m ı Th

be the corresponding linked twist map.
We denote by �n the set of points in T2 where Tn is not smooth; i.e.,

�n D @H [
[
m�n

T �1h .@V �m / [
[
m�n

T �1h .@V Cm /:

Finally, let
� D

[
n

�n and Mn WD H [
[
m�n

V Cm [
[
m�n

V �m ;

and note that�n �Mn andMn is the set where Tm is topologically transitive and sensitive
to initial conditions by Theorem 2.15.

The linear nature of these linked twists will allow us to find a common set of periodic
orbits. Let

Qn DMn \

°� l1
2n

, l2
2n

� ˇ̌̌
l1; l2 2 ¹0; : : : ; 2

n
� 1º

±
; n � 1:

Lemma 4.1. Tm.Qn/ D Qn for every n and m.

Proof. We can rewrite (4.2) and, using (4.1), also rewrite (4.3) as

Th.x; y/ D

´
.x C 6y; y/ if .x; y/2H;
.x; y/ elseI

Tv;m.x; y/ D

8̂̂̂<̂
ˆ̂:
.x; y C 6x/ if .x; y/2V0;
.x; y C 3 � 21Cnx/ if .x; y/2V �n ; n � m;
.x; y C 3 � 21Cnx/ if .x; y/2V Cn ; n � m;
.x; y/ else:

The result is now obvious.

Note that Qn \ @H D ; because the points in @H have y-coordinate 1=6 or 5=6,
which cannot be expressed as a fraction whose denominator is a power of 2. Similarly, the
above expression for Th and the definitions of V Cm and V �m show that Qn \�m D ; for
every n and m, or, equivalently,

(4.4) Qn \� D ; for every n:
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Also, by defining

zQ0 D Q0 D ;; zQn D Qn nQn�1 for n � 1;

we obtain by Lemma 4.1

(4.5) Tm. zQn/ D zQn for every n;m:

Up to this point, we have proceeded almost in the same way as in Section 3.4. There,
we used the pseudogroup on Y WD T2 �N defined by the maps

..x; y/; n/ 7! .Tn.x; y/; n/ and ..x; y/; n/ 7! ..x; y/; nC 1/:

In order to get affine maps, we will restrict the first map to an appropiate subspace; to
obtain density of finite orbits, we will “cut” open balls with center points in Qn out of the
domain of the second map. Let us start by finding suitable radii.

Lemma 4.2. There is a decreasing sequence r0; r1; : : : of positive radii such that, for
every n � 0 and .x; y/2 zQn,

(i) B..x; y/; rn/ �Mn,

(ii) d.B..x; y/; rn/;�n/ > 0,

(iii) for every 0 � m < n and .x0; y0/2 zQm,

d..x; y/; .x0; y0// > rm � rn H) d..x; y/; .x0; y0// > rm C rn;

(iv) and @B..x; y/; rn/ consists of points with at least one irrational coordinate.

Proof. We proceed by induction on n � 0; we will choose all radii rn to be trascen-
dental numbers. First, we may set r0 arbitrarily because zQ0 is empty. Assume now that
we have chosen r0; : : : ; rn�1 satisfying the above conditions. Then (i)–(ii) hold for rn
small enough because of (4.4). To prove that (iii) holds for small enough radii, note that
every zQm is a finite set consisting of points with rational coordinates, so d..x; y/; zQm/
is an algebraic number for every .x; y/2 zQn and 0 � m < n. Since the rm are transcen-
dental numbers, (iii) is satisfied for small rn. Finally, we can choose rn transcendental and
satisfying (iv) because there are countably many points with both coordinates rational but
uncountably many transcendental radii satisfying (i)–(iii).

Let

(4.6) Un WD

[
.x;y/2 zQn

B..x; y/; rn/

and

(4.7) Vn WD
[

0�m�n

Un:

By Lemma 4.2(iii), we can express Vn as a disjoint union of open balls. It follows that
Vn \Ml is not dense in Ml for any n; l � 0.
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We are finally prepared to define what will be the holonomy pseudogroup of our coun-
terexample foliated space. Let Qf and Qg be maps on Y defined by

Qf ..x; y/; n/ D .Tn.x; y/; n/; dom Qf D ¹..x; y/; n/ j .x; y/ … �nº;(4.8)
Qg..x; y/; n/ D ..x; y/; nC 1/; dom Qg D ¹..x; y/; n/ j .x; y/ … Vnº;(4.9)

and let zG Õ Y be the pseudogroup generated by Qf and Qg.

Lemma 4.3. The pseudogroup zG Õ Y is topologically transitive.

Proof. Since Tn is topologically transitive on Mn for every n � 0, there are residual sets
Rn �Mn consisting of points whose Tn-orbits are dense in Mn; hence, the fact that � is
meager yields that

R WD
� \
n�0;z2Z

T z0 .Rn/
�
n

� [
n�0;z2Z

T zn .�/
�

is a residual subset of M0 satisfying

(4.10) � \
[

n�0;z2Z

T zn .R/ D ;;

(4.11) .x; y/2R0 H) T z0 .x; y/2Rn for every n � 0; z 2 Z:

We will prove that any point ..x; y/; 0/ 2 Y with .x; y/ 2R has a dense zG-orbit.
Consider an open set V � ¹nº with V � T2 and n � 0, then there is a least m � n such
that V \Mm ¤ ;. Since Vl \M0 is not dense in M0 for any l 2N and T0.x; y/ is dense
in M0, there is z1 2Z such that

T
z1
0 .x; y/ … Vl for l D 0; : : : ; m:

This means that ..x; y/; 0/2 dom Qgm by (4.9). Equations (4.10) and (4.11) now yield

T
z1
0 .x; y/2Rm n

[
z 2Z

T zm.�/;

and therefore
Qgm Qf z1.x; y/2 .Rm n

[
z 2Z

T zm.�// � ¹mº:

By the definition of Rm, the orbit [
z2Z

T zm.T
z1
0 .x; y//

is dense in Mm and disjoint from �, so, by (4.8), there is z2 2 Z such that

.x0; y0/ WD Qf z2 Qgm Qf z1.x; y/2 .V \Mm/ � ¹mº:
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We definedm as the least integer� n satisfying V \Mm¤;, so we have V \Ml D;

for every n � l < m. Hence .x0; y0/2 dom. Qgn�m/ by (4.9) and Lemma 4.2(i), yielding

Qgn�m Qf z2 Qgm Qf z1.x; y/2V � ¹nº:

We have proved that, for .x; y/ 2R, the zG -orbit of ..x; y/; 0/ meets every open set, so
zG Õ Y is topologically transitive by Lemma 3.3.

Lemma 4.4. Let ..x; y/; m/ 2 zQn � ¹mº, with m � n.Then the orbit zG ..x; y/; m/ is
contained in zQn � ¹0; : : : ; nº.

Proof. We have Tl . zQn/ D zQn for every 0 � l � n by (4.5), so

Qf
� [
m�n

zQn � ¹mº
�
�

[
m�n

zQn � ¹mº;

and similarly for Qf �1. It is obvious from the definition of Qg that

Qg�1
� [
m�n

zQn � ¹mº
�
�

[
m�n

zQn � ¹mº; Qg
�
zQn � ¹mº

�
�

[
m�n

zQn � ¹mC 1º:

Hence, to finish the proof it is enough to show that . zQn � ¹nº/ \ dom Qg D ;, but this
follows from (4.6), (4.7) and (4.9).

Corollary 4.5. The finite zG -orbits are dense in Y .

The proof of the following statement is identical to that of Proposition 3.17.

Proposition 4.6. There is a metric d on Y and a generating pseudo�group � such that
every map in � whose domain contains ..0; 0/; 0/ is an isometry. Hence, zG is not sensitive
to initial conditions.

4.4. A non-compact, topologically transitive affine foliation with a dense set of
compact leaves which is not sensitive

We are now in position to prove Theorem 1.16 by constructing a suitable foliated space
using the pseudogroup we have just defined.

Let † be a smooth surface of genus two divided into three smooth manifolds with
boundary, †0, †˛ , and †ˇ , that overlap only on their boundaries. Let †0 be a two-sphere
with four open disks removed, and denote the boundary circles by S�˛ , SC˛ , S�

ˇ
and SC

ˇ
,

with †˛ attaching at S�˛ and SC˛ (see Figure 2).
The main idea of the construction is as follows. We have constructed a pseudogroup

zG Õ Y generated by two maps Qf and Qg satisfying suitable properties. In order to get a
foliated manifold realizing this dynamics, the obvious candidate is to mimic a suspension
foliation by taking products †˛ � dom Qf , †ˇ � dom Qg and †0 � Y , and attaching each
plaque in†˛ � dom Qf so that we identify .x; y/ 2†˛ � dom Qf and .x; y/ 2†0 � dom Qf

if x 2S�˛ and we identify .x; y/ 2 †˛ � dom Qf and .x; Qf .y// 2 †0 � im Qf if x 2SC˛ . In
this way, the plaques of†˛ � dom Qf realize Qf in the holonomy pseudogroup. Proceeding
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Figure 2. The surface † and its partition.

similarly, we realize Qg using †ˇ � dom Qg. However, now there are singularities at the
points

.x; y/2 .S�˛ � @ dom Qf / t .SC˛ � @ im Qf /;

and similarly for Qg, so the resulting space would not even be a manifold with boundary.
Since we do not require a compact foliated manifold, we may get rid of the problematic
points and consider Y0 WD .†0 � Y / n C, where

C D C�˛ [ CC˛ [ C�ˇ [ CC
ˇ
;

with

C�˛ D S
�
˛ � @ dom Qf ;

CC˛ D S
C
˛ � @ im Qf ;

C�ˇ D S
�
ˇ � @ dom Qg;

CC
ˇ
D SC

ˇ
� @ im Qg:

Recall that dom Qf is a dense open subset of Y and dom Qg is the complement of a
disjoint union of open balls. Now Y0 is a non-compact smooth manifold with boundary.

Now attach the boundaries of Y˛ WD †˛ � dom Qf and Yˇ WD †ˇ � dom Qg to Y0

using the identifications

.s; y/ � .s; y/; .s; y/2S�˛ � dom Qf ;

.s; y/ � .s; Qf .y//; .s; y/2SC˛ � dom Qf ;

.s; y/ � .s; y/; .s; y/2S�ˇ � dom Qg;

.s; y/ � .s; Qg.y//; .s; y/2SC
ˇ
� dom Qg:

Denote by Y the resulting space. The product foliated structures on Y0, Y˛ , and Yˇ

with leaves ¹yº �†i (where i D 0, ˛, or ˇ, respectively) descend to Y. It is an elementary
matter to check that, essentially by construction, Y is C1 and its holonomy pseudogroup
is equivalent to zG Õ Y . Indeed, we can choose a point x in the interior of †0, and then
¹x0º � Y is a total transversal of Y. Since Y0 has a product foliation structure, it has
trivial dynamics; by gluing Y˛ and Yˇ , we realize Qf and Qg, respectively, so the holonomy
pseudogroup is equivalent to zG Õ Y .
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Corollary 4.7. The foliated space Y is C1, transversally affine and topologically tran-
sitive, but not sensitive to initial conditions.

The space Y is also a smooth manifold with boundary and, noticing that we removed C
from .†0 � Y / n C and keeping track of which points in the boundary of Y0 we glued
to Y˛ and Yˇ , we see that the boundary of Y is

(4.12) @Y D S�ˇ � .Y n dom Qg/ t SC
ˇ
� .Y n im Qg/:

Recall that dom Qf is an open and dense subset so the terms containing .Y n dom Qg/ are
empty; the same argument applies to im Qf .

Lemma 4.8. The foliated space Y has a dense set of leaves that are compact manifolds,
possibly with boundary.

Proof. By Lemma 4.4, a leaf L corresponding to a point ..x; y/; m/ with .x; y/ 2Qn
corresponds to a finite orbit of zG . Consider the inverse image of L by the quotient map
Y0 t .dom Qf �†˛/ t .dom Qg �†ˇ /! Y. Since it has a finite orbit, the inverse image
of L only intersects finitely many plaques in Y0, †˛ � dom Qf , and †ˇ � dom Qg. The
plaques in †˛ � dom Qf , and †ˇ � dom Qg are all compact, being copies of †˛ and †ˇ ,
respectively. By Lemma 4.2 and (4.6)–(4.9),

Qn \
[
l�0

@Vl D Qn \� D ;;

so every zG -orbit of a point ..x; y/;m/ is disjoint from

@ dom Qf [ @ im Qf t @ dom Qg [ @ im Qg:

Looking back at the construction of Y0 at the beginning of this section, this implies that
the plaques in Y0 that project to L are all compact, being copies of †0; L is then the
quotient of a finite union of compact plaques, hence compact.

At this point, we have constructed a smooth and transitive foliated manifold with
boundary Y that has a dense set of compact leaves but is not sensitive to initial condi-
tions. It only remains to modify it in order to get rid of the boundary: Take two copies Y�

and YC, and let Y˙ Š Y� [YC= � be the quotient space obtained by identifying their
boundaries. This is sometimes called the “double” of a manifold with boundary, and it is
known to admit a smooth structure making it a manifold without boundary. In our case,
where we constructed our space Y by gluing product manifolds endowed with product
foliations, it is elementary to check that the foliated structure descends to the quotient
and Y˙ is now a smooth foliated manifold without boundary.

Lemma 4.9. The set of compact leaves is dense in Y˙.

Proof. Denote by � WY� tYC ! Y˙ the quotient map. Let U be a open subset of Y˙,
which without loss of generality we may assume that is contained in �.Y� n @Y�/.
Now, by Lemma 4.8, there is a compact leaf L� in Y� intersecting ��1.U /. If L�

has empty boundary, then L� \ @Y� D ; and �.L�/ is a compact leaf in the quotient
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space Y˙ intersecting U . If L� has non-empty boundary, then it is contained in the leaf
L D �.L� t LC/, where LC is the leaf of YC that corresponds to L�. Then L inter-
sects U and is a quotient of the compact space L� t LC, hence compact.

Lemma 4.10. Y˙ is topologically transitive but not sensitive to initial conditions.

Proof. Let us inspect the holonomy pseudogroup of Y˙. Since Y Š ¹x0º � Y was a total
transversal for Y, for Y˙ we can take Y ˙ � Y � [ Y C, where Y � and Y C denote the
image by � of copies of ¹x0º in Y� and YC, respectively. On each of Y � and Y C we
have copies of zG , denoted by zG� and zGC. The maps between Y � and Y C come from the
gluing of the boundaries of Y� and YC. Recall that Y D T2 �N. Looking at (4.12), we
see that, if we denote the points of Y � and Y C by .y;�/ and .y;C/, respectively, we get
a new map h defined by

dom h D ¹.y;�/ j y 2Y � n .dom Qg� \ im Qg�/º;

im h D ¹.y;C/ j y 2Y C n .dom QgC \ im QgC/º;
h.y;�/ D .y;C/;

where Qg� and QgC denote the respective copies of Qg acting on Y � and Y C.
Denote by zG˙ the pseudogroup acting on Y ˙ generated by zG�, zGC, and h, which

is then the holonomy pseudogroup of Y˙. Let us prove that is topologically transitive.
By Corollary 4.7, there is a dense orbit zG.y/ in Y . Then the orbit zG˙.y;�/ contains
zG�.y;�/, which is dense in Y �, and similarly zG˙.y;C/ is dense in Y C. Since dom Qg
was a disjoint union of open balls in Y , zG�.y;�/ meets dom h, and we get

zG˙.y;�/ D zG�.y;�/ [ zGC.y;C/;

which is dense in Y ˙.
Finally, let us prove that zG˙ is not sensitive to initial conditions. By Proposition 4.6,

there is a metric d on Y , a point y 2Y and a generating pseudo�group S for zG such that
every map of S whose domain contains y is an isometry. Let d˙ be metric on Y ˙ such that
points from Y � and Y C are at infinite distance of each other, and the restrictions of d˙

to Y � and Y C coincide with d . Finally, let S˙ D S� [ SC [ ¹hº, where S� and SC are
copies of S acting on Y � and Y C, respectively. It is immediate that S˙ generates zG˙ and
every map in S˙ whose domain contains .y;�/ is an isometry with respect to d˙, and
the result follows.

The pseudogroup G Õ Y was affine, and it is easily checked that so is zG˙ Õ Y ˙,
yielding that Y˙ is a transversally affine foliation. This completes the proof of Theo-
rem 1.16.
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