
Rev. Mat. Iberoam. 41 (2025), no. 1, 313–338
DOI 10.4171/RMI/1506

© 2024 Real Sociedad Matemática Española
Published by EMS Press and licensed under a CC BY 4.0 license

Hydrodynamic and symbolic models
of computation with advice

Robert Cardona

Abstract. Dynamical systems and physical models defined on idealized continuous
phase spaces are known to exhibit non-computable phenomena; examples include
the wave equation, recurrent neural networks, or Julia sets in holomorphic dynamics.
Inspired by the works of Moore and Siegelmann, we show that ideal fluids, modeled
by the Euler equations, are capable of simulating poly-time Turing machines with
polynomial advice on compact three-dimensional domains. This is precisely the com-
plexity class P=poly considered by Siegelmann in her study of analog recurrent
neural networks. In addition, we introduce a new class of symbolic systems, related
to countably piecewise linear transformations of the unit square, that is capable of
simulating Turing machines with advice in real-time, contrary to previously known
models.

1. Introduction

Computational aspects of dynamical and physical systems can be studied from a variety
of intertwined perspectives such as numerical simulation, computability theory, computa-
tional complexity, or analog computation. The last one understands a dynamical system
as a computing device that takes an input (the initial condition) and reaches some region
of the phase space encoding the output of the process. Combining symbolic dynamics
and the Turing machine model, Moore showed in his seminal work [22, 23] that even
low-dimensional dynamical systems are capable of universal computation, thus unveil-
ing the undecidability of some of their properties. Since then, several dynamical systems
coming from physical models have been shown to be capable of simulating universal
Turing machines. Examples include 3D optical systems [26], analog recurrent neural
networks [30], high dimensional potential wells [31], and more recently, incompressible
fluids in various contexts [12–15].

Beyond Turing-computability arises computability with advice: computational mod-
els that can compute more than the classical Turing machines (other examples include
Turing’s oracle machines [34]). Dynamical systems modeled in continuous phase spaces
allow the presence of real numbers and infinite precision that can lead to non-computable

Mathematics Subject Classification 2020: 37B10 (primary); 37C10, 03D78, 35Q31, 68Q09 (secondary).
Keywords: hydrodynamics, computable analysis, models of computation, dynamical complexity.

https://creativecommons.org/licenses/by/4.0/

R. Cardona 314

phenomena. Even if those dynamical systems can represent physical models that are
highly idealized and hence physically non-realizable, it is interesting from a theoretical
of point of view to understand which models can exhibit such computational behavior.
For example, the wave equation admits non-computable solutions even if one chooses
computable initial data [25], see also [20, 35]. Some examples in purely dynamical con-
texts include the existence of non-computable Julia sets [10], and polynomial planar flows
with a non-computable number of periodic orbits [19]. This phenomenon is expected to
disappear under perturbations in compact spaces, see [5, 9]. A complexity class that con-
tains non-computable languages is P=poly, which is the set of languages recognized by
polynomial-time Turing machines with polynomial advice (see Section 2.1 for details). In
her influential work [27–29], Siegelmann showed that neural networks with real weights
can simulate those machines in polynomial time. Other discrete dynamical systems were
shown to be computationally equivalent to P=poly by Bournez and Cosnard [3, 4].

In this work, we establish that ideal fluids on three-dimensional geometric domains
are also capable of simulating polynomial-time Turing machines with polynomial advice.
Recall that given a three-dimensional manifold, with or without boundary, the motion of an
ideal fluid (i.e., incompressible and without viscosity) is modeled by the Euler equations´

@tuCruu D �rp;

divu D 0;

where p stands for the hydrodynamic pressure and u is the velocity field of the fluid,
which is a non-autonomous vector field on M tangent to its boundary. Here ruu denotes
the covariant derivative of u along itself, and div is the divergence associated with the
Riemannian metric g. A stationary solution to the Euler equations is an autonomous vector
field on M whose integral curves represent the particle paths of a fluid in equilibrium.

Theorem 1.1. Given a polynomial-time Turing machine with polynomial advice .T; a/,
there exist a three-dimensional toroidal domain U equipped with some Riemannian met-
ric g, and a stationary solution to the Euler equations in .U; g/ that simulates T in
polynomial time.

There are several ways in which a continuous system can simulate a Turing machine,
but generally, it roughly means that each step-by-step computational process of the ma-
chine is encoded in the evolution of some orbit of the system. In the statement, we have
chosen for simplicity a domain diffeomorphic to a solid torus; however, one can choose as
well any closed three-manifold or R3 for example. To establish Theorem 1.1, we first need
to introduce a new notion of simulation (see Definition 4.1), inspired by the classical ones
in the literature [6, 8, 17, 18, 23], that provides a well-defined notion of time complexity
in the context of conservative ODEs. Then the key step is showing that one can simulate
Turing machines with polynomial advice via an analog shift that is mostly injective, which
allows us to embed its evolution in a conservative map defined on a finite set of rectangles
in a disk (Theorem 3.2). This requires several technical adaptations from the case of Turing
machines without advice as in [15, 23]. Finally, we extend the map by rectangles to an
area-preserving diffeomorphism of the disk that is then realized as the first-return map of
a steady Euler flow on some transverse disk-like section. We conclude by proving that

Hydrodynamic and symbolic models of computation with advice 315

the resulting flow simulates (in polynomial time) the starting Turing machine with advice
according to Definition 4.1.

We point out that Theorem 1.1 gives a lower bound on the computational capacity of
stationary ideal fluids, and an interesting problem that we do not address here is finding
upper bounds for this capacity.

In the second part of this paper, we continue the investigation of dynamical systems
capable of simulating machines with advice by introducing a new family of symbolic
systems that we call “countable generalized shifts”, and that generalize those introduced
by Moore [23] in a completely different way than analog shift maps [27]. We study
some dynamical and computational properties of these systems, showing that they can
compute P=poly. This symbolic model can be partially embedded in the evolution of a
countably piecewise linear map of the unit square. This provides an alternative symbolic
model for computation with polynomial advice, which in addition has some advantages
with respect to previously known dynamical models such as real-time simulation.

Organization of the paper. In Section 2, we review the definitions of generalized shift
and analog shift map. In Section 3, we prove that there exist area-preserving diffeo-
morphisms of the disk that simulate in polynomial time Turing machines with advice.
Section 4 starts by introducing time complexity in conservative ODEs by defining an
appropriate notion of simulation. It is then shown that there are Euler flows simulating
any polynomial-time Turing machine with polynomial advice according to such defini-
tion. Finally, in Section 5 we introduce countable generalized shifts, study some of their
dynamical properties, and analyze their computational power.

2. Symbolic dynamics

In this section, we recall several definitions, such as Turing machine with advice, Moore’s
generalized shifts [23] and the analog shift map, a generalization proposed by Siegel-
mann [27].

2.1. Turing machines with polynomial advice

We define a Turing machine T D .Q; q0; qhalt; †; ı/ by the following data:
• A finite set Q of “states” containing two particular (distinct) states: the initial state
q0 2 Q and the halting state qhalt 2 Q.

• A finite set†, which is the “alphabet”, and that has cardinality at least two. It contains
a specific symbol denoted by 0 that is also called the “blank symbol".

• A transition function ıWQn¹qhaltº �†! Q �† � ¹�1; 0; 1º.
A pair .q; t/ 2 Q � †Z is a configuration of the machine if the symbols of t are all

zero except for finitely many of them. We say in this case that the tape t is compactly
supported. Turing machines can be defined as well over tapes with infinitely many non-
zero symbols. Hence if A � †Z denotes the set of sequences that have all but finitely
many symbols equal to zero, the space P D Q � A is the space of configurations of the

R. Cardona 316

machine. When writing a tape t D .ti / 2 †Z in the form

: : : t�1 : t0 t1 : : : ;

we will use a dot to specify that the position zero lies at the right of the dot.
The evolution of a Turing machine is described as follows. At any given step of the

algorithm, we will denote by q 2Q the current state, and by t D .tn/n2Z 2†
Z the current

tape. Given an input tape s D .sn/n2Z 2 †
Z, the machine runs by applying the following

algorithm:
(1) We initialize the machine by setting the current state q to be q0 and the current tape t

to be the input tape s.
(2) If the current state is qhalt, then halt the algorithm and return t as output. Otherwise,

compute ı.q; t0/ D .q0; t 00; "/, with " 2 ¹�1; 0; 1º.
(3) Change the symbol t0 by t 00, obtaining the tape Qt D : : : t�1 : t 00 t1 : : :
(4) Shift Qt by ", obtaining a new tape t 0. The new configuration is .q0; t 0/. Return to

step .2/. Our convention is that " D 1 (respectively, " D �1) corresponds to the left
shift (respectively, the right shift).

This algorithm determines a global transition function

� W .Q n ¹qhaltº/ � A! P

that sends a configuration to the configuration obtained after applying a step of the algo-
rithm. The global transition function can also be trivially extended to .Qn¹qhaltº/ �†

Z,
since a step of the algorithm is well defined even for non-compactly-supported tapes.

A polynomial-time Turing machine T is a machine that halts for any given input tin of
size n in at most P.n/ steps, where P.n/ is some polynomially-bounded function. For our
purposes, we shall follow the simplifying convention in [27, 29] where we only consider
inputs with tk D 0 for each k < 0, and say that an input tin 2 †Z is of size n if it is of the
form

tin D : : : 0 : t0 : : : tn 0 : : : ;

with tn ¤ 0. A polynomial-time machine with polynomial-sized advice .T; a/ comes
equipped with an infinite collection of strings a D ¹anºn2N such that an 2 †p.n/ for
some increasing polynomially-bounded function p.n/. Given an input tin of size n, the
machine has access to an in one computational step. To make a very concrete dynamical
interpretation of this, given T and ¹anºn2N , let us add a new state Qq0 inQ which will be an
auxiliary initial state, and the machine with input . Qq0; tin/ applies a preliminary step of the
algorithm that sends . Qq0; tin/ to the configuration .q0; tain/, where if tinD : : : 0 : t0 : : : tn 0 : : :,
the tape tain is

tain D : : : 0 : t0 : : : tna
n
1 : : : a

n
p.n/ 0 : : :

where we wrote the advice string as an D an1 : : : a
n
p.n/

. For such a Turing machine, the
global transition function � can be extended to the set ¹ Qq0º � †Z, by declaring that on
elements of the form . Qq0; tin/ we have �. Qq0; tin/ D .q0; tain/, and any arbitrary extension
for the other elements in ¹ Qq0º �†Z. Throughout the paper, whenever we talk of a Turing
machine with advice, we refer to this polynomially-bounded version of it.

Hydrodynamic and symbolic models of computation with advice 317

2.2. Generalized shifts and analog shifts

Let us now review the two classes of symbolic systems that have been related respectively
to Turing machines and Turing machines with advice.

Generalized shifts. We recall here the definition of generalized shifts, following the ori-
ginal definition of Moore. LetA be a finite alphabet and let sD .si /i2Z 2A

Z be an infinite
sequence. A generalized shift is given by two maps. First, a map

G W AZ
! AZ;

together with a finite domain of dependence DG D ¹i; : : : ; i C l � 1º and a finite domain
of effectDe D ¹n; : : : ; nCm� 1º. These domains indicate that G.s/ is equal to s except
maybe along the positions in De , which are modified according to the symbols in the
positions DG of s.

Secondly, a map
F W AZ

! Z:

with a finite domain of dependence DF D ¹j; : : : ; j C r � 1º, i.e., the image of F only
depends on the symbols of the sequence in the positions DF . The image of s by the
generalized shift �WAZ ! AZ is then defined as follows:

• change s by G.s/, this modifies potentially the symbols in positions De of s,
• shift G.s/ by F.s/, and the resulting sequence is by definition �.s/.

As we did for Turing machines, we choose by convention that a positive (negative)
value of F.s/ means that we shift jF.s/j times to the left (right).

The previous definition is appropriate from a notational point of view to easily define
the generalization of analog shift maps. However, generalized shifts admit an alternative
simpler notation (as used in [15]) that we will use as well.

Alternative notation. The map G, once we have fixed the domains of dependence and
effect, is completely determined by assigning to each word in Al a word in Am. Hence,
by abusing notation, we will understand G as a map

G W Al ! Am;

and write G.t1 : : : tl /D t 01 : : : t
0
m. Similarly, the image by F of s is completely determined

by the symbols in positions DF , so abusing notation, we can think of F as a map

F W Am ! Z:

Then, given a sequence s, the sequence �.s/ is obtained by replacing the symbols in
positions n; : : : ; nCm� 1 of s by G.si : : : siCl�1/ and shifting the resulting sequence by
F.sn : : : snCm�1/. Unless otherwise stated, and without loss of generality, we will assume
that a generalized shift is such that De D DG .

Let us state an obvious property of generalized shifts that we will use later.

Lemma 2.1. Let � be a generalized shift. Then for any sequence s 2 AZ, its image �.s/
coincides with s after a shift �F.s/ except along the symbols at positions DG .

R. Cardona 318

Proof. The sequence �.s/ is obtained by changing some of the symbols at positions DG
of s and shifting by F.si : : : siCr�1/. Hence shifting �.s/ by �F.si : : : siCr�1/ yields a
sequence that coincides with s, except maybe along the symbols in positions in DG .

The analog shift map. Analog shift maps [27] are defined similarly to generalized shifts,
except that the domain of effect of G can be infinite (in one or both directions). Hence in
this case, an analog shift map �WAZ ! AZ is specified by

F W AZ
! Z; DF D ¹i; : : : ; i C r � 1º;

with a finite domain of dependence DF , and

G W AZ
! AZ;

with a finite domain of dependence DG D ¹j; : : : ; j C l � 1º. However, the domain of
effect of G depends on the symbols in position DG of the sequence s and can be a finite
number of consecutive integers, a one-sided infinite sequence of consecutive integers, or
all Z.

3. Simulation with area-preserving diffeomorphisms

In this section, we show how to simulate Turing machines with advice via compactly sup-
ported area-preserving diffeomorphisms of the disk. To prove this fact, we will first show
how to simulate such machines via a globally injective piecewise linear area-preserving
map defined on a finite number of disjoint rectangular domains on a disk. These domains
will be Cantor blocks, even though their images by this piecewise map will not always be
Cantor blocks.

Definition 3.1. The square Cantor set is the product set C 2 WD C � C � I 2, where C is
the (standard) Cantor ternary set in the unit interval I D Œ0; 1�. A Cantor block is a block
of the form B D Œa=3i ; .a C 1/=3i � � Œb=3j ; .b C 1/=3j � � I 2, where i and j are two
non-negative integers, and a < 3i and b < 3j are two non-negative integers that do not
have any 1 in their ternary expansion.

We identify sequences s D .: : : s�1:s0 s1 : : : / in ¹0; 1ºZ with points C 2 via the fol-
lowing bijection:

(3.1)

e W ¹0; 1ºZ ! C 2

.si /i2Z 7�!

� 1X
iD1

s�i
2

3i
;

1X
iD0

si
2

3iC1

�
:

If we choose an alphabet with k symbols instead of only two, we can encode all the
sequences of the alphabet in a square Cantor set C 2

k
, where Ck is a Cantor set of the

interval obtained by iteratively removing k � 1 open subintervals. Then Cantor blocks are
defined analogously. In the statement below, D denotes some disk of big enough radius
that contains the unit square I 2.

Hydrodynamic and symbolic models of computation with advice 319

Theorem 3.2. Given a Turing machine with advice .T; a/, there exist two families B D

B1; : : : ; BN�1; BN and B 0 D B 01; : : : ; B
0
N�1 of pairwise disjoint Cantor blocks, a rectan-

gular domainB 0N �D disjoint from B 0, and an injective piecewise linear area-preserving
map F W

F
Bi ! B 0i such that F jC 2\B simulates .T; a/ in polynomial time.

A concrete property that formalizes simulation in polynomial time in this context is
that there exists a computable map ' that maps the configurations of .T; a/ to points on a
square Cantor set such that, if .T; a/ halts with input .q0; tin/ and output .qhalt; tout/ in k
steps, then the orbit of F through '.q0; tin/ reaches '.qhalt; tout/ in q.k/ iterations of F ,
where q is some polynomially-bounded function.

Proof. Following [29], we recall how the analog shift map is capable of simulating, in
polynomial time, a given polynomial-time Turing machine with polynomial advice. This
will help us understand the technical adaptions that we need to do to obtain partly injective
dynamics, which is key to obtaining a map F that is injective.

Given a Turing machine with advice . OT ; a/ with states Q and alphabet †, we first
forget the “additional” state Qq0 that plays the role of initial state and is used to include
the advice on the inputs via �. Qq0; tin/ D .q0; t

a
in/ as described in Section 2.1. We will

denote this simpler machine by T ; it does not have Qq0 in its set of states, and q0 is its
initial state instead. To be able to simulate OT by an analog shift, the idea is to add all of the
advice, i.e., all the strings concatenated in a one-sided infinite sequence a1 D : : : a2a1a0,
to any input tin in one step. Then, the dynamics are constructed to “extract” the string
corresponding to the input in polynomial time. To explain what we mean by this, first
assume that we can reach a configuration of the form

a1 : t0 : : : tn0 : : : ;

that is, all of the advice has been added to an input. Then we modify T so that it changes,
in polynomially many steps, this tape (with a suitable state) to a tape of the following
form.

: : : anC2an : t0 : : : tnan0 : : :

This is explained in Chapter 12 of [29]: there exists a modified Turing machine QT that
works as T with a preliminary extraction of the advice. The set of states and symbols of QT
contains those of T , but has as well an extra marker symbol d in its alphabet and an extra
set of states Qq1; : : : ; Qqr . The initial state of QT is Qq1 (instead of q0 2Q/, and it simulates T
on inputs of the form Qt D .a1 : t0 : : : tn0 : : : / in polynomial time as follows. First, in g.n/
steps (where g is some polynomially-bounded function), the configuration . Qq1; Qt / reaches
the configuration . Qqr ; t 0/ with

t 0 D .: : : anC1d: t0 : : : tnan 0 : : : /;

and from there simulates T in polynomial time. This is done step by step as T would do
it, but moving the marker d to the left when necessary to keep track of the relevant part
of the tape (everything kept at the left of d is not used for the computation). To keep the
notation simple, let Q and † denote the set of states and the alphabet of QT .

We will now show how to simulate QT and a preliminary step that includes a1 in
the left side of the tape of any input by an analog shift map. We consider the alphabet

R. Cardona 320

QA D Q t† t ¹ Qq0º, and we identify the configurations of QT to AZ by the map

' W Q �†Z
! QAZ

.q; t/ 7�! .: : : t�1:q t0 t1 : : : /:

Since QT is a standard Turing machine (no advice is being added for the moment, since
we are not using Qq0), using Theorem 7 in [23], there exists a generalized shift �GS, with
DF DDG DDe D ¹�1; 0; 1º defined on the alphabet AD QA n ¹ Qq0º, such that the global
transition function of QT is semi-conjugate to �GS by this identification. We extend this
generalized shift to an analog shift map �W QAZ ! QAZ by imposing

(3.2)

´
G.0: Qq0 t / D .a1 : Qq1 t /; for any t 2 †;
F.0: Qq0 t / D 0; for any t 2 †:

The dot in the words is used to specify that DG is still ¹�1; 0; 1º, but the domain of effect
ofG for the words of the form .0: Qq0 t / is now every integer smaller or equal to 1. For each
.s�1:s0s1/ where �GS was already defined, the map G still only changes the symbols in
position �1; 0; 1.

Let us check that � simulates OT in polynomial time, and that � can be assumed to
be injective in '.Q n ¹qhaltº � †

Z/. We encode an input .: : : 0: t0 : : : tn 0 : : : / in QAZ as
the sequence .: : : 0: Qq0 t0 : : : tn0 : : : /. After one step of �, we reach .a1 : Qq1 t0 : : : tn 0 : : : /,
and then proceed simulating QT . This shows that � simulates OT in polynomial time. If we
want � to be injective, we need to assume that QT is reversible. This is possible for the
following reasons. A classical method of Benett [2] shows how to simulate T by some
reversible Turing machine with three tapes. The simulation is polynomial in time, in fact,
if QT halts in K steps with some input, then the reversible machine halts in O.K1C"/
steps. A reversible three-tape Turing machine can be simulated by a reversible one-tape
Turing machine, such simulation is also polynomial in time (in this case, the simulation
is quadratic, see, e.g., Proposition 1 in [1]). We can also assume that the initial state of QT ,
which is Qq1, is not in the image of the transition function of QT as discussed in Section 6.1.2
of [24]. Then Q�W .Q n ¹qhaltº/ � †

Z ! Q � †Z, the global transition function of QT , is
injective, and so will be �.

We are now ready to construct a map by blocks that encodes the dynamics of �. First,
the symbolic dynamics where no advice is added: an application of Lemma 0 in [23]
implies that �jAZ D �GS is induced by a piecewise area-preserving linear map defined
on blocks B1; : : : ; BN�1 of some square Cantor set zC (associated to an alphabet of j QAj
symbols). This set of blocks never intersects in the block determined by fixing the zero
symbol of a sequence to be Qq0, since �GS is defined on AZ � QAZ. Each of these blocks
is contained in the block determined by an element .s�1; s0; s1/ 2 A3 of the domain of
dependence. The fact that QT is reversible implies that the image blocks B 01; : : : ; B

0
N�1 of

B1; : : : ; BN are also pairwise disjoint. The linear area-preserving map

F W

N�1G
iD1

Bi !

N�1G
iD1

B 0i

Hydrodynamic and symbolic models of computation with advice 321

given by Moore’s lemma induces on zC the generalized shift �GS via an encoding of the
form of (3.1). No block Bi ; B 0i contains a sequence whose symbol in position zero is Qq0
by construction, since Qq0 is not in the alphabet of �GS.

We will now extend F to another rectangular domain so that the map also includes the
instructions (3.2) as well. We will first define this rectangle and its image. The rectangle,
which will be denoted by BN , is given by the Cantor block of zC corresponding to those
sequences that have at position zero the symbol Qq0 (this is a horizontal rectangle in I 2).
Let QB be the block given by those sequences that have at position zero the symbol Qq1,
this is another horizontal rectangle in I 2. No block B 0i intersects QB , since Qq1 is not in the
image of the transition function of QT . Now we define the image block B 0N as the image
of QB by the translation

�.x; y/ WD .x C ˛; y/;

where ˛ is the number associated to the left-infinite sequence .a1 :0 : : : / via a map
like (3.1). That is, if the alphabet was of two symbols and a1 D .: : : s�2 s�1:0 : : : /, then
˛ D

P1
iD1 s�i 2=3

�i .
It is clear that B 0N is disjoint from B 01; : : : ; B

0
N�1, since we just slightly translated

horizontally the horizontal Cantor block QB and thus the part of B 0N that is not in QB is
not even in I 2, so it cannot intersect any other Cantor block. We define F jBN to be a
composition of the trivial vertical translation ofBN intoB 0N and � . Observe that if we start
with a sequence .: : : 0: Qq0 t0 : : : tn 0 : : : / in QAZ, it is encoded toBN � zC , and applying F it
is sent to the point whose associated sequence is .a1 : Qq1 t0 : : : tn 0/. In other words, given
an input .: : : 0: Qq0 t0 : : : tn 0 : : : /, in one step all the advice of the machine is included in
the sequence by F , and then the next iterations of F will follow the computations of QT
as specified by �GS. We conclude that F W

FN
iD1 Bi !

FN
iD1 B

0
i induces on zC a map that

simulates T in polynomial time.

Observe that even if the initial machine T is already reversible, the proof of The-
orem 3.2 shows that the simulation is only done in polynomial time, not in real-time. This
is because one needs to preprocess a1 by introducing the auxiliary machine QT .

The map F extends to a compactly supported area-preserving diffeomorphism of the
disk arguing exactly as in Proposition 5.1 of [15].

Corollary 3.3. Given a polynomial-time Turing machine with polynomial advice .T; a/,
there exists a compactly supported area-preserving diffeomorphism of a disk D that sim-
ulates T in polynomial time.

The simulation is described as follows. The symbolic system �WAZ! AZ (that simu-
lates .T;a/ in polynomial time) constructed in the proof of Theorem 3.2 is semi-conjugate,
along the sequences that encode configurations of .T; a/, to the area-preserving diffeo-
morphism of the disk.

Regarding computability, the encoding (3.1) is of course computable on compactly
supported sequences, and so is the map by blocks except along the block that simulates
the first step of the machine (block BN in the proof of Theorem 3.2). This is necessary
since the dynamics applied to that block adds to the computational process the possibly
non-computable advice string.

R. Cardona 322

4. Computation with advice in ideal fluid motion

In this section, we introduce a definition of simulation of Turing machines by volume-
preserving autonomous flows that admits a well-defined notion of time complexity. We
show that for a given Turing machine with advice, there exists a stationary solution to the
Euler equations, on a compact three-dimensional geometric domain equipped with some
Riemannian metric, that simulates it.

4.1. Simulation and complexity with conservative ODEs

We are interested in showing that a continuous dynamical system simulates a polynomial-
time Turing machine; we thus need to specify how to measure “computational time” (steps
of the computation) in a continuous-time model. Throughout this section, every object
we consider, like a manifold or a vector field, will be assumed to be smooth. Let X be
an autonomous vector field on a manifold M (for concreteness, one might think of an
ordinary differential equation defined in Rn). Given a point p 2 M , the integral curve
of X through p is the solution to the system

(4.1)
²
y0.t/ D X.y.t//;

y.0/ D p:

There are several ways to define continuous-time simulation of a Turing machine T by
a vector field X . One approach, introduced in [31] and followed in [12, 13, 15], is to
define simulation by requiring that the halting (perhaps with a prescribed finite part of the
output) of the machine for a given input is equivalent to the integral curve of X through
a computable point p 2 M intersecting a computable open set U � M . This definition
does not impose a “step-by-step” simulation, as it is more customary in previous works
[8,17,18,21], although the constructions in [12,13,15,31] do in fact provide step-by-step
simulations. Inspired by [17, 18], we consider the following definition of simulation, that
takes into account the behavior of the time parameter.

Definition 4.1. Let X be a vector field on a manifoldM . Let T be a Turing machine, and
denote by � its global transition function, and by 'WP ,! M an injective encoding of
the configurations of T in M . We say that X simulates T if, for each initial configuration
.q0; s/ 2 P , there is a constant Ks such that the solution y.t/ to y0.t/ D X.y.t// with
initial condition y.0/ D '.q0; s/ satisfies

(4.2) y.Ks � n/ D '.�
n.q0; s//;

for each n � N , where N 2 N t ¹C1º is the halting time of T with input .q0; s/.

With this definition, the values of t that are integer multiples of Ks measure the steps
of the algorithm. So given one computation (an initial configuration), each step of the
algorithm is performed in the same amount of continuous time. We will then see why this
definition behaves well for conservative autonomous flows.

Remark 4.2. Definition 4.1 defines real-time simulation, i.e., one step of the machine
corresponds to one step (measured by time multiples of Ks) of the system. Polynomial-
time simulation can be defined analogously, by replacing y.Ks � n/ by y.Ks �Q.n// in
equation (4.2) for some polynomially-bounded function Q.n/.

Hydrodynamic and symbolic models of computation with advice 323

Remark 4.3. We can further require that the positive trajectory y.t/ as above intersects
some open set Us (for example, a "-neighborhood of the image by ' of the halting config-
urations) if and only if T halts with input .q0; s/. This is interesting because the halting
of T with a given input is equivalent to an integral curve reaching an explicit open set.
In addition, we can require that the orbit y.t/ either intersects Us or remains at a positive
distance (bounded from below) from it.

Remark 4.4. It is also possible to use an encoding ' that assigns an open set to each
configuration (e.g., as in [13]), and then we require that y.Kti � n/ lies in the open set that
encodes �n.q0; tin/. Definition 4.1 readily generalizes to robust simulations as in [17].

Given an autonomous vector field simulating a Turing machine as in Definition 4.1,
one is tempted to use the time-parameter t of an integral curve as a measure of time
complexity. According to the definition of step-by-step simulation, the solution at time
t D k corresponds to the k-th step of the algorithm. However, as classically treated in the
literature [6, 7], the parameter t is not a well-defined measure of time for a very simple
reason. One can rescale the vector fieldX defined inM by considering zX D fX for some
positive function f 2C1.M/, so that the orbit can compute faster or slower depending on
the step of the algorithm that is being simulated. The same happens if we consider a vector
field simulating a Turing machine as in Definition 4.1, taking as the time step the values of
the continuous-time parameter given by integer multiples ofKs . However, ifX is assumed
to preserve some volume form � 2�n.M/ (where nD dimM), the following proposition
shows that there is a well-defined notion of time complexity. It captures the fact that in
the conservative context, only linear speedup is possible. This can be heuristically intuited
since non-linear speed-up along an orbit necessarily expands or contracts a small cube in
flow-box coordinates near a point of that orbit.

Lemma 4.5. LetX be a vector field onM preserving some volume form � 2�n.M/ and
simulating a Turing machine T as in Definition 4.1. Let zX D f �X , with f 2 C1.M/ a
positive function, be a reparametrization of X that also preserves �. Then zX also simu-
lates T as in Definition 4.1, with the same encoding and constants zKs D Ks=f .'.q0; s//.

Proof. Assume thatX satisfies Definition 4.1 with encoding ' and constantKs for a given
initial configuration .q0; s/. Let zX D f � X be a reparametrization of the vector field X
that preserves �, for some positive function f 2 C1.M/. This implies that L QX� D 0,
and is equivalent to

d�fX� D df ^ �X� D 0:

Contracting this equation with X again, we see that a necessary and sufficient condition is
that �Xdf D 0, i.e., that f is a first integral ofX . Let us show that QX satisfies Definition 4.1
with the same encoding as X . Let .q0; s/ be an initial configuration of the machine T .
Let Qy.t/ be the integral curve of QX with initial condition '.q0; s/, hence the solution to
the system

(4.3)
²
Qy0.t/ D f �X. Qy.t//;

Qy.0/ D '.q0; s/:

Since f is a first integral of X , it is constant along any orbit of X , so we might replace f
by the constant Cs D f .'.q0; s// in equation (4.3). Let y.t/ denote the solution to the

R. Cardona 324

system (4.1). It is standard that Qy.t/ satisfies

Qy.t/ D y.Cs � t /:

Consider the constant QKs D Ks=Cs . Using that X simulates T with constants Ks and
encoding ', we deduce that

Qy. QKs � n/ D y.Ks � n/ D '.�
n.q0; s//;

for each n � N , where N is the halting time of T with input .q0; s/.

It is clear that if a vector field X satisfies the property described in Remark 4.3, any
reparametrization also satisfies it. The time complexity of a computation can be measured
in a well-defined way by using the values of t that are integer multiples of Ks . From
a physical point of view, the value of f along an orbit of X measures the norm of X
along that orbit. It is reasonable that computations along an orbit where X has a greater
norm (though of as a measure of the “energy” of the system along that orbit) occur faster
in terms of the continuous measure of time t . However, the time complexity measured
discretely is invariant under these reparametrizations.

4.2. Stationary Euler flows computing P=poly

Having introduced a well-defined notion of time complexity for conservative vector fields,
we will prove in this subsection that given any polynomial-time Turing machine with poly-
nomial advice, there exists a solution to the stationary Euler equations in some compact
Riemannian three-manifold that simulates it (polynomially in time) according to Defini-
tion 4.1.

The Euler equations model the dynamics of an ideal (incompressible and without vis-
cosity) fluid on a Riemannian manifold .M; g/ and they take the form²

@tuCruu D �rp;

divu D 0:

Here u is the velocity field of the fluid, the scalar function p is the pressure function, and
all the differential operators are defined with the ambient metric g. A stationary solution
is a solution satisfying @tuD 0, it is hence a time-independent vector field whose integral
curves define the particle paths of the fluid. The second equation ensures that u is always a
volume-preserving vector field with respect to the Riemannian volume. To prove that there
exist stationary solutions that simulate polynomial-time Turing machines with polynomial
advice, our main tool will be the connection between Euler flows and Reeb flows in contact
geometry established by Etnyre and Ghrist [16]. This connection was used in [15] to
prove that there exist Turing complete steady Euler flows in three-dimensional compact
manifolds.

Let us recall that on a three-dimensional manifold M , a (cooriented) contact structure
is a plane distribution � defined as the kernel of a one-form ˛ 2 �1.M/ that satisfies
the non-integrability condition ˛ ^ d˛ ¤ 0. We call ˛ a contact form, and note that any
positive multiple
 D f � ˛ with f 2 C1.M/ is another contact form defining �. Each

Hydrodynamic and symbolic models of computation with advice 325

contact form
 uniquely defines a vector field R called the Reeb vector field, which is
determined by the equations ²

.R/ D 1;

�Rd
 D 0:

Reeb fields will play a role in the proof of Theorem 1.1.

Theorem 4.6. Let .T; a/ be a polynomial-time Turing machine with polynomial advice.
There exist a metric g in S3 and a stationary solution X to the Euler equations in .S3; g/
such that X simulates T in polynomial time.

The simulation will be according to Definition 4.1 and Remark 4.2.

Proof. Let .T;a/ be a polynomial-time Turing machine with polynomial advice. By Corol-
lary 3.3, there exists a compactly supported area-preserving diffeomorphism of a disk

H W D ! D

that simulates .T; a/ in polynomial-time. Concretely, as done in Theorem 3.2, there exist
a symbolic system �WAZ ! AZ and a computable map EWP ! AZ encoding the con-
figurations of the machine such that � simulates .T; a/ in polynomial time. Then H
satisfies H.e.s// D e.�.s// for every s 2 E.P / � AZ, where e denotes an encoding
of the form (3.1) (perhaps using an expansion in base k instead of two) into some square
Cantor set zC 2.

Fix the contact manifold .S3; �std/, where S3 is the three-sphere and �std the standard
tight contact structure. By Theorem 3.1 in [15], there exists a contact form ˛ whose Reeb
fieldR exhibits a Poincaré disk-like sectionDM �M whose first-return map is conjugate
toH . This means thatDM is an embedded disk transverse to the flow, and that there exists
a smooth function � WDM ! R such that the flow of R, that we denote by 't WM ! M ,
satisfies

'�.p/.p/ D ıH ı
�1.p/; for p 2 DM ;

where WD ! DM is a parametrization identifying D with the disk-like section DM .
We will now choose a suitable positive function h2 C1.M/ so that the first-return

time of the flow ofX D h �R atDM is constant and equal to one. First, up to multiplyingR
by a small enough constant, we can assume that �.p/< 1 for all p 2DM . Choose flow-box
coordinates .x; y; z/ of U D ¹'z.D0/ j z 2 Œ�"; "�º ŠD2 � Œ�"; "�, whereD0 is a slightly
larger disk-like section containing DM . Denote by F the first-return map on D0, which
satisfies F jDM D '�.p/.p/. In these coordinates, we haveRD @=@z, and the integral curve
with initial condition .x; y;�"/ takes exactly time " to hit DM .

Construct a smooth function gWD0 � Œ�"; "� ! R equal to 1 near the boundary of
D0 � Œ�"; "� and such thatZ 0

�"

1

1C g.x; y; z/
dz D 1 � �.F �1.x; y//C "; for .x; y/ 2 DM :

It is clear that such a function exists: for a fixed point .x; y/, we are choosing a function
depending on z with a given value of the integral above. Varying smoothly the value of the
integral, we can smoothly vary the function with respect to z, parametrically with respect
to the two parameters x and y.

R. Cardona 326

We extend g to a smooth function h inM equal to 1 away fromD0 � Œ�"; "�. Consider
the vector field X D h �R. We claim that the first-return time of X to DM is constant and
equal to one. Given p 2DM , the solution to the ODE defined byX and initial condition p
hits DM � ¹�"º at a point .x; y;�"/ after time �.p/ � ", since X D R along the piece
of orbit outside of D0 � Œ�"; 0/. In particular, we have .x; y/ D F.p/. On the other hand,
the solution u.t/ to the ODE defined by X and initial condition .x; y;�"/ satisfies

t D

Z z

�"

1

1C g.x; y; z/
dz:

It follows that the solution intersectsDMD¹zD 0ºwhen tD1��.F �1.x; y//D1��.p/.
Hence the time that the flow of X takes to send a point p back to DM is

Q�.p/ D �.p/ � "C 1 � �.p/C " D 1;

as claimed.
We have thus constructed a reparametrized Reeb field X D h � R that has a disk-like

Poincaré section with first-return time equal to one and conjugated to H . It was proved
in [16] that any such vector field is a stationary solution to the Euler equations for some
Riemannian metric in the ambient manifold. It only remains to check that X does sim-
ulate the Turing machine T according to Definition 4.1. Given a configuration c2 P of
the machine, it is mapped to an element of AZ by some map EWP ! AZ. The set of
sequences AZ in the image of E is injectively mapped to the square Cantor set zC 2 by
the map e. As encoding, we choose Qe D ı e ı E, and as constants, we take Ks D 1

for all s. The first-return map FX of X at any point p 2 DM is given by the flow of X
at time 1. Hence, given an initial configuration .q0; s/ of the machine T , we consider
the solution y.t/ to the ODE defined by X and initial condition Qe.q0; s/. Using that
FX D ıH ı

�1.p/ and that y.k/ D F kX .p/, we deduce that

y.Q.n// D Qe.�n.q0; s//;

for each n smaller than the halting time of T with input .q0; s/, where Q.n/ is a polyno-
mially-bounded function that comes from the polynomial-time simulation of .T; a/ byH .
This concludes the proof that X simulates T according to Definition 4.1, polynomially in
time as described in Remark 4.2.

We point out that, as mentioned in the context of neural networks [27], a given com-
putation requires only polynomial time with respect to the size of the input and hence
is simulated by a finite portion of the associated integral curve. Hence, a given compu-
tation is robust to perturbations of a size that depends on the size of the input. Indeed,
only finitely many positions of the sequence need to be read to simulate a finite number
of iterations of the symbolic system in zC 2.

Remark 4.7. The reparametrization argument used in the proof of Theorem 4.6 can be
applied to the Turing complete Reeb flows constructed in [15]. This yields a stationary
solution to the Euler equations in some Riemannian three-sphere that simulates a universal
Turing machine according both to the definition used in [15] and to Definition 4.1 that
takes into account time complexity.

Hydrodynamic and symbolic models of computation with advice 327

We point out that Theorem 3.1 in [15] can be applied to any fixed closed contact three-
manifold .M; �/, or open contact three-manifold such as .R3; �std/, so one can replace a
toroidal domain by closed three-manifold. In addition, the strong property described in
Remark 4.3 is also true, namely that there exists an open set U such that for any initial
configuration .q0; s/, the orbit of X through the explicit point ps 2 M associated with
.q0; s/ intersects U if and only if T halts with input .q0; s/. The orbit either intersects U or
stays at a positive distance from U uniformly bounded from below. Even if a polynomial-
time Turing machine halts in every input, the last property is not meaningless. One could,
for example, modify the Turing machine so that halting only occurs on accepted inputs.
Then the previous property would mean that the trajectory associated to an input that is
accepted intersects some domain U , but if the input is not accepted, then the associated
trajectory remains at a positive distance of U . This is seen as follows.

Let y.t/ be the trajectory associated with an initial configuration .q0; s/. All the points
representing a halting configuration are encoded in a finite collection of blocks of the
square Cantor set contained in DM , and no non-halting configuration is encoded there.
Let UD be a small enough neighborhood of those blocks not intersecting any other block,
and U be defined as

U D ¹�Xt .p/ j p 2 UD; t 2 .�"; "/º;

where 'Xt WM ! M denotes the flow defined by X . It is clear that y.t/ intersects U if
and only if T halts with input .q0; s/. The orbit of the initial configuration by the first-
return map will always remain in the blocks of the Cantor set associated with non-halting
configurations. These blocks are at a distance greater than ı, for some ı > 0, of the blocks
containing the halting configurations. This shows that the orbit of a non-halting initial
configuration stays at a positive distance (bounded from above) of U .

4.3. Variations of the model

We finish this section by discussing other models, either of complexity or of ideal fluids,
that could be considered in this context.

Time complexity via orbit length. In [6], another possible measure of the time com-
plexity of simulations with ODEs was proposed. When there is a metric in the ambient
space (for example, the Euclidean metric for an ODE defined in Rm), a measure of time
that is invariant with respect to reparametrizations is the length of the orbit with respect to
the Riemannian metric. This approach is also reasonable in the context of hydrodynamics,
since the space is endowed with a natural Riemannian metric, the one for which the vector
field solves the Euler equations. This point of view can also be taken in our construction
in Theorem 4.6. Indeed, the vector field X has no zeroes, and the ambient manifold is
compact, hence there are constants c; C 2 R such that

(4.4) c < g.X;X/ < C;

where g denotes the metric for which X is a stationary solution to the Euler equations. In
particular, the length of an injective piece of an integral curve grows linearly with time. For
the flowX , the computational steps are given byKs D 1 (as in Definition 4.1). For a given
input of size n, the machine halts after P.n/ steps (where P is a polynomially-bounded
function and n is the size of the input). By (4.4), the length of the curve up to time P.n/ is

R. Cardona 328

polynomial as well, so polynomial complexity is well defined using the approach proposed
in [6]. Note that it is also possible to construct a metric Qg for which X is a stationary
solution to the Euler equations that has a norm everywhere equal to one. In that case,
the length coincides with the time. The construction of Qg is done using the arguments
explained in Section 1.3.4 of [11], by considering a one-form ˛ that is not any more of
contact type everywhere, but is instead closed in the solid torus where it satisfies ˛.X/D 1.

Other hydrodynamical systems. Ideal fluid flows capable of universal computation have
been constructed in other situations, besides stationary flows on geometric three-dimen-
sional domains endowed with an adapted (not fixed a priori) Riemannian metric. Indeed, a
natural requirement is to impose that the metric is a fixed natural one, such as the flat met-
ric on the three-torus or the Euclidean metric in R3. In [13], it was shown that at the high
cost of losing compactness, one can construct stationary solutions to the Euler equations
in R3 with the Euclidean metric that can simulate a universal Turing machine. One can
check that the simulation is not as good as the one defined in Definition 4.1 because it has
an exponential slow-down in terms of the continuous-time parameter of the ODE. Even
if we use the orbit-length approach to time complexity, one cannot simulate polynomial-
time Turing machines in polynomial time using the construction done in [13]. A natural
question is then whether, for an arbitrary Turing machine (with or without advice), there
exist stationary solutions to the Euler equations in Euclidean space that are capable of
simulating it in polynomial time, according to some natural definition of simulation and
time complexity.

Similarly, it was proved in [12] that there are time-dependent solutions to the Euler
equations in some high enough dimensional closed manifold that are capable of simulat-
ing a universal Turing machine. Those solutions not only have an exponential slow-down
as well, but also rely on constructions of polynomial ODEs [18] that simulate any Turing
machine which might not hold for Turing machines with advice. Hence another question
is if there are time-dependent solutions to the Euler equations modeling computation with
advice. Perhaps this can be shown as well by doing a construction that can use the embed-
ding results in [32, 33], as done in [12]. All these questions can be asked too for viscous
fluids, as modeled by the Navier–Stokes equation.

5. Countable generalized shifts and P=poly

In this section, we introduce a class of symbolic dynamical systems that contains in par-
ticular generalized shifts and which can be partially embedded in a countably piecewise
linear map of the unit square. As we will see, our generalization is different from the
analog shift map and is capable of simulating Turing machines with advice.

5.1. Countable generalized shifts

The broader class of symbolic systems that we introduce in this section should be thought
of as a countable version of generalized shifts. Instead of changing the sequence according
to a finite portion of it of fixed size (likeDF andDG), each sequence is changed according
to a finite portion whose size depends on the sequence and can be arbitrarily large. This

Hydrodynamic and symbolic models of computation with advice 329

is a different generalization than analog shift maps, where only a finite portion of fixed
size determines the image of the sequence, but infinitely many symbols can be changed in
one step.

A countable generalized shift �WAZ ! AZ is defined by the following information:
(1) a set P of pairs ¹.nj ; Ij / 2 Z � Amj º, with j 2 ¹0; : : : ; N º or j 2 N, such that for

each s 2 AZ there is at most one j such that snj : : : snjCmj�1 D Ij ,
(2) a map J assigning to each element of p D .nj ; Ij / 2 P a word J.p/ D I 0j 2 A

mj ,
(3) a map H WP ! Z.

We denote by SP �AZ the set of sequences s2AZ for which there is some .nj ; Ij /2P
such that snj : : : snjCmj�1 D Ij .

The dynamical system is described as follows. Given some s 2 AZ, if s 62 SP then
�.s/ WD s. Otherwise, let p D .nj ; Ij / be the only pair assigned to s. The sequence �.s/
is obtained by changing the symbols in positions nj ; : : : ; nj Cmj � 1 by J.p/, and then
shifting by H.p/.

Notation. To simplify notation, given a pair p D .nj ; Ij / 2 P , we say that the symbols
of the word Ij are at positions nj ; : : : ; nj Cmj � 1 of Ij (instead of positions 1; : : : ;mj).
Furthermore, we say that a sequence s 2 AZ coincides with p (or with Ij) if

(5.1) snj : : : snjCmj�1 D Ij :

Similarly, if we denote a finite word with subindices, as in

w D wnwnC1 : : : wm�1wm;

with n;m 2 Z, we say that s coincides with w if

(5.2) sn : : : sm D wn : : : wm;

where the left-hand side denotes the symbols in position n; nC 1; : : : ; m of s.
It is easy to see that a generalized shift is, in particular, a countable generalized shift.

Lemma 5.1. Any generalized shift is a countable generalized shift with a finite set P .

Proof. Let �WAZ! AZ be a generalized shift. Without loss of generality, we can assume
that DF D DG , simply by taking the union of both domains and redefining F and G
appropriately. Hence � is defined by F WAl ! Z and GWAl ! Al , where DF D DG D
¹i; : : : ; i C l � 1º. Let us define a countable generalized shift that is equal to �. As space of
pairs, we chooseP D ¹.i; .t1 : : : tl // j .t1; : : : ; tl / 2Alº:Now we define J..i; .t1 : : : tl ///D
G.t1 : : : tl / andH..i; .t1 : : : tl // D F.t1 : : : tl /. We obtain a countable generalized shift
such that .s/ D �.s/ for each s 2 AZ.

An interesting property of the set SP �AZ is that it can never be equal toAZ whenever
P is not finite. The diagonal argument used in the proof of this lemma will be useful
throughout the paper.

Lemma 5.2. There is no countable generalized shift satisfying that P is not a finite set
and SP D AZ.

R. Cardona 330

Proof. Let � be a countable generalized shift such that P is not a finite set. Then there
is an infinite sequence pik D .nik ; Iik / 2 P , with Iik 2 A

mik such that jmik j or jnik j
go to infinity as k goes to infinity. To simplify, assume that we found a family Iik such
that mik ! 1; an analogous argument works for the other cases. Choose a family of
sequences sk coinciding with each pik . Endow AZ with the metric

d.t; t 0/ D

kX
iD0

.2N /�k .jtk � t
0
kj C jt�k � t

0
�kj/;

whereN is the cardinality ofA. ThenAZ is compact with this metric, and the sequence sk
admits a convergent subsequence skr such that skr ! Qs as kr !1. We will show that
Qs 62 SP . Indeed, assume that there is some Qp D . Qn; QI / 2 P (with QI of size Qm) such that Qs
coincides with Qp. Choose someM such thatM > j Qnj andM > j Qmj. Since skr ! Qs, there
is some K0 such that jskr � Qsj < N�M for every kr > K0. This implies that skr and Qs
are equal for symbols in the positions �M; : : : ; M , and hence skr coincides with Qp for
every kr > K0. We deduce that skr coincides both with Qp and pikr . For a big enough kr ,
the element pikr is such that mikr > M , and hence Qp ¤ pikr . This is a contradiction with
the definition of a countable generalized shift: every sequence coincides with at most one
element in P .

It is possible to characterize, although with a property that is difficult to verify for a
given example, those countable generalized shifts that are generalized shifts too.

Lemma 5.3. A countable generalized shift � is a generalized shift if and only if there is
some N 2 N for which we can associate to each word w D w�N : : : wN 2 A

2NC1 an
integer kw 2 Z and a word w0 D w0

�N : : : w
0
N satisfying the following conditions. Given

s 2 AZ, whose symbols at positions �N; : : : ; N determine a unique word ws , we have:
• If s 2 SP coincides with some pD .nj ; Ij /, thenH.p/D kws and J.p/ is such that for

every position r 2 ¹�N; : : : ;N º, either r 2 ¹nj ; : : : ;nj Cmj � 1º and J.p/r D .ws/r ,
or r 62 ¹nj ; : : : ; nj Cmj � 1º and then .w0s/r D .ws/r .

• If s 62 SP , then changing the symbols of s at positions �N; : : : ; N by w0s and shifting
by kws recovers s.

Proof. Let �WAZ ! AZ be a countable generalized satisfying the property in the state-
ment. Define a generalized shift O�WAZ ! AZ by taking DF D DG D ¹�N; : : : ; N º and
functions

F.w/ D kw ; for each w 2 A2NC1;

and
G.w/ D w0; for each w 2 A2NC1:

If s 2 SP , then it follows from the first item above that O�.s/ D �.s/. Furthermore, if
s 62 SP , then by the second item above O�.s/D s, and by definition of � we have �.s/D s.

Conversely, let �WAZ ! AZ be a countable generalized shift such that there is some
generalized shift Q�WAZ ! AZ, defined by functions

F 0 W Ab�a ! Z;

Hydrodynamic and symbolic models of computation with advice 331

where DF 0 D ¹a; : : : ; bº, and

G0 W Ad�c ! Ad�c ;

where DG0 D ¹c; : : : ; dº, and such that �.s/ D Q�.s/ for every s 2 AZ.
First, to simplify, we can easily construct another generalized shift O�WAZ ! AZ with

associated functions F andG such thatDF ;DG D ¹�N; : : : ;N º for someN and O�.s/D
Q�.s/ for every s 2 AZ. To do so, let N denote the greatest absolute value of the elements
of DF 0 and DG0 . To define F , given a word w�N : : : wN 2 A2NC1, we define F.w/ WD
F 0.wa : : : wb/. To define G, given a word w�N : : : wN , if G0.wc : : : wd / D w0c : : : w

0
d

,
then we define

G.w�N : : : wN / WD w�N : : : wc�1w
0
c : : : w

0
awaC1 : : : wN :

Let us now show that for this N the claimed property is satisfied. Fix any word w D
w�N : : :wN , and denote F.w/ and G.w/ by kw 2 Z and !0 D w0

�N : : :w
0
N , respectively.

Given any sequence s that coincides with w, since �.s/D O�.s/, the image of s is obtained
by replacing the symbols at positions�N; : : : ;N byw0 and shifting by kw . If s 62 SP , then
�.s/D s, and the second item above is satisfied. If s 2 SP , then there is some pD .nj ; Ij /
such that s coincides with p. Writing Ij D s0nj : : : s

0
njCmj�1

, let s0 be the sequence

s0 D : : : 0w�N : : : wnj�1s
0
nj
: : : s0njCmj�1wnjCmj : : : wN 10 : : :

which also coincides with p. Now the image of s0 can be computed either by � or by O�.
By looking at the 1 placed in the last position of s0 which is not zero, we deduce that
necessarily H.p/ D kw . Thus the sequence obtained from s0 either by changing symbols
at position �N; : : : ;N by w0, or symbols at position nj ; : : : ; nj Cmj � 1 by J.p/ are the
same. In other words, J.p/ and w0 are the same in the positions they have in common,
and w0 coincides with w at those positions which are not in ¹nj ; : : : ; nj Cmj � 1º. This
is exactly the first property of the statement, and we finish the proof of the lemma.

Let us give a sufficient criterion, that is easy to check in practice, to determine when a
countable generalized shift is not a generalized shift.

Definition 5.4. We say that a countable generalized shift � “modifies at infinity” if there
is a sequence of numbers jrik j ! 1 with rik 2 ¹nik ; : : : ; nik Cmik � 1º for some pk D
.nik ; Iik / 2 P such that the symbol at position rik of Iik does not coincide with the symbol
at position rik of J.pk/.

Lemma 5.5. If a countable generalized shift � modifies at infinity, then �jSP is not
induced by a generalized shift.

Proof. Let � be a countable generalized shift defined by P; J and H , and assume that it
modifies at infinity.

There is a sequence of numbers jrik j ! 1 with rik 2 ¹nik ; : : : ; nik C mik � 1º for
some pk D .nik ; Iik / 2 P satisfying Definition 5.4. By Lemma 2.1, there is always a
shifted version of �.s/ that coincides with s except maybe along positions inDG . We will
prove that this is not the case under our hypotheses. For a fixed k, let sk be a sequence that

R. Cardona 332

has zeroes everywhere except in positions nik ; : : : ; nik Cmik � 1 where it coincides with
Iik D anik

: : : anikCmik�1
, and also has a 1 at position nik Cmik , i.e., sk is of the form

sk D : : : 0anik
: : : aknikCmik�1

10 : : :

The image �.sk/ is obtained by changing the symbols in position nik ; : : : ; nik Cmik � 1
and shifting by H.pk/.

Let us show that for any integer l , the sequence sk and the sequence �.sk/ shifted by l
do not coincide in some element in position greater or equal to rik . To see this, given an
arbitrary l , let �.sk/l be the l-shifted sequence of �.sk/. If l > 0 (i.e., left shift), then
the symbol in position nik Cmik > rik of sk (which is a one) does not coincide with that
of �.sk/r , which is a zero. If l < 0 (right shift), then the symbol in position nik Cmik C
r > rik (which is a zero) does not coincide with the symbol of �.sk/r in that position
(which is a one). Finally, when r D 0, we have that the symbol in position rik does not
coincide with that of �.sk/ by hypothesis. We conclude that the symbol at some position
greater or equal than rik of sk and the symbol at the same position of any shifted version
of �.sk/ are not equal. Since rik is arbitrarily large choosing an arbitrarily large k, we
reach a contradiction with Lemma 2.1. We conclude that � is not a generalized shift.

Lemma 5.5 can be used to easily construct examples of countable generalized shifts
that are not generalized shifts, even bijective ones. We shall call a countable generalized
shift that is not a generalized shift an “infinite generalized shift". We will refer to a count-
able generalized shift that is a generalized shift as a “finite” generalized shift.

Remark 5.6. As for generalized shifts, see Lemma 1 in [23], any countable generalized
shift is conjugate (perhaps injectively semi-conjugate depending on the cardinality of the
alphabet) to another one whose alphabet is † D ¹0; 1º. This is done by identifying the
symbols of the alphabet with large enough blocks of zeroes and ones.

5.2. Computational power of countable generalized shifts

In [23], Moore showed that generalized shifts are equivalent to Turing machines, both
from a dynamical and computational point of view. In this section, we analyze the com-
putational power of countable generalized shifts and show that they can simulate Turing
machines with advice. As done in previous sections, we restrict to polynomial-time Turing
machines with polynomial advice, which define the complexity class P=poly.

Technical assumptions on Turing machines with advice. Given a Turing machine with
advice .T; a/, we will assume that the first symbol of each advice string is always a zero,
and we will only consider inputs tin of size n such that ti ¤ 0 for i D 0; : : : ; n. It is
clear that this does not restrict the computational power of the resulting polynomial-time
Turing machines with polynomial advice. When the Turing machine T that we consider
is assumed to be reversible, we will assume as well that q0 is not in the image of the
transition function ı. This can easily be assumed, as discussed in previous sections, see
Section 6.1.2 in [24]. The latter assumption ensures that if we take any Turing machine
that is reversible, then adding advice to it keeps the global transition function injective.

Let us show how to simulate polynomial-time Turing machines with polynomial advice
using countable generalized shifts.

Hydrodynamic and symbolic models of computation with advice 333

Theorem 5.7. Let .T; a/ be a polynomial-time Turing machine with polynomial advice
a D ¹anºn2N . Then there are a countable generalized shift � with some alphabet A and
an injective map 'WP ! SP � A

Z such that � D '�1 ı �jSP ı '. If � is injective, then
we can assume that �jSP is injective in all SP .

Proof. Let .T; a/ be a polynomial-time Turing machine with polynomial advice. Take
the alphabet of the countable generalized shift to be A D Q [† [¹dº, where d is a
symbol disjoint from Q and †. Let ' be the encoding function, which maps injectively
the configurations of T to sequences in AZ, defined as follows:

' W P ! AZ(5.3)
.q0; tin D .: : : 0: t0 : : : tn0 : : : // 7�! .: : : 0d:q0 t0 : : : tnd 0 : : : /; ti ¤ 0; n � 0;(5.4)

.q; .ti // 7�! .: : : t�1:q t0 : : : / otherwise.(5.5)

Let us define � in terms of the space of pairs P and the maps J and H . The space of
pairs P is defined by P1 t P2, where P1 is infinite and given by

P1 D ¹.�1; .d q0 t0 : : : tnd 0 : : : 0„ƒ‚…
p.n/�1

// j n 2 N and ti ¤ 0 for i D 0; : : : ; nº;

where p.n/ is the polynomially-bounded function assigning to an input of size n its advice
of size p.n/. The second set of pairs P2 is given by

P2 D ¹.�1; .t�1qt0/ j .t�1qt0/ 2 † �Q �†º:

We define the map J on P1 as

J..�1; .d q0 t0 : : : tnd 0 : : : 0„ƒ‚…
p.n/�1

// D .0q0 t0 : : : tna
n
1 : : : a

n
p.n//;

where anD an1 : : : a
n
p.n/

is the advice string assigned to inputs of size n. To define J on P2,
for any .q; t0/ consider ı.q; t0/ D .q0; t 0; "/ and we define

J..�1; .t�1qt0// D

8<: .t�1 t
0q0/ if " D C1;

.q0 t�1 t
0/ if " D �1;

.t�1q
0 t 0/ if " D 0:

Finally, define H as H.x/ D 0 for each x 2 P1 and H..�1; .t�1qt0// D ". Observe that
a given sequence s 2 AZ coincides with at most one element in P D P1 [P2, so P can
be used to define a countable generalized shift. The countable generalized shift � is such
that � D '�1 ı �SP ı '.

Let us show that if � is injective, then �jSP is injective too. By contradiction, assume
that the latter is not injective. Then there are two sequences s; t 2 SP such that s ¤ t

and �.s/ D �.t/. The countable generalized shift � changes at most a finite number of
symbols of each sequence, which is then shifted by at most 1 position. Assume to simplify
that both sequences are not shifted (an analogous argument works if they are shifted in
any direction). Take the two unique pairs p1 D .�1; I1/ and p2 D .�1; I2/ such that s; t

R. Cardona 334

coincide respectively with p1 and p2. Then �.s/ is equal to s except maybe at those
symbols in positions D1 D ¹�1; : : : ; m1 � 2º, and �.t/ coincides with t except maybe at
those symbols in positionD2 D ¹�1; : : : ;m2 � 2º. In particular, for each k 2D1 nD2, we
deduce that tk is equal to the symbol in position k of J.p1/, and for each r 2 D2 nD1,
we deduce that sr is equal to the symbol in position r of J.p2/. For each position j 2
D1 \D2, we must have that the symbol at position j of J.p1/ is equal to the symbol in
position j of J.I2/.

We will now consider two auxiliary sequences s0and t 0, which we first define and show
that they are different. We define s0 by

(5.6) s0i D

8<: 0 if i 62 D1 [D2;
si if i 2 D1;
J.p2/i if i 2 D2 nD1;

and the sequence t 0 defined by

(5.7) t 0i D

8<: 0 if i 62 D1 [D2;
ti if i 2 D2;
J.p1/i if i 2 D1 nD2:

Our previous discussion shows that �.s0/ D �.t 0/. On the other hand, we know that
• s and t are equal in any position away from D1 [D2,
• s and t are equal to s0 and t 0 respectively in positions D1 [D2,
• s ¤ t ,

so we deduce that we must have s0 ¤ t 0.
Using the description of �, the fact that � is injective and the auxiliary sequences s0

and t 0, we will reach a contradiction. Let us analyze case by case depending on p1 and p2.
The first case is when p1; p2 2 P2. We have D1 D D2 D ¹�1; 0; 1º and we deduce

that s0 D : : : 0s�1:q0s10 : : : and t 0 D : : : 0t�1:q0 t10 : : :. It follows that s0; t 0 2 '.P / as
per equation (5.5), which is a contradiction with the fact that � is injective.

The second case is when p1 2 P1 and p2 2 P2, then

s0 D : : : 0d:q0s0 : : : sj d 0 : : : and t 0 D : : : 0t�1:qt1 : : : ; with t�1; t1 2 †:

The sequence �.s0/ has a q0 in the zero position, while �.t 0/ has a q ¤ q0 in the zero
position (since we assumed that q0 is not in the image of ı). We reached a contradiction
with the fact that �.s0/ D �.t 0/.

The last case is when p1; p2 2 P1. Then p1 D .�1; I1/ and p2 D .�1; I2/, with
I1 D .d q0s0 : : : sm1d0 : : : 0/ and I2 D .d q0 t0 : : : tm2d0 : : : 0/. Let .a1 : : : ap.j // denote
the advice of the input .: : : 0:s0 : : : sj 0 : : : / and .b1 : : : bp.r// denote the advice of the
input .: : : 0: t0 : : : tr 0 : : : /. Assume that m1 � m2. Then s0 is of the form

s0 D : : : 0d:q0s0 : : : sjd 0 : : : 0„ƒ‚…
p.j /�1

0 : : : ;

and t 0 is either of the form

t 0 D : : : 0d:q0 t0 : : : trd 0 : : : 0„ƒ‚…
p.r/�1

sp.r/CrC2 : : : ska1 : : : ap.j /0 : : : if r C 2C p.r/ � j;

Hydrodynamic and symbolic models of computation with advice 335

or of the form

t 0 D : : : 0d:q0 t0 : : : trd 0 : : : 0„ƒ‚…
p.r/�1

arC2Cp.r/ : : : ap.j /0 : : : if r C 2C p.r/ > j:

It follows from �.s0/ D �.t 0/ that .: : : 0:q0s0 : : : sj a1 : : : ap.j /0 : : : / is equal to

.: : : 0:q0 t0 : : : tr b1 : : : bp.r/ap.rC1/ : : : ap.j /0 : : : /;

if p.r/ � j , or to

.: : : 0:q0 t0 : : : tr b1 : : : bp.r/sp.r/C1 : : : sj a0 : : : ap.j /0 : : : /;

if p.r/ < j . If m1 D m2, we must have t 0 D s0, which is a contradiction. In general, we
deduce that ti D si for each i D 1; : : : ; r , and that srC1 D b1. However, by our tech-
nical assumptions, we know that b1 D 0 and that srC1 ¤ 0, reaching a contradiction and
finishing the proof of the theorem.

The countable generalized shift constructed in the proof of Theorem 5.7 is an infinite
generalized shift. Indeed, the description of J onP1 implies that the countable generalized
shift modifies at infinity, so by Lemma 5.5 it is an infinite generalized shift. The simulation
by a countable generalized shift of a polynomial-time Turing machine is done in real-time:
a step of the countable generalized shift corresponds to a step of the machine. This is an
advantage with respect to the simulation via analog shifts [27], where the first step is
necessarily simulated in polynomial time with respect to the size of the input.

5.3. Cantor set and map by blocks

In this last section, we show that some countable generalized shifts can be, at least par-
tially, understood as piecewise linear maps on a countable set of blocks of the square
Cantor set, in the lines of Lemma 0 in [23] for the case of a generalized shift.

From now on, we will make the simplifying assumption that a countable generalized
shift is defined on the alphabet A D ¹0; 1º, see Remark 5.6. As done in previous sec-
tions, we identify sequences in ¹0; 1ºZ with points C 2 via the bijection introduced in
equation (3.1).

Lemma 5.8. Given a countable generalized shift �, there exists a piecewise linear and
area-preserving map f defined over a countable set of blocks into another countable
set of blocks of the square Cantor set such that �jSP D e�1 ı f ı e. The following are
equivalent:

• �jSP WSP ! AZ is injective,

• the image blocks are disjoint.

Proof. Each element of pj D .j; Ij / 2P determines a block Bj of the square Cantor
determined by all those sequences .si / such that snj : : : snjCmj�1 coincides with Ij . Each
blockBj is first translated into the block determined by J.pj /, then Baker’s map is applied
H.pj / times. The block Bj might be cut into rj � 2jH.pj /j connected pieces when apply-
ing the Baker’s map (or its inverse if H.pj / is negative) is applied jH.pj /j times. Let Bkj

R. Cardona 336

denote the preimages of those pieces. Then define the map

f W
G
j2N

rjG
kD0

Bkj ! I 2;

which coincides in each block Bkj with the translation and iteration of Baker’s map asso-
ciated with Bj . Clearly, f corresponds to ˆ when applied to a point of the Cantor set.
Observe that two image blocks intersect if and only if there is a point of the Cantor set in
both blocks, which happens if and only if f je.SP / is not injective, which happens if and
only if �jSP is not injective.

By using a binary expansion instead of a ternary expansion in equation (3.1), the pre-
vious lemma allows us to visualize a countable generalized shift on SP as a countably
piecewise linear map of the unit square.

It follows from the construction that if there is a finite word w D .wn; : : : ; wnCm/

such that any sequence s 2 AZ that coincides with w is not in SP , then we can as well
define f to be the identity in the block defined by w. Hence the piecewise map f and
the conjugacy with � can be extended for other sequences that are not in SP . The only
problem, if we want a piecewise map defined on blocks, arises with those sequences that
are obtained as the limit of a family of words obtained from pairs pj D .nj ; Ij / 2 P with
a size that tends to infinity.

Acknowledgements. The author is grateful to Cristopher Moore, whose useful corres-
pondence about transformations of the disk preserving the square Cantor set inspired this
work. Thanks to Daniel S. Graça for helpful comments concerning the time complexity of
computations in continuous systems, and to Daniel Peralta-Salas for useful discussions.

Funding. The author acknowledges financial support from the Margarita Salas postdoc-
toral contract financed by the European Union-NextGenerationEU, as well as from the
LabEx IRMIA, the Université de Strasbourg and the Instituto de Ciencias Matemáticas.
This work was partially supported by the AEI grant PID2019-103849GB-I00/AEI/10.130
39/501100011033, AGAUR grant 2017SGR932, and the project “Computational, dynam-
ical and geometrical complexity in fluid dynamics” (Ayudas Fundación BBVA a Proyectos
Investigación Científica 2021).

References

[1] Axelsen, H. B.: Time complexity of tape reduction for reversible Turing machines. In Revers-
ible computation. Third international workshop, RC 2011, Gent, Belgium, 2011, pp. 1–13.
Lect. Notes Comput. Sci. 7165, Springer, Berlin, Heidelberg, 2012. Zbl 1451.68120

[2] Bennett, C. H.: Logical reversibility of computation. IBM J. Res. Develop. 17 (1973), no. 6,
525–532. Zbl 0267.68024 MR 0449020

[3] Bournez, O.: How much can analog and hybrid systems be proved (super-)Turing. Appl. Math.
Comput. 178 (2006), no. 1, 58–71. Zbl 1104.68046 MR 2243940

[4] Bournez, O. and Cosnard, M.: On the computational power of dynamical systems and hybrid
systems. Theor. Comput. Sci. 168 (1996), no. 2, 417–459. Zbl 0874.68303 MR 1422965

https://doi.org/10.1007/978-3-642-29517-1_1
https://zbmath.org/?q=an:1451.68120
https://doi.org/10.1147/rd.176.0525
https://zbmath.org/?q=an:0267.68024
https://mathscinet.ams.org/mathscinet-getitem?mr=0449020
https://doi.org/10.1016/j.amc.2005.09.070
https://zbmath.org/?q=an:1104.68046
https://mathscinet.ams.org/mathscinet-getitem?mr=2243940
https://doi.org/10.1016/S0304-3975(96)00086-2
https://doi.org/10.1016/S0304-3975(96)00086-2
https://zbmath.org/?q=an:0874.68303
https://mathscinet.ams.org/mathscinet-getitem?mr=1422965

Hydrodynamic and symbolic models of computation with advice 337

[5] Bournez, O., Graça, D. S. and Hainry, E.: Computation with perturbed dynamical systems.
J. Comput. System Sci. 79 (2013), no. 5, 714–724. Zbl 1410.68119 MR 3030538

[6] Bournez, O., Graça, D. S. and Pouly, A.: Polynomial time corresponds to solutions of poly-
nomial ordinary differential equations of polynomial length. J. ACM 64 (2017), no. 6, article
no. 38, 76 pp. Zbl 1426.68088 MR 3713796

[7] Bournez, O. and Pouly, A.: A survey on analog models of computation. In Handbook of com-
putability and complexity in analysis, pp. 173–226. Theory Appl. Comput., Springer, Cham,
2021. Zbl 07464644 MR 4300756

[8] Branicky, M. S.: Universal computation and other capabilities of hybrid and continuous
dynamical systems. Theor. Comput. Sci. 138 (1995), no. 1, 67-100. Zbl 0874.68207
MR 1318293

[9] Braverman M., Schneider, J. and Rojas, C.: Space-bounded Church–Turing thesis and compu-
tational tractability of closed systems. Phys. Rev. Lett. 115 (2015), no. 9, article no. 098701,
5 pp.

[10] Braverman, M. and Yampolsky, M.: Non-computable Julia sets. J. Amer. Math. Soc. 19 (2006),
no. 3, 551–578. Zbl 1099.37042 MR 2220099

[11] Cardona, R.: Geometry and topology of stationary Euler flows, integrability and singular geo-
metric structures. Ph.D. Thesis, Universitat Politécnica de Catalunya, 2021.

[12] Cardona, R., Miranda, E. and Peralta-Salas, D.: Turing universality of the incompressible Euler
equations and a conjecture of Moore. Int. Math. Res. Not. IMRN (2022), no. 22, 18092–18109.
Zbl 1532.35358 MR 4514463

[13] Cardona, R., Miranda, E. and Peralta-Salas, D.: Computability and Beltrami fields in Euclidean
space. J. Math. Pures Appl. (9) 169 (2023), 50–81. Zbl 1504.35246 MR 4523461

[14] Cardona, R., Miranda, E. and Peralta-Salas, D.: Looking at Euler flows through a contact
mirror: universality and undecidability. In European Congress of Mathematics, pp. 367–393.
EMS Press, Berlin, 2023. Zbl 07763397 MR 4615750

[15] Cardona, R., Miranda, E., Peralta-Salas, D. and Presas, F.: Constructing Turing complete Euler
flows in dimension 3. Proc. Natl. Acad. Sci. USA 118 (2021), no. 19, article no. e2026818118,
9 pp. Zbl 07912255 MR 4294081

[16] Etnyre, J. and Ghrist, R.: Contact topology and hydrodynamics. I. Beltrami fields and the
Seifert conjecture. Nonlinearity 13 (2000), no. 2, 441–458. Zbl 0982.76021 MR 1735969

[17] Graça, D. S., Campagnolo, M. L. and Buescu, J.: Robust simulations of Turing machines with
analytic maps and flows. In New computational paradigms, pp. 169–179. Lecture Notes in
Comput. Sci. 3526, Springer, Berlin, 2005. Zbl 1115.68083 MR 4376902

[18] Graça, D. S., Campagnolo, M. L. and Buescu, J.: Computability with polynomial differential
equations. Adv. in Appl. Math. 40 (2008), no. 3, 330–349. Zbl 1137.68025 MR 2402174

[19] Graça, D. S. and Zhong, N.: Computing the exact number of periodic orbits for planar flows.
Trans. Amer. Math. Soc. 375 (2022), no. 8, 5491–5538. Zbl 1531.03081 MR 4469227

[20] Graça, D. S. and Zhong, N.: Robust non-computability of dynamical systems and computab-
ility of robust dynamical systems. Log. Methods Comput. Sci. 20 (2024), no. 2, article no. 19,
27 pp. Zbl 07906362 MR 4765299

[21] Koiran, P. and Moore, C.: Closed-form analytic maps in one and two dimensions can simulate
universal Turing machines. Theoret. Comput. Sci. 210 (1999), no. 1, 217–223.
Zbl 0912.68033 MR 1650892

https://doi.org/10.1016/j.jcss.2013.01.025
https://zbmath.org/?q=an:1410.68119
https://mathscinet.ams.org/mathscinet-getitem?mr=3030538
https://doi.org/10.1145/3127496
https://doi.org/10.1145/3127496
https://zbmath.org/?q=an:1426.68088
https://mathscinet.ams.org/mathscinet-getitem?mr=3713796
https://doi.org/10.1007/978-3-030-59234-9_6
https://zbmath.org/?q=an:07464644
https://mathscinet.ams.org/mathscinet-getitem?mr=4300756
https://doi.org/10.1016/0304-3975(94)00147-B
https://doi.org/10.1016/0304-3975(94)00147-B
https://zbmath.org/?q=an:0874.68207
https://mathscinet.ams.org/mathscinet-getitem?mr=1318293
https://doi.org/10.1103/physrevlett.115.098701
https://doi.org/10.1103/physrevlett.115.098701
https://doi.org/10.1090/S0894-0347-05-00516-3
https://zbmath.org/?q=an:1099.37042
https://mathscinet.ams.org/mathscinet-getitem?mr=2220099
https://doi.org/10.5821/dissertation-2117-349573
https://doi.org/10.5821/dissertation-2117-349573
https://doi.org/10.1093/imrn/rnab233
https://doi.org/10.1093/imrn/rnab233
https://zbmath.org/?q=an:1532.35358
https://mathscinet.ams.org/mathscinet-getitem?mr=4514463
https://doi.org/10.1016/j.matpur.2022.11.007
https://doi.org/10.1016/j.matpur.2022.11.007
https://zbmath.org/?q=an:1504.35246
https://mathscinet.ams.org/mathscinet-getitem?mr=4523461
https://doi.org/10.4171/8ECM/31
https://doi.org/10.4171/8ECM/31
https://zbmath.org/?q=an:07763397
https://mathscinet.ams.org/mathscinet-getitem?mr=4615750
https://doi.org/10.1073/pnas.2026818118
https://doi.org/10.1073/pnas.2026818118
https://zbmath.org/?q=an:07912255
https://mathscinet.ams.org/mathscinet-getitem?mr=4294081
https://doi.org/10.1088/0951-7715/13/2/306
https://doi.org/10.1088/0951-7715/13/2/306
https://zbmath.org/?q=an:0982.76021
https://mathscinet.ams.org/mathscinet-getitem?mr=1735969
https://doi.org/10.1007/11494645_21
https://doi.org/10.1007/11494645_21
https://zbmath.org/?q=an:1115.68083
https://mathscinet.ams.org/mathscinet-getitem?mr=4376902
https://doi.org/10.1016/j.aam.2007.02.003
https://doi.org/10.1016/j.aam.2007.02.003
https://zbmath.org/?q=an:1137.68025
https://mathscinet.ams.org/mathscinet-getitem?mr=2402174
https://doi.org/10.1090/tran/8644
https://zbmath.org/?q=an:1531.03081
https://mathscinet.ams.org/mathscinet-getitem?mr=4469227
https://doi.org/10.46298/lmcs-20(2:19)2024
https://doi.org/10.46298/lmcs-20(2:19)2024
https://zbmath.org/?q=an:07906362
https://mathscinet.ams.org/mathscinet-getitem?mr=4765299
https://doi.org/10.1016/S0304-3975(98)00117-0
https://doi.org/10.1016/S0304-3975(98)00117-0
https://zbmath.org/?q=an:0912.68033
https://mathscinet.ams.org/mathscinet-getitem?mr=1650892

R. Cardona 338

[22] Moore, C.: Unpredictability and undecidability in dynamical systems. Phys. Rev. Lett. 64
(1990), no. 20, 2354–2357. Zbl 1050.37510 MR 1050259

[23] Moore, C.: Generalized shifts: unpredictability and undecidability in dynamical systems. Non-
linearity 4 (1991), no. 2, 199–230. Zbl 0725.58013 MR 1107005

[24] Morita, K.: Theory of reversible computing. Monogr. Theoret. Comput. Sci. EATCS Ser.,
Springer, Tokyo, 2017. Zbl 1383.68002 MR 3822735

[25] Pour-El, M. B. and Richards, I.: The wave equation with computable initial data such that its
unique solution is not computable. Adv. in Math. 39 (1981), no. 3, 215–239. Zbl 0465.35054
MR 0614161

[26] Reif, J. H., Tygar, J. D. and Yoshida, A.: Computability and complexity of ray tracing. Discrete
Comput. Geom. 11 (1994), no. 3, 265–288. Zbl 0807.68096 MR 1271636

[27] Siegelmann, H. T.: Computation beyond the Turing limit. Science 268 (1995), no. 5210,
545–548.

[28] Siegelmann, H. T.: The simple dynamics of super Turing theories. Theor. Comput. Sci. 168
(1996), no. 2, 461–472. Zbl 0874.68107 MR 1422966

[29] Siegelmann, H. T.: Neural networks and analog computation. Beyond the Turing limit. Pro-
gress in Theoretical Computer Science, Birkhäuser, Boston, MA, 1999. Zbl 0912.68161
MR 1712464

[30] Siegelmann, H. T. and Sontag, E. D.: On the computational power of neural nets. J. Comput.
System Sci. 50 (1995), no. 1, 132–150. Zbl 0826.68104 MR 1322637

[31] Tao, T.: On the universality of potential well dynamics. Dyn. Partial Differ. Equ. 14 (2017),
no. 3, 219–238. Zbl 1383.37016 MR 3702540

[32] Tao, T.: On the universality of the incompressible Euler equation on compact manifolds. Dis-
crete Contin. Dyn. Syst. 38 (2018), no. 3, 1553–1565. Zbl 1397.35193 MR 3809006

[33] Torres de Lizaur, F.: Chaos in the incompressible Euler equation on manifolds of high dimen-
sion. Invent. Math. 228 (2022), no. 2, 687–715. Zbl 1492.35210 MR 4411730

[34] Turing, A. M.: Systems of logic based on ordinals. Proc. London Math. Soc. (2) 45 (1939),
no. 3, 161–228. Zbl 0021.09704 MR 1576807

[35] Weihrauch, K. and Zhong, N.: Is wave propagation computable or can wave computers beat
the Turing machine? Proc. London Math. Soc. (3) 85 (2002), no. 2, 312–332.
Zbl 1011.03035 MR 1912053

Received June 27, 2023; revised September 11, 2024.

Robert Cardona
Departament de Matemàtiques i Informàtica, Universitat de Barcelona
Gran Via de Les Corts Catalanes 585, 08007 Barcelona;
Centre de Recerca Matemática
Campus de Bellaterra, Edifici C, 08193 Barcelona, Spain;
robert.cardona@ub.edu

https://doi.org/10.1103/PhysRevLett.64.2354
https://zbmath.org/?q=an:1050.37510
https://mathscinet.ams.org/mathscinet-getitem?mr=1050259
https://doi.org/10.1088/0951-7715/4/2/002
https://zbmath.org/?q=an:0725.58013
https://mathscinet.ams.org/mathscinet-getitem?mr=1107005
https://doi.org/10.1007/978-4-431-56606-9
https://zbmath.org/?q=an:1383.68002
https://mathscinet.ams.org/mathscinet-getitem?mr=3822735
https://doi.org/10.1016/0001-8708(81)90001-3
https://doi.org/10.1016/0001-8708(81)90001-3
https://zbmath.org/?q=an:0465.35054
https://mathscinet.ams.org/mathscinet-getitem?mr=0614161
https://doi.org/10.1007/BF02574009
https://zbmath.org/?q=an:0807.68096
https://mathscinet.ams.org/mathscinet-getitem?mr=1271636
https://doi.org/10.1126/science.268.5210.545
https://doi.org/10.1016/S0304-3975(96)00087-4
https://zbmath.org/?q=an:0874.68107
https://mathscinet.ams.org/mathscinet-getitem?mr=1422966
https://doi.org/10.1007/978-1-4612-0707-8
https://zbmath.org/?q=an:0912.68161
https://mathscinet.ams.org/mathscinet-getitem?mr=1712464
https://doi.org/10.1006/jcss.1995.1013
https://zbmath.org/?q=an:0826.68104
https://mathscinet.ams.org/mathscinet-getitem?mr=1322637
https://doi.org/10.4310/DPDE.2017.v14.n3.a1
https://zbmath.org/?q=an:1383.37016
https://mathscinet.ams.org/mathscinet-getitem?mr=3702540
https://doi.org/10.3934/dcds.2018064
https://zbmath.org/?q=an:1397.35193
https://mathscinet.ams.org/mathscinet-getitem?mr=3809006
https://doi.org/10.1007/s00222-021-01089-3
https://doi.org/10.1007/s00222-021-01089-3
https://zbmath.org/?q=an:1492.35210
https://mathscinet.ams.org/mathscinet-getitem?mr=4411730
https://doi.org/10.1112/plms/s2-45.1.161
https://zbmath.org/?q=an:0021.09704
https://mathscinet.ams.org/mathscinet-getitem?mr=1576807
https://doi.org/10.1112/S0024611502013643
https://doi.org/10.1112/S0024611502013643
https://zbmath.org/?q=an:1011.03035
https://mathscinet.ams.org/mathscinet-getitem?mr=1912053
mailto:robert.cardona@ub.edu

	1. Introduction
	2. Symbolic dynamics
	3. Simulation with area-preserving diffeomorphisms
	4. Computation with advice in ideal fluid motion
	5. Countable generalized shifts and P/poly
	References

