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Type problem, the first eigenvalue and Hardy inequalities

Gilles Carron, Bo-Yong Chen, and Yuanpu Xiong

Abstract. In this paper, we study the relationship between the type problem and the asymptotic
behaviour of the first (Dirichlet) eigenvalues �1.Br / of “balls” Br WD ¹� < rº on a complete
Riemannian manifold M as r ! C1, where � is a Lipschitz continuous exhaustion function
with jr�j � 1 a.e. on M . We obtain several sharp results. First, if r2�1.Br / �  > 0 for all
r > r0, we obtain a sharp estimate of the volume growth: jBr j � cr�./: Moreover, when  >
j 2
0
� 5:784, where j0 denotes the first positive zero of the Bessel function J0, then M is non-

parabolic and we have a Hardy-type inequality. In the case where r0 D 0, a sharp Hardy-type
inequality holds. These spectral conditions are satisfied if one assumes that ��2 � 2�./ > 0.
In particular, when infM ��2 >4,M is non-parabolic and we get a sharp Hardy-type inequality.
Related results for finite volume case are also studied.

1. Introduction

Let .M; g/ be a complete, non-compact Riemannian manifold with dimM � 2, and
denote by � the Laplace operator associated to g. An upper semicontinuous function
u on M is called subharmonic if �u � 0 holds in the sense of distributions. If every
negative subharmonic function on M has to be a constant, then M is said to be para-
bolic; otherwiseM is called non-parabolic. It is well known thatM is parabolic (resp.
non-parabolic) if and only if the Green function GM .x; y/ is infinite (resp. finite) for
all x ¤ y; or the Brownian motion on M is recurrent (resp. transient).

The type problem is how to decide the parabolicity and non-parabolicity through
intrinsic geometric conditions. The case of surfaces is classical, for the type of M
depends only on the conformal class of g, i.e., the complex structure determined by g.
Ahlfors [1] and Nevanlinna [23] first showed that M is parabolic whenever

C1Z
1

dr

j@B.x0; r/j
D C1; (1.1)
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where B.x0; r/ is the geodesic ball with center x0 2 M and radius r . The same
conclusion was extended to high dimensional cases by Lyons and Sullivan [21] and
Grigor’yan [12, 13]. Moreover, (1.1) can be relaxed to

C1Z
1

rdr

jB.x0; r/j
D C1

(cf. Karp [17], Varopolous [26], and Grigor’yan [12,13]; see also Cheng and Yau [9]).
We refer to the excellent survey [14] of Grigor’yan for other sufficient conditions of
parabolicity.

On the other side, it seems more difficult to find sufficient conditions for non-
parabolicity. Yet, there is a classical result stating that M is non-parabolic whenever
the first (Dirichlet) eigenvalue �1.M/ of M is positive. Recall that

�1.M/ WD lim
j!C1

�1.�j /

for some/any increasing sequence of precompact open sets ¹�j º in M , such that
M D

S
�j . Here, given an open set � ��M , define

�1.�/´ inf
²R

�
jr�j2dVR
�
�2dV

W � 2 Lip0.M/; supp� � x�; � 6� 0
³
;

where Lip0.M/ denotes the set of Lipschitz continuous functions onM with compact
supports.

Remark. We use the convention that �1.¿/ D C1.

The main focus of this paper is to determine the non-parabolicity in the case
�1.M/ D 0. Grigor’yan showed that M is non-parabolic if the following Faber–
Krahn-type inequality holds:

�1.�/ � f .j�j/ for all � ��M such that j�j � v0 > 0;

where f is a positive decreasing function on .0;C1/ such that

C1Z
v0

dv

v2f .v/
< C1

(see, e.g., [14, Theorem 10.3]). We shall use certain quantity measuring the asymptotic
behaviour of �1.Br/ for certain “balls” Br as r ! C1, which seems to be easier to
analyse. More precisely, let us first fix a nonnegative locally Lipschitz continuous
function � onM , which is an exhaustion function (i.e., Br ´ ¹� < rº ��M for any
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r > 0), such that jr�j � 1 holds a.e. on M . Note that if � is the distance distM .x0; �/
from some x0 2M , then Br is precisely the geodesic ball B.x0; r/.

To state the main result, we denote by �� the first eigenvalue of the Laplace oper-
ator on Œ0; 1/ for the Dirichlet condition at s D 1 and with respect to the measure
s��1ds, i.e.,

�� D inf
²R 1

0
j 0.s/j2s��1dsR 1

0
j .s/j2s��1ds

W  2 Lip.Œ0; 1�/;  .1/ D 0;  6� 0
³
:

It is known that �� D j 2�=2�1, where j� is the first positive zero of the Bessel function
J� , with the infimum �� realised by

 �.s/´ s1��=2J�=2�1.
p
��s/: (1.2)

We have the following result.

Theorem 1.1. Suppose that

�1.Br/ �
��

r2
; (1.3)

holds for all r � r0. Then the following properties hold.

(1) There is a constant c > 0 such that

jBr j � cr
� for all r � r0: (1.4)

Here, the constant c might depend on the geometry of Br0 .

(2) If � > 2, then M is non-parabolic.

(3) If � > 2, then the Hardy-type inequality

C

Z
M

u2

1C �2
dV �

Z
M

jruj2dV (1.5)

holds for some C > 0 and for any u 2 Lip0.M/. If (1.3) holds with � > 2 for
all r > 0, then we have the sharp Hardy-type inequality�� � 2

2

�2 Z
M

u2

�2
dV �

Z
M

jruj2dV for all u 2 Lip0.M/: (1.6)

Remark. (a) It is well known that if M D Rn and �.x/ D jxj then

�1.B.0; r// D
�n

r2
D
j 2
n=2�1

r2
for all r > 0:



G. Carron, B.-Y. Chen, and Y. Xiong 4

Thus, the volume growth in (1.4) is sharp for � D n. Moreover, (1.6) is also sharp,
since on the Euclidean space Rn, with n � 3, we have the classical Hardy inequality�n � 2

2

�2 Z
Rn

u2

jxj2
dV �

Z
Rn

jruj2dV; for all u 2 Lip0.R
N /:

and our hypothesis holds with � D n.
(b) (1.4) also follows from the sharp Hardy-type inequality (cf. Carron [7, Propos-

ition 2.26]). Indeed, (1.6) implies the following reverse doubling property of order �
(cf. Lansade [18, Proposition 5.2]):

jBRj

jBr j
� c�

R�

r�
for all R > r > 0:

Define
ƒ�´ lim inf

r!C1
¹r2�1.Br/º:

Note that � 7! �� is a strict increasing continuous function when � � 2 (cf. [11]).
Thus, a direct consequence of Theorem 1.1 is the following.

Corollary 1.2. If ƒ� > �2 D j 20 � 5:784, then M is non-parabolic. In other words,
if M is parabolic, then ƒ� � j 20 .

Remark. We have already said that if M D R2 and �.x/ D jxj, then

�1.B.0; r// D
�2

r2
D
j 20
r2
;

so that ƒ� D j 20 . Since R2 is parabolic, so the above result turns out to be the best
possible.

Conversely, it is natural to ask whether there exists a universal constant c0 such
that M is parabolic whenever ƒ� � c0. The answer is, however, negative (see
Example 5.5 in Section 5).

Theorem 1.1 (1) allows us to estimate ƒ� through volume growth conditions.
Cheng and Yau [9] showed that �1.M/ D 0 if M has polynomial volume growth.
This was extended by Brooks [3], who showed that if the volume jM j of M is infin-
ite, then

�1.M/ �
��2

4
; ��´ lim sup

r!C1

log jB.x0; r/j
r

:

Refined results for ends of complete Riemannian manifolds are obtained by Li and
Wang [20] (see also Carron [7, Section 2.4]). The following consequence of The-
orem 1.1 may be viewed as a quantitative version of the theorem of Cheng and Yau.
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Corollary 1.3. If �� ´ lim infr!C1 log jBr j=log r , then ƒ� � ��� D j
2
��=2�1

. In
particular, we have

(1) ƒ� D 0 if �� D 0;

(2) ƒ� . �� if 0 < �� � 1;

(3) ƒ� . �2� if �� � 1.

When jM j<C1, we have ��D 0, so that �1.Br/ decays faster than quadratically
as r !C1. More precisely, we have the following.

Proposition 1.4. If jM j <1, then

zƒ�´ lim inf
r!C1

� log�1.Br/
r

� ˛�´ lim inf
r!C1

� log jM n Br j
r

: (1.7)

It follows from Proposition 1.4 that �1.Br/ decays exponentially if jM n Br j
decays exponentially as r !C1. On the other hand, the relationship of �1.M nBr/
and jM n Br j is studied by Brooks [4], who proved that if jM j <1, then

�1.M n Br/ �
˛�2

4
for all r > 0;

where

˛�´ lim sup
r!C1

� log jM n Br j
r

:

A more precise version of Brooks’ result is also proved by Li and Wang [20].
Motivated by a result of Dodziuk, Pignataro, Randol, and Sullivan [10], we present

an example in Section 5 showing that the estimate in Proposition 1.4 is sharp. Some
other examples such that �1.Br/ have various decaying behaviours are also given in
Section 5. In particular, Example 5.5 shows that zƒ� > 0 does not necessarily imply
jM j <1, i.e., the assumption that M has finite volume in Proposition 1.4 cannot be
removed.

We also show that (1.3) holds under suitable condition on �.

Proposition 1.5. Suppose that � is a nonnegative locally Lipschitz continuous exhaus-
tion function onM such that jr�j � 1 a.e. and��2 � 2� in the sense of distributions.
Then

�1.Br/ �
��

r2
for all r > 0:

Proposition 1.5 and Theorem 1.1, immediately yield the following.

Corollary 1.6 (cf. [5]). If ��2 � 2� > 4, then M is non-parabolic and the sharp
Hardy-type inequality (1.6) holds.
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Proposition 1.5 implies several well-known results. First, ifM is an n-dimensional
Cartan–Hadamard manifold and � is the geodesic distance function, then Proposi-
tion 1.5, together with the Hessian comparison theorem, yieldsƒ� � �n. In particular,
it follows from Theorem 1.1 thatM is non-parabolic when n� 3 (cf. Ichihara [15,16],
see also Grigor’yan [14, Theorem 15.3]). Next, if M is a complete n-dimensional
minimal submanifold in RN and � is the restriction of Euclidean distance to a given
point x0 2 RN , then ��2 � 2n, so that

�1.B
N .x0; r/ \M/ �

�n

r2
; (1.8)

in view of Proposition 1.5. Here BN .x0; r/ is a Euclidean ball in RN . (1.8) was
first proved by Cheng, Li, and Yau [8] by heat kernel method. In particular, M is
non-parabolic for n � 3, which can also be proved by the isoperimetric inequality of
Michael and Simon [22] and [14, Theorem 8.2].

Comments

In an early version of this paper, the last two authors obtained the conclusion of Corol-
lary 1.2 under a worse conditionƒ� > 18:624 : : : : Shortly afterwards, the first author
suggested some ideas for improving certain results. We then decided to write a joint
paper on the subject, and the improvements found in this paper are the result of this
collaboration.

2. Proof of Theorem 1.1

2.1. Bessel’s functions

Assume that � > �1 and � > 0. The Bessel function J� is given by

J�.t/ D

1X
mD0

.�1/m

mŠ�.mC � C 1/

� t
2

�2mC�
;

which is a solution of the ODE

t2J 00� .t/C tJ
0
�.t/C .t

2
� �2/J�.t/ D 0:

Thus,  �.s/ D s1��=2J�=2�1.
p
��s/ satisfies

 00�.s/C
� � 1

s
 0�.s/C �� �.s/ D 0; (2.1)
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where
p
�� D j�=2�1 is the first positive zero of J�=2�1. In particular,  �.1/ D 0.

Moreover, we have

 �.s/ D

1X
mD0

.�1/m

mŠ�
�
mC �

2

��p��s
2

�2m
;

so that  0�.0/ D 0.
Let us first verify the following.

Lemma 2.1. The following properties hold.

(1) For any Œa; b� � Œ0; 1�, we have

bZ
a

.�� �.s/
2
� 0�.s/

2/s��1dsD� 0�.b/ �.b/b
��1
C 0�.a/ �.a/a

��1:

(2.2)

(2)  0�.s/ < 0 for all s 2 .0; 1�. More precisely,

 0�.s/s
��1
D ���

sZ
0

 �.t/t
��1dt: (2.3)

Proof. By (2.1), we have

.�� �.s/
2
�  0�.s/

2/s��1 D
�
� 00�.s/ �.s/ �

� � 1

s
 0�.s/ �.s/ �  

0
�.s/

2
�
s��1

D �. 0�.s/ �.s//
0s��1 � .� � 1/ 0�.s/ �.s/s

��2

D �. 0�.s/ �.s/s
��1/0

and

��� �.s/s
��1
D  00�.s/s

��1
C .� � 1/ 0�.s/s

��2
D . 0�.s/s

��1/0;

from which (2.2) and (2.3) follow immediately.

2.2. The volume growth

Proof of Theorem 1.1 (1). We first assume that � > 0. Set � D  �.�=r/; where  � is
given as (1.2). Then the variational characterization of eigenvalue gives

��

Z
Br

 �

��
r

�2
dV � r2�1.Br/

Z
Br

�2dV � r2
Z
Br

jr�j2dV �

Z
Br

 0�

��
r

�2
dV:



G. Carron, B.-Y. Chen, and Y. Xiong 8

By using the co-area formula, this can be rewritten as

��

rZ
0

 �

� t
r

�2
d�.t/ �

rZ
0

 0�

� t
r

�2
d�.t/;

where d�.t/´ .�/#.dV / is a Lebesgue–Stieltjes measure on .0;C1/. Divide this
inequality by r�C1 and integrate on r 2 Œr0; Nr�, we obtain

��

NrZ
0

NrZ
max¹r0;tº

 �

� t
r

�2 dr

r�C1
d�.t/ �

NrZ
0

NrZ
max¹r0;tº

 0�

� t
r

�2 dr

r�C1
d�.t/;

in view of Fubini’s theorem. By using the new variable s D t=r , we get

��

NrZ
0

� min¹1;t=r0ºZ
t= Nr

 �.s/
2s��1ds

�
d�.t/

t�
�

NrZ
0

� min¹1;t=r0ºZ
t= Nr

 0�.s/
2s��1ds

�
d�.t/

t�
:

(2.4)
Take a D t= Nr and b D min¹1; t=r0º when t � r0 in (2.2); we infer from (2.4) and the
facts  �.1/ D 0 and  0� � 0 that

NrZ
0

� 0�

� t
Nr

�
 �

� t
Nr

�� t
Nr

���1d�.t/
t�

�

NrZ
0

� 0�

�
min

°
1;
t

r0

±�
 �

�
min

°
1;
t

r0

±��
min

°
1;
t

r0

±���1d�.t/
t�

�

r0Z
0

� 0�

� t
r0

�
 �

� t
r0

�� t
r0

���1d�.t/
t�

;

i.e.,

1

Nr�

Z
BNr

�
 0�
�
�
Nr

�
 �
�
�
Nr

��
�
Nr

� dV �
1

r
�
0

r0Z
0

�
 0�
�
�
r0

�
 �
�
�
r0

��
�
r0

� dV: (2.5)

If we merely have � � 0, then we may also apply the above argument to

�"´
p
�2 C "2:

Note that we still have

jr�"j D
�jr�j

.�2 C "2/1=2
� 1:
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Since
B"r ´ ¹�" < rº D B

p
r2�"2

;

it follows that

�1.B
"
r / D �1.B

p
r2�"2

/ �
��

r2 � "2
�
��

r2
for all r � r0;"´

q
r20 C "

2; (2.6)

so that (2.5) still holds with � and r0 replaced by �" and r0;", respectively. Moreover,
since  � is a C 2 function on Œ0; 1� with  0�.0/D 0, there exists a constant A > 0 such
that

� 0�.s/ �.s/ � As for all s 2 Œ0; 1�:

Letting "! 0C, we see that (2.5) remains valid for � and r0 in view of the dominated
convergence theorem, which yields

jB Nr j

Nr�
�

1

Ar
�
0

r0Z
0

�
 0�
�
t
r0

�
 �
�
t
r0

��
t
r0

� d�.t/µ c for all Nr � r0:

Proof of Corollary 1.3. Suppose on the contrary that ƒ� > ��� . Since the function
� 7! �� is continuous, we have ƒ� > ���C" for "� 1, so that �1.Br/ � ���C"=r

2

for r � 1. By Theorem 1.1 (1), we conclude that jBr j & r��C". But this implies
�� � �� C ", which is impossible.

Since j� � 2
p
� C 1 as � ! �1C (cf. Piessens [25]), we have

��� D j
2
��=2�1

� 2��; �� ! 0C;

from which assertions (1) and (2) immediately follow. On the other hand, since j� � �
as � !C1 (cf. Watson [27, pp. 521], see also Elbert [11, Section 1.4]), we have

��� D j
2
��=2�1

� �2�=4; �� !C1;

which implies (3).

2.3. The Hardy-type inequalities

Recall that the capacity cap.K/ of a compact set K �M is given by

cap.K/´ inf
Z
M

jr j2dV;

where the infimum is taken over all  2 Lip0.M/ with 0 �  � 1 and  jK D 1. The
following criterion is of fundamental importance (cf. Grigor’yan [14, Theorem 5.1],
and Ancona [2, pp. 46–47], see also Carron [6, Definition 2.13]).
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Theorem 2.2. Let .M; g/ be a complete Riemannian manifold. Then the following
properties are equivalent:

(1) M is non-parabolic;

(2) cap.K/ > 0 for some/any compact set K �M with non-empty interior;

(3) given some/any pen subset U ��M , there exists a constant C D C.U / such
that Z

U

u2dV � C.U /

Z
M

jruj2dV

for any u 2 Lip.M/ with a compact support.

By Theorem 2.2, Theorem 1.1 (2) is a direct consequence of the Hardy-type
inequality (1.5). We shall take a unified approach to proving the Hardy inequalit-
ies (1.5) and (1.6). To begin with, set

ˆ.s/ D J�=2�1.
p
��s/:

The function ˆ satisfies ˆ.0/ D ˆ.1/ D 0 and

ˆ00.s/C
1

s
ˆ0.s/C

�
�� �

�
�
2
� 1

�2
s2

�
ˆ.s/ D 0: (2.7)

We shall make use the following property of ˆ.

Lemma 2.3. For any s 2 Œ0; 1�, we have

xZ
0

ˆ0.s/2sds D ��

xZ
0

ˆ.s/2sds �
�� � 2

2

�2 xZ
0

ˆ.s/2
ds

s
Cˆ0.x/ˆ.x/x: (2.8)

In particular,

1Z
0

ˆ0.s/2sds D ��

1Z
0

ˆ.s/2sds �
�� � 2

2

�2 1Z
0

ˆ.s/2
ds

s
: (2.9)

Proof. By (2.7), we have

��ˆ.s/
2s � �2ˆ.s/2

1

s
D ˆ00.s/ˆ.s/s Cˆ0.s/ˆ.s/

D .ˆ0.s/ˆ.s//0 �ˆ0.s/2s;

from which (2.8) and (2.9) follow immediately.
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Proof of Theorem 1.1 (3). As in the proof of (1), we first consider the case � > 0.
Given u 2 Lip0.M/, define

�.x/´ u.x/ˆ
��.x/
r

�
; x 2M:

Since jr�j � 1, we have

jr�j2 � ˆ
��
r

�2
jruj2 C

1

r2
u2ˆ0

��
r

�2
C 2

u

r
hru;r�iˆ0

��
r

�
ˆ
��
r

�
:

The variational characterization of eigenvalue gives

��

r2

Z
Br

�2dV � �1.Br/

Z
Br

�2dV �

Z
Br

jr�j2dV

�

Z
Br

jruj2ˆ
��
r

�2
dV C

1

r2

Z
Br

u2ˆ0
��
r

�2
dV

C 2

Z
Br

u

r
hru;r�iˆ0

��
r

�
ˆ
��
r

�
dV for all r > r0: (2.10)

We then divide (2.10) by r and integrate for r 2 .r0;C1/. (Under the condition of (3)
we set r0 D infM � > 0.) First,

C1Z
r0

Z
Br

u.x/2ˆ
��.x/
r

�2
dV.x/

dr

r3

D

Z
M

� C1Z
max¹r0;�.x/º

ˆ
��.x/
r

�2dr
r3

�
u.x/2dV.x/

D

Z
M

� min¹1;�.x/=r0ºZ
0

ˆ.s/2sds

�
u.x/2

�.x/2
dV.x/ �

� 1Z
0

ˆ.s/2sds

� Z
MnBr0

u2

�2
dV;

where we used the new variable s D �.x/=r in the second step. Analogously, we have

C1Z
r0

Z
Br

jru.x/j2ˆ
��.x/
r

�2
dV.x/

dr

r

D

Z
M

� C1Z
max¹r0;�.x/º

ˆ2
��.x/
r

�dr
r

�
jru.x/j2dV.x/

D

Z
M

� min¹1;�.x/=r0ºZ
0

ˆ2.s/
ds

s

�
jru.x/j2dV.x/ �

� 1Z
0

ˆ2.s/
ds

s

�Z
M

jruj2dV
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and
C1Z
r0

Z
Br

u.x/2ˆ0
��.x/
r

�2
dV.x/

dr

r3

D

Z
M

� C1Z
max¹r0;�.x/º

ˆ0
��.x/
r

�2dr
r3

�
u.x/2dV.x/

D

Z
M

� min¹1;�.x/=r0ºZ
0

ˆ0.s/2sds

�
u2.x/

�.x/2
dV.x/

�

� 1Z
0

ˆ0.s/2sds

� Z
MnBr0

u2

�2
dV C

Z
Br0

� �.x/=r0Z
0

ˆ0.s/2sds

�
u2

�2
dV

µ

� 1Z
0

ˆ0.s/2sds

� Z
MnBr0

u2

�2
dV C I1.r0/;

where

I1.r0/ �
kˆ0k2

L1.Œ0;1�/

2r20

Z
Br0

u2dV for all r0 � inf
M
�; (2.11)

so that I1.r0/ D 0 if r0 D infM �. Eventually,

C1Z
r0

Z
Br

u

r
hru;r�iˆ0

��
r

�
ˆ
��
r

�
dV

dr

r

D

Z
M

� C1Z
max¹r0;�.x/º

ˆ0
��.x/
r

�
ˆ
��.x/
r

�dr
r2

�
u.x/hru.x/;r�.x/idV.x/

D

Z
M

� min¹1;�.x/=r0ºZ
0

ˆ0.s/ˆ.s/ds

�
u.x/

�.x/
hru.x/;r�.x/idV.x/

D

Z
Br0

ˆ
� �
r0

�2u
�
hru;r�idV µ I2.r0/;

where we have used the fact

2

1Z
0

ˆ0.s/ˆ.s/ds D ˆ2.1/ �ˆ2.0/ D 0:
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We also have I2.r0/ D 0 if r0 D infM �. Moreover, since ˆ.0/ D 0, we get

ˆ2.s/ � kˆ0k2L1.Œ0;1�/s
2

for all s � 0, so that,

I2.r0/ �
kˆ0k2

L1.Œ0;1�/

r0

Z
Br0

jrujjujdV for all r0 � inf
M
� (2.12)

These together with (2.10) yield

��

� 1Z
0

ˆ.s/2sds

� Z
MnBr0

u2

�2
dV

�

� 1Z
0

ˆ2.s/
ds

s

�Z
M

jruj2dV C

� 1Z
0

ˆ0.s/2sds

� Z
MnBr0

u2

�2
dV

C I1.r0/C I2.r0/:

Thus, �� � 2
2

�2 Z
MnBr0

u2

�2
dV �

Z
M

jruj2dV C
I1.r0/C I2.r0/

A
(2.13)

in view of (2.9), where A D
R 1
0
ˆ2.s/ds=s. If (1.3) holds for all r > 0, we may take

r0 D infM �, so that (1.6) follows immediately from (2.13).
Under the condition of (2), we infer from (2.11)–(2.13) that�� � 2

2

�2 Z
M

u2

1C �2
dV � .1C ı/

Z
M

jruj2dV C Cı

Z
Br0

u2dV (2.14)

holds for any u 2 Liploc.M/ with a compact support and ı > 0, where

Cı D
�� � 2

2

�2
C
kˆ0k2

L1.Œ0;1�/

Ar20
C
kˆ0k4

L1.Œ0;1�/

A2r20 ı
: (2.15)

Note that Cı only depends on � and r0 if ı is fixed.
The above proofs of inequalities (1.6) and (2.14) require an additional condition

� > 0. In general, if infM � D 0, we consider �" ´
p
�2 C "2. Analogously to the

proof of Theorem 1.1 (1), we have (2.6), so that (2.14) becomes�� � 2
2

�2 Z
M

u2

1C "2 C �2
dV � .1C ı/

Z
M

jruj2dV C Cı;"

Z
Br"
0

u2dV;
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where Cı;" is given by (2.15) with r20 replaced by r20 C "
2. Thus, (2.14) follows by

letting " ! 0. Moreover, if (1.3) holds for all r > 0, then �1.B"r / � ��=r
2 when

r > ". Take r0 D " D infM �" in (2.13) with � replaced by �"; we have�� � 2
2

�2 Z
M

u2

�2"
dV �

Z
M

jruj2dV:

We obtain (1.6) immediately by letting "! 0, which completes the proof of (3).
To prove (2), we shall first derive the non-parabolicity of M from (2.14) when

� > 2. By Theorem 1.1 (1), there exist some constants c > 0 and � > 2 such that
jBr j � cr

� for r � 1. Thus,Z
M

dV

1C �2
� lim sup

r!C1

jBr j

1C r2
D C1:

Choose Nr � r0 so that�� � 2
2

�2 Z
BNr

dV

1C �2
� Cı jBr0 j C 1C ı:

Then Z
M

jruj2dV � 1

whenever u 2 Lip0.M/ and uD 1 on xB Nr . Thus, cap. xB Nr/ � 1 andM is non-parabolic
in view of Theorem 2.2 (2).

Finally, it follows from Theorem 2.2 (3) thatZ
Br0

u2dV � C.Br0/

Z
M

jruj2dV

for any u 2 Lip0.M/. This, together with (2.14), gives (1.5) with

C D
�� � 2

2

�2 1

1C ı C CıC.Br0/
:

If we fix some ı > 0, then C only depends on �, r0 and the geometry of M .

3. Proof of Proposition 1.4

By definition, there exists a sequence ¹rkº with limk!C1 rk D C1, such that

�1.Brk / > e
�. zƒ�C"/rk
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for some 0 < " � 1. Again, for k � 1 and 0 < ı < 1, we take a cut-off function
�k WM ! Œ0; 1� such that �kjBırk D 1, �kjMnBrk D 0 and jr�kj � .1 � ı/�1r�1k .
Then

e�.
zƒ�C"/rk jBırk j � �1.Brk /

Z
M

�2kdV �

Z
M

jr�kj
2dV

�
1

.1 � ı/2r2
k

jBrk n Bırk j

�
1

.1 � ı/2r2
k

jM n Bırk j:

That is,
jM j � .1C e�.

zƒ�C"/rk .1 � ı/2r2k /jBırk j;

which is equivalent to

jM n Bırk j �
e�.
zƒ�C"/rk .1 � ı/2r2

k

1C e�. zƒ�C"/rk .1 � ı/2r2
k

jM j:

Thus,

˛� � lim
k!1

� log jM n Bırk j
ırk

�
zƒ� C "

ı
:

Letting ı ! 1� and "! 0C, we conclude that zƒ� � ˛�.

4. Proof of Proposition 1.5

Let w 2 Liploc.M/ and v 2 L1loc.M/; by �w � v in the sense of distributions (or
weakly) for some locally integrable function v, we meanZ

M

hrw;r'idV � �

Z
M

v'dV (4.1)

for any nonnegative function ' 2 C10 .M/. Since C10 .M/ is dense in Lip0.M/ with
respect to the Sobolev norm k � kW 1;2 , we see that�w � v weakly if and only if (4.1)
holds for all nonnegative ' 2 Lip0.M/. One can define �w � v in a similar way.

We first prove the following technical lemma.

Lemma 4.1. Suppose that �w � v weakly and w > 0. Let f W .0;C1/! .0;C1/

be a smooth function. Then the following properties hold:

(1) if f is increasing, then �f .w/ � f 0.w/v C f 00.w/jrwj2 weakly;

(2) if f is decreasing, then �f .w/ � f 0.w/v C f 00.w/jrwj2 weakly.
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Proof. (1) Let ' 2Lip0.M/ and ' � 0. If f is increasing, then we also have f 0.w/' 2
Lip0.M/ and f 0.w/' � 0. Thus,Z

M

hrf .w/;r'idV D

Z
M

hf 0.w/rw;r'idV

D

Z
M

hrw;r.f 0.w/'/idV �

Z
M

f 00.w/jrwj2'dV

� �

Z
M

.f 0.w/v C f 00.w/jrwj2/'dV ;

which proves the first assertion.
(2) Analogously, we haveZ
M

hrf .w/;r'idV D

Z
M

hf 0.w/rw;r'idV

D �

Z
M

hrw;r.�f 0.w/'/idV �

Z
M

f 00.w/jrwj2'dV

� �

Z
M

.f 0.w/v C f 00.w/jrwj2/'dV :

Proof of Proposition 1.5. We follow the ideas in [5]. Assume for a moment that � > 0.
Apply Lemma 4.1 (1) with w D �2 and f .t/ D t1=2; we get

�� �
� � jr�j2

�
(4.2)

weakly.
Let � be a Lipschitz continuous function which is positive on Br and fix u 2

Lip0.Br/. With v´ u=�, we haveZ
M

jruj2dV D

Z
M

�2jrvj2dV C

Z
M

v2jr�j2dV C 2

Z
M

�vhr�;rvidV

D

Z
M

�2jrvj2dV C

Z
M

hr.�v2/;r�idV : (4.3)

Let us choose � D  �.�=r/, where

 �.s/ D s
1��=2J�=2�1.

p
��s/:
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Recall that  � is a solution of the ODE (2.1) and  0� � 0. Thus, (4.2) and (2.1)
together with Lemma 4.1 (2) yield

�� �  0�

��
r

�� � jr�j2
�r

C  00�

��
r

�
jr�j2

r2

D  0�

��
r

�� � 1
�r
C  00�

��
r

� 1
r2
C  0�

��
r

�1 � jr�j2
�r

�  00�

��
r

�1 � jr�j2
r2

D �
��

r2
� C

1 � jr�j2

r2

� 0���r �
�=r

�  00�

��
r

��
: (4.4)

We have (cf. Lebedev [19, formula (5.3.5)])

 0�.s/ D �s �C2.s/;

from which it follows that

 0�.s/

s
�  00�.s/ D � �C2.s/ � .�s �C2.s//

0
D �s2 �C4.s/ � 0:

Then (4.4) implies

�� � �
��

r2
�;

which givesZ
M

hr.�v2/;r�idV � �

Z
M

�v2
�
�
��

r2
�
�
dV D

��

r2

Z
M

u2dV :

This, together with (4.3), yields

��

r2

Z
Br

u2dV �

Z
Br

jruj2dV for all u 2 Liploc.Br/ (4.5)

under the additional condition � > 0.
In general, we use �"´ .�2 C "2/1=2 instead of �. Note that jr�"j � 1 and

��2" D ��
2
� 2�:

Thus, (4.5) holds if Br is replaced by B"r in view of (2.6). The proposition follows by
letting "! 0.

5. Examples

Let M D R � S1 be equipped with the following Riemannian metric:

g D dt2 C �0.t/2d�2; t 2 R; ei� 2 S1;
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where �WR! R is a smooth function such that �0.t/ > 0 and limt!�1 �.t/ D 0.
Dodziuk, Pigmataro, Randol, and Sullivan [10, Proposition 3.1] showed that if �.t/D
et , then �1.M/ � 1=4, so that .M; g/ is non-parabolic.

In general, we consider

h.t/´

tZ
0

ds

�0.s/
; t 2 R;

which gives a function on M . A straightforward calculation shows

�h D
@2h

@t2
C
�00.t/

�0.t/

@h

@t
C

1

�0.t/2
@2h

@�2
D 0;

i.e., h is a harmonic function onM . Moreover, in the new coordinate system .Qt; �/´

.h.t/; �/, we may write

g D �0.t/2.h0.t/2dt2 C d�2/ D �0.t/2.d Qt2 C d�2/;

which indicates that .M; g/ is conformally equivalent to the cylinder .inf h; sup h/ �
S1 equipped with a flat metric. In conclusion, we have the following result.

Proposition 5.1. .M; g/ is non-parabolic if and only if infh > �1 or suph < C1.

Let �.t; �/ D jt j. Clearly, � is an exhaustion function which satisfies jr�jg � 1.
Indeed, � is the geodesic distance to the circle ¹0º � S1. The goal of this section is
to investigate the asymptotic behaviour of �1.Br/ as r ! C1 for different choices
of �. We start with the following elementary lower estimate.

Proposition 5.2. We have

�1.Br/ �
1

4
inf
jt j�r

�0.t/2

�.t/2
:

Proof. The idea is essentially implicit in [10]. Since dV D �0.t/dtd� , we have
rZ
�r

�2�0.t/dt D �2

rZ
�r

�
@�

@t
�.t/dt; for all � 2 C10 .Br/;

so that
rZ
�r

�2�0.t/dt � 4

rZ
�r

ˇ̌̌@�
@t

ˇ̌̌2 �.t/2
�0.t/

dt � 4

rZ
�r

jr�j2
�.t/2

�0.t/
dt

� 4 sup
jt j�r

�.t/2

�0.t/2

rZ
�r

jr�j2�0.t/dt
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in view of the Cauchy–Schwarz inequality. Thus,Z
Br

�2dV D

2�Z
0

rZ
�r

�2�0.t/dtd� � 4 sup
jt j�r

�.t/2

�0.t/2

Z
Br

jr�j2dV;

from which the assertion immediately follows.

We give the following test example for Proposition 5.1 and 5.2.

Example 5.3. Given ˛ > 0, take � such that

�.t/ D

´
.�t /�˛; t < �1;

2t˛; t > 1:

We claim that ƒ� � ˛2=4 as ˛ !C1. To see this, first note that

ƒ� D lim inf
r!C1

¹r2�1.Br/º �
˛2

4
:

in view of Proposition 5.2. Then, by using

jBr j D 2�

rZ
�r

�0.t/dt D 2�.�.r/ � �.�r// D 4�r˛ � 2�r�˛ for all r � 1;

we see that

�� D lim inf
r!C1

log jBr j
log r

D ˛:

This, together with Corollary 1.3, gives

˛2

4
� ƒ� � �˛ D j

2
˛=2�1 �

˛2

4
;

which verifies the claim.
In particular,M is non-parabolic provided ˛� 1, in view of Corollary 1.2. More

precisely, Proposition 5.1 implies that M is non-parabolic if and only if ˛ > 2.

The next example shows that estimate (1.7) in Proposition 1.4 is sharp.

Example 5.4. Given ˛ > 0, take � such that

�0.t/ D e�˛jt j for all jt j > 1: (5.1)

Then, we have

lim inf
r!C1

� log�1.Br/
r

D ˛ D lim inf
r!C1

� log jM n Br j
r

: (5.2)

Namely, (1.7) is sharp.
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Indeed, since

jM n Br j D 4�

1Z
r

e�˛tdt � e�˛r ; r � 1;

we have

lim inf
r!C1

� log jM n Br j
r

D ˛; (5.3)

which implies

lim inf
r!C1

� log�1.Br/
r

� ˛; (5.4)

in view of Proposition 1.4. On the other hand, we have the following Hardy-type
inequality (cf. Opic and Kufner [24, pp. 100–103]):

rZ
�r

�.t/2�0.t/dt . e˛r
rZ
�r

�0.t/2�0.t/dt for all � 2 C10 ..�r; r//; (5.5)

where the implicit constant is independent of r . By (5.5), we immediately see that

�1.Br/ & e�˛r ;

which combined with (5.3) and (5.4) gives (5.2).

For reader’s convenience, we include here a rather short proof. Since
R C1
�1

�0.t/dt

is finite in view of (5.1), it follows that

rZ
�r

�.t/2�0.t/dt � sup
�r<t<r

�.t/2
rZ
�r

�0.t/dt . sup
�r<t<r

�.t/2:

On the other hand, by setting j�.t0/j D sup�r<t<r j�.t/j, we have

rZ
�r

j�0.t/jdt �

t0Z
�r

j�0.t/jdt �

ˇ̌̌̌ t0Z
�r

�0.t/dt

ˇ̌̌̌
D j�.t0/j D sup

�r<t<r
j�.t/j:

This, together with the Cauchy–Schwarz inequality, yields

sup
�r<t<r

�.t/2 �

� rZ
�r

�0.t/2�0.t/dt

�� rZ
�r

1

�0.t/
dt

�
. e˛r

rZ
�r

�0.t/2�0.t/dt:

Remark. By Proposition 5.2, we only obtain a weaker conclusion

�1.Br/ �
1

4

�0.r/2

�.r/2
& e�2˛r :
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The following example shows that the converse of Theorem 1.1 (2) (or Corol-
lary 1.2) does not hold, i.e.,M can be non-parabolic with �1.Br/ decaying so quickly
that ƒ� D 0.

Example 5.5. Take � such that

�0.t/ D

´
n2; 2n < t < 2n C 1;

et ; 2n C 2 < t < 2nC1 � 1;

and
�0.t/ � n2; 2n � 1 � t � 2n C 2

for n D 2; 3; : : : . Then M is non-parabolic but �1.Br/ shall decay exponentially, so
that ƒ� D 0.

Actually, the non-parabolicity of M is a direct consequence of Proposition 5.1,
for sup h D

R C1
0

dt
�0.t/

< C1. To study the behaviour of �1.Br/, consider the test
function,

�.t/´

8̂̂̂̂
<̂
ˆ̂̂:
t; 0 � t � 1;

1; 1 � t � r � 1;

r � t; r � 1 � t � r;

0; otherwise:

We obtain

�1.Br/ �

R r
�r
�0.t/2�0.t/dtR r

�r
�.t/2�0.t/dt

�
�.r/ � �.r � 1/C �.1/ � �.0/

�.r � 1/ � �.1/
: (5.6)

For r D 2n C 1, where n 2 ZC and n � 2, we have �.r/ � �.r � 1/ D n2 and

�.r � 1/ D �.2n/ �

2n�1Z
2n�1C2

etdt � e2
n

;

so that (5.6) gives
�1.B2nC1/ . e�2

n

n2:

In general, for r � 1, take n 2 ZC such that 2n C 1 � r < 2nC1 C 1. Then

�1.Br/ � �1.B2nC1/ . e�2
n

n2 . e�r=2.log r/2

and hence ƒ� D 0.

Remark. We have
ƒ�´ lim sup

r!C1

r2�1.Br/ D 0



G. Carron, B.-Y. Chen, and Y. Xiong 22

and
zƒ� D lim inf

r!C1

� log�1.Br/
r

�
1

2
> 0:

On the other hand, M is non-parabolic with an infinite volume.

Our last example shows that �1.Br/ can also decay to 0 very slowly.

Example 5.6. Let � be a positive, smooth and decreasing function on Œ1;C1/ satis-
fying

(1) limt!C1 �.t/ D 0,

(2)
R C1
1

�.s/ds D C1,

(3) t�.t/ is increasing on Œc;C1/ for some c � 1.

Take � such that

�.t/ D

´
e�

R�t
1 �.s/ds; t < �1;

2e
R t
1 �.s/ds; t > 1:

We claim that
�1.Br/ � �.r/

2: (5.7)

To see this, first note that �0.t/=�.t/ D �.�t / for t < �1 and �0.t/=�.t/ D �.t/
for t > 1, which implies

�1.Br/ �
1

4
inf
jt j�r

�0.t/2

�.t/2
D
�.r/2

4
: (5.8)

in view of Proposition 5.2. On the other hand, we have r�.r/ � c�.c/ > 0 for r �
c � 1 in view of the condition (3). Thus, we may take 0 < " � c�.c/=2 so that

r"´ r � "�.r/�1 D r.1 � "r�1�.r/�1/ �
r

2
for all r � c: (5.9)

Set Ir ´ .�r; �r"/. Since �00.t/ D ��0.�t /�.t/ C �.�t /�0.t/ � 0, i.e., �0.t/ is
increasing on .�1;�1�, it follows that

�1.Br/ � �1.¹.t; �/ 2M W �r � t � �r"º/

� inf
�2C1

0
.Ir /

²R
Ir
�0.t/2�0.t/dtR

Ir
�.t/2�0.t/dt

³
� inf
�2C1

0
.Ir /

²R
Ir
�0.t/2dtR

Ir
�.t/2dt

³
�
�0.�r"/

�0.�r/

D �1.Ir/ �
�0.�r"/

�0.�r/
:
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Since �1.Ir/ . jIr j�2 � �.r/2, we obtain

�1.Br/ . �.r/2 �
�0.�r"/

�0.�r/
: (5.10)

We have

�0.�r"/

�0.�r/
D
�.r"/

�.r/
exp

� rZ
r"

�.s/ds

�
�
�.r"/

�.r/
exp

�
"
�.r"/

�.r/

�
;

for � is decreasing and r � r" D "�.r/�1. By condition (3) and (5.9), we have

�.r"/

�.r/
�
r

r"
� 2:

Thus,
�0.�r"/

�0.�r/
D O.1/ as r !C1.

This, together with (5.8) and (5.10), gives (5.7).
Particular choices of � give the following:

(1) for �.t/ D t�1.log t /ˇ with ˇ > 0, �1.Br/ � r�2.log r/2ˇ ;

(2) for �.t/ D t�˛ with 0 < ˛ < 1, �1.Br/ � r�2˛;

(3) for �.t/ D .log.t C 1//� with  > 0, �1.Br/ � .log r/�2 .

In all three cases, we have

ƒ� D lim inf
r!C1

¹r2�1.Br/º D C1:

Thus, these Riemannian manifolds .M;g/ are non-parabolic in view of Corollary 1.2.
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