Type problem, the first eigenvalue and Hardy inequalities

Gilles Carron, Bo-Yong Chen, and Yuanpu Xiong

Abstract. In this paper, we study the relationship between the type problem and the asymptotic behaviour of the first (Dirichlet) eigenvalues $\lambda_1(B_r)$ of "balls" $B_r := \{\rho < r\}$ on a complete Riemannian manifold M as $r \to +\infty$, where ρ is a Lipschitz continuous exhaustion function with $|\nabla \rho| \leq 1$ a.e. on M. We obtain several sharp results. First, if $r^2\lambda_1(B_r) \geq \gamma > 0$ for all $r > r_0$, we obtain a sharp estimate of the volume growth: $|B_r| \geq cr^{\mu(\gamma)}$. Moreover, when $\gamma > j_0^2 \approx 5.784$, where j_0 denotes the first positive zero of the Bessel function J_0 , then M is non-parabolic and we have a Hardy-type inequality. In the case where $r_0 = 0$, a sharp Hardy-type inequality holds. These spectral conditions are satisfied if one assumes that $\Delta \rho^2 \geq 2\mu(\gamma) > 0$. In particular, when $\inf_M \Delta \rho^2 > 4$, M is non-parabolic and we get a sharp Hardy-type inequality. Related results for finite volume case are also studied.

1. Introduction

Let (M, g) be a complete, non-compact Riemannian manifold with dim $M \ge 2$, and denote by Δ the Laplace operator associated to g. An upper semicontinuous function u on M is called *subharmonic* if $\Delta u \ge 0$ holds in the sense of distributions. If every negative subharmonic function on M has to be a constant, then M is said to be *parabolic*; otherwise M is called *non-parabolic*. It is well known that M is parabolic (resp. non-parabolic) if and only if the Green function $G_M(x, y)$ is infinite (resp. finite) for all $x \ne y$; or the Brownian motion on M is recurrent (resp. transient).

The type problem is how to decide the parabolicity and non-parabolicity through intrinsic geometric conditions. The case of surfaces is classical, for the type of M depends only on the conformal class of g, i.e., the complex structure determined by g. Ahlfors [1] and Nevanlinna [23] first showed that M is parabolic whenever

$$\int_{1}^{+\infty} \frac{dr}{|\partial B(x_0, r)|} = +\infty,$$
(1.1)

Mathematics Subject Classification 2020: 31C12 (primary); 58C40 (secondary).

Keywords: non-parabolic Riemannian manifold, first eigenvalue, Hardy inequality.

where $B(x_0, r)$ is the geodesic ball with center $x_0 \in M$ and radius r. The same conclusion was extended to high dimensional cases by Lyons and Sullivan [21] and Grigor'yan [12, 13]. Moreover, (1.1) can be relaxed to

$$\int_{1}^{+\infty} \frac{rdr}{|B(x_0, r)|} = +\infty$$

(cf. Karp [17], Varopolous [26], and Grigor'yan [12, 13]; see also Cheng and Yau [9]). We refer to the excellent survey [14] of Grigor'yan for other sufficient conditions of parabolicity.

On the other side, it seems more difficult to find sufficient conditions for nonparabolicity. Yet, there is a classical result stating that M is non-parabolic whenever the first (Dirichlet) eigenvalue $\lambda_1(M)$ of M is positive. Recall that

$$\lambda_1(M) := \lim_{j \to +\infty} \lambda_1(\Omega_j)$$

for some/any increasing sequence of precompact open sets $\{\Omega_j\}$ in M, such that $M = \bigcup \Omega_j$. Here, given an open set $\Omega \subset \subset M$, define

$$\lambda_1(\Omega) := \inf \left\{ \frac{\int_{\Omega} |\nabla \phi|^2 dV}{\int_{\Omega} \phi^2 dV} : \phi \in \operatorname{Lip}_0(M), \operatorname{supp} \phi \subset \overline{\Omega}, \, \phi \neq 0 \right\},\$$

where $\operatorname{Lip}_0(M)$ denotes the set of Lipschitz continuous functions on M with compact supports.

Remark. We use the convention that $\lambda_1(\emptyset) = +\infty$.

The main focus of this paper is to determine the non-parabolicity in the case $\lambda_1(M) = 0$. Grigor'yan showed that M is non-parabolic if the following Faber–Krahn-type inequality holds:

$$\lambda_1(\Omega) \ge f(|\Omega|)$$
 for all $\Omega \subset M$ such that $|\Omega| \ge v_0 > 0$,

where f is a positive decreasing function on $(0, +\infty)$ such that

$$\int_{v_0}^{+\infty} \frac{dv}{v^2 f(v)} < +\infty$$

(see, e.g., [14, Theorem 10.3]). We shall use certain quantity measuring the asymptotic behaviour of $\lambda_1(B_r)$ for certain "balls" B_r as $r \to +\infty$, which seems to be easier to analyse. More precisely, let us first fix a nonnegative locally Lipschitz continuous function ρ on M, which is an exhaustion function (i.e., $B_r := \{\rho < r\} \subset M$ for any

r > 0), such that $|\nabla \rho| \le 1$ holds a.e. on M. Note that if ρ is the distance dist_M(x_0, \cdot) from some $x_0 \in M$, then B_r is precisely the geodesic ball $B(x_0, r)$.

To state the main result, we denote by λ_{μ} the first eigenvalue of the Laplace operator on [0, 1) for the Dirichlet condition at s = 1 and with respect to the measure $s^{\mu-1}ds$, i.e.,

$$\lambda_{\mu} = \inf\left\{\frac{\int_{0}^{1} |\psi'(s)|^{2} s^{\mu-1} ds}{\int_{0}^{1} |\psi(s)|^{2} s^{\mu-1} ds} : \psi \in \operatorname{Lip}([0,1]), \ \psi(1) = 0, \ \psi \neq 0\right\}.$$

It is known that $\lambda_{\mu} = j_{\mu/2-1}^2$, where j_{ν} is the first positive zero of the Bessel function J_{ν} , with the infimum λ_{μ} realised by

$$\psi_{\mu}(s) := s^{1-\mu/2} J_{\mu/2-1}(\sqrt{\lambda_{\mu}}s).$$
(1.2)

We have the following result.

Theorem 1.1. Suppose that

$$\lambda_1(B_r) \ge \frac{\lambda_\mu}{r^2},\tag{1.3}$$

holds for all $r \ge r_0$. Then the following properties hold.

(1) There is a constant c > 0 such that

$$|B_r| \ge cr^{\mu} \quad \text{for all } r \ge r_0. \tag{1.4}$$

Here, the constant c might depend on the geometry of B_{r_0} *.*

- (2) If $\mu > 2$, then M is non-parabolic.
- (3) If $\mu > 2$, then the Hardy-type inequality

$$C\int_{M} \frac{u^2}{1+\rho^2} dV \le \int_{M} |\nabla u|^2 dV \tag{1.5}$$

holds for some C > 0 and for any $u \in Lip_0(M)$. If (1.3) holds with $\mu > 2$ for all r > 0, then we have the sharp Hardy-type inequality

$$\left(\frac{\mu-2}{2}\right)^2 \int_{M} \frac{u^2}{\rho^2} dV \le \int_{M} |\nabla u|^2 dV \quad \text{for all } u \in \operatorname{Lip}_0(M).$$
(1.6)

Remark. (a) It is well known that if $M = \mathbb{R}^n$ and $\rho(x) = |x|$ then

$$\lambda_1(B(0,r)) = \frac{\lambda_n}{r^2} = \frac{j_{n/2-1}^2}{r^2}$$
 for all $r > 0$.

Thus, the volume growth in (1.4) is sharp for $\mu = n$. Moreover, (1.6) is also sharp, since on the Euclidean space \mathbb{R}^n , with $n \ge 3$, we have the classical Hardy inequality

$$\left(\frac{n-2}{2}\right)^2 \int_{\mathbb{R}^n} \frac{u^2}{|x|^2} dV \le \int_{\mathbb{R}^n} |\nabla u|^2 dV, \quad \text{for all } u \in \text{Lip}_0(\mathbb{R}^N).$$

and our hypothesis holds with $\mu = n$.

(b) (1.4) also follows from the sharp Hardy-type inequality (cf. Carron [7, Proposition 2.26]). Indeed, (1.6) implies the following reverse doubling property of order μ (cf. Lansade [18, Proposition 5.2]):

$$\frac{|B_R|}{|B_r|} \ge c_\mu \frac{R^\mu}{r^\mu} \quad \text{for all } R > r > 0.$$

Define

$$\Lambda_* := \liminf_{r \to +\infty} \{ r^2 \lambda_1(B_r) \}.$$

Note that $\mu \mapsto \lambda_{\mu}$ is a strict increasing continuous function when $\mu \ge 2$ (cf. [11]). Thus, a direct consequence of Theorem 1.1 is the following.

Corollary 1.2. If $\Lambda_* > \lambda_2 = j_0^2 \approx 5.784$, then *M* is non-parabolic. In other words, if *M* is parabolic, then $\Lambda_* \leq j_0^2$.

Remark. We have already said that if $M = \mathbb{R}^2$ and $\rho(x) = |x|$, then

$$\lambda_1(B(0,r)) = \frac{\lambda_2}{r^2} = \frac{j_0^2}{r^2},$$

so that $\Lambda_* = j_0^2$. Since \mathbb{R}^2 is parabolic, so the above result turns out to be the best possible.

Conversely, it is natural to ask whether there exists a universal constant c_0 such that M is parabolic whenever $\Lambda_* \leq c_0$. The answer is, however, negative (see Example 5.5 in Section 5).

Theorem 1.1 (1) allows us to estimate Λ_* through volume growth conditions. Cheng and Yau [9] showed that $\lambda_1(M) = 0$ if M has polynomial volume growth. This was extended by Brooks [3], who showed that if the volume |M| of M is infinite, then

$$\lambda_1(M) \le \frac{{\mu^*}^2}{4}, \quad \mu^* := \limsup_{r \to +\infty} \frac{\log |B(x_0, r)|}{r}.$$

Refined results for ends of complete Riemannian manifolds are obtained by Li and Wang [20] (see also Carron [7, Section 2.4]). The following consequence of Theorem 1.1 may be viewed as a quantitative version of the theorem of Cheng and Yau.

Corollary 1.3. If $v_* := \liminf_{r \to +\infty} \log |B_r| / \log r$, then $\Lambda_* \le \lambda_{v_*} = j_{v_*/2-1}^2$. In particular, we have

- (1) $\Lambda_* = 0$ if $\nu_* = 0$;
- (2) $\Lambda_* \lesssim v_* if \ 0 < v_* \ll 1;$
- (3) $\Lambda_* \lesssim v_*^2$ if $v_* \gg 1$.

When $|M| < +\infty$, we have $\nu_* = 0$, so that $\lambda_1(B_r)$ decays faster than quadratically as $r \to +\infty$. More precisely, we have the following.

Proposition 1.4. *If* $|M| < \infty$ *, then*

$$\widetilde{\Lambda}_* := \liminf_{r \to +\infty} \frac{-\log \lambda_1(B_r)}{r} \ge \alpha_* := \liminf_{r \to +\infty} \frac{-\log |M \setminus B_r|}{r}.$$
 (1.7)

It follows from Proposition 1.4 that $\lambda_1(B_r)$ decays exponentially if $|M \setminus B_r|$ decays exponentially as $r \to +\infty$. On the other hand, the relationship of $\lambda_1(M \setminus B_r)$ and $|M \setminus B_r|$ is studied by Brooks [4], who proved that if $|M| < \infty$, then

$$\lambda_1(M \setminus B_r) \le \frac{{\alpha^*}^2}{4}$$
 for all $r > 0$,

where

$$\alpha^* := \limsup_{r \to +\infty} \frac{-\log |M \setminus B_r|}{r}.$$

A more precise version of Brooks' result is also proved by Li and Wang [20].

Motivated by a result of Dodziuk, Pignataro, Randol, and Sullivan [10], we present an example in Section 5 showing that the estimate in Proposition 1.4 is sharp. Some other examples such that $\lambda_1(B_r)$ have various decaying behaviours are also given in Section 5. In particular, Example 5.5 shows that $\tilde{\Lambda}_* > 0$ does not necessarily imply $|M| < \infty$, i.e., the assumption that M has finite volume in Proposition 1.4 cannot be removed.

We also show that (1.3) holds under suitable condition on ρ .

Proposition 1.5. Suppose that ρ is a nonnegative locally Lipschitz continuous exhaustion function on M such that $|\nabla \rho| \le 1$ a.e. and $\Delta \rho^2 \ge 2\mu$ in the sense of distributions. Then

$$\lambda_1(B_r) \ge \frac{\lambda_\mu}{r^2} \quad for \ all \ r > 0.$$

Proposition 1.5 and Theorem 1.1, immediately yield the following.

Corollary 1.6 (cf. [5]). If $\Delta \rho^2 \ge 2\mu > 4$, then *M* is non-parabolic and the sharp Hardy-type inequality (1.6) holds.

Proposition 1.5 implies several well-known results. First, if M is an n-dimensional Cartan–Hadamard manifold and ρ is the geodesic distance function, then Proposition 1.5, together with the Hessian comparison theorem, yields $\Lambda_* \geq \lambda_n$. In particular, it follows from Theorem 1.1 that M is non-parabolic when $n \geq 3$ (cf. Ichihara [15, 16], see also Grigor'yan [14, Theorem 15.3]). Next, if M is a complete n-dimensional minimal submanifold in \mathbb{R}^N and ρ is the restriction of Euclidean distance to a given point $x_0 \in \mathbb{R}^N$, then $\Delta \rho^2 \geq 2n$, so that

$$\lambda_1(B^N(x_0, r) \cap M) \ge \frac{\lambda_n}{r^2},\tag{1.8}$$

in view of Proposition 1.5. Here $B^N(x_0, r)$ is a Euclidean ball in \mathbb{R}^N . (1.8) was first proved by Cheng, Li, and Yau [8] by heat kernel method. In particular, M is non-parabolic for $n \ge 3$, which can also be proved by the isoperimetric inequality of Michael and Simon [22] and [14, Theorem 8.2].

Comments

In an early version of this paper, the last two authors obtained the conclusion of Corollary 1.2 under a worse condition $\Lambda_* > 18.624...$ Shortly afterwards, the first author suggested some ideas for improving certain results. We then decided to write a joint paper on the subject, and the improvements found in this paper are the result of this collaboration.

2. Proof of Theorem 1.1

2.1. Bessel's functions

Assume that $\nu > -1$ and $\mu > 0$. The Bessel function J_{ν} is given by

$$J_{\nu}(t) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \Gamma(m+\nu+1)} \left(\frac{t}{2}\right)^{2m+\nu},$$

which is a solution of the ODE

$$t^{2}J_{\nu}''(t) + tJ_{\nu}'(t) + (t^{2} - \nu^{2})J_{\nu}(t) = 0.$$

Thus, $\psi_{\mu}(s) = s^{1-\mu/2} J_{\mu/2-1}(\sqrt{\lambda_{\mu}}s)$ satisfies

$$\psi_{\mu}''(s) + \frac{\mu - 1}{s}\psi_{\mu}'(s) + \lambda_{\mu}\psi_{\mu}(s) = 0, \qquad (2.1)$$

where $\sqrt{\lambda_{\mu}} = j_{\mu/2-1}$ is the first positive zero of $J_{\mu/2-1}$. In particular, $\psi_{\mu}(1) = 0$. Moreover, we have

$$\psi_{\mu}(s) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \Gamma(m + \frac{\mu}{2})} \left(\frac{\sqrt{\lambda_{\mu}}s}{2}\right)^{2m},$$

so that $\psi'_{\mu}(0) = 0$.

Let us first verify the following.

Lemma 2.1. The following properties hold.

(1) For any $[a, b] \subset [0, 1]$, we have

$$\int_{a}^{b} (\lambda_{\mu}\psi_{\mu}(s)^{2} - \psi_{\mu}'(s)^{2})s^{\mu-1}ds = -\psi_{\mu}'(b)\psi_{\mu}(b)b^{\mu-1} + \psi_{\mu}'(a)\psi_{\mu}(a)a^{\mu-1}.$$
(2.2)

(2) $\psi'_{\mu}(s) < 0$ for all $s \in (0, 1]$. More precisely,

$$\psi'_{\mu}(s)s^{\mu-1} = -\lambda_{\mu} \int_{0}^{s} \psi_{\mu}(t)t^{\mu-1}dt.$$
(2.3)

Proof. By (2.1), we have

$$\begin{aligned} (\lambda_{\mu}\psi_{\mu}(s)^{2} - \psi_{\mu}'(s)^{2})s^{\mu-1} &= \left(-\psi_{\mu}''(s)\psi_{\mu}(s) - \frac{\mu-1}{s}\psi_{\mu}'(s)\psi_{\mu}(s) - \psi_{\mu}'(s)^{2}\right)s^{\mu-1} \\ &= -(\psi_{\mu}'(s)\psi_{\mu}(s))'s^{\mu-1} - (\mu-1)\psi_{\mu}'(s)\psi_{\mu}(s)s^{\mu-2} \\ &= -(\psi_{\mu}'(s)\psi_{\mu}(s)s^{\mu-1})' \end{aligned}$$

and

$$-\lambda_{\mu}\psi_{\mu}(s)s^{\mu-1} = \psi_{\mu}''(s)s^{\mu-1} + (\mu-1)\psi_{\mu}'(s)s^{\mu-2} = (\psi_{\mu}'(s)s^{\mu-1})',$$

from which (2.2) and (2.3) follow immediately.

2.2. The volume growth

Proof of Theorem 1.1 (1). We first assume that $\rho > 0$. Set $\phi = \psi_{\mu}(\rho/r)$, where ψ_{μ} is given as (1.2). Then the variational characterization of eigenvalue gives

$$\lambda_{\mu} \int_{B_r} \psi_{\mu} \left(\frac{\rho}{r}\right)^2 dV \le r^2 \lambda_1(B_r) \int_{B_r} \phi^2 dV \le r^2 \int_{B_r} |\nabla \phi|^2 dV \le \int_{B_r} \psi_{\mu}' \left(\frac{\rho}{r}\right)^2 dV.$$

By using the co-area formula, this can be rewritten as

$$\lambda_{\mu} \int_{0}^{r} \psi_{\mu} \left(\frac{t}{r}\right)^{2} d\sigma(t) \leq \int_{0}^{r} \psi_{\mu}' \left(\frac{t}{r}\right)^{2} d\sigma(t),$$

where $d\sigma(t) := (\rho)_{\#}(dV)$ is a Lebesgue–Stieltjes measure on $(0, +\infty)$. Divide this inequality by $r^{\mu+1}$ and integrate on $r \in [r_0, \bar{r}]$, we obtain

$$\lambda_{\mu} \int_{0}^{\bar{r}} \int_{\max\{r_{0},t\}}^{\bar{r}} \psi_{\mu} \left(\frac{t}{r}\right)^{2} \frac{dr}{r^{\mu+1}} d\sigma(t) \leq \int_{0}^{\bar{r}} \int_{\max\{r_{0},t\}}^{\bar{r}} \psi_{\mu}' \left(\frac{t}{r}\right)^{2} \frac{dr}{r^{\mu+1}} d\sigma(t),$$

in view of Fubini's theorem. By using the new variable s = t/r, we get

$$\lambda_{\mu} \int_{0}^{\bar{r}} \bigg(\int_{t/\bar{r}}^{\min\{1,t/r_{0}\}} \psi_{\mu}(s)^{2} s^{\mu-1} ds \bigg) \frac{d\sigma(t)}{t^{\mu}} \leq \int_{0}^{\bar{r}} \bigg(\int_{t/\bar{r}}^{\min\{1,t/r_{0}\}} \psi_{\mu}'(s)^{2} s^{\mu-1} ds \bigg) \frac{d\sigma(t)}{t^{\mu}}.$$
(2.4)

Take $a = t/\bar{r}$ and $b = \min\{1, t/r_0\}$ when $t \le r_0$ in (2.2); we infer from (2.4) and the facts $\psi_{\mu}(1) = 0$ and $\psi'_{\mu} \le 0$ that

$$\int_{0}^{\bar{r}} -\psi'_{\mu} \left(\frac{t}{\bar{r}}\right) \psi_{\mu} \left(\frac{t}{\bar{r}}\right) \left(\frac{t}{\bar{r}}\right)^{\mu-1} \frac{d\sigma(t)}{t^{\mu}}$$

$$\geq \int_{0}^{\bar{r}} -\psi'_{\mu} \left(\min\left\{1,\frac{t}{r_{0}}\right\}\right) \psi_{\mu} \left(\min\left\{1,\frac{t}{r_{0}}\right\}\right) \left(\min\left\{1,\frac{t}{r_{0}}\right\}\right)^{\mu-1} \frac{d\sigma(t)}{t^{\mu}}$$

$$\geq \int_{0}^{r_{0}} -\psi'_{\mu} \left(\frac{t}{r_{0}}\right) \psi_{\mu} \left(\frac{t}{r_{0}}\right) \left(\frac{t}{r_{0}}\right)^{\mu-1} \frac{d\sigma(t)}{t^{\mu}},$$

i.e.,

$$\frac{1}{\bar{r}^{\mu}} \int_{B_{\bar{r}}} -\frac{\psi_{\mu}'\left(\frac{\rho}{\bar{r}}\right)\psi_{\mu}\left(\frac{\rho}{\bar{r}}\right)}{\left(\frac{\rho}{\bar{r}}\right)} dV \ge \frac{1}{r_{0}^{\mu}} \int_{0}^{r_{0}} -\frac{\psi_{\mu}'\left(\frac{\rho}{r_{0}}\right)\psi_{\mu}\left(\frac{\rho}{r_{0}}\right)}{\left(\frac{\rho}{r_{0}}\right)} dV.$$
(2.5)

If we merely have $\rho \ge 0$, then we may also apply the above argument to

$$\rho_{\varepsilon} := \sqrt{\rho^2 + \varepsilon^2}.$$

Note that we still have

$$|\nabla \rho_{\varepsilon}| = \frac{\rho |\nabla \rho|}{(\rho^2 + \varepsilon^2)^{1/2}} \le 1.$$

Since

$$B_r^{\varepsilon} := \{ \rho_{\varepsilon} < r \} = B_{\sqrt{r^2 - \varepsilon^2}},$$

it follows that

$$\lambda_1(B_r^{\varepsilon}) = \lambda_1(B_{\sqrt{r^2 - \varepsilon^2}}) \ge \frac{\lambda_{\mu}}{r^2 - \varepsilon^2} \ge \frac{\lambda_{\mu}}{r^2} \quad \text{for all } r \ge r_{0,\varepsilon} := \sqrt{r_0^2 + \varepsilon^2}, \quad (2.6)$$

so that (2.5) still holds with ρ and r_0 replaced by ρ_{ε} and $r_{0,\varepsilon}$, respectively. Moreover, since ψ_{μ} is a C^2 function on [0, 1] with $\psi'_{\mu}(0) = 0$, there exists a constant A > 0 such that

$$-\psi'_{\mu}(s)\psi_{\mu}(s) \le As \quad \text{for all } s \in [0,1].$$

Letting $\varepsilon \to 0+$, we see that (2.5) remains valid for ρ and r_0 in view of the dominated convergence theorem, which yields

$$\frac{|B_{\bar{r}}|}{\bar{r}^{\mu}} \ge \frac{1}{Ar_0^{\mu}} \int_0^{r_0} -\frac{\psi_{\mu}'\left(\frac{t}{r_0}\right)\psi_{\mu}\left(\frac{t}{r_0}\right)}{\left(\frac{t}{r_0}\right)} d\sigma(t) =: c \quad \text{for all } \bar{r} \ge r_0.$$

Proof of Corollary 1.3. Suppose on the contrary that $\Lambda_* > \lambda_{\nu_*}$. Since the function $\mu \mapsto \lambda_{\mu}$ is continuous, we have $\Lambda_* > \lambda_{\nu_*+\varepsilon}$ for $\varepsilon \ll 1$, so that $\lambda_1(B_r) \ge \lambda_{\nu_*+\varepsilon}/r^2$ for $r \gg 1$. By Theorem 1.1 (1), we conclude that $|B_r| \gtrsim r^{\nu_*+\varepsilon}$. But this implies $\nu_* \ge \nu_* + \varepsilon$, which is impossible.

Since $j_{\nu} \sim 2\sqrt{\nu+1}$ as $\nu \to -1+$ (cf. Piessens [25]), we have

$$\lambda_{\nu_*} = j^2_{\nu_*/2-1} \sim 2\nu_*, \quad \nu_* \to 0+,$$

from which assertions (1) and (2) immediately follow. On the other hand, since $j_{\nu} \sim \nu$ as $\nu \to +\infty$ (cf. Watson [27, pp. 521], see also Elbert [11, Section 1.4]), we have

$$\lambda_{\nu_*} = j_{\nu_*/2-1}^2 \sim \nu_*^2/4, \quad \nu_* \to +\infty,$$

which implies (3).

2.3. The Hardy-type inequalities

Recall that the capacity cap(K) of a compact set $K \subset M$ is given by

$$\operatorname{cap}(K) := \inf \int_{M} |\nabla \psi|^2 dV,$$

where the infimum is taken over all $\psi \in \text{Lip}_0(M)$ with $0 \le \psi \le 1$ and $\psi|_K = 1$. The following criterion is of fundamental importance (cf. Grigor'yan [14, Theorem 5.1], and Ancona [2, pp. 46–47], see also Carron [6, Definition 2.13]).

Theorem 2.2. Let (M, g) be a complete Riemannian manifold. Then the following properties are equivalent:

- (1) M is non-parabolic;
- (2) $\operatorname{cap}(K) > 0$ for some/any compact set $K \subset M$ with non-empty interior;
- (3) given some/any pen subset $U \subset C M$, there exists a constant C = C(U) such that

$$\int_{U} u^2 dV \le C(U) \int_{M} |\nabla u|^2 dV$$

for any $u \in Lip(M)$ with a compact support.

By Theorem 2.2, Theorem 1.1(2) is a direct consequence of the Hardy-type inequality (1.5). We shall take a unified approach to proving the Hardy inequalities (1.5) and (1.6). To begin with, set

$$\Phi(s) = J_{\mu/2-1}(\sqrt{\lambda_{\mu}s}).$$

The function Φ satisfies $\Phi(0) = \Phi(1) = 0$ and

$$\Phi''(s) + \frac{1}{s}\Phi'(s) + \left(\lambda_{\mu} - \frac{\left(\frac{\mu}{2} - 1\right)^2}{s^2}\right)\Phi(s) = 0.$$
(2.7)

We shall make use the following property of Φ .

Lemma 2.3. For any $s \in [0, 1]$, we have

$$\int_{0}^{x} \Phi'(s)^{2} s ds = \lambda_{\mu} \int_{0}^{x} \Phi(s)^{2} s ds - \left(\frac{\mu - 2}{2}\right)^{2} \int_{0}^{x} \Phi(s)^{2} \frac{ds}{s} + \Phi'(x) \Phi(x) x. \quad (2.8)$$

In particular,

$$\int_{0}^{1} \Phi'(s)^{2} s ds = \lambda_{\mu} \int_{0}^{1} \Phi(s)^{2} s ds - \left(\frac{\mu - 2}{2}\right)^{2} \int_{0}^{1} \Phi(s)^{2} \frac{ds}{s}.$$
 (2.9)

Proof. By (2.7), we have

$$\lambda_{\mu}\Phi(s)^{2}s - \nu^{2}\Phi(s)^{2}\frac{1}{s} = \Phi''(s)\Phi(s)s + \Phi'(s)\Phi(s)$$
$$= (\Phi'(s)\Phi(s))' - \Phi'(s)^{2}s,$$

from which (2.8) and (2.9) follow immediately.

Proof of Theorem 1.1 (3). As in the proof of (1), we first consider the case $\rho > 0$. Given $u \in \text{Lip}_0(M)$, define

$$\phi(x) := u(x)\Phi\left(\frac{\rho(x)}{r}\right), \quad x \in M.$$

Since $|\nabla \rho| \leq 1$, we have

$$|\nabla \phi|^2 \leq \Phi \left(\frac{\rho}{r}\right)^2 |\nabla u|^2 + \frac{1}{r^2} u^2 \Phi' \left(\frac{\rho}{r}\right)^2 + 2\frac{u}{r} \langle \nabla u, \nabla \rho \rangle \Phi' \left(\frac{\rho}{r}\right) \Phi \left(\frac{\rho}{r}\right).$$

The variational characterization of eigenvalue gives

$$\frac{\lambda_{\mu}}{r^{2}} \int_{B_{r}} \phi^{2} dV \leq \lambda_{1}(B_{r}) \int_{B_{r}} \phi^{2} dV \leq \int_{B_{r}} |\nabla \phi|^{2} dV$$

$$\leq \int_{B_{r}} |\nabla u|^{2} \Phi\left(\frac{\rho}{r}\right)^{2} dV + \frac{1}{r^{2}} \int_{B_{r}} u^{2} \Phi'\left(\frac{\rho}{r}\right)^{2} dV$$

$$+ 2 \int_{B_{r}} \frac{u}{r} \langle \nabla u, \nabla \rho \rangle \Phi'\left(\frac{\rho}{r}\right) \Phi\left(\frac{\rho}{r}\right) dV \quad \text{for all } r > r_{0}. \quad (2.10)$$

We then divide (2.10) by *r* and integrate for $r \in (r_0, +\infty)$. (Under the condition of (3) we set $r_0 = \inf_M \rho > 0$.) First,

$$\int_{r_{0}}^{+\infty} \int_{B_{r}}^{+\infty} u(x)^{2} \Phi\left(\frac{\rho(x)}{r}\right)^{2} dV(x) \frac{dr}{r^{3}}$$

$$= \int_{M}^{+\infty} \left(\int_{\max\{r_{0},\rho(x)\}}^{+\infty} \Phi\left(\frac{\rho(x)}{r}\right)^{2} \frac{dr}{r^{3}}\right) u(x)^{2} dV(x)$$

$$= \int_{M}^{+\infty} \left(\int_{0}^{\min\{1,\rho(x)/r_{0}\}} \Phi(s)^{2} s ds\right) \frac{u(x)^{2}}{\rho(x)^{2}} dV(x) \ge \left(\int_{0}^{1} \Phi(s)^{2} s ds\right) \int_{M\setminus B_{r_{0}}}^{-\infty} \frac{u^{2}}{\rho^{2}} dV,$$

where we used the new variable $s = \rho(x)/r$ in the second step. Analogously, we have

$$\int_{r_0}^{+\infty} \int_{B_r} |\nabla u(x)|^2 \Phi\left(\frac{\rho(x)}{r}\right)^2 dV(x) \frac{dr}{r}$$

$$= \int_{M} \left(\int_{\max\{r_0,\rho(x)\}}^{+\infty} \Phi^2\left(\frac{\rho(x)}{r}\right) \frac{dr}{r}\right) |\nabla u(x)|^2 dV(x)$$

$$= \int_{M} \left(\int_{0}^{\min\{1,\rho(x)/r_0\}} \Phi^2(s) \frac{ds}{s}\right) |\nabla u(x)|^2 dV(x) \le \left(\int_{0}^{1} \Phi^2(s) \frac{ds}{s}\right) \int_{M} |\nabla u|^2 dV(x)$$

and

$$\begin{split} & \int_{r_0}^{+\infty} \int_{B_r} u(x)^2 \Phi'\Big(\frac{\rho(x)}{r}\Big)^2 dV(x) \frac{dr}{r^3} \\ &= \int_{M} \Big(\int_{\max\{r_0, \rho(x)\}}^{+\infty} \Phi'\Big(\frac{\rho(x)}{r}\Big)^2 \frac{dr}{r^3} \Big) u(x)^2 dV(x) \\ &= \int_{M} \Big(\int_{0}^{\min\{1, \rho(x)/r_0\}} \Phi'(s)^2 s ds \Big) \frac{u^2(x)}{\rho(x)^2} dV(x) \\ &\leq \Big(\int_{0}^{1} \Phi'(s)^2 s ds \Big) \int_{M \setminus B_{r_0}} \frac{u^2}{\rho^2} dV + \int_{B_{r_0}} \Big(\int_{0}^{\rho(x)/r_0} \Phi'(s)^2 s ds \Big) \frac{u^2}{\rho^2} dV \\ &=: \Big(\int_{0}^{1} \Phi'(s)^2 s ds \Big) \int_{M \setminus B_{r_0}} \frac{u^2}{\rho^2} dV + I_1(r_0), \end{split}$$

where

$$I_1(r_0) \le \frac{\|\Phi'\|_{L^{\infty}([0,1])}^2}{2r_0^2} \int_{B_{r_0}} u^2 dV \quad \text{for all } r_0 \ge \inf_M \rho,$$
(2.11)

so that $I_1(r_0) = 0$ if $r_0 = \inf_M \rho$. Eventually,

$$\int_{r_0}^{+\infty} \int_{B_r} \frac{u}{r} \langle \nabla u, \nabla \rho \rangle \Phi'\left(\frac{\rho}{r}\right) \Phi\left(\frac{\rho}{r}\right) dV \frac{dr}{r}$$

$$= \int_{M} \left(\int_{\max\{r_0, \rho(x)\}}^{+\infty} \Phi'\left(\frac{\rho(x)}{r}\right) \Phi\left(\frac{\rho(x)}{r}\right) \frac{dr}{r^2} \right) u(x) \langle \nabla u(x), \nabla \rho(x) \rangle dV(x)$$

$$= \int_{M} \left(\int_{0}^{\min\{1, \rho(x)/r_0\}} \Phi'(s) \Phi(s) ds \right) \frac{u(x)}{\rho(x)} \langle \nabla u(x), \nabla \rho(x) \rangle dV(x)$$

$$= \int_{B_{r_0}} \Phi\left(\frac{\rho}{r_0}\right)^2 \frac{u}{\rho} \langle \nabla u, \nabla \rho \rangle dV =: I_2(r_0),$$

where we have used the fact

$$2\int_{0}^{1} \Phi'(s)\Phi(s)ds = \Phi^{2}(1) - \Phi^{2}(0) = 0.$$

We also have $I_2(r_0) = 0$ if $r_0 = \inf_M \rho$. Moreover, since $\Phi(0) = 0$, we get

$$\Phi^2(s) \le \|\Phi'\|_{L^{\infty}([0,1])}^2 s^2$$

for all $s \ge 0$, so that,

$$I_2(r_0) \le \frac{\|\Phi'\|_{L^{\infty}([0,1])}^2}{r_0} \int_{B_{r_0}} |\nabla u| |u| dV \quad \text{for all } r_0 \ge \inf_M \rho$$
(2.12)

These together with (2.10) yield

$$\begin{aligned} \lambda_{\mu} \bigg(\int_{0}^{1} \Phi(s)^{2} s ds \bigg) &\int_{M \setminus B_{r_{0}}} \frac{u^{2}}{\rho^{2}} dV \\ &\leq \bigg(\int_{0}^{1} \Phi^{2}(s) \frac{ds}{s} \bigg) \int_{M} |\nabla u|^{2} dV + \bigg(\int_{0}^{1} \Phi'(s)^{2} s ds \bigg) \int_{M \setminus B_{r_{0}}} \frac{u^{2}}{\rho^{2}} dV \\ &+ I_{1}(r_{0}) + I_{2}(r_{0}). \end{aligned}$$

Thus,

$$\left(\frac{\mu-2}{2}\right)^2 \int_{M \setminus B_{r_0}} \frac{u^2}{\rho^2} dV \le \int_M |\nabla u|^2 dV + \frac{I_1(r_0) + I_2(r_0)}{A}$$
(2.13)

in view of (2.9), where $A = \int_0^1 \Phi^2(s) ds/s$. If (1.3) holds for all r > 0, we may take $r_0 = \inf_M \rho$, so that (1.6) follows immediately from (2.13).

Under the condition of (2), we infer from (2.11)–(2.13) that

$$\left(\frac{\mu-2}{2}\right)^{2} \int_{M} \frac{u^{2}}{1+\rho^{2}} dV \leq (1+\delta) \int_{M} |\nabla u|^{2} dV + C_{\delta} \int_{B_{r_{0}}} u^{2} dV$$
(2.14)

holds for any $u \in \text{Lip}_{\text{loc}}(M)$ with a compact support and $\delta > 0$, where

$$C_{\delta} = \left(\frac{\mu - 2}{2}\right)^2 + \frac{\|\Phi'\|_{L^{\infty}([0,1])}^2}{Ar_0^2} + \frac{\|\Phi'\|_{L^{\infty}([0,1])}^4}{A^2 r_0^2 \delta}.$$
 (2.15)

Note that C_{δ} only depends on μ and r_0 if δ is fixed.

The above proofs of inequalities (1.6) and (2.14) require an additional condition $\rho > 0$. In general, if $\inf_M \rho = 0$, we consider $\rho_{\varepsilon} := \sqrt{\rho^2 + \varepsilon^2}$. Analogously to the proof of Theorem 1.1 (1), we have (2.6), so that (2.14) becomes

$$\left(\frac{\mu-2}{2}\right)^2 \int\limits_{M} \frac{u^2}{1+\varepsilon^2+\rho^2} dV \le (1+\delta) \int\limits_{M} |\nabla u|^2 dV + C_{\delta,\varepsilon} \int\limits_{B_{r_0^\varepsilon}} u^2 dV,$$

where $C_{\delta,\varepsilon}$ is given by (2.15) with r_0^2 replaced by $r_0^2 + \varepsilon^2$. Thus, (2.14) follows by letting $\varepsilon \to 0$. Moreover, if (1.3) holds for all r > 0, then $\lambda_1(B_r^{\varepsilon}) \ge \lambda_{\mu}/r^2$ when $r > \varepsilon$. Take $r_0 = \varepsilon = \inf_M \rho_{\varepsilon}$ in (2.13) with ρ replaced by ρ_{ε} ; we have

$$\left(\frac{\mu-2}{2}\right)^2 \int_M \frac{u^2}{\rho_{\varepsilon}^2} dV \le \int_M |\nabla u|^2 dV.$$

We obtain (1.6) immediately by letting $\varepsilon \to 0$, which completes the proof of (3).

To prove (2), we shall first derive the non-parabolicity of M from (2.14) when $\mu > 2$. By Theorem 1.1 (1), there exist some constants c > 0 and $\mu > 2$ such that $|B_r| \ge cr^{\mu}$ for $r \gg 1$. Thus,

$$\int_{M} \frac{dV}{1+\rho^2} \ge \limsup_{r \to +\infty} \frac{|B_r|}{1+r^2} = +\infty.$$

Choose $\bar{r} \gg r_0$ so that

$$\left(\frac{\mu-2}{2}\right)^2 \int_{B_{\bar{r}}} \frac{dV}{1+\rho^2} \ge C_{\delta}|B_{r_0}|+1+\delta.$$

Then

$$\int_{M} |\nabla u|^2 dV \ge 1$$

whenever $u \in \text{Lip}_0(M)$ and u = 1 on $\overline{B}_{\overline{r}}$. Thus, $\operatorname{cap}(\overline{B}_{\overline{r}}) \ge 1$ and M is non-parabolic in view of Theorem 2.2 (2).

Finally, it follows from Theorem 2.2(3) that

$$\int\limits_{B_{r_0}} u^2 dV \le C(B_{r_0}) \int\limits_M |\nabla u|^2 dV$$

for any $u \in \text{Lip}_0(M)$. This, together with (2.14), gives (1.5) with

$$C = \left(\frac{\mu - 2}{2}\right)^2 \frac{1}{1 + \delta + C_{\delta}C(B_{r_0})}.$$

If we fix some $\delta > 0$, then *C* only depends on μ , r_0 and the geometry of *M*.

3. Proof of Proposition 1.4

By definition, there exists a sequence $\{r_k\}$ with $\lim_{k\to+\infty} r_k = +\infty$, such that

$$\lambda_1(B_{r_k}) > e^{-(\Lambda_* + \varepsilon)r_k}$$

for some $0 < \varepsilon \ll 1$. Again, for $k \ge 1$ and $0 < \delta < 1$, we take a cut-off function $\phi_k \colon M \to [0, 1]$ such that $\phi_k|_{B_{\delta r_k}} = 1$, $\phi_k|_{M \setminus B_{r_k}} = 0$ and $|\nabla \phi_k| \le (1 - \delta)^{-1} r_k^{-1}$. Then

$$e^{-(\tilde{\Lambda}_*+\varepsilon)r_k} |B_{\delta r_k}| \leq \lambda_1(B_{r_k}) \int_M \phi_k^2 dV \leq \int_M |\nabla \phi_k|^2 dV$$
$$\leq \frac{1}{(1-\delta)^2 r_k^2} |B_{r_k} \setminus B_{\delta r_k}|$$
$$\leq \frac{1}{(1-\delta)^2 r_k^2} |M \setminus B_{\delta r_k}|.$$

That is,

$$|M| \ge (1 + e^{-(\tilde{\Lambda}_* + \varepsilon)r_k} (1 - \delta)^2 r_k^2) |B_{\delta r_k}|,$$

which is equivalent to

$$|M \setminus B_{\delta r_k}| \geq \frac{e^{-(\tilde{\Lambda}_* + \varepsilon)r_k}(1 - \delta)^2 r_k^2}{1 + e^{-(\tilde{\Lambda}_* + \varepsilon)r_k}(1 - \delta)^2 r_k^2} |M|.$$

Thus,

$$\alpha_* \leq \lim_{k \to \infty} \frac{-\log |M \setminus B_{\delta r_k}|}{\delta r_k} \leq \frac{\widetilde{\Lambda}_* + \varepsilon}{\delta}.$$

Letting $\delta \to 1-$ and $\varepsilon \to 0+$, we conclude that $\tilde{\Lambda}_* \ge \alpha_*$.

4. Proof of Proposition 1.5

Let $w \in \operatorname{Lip}_{\operatorname{loc}}(M)$ and $v \in L^1_{\operatorname{loc}}(M)$; by $\Delta w \ge v$ in the sense of distributions (or weakly) for some locally integrable function v, we mean

$$\int_{M} \langle \nabla w, \nabla \varphi \rangle dV \le - \int_{M} v \varphi dV \tag{4.1}$$

for any nonnegative function $\varphi \in C_0^{\infty}(M)$. Since $C_0^{\infty}(M)$ is dense in $\operatorname{Lip}_0(M)$ with respect to the Sobolev norm $\|\cdot\|_{W^{1,2}}$, we see that $\Delta w \ge v$ weakly if and only if (4.1) holds for all nonnegative $\varphi \in \operatorname{Lip}_0(M)$. One can define $\Delta w \le v$ in a similar way.

We first prove the following technical lemma.

Lemma 4.1. Suppose that $\Delta w \ge v$ weakly and w > 0. Let $f: (0, +\infty) \to (0, +\infty)$ be a smooth function. Then the following properties hold:

- (1) if f is increasing, then $\Delta f(w) \ge f'(w)v + f''(w)|\nabla w|^2$ weakly;
- (2) if f is decreasing, then $\Delta f(w) \leq f'(w)v + f''(w)|\nabla w|^2$ weakly.

Proof. (1) Let $\varphi \in \text{Lip}_0(M)$ and $\varphi \ge 0$. If f is increasing, then we also have $f'(w)\varphi \in \text{Lip}_0(M)$ and $f'(w)\varphi \ge 0$. Thus,

$$\begin{split} \int_{M} \langle \nabla f(w), \nabla \varphi \rangle dV &= \int_{M} \langle f'(w) \nabla w, \nabla \varphi \rangle dV \\ &= \int_{M} \langle \nabla w, \nabla (f'(w)\varphi) \rangle dV - \int_{M} f''(w) |\nabla w|^2 \varphi dV \\ &\leq - \int_{M} (f'(w)v + f''(w) |\nabla w|^2) \varphi dV, \end{split}$$

which proves the first assertion.

(2) Analogously, we have

$$\begin{split} \int_{M} \langle \nabla f(w), \nabla \varphi \rangle dV &= \int_{M} \langle f'(w) \nabla w, \nabla \varphi \rangle dV \\ &= -\int_{M} \langle \nabla w, \nabla (-f'(w)\varphi) \rangle dV - \int_{M} f''(w) |\nabla w|^{2} \varphi dV \\ &\geq -\int_{M} (f'(w)v + f''(w) |\nabla w|^{2}) \varphi dV. \end{split}$$

Proof of Proposition 1.5. We follow the ideas in [5]. Assume for a moment that $\rho > 0$. Apply Lemma 4.1 (1) with $w = \rho^2$ and $f(t) = t^{1/2}$; we get

$$\Delta \rho \ge \frac{\mu - |\nabla \rho|^2}{\rho} \tag{4.2}$$

weakly.

Let ϕ be a Lipschitz continuous function which is positive on B_r and fix $u \in \text{Lip}_0(B_r)$. With $v := u/\phi$, we have

$$\int_{M} |\nabla u|^{2} dV = \int_{M} \phi^{2} |\nabla v|^{2} dV + \int_{M} v^{2} |\nabla \phi|^{2} dV + 2 \int_{M} \phi v \langle \nabla \phi, \nabla v \rangle dV$$
$$= \int_{M} \phi^{2} |\nabla v|^{2} dV + \int_{M} \langle \nabla (\phi v^{2}), \nabla \phi \rangle dV.$$
(4.3)

Let us choose $\phi = \psi_{\mu}(\rho/r)$, where

$$\psi_{\mu}(s) = s^{1-\mu/2} J_{\mu/2-1}(\sqrt{\lambda_{\mu}}s).$$

Recall that ψ_{μ} is a solution of the ODE (2.1) and $\psi'_{\mu} \leq 0$. Thus, (4.2) and (2.1) together with Lemma 4.1 (2) yield

$$\begin{split} \Delta \phi &\leq \psi_{\mu}' \left(\frac{\rho}{r}\right) \frac{\mu - |\nabla \rho|^2}{\rho r} + \psi_{\mu}'' \left(\frac{\rho}{r}\right) \frac{|\nabla \rho|^2}{r^2} \\ &= \psi_{\mu}' \left(\frac{\rho}{r}\right) \frac{\mu - 1}{\rho r} + \psi_{\mu}'' \left(\frac{\rho}{r}\right) \frac{1}{r^2} + \psi_{\mu}' \left(\frac{\rho}{r}\right) \frac{1 - |\nabla \rho|^2}{\rho r} - \psi_{\mu}'' \left(\frac{\rho}{r}\right) \frac{1 - |\nabla \rho|^2}{r^2} \\ &= -\frac{\lambda_{\mu}}{r^2} \phi + \frac{1 - |\nabla \rho|^2}{r^2} \left(\frac{\psi_{\mu}' \left(\frac{\rho}{r}\right)}{\rho / r} - \psi_{\mu}'' \left(\frac{\rho}{r}\right)\right). \end{split}$$
(4.4)

We have (cf. Lebedev [19, formula (5.3.5)])

$$\psi'_{\mu}(s) = -s\psi_{\mu+2}(s),$$

from which it follows that

$$\frac{\psi'_{\mu}(s)}{s} - \psi''_{\mu}(s) = -\psi_{\mu+2}(s) - (-s\psi_{\mu+2}(s))' = -s^2\psi_{\mu+4}(s) \le 0.$$

Then (4.4) implies

$$\Delta \phi \leq -\frac{\lambda_{\mu}}{r^2}\phi,$$

which gives

$$\int_{M} \langle \nabla(\phi v^2), \nabla \phi \rangle dV \ge -\int_{M} \phi v^2 \left(-\frac{\lambda_{\mu}}{r^2} \phi \right) dV = \frac{\lambda_{\mu}}{r^2} \int_{M} u^2 dV.$$

This, together with (4.3), yields

$$\frac{\lambda_{\mu}}{r^{2}} \int_{B_{r}} u^{2} dV \leq \int_{B_{r}} |\nabla u|^{2} dV \quad \text{for all } u \in \text{Lip}_{\text{loc}}(B_{r})$$
(4.5)

under the additional condition $\rho > 0$.

In general, we use $\rho_{\varepsilon} := (\rho^2 + \varepsilon^2)^{1/2}$ instead of ρ . Note that $|\nabla \rho_{\varepsilon}| \le 1$ and

$$\Delta \rho_{\varepsilon}^2 = \Delta \rho^2 \ge 2\mu.$$

Thus, (4.5) holds if B_r is replaced by B_r^{ε} in view of (2.6). The proposition follows by letting $\varepsilon \to 0$.

5. Examples

Let $M = \mathbb{R} \times \mathbb{S}^1$ be equipped with the following Riemannian metric:

$$g = dt^2 + \eta'(t)^2 d\theta^2, \quad t \in \mathbb{R}, \ e^{i\theta} \in \mathbb{S}^1,$$

where $\eta: \mathbb{R} \to \mathbb{R}$ is a smooth function such that $\eta'(t) > 0$ and $\lim_{t\to-\infty} \eta(t) = 0$. Dodziuk, Pigmataro, Randol, and Sullivan [10, Proposition 3.1] showed that if $\eta(t) = e^t$, then $\lambda_1(M) \ge 1/4$, so that (M, g) is non-parabolic.

In general, we consider

$$h(t) := \int_{0}^{t} \frac{ds}{\eta'(s)}, \quad t \in \mathbb{R},$$

which gives a function on M. A straightforward calculation shows

$$\Delta h = \frac{\partial^2 h}{\partial t^2} + \frac{\eta''(t)}{\eta'(t)} \frac{\partial h}{\partial t} + \frac{1}{\eta'(t)^2} \frac{\partial^2 h}{\partial \theta^2} = 0,$$

i.e., *h* is a harmonic function on *M*. Moreover, in the new coordinate system $(\tilde{t}, \theta) := (h(t), \theta)$, we may write

$$g = \eta'(t)^2 (h'(t)^2 dt^2 + d\theta^2) = \eta'(t)^2 (d\tilde{t}^2 + d\theta^2),$$

which indicates that (M, g) is conformally equivalent to the cylinder $(\inf h, \sup h) \times \mathbb{S}^1$ equipped with a flat metric. In conclusion, we have the following result.

Proposition 5.1. (M, g) is non-parabolic if and only if $\inf h > -\infty$ or $\sup h < +\infty$.

Let $\rho(t, \theta) = |t|$. Clearly, ρ is an exhaustion function which satisfies $|\nabla \rho|_g \le 1$. Indeed, ρ is the geodesic distance to the circle $\{0\} \times \mathbb{S}^1$. The goal of this section is to investigate the asymptotic behaviour of $\lambda_1(B_r)$ as $r \to +\infty$ for different choices of η . We start with the following elementary lower estimate.

Proposition 5.2. We have

$$\lambda_1(B_r) \geq \frac{1}{4} \inf_{|t| \leq r} \frac{\eta'(t)^2}{\eta(t)^2}.$$

Proof. The idea is essentially implicit in [10]. Since $dV = \eta'(t)dtd\theta$, we have

$$\int_{-r}^{r} \phi^2 \eta'(t) dt = -2 \int_{-r}^{r} \phi \frac{\partial \phi}{\partial t} \eta(t) dt, \quad \text{for all } \phi \in C_0^{\infty}(B_r),$$

so that

$$\int_{-r}^{r} \phi^2 \eta'(t) dt \le 4 \int_{-r}^{r} \left| \frac{\partial \phi}{\partial t} \right|^2 \frac{\eta(t)^2}{\eta'(t)} dt \le 4 \int_{-r}^{r} |\nabla \phi|^2 \frac{\eta(t)^2}{\eta'(t)} dt$$
$$\le 4 \sup_{|t| \le r} \frac{\eta(t)^2}{\eta'(t)^2} \int_{-r}^{r} |\nabla \phi|^2 \eta'(t) dt$$

in view of the Cauchy-Schwarz inequality. Thus,

$$\int\limits_{B_r} \phi^2 dV = \int\limits_0^{2\pi} \int\limits_{-r}^r \phi^2 \eta'(t) dt d\theta \le 4 \sup_{|t|\le r} \frac{\eta(t)^2}{\eta'(t)^2} \int\limits_{B_r} |\nabla \phi|^2 dV,$$

from which the assertion immediately follows.

We give the following test example for Proposition 5.1 and 5.2.

Example 5.3. Given $\alpha > 0$, take η such that

$$\eta(t) = \begin{cases} (-t)^{-\alpha}, & t < -1, \\ 2t^{\alpha}, & t > 1. \end{cases}$$

We claim that $\Lambda_* \sim \alpha^2/4$ as $\alpha \to +\infty$. To see this, first note that

$$\Lambda_* = \liminf_{r \to +\infty} \{r^2 \lambda_1(B_r)\} \ge \frac{\alpha^2}{4}.$$

in view of Proposition 5.2. Then, by using

$$|B_r| = 2\pi \int_{-r}^{r} \eta'(t) dt = 2\pi (\eta(r) - \eta(-r)) = 4\pi r^{\alpha} - 2\pi r^{-\alpha} \quad \text{for all } r \gg 1,$$

we see that

$$\nu_* = \liminf_{r \to +\infty} \frac{\log |B_r|}{\log r} = \alpha.$$

This, together with Corollary 1.3, gives

$$rac{lpha^2}{4} \leq \Lambda_* \leq \lambda_lpha = j^2_{lpha/2-1} \sim rac{lpha^2}{4},$$

which verifies the claim.

In particular, *M* is non-parabolic provided $\alpha \gg 1$, in view of Corollary 1.2. More precisely, Proposition 5.1 implies that *M* is non-parabolic if and only if $\alpha > 2$.

The next example shows that estimate (1.7) in Proposition 1.4 is sharp.

Example 5.4. Given $\alpha > 0$, take η such that

$$\eta'(t) = e^{-\alpha|t|}$$
 for all $|t| > 1$. (5.1)

Then, we have

$$\liminf_{r \to +\infty} \frac{-\log \lambda_1(B_r)}{r} = \alpha = \liminf_{r \to +\infty} \frac{-\log |M \setminus B_r|}{r}.$$
 (5.2)

Namely, (1.7) is sharp.

Indeed, since

$$|M \setminus B_r| = 4\pi \int_r^\infty e^{-\alpha t} dt \asymp e^{-\alpha r}, \quad r \gg 1,$$

we have

$$\liminf_{r \to +\infty} \frac{-\log|M \setminus B_r|}{r} = \alpha, \tag{5.3}$$

which implies

$$\liminf_{r \to +\infty} \frac{-\log \lambda_1(B_r)}{r} \ge \alpha, \tag{5.4}$$

in view of Proposition 1.4. On the other hand, we have the following Hardy-type inequality (cf. Opic and Kufner [24, pp. 100–103]):

$$\int_{-r}^{r} \phi(t)^2 \eta'(t) dt \lesssim e^{\alpha r} \int_{-r}^{r} \phi'(t)^2 \eta'(t) dt \quad \text{for all } \phi \in C_0^{\infty}((-r,r)), \tag{5.5}$$

where the implicit constant is independent of r. By (5.5), we immediately see that

$$\lambda_1(B_r)\gtrsim e^{-\alpha r}$$

which combined with (5.3) and (5.4) gives (5.2).

For reader's convenience, we include here a rather short proof. Since $\int_{-\infty}^{+\infty} \eta'(t) dt$ is finite in view of (5.1), it follows that

$$\int_{-r}^{r} \phi(t)^2 \eta'(t) dt \leq \sup_{-r < t < r} \phi(t)^2 \int_{-r}^{r} \eta'(t) dt \lesssim \sup_{-r < t < r} \phi(t)^2.$$

On the other hand, by setting $|\phi(t_0)| = \sup_{-r < t < r} |\phi(t)|$, we have

$$\int_{-r}^{r} |\phi'(t)| dt \ge \int_{-r}^{t_0} |\phi'(t)| dt \ge \left| \int_{-r}^{t_0} \phi'(t) dt \right| = |\phi(t_0)| = \sup_{-r < t < r} |\phi(t)|.$$

This, together with the Cauchy-Schwarz inequality, yields

$$\sup_{-r < t < r} \phi(t)^2 \le \left(\int_{-r}^r \phi'(t)^2 \eta'(t) dt\right) \left(\int_{-r}^r \frac{1}{\eta'(t)} dt\right) \lesssim e^{\alpha r} \int_{-r}^r \phi'(t)^2 \eta'(t) dt.$$

Remark. By Proposition 5.2, we only obtain a weaker conclusion

$$\lambda_1(B_r) \geq rac{1}{4} rac{\eta'(r)^2}{\eta(r)^2} \gtrsim e^{-2lpha r}.$$

The following example shows that the converse of Theorem 1.1 (2) (or Corollary 1.2) does not hold, i.e., M can be non-parabolic with $\lambda_1(B_r)$ decaying so quickly that $\Lambda_* = 0$.

Example 5.5. Take η such that

$$\eta'(t) = \begin{cases} n^2, & 2^n < t < 2^n + 1, \\ e^t, & 2^n + 2 < t < 2^{n+1} - 1, \end{cases}$$

and

$$\eta'(t) \ge n^2, \quad 2^n - 1 \le t \le 2^n + 2$$

for n = 2, 3, ... Then M is non-parabolic but $\lambda_1(B_r)$ shall decay exponentially, so that $\Lambda_* = 0$.

Actually, the non-parabolicity of M is a direct consequence of Proposition 5.1, for $\sup h = \int_0^{+\infty} \frac{dt}{\eta'(t)} < +\infty$. To study the behaviour of $\lambda_1(B_r)$, consider the test function,

$$\phi(t) := \begin{cases} t, & 0 \le t \le 1, \\ 1, & 1 \le t \le r - 1, \\ r - t, & r - 1 \le t \le r, \\ 0, & \text{otherwise.} \end{cases}$$

We obtain

$$\lambda_1(B_r) \le \frac{\int_{-r}^r \phi'(t)^2 \eta'(t) dt}{\int_{-r}^r \phi(t)^2 \eta'(t) dt} \le \frac{\eta(r) - \eta(r-1) + \eta(1) - \eta(0)}{\eta(r-1) - \eta(1)}.$$
 (5.6)

For $r = 2^n + 1$, where $n \in \mathbb{Z}^+$ and $n \ge 2$, we have $\eta(r) - \eta(r-1) = n^2$ and

$$\eta(r-1) = \eta(2^n) \ge \int_{2^{n-1}+2}^{2^n-1} e^t dt \asymp e^{2^n},$$

so that (5.6) gives

$$\lambda_1(B_{2^n+1}) \lesssim e^{-2^n} n^2.$$

In general, for $r \gg 1$, take $n \in \mathbb{Z}^+$ such that $2^n + 1 \le r < 2^{n+1} + 1$. Then

$$\lambda_1(B_r) \le \lambda_1(B_{2^n+1}) \lesssim e^{-2^n} n^2 \lesssim e^{-r/2} (\log r)^2$$

and hence $\Lambda_* = 0$.

Remark. We have

$$\Lambda^* := \limsup_{r \to +\infty} r^2 \lambda_1(B_r) = 0$$

and

$$\widetilde{\Lambda}_* = \liminf_{r \to +\infty} \frac{-\log \lambda_1(B_r)}{r} \ge \frac{1}{2} > 0.$$

On the other hand, M is non-parabolic with an infinite volume.

Our last example shows that $\lambda_1(B_r)$ can also decay to 0 very slowly.

Example 5.6. Let μ be a positive, smooth and decreasing function on $[1, +\infty)$ satisfying

- (1) $\lim_{t \to +\infty} \mu(t) = 0,$
- (2) $\int_{1}^{+\infty} \mu(s) ds = +\infty,$
- (3) $t\mu(t)$ is increasing on $[c, +\infty)$ for some $c \gg 1$.

Take η such that

$$\eta(t) = \begin{cases} e^{-\int_1^{-t} \mu(s)ds}, & t < -1, \\ 2e^{\int_1^t \mu(s)ds}, & t > 1. \end{cases}$$

We claim that

$$\lambda_1(B_r) \asymp \mu(r)^2. \tag{5.7}$$

To see this, first note that $\eta'(t)/\eta(t) = \mu(-t)$ for t < -1 and $\eta'(t)/\eta(t) = \mu(t)$ for t > 1, which implies

$$\lambda_1(B_r) \ge \frac{1}{4} \inf_{|t| \le r} \frac{\eta'(t)^2}{\eta(t)^2} = \frac{\mu(r)^2}{4}.$$
(5.8)

in view of Proposition 5.2. On the other hand, we have $r\mu(r) \ge c\mu(c) > 0$ for $r \ge c \gg 1$ in view of the condition (3). Thus, we may take $0 < \varepsilon \le c\mu(c)/2$ so that

$$r_{\varepsilon} := r - \varepsilon \mu(r)^{-1} = r(1 - \varepsilon r^{-1} \mu(r)^{-1}) \ge \frac{r}{2}$$
 for all $r \ge c$. (5.9)

Set $I_r := (-r, -r_{\varepsilon})$. Since $\eta''(t) = -\mu'(-t)\eta(t) + \mu(-t)\eta'(t) \ge 0$, i.e., $\eta'(t)$ is increasing on $(-\infty, -1]$, it follows that

$$\begin{split} \lambda_1(B_r) &\leq \lambda_1(\{(t,\theta) \in M : -r \leq t \leq -r_{\varepsilon}\}) \\ &\leq \inf_{\phi \in C_0^{\infty}(I_r)} \left\{ \frac{\int_{I_r} \phi'(t)^2 \eta'(t) dt}{\int_{I_r} \phi(t)^2 \eta'(t) dt} \right\} \\ &\leq \inf_{\phi \in C_0^{\infty}(I_r)} \left\{ \frac{\int_{I_r} \phi'(t)^2 dt}{\int_{I_r} \phi(t)^2 dt} \right\} \cdot \frac{\eta'(-r_{\varepsilon})}{\eta'(-r)} \\ &= \lambda_1(I_r) \cdot \frac{\eta'(-r_{\varepsilon})}{\eta'(-r)}. \end{split}$$

Since $\lambda_1(I_r) \lesssim |I_r|^{-2} \asymp \mu(r)^2$, we obtain

$$\lambda_1(B_r) \lesssim \mu(r)^2 \cdot \frac{\eta'(-r_{\varepsilon})}{\eta'(-r)}.$$
(5.10)

We have

$$\frac{\eta'(-r_{\varepsilon})}{\eta'(-r)} = \frac{\mu(r_{\varepsilon})}{\mu(r)} \exp\left(\int_{r_{\varepsilon}}^{r} \mu(s) ds\right) \le \frac{\mu(r_{\varepsilon})}{\mu(r)} \exp\left(\varepsilon \frac{\mu(r_{\varepsilon})}{\mu(r)}\right)$$

for μ is decreasing and $r - r_{\varepsilon} = \varepsilon \mu(r)^{-1}$. By condition (3) and (5.9), we have

$$\frac{\mu(r_{\varepsilon})}{\mu(r)} \leq \frac{r}{r_{\varepsilon}} \leq 2$$

Thus,

$$\frac{\eta'(-r_{\varepsilon})}{\eta'(-r)} = O(1) \quad \text{as } r \to +\infty.$$

This, together with (5.8) and (5.10), gives (5.7).

Particular choices of μ give the following:

- (1) for $\mu(t) = t^{-1} (\log t)^{\beta}$ with $\beta > 0$, $\lambda_1(B_r) \asymp r^{-2} (\log r)^{2\beta}$;
- (2) for $\mu(t) = t^{-\alpha}$ with $0 < \alpha < 1$, $\lambda_1(B_r) \asymp r^{-2\alpha}$;
- (3) for $\mu(t) = (\log(t+1))^{-\gamma}$ with $\gamma > 0$, $\lambda_1(B_r) \asymp (\log r)^{-2\gamma}$.

In all three cases, we have

$$\Lambda_* = \liminf_{r \to +\infty} \{r^2 \lambda_1(B_r)\} = +\infty.$$

Thus, these Riemannian manifolds (M, g) are non-parabolic in view of Corollary 1.2.

Acknowledgements. G. Carron thanks the Centre Henri Lebesgue ANR-11-LABX-0020-01 for creating an attractive mathematical environment.

Funding. B.-Y. Chen and Y. Xiong are supported by National Natural Science Foundation of China, No. 12271101.

References

 L. V. Ahlfors, Sur le type d'une surface de Riemann. C. R. Acad. Sci. Paris 201 (1935), 30–32 Zbl 0011.40701

- [2] A. Ancona, Théorie du potentiel sur les graphes et les variétés. In École d'été de Probabilités de Saint-Flour XVIII—1988, pp. 1–112, Lecture Notes in Math. 1427, Springer, Berlin, 1990 Zbl 1320.60134 MR 1100282
- [3] R. Brooks, A relation between growth and the spectrum of the Laplacian. *Math. Z.* 178 (1981), no. 4, 501–508 Zbl 0458.58024 MR 0638814
- [4] R. Brooks, On the spectrum of noncompact manifolds with finite volume. *Math. Z.* 187 (1984), no. 3, 425–432 Zbl 0537.58040 MR 0757481
- [5] G. Carron, Inégalités de Hardy sur les variétés riemanniennes non-compactes. J. Math. Pures Appl. (9) 76 (1997), no. 10, 883–891 MR 1489943
- [6] G. Carron, L^2 harmonics forms on non compact manifolds. 2007, arXiv:0704.3194v1
- [7] G. Carron, Geometric inequalities for manifolds with Ricci curvature in the Kato class. *Ann. Inst. Fourier (Grenoble)* 69 (2019), no. 7, 3095–3167 Zbl 1455.53065 MR 4286831
- [8] S. Y. Cheng, P. Li, and S.-T. Yau, Heat equations on minimal submanifolds and their applications. *Amer. J. Math.* 106 (1984), no. 5, 1033–1065 Zbl 0575.53038
 MR 0761578
- [9] S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications. *Comm. Pure Appl. Math.* 28 (1975), no. 3, 333–354 Zbl 0312.53031 MR 0385749
- [10] J. Dodziuk, T. Pignataro, B. Randol, and D. Sullivan, Estimating small eigenvalues of Riemann surfaces. In *The legacy of Sonya Kovalevskaya (Cambridge, Mass., and Amherst, Mass., 1985)*, pp. 93–121, Contemp. Math. 64, American Mathematical Society, Providence, RI, 1987 Zbl 0607.58044 MR 0881458
- [11] Á. Elbert, Some recent results on the zeros of Bessel functions and orthogonal polynomials. J. Comput. Appl. Math. 133 (2001), no. 1-2, 65–83 Zbl 0989.33004 MR 1858270
- [12] A. Grigor'yan, Existence of the Green function on a manifold (in Russian). Uspekhi Mat. Nauk 38 (1983), no. 1(229), 161–162. English translation: Russ. Math. Surv. 38 (1983), no. 1, 190–191 Zbl 0542.35025 MR 0693728
- [13] A. Grigor'yan, On the existence of positive fundamental solutions of the Laplace equation on Riemannian manifolds (in Russian). *Math. Sb. (N.S.)* 128(170) (1985), no. 3, 354–363. English translation: *Math. USSR-Sb.* 56 (1987), no. 2, 349–458 Zbl 0596.31004 MR 0815269 Zbl 0596.31004
- [14] A. Grigor'yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. *Bull. Amer. Math. Soc. (N.S.)* 36 (1999), no. 2, 135–249 Zbl 0927.58019 MR 1659871
- K. Ichihara, Curvature, geodesics and the Brownian motion on a Riemannian manifold. I. Recurrence properties. *Nagoya Math. J.* 87 (1982), 101–114 Zbl 0514.60077 MR 0676589
- K. Ichihara, Curvature, geodesics and the Brownian motion on a Riemannian manifold. II. Explosion properties. *Nagoya Math. J.* 87 (1982), 115–125 Zbl 0514.58039 MR 0676590

- [17] L. Karp, Subharmonic functions, harmonic mappings and isometric immersions. In Seminar on Differential Geometry, pp. 133–142, Ann. Math. Stud. 102, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982 Zbl 0487.53046
- [18] M. Lansade, Lower bound of Schrödinger operators on Riemannian manifolds. J. Spectr. Theory 13 (2023), no. 1, 153–199 Zbl 1526.58002 MR 4705674
- [19] N. N. Lebedev, Special functions and their applications. Dover Publications, New York, 1972 Zbl 0271.33001 MR 0350075
- [20] P. Li and J. Wang, Complete manifolds with positive spectrum. J. Differential Geom. 58 (2001), no. 3, 501–534 Zbl 1032.58016 MR 1906784
- [21] T. Lyons and D. Sullivan, Function theory, random paths and covering spaces. J. Differential Geom. 19 (1984), no. 2, 299–323 Zbl 0554.58022 MR 0755228
- [22] J. H. Michael and L. M. Simon, Sobolev and mean-value inequalities on generalized submanifolds of Rⁿ. Comm. Pure Appl. Math. 26 (1973), 361–379 Zbl 0252.53006 MR 0344978
- [23] R. Nevanlinna, Ein Satz über offene Riemannsche Flächen. Ann. Acad. Sci. Fennicae (A) 54 (1940), no. 3, 1–18 Zbl 0024.22104 MR 0003813
- [24] B. Opic and A. Kufner, *Hardy-type inequalities*. Pitman Res. Notes Math. Ser. 219, Longman Scientific & Technical, Harlow, 1990 Zbl 0698.26007 MR 1069756
- [25] R. Piessens, A series expansion for the first positive zero of the Bessel functions. *Math. Comp.* 42 (1984), no. 165, 195–197 Zbl 0536.33005 MR 0725995
- [26] N. T. Varopoulos, Potential theory and diffusion on Riemannian manifolds. In *Conference on harmonic analysis in honor of Antoni Zygmund, (Chicago, IL, 1981)*, Vol. II, pp. 821–837, Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983 Zbl 0558.31009 MR 0730112
- [27] G. N. Watson, A treatise on the theory of Bessel functions. Cambridge University Press, Cambridge; The Macmillan Company, New York, 1944 Zbl 0063.08184 MR 0010746

Received 11 July 2024; revised 5 December 2024.

Gilles Carron

CNRS, Laboratoire de Mathématiques Jean Leray, LMJL, Nantes Université, UMR 6629, 44000 Nantes, France; gilles.carron@univ-nantes.fr

Bo-Yong Chen

School of Mathematical Sciences, Fudan University, Handan Road 220, 200433 Shanghai, P. R. China; boychen@fudan.edu.cn

Yuanpu Xiong

School of Mathematical Sciences, Fudan University, Handan Road 220, 200433 Shanghai, P. R. China; ypxiong@fudan.edu.cn