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The variable exponent compound boundary value
problem for Liapunov open curve

Fuli He and Shuai Wang

Abstract. In this paper, we study the compound boundary value problem for a class of Cauchy-
type integrals with density in variable exponent space. Based on the Smirnov theorem for multi-
connected domains and the elimination method, we transform the compound boundary value prob-
lem of open curve into that of closed curve. The solvable condition and the explicit solution are
obtained by the elimination method.

1. Introduction

The Riemann–Hilbert boundary value problem (BVP), abbreviated as the Riemann–
Hilbert problem, is a problem that seeks an analytical function within a region to satisfy
certain boundary conditions at the boundary of the region [10, 32]. Actually, this theory
was researched intensively by many mathematicians, including N. I. Muskhelishvili, F. D.
Gakhov, I. I. Privalov, I. N. Vekua, and L. Bers; these boundary value problems also have
been systematically investigated by many authors; see, e.g., [22, 23, 25, 26, 33]. Recently,
the Riemann–Hilbert problem received a renewed research interest within the function
spaces theory, and with respect to applications in different kinds of partial differential
equations, see, e.g., [1, 4, 21, 28]. In the meanwhile, Riemann–Hilbert problem in high-
dimensional Euclidean space has been widely studied by Clifford analysis [7, 8, 19, 20].

The variable exponent function spaces were proposed in the study of elasticity and
fluid mechanics problems with non-standard local growth conditions; due to their impor-
tance in the mechanical background and their essential extension as classical function
spaces, the research on variable exponent Lebesgue space and Sobolev space has achieved
fruitful results. In recent years, due to the rapid development of variable exponent theory
and its widespread application in harmonic analysis and partial differential equations, the
study of variable exponent function spaces has received more attention.

The origin of variable metric spaces can be traced back to the idea of Orlicz [29] in
1931; However, its modern development was achieved by the work of O. Kováčik and
J. Ráksoník in 1991 and X. Fan and D. Zhao in 2001 using the method of Musielak–
Orlicz spaces [6, 18], and the variable exponent Hardy space was considered by E. Nakai
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and Y. Sawano [27]. The further development of variable exponent space theory is more
favorable for us to describe the relationship between boundary curves and solvable condi-
tions of boundary value problems of analytic functions; for example, the literature [14] in
the class of functions represented by the Cauchy-type integral of the kernel density func-
tion f .t/ 2 Lp.�/.
/ for the boundary 
 is a piecewise Liapunov curve, and the solvability
of the Dirichlet problem depends largely on the value at the corner of 
 .

For monographs on variable exponent Lebesgue space and variable exponent Sobolev
space, you can refer to [3, 5]. With the development of variable exponent spaces, many
researchers such as [9, 13, 16, 17, 24, 31], studied Riemann and Hilbert BVP for non-
standard Banach function spaces, such as variable exponent Lebesgue and Smirnov space.
In 2021, the authors of [35] investigated the compound Riemann–Hilbert BVP in the class
of Cauchy-type integrals with density in variable exponent Lebesgue spaces and obtained
the solvable conditions and explicit solutions of the compound Riemann–Hilbert BVP in
variable exponent space [34].

Many scholars, such as Kokilashvili, Paatashvili, and so on, discussed Dirichlet BVP,
Riemann BVP, and Hilbert BVP of analytic function by introducing variable exponent
space [14, 16, 17]. Kokilashvili and other scholars mainly discussed two kinds of bound-
ary value problems in variable exponent spaces, one is the space which is composed of
Cauchy-type integrals of kernel density function f .t/2Lp.�/.�/ and denoted by Kp.�/.�/.
The other is f .t/ 2 Ep.�/.D˙/, where Ep.�/.D˙/ is a variable exponent Smirnov space
[12]. By means of the Tumarkin theorem, we obtain the properties of the variable exponent
function p.�/ defined on the boundary of the piecewise smooth curve � , the equivalent
relation, and equivalent condition between Lp.�/.�/ space and Smirnov space Ep.�/.D˙/
are established, whereD˙ is a simply connected region surrounded by � , and the relation
between Lp.�/.�/ space and Smirnov space Ep.�/.D˙/ is obtained; then, the Riemann
boundary value problem on the variable exponent space can be transformed into the con-
stant exponent space to be discussed, and the solvable conditions and general solutions of
the problem are obtained.

In this paper, we consider compound Riemann–Hilbert BVP for Liapunov open curve
in the variable exponent space; the idea is transforming the compound Riemann–Hilbert
BVP into the Hilbert BVP. We will discuss the equivalence of the transformation. As
the curve is open curve, we also carefully discuss the singularities of the ends for the
open curve; we try to get the solvable conditions and explicit solutions of the com-
pound BVP [34]. These results are an extension of the classical theory of boundary value
problems in complex analysis and have profound implications in solving the various math-
ematical models of fluid mechanics, nonlinear elasticity theory, variational problems in
mathematical physics, differential equation with non-standard growth conditions, nonlin-
ear partial differential equation, etc.

The paper is arranged as follows. In Section 2, some basic definitions of curves and
variable exponent spaces are introduced; we will explain the meaning of the defined curve
in the variable exponent space. In Section 3, we will briefly describe the compound bound-
ary value problem in the variable exponent space for Liapunov open curve; we will give
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the solvable conditions and explicit solutions to the compound boundary value problem
for Liapunov open curve in the variable exponent space.

2. Preliminaries

Firstly, we introduce some basic definitions of curve and variable exponent spaces.

Definition 2.1 (Hölder condition [11, 22, 34, 35]). Let f .t/ be a function defined on a
given curve �; if for all t1; t2 2 � ,

jf .t1/ � f .t2/j � C jt1 � t2j
˛; 0 < ˛ � 1;

where C is definite constant, then f .t/ is said to satisfy Hölder condition of ˛ order on
� , denoted as f .t/ 2 H˛.�/. We define

H.�/ D
[

0<˛�1

H˛.�/:

Definition 2.2 ([30, 34, 35]). Let p.�/ be a Lebesgue measurable function, mapping the
curve � to the interval Œ1;C1�. If p.�/ satisfies the following two conditions:

(i) p D ess inft2� p.t/ > 1, Np D ess supt2� p.t/ <1;

(ii) There is a constant C so that for any t1; t2 2 � and jt1 � t2j < 1
2

satisfy

jp.t1/ � p.t2/j �
C

j ln jt1 � t2jj
;

then the two conditions are called log-Hölder condition and we claim that p.�/
belongs to P .�/ on � .

Definition 2.3 ([13, 34, 35]). Let � be a curve and p.�/ 2 P .�/. If f .t/ is an almost
everywhere measurable function on � satisfying the condition

kf kLp.�/.�/ D inf
²
� > 0 W

Z
�

ˇ̌̌̌
f .t/

�

ˇ̌̌̌p.�/
jdt j � 1

³
;

then the space composed of function f .z/ is called the variable exponent Lebesgue space,
denoted as

Lp.�/.�/ D ¹f .t/ W kf .t/kLp.�/.�/ <1º;

and Lp.�/.�/ becomes a Banach space.

Definition 2.4 ([13, 34, 35]). Let DC be a simply connected domain. If analytic function
f .z/ in DC satisfies

sup
0<r<1

Z 2�

0

jf .z.rei� //jp.z.e
i� //
jz0.rei� /jjdt j <1;
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where z D z.w/ is a conformal mapping that maps the unit disk SC to a simply connected
region DC, then f .z/ 2 Ep.�/.DC/. It is easy to obtain that Ep.DC/ � Eq.DC/ when
p � q.

Definition 2.5 ([16, 30, 34, 35]). Let � be a curve; f .t/ is the complex function defined
on � .

(i) By S� we denote the Cauchy singular operator

.S�f /.t/ D
1

�i

Z
�

f .�/

� � t
d�; t 2 �:

(ii) By K� we denote the Cauchy-type integral

.K�f /.z/ D
1

2�i

Z
�

f .t/

t � z
dt; z … �:

(iii) By Kp.�/.�/ we denote the Cauchy-type integral with density in Lp.�/.�/

Kp.�/.�/ D ¹ˆ.z/ W ˆ.z/ D .K�f /.z/ with f .t/ 2 Lp.�/.�/º;

where p.�/ 2 P .�/.

(iv) By W p.�/.�/ we denote the class of weight functions

W p.�/.�/ D ¹�.t/ W S� is a continuous linear operator on Lp.�/.�; �/º;

where
Lp.�/.�; �/ D ¹f .z/ W f .z/�.t/ 2 Lp.�/.�/º;

and �.t/ is the measurable function on � .

Definition 2.6 ([22,34,35]). Let t D t .s/, 0 � s � l , be the equation for a curve � of arc
length l on the complex plane C

(i) If t D t 0.s/ with 0 � s � l is a function of the Hölder class, then � is called a
Liapunov curve.

(ii) If t D t 0.s/ is a piecewise Hölder class function, the discontinuity points of the
first type are A1; A2; : : : ; An, and the angle between two one-sided tangents of � at point
Ai about bounded inner domain is �vk .i D 1; : : : ; n/ with 0 < vk � 2, then � is called
piecewise Liapunov curve, denoted as

� 2 C �.A1; : : : ; AnI v1; : : : ; vn/:

(iii) If a closed rectifiable curve � satisfies the condition

sup
t2�;r>0

j� \ B.t; r/j

r
<1;

where B.t; r/ D ¹� 2 C W jz � t j 6 rº, then the curve � is called a Carleson curve.
(iv) If � is a closed curve and the Cauchy singular integral S� is bound in Lp.�/.�/,

then � 2 Rp.�/.
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According to the definition of the above curve, we get the following conclusion.

(a) Liapunov curve and piecewise Liapunov closed curve are Carleson curve [15].

(b) If p.�/ 2 P .�/ with � 2 Rp.�/ if and only if � is Carleson curve and

Rp0 D
\
p>1

Rp; 8p0 > 1;

and if f .t/ 2 Lp.�/.�/, then S�f .t/ exist (see, e.g., [11, 13]).

(c) If f .t/ 2Lp.�/.�/with p.�/ 2P .�/ and � 2Rp.�/, then the Cauchy-type integral
K�f .t/2L

p.�/.�/ has angular boundary values that are almost everywhere finite
and the Plemelj formula holds (see, e.g., [30]).

3. The compound problem boundary value for Liapunov open curve
in the variable exponent space

In this section, we will introduce the compound boundary value problem and use the
elimination method [2, 35] to transform the compound boundary value problem into a
Hilbert boundary value problem to deal with.

3.1. Introducing the compound boundary value problem for Liapunov open curve
in the variable exponent space

Let � D �1 C �2 C � � � C �n be composed of n non-intersecting Liapunov open curves

where �i D
_

aibi cut the whole complex plane with endpoints ai and bi and it is a positive
direction from the end point bi to the starting point ai , where i D 1; 2; : : : ; n. Assume
that L 2 CL.A0; : : : ; AmI v0; : : : ; vm/ is a closed curve and it is positive in the counter-
clockwise direction, the internally bounded region by this curve is denoted as DC and
the outer region containing z D 1 point is denoted as D�. � D �1 C �2 C � � � C �n is
contained in the bounded region DC, we find a function ˆ.z/ 2 Kp.�/.� [ L/, where
p.�/ 2 P .� [ L/, the angular boundary value exists and satisfies the following relation-
ship:

ˆC.t/ D G.t/ˆ�.t/C g.t/; t 2 �; (3.1)

where G.t/ belongs to the piecewise Hölder continuous class on � , g.t/ 2 Lp.�/.�/, and
satisfies the following relationship:

ReŒa.t/C ib.t/�ˆC.t/ D c.t/; t 2 L; (3.2)

where a.t/, b.t/ are real functions belong to the piecewise Hölder continuous class on
L, a2.t/ C b2.t/ ¤ 0. c.t/ 2 Lp.�/.L/ is the real function on L and bounded near the
discontinuous points ¹tk 2 � W k D 0; 1; : : : ; m1º.
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Note, we generally required that ˆ˙.t/ are permitted to have integrable singularities,
i.e.,

jˆ˙.t/j �
K

jz � cj˛
; 0 � ˛ < 1; (3.3)

where c D a; b. So, we can classify ˆ.z/ as follows.

(i) If ˆ.z/ is bounded near z D a; b, then it is defined by h2 D h.a; b/.

(ii) If ˆ.z/ has integrable singularities near z D a; b, then it is defined by h0.

(iii) If ˆ.z/ is bounded near z D a or z D b, then it is defined by h.a/ or h.b/.

According to [11], this Liapunov open curve �k can be completed as a closed curve
through the smooth curve � 0

k
D �k [ ‡k 2 Rp.�/; the simply connected and bounded

region enclosed by � 0
k

is D�
k

. We assume G.t/ D 1 and g.t/ D 0 on ‡k with k D
1; 2; : : : ; n, then the boundary value problem for Liapunov open curve is transformed
into the closed curve boundary value problem.

We first consider the boundary value problem (3.1) and temporarily ignore the bound-
ary value condition (3.2). Notice that ck D ak or bk are discontinuity points of the first
kind; thus, G.c˙/ exists. Assume that

G.c�
k
/

G.cC
k
/
D e2�i�ck ; with ck D ak ; bk ; (3.4)

where �ck D ˛ck C iˇck and ˛ck , ˇck 2 R. Now, we demand

˛ck ¤
1

q.ck/
mod .1/; k D 1; : : : ; n; (3.5)

where ck D ak ; bk and 1=p.ck/C 1=q.ck/ D 1. Writing

Gk.t/ D .t � zk/
�ak .t � zk/

�bkG.t/; (3.6)

where zk belongs to the bounded region D�
k

bounded by the smooth curve � 0
k

, where
DC
k
D C=D�

k
, we write DC0 D D

C �
Pn
kD1D

�
k

.
Considering to the function

�.z/ D

nY
kD1

�ak .z/�bk .z/; (3.7)

where

�ck .z/ D

´
.
z�ck
z�zk

/�ck ; z 2 DC
k
;

.z � ck/
�ck ; z 2 D�

k
;

ck D ak ; bk ;

when z ! 1, Œ.z � ck/=.z � zk/��ck ! 1 with zk 2 D�k , so �.z/ is analytic in DC,
according to Definition 2.4, there exists " > 0 such that

�.z/˙ 2 E1C".D˙/;
1

�˙.z/
� 1 2 E1C".D˙/: (3.8)
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Let

ˆ1.z/ D
ˆ.z/

�.z/
I (3.9)

then, the boundary value condition (3.1) is converted to

ˆC1 .t/ D G
�.t/ˆ�1 .t/C g1.t/; t 2 �; (3.10)

where g1.t/ D g.t/=�C.t/, according to [13, 17],

G�.t/ D

"
nY
kD1

.t � zk/
�ak .t � zk/

�bk

#
G.t/ 2 H

 
n[
kD1

� 0k

!
:

Now, we consider

 .t/ D
1

2�i

Z
�

logG�.t/
� � t

d� I (3.11)

according to [22], we obtain that near z D ak

 .t/ D 
ak log.ak � z/Cˆak .z/; with 
ak D ˛
0
ak
C iˇ0ak D �

logG�.ak/
2�i

; (3.12)

where ˆak .z/ is holomorphic near z D ak . Similarly, near z D bk

 .t/ D 
bk log.z � bk/Cˆbk .z/; with 
bk D ˛
0
bk
C iˇ0bk D

logG�.bk/
2�i

; (3.13)

where ˆbk .z/ is holomorphic near z D bk . So, we define an integer wak [22]:

(a) Case ˆ.z/ 2 h2: (i) If ˛ak C ˛
0
ak

is an integer, then wak D �˛ak C ˛
0
ak

.
(ii) If ˛ak C ˛

0
ak

is not integer, then 0 < wak C ˛ak C ˛
0
ak
< 1.

(b) Case ˆ.z/ 2 h0: (i) If ˛ak C ˛
0
ak

is an integer, then wak D �˛ak C ˛
0
ak

.
(ii) If ˛ak C ˛

0
ak

is not integer, then �1 < wak C ˛ak C ˛
0
ak
< 0.

As for wbk , it is similarly defined by ˛bk C ˛
0
bk

.
If

Ind� 0
k
Gk.t/ D

1

2�
ŒargGk.t/��k D �k : (3.14)

According to [22, 35], we get its canonical function

X.z/ D

"
nY
kD1

.z � ak/
!ak .z � bk/

!bk

#
X�.z/; (3.15)

where

X�.z/ D

8<:
Q�1

e�1.z/; z 2 DC0 ;

e�1.z/; z 2
Pn
kD1D

�
k
;

(3.16)
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where

�1.z/ D exp
²
1

2�i

Z
�

log.
Q
G�/.t/

t � zk
dt
³
;

Y
.z/ D

nY
kD1

.z � zk/
�k :

We define the index of boundary value problem (3.1)

� D

nX
kD1

�k �

nX
kD1

.wak C wbk /; (3.17)

for X.z/ can be called the canonical function of problem (3.1) and has the following
properties (see, e.g., [22]):

• X.z/ ¤ 0 on the whole complex plane;

• X.1/ has finite order;

• XC.t/ D G.t/X�.t/;

• XC.t/ is bounded in D˙;

• XC.t/ has singularity at the ends z D ak , bk of order less than 1, k D 1; : : : ; n.

According to Smirnov theorem for multi-connected domain [35], assume condition
(3.5) is satisfied; we obtain all solutions satisfying the boundary condition (3.1).

Theorem 3.1 ([13, 15, 22]). If (3.5) holds and � is defined by (3.17), the solution to the
boundary value problem (3.1) can be obtained:

(i) If � � 0, all solutions to problem (3.1) can be derived:

ˆ1.z/ D
�.z/X.z/

2�i

Z
�

g.t/

�C.t/XC.t/.t � z/
dt C F.z/�.z/X.z/; (3.18)

where ˆ1.z/ 2 Kp.�/.�/, whereas F.z/ is holomorphic on DC and continuous as an
arbitrary function on DC. ˆ1.z/ has less than first-order singularity at ak , bk , with k D
1; : : : ; n.

(ii) If � < 0, problem (3.1) is solvable if and only if the condition is satisfied:Z
�

tjg.t/

�C.t/XC.t/
dt D 0; j D 0; : : : ;�� � 1; (3.19)

and problem (3.1) has a unique solution:

ˆ1.z/ D �.z/X.z/
1

2�i

Z
L

g.t/

�C.t/XC.t/.t � z/
dt: (3.20)

After we get ˆ1.z/, we transform the unknown function ˆ.z/ into a new function
ˆ0.z/ by

ˆ.z/ D X.z/ˆ0.z/Cˆ1.z/; (3.21)
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which is sectionally holomorphic in DC and continuous to L. Since ˆ1.z/ fulfills (3.1)
and X.z/ is the canonical function of problem (3.1), when t 2 � ,

ˆC.t/ D ˆC1 .t/CX
C.t/ˆC0 .t/

D G.t/ˆ�1 .t/C g.t/CG.t/X
�.t/ˆC0 .t/

D G.t/Œˆ�1 .t/CX
�.t/ˆC0 .t/�C g.t/:

By (3.1) again,
ˆC.t/ D G.t/Œˆ�1 .t/CX

�.t/ˆ�0 .t/�C g.t/: (3.22)

Comparing these two equations (note X�.t/ ¤ 0), we have

ˆC0 .t/ D ˆ
�
0 .t/; t 2 �: (3.23)

Hence, ˆ0.z/ is in fact a function holomorphic in DC and continuous on DC.
Conversely, if ˆ0.z/ is such a function, then it is easy to verify that the sectionally

holomorphic function ˆ.z/ determined by (3.21) ought to be continuous on L and ful-
fills (3.1). This method is called the elimination method [22].

According to [35], if ˆ.t/ 2 Kp.�/.� C L/ is the solution to boundary value prob-
lem (3.1), then ˆ0.z/ defined by (3.21) belongs to Kp.�/.L/. On the contrary, if ˆ0.z/
belongs to Kp.�/.L/, then ˆ.z/ defined by (3.21) belongs to Kp.�/.� C L/ and satisfies
condition (3.1).

Thus, the compound boundary value problem on the Liapunov open curve can be
transformed into a function ˆ0.z/ which finds holomorphic function in DC and contin-
ues to DC so that it satisfies the corresponding condition transformed from (3.2). Now,
substitute (3.21) into (3.2) to obtain the following condition:

ReŒa.t/C ib.t/�X.t/ˆC0 .t/ D c
�.t/; t 2 L; (3.24)

where
c�.t/ D c.t/ � ReŒa.t/C ib.t/�ˆC1 .t/; (3.25)

because X.t/, ˆC1 .t/ belongs to the piecewise Hölder continuous class on L, so c�.t/ 2
Lp.�/.L/, Œa.t/C ib.t/�X.t/ belongs to the piecewise Hölder continuous class on L, then
condition (3.1) and the closed curve � 0

k
are eliminated, where � 0

k
D�k [‡k , kD 1; : : : ;n.

Thus, the compound boundary value problem is transformed into the following bound-
ary value problem in DC; i.e., we find a function ˆ.z/ 2 Kp.�/.L/ such that the angular
boundary value of ˆ.z/ satisfies

ReŒa.t/C ib.t/�X.t/ˆC0 .t/ D c
�.t/; t 2 L; (3.26)

where L 2 CL¹A0; : : : ; AmI �0; : : : ; �mº and

c�.t/ D c.t/ � ReŒa.t/C ib.t/�ˆC1 .t/: (3.27)
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3.2. The solution to the compound boundary value problem

In the previous section, we have transformed the compound boundary value problem into
finding ˆ0.z/ 2Kp.�/.L/, whose boundary value condition satisfies

ReŒA.t/C iB.t/�ˆC0 .t/ D c
�.t/; t 2 L; (3.28)

where

A.t/C iB.t/ D Œa.t/C ib.t/�X.t/; c�.t/ D c.t/ � ReŒa.t/C ib.t/�ˆC1 .t/;

where c�.t/ 2 Lp.�/.L/, ŒA.t/C iB.t/� belongs to the piecewise Hölder continuous class
on L and A2.t/C B2.t/ ¤ 0.

Suppose l D ¹� W j� j D 1º, z D z.w/ is a conformal mapping from the unit disk UC

to the bounded region DC, and its inverse mapping is

w D w.z/:

Assume A�.�/ D A.z.�//, B�.�/ D B.z.�//, C �.�/ D c�.z.�//. By [22],

A�.�/ D A.z.�//; B�.�/ D B.z.�//

belong to the piecewise Hölder continuous class on l , whose the discontinuous points are
¹�k D z.tk/ 2 � W k D 0; 1; : : : ;m1º. A�2.t/C B�2.t/ ¤ 0, C �.�/ 2 L`.�/.l/ is function
which is bounded near ¹�k D z.tk/I k D 0; 1; : : : ; m1º.

The ˆ0.z/ function is symmetrically extended to partition holomorphic functions on
the complex plane

�.w/ D

8<:ˆ0.w/; jwj < 1;ˆ0.
1
Nw
/; jwj > 1:

(3.29)

Since ��.�/ D ˆC0 .�/, then the boundary value problem (3.28) can be converted to seek
the function �.w/ 2Kp.�/.l/ such that the angular boundary value of �.w/ satisfies

�C.�/ D G�.�/�
�.�/C g.�/; (3.30)

where

G�.�/ D �
A�.�/ � iB�.�/

A�.�/C iB�.�/
; (3.31)

and the solution to problem (3.28) satisfies the condition

�.w/ D �

�
1

Nw

�
: (3.32)

Since ¹�k D z.tk/I k D 0; 1; : : : ; m1º are discontinuous points for G�.�/ and

jG�.�
˙
k /j D 1;
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then we have
G�.�

�
k
/

G�.�
C

k
/
D e2�i�k ; with k D 0; 1; : : : ; m1; (3.33)

where �k is a real number.
Remember that

rk.w/ D

8<: .w � �k/�k ; jwj < 1;. 1
Nw
� �k/�k ; jwj > 1;

(3.34)

and

r.w/ D

mY
kD0

r�1k .w/: (3.35)

We get

Rk.�/ D
rC
k
.�/

r�
k
.�/
D e2i arg.��bk/�k : (3.36)

Then,
Rk.�

�
k
/

Rk.�
C

k
/
D e�2i��k ; with k D 0; 1; : : : ; m1I (3.37)

therefore,

G��.�/ D G�.�/

m1Y
kD0

Rk.�/;

where G��.�/ 2 H.l/ and G��.�/ ¤ 0 for � 2 l (see [35]).
We obtain the canonical function of problem (3.30) by

X�.w/ D

´
r.w/e�.w/; jwj < 1;

r.w/.w � c/��1e�.w/; jwj > 1;
(3.38)

where

�.w/ D
1

2�i

Z
l

log.� � w0/��1G��.�/
� � w

d�;

and c ¤ �k 2 l , w0 2 UC, where UC is the unit disk enclosed by curve l . According
to [34], we define IndlG�.�/ D �1 D �!c ,

�1 D
1

2�
arg

G�.c � 0/

G�.c C 0/
:

Since ¹�k Dw.tk/; kD 0;1; : : : ;m1º are discontinuous points on l , ¹dk Dw.Ak/; kD
0; 1; : : : ; mº are angular points on l , then the points ¹�k I k D 0; : : : ; mº and ¹dk I k D
0; : : : ; nº are denoted as follows:8̂̂<̂

:̂
w0 D �0 D d0; w1 D �1 D d1; : : : ; ws D �s D ds;

wsC1 D �sC1; wsC2 D �sC2; : : : ; wsCu D �sCu;

wsCuC1 D dsCuC1; wsCuC2 D dsCuC2; : : : ; wsCuCp D dsCuCp;

(3.39)
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where 1C s C uC p D h; according to [17], we get

0 < m �
j� � �j

˛
`.�/

j� � �j
˛
`.�/

�M <1; (3.40)

where � 2 l , `.�/ D p.z.�//, and ˛ 2 R, and we have

ık D

8̂̂<̂
:̂
�k�1
`.bk/

� �k ; k D 0; 1; : : : ; s;

��k ; k D s C 1; : : : ; s C u;
�k�u�1
`.bk�u/

; k D s C uC 1; : : : ; 1C s C uC p:

(3.41)

As for the real number x can be decomposed as

x D Œx�C ¹xº;

where Œx� is the integer part for x and 0 � ¹xº < 1, we require

¹ıkº ¤
1

`0.wk/
; with

1

`.wk/
C

1

`0.wk/
D 1; (3.42)

for all k D 0; 1; : : : ; h.
Assume

�k D

´
Œık �; ¹ıkº <

1
`0.wk/

;

Œık �C 1; ¹ıkº >
1

`0.wk/
:

(3.43)

Therefore, we obtain

�
1

`.wk/
< ık � �k <

1

`0.wk/
: (3.44)

Assume

Q.w/ D

hY
kD0

.w � wk/
�k ; �.w/ D

hY
kD0

.w � wk/
ık��k : (3.45)

By [30, Theorem A], we obtain

�.�/ 2 W `.�/.l/: (3.46)

We define the index of this problem (3.30)

�0 D �
0
1 C �

0
2; (3.47)

where �01 is the order of the function X�1� .w/ and �02 is the order of the function Q.w/.
If �0 � 0, P�0.w/ is the arbitrary polynomial of order �0, i.e.,

P�0.w/ D a�0w
�0 C a�0�1w

�0�1 C � � � C a1w C a0: (3.48)
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Let

�1.w/ D
�01.w/C .�

0
1/�.w/

2
; (3.49)

where

�01.w/ D H.w/X�.w/Q
�1.w/ with H.w/ D Kl .Q.XC� /

�1g/.w/I

however, .�01/�.w/ is the symmetric function of �01.w/; it is defined by

.�01/�.w/ D �
0
1.
1

Nw
/: (3.50)

Assume

�2.w/ D
X�.w/P�0.w/

Q.w/
; (3.51)

where Q.w/ is defined by (3.45). According to [13], combining all the above results, we
obtain the following theorem about the solutions of problem (3.28).

Theorem 3.2. Assume that (3.42) holds and �0 is defined by (3.47); the solution to the
boundary value problem (3.28) can be obtained:

(i) If �0 � 0, the boundary value problem (3.28) is solvable if the polynomial P�0.w/
satisfies the conditions

ak D .�1/
�02

hY
kD0

w
��k
k

a�0�k ; k D 0; : : : ; �0; (3.52)

where h D 1C s C uC p, �02 is the order of Q.w/ and �k is defined by (3.43), then the
solution to the boundary value problem (3.28) is given by

ˆ.z/ D �1.w.z//C�2.w.z//; (3.53)

where �1.w.z//, �2.w.z// are defined by (3.49), (3.51).
(ii) If �0 < 0, then P�0.w/ D 0, and the boundary value problem (3.28) is solvable if

and only if the following conditions are satisfied:Z
�

c�.t/Q.w.t//wk.t/w0.t/

XC� .w.t//.a.t/C ib.t//
dt D 0; k D 0; 1; : : : ; j�0j � 2; (3.54)

where X�.t/ is defined by (3.38) and Q.w/ D
Qh
kD0.w � wk/

�k . Then, the solution to
the boundary value problem (3.28) is given by

ˆ.z/ D �1.w.z//: (3.55)

Combining Theorem 3.1, Theorem 3.2, and (3.21), we obtain the solutions of the com-
pound boundary value problem as follows.
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Theorem 3.3. Assume �, �0 are defined as (3.17) and (3.47), respectively,Q.z/ is defined
(3.45), X�.z/ is obtained by (3.38), X.z/ is obtained by (3.15), .�01/�.w/ are defined
by (3.50) and P�0.z/ is a polynomial of order �0, ˆ1.z/ is the solution to problem (3.1).
If the following conditions are met

˛ck ¤
1

q.ck/
mod .1/; k D 1; : : : ; n;

where ck D ak ; bk and 1=p.ck/C 1=q.ck/ D 1,

¹ıj º ¤
1

`0.wj /
;

1

`.wj /
C

1

`0.wj /
D 1; j D 0; : : : ; h;

where `.�/ D p.z.�// and wj is defined in (3.39), then the solution to the compound
boundary value problem exists and is given as follows.

Case 1. When g.t/ � 0; c.t/ � 0 and � < 0.
(a) If �0 � 0, if and only if the condition can be met (3.52), the Hilbert boundary value

problem (3.28) has the solution

ˆ0.z/ D
X�.w/P�0.w/

Q.w/
;

so the solution to the compound boundary value problem is

ˆ.z/ D X.z/ˆ0.z/: (3.56)

(b) If �0 < 0, then the Hilbert boundary value problem (3.28) has only zero solution,
so the compound boundary value problem has zero solution.

Case 2. When g.t/ � 0, c.t/ almost everywhere is not 0 on L and � < 0.
(a) If �0�0 and condition (3.52) is satisfied and the Hilbert boundary value prob-

lem (3.28) has a solution

ˆ0.z/ D
�01.w/C .�

0
1/�.w/

2
C
X�.w/P�0.w/

Q.w/
; (3.57)

then the solution to the compound boundary value problem is

ˆ.z/ D X.z/ˆ0.z/: (3.58)

(b) If �0 < 0, the Hilbert boundary value problem (3.28) has a solution

ˆ0.z/ D
�01.w/C .�

0
1/�.w/

2

if and only if condition (3.54) is satisfied, then the solution to the compound boundary
value problem is

ˆ.z/ D X.z/ˆ0.z/: (3.59)
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Case 3. Other situations include the following.
(i) When c.t/ D ReŒa.t/C ib.t/�ˆC1 .t/.

(a) If �0 � 0, the Hilbert boundary value problem (3.28) has a solution

ˆ0.z/ D
X�.w/P�0.w/

Q.w/
;

if and only if condition (3.52), so the solution to the compound boundary value
problem is

ˆ.z/ D X.z/ˆ0.z/Cˆ1.z/: (3.60)

(b) If �0 < 0, then the Hilbert boundary value problem (3.28) has only zero solution,
so the compound boundary value problem has a solution.

ˆ.z/ D ˆ1.z/: (3.61)

(ii) When c.t/ ¤ ReŒa.t/C ib.t/�ˆC1 .t/.

(a) If �0 � 0, the Hilbert boundary value problem (3.28) has a solution

ˆ0.z/ D
�01.w/C .�

0
1/�.w/

2
C
X.w/P�0.w/

Q.w/
;

if and only if condition (3.52) is satisfied, so the solution to the compound bound-
ary value problem is

ˆ.z/ D X.z/ˆ0.z/Cˆ1.z/: (3.62)

(b) If �0 < 0, the Hilbert boundary value problem (3.28) has a solution

ˆ0.z/ D
�01.w/C .�

0
1/�.w/

2

if and only if condition (3.54), so the solution of the compound boundary value
problem is

ˆ.z/ D X.z/ˆ0.z.w//Cˆ1.z/: (3.63)
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