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Nuclear operators on the space Crc.X; E/ of vector-valued
continuous functions

Marian Nowak

Abstract. Let X be a completely regular Hausdorff space and E and F be Banach spaces. Let
Crc.X; E/ denote the Banach space of all continuous functions f W X ! E such that f .X/ is
a relatively compact set in E. Let ˇ� be the strict topology on Crc.X; E/. We characterize the
nuclearity of a .ˇ� ; k � kF /-continuous operator T W Crc.X; E/! F in terms of its representing
operator-valued Baire measure. As an application, we establish the relationship between the nucle-
arity of a .ˇ� ; k � kF /-continuous operator T W Crc.X; E/! F and the nuclearity of its conjugate
operator T 0.

1. Introduction and terminology

Throughout the paper, let .E; k � kE / and .F; k � kF / be real Banach spaces and E 0 and
F 0 denote the Banach duals of E and F , respectively. By L.E;F / we denote the Banach
space of all bounded linear operators U W E ! F , equipped with the operator norm k � k.
Given a locally convex space .L; �/, by .L; �/0 we denote its topological dual.

Now, we recall terminology concerning operator-valued measures (see [5,6]). Assume
that F is an algebra of subsets of a set X and m W F ! L.E; F / is a finitely additive
measure. By Qm.A/ we denote the semivariation of m on A 2 F ; that is,

Qm.A/ WD sup
Xm.Ai /.xi /


F
;

where the supremum is taken over all finite F -partitions .Ai / of A and xi 2 E, kxikE �
1, for each i . By jmj.A/ we denote the variation of m on A 2 F ; that is, jmj.A/ WD
sup†km.Ai /k, where the supremum is taken over all finite F -partitions .Ai / of A. For
y0 2 F 0, let my0 W F ! E 0 be the measure defined by

my0.A/.x/ WD y
0.m.A/.x// for all A 2 F ; x 2 E:

Note that, for a finitely additive measure � W F ! E 0, we have z�.A/D j�j.A/ for A 2 F

(see [5, Section 4, Proposition 4, p. 54]). For x 2 E, let

�x.A/ WD �.A/.x/ for A 2 F :
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The concept of a nuclear operator between Banach spaces is due to Ruston [29] (see
also [40, p. 279], [4, 7, 21, 22, 30] for more details). Grothendieck [8, 9] carried over the
concept of a nuclear operator to locally convex spaces (see also [40, p. 289], [21], [33,
Chapter 3, Section 7], [11, 38]).

In particular, for X a compact Hausdorff space, nuclear operators T W C.X/ ! F

have been studied intensively (see [4,10,21,22,30,37]). According to Tong [37, Theorem
1.2], a linear operator T W C.X/! F is nuclear if and only if T is Bochner representable
(see also [4, Theorem 4, pp. 173–174], [30, Proposition 5.30]). Nuclear operators T W
C.X;E/! F have been studied intensively by Alexander [1], Bilyeu and Lewis [3], Saab
and Smith [32], Smith [34], Saab [31], and Popa [24, 25, 27, 28]. The study of nuclear
operators T W C.X; E/! F was initiated by Alexander [1], where some of the known
results in scalar case, we extended. Bilyeu and Lewis [3] showed that if T W C.X;E/! F

is nuclear, then its representing measure m takes values in the Banach space N .E; F /

of all nuclear operators from E to F . Saab and Smith [32] and Popa [24] established the
relationship between nuclear operators T W C.X;E/! F and their representing operator-
valued Borel measures.

From now on, we assume that X is a completely regular Hausdorff space. Let
Crc.X; E/ stand for the Banach space of all continuous functions f W X ! E such that
f .X/ is a relatively compact set in E, equipped with the topology �u of the supremum
norm k � k. By Crc.X; E/

0 and Crc.X; E/
00 we denote the Banach dual and the Banach

bidual of Crc.X;E/, respectively. We write Cb.X/ instead of Crc.X;R/.
A subset H of Crc.X; E/ is said to be solid whenever kf1.t/kE � kf2.t/kE for all

t 2 X , f1 2 Crc.X;E/, f2 2 H imply f1 2 H . A linear topology � on Crc.X;E/ is said
to be locally solid if it has a local base at 0 consisting of solid sets (see [18, Definition
2.1], [17, Section 8]).

The strict topology ˇ� (denoted also by ˇ1) on the space Crc.X;E/ plays an important
role in the topological measure theory (see [13–18] for definitions and more details).

Now, we recall a definition of the strict topology ˇ� on Crc.X; E/. Let ˇX stand
for the Stone-Čech compactification of X and C� denote the family of all the zero sets of
continuous functions on ˇX XX . For a setQ 2C� , let CQ.X/ WD ¹v 2Cb.X/ W NvjQ � 0º,
where Nv denotes the unique extension of v 2 Cb.X/ on ˇX . For each v 2 CQ.X/, let us
define

�v.f / WD sup
t2X

jv.t/jkf .t/kE for f 2 Crc.X;E/:

By ˇQ we denote the locally convex Hausdorff topology on Crc.X; E/ defined by the
family of seminorms ¹�v W v 2 CQ.X/º. The strict topology ˇ� on Crc.X;E/, defined by
C� , is the greatest lower bound (in the class of all locally convex Hausdorff topologies on
Crc.X;E/) of the topologies ˇQ as Q runs over C� (see [18, p. 181], [13, p. 322]). Then,
ˇ� is a locally convex-solid topology on Crc.X;E/ (see [18, Proposition 2.7]).

It is known that ˇ� � �u and ˇ� D �u if X is pseudocompact (see [13, Theorem
4.3]). The strict topology ˇ� is a � -Dini topology; that is, fn ! 0 in ˇ� whenever .fn/ is
a sequence Crc.X; E/ such that kfn.t/kE #n 0 for all t 2 X ; and ˇ� is the finest locally
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convex-solid topology onCrc.X;E/with this property (see [18, Corollary 2.9], [39, Corol-
lary 11.16]).

Recall that a linear operator T W Crc.X; E/ ! F is said to be nuclear between the
Banach spaces Crc.X; E/ and F if there exist a bounded sequence .ˆn/ in Crc.X; E/

0,
a bounded sequence .yn/ in F , and a sequence .˛n/ 2 `1 so that

T .f / D

1X
nD1

˛nˆn.f /yn for f 2 Crc.X;E/ (1.1)

(see [40, p. 279] and [35]). The nuclear norm kT knuc of T is defined by

kT knuc WD inf

´
1X
nD1

j˛njkˆnkkynkF

µ
;

where the infimum is taken over all sequences .ˆn/ in Crc.X; E/
0 and .yn/ in F and

.˛n/ 2 `
1 such that T admits a representation (1.1). Every nuclear operator

T W Crc.X;E/! F

is compact.
Let N .E;F / denote the Banach space of all nuclear operators U W E ! F , equipped

with the nuclear norm k � knuc (see [21, Proposition, p. 51]). Then, we have kU k � kU knuc

for U 2 N .E; F /.
A linear operator T W Crc.X;E/! F is called a nuclear operator between the locally

convex space .Crc.X;E/; ˇ� / and the Banach space F if there exist a ˇ� -equicontinuous
sequence .ˆn/ in .Crc.X;E/;ˇ� /

0, a bounded sequence .yn/ in F , and a sequence .˛n/ 2
`1 so that

T .f / D

1X
nD1

˛nˆn.f /yn for f 2 Crc.X;E/

(see [40, p. 289] and [35, 38] for more details). Every .ˇ� ; k � kF /-nuclear operator is
.ˇ� ; k � kF /-compact and hence T is .ˇ� ; k � kF /-continuous.

The problem of integral representation of different classes of linear operators T W
Crc.X; E/ ! F has been studied by Katsaras and Liu [15] and Nowak [18, 19]. The
aim of this paper is to establish the relationship between the nuclearity of .ˇ� ; k � kF /-
continuous nuclear operators T W Crc.X; E/! F and their representing operator-valued
Baire measures (see Theorem 4.3, Theorem 4.5, and Corollary 4.6 below). Moreover,
as an application, we establish the relationship between the nuclearity of a .ˇ� ; k � kF /-
continuous operator T W Crc.X; E/! F and the nuclearity of its conjugate operator T 0

(see Corollary 4.11 below).

Remark 1.1. Let Cb.X;E/ be the space of all bounded continuous functions f WX!E,
equipped with the tight strict topology ˇ. Then, the nuclear operators

T W Cb.X;E/! F
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between the locally convex space .Cb.X;E/; ˇ/ and the Banach space F have been stud-
ied by Nowak and Stochmal [20] and Stochmal [36].

2. Integration in the space Crc.X; E/

We recall the terminology concerning spaces of Baire measures and study the problem
of integration of functions in Crc.X; E/ with respect to Baire vector measures (see [12,
14–16] for more details).

Recall that a zero set in X is of the form Z D ¹t 2 X W u.t/ D 0º, where u 2 Cb.X/.
Let B (resp., Ba) be the algebra (resp., � -algebra) of Baire sets inX , which is the algebra
(resp., � -algebra) generated by the class Z of all zero sets in X .

Let M.X/ stand for the space of all finitely additive real-valued zero-set regular mea-
sures on B, that is, � 2M.X/, if for everyA 2B and " > 0 there existsZ 2Z withZ �A
such that j�j.A XZ/ � ". Then, M.X/ with the norm k�k WD j�j.X/ is a Dedekind com-
plete Banach lattice (see [39, p. 114]).

Following [13], by M.X; E 0/ we denote the set of all finitely additive measures � W
B ! E 0 with j�j.X/ <1 and such that �x 2M.X/ for each x 2 E.

Note that if � 2M.X;E 0/, then j�j 2M.X/ (see [13, p. 314]).
Let A 2 B and � 2 M.X; E 0/. Following [12], for f 2 Crc.X; E/, one can define

a Riemann–Stieltjes-type integral on A 2 B with respect to � by

.RS/

Z
A

f .t/ d� WD lim
X

�.Ai /f .ti /;

where the limit is taken over the directed set of all finite B-partitions .Ai / ofA and ti 2Ai
(see also [13–16] for more details).

According to Katsaras [12, Theorem 2.5], Crc.X;E/
0 can be identified withM.X;E 0/

through the linear mapping M.X;E 0/ 3 � 7! ˆ� 2 Crc.X;E/
0, where

ˆ�.f / D .RS/

Z
X

f .t/ d� for f 2 Crc.X;E/ and kˆ�k D j�j.X/:

It follows that M.X;E 0/, equipped with the norm k�k WD j�j.X/, is a Banach space.
By B.B; E/ we denote the Banach space of totally B-measurable functions g W X !

E (= the uniform limits of sequences of E-valued B-simple functions on X ), equipped
with the uniform norm k � k (see [5, 6]). Then, we have (see [17, p. 196])

Cb.X/˝E � Crc.X;E/ � B.B; E/: (2.1)

Recall that Cb.X/˝ E is the linear span of all functions u˝ x, where u 2 Cb.X/ and
x 2 E and .u˝ x/.t/ D u.t/x for all t 2 X .

Since Cb.X/˝ E is a dense subset of the Banach space Crc.X; E/ (see [12, Lemma
2.2]), one can easily show that, for each � 2M.X;E 0/, we have

.RS/

Z
X

f .t/ d� D

Z
X

f .t/ d� for f 2 Crc.X;E/;
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where
R
X
f .t/d� denotes the so-called immediate integral of f with respect to � (see

[5, Section 9] for more details).
Let M� .X/ denote the subspace of M.X/ of all � -additive Baire measures �, that is,

�.Zn/! 0 if Zn # ;, Zn 2 Z. It is known that, for � 2 M.X/, � 2 M� .X/ if and only
if � is countably additive on the algebra B (see [39, Section 6.2, pp. 117–118]).

Let
M� .X;E

0/ WD
®
� 2M.X;E 0/ W �x 2M� .X/ for each x 2 E

¯
:

According to [13, Theorem 4.7], we have the following result.

Theorem 2.1. For � 2M.X;E 0/, the following statements are equivalent.

(i) � 2M� .X;E
0/.

(ii) ˆ� 2 .Crc.X;E/; ˇ� /
0.

It follows that M� .X; E
0/ is a Banach space because .Crc.X; E/; ˇ� /

0 is a closed
subspace of the Banach space Crc.X;E/

0 (see [14, Corollary 2.5]).
In view of [18, Corollary 3.2 and Proposition 3.5] and [39, Theorem 11.14, p. 142],

we get the following result.

Theorem 2.2. Let M be a subset ofM� .X;E
0/. Then, the following statements are equiv-

alent.

(i) ¹ˆ� W � 2Mº is ˇ� -equicontinuous.

(ii) sup�2M j�j.X/ <1 and sup�2M j�j.Zn/! 0 if Zn # ;, Zn 2 Z.

By M� .X;L.E; F // we denote the space of all finitely additive measures m W B !
L.E; F / with Qm.X/ <1 such that my0 2M� .X;E

0/ for each y0 2 F 0.
Following [13, 15], by M� .Ba/ we denote the space of all countably additive real-

valued zero-set regular measures on Ba.

Remark 2.3. Note that every real-valued countably additive measure � on Ba must be
zero-set regular; that is, � 2M� .Ba/ (see [39, p. 118]).

By M� .Ba; E
0/ we denote the space of all finitely additive measures � W Ba ! E 0

with j�j.X/ <1 such that �x 2M� .Ba/ for each x 2 E.
The following result will be needed.

Proposition 2.4. The following statements hold.

(i) If � 2M� .Ba;E
0/, then j�j 2M� .Ba/

C:

(ii) If � 2 M� .X; E
0/, then � possesses a unique extension x� 2 M� .Ba; E

0/ and
jx�j.A/ D j�j.A/ for A 2 B.

Proof. (i) See [13, Lemma 2.1].
(ii) In view of [13, Theorem 2.5], � possesses a unique extension x� 2 M� .Ba; E

0/

and jx�j.X/ D j�j.X/. According to [4, Corollary 10, p. 4], we have jx�j.A/ D j�j.A/ for
A 2 B.
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By M� .Ba;L.E; F // we denote the space of all measures m W Ba! L.E; F / with
Qm.X/ <1 such that my0 2M� .Ba;E

0/ for each y0 2 F 0.

3. Integral representation of operators on Crc.X; E/

In this section, we collect basic results concerning integral representation of weakly com-
pact operators T W Crc.X;E/! F (see [15, 18, 19]).

Since Crc.X;E/�B.B;E/, one can embedB.B;E/ into Crc.X;E/
00 by the mapping

� W B.B; E/! Crc.X;E/
00, where, for g 2 B.B; E/,

�.g/.ˆ�/ D

Z
X

g.t/ d� for � 2M.X;E 0/:

Then, for g 2 B.B; E/ and � 2M.X;E 0/, we have

j�.g/.ˆ�/j D

ˇ̌̌̌ Z
X

g.t/ d�

ˇ̌̌̌
� kgkj�j.X/ D kgkkˆ�k;

and hence, � is bounded and k�.g/k � kgk; that is, kgk � 1.
Let iF WF !F 00 stand for the canonical embedding, i.e., iF .y/.y0/D y0.y/ for y 2F ,

y0 2 F 0. Moreover, let jF W iF .F /! F denote the left inverse of iF ; that is,

jF ı iF D idF :

Now, assume that T W Crc.X;E/! F is a weakly compact linear operator. Let

T 0 W F 0 ! Crc.X;E/
0 and T 00 W Crc.X;E/

00
! F 00

stand for the conjugate and biconjugate operators of T , respectively. Then, T 0.y0/ WD
y0 ı T for y0 2F 0 and T 00.'/.y0/ WD '.y0 ı T / for ' 2Crc.X;E/

00. Due to the Gantmacher
theorem (see [2, Theorem 17.2]), we have that T 00.Crc.X;E/

00/ � iF .F /. Let us define

yT WD jE ı T
00
ı � W B.B; E/! F:

Then, yT is a weakly compact operator, and we define its representing measure m W B !
L.E; F / by

m.A/.x/ WD yT .1A ˝ x/ for A 2 B and x 2 E: (3.1)

Thus, it follows that, for g 2 B.B; E/, we have

yT .g/ D

Z
X

g.t/ dm and k yT k D Qm.X/;

where
R
X
g.t/ dm denotes the so-called immediate integral of g with respect to m (see

[5, Section 9], [6, Section 1, pp. 10–11]). Then, for f 2 Crc.X;E/, we have

T .f / D

Z
X

f .t/ dm and kT k D Qm.X/;

and, for each y0 2 F 0, y0.T .f // D
R
X
f .t/dmy0 .

The following result will be of importance.
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Theorem 3.1. Assume that T WCrc.X;E/!F is a weakly compact .ˇ� ;k � kF /-continuous
operator and m W B ! L.E; F / is its representing measure. Then, the following state-
ments hold.

(i) m 2M� .X;L.E; F //.

(ii) m has a unique extension Nm 2 M� .Ba;L.E; F // such that QNm.X/ D Qm.X/ D
kT k.

Proof. (i) It follows from Theorem 2.1 because y0 ı T 2 .Crc.X;E/; ˇ� /
0.

(ii) Since yT W B.B; E/! F is weakly compact, we have that, for every x 2 E, the
set ¹m.A/.x/ W A 2 Bº is weakly compact in F . Hence, in view of [15, Theorem 7], m
has a unique extension Nm 2M� .Ba;L.E; F // with QNm.X/ D Qm.X/ D kT k.

4. Nuclear operators on Crc.X; E/

In this section, we establish the relationship between the nuclearity of weakly compact
.ˇ� ; k � kF /-continuous operators T W Crc.X; E/! F and the properties of their repre-
senting measures m W B ! L.E; F /.

For � 2 ca.Ba/C and a Banach space .G; k � kG/, let L1.�; G/ be the Banach space
of �-equivalence classes of all �-Bochner integrable functions g W X ! G, equipped with
the norm

kgk1 WD

Z
X

kg.t/kG d�:

We will need the following lemma.

Lemma 4.1. For � 2M� .Ba/
C and g 2 L1.�;E 0/, let �.B/D

R
B
g.t/ d� for B 2 Ba:

Then, � 2M� .Ba;E
0/ and

R
X
f .t/ d� D

R
X
g.t/.f .t// d� for f 2 Crc.X;E/:

Proof. Note that � W Ba! E 0 is a countably additive measure and

j�j.X/ D

Z
X

kg.t/kE 0d� <1

(see [4, Theorem 4, p. 46]). Hence, j�j is countably additive and j�j 2 M� .Ba/
C (see

Remark 2.3). It follows that � 2M� .Ba;E
0/.

Assume that f 2 Crc.X; E/. Since Crc.X; E/ � B.B; E/ (see (2.1)), we can choose
a sequence .sn/ of E-valued B-simple functions on X such that kf � snk

n
�! 0. Note thatZ

X

sn.t/ d� D

Z
X

g.t/.sn.t// d�:

Then, we have Z
X

f .t/ d� D lim
n

Z
X

sn.t/ d� D lim
n

Z
X

g.t/.sn.t// d�:
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On the other hand, we haveˇ̌̌̌ Z
X

g.t/.f .t// d� �

Z
X

g.t/.sn.t//d�

ˇ̌̌̌
�

Z
X

jg.t/.f .t/ � sn.t//j d�

�

Z
X

kg.t/kE 0kf .t/ � sn.t/kE d�

� kf � snk

Z
X

kg.t/kE 0 d�
n
�! 0:

Thus, it follows that
R
X
f .t/ d� D

R
X
g.t/.f .t// d�.

Remark 4.2. A similar result as in Lemma 4.1 appears in the proof of Theorem 2 in [26]
and in [23].

Now, we can state our main result.

Theorem 4.3. Let T W Crc.X; E/ ! F be a weakly compact .ˇ� ; k � kF /-continuous
operator, and let m W B ! L.E; F / be its representing measure. Assume that Nm.B/ 2
N .E;F / for each B 2Ba and Nm WBa!N .E;F / is a countably additive measure and
j Nmjnuc.X/ <1 (with respect to the norm k � knuc).

If there exists H 2 L1.j Nmjnuc;N .E; F // so that

Nm.B/ D

Z
B

H.t/ d j Nmjnuc for B 2 Ba;

then the following statements hold.

(i) T .f / D
R
X
H.t/.f .t// d j Nmjnuc for f 2 Crc.X;E/.

(ii) T is a nuclear operator between the locally convex space .Crc.X; E/; ˇ� / and
the Banach space F .

(iii) T is a nuclear operator between the Banach spaces Crc.X;E/ and F , and

kT knuc � jmjnuc.X/ D j Nmjnuc.X/ D

Z
X

kH.t/knuc d j Nmjnuc:

Proof. (i) Let f 2 Crc.X;F / � B.B; E/. Then, there exists a sequence .sn/ of E-valued
B-simple functions on X such that kf � snk

n
�! 0. Note that, for n 2 N, we haveZ

X

sn.t/ d Nm D

Z
X

H.t/.sn.t// d j Nmjnuc:

Hence, Z
X

H.t/.f .t// d j Nmjnuc �

Z
X

H.t/.sn.t// d j Nmjnuc


F

�

Z
X

kH.t/.f .t// �H.t/.sn.t//kF d j Nmjnuc �

Z
X

kH.t/knuckf .t/ � sn.t/kE d j Nmjnuc

� kf � snk

Z
X

kH.t/knuc d j Nmjnuc
n
�! 0:
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On the other hand, we get

T .f /D

Z
X

f .t/dmD lim
n

Z
X

sn.t/dmD lim
n

Z
X

sn.t/d NmD lim
n

Z
X

H.t/.sn.t//d j Nmjnuc:

Thus, it follows that

T .f / D

Z
X

H.t/.f .t// d j Nmjnuc:

(ii) Let L1.j Nmjnuc/ y̋ N .E; F / denote the projective tensor product of the Banach
spaces L1.j Nmjnuc/ and N .E; F /, equipped with the complete projective norm  (see [4,
p. 227]). Note that, for z 2 L1.j Nmjnuc/ y̋ N .E; F /, we have

.z/ D inf

´
1X
nD1

j˛njkvnk1kUnknuc

µ
;

where the infimum is taken over all sequences .vn/ in L1.j Nmjnuc/ and .Un/ in N .E; F /

with lim kvnk1 D 0 D lim kUnknuc and .˛n/ 2 `1 such that

z D

1X
nD1

˛nvn ˝ Un

in  -norm (see [30, Proposition 2.8, pp. 21–22]).
It is known that L1.j Nmjnuc/ y̋ N .E; F / is isometrically isomorphic to the Banach

space L1.j Nmjnuc;N .E; F // by the isometry

J W L1.j Nmjnuc/ y̋ N .E; F /! L1.j Nmjnuc;N .E; F //;

defined by J.v ˝ U/ WD v.�/U for v 2 L1.j Nmjnuc/ and U 2 N .E; F / (see [4, Example
10, p. 228], [30, Example 2.19, p. 29]).

Let ">0 be given. Then, there exist sequences .vn/ inL1.j Nmjnuc/ and .Un/ in N .E;F /

with limn kvnk1 D 0 D limn kUnknuc and .˛n/ 2 `1 so that

J�1.H/ D

1X
nD1

˛nvn ˝ Un in L1.jmjnuc/ y̋ N .X; Y /

and
1X
nD1

j˛njkvnk1kUnknuc � 
�
J�1.H/

�
C
"

2
D kHk1 C

"

2
: (4.1)

Thus, it follows that

H D J

 
1X
nD1

˛nvn ˝ Un

!
D

1X
nD1

˛nvn.�/Un in L1
�
j Nmjnuc; N .X; Y /

�
:
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Note that for f 2 Crc.X;E/, T .f / D
P1
nD1 ˛n

R
X
vn.t/Un.f .t// d j Nmjnuc. Indeed, using

(i), we have T .f / � nX
iD1

˛i

Z
X

vi .t/Ui .f .t// d j Nmjnuc


F

�

Z
X

H.t/.f .t// �
 

nX
iD1

˛ivi .t/Ui

!
.f .t//


F

d j Nmjnuc

�

Z
X

H.t/ � nX
iD1

˛ivi .t/Ui


nuc

kf .t/kE d j Nmjnuc

� kf k

Z
X

H.t/ � nX
iD1

˛ivi .t/Ui


nuc

d j Nmjnuc
n
�! 0:

For every n 2 N, we can choose bounded sequences .x0
n;k
/ in E 0 and .yn;k/ in F and

a sequence .˛n;k/ 2 `1 so that Un.x/ D
P1
kD1 ˛n;kx

0
n;k
.x/yn;k for x 2 E and

1X
kD1

j˛n;kjkx
0
n;kkE 0kyn;kkF � kUnknuc C

"

2
�P1

jD1 j j̨ jkvj k1
� : (4.2)

Then, we have

T .f / D

1X
nD1

˛n

Z
X

vn.t/Un.f .t// d j Nmjnuc

D

1X
nD1

˛n

Z
X

vn.t/

 
1X
kD1

˛n;kx
0
n;k.f .t//yn;k

!
d j Nmjnuc

D

1X
nD1

˛n

1X
kD1

˛n;kkx
0
n;kkE 0kyn;kkF

�Z
X

vn.t/
x0
n;k
.f .t//

kx0
n;k
kE 0

d j Nmjnuc

�
yn;k

kyn;kkF
:

For n; k 2 N, let us define

gn;k.t/ WD vn.t/
x0
n;k

kx0
n;k
kE 0

for t 2 X:

Then, gn;k 2 L1.j Nmjnuc; E
0/ and kgn;k.t/kE 0 D jvn.t/j for t 2 X . Let

�n;k.B/ WD

Z
B

gn;k.t/ d j Nmjnuc for B 2 Ba:

Then,

j�n;kj.B/ D

Z
B

kgn;k.t/kE 0 d j Nmjnuc D

Z
B

jvn.t/j d j Nmjnuc:
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Since j Nmjnuc 2M� .Ba/
C (see Remark 2.3), in view of Lemma 4.1, we get

�n;k 2M� .Ba;E
0/:

For n; k 2 N, let us define

ˆn;k.f / WD

Z
X

f .t/ d�n;k for f 2 Crc.X;E/:

Then, ˆn;k 2 .Crc.X;E/; ˇ� /
0, and in view of Lemma 4.1, we have

ˆn;k.f / D

Z
X

gn;k.t/.f .t// d j Nmjnuc for f 2 Crc.X;E/:

Note that sup¹j�n;kj.X/ W n; k 2 Nº D supn kvnk1 <1, and since

lim
n
kvnk1 D lim

n

Z
X

jvn.t/j d j Nmjnuc D 0;

the set ¹vn W n 2 Nº is uniformly integrable in L1.j Nmjnuc/.
Assume that � > 0 and Zi # ;, Zi 2 Z. Then, there exists ı > 0 such that

sup
n

Z
B

jvn.t/j d j Nmjnuc � �

for all B 2 Ba with j Nmjnuc.B/ � ı. Choose i0 2 N such that j Nmjnuc.Zi / � ı for i � i0.
Hence, for i � i0, we get

sup
n;k2N

j�n;kj.Zi / D sup
n

Z
Zi

jvn.t/j d j Nmjnuc � �:

Hence, in view of Theorem 2.2, the set ¹ˆn;k W n; k 2 Nº is ˇ� -equicontinuous. Note that

1X
nD1

1X
kD1

j˛njj˛n;kjkx
0
n;kkE 0kyn;kkF D

1X
nD1

j˛nj

 
1X
kD1

j˛n;kjkx
0
n;kkE 0kyn;kkF

!

�

1X
nD1

j˛nj

�
kUnknuc C

"

2
�P1

jD1 j j̨ jkvj k1
��

�

1X
nD1

j˛nj

�
sup
j2N
kUj knuc C

"

2
�P1

jD1 j j̨ jkvj k1
��

<1:

This means that (ii) holds.
(iii) Since ˇ� � �u, by (ii), we have that T is a nuclear operator between the Banach

spaces Crc.X;E/ and F . Moreover, in view of (ii), for f 2 Crc.X;E/, we have

T .f /

D

1X
nD1

˛nkvnk1

1X
kD1

˛n;kkx
0
n;kkE 0kyn;kkF

�Z
X

vn.t/

kvnk1

x0
n;k
.f .t//

kx0
n;k
kE 0

d j Nmjnuc

�
yn;k

kyn;kkF
:
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Note that by (4.1) and (4.2) we have

1X
nD1

1X
kD1

j˛njkvnk1j˛n;kjkx
0
n;kkE 0kyn;kkF

D

1X
nD1

j˛njkvnk1

 
1X
kD1

j˛n;kjkx
0
n;kkE 0kyn;kkF

!

�

1X
nD1

j˛njkvnk1

�
kUnknuc C

"

2
�P1

jD1 j j̨ jkvj k1
��

� kHk1 C
"

2
C
"

2
D kHk1 C ": (4.3)

For n; k 2 N, let us define

Fn;k.f / WD

Z
X

vn.t/

kvnk1

x0
n;k
.f .t//

kx0
n;k
kE 0

d j Nmjnuc for f 2 Crc.X;E/:

Then, jFn;k.f /j � kf k; that is, Fn;k 2 Crc.X;E/
0 and kFn;kk � 1 for all n; k 2 N.

In view of (4.3), we get kT knuc � kHk1 C ", and since " > 0 is arbitrary, we have

kT knuc � kHk1 D

Z
X

kH.t/knuc d j Nmjnuc D j Nmjnuc.X/:

Since jmjnuc.X/ D j Nmjnuc.X/ (see [4, Corollary 10, p. 4]), the proof is complete.

We will need the following lemma.

Lemma 4.4. Assume that .�n/ is a bounded sequence in M.X; E 0/, .yn/ is a bounded
sequence in F , and .˛n/ 2 `1. Then, for y0 2 F 0, we have that

1X
nD1

˛ny
0.yn/�n 2M.X;E

0/

and  
1X
nD1

˛ny
0.yn/�n

!
.A/.x/ D

1X
nD1

˛n�n.A/.x/y
0.yn/ for A 2 B; x 2 E:

Proof. Since for y0 2 F 0 we have

1X
nD1

j˛njjy
0.yn/jj�nj.X/ <1

and M.X;E 0/ is a Banach space, we get

1X
nD1

˛ny
0.yn/�n 2M.X;E

0/:
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Then, for A 2 B, x 2 E, we haveˇ̌̌̌
ˇ
 
1X
nD1

˛ny
0.yn/�n

!
.A/.x/ �

nX
iD1

˛i�i .A/.x/y
0.yi /

ˇ̌̌̌
ˇ

D

ˇ̌̌̌
ˇ
 
1X
nD1

˛ny
0.yn/�n �

nX
iD1

˛iy
0.yi /�i

!
.A/.x/

ˇ̌̌̌
ˇ

�


 
1X
nD1

˛ny
0.yn/�n �

nX
iD1

˛iy
0.yi /�i

!
.A/


E 0

kxkE

�

ˇ̌̌̌
ˇ 1X
nD1

˛ny
0.yn/�n �

nX
iD1

˛iy
0.yi /�i

ˇ̌̌̌
ˇ.X/kxkE n

�! 0:

Now, we can derive the properties of the representing measure m of a nuclear .ˇ� ; k �
kF /-continuous operator

T W Crc.X;E/! F:

Theorem 4.5. Assume that T W Crc.X; E/ ! F is a .ˇ� ; k � kF /-continuous nuclear
operator between the Banach spaces Crc.X;E/ and F and m W B ! L.E; F / is its rep-
resenting measure. Then, the following statements hold.

(i) Nm.B/ 2 N .E;F / for B 2Ba and Nm WBa! N .E;F / is a countably additive
measure with

j Nmjnuc.X/ � kT knuc:

(ii) If, in particular, E 0 has the Radon–Nikodym property, then there exists

H 2 L1.j Nmjnuc; N .E; F //

so that
Nm.B/ D

Z
B

H.t/ d j Nmjnuc for B 2 Ba

and
T .f / D

Z
X

H.t/.f .t// d j Nmjnuc for f 2 Crc.X;E/:

Proof. (i) Let " > 0 be given. There exist a bounded sequence .�n/ in M.X; E 0/, a
bounded sequence .yn/ in F , and a sequence .˛n/ 2 `1 so that

T .f / D

1X
nD1

˛n

�Z
X

f .t/ d�n

�
yn for f 2 Crc.X;E/

and
1X
nD1

j˛njj�nj.X/kynkF � kT knuc C ":
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Let A 2 B. Then, using (3.1), for each x 2 E and y0 2 F 0, we have

y0.m.A/.x// D ..T 00 ı �/.1A ˝ x//.y
0/ D �.1A ˝ x/.y

0
ı T /

D

1X
nD1

˛ny
0.yn/�.1A ˝ x/.ˆ�n/ D

1X
nD1

˛ny
0.yn/

Z
X

.1A ˝ x/.t/ d�n

D

1X
nD1

˛ny
0.yn/�n.A/.x/ D y

0

 
1X
nD1

˛n�n.A/.x/yn

!
:

Hence, m.A/.x/ D
P1
nD1 ˛n�n.A/.x/yn: This means that m.A/ 2 N .E; F /.

Note thatM.X;E 0/ � bva.B;E 0/, where bva.B;E 0/ denotes the Banach space of all
finitely additive measures � W B ! E 0 of finite variation, equipped with the norm k�k D
j�j.X/. Let bvca.B; E 0/ (resp., bvpfa.B; E 0/) denote the linear subspaces of bva.B; E 0/
consisting of all countably additive measures (resp., purely finitely additive measures).
Note that M� .X;E

0/ � bva.B; E 0/:
Due to the Yosida–Hewitt decomposition theorem (see [4, Theorem 8, p. 30]) for every

n 2 N, there exist uniquely �n;c 2 bvca.B; E 0/ and �n;p 2 bvpfa.B; E 0/ so that

�n D �n;c C �n;p; j�nj D j�n;c j C j�n;pj;

where �n;c and �n;p are mutually singular.
We will show that �n;c 2M� .X;E

0/ for n 2N. Indeed, since j�n;c j � j�nj and j�nj 2
M.X/ (see [13, p. 314]), we get j�n;c j 2 M.X/, and it follows that �n;c 2 M.X; E 0/.
Note that j�n;c j 2 ca.B/ because �n;c 2 bvca.B; E 0/, and hence, j�n;c j 2 M� .X/ (see
[39, pp. 117–118]). This means that �n;c 2M� .X;E

0/, as desired.
Note that bvca.B; E 0/ and bvpfa.B; E 0/ are closed subspaces of the Banach space

bva.B; E 0/. It follows that, for y0 2 F 0, we have

1X
nD1

˛ny
0.yn/�n;c 2 bvca.B; E 0/ and

1X
nD1

˛ny
0.yn/�n;p 2 bvpfa.B; E 0/:

For A 2 B and x 2 E, let us put

mc.A/.x/ WD

1X
nD1

˛n�n;c.A/.x/yn and mp.A/.x/ WD

1X
nD1

˛n�n;p.A/.x/yn:

Then, for every y0 2 F 0, in view of Lemma 4.4, we have

y0.mc.A/.x// WD

1X
nD1

˛n�n;c.A/.x/y
0.yn/ D

 
1X
nD1

˛ny
0.yn/�n;c

!
.A/.x/;

y0.mp.A/.x// WD

1X
nD1

˛n�n;p.A/.x/y
0.yn/ D

 
1X
nD1

˛ny
0.yn/�n;p

!
.A/.x/:
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Hence,

mc;y0 D

1X
nD1

˛ny
0.yn/�n;c and mp;y0 D

1X
nD1

˛ny
0.yn/�n;p;

wheremc;y0 2 bvca.B;E 0/,mp;y0 2 bvpfa.B;E 0/, andmy0 Dmc;y0 Cmp;y0 : Sincemy0 2
M� .X; E

0/ (see Theorem 3.1) and M� .X; E
0/ � bvca.B; E 0/, we get my0 � mc;y0 2

bvca.B; E 0/ \ bvpfa.B; E 0/ D ¹0º; and hence, m D mc ; that is,

m.A/.x/ D

1X
nD1

˛n�n;c.A/.x/yn:

Let �n;c 2 M� .Ba; E
0/ stand for the unique extension of �n;c 2 M� .X; E

0/, where
j�n;c j.A/ D j�n;c j.A/ for A 2 B (see Proposition 2.4). Let us set

m0.B/.x/ WD

1X
nD1

˛n�n;c.B/.x/yn for B 2 Ba; x 2 E:

Note that m0.B/ 2 N .E; F / for B 2 Ba. We will show that m0 W Ba ! N .E; F / is
a countably additive measure. Indeed, let .Bk/ be a pairwise disjoint sequence in Ba, and
let " > 0 be given. Since

P1
nD1 j˛njj�n;c j.X/ <1, for a D supn kynkF , we can choose

n" 2 N such that
1X

nDn"C1

j˛njj�n;c j.X/ �
"

2.aC 1/
:

Since j�n;c j 2M� .Ba/
C (see Proposition 2.4), there exists k" 2 N such that

j˛njj�n;c j

 
1[
kDk"

Bk

!
�

"

2n".aC 1/
for n D 1; : : : ; n":

Hence, we getm0
 
1[
kD1

Bk

!
�

k"�1X
kD1

m0.Bk/


nuc

D

m0
 
1[
kDk"

Bk

!
nuc

�

1X
nD1

j˛njj�n;c j

 
1[
kDk"

Bk

!
kynkF

�

n"X
nD1

j˛njj�n;c j

 
1[
kDk"

Bk

!
kynkF C

1X
nDn"C1

j˛njj�n;c j

 
1[
kDk"

Bk

!
kynkF

� a

n"X
nD1

j˛njj�n;c j

 
1[
kDk"

Bk

!
C a

1X
nDn"C1

j˛njj�n;c j

 
1[
kDk"

Bk

!
� a

"

2.aC 1/
C a

"

2.aC 1/
� ":

This means that m0 W Ba! N .E; F / is countably additive.
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Now, we will show that jm0jnuc.X/ � kT knuc. Indeed, let .Bi /kiD1 be a Ba-partition
of X . Then, we get

kX
iD1

km0.Bi /knuc �

kX
iD1

 
1X
nD1

j˛njk�n;c.Bi /kE 0kynkF

!

�

1X
nD1

j˛njkynkF

 
kX
iD1

j�n;c j.Bi /

!
D

1X
nD1

j˛njkynkF j�n;c j.X/

�

1X
nD1

j˛njj�nj.X/kynkF � kT knuc C ":

Hence, jm0jnuc.X/�kT knucC ", and since "> 0 is arbitrary, we get jm0jnuc.X/�kT knuc,
as desired. Since jm0j.X/� jm0jnuc.X/ <1, in view of Theorem 3.1, we havem0.B/D
Nm.B/ for allB 2Ba. It follows that the measure Nm WBa!N .E;F / is countably additive

with j Nmjnuc.X/ <1 and

Nm.B/.x/ D

1X
nD1

˛n�n;c.B/.x/yn for B 2 Ba; x 2 E:

(ii) Let bvca.Ba; E 0/ denote the Banach space of all countably additive measures
� W Ba! E 0 of finite variation, equipped with the norm k�k WD j�j.X/.

Since j�n;c j 2 M� .Ba/ for n 2 N, we get �n;c 2 bvca.Ba; E 0/. In view of the
Lebesgue decomposition theorem, for every n 2 N, we have

�n;c D �n;a C �n;s; j�n;c j D j�n;aj C j�n;sj;

where �n;a 2 bvca.Ba; E 0/ and �n;a is j Nmjnuc-absolutely continuous .�n;a � j Nmjnuc/

and �n;s 2 bvca.Ba; E 0/ and �n;s and j Nmjnuc are mutually singular (see [4, Theorem 9,
p. 31]).

Since E 0 is supposed to have the Radon–Nikodym property, for each n 2 N, there
exists  n 2 L1.j Nmjnuc; E

0/ such that, for each B 2 Ba, we have

�n;a.B/ D

Z
B

 n.t/ d j Nmjnuc and j�n;aj.B/ D

Z
B

k n.t/kE 0 d j Nmjnuc: (4.4)

Moreover, note that, for each n 2 N, there exist sets Bn 2 Ba and Cn 2 Ba with Bn \
Cn D ; such that j Nmjnuc is concentrated on Bn and j�n;sj is concentrated on Cn; that is,
for each B 2 Ba, j Nmjnuc.B/ D j Nmjnuc.B \Bn/ and j�n;sj.B/ D j�n;sj.B \ Cn/. Hence,
for each n 2 N,

j�n;sj.Bn/ D 0 and j Nmjnuc.X X Bn/ D 0:

Let D0 D
T1
nD1 Bn and B 2 Ba be given. Then, we have

k Nm.B \ .X XD0//knuc � j Nmjnuc.B \ .X XD0// � j Nmjnuc.X XD0/

D j Nmjnuc

 
1[
nD1

.X X Bn/

!
�

1X
nD1

j Nmjnuc.X X Bn/ D 0: (4.5)
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Since k�n;s.B \D0/kE 0 � j�n;sj.B \D0/� j�n;sj.Bn/D 0, we get �n;s.B \D0/D 0
for n 2 N. Hence, in view of (4.5), for each x 2 E, we have

Nm.B/.x/ D Nm.B \D0/.x/C Nm.B \ .X XD0//.x/ D Nm.B \D0/.x/

D

1X
nD1

˛n�n;a.B \D0/.x/yn:

But j Nmjnuc.B \ .X X D0// D 0 and �n;a � j Nmjnuc, so �n;a.B \ .X X D0// D 0, and
hence,

�n;a.B/ D �n;a.B \ .D0 [ .X XD0///

D �n;a.B \D0/C �n;a.B \ .X XD0//

D �n;a.B \D0/.x/:

Thus, we have Nm.B/.x/ D
P1
nD1 ˛n�n;a.B/.x/yn; and using (4.4), we get

Nm.B/.x/ D

1X
nD1

˛n

Z
B

 n.t/ d j Nmjnuc.x/yn: (4.6)

For n 2N, let us putHn.t/ WD
Pn
iD1 ˛i i .t/˝ yi for t 2X , where .˛i i .t/˝ yi /.x/ WD

˛i i .t/.x/yi for x 2E. Then,Hn.t/ 2N .E;F / for t 2X . For n1; n2 2N with n2 > n1,
we haveZ

X

kHn2.t/ �Hn1.t/knuc d j Nmjnuc �

Z
X

 
n2X

iDn1C1

j˛i jk i .t/kE 0kyikF

!
d j Nmjnuc

D

n2X
iDn1C1

j˛i j

�Z
X

k i .t/kE 0 d j Nmjnuc

�
kyikF

�

n2X
iDn1C1

j˛i jj�i;aj.X/kyikF

� sup
j2N
j�j;aj.X/ sup

j2N
kyj kF

n2X
iDn1C1

j˛i j:

It follows that .Hn/ is a Cauchy sequence in L1.j Nmjnuc;N .E; F //, so there exists
H 2 L1.j Nmjnuc;N .E; F // so that

R
X
kHn.t/ �H.t/knuc d j Nmjnuc

n
�! 0:

One can show that, for each x 2 E, a linear operator Sx W N .E; F / ! F defined
by Sx.U / WD U.x/ for U 2 N .E; F / is .k � knuc; k � kF /-bounded. Hence, using Hille’s
theorem (see [6, Section 1, Theorem 36, p. 16]), for B 2 Ba, we haveZ

B

H.t/ d j Nmjnuc.x/ D

Z
B

Sx.H.t// d j Nmjnuc D

Z
B

H.t/.x/ d j Nmjnuc:
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Then, we have  nX
iD1

˛i

Z
B

 i .t/ d j Nmjnuc.x/yi �

Z
B

H.t/.x/ d j Nmjnuc


F

D

 ZB
  

nX
iD1

˛i i .t/˝ yi

!
�H.t/

!
.x/ d j Nmjnuc


F

� kxkE

Z
B

kHn.t/ �H.t/knuc d j Nmjnuc
n
�! 0:

In view of (4.6), we get Nm.B/.x/D
R
B
H.t/.x/d j NmjnucD

R
B
H.t/d j Nmjnuc.x/, and hence,

Nm.B/ D
R
B
H.t/ d j Nmjnuc, and using Theorem 4.3, we get

T .f / D

Z
X

H.t/.f .t// d j Nmjnuc for f 2 Crc.X;E/:

As a consequence of Theorems 4.3 and 4.5, we have the following characterization of
.ˇ� ; k � kF /-continuous nuclear operators T W Crc.X;E/! F .

Corollary 4.6. Let T W Crc.X; E/ ! F be a weakly compact .ˇ� ; k � kF /-continuous
operator and m W B ! L.E; F / its representing measure. If E 0 has the Radon–Nikodym
property, then the following statements are equivalent.

(i) Nm.B/ 2 N .E;F / for B 2Ba and Nm WBa! N .E;F / is a countably additive
measure with j Nmjnuc.X/ < 1, and there exists H 2 L1.j Nmjnuc;N .E; F // so
that

Nm.B/ D

Z
B

H.t/ d j Nmjnuc for B 2 Ba:

(ii) T is a nuclear operator between the locally convex space .Crc.X; E/; ˇ� / and
the Banach space F .

(iii) T is a nuclear operator between the Banach spaces Crc.X;E/ and F .

(iv) Nm.B/ 2 N .E;F / for B 2Ba and Nm WBa! N .E;F / is a countably additive
measure with j Nmjnuc.X/ < 1, and there exists H 2 L1.j Nmjnuc;N .E; F // so
that

T .f / D

Z
X

H.t/.f .t// d j Nmjnuc for f 2 Crc.X;E/:

In this case, kT knuc D j Nmjnuc.X/ D jmjnuc.X/ D
R
X
kH.t/knuc d j Nmjnuc.

Proof. (i))(ii). It follows from Theorem 4.3. (ii))(iii). It is obvious because ˇ� � �u.
(iii))(iv). It follows from Theorem 4.5. (iv))(i). Assume that (iv) holds.

For each y0 2 F 0, the linear operator Ry0 W N .E; F /! E 0 defined by

Ry0.U / WD y
0
ı U
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for U 2 N .E; F / is .k � knuc; k � kE 0/-bounded. Hence, according to Hille’s theorem (see
[6, Section 1, Theorem 36, p. 16]), we have

y0 ı

Z
X

H.t/ d j Nmjnuc D Ry0

�Z
X

H.t/ d j Nmjnuc

�
D

Z
X

Ry0.H.t// d j Nmjnuc

D

Z
X

y0 ıH.t/ d j Nmjnuc;

and the function X 3 t 7! y0 ıH.t/ 2 E 0 belongs to L1.j Nmjnuc; E
0/.

Let
�y0.B/ WD

Z
B

y0 ıH.t/ d j Nmjnuc

for B 2 Ba. Then, by Lemma 4.1 �y0 2M� .Ba;E
0/ and, for f 2 Crc.X;E/, we haveZ

X

f .t/ d�y0 D

Z
X

y0.H.t/.f .t/// d j Nmjnuc D y
0.T .f //:

Assume now that A 2 B. Then, for y0 2 F 0, x 2 E, we have

y0.m.A/.x// D ..T 00 ı �/.1A ˝ x//.y
0/ D �.1A ˝ x/.y

0
ı T /

D

Z
X

.1A ˝ x/.t/ d�y0 D �y0.A/.x/ D y
0

�Z
A

H.t/ d j Nmjnuc.x/

�
;

and it follows that m.A/ D
R
A
H.t/ d j Nmjnuc.

For B 2 Ba, let us put m0.B/ WD
R
B
H.t/ d j Nmjnuc. One can observe that m0 2

M� .Ba;L.E;F //, and hence, in view of Theorem 3.1, Nm.B/Dm0.B/D
R
B
H.t/d j Nmjnuc

for B 2 Ba. Moreover, in view of Theorems 4.3 and 4.5, we have

kT knuc D j Nmjnuc.X/ D jmjnuc.X/ D

Z
X

kH.t/knuc d j Nmjnuc:

Remark 4.7. The result of Corollary 4.6 extends to the setting of completely regular
Hausdorff spaces, the classical results of Diestel and Uhl (see [4, p. 173]) and Popa (see
[24, Theorem 1]), where X is a compact Hausdorff space.

We will need the following lemma. (The proof is similar to the proof of Lemma 4.4
and will be omitted.)

Lemma 4.8. Assume that .�n/ is a bounded sequence inM� .Ba;E
0/, .yn/ is a bounded

sequence in F , and .˛n/ 2 `1. Then, for y0 2 F 0, we have that

1X
nD1

˛ny
0.yn/�n 2M� .Ba;E

0/

and  
1X
nD1

˛ny
0.yn/�n

!
.B/.x/ D

1X
nD1

˛n�n.B/.x/y
0.yn/ for B 2 Ba; x 2 E:
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Assume that T W Crc.X; E/! F is a .ˇ� ; k � kF /-continuous linear operator. Then,
we can consider the conjugate mapping

T 0 W F 0 3 y0 7! Nmy0 2M� .Ba;E
0/:

Now, as a consequence of Theorems 4.3 and 4.5, we establish the relationship between
the nuclearity of a .ˇ� ; k � kF /-continuous linear operator T W Crc.X; E/ ! F and the
nuclearity of its conjugate operator T 0 W F 0 !M� .Ba;E

0/.

Corollary 4.9. Assume that T W Crc.X; E/ ! F is a .ˇ� ; k � kF /-continuous nuclear
operator between the Banach spaces Crc.X; F / and F . Then, the mapping

T 0 W F 0 !M� .Ba;E
0/

is a nuclear operator and kT 0knuc � kT knuc:

Proof. Let "> 0 be given. Then, in view of the proof of Theorem 4.5, there exist a bounded
sequence .�n/ in M� .Ba;E

0/, a bounded sequence .yn/ in F , and a sequence .˛n/ 2 `1

so that

Nm.B/.x/ D

1X
nD1

˛n�n.B/.x/yn for B 2 Ba; x 2 E

and
1X
nD1

j˛njj�nj.X/kynkF � kT knuc C ":

Then, according to Lemma 4.8, for y0 2 F 0, we have
P1
nD1 ˛ny

0.yn/�n 2M� .Ba;E
0/,

and for any B 2 Ba, x 2 E, we get

T 0.y0/.B/.x/ D Nmy0.B/.x/ D

1X
nD1

˛n�n.B/.x/y
0.yn/ D

 
1X
nD1

˛ny
0.yn/�n

!
.B/.x/:

Thus, it follows that

T 0.y0/ D

1X
nD1

˛ny
0.yn/�n D

1X
nD1

˛niF .yn/.y
0/�n for y0 2 F 0:

This means that T 0 is a nuclear operator and

kT 0knuc �

1X
nD1

j˛njkynkF j�nj.X/ � kT knuc C ":

Since " > 0 is arbitrary, we get kT 0knuc � kT knuc:

Corollary 4.10. Let T W Crc.X; E/! F be a weakly compact .ˇ� ; k � kF /-continuous
linear operator. Assume that E 0 has the Radon–Nikodym property and F is reflexive. If
the mapping T 0 W F 0 !M� .Ba; E

0/ is a nuclear operator, then T is a nuclear operator
between the Banach spaces Crc.X;E/ and F and kT knuc � kT

0knuc:
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Proof. Let " > 0 be given. Then, there exist a bounded sequence .y00n/ in F 00, a bounded
sequence .�n/ in M� .Ba;E

0/, and .˛n/ 2 `1 so that

T 0.y0/ D

1X
nD1

˛ny
00
n.y
0/�n for y0 2 F 0

and
1X
nD1

j˛njky
00
nkF 00 j�nj.X/ � kT

0
knuc C ":

Since F is supposed to be reflexive, we can choose a sequence .yn/ in F such that y00n D
iF .yn/ for n 2 N. Then, for each y0 2 F 0 and B 2 Ba, x 2 E, we get (see Lemma 4.8)

y0. Nm.B/.x// D T 0.y0/.B/.x/ D

 
1X
nD1

˛niF .yn/.y
0/�n

!
.B/.x/

D

 
1X
nD1

˛ny
0.yn/�n

!
.B/.x/ D

1X
nD1

˛n�n.B/.x/y
0.yn/

D y0

 
1X
nD1

˛n�n.B/.x/yn

!
:

Hence, Nm.B/.x/D
P1
nD1 ˛n�n.B/.x/yn, and this means that Nm.B/ WE!F is a nuclear

operator.
To show that j Nmj.X/ � kT 0knuc, assume that .Bi /kiD1 is a Ba-partition of X . Then,

we have

kX
iD1

k Nm.Bi /knuc �

kX
iD1

 
1X
nD1

j˛njk�n.Bi /kE 0ky
00
nkF 00

!

D

1X
nD1

j˛njky
00
nkF 00

 
1X
nD1

k�n.Bi /kE 0

!

�

1X
nD1

j˛njky
00
nkF 00 j�nj.X/ � kT

0
knuc C ":

Hence, j Nmjnuc.X/� kT
0knucC ", and since " > 0 is arbitrary, we get j Nmjnuc.X/� kT

0knuc.
Arguing as in the proof of (i) of Theorem 4.5, we can show that the measure Nm W

Ba!N .E;F / is countably additive. Since E 0 is supposed to have the Radon–Nikodym
property, arguing as in the proof of (ii) of Theorem 4.5, we obtain that there exists H 2
L1.j Nmjnuc;N .E; F // so that

Nm.B/ D

Z
B

H.t/ d j Nmjnuc for B 2 Ba:

Hence, by Theorem 4.3, T is nuclear, and we get kT knuc D j Nmjnuc.X/ � kT
0knuc:
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As a consequence of Corollaries 4.9 and 4.10, we have the following result.

Corollary 4.11. Let T W Crc.X; E/! F be a weakly compact .ˇ� ; k � kF /-continuous
linear operator. Assume that E 0 has the Radon–Nikodym property and F is reflexive.
Then, the following statements are equivalent.

(i) T is a nuclear operator between the Banach spaces Crc.X;E/ and F .

(ii) The mapping T 0 W F 0 !M� .Ba;E
0/ is a nuclear operator.

In this case, kT knuc D kT
0knuc.
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