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Orlicz spaces with s-norms that are abstract M-spaces

Badik Hüseyin Uysal and Serap Öztop

Abstract. Let ˆ be an Orlicz function and Lˆ.X;†;�/ the corresponding Orlicz space on a non-
atomic, � -finite, complete measure space .X;†;�/. We describe those Orlicz spaces equipped with
s-norms that are abstract M-spaces. Our study generalizes and unifies the results that have been
obtained for the Orlicz norm, the Luxemburg norm, and the p-Amemiya norms separately.

1. Introduction

The notion of an abstract M-space plays a crucial role for the Banach lattice structure of a
Banach function space and its description as an abstract L-space. Every abstract M-space
is isomorphic as a Banach lattice with some closed vector sublattice of some suitable
CR.X/ for some compact Hausdorff spaceX [17]. Also, the strong dual of an abstract M-
space with unit is an abstract L-space. Consequently, an abstract M-space is an important
geometric property of a Banach function space. Orlicz spaces comprise an important class
of Banach spaces that are a kind of generalization of Lebesgue spaces. The theory of
Orlicz spaces has been greatly developed because of their important theoretical properties
and value in applications. Up to now, criteria that an Orlicz space equipped with the Orlicz
norm or the Luxemburg norm to be an abstract M-space have been obtained [5]. In [18],
using the concept of an outer function, M. Wisła presented a general and universal method
of introducing norms in Orlicz spaces that covered the classical Orlicz and Luxemburg
norms and p-Amemiya norms (1 6 p 6 1). Recently, in [3], s-norms were classified
with respect to the constant �s and real extreme points were described. It is known that
the geometric properties of a Banach function space depends on the norm. Our aim in this
work is to describe the abstract M-space of Orlicz spaces equipped with the s-norms.

The structure of this paper is as follows. In Section 2, we provide necessary definitions.
In Section 3, we recall some technical results for Orlicz spaces equipped with s-norms
that will be used and we make some observations from these known results. In Section 4,
we present some properties of Orlicz functions which are related to s-norms and strictly
increasing s-norms under some conditions. In Section 5, we describe abstract M-spaces
of Orlicz spaces equipped with s-norms. In Theorems 5.3 and 5.7, we present criteria for
abstract M-space of Orlicz spaces equipped with the s-norms.
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2. Preliminaries

A map ˆ W R! Œ0;1� is said to be an Orlicz function if ˆ.0/ D 0, ˆ is not identically
equal to zero, ˆ is even and convex on the interval .�bˆ; bˆ/, and ˆ is left continu-
ous at bˆ, where bˆ D sup¹u > 0 W ˆ.u/ < 1º. From these properties, it follows that
an Orlicz function ˆ is continuous on .�bˆ; bˆ/, is increasing on Œ0; bˆ/, and satisfies
limu!1ˆ.u/ D1. For any u; v 2 R,

ˆ.u/Cˆ.v/ � ˆ.uC v/:

This inequality is called the superadditivity of ˆ [9].
If ˆ is an Orlicz function, letting aˆ D sup¹u � 0 W ˆ.u/ D 0º, then aˆ D 0 means

that ˆ vanishes only at 0 while bˆ D 1 means that ˆ takes only finite values. From the
definition of an Orlicz function, we have aˆ � bˆ, aˆ <1, and bˆ > 0.

For an Orlicz function ˆ, we define its complementary function ‰ by the formula

‰.v/ D sup
u�0

¹ujvj �ˆ.u/º:

It is well known that the complementary function is an Orlicz function as well [16].
Throughout the paper, we will assume that .X; †; �/ is a measure space with a � -

finite, non-atomic, and complete measure � and denote by L0.X; †; �/ the space of all
�-equivalence classes of real-valued and †-measurable functions defined on X . For 1 �
p <1, we will denote by Lp.X;†;�/ or just by Lp the spaces of p-integrable functions
with respect to .X;†;�/. For p D1, we also denote by L1.X;†;�/ or just by L1 the
spaces of essentially bounded function with respect to .X;†; �/. In addition, we use the
conventions1 � 0 D 0, 1

1
D 0, and 1

0
D1.

For a given Orlicz function ˆ, we define on L0.X;†;�/ a convex functional Iˆ by

Iˆ.f / D

Z
X

ˆ.f / d�:

The Orlicz space Lˆ.X; †; �/ generated by an Orlicz function ˆ is a linear space of
measurable functions defined by [14]

Lˆ.X;†;�/ D
®
f 2 L0.X;†;�/ W Iˆ

�
�f
�
<1 for some � > 0

¯
:

We denote the Orlicz space Lˆ.X;†;�/ shortly by Lˆ.
The Orlicz space Lˆ is usually equipped with the Orlicz norm [14]

kf koˆ D sup
²Z

X

jf .t/g.t/j d� W g 2 L‰; I‰.g/ 6 1

³
;

where ‰ is the complementary function to ˆ, or with the equivalent Luxemburg norm
[11]

kf kˆ D inf
²
� > 0 W Iˆ

�
f

�

�
6 1

³
:
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At first sight, the Orlicz norm and the Luxemburg norm seem far from similar. In fact, in
many cases, the geometric properties of Orlicz spaces under each of these norms differ
from each other. I. Amemiya (see [13]) considered a norm defined by the formula

kf kAˆ D inf
k>0

1

k
.1C Iˆ.kf //:

Krasnosel’skii and Rutickii [9], Nakano [13], and Luxemburg and Zaanen [12] proved that
the Orlicz norm is expressed exactly by the Amemiya formula, i.e., kf koˆ D kf k

A
ˆ. In the

most general case of an Orlicz function ˆ, a similar result was obtained by Hudzik and
Maligranda [7]. Moreover, it is not difficult to verify that the Luxemburg norm can also
be expressed by an Amemiya-like formula [4, 15], namely,

kf kˆ D inf
k>0

1

k
max¹1; Iˆ.kf /º:

The only difference between the two Amemiya formulas is the function under the infimum
operation: for all u� 0 it is 1C u (for the Orlicz norm) and max¹1;uº (for the Luxemburg
norm). In the paper [7], Hudzik and Maligranda proposed to investigate another class of
norms given by Amemiya formula norms generated by the outer functions of the type

sp.u/ D

´
.1C up/

1
p for 1 � p <1;

max¹1; uº for p D1:

The p-Amemiya norms for f 2 Lˆ were defined by the formula

kf kˆ;p D inf
k>0

1

k
sp.Iˆ.kf //;

where 1 � p � 1 [4].
In 2020, the notion of the s-norms was introduced by M. Wisła, and the following

definitions can be found in [18].

Definition 2.1. A function s W Œ0;1�! Œ1;1� is called an outer function if it is convex
and satisfies the inequality

max¹u; 1º � s.u/ � uC 1

for all u � 0.

Let us note that an outer function s is continuous and increasing on Œ0;1/. Evidently,
s.0/ D 1, and we set s.1/ D1.

Since it is convex, an outer function s has both right and left derivatives. Let s0C be
the right derivative of s so that s0C W Œ0;1/! Œ0; 1� is an increasing function. Let s0C

�1
W

Œ0; 1�! Œ0;1� be a general inverse of s0C as defined in [18]. Then, s0C
�1 is an increasing

function as well.
Let us give some examples of families of outer functions.
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Example 2.2. (i) For 1 � p � 1,

sp.u/ D

´
.1C up/1=p if 1 � p <1;

max¹1; uº if p D1:
(2.1)

(ii) For 0 � c � 1,
sc.u/ D max¹1; uC cº: (2.2)

Definition 2.3. Let s be an outer function and ˆ an Orlicz function. Then, the s-norms of
f 2 Lˆ are defined by

kf kˆ;s D inf
k>0

1

k
s.Iˆ.kf //:

The Orlicz space equipped with an s-norm will be denoted by Lˆs .

Remark 2.4. Observe that each of the families given in (2.1) and (2.2) generates both the
Orlicz norm and the Luxemburg norm. In (2.1), if we take s D s1, then kf kˆ;s1 D kf k

o
ˆ;

if s D s1, then kf kˆ;s1 D kf kˆ; if s D sp for 1 < p <1, then kf kˆ;sp D kf kˆ;p
(see [4, 7]).

Similarly, in (2.2), c D 0 gives the Luxemburg norm and c D 1 the Orlicz norm.

Definition 2.5. Let s be an outer function. For all 0 � v � 1, define

w.v/ D

Z v

0

s0C
�1
.t/ dt:

It is clear that w is a non-negative, increasing, and continuous function on Œ0; 1�.

Definition 2.6. Let s be an outer function. For all 0 � u <1 and 0 � v � 1, set

ˇs.u; v/ D 1 � w.s
0
C.u// � vs

0
C.u/:

Denote also ˇs.kf / D ˇs.Iˆ.kf /; I‰.pC.kjf j/// for all f 2 Lˆ.

Note that the function k 7! ˇs.kf / is decreasing on Œ0;1/.

Definition 2.7. Let s be an outer function and ˆ an Orlicz function. For f 2 Lˆ n ¹0º
and 0 < k <1, we define the following functions:

D W Lˆs ! P .Œ0;1//; D.f / D ¹0 < k <1 W Iˆ.kf / <1º;

‚ W Lˆs ! Œ0;1/; ‚.f / D infD.f /�1;

k� W Lˆs ! .0;1�; k�.f / D inf¹k 2 D.f / W ˇs.kf / � 0º;

k�� W Lˆs ! Œ0;1/; k��.f / D sup¹k 2 D.f / W ˇs.kf / � 0º:

It is easy to see that 0 < k�.f / � k��.f / � 1. Let us also define

K.f / D
®
0 < k <1 W k�.f / � k � k��.f /

¯
:
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Obviously,K.f /¤ ; if and only if k�.f / <1. If k�.f / <1 for any f 2 Lˆs , then the
s-norms are called k�-finite; if k��.f / <1 for any f 2 Lˆs , then the s-norms are called
k��-finite. Further, if k�.f /D k��.f / <1 for any f 2 Lˆs , then the s-norms are called
k-unique.

Definition 2.8. Let s be an outer function. Define the constant �s by

�s D sup¹u � 0 W s.u/ D 1º:

Note that 0 � �s � 1, and it is obvious that s is strictly increasing on Œ�s;1/. We
focus on the cases of �s > 0 and �s D 0 in the rest of this paper. The key point in defining
this constant is that the equality �s D 0 provides an inverse function for the outer function
s since this function is strictly increasing on the entire interval Œ0;1/ whenever �s D 0.

Let � denote the set of outer functions and define the sets

�0 D ¹s 2 � W �s D 0º and �C D ¹s 2 � W �s > 0º:

The constants �s of the outer functions in (2.1) and (2.2) are obtained as follows.

(i) For sp of (2.1),

�sp D

´
0; 1 � p <1;

1; p D1:

(ii) For sc of (2.2),

�sc D sup¹u � 0 W uC c � 1º D 1 � c:

Note that 0 � c � 1.

As a consequence, we can classify the given outer functions as follows. The outer
functions sp; sc 2 �0 for 1 � p <1, c D 1 and sp; sc 2 �C for p D1, 0 � c < 1.

For more information about Orlicz spaces, their geometry, and their applications, we
refer to [2–4, 6–8, 10, 16, 18].

3. Auxiliary results

We recall some technical results that will be used in the rest of the paper.

Lemma 3.1 ([18, Lemma 3.2]). For every outer function s and Orlicz function ˆ,

kf kˆ D kf kˆ;s1 � kf kˆ;s � kf kˆ;s1 D kf k
o
ˆ � 2kf kˆ;s1 D 2kf kˆ

for all f 2 Lˆs .

Note that the Orlicz space Lˆs is a Banach space with the s-norms.

Theorem 3.2 ([18, Theorem 7.3]). Let s be an outer function and ˆ an Orlicz function.
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(i) The s-norm is k�-finite if and only if one of the following conditions is satisfied.

(a) ˆ takes infinite values, i.e., bˆ <1.

(b) w
�
s0C.u/

�
D 1 for some 0 < u <1.

(c) w.1/ D 1 and ˆ is not linear on Œ0;1/.

(d) ˆ does not admit an oblique asymptote.

(ii) The s-norm is k��-finite if and only if one of the conditions (a), (c), or (d) is
satisfied.

(iii) If ˆ does not admit an oblique asymptote, then the s-norm is k��-finite if and
only if it is k�-finite.

Corollary 3.3 ([18, Corollary 6.2]). Let s and ˆ be an outer and an Orlicz function,
respectively. The following hold for any f 2 Lˆs n ¹0º.

(i) For every k 2 .0;1/ \ Œk�.f /; k��.f /�, we have kf kˆ;s D 1
k
s.Iˆ.kf //.

(ii) If k��.f / D1, then kf kˆ;s D limk!1
1
k
s.Iˆ.kf //.

Lemma 3.4 ([3, Lemma 4.4]). Let s be an outer function and ˆ an Orlicz function.

(i) If k�.f / <1 for f 2 Lˆs n ¹0º, then .k�.f //�1 � kf kˆ;s .

(ii) Let f 2 Lˆs n ¹0º. If k��.f / D1, then k��.f / D 1
‚.f /

D1.

(iii) For all f 2 Lˆs n ¹0º, we obtain k�.f / � k��.f / � 1
‚.f /

.

4. Some properties of Orlicz spaces equipped with s-norms

In this section, we give some results for s-norms that generalize the results obtained for
the Orlicz norm and the Luxemburg norm [5, 6].

Lemma 4.1. Let ˆ be an Orlicz function and s an outer function. If bˆ < 1, then
kf k1 � bˆkf kˆ;s and Lˆs � L1.

Proof. Assume that bˆ <1. For f 2 Lˆs n ¹0º, let us define

A D ¹t 2 X W jf .t/j > bˆkf kˆ;sº:

Since jf j�A > bˆkf kˆ;s , we obtain ˆ. f�A
kf kˆ;s

/ D 1 by the definition of bˆ. By using
Lemma 3.1 and the definition of the Luxemburg norm, we have

1 � �.A/ D Iˆ

�
f�A

kf kˆ;s

�
� Iˆ

�
f

kf kˆ;s

�
� Iˆ

�
f

kf kˆ;s1

�
� 1:

Hence, �.A/ must be 0, i.e.,

jf .t/j � bˆ kf kˆ;s � - a.e. t 2 X I

this gives us desired one.
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The next proposition concerns the situations in which the s-norms are strictly increas-
ing.

Proposition 4.2. If the Orlicz space Lˆs with an s 2 �0 has aˆ D 0 and bˆ <1, then
the s-norm is strictly increasing.

Proof. Assume that aˆ D 0 and bˆ < 1. By Theorem 3.2, we know that the s-norm
is k��-finite. Therefore, for all f; g 2 Lˆs n ¹0º with f < g, we know that kgkˆ;s D
1
k0
s.Iˆ.k0g// for some positive k0 < k��.g/. By the superadditivity of ˆ, we have

Iˆ.k0g/ D Iˆ.k0.g � f /C k0f / � Iˆ.k0.g � f //C Iˆ.k0f /:

By the definition of the set of outer functions �0, we have that �s is 0. Hence, s is strictly
increasing on the half-line Œ0;1/. By using that fact that aˆ D 0, then we obtain

kgkˆ;s D
1

k0
s.Iˆ.k0g// >

1

k0
s.Iˆ.k0.g � f //C Iˆ.k0f // >

1

k0
s.Iˆ.k0f //

� inf
k>0

1

k
s.Iˆ.kf // D kf kˆ;s :

Therefore, s-norm is strictly increasing.

5. Abstract M-spaces

In this section, we give a description of abstract M-spaces of Orlicz spaces equipped with
s-norms. Criteria for abstract M-space of Orlicz spaces equipped with the Orlicz norm and
the Luxemburg norm are investigated in [5]. Our results will unify and extend these two
classical cases. Our study is based on s 2 �0 and s 2 �C given in Theorems 5.3 and 5.7.

Definition 5.1. An Orlicz space called Lˆs is an abstract M-space if

kmax¹f; gºkˆ;s D max¹kf kˆ;s; kgkˆ;sº for all 0 � f; g 2 Lˆs :

We have an equivalent and very useful condition for an abstract M-space in [1]. It says
that an Orlicz space is an abstract M-space if and only if

kf C gkˆ;s D max¹kf kˆ;s; kgkˆ;sº for all f; g 2 Lˆs with f ? g;

where f ? g means that �.supp f \ supp g/ D 0 and the support of a function f 2 Lˆs
is defined by the formula

suppf D ¹t 2 X W f .t/ ¤ 0º:

Throughout this paper, abstract M-spaces will be denoted by AM-spaces.
Lemmas 5.2 and 5.6 allow us to extend some results given for the Orlicz norm and

the Luxemburg norm in [5]. They will be very useful for proving the main results of this
section.
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Lemma 5.2. If the Orlicz space Lˆs with s 2 �0 is an AM-space, then bˆ <1.

Proof. Suppose that Lˆs with s 2 �0 is an AM-space. Let us prove bˆ <1. Assume that
bˆ D 1. For any c > aˆ, there exists " > 0 such that .1C "/.aˆ C "/ < c. Since our
measure is non-atomic, choose a measurable subset A of X such that 0 < �.A/ <1 and

s.Iˆ.c�A// D s.ˆ.c/�.A// < 1C ":

For all u � 0, we obtain

k�Akˆ;s D inf
k>0

1

k
s.Iˆ.k�A// �

1

c
s.Iˆ.c�A//

D
1

c
s.ˆ.c/�.A// <

1C "

c
<

1

aˆ C "
: (5.1)

Now, we divide the proof into two cases.

Case 1. Suppose that k��.�A/ <1. Since k��.�A/ <1, there exists 0 < k0 � k��.�A/
such that k�Akˆ;s D 1

k0
s.Iˆ.k0�A// by Corollary 3.3.

First, we will show that Iˆ.k0�A/ > 0. If aˆ D 0, then it is obviously true by the
definition of aˆ. Let aˆ > 0. Assume that Iˆ.k0�A/D 0. Then, we haveˆ.k0/�.A/D 0,
and so, k0 � aˆ. Therefore, by using the fact that s.0/ D 1, we obtain

k�Akˆ;s D
1

k0
s.Iˆ.k0�A// D

1

k0
s.0/ D

1

k0
�

1

aˆ
;

a contradiction to (5.1). Hence, we have Iˆ.k0�A/ > 0. This gives that 0 < ˆ.k0/ <1.
Let us take a measurable set B � A such that

�.B/ D �.A n B/ D
1

2
�.A/:

By assumption, we have �s D 0; then we know that s is a strictly increasing function on
the half-line Œ0;1/. Therefore,

k�Akˆ;s D
1

k0
s.Iˆ.k0�A// >

1

k0
s.Iˆ.k0�B// � inf

k>0

1

k
s.Iˆ.k�B// D k�Bkˆ;s :

We can prove in the same way that

k�Akˆ;s > k�AnBkˆ;s;

and so,

k�B C �AnBkˆ;s D k�Akˆ;s > max¹k�Bkˆ;s; k�AnBkˆ;sº:

Hence, we conclude that Lˆs is not an AM-space.
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Case 2. Assume that k��.�A/ D1. By Corollary 3.3, we obtain

k�Akˆ;s D lim
k!1

1

k
s.Iˆ.k�A// D lim

k!1

1

k
s.ˆ.k/�.A//:

Then, for a measurable set B � A with �.B/ D �.A n B/ D 1
2
�.A/, by using the fact

that u � s.u/ � 1C u for all u � 0, by Corollary 3.3, we have

k�Akˆ;s D lim
k!1

1

k
s.ˆ.k/�.A// � lim

k!1

1

k
ˆ.k/�.A/ D 2 lim

k!1

1

k
ˆ.k/�.B/

D 2 lim
k!1

1

k
.Iˆ.k�B// D 2 lim

k!1

1

k
.1C Iˆ.k�B// � 2 lim

k!1

1

k
s.Iˆ.k�B//

� 2 inf
k>0

1

k
s.Iˆ.k�B// > inf

k>0

1

k
s.Iˆ.k�B// D k�Bkˆ;s :

Similarly, we can prove that k�Akˆ;s > k�AnBkˆ;s . Therefore,

k�B C �AnBkˆ;s D k�Akˆ;s > max¹k�Bkˆ;s; k�AnBkˆ;sº:

Hence, we conclude that Lˆs with an s 2 �0 is not an AM-space, and the proof is com-
plete.

We have the following criteria for the Orlicz space equipped with s-norms to be an
AM-space in the case s 2 �0.

Theorem 5.3. The Orlicz space Lˆs with s 2 �0 is an AM-space if and only if

0 < aˆ; bˆ <1; and aˆ D bˆ: (5.2)

Proof. Sufficiency. Suppose that ˆ satisfies condition (5.2). By the definition of aˆ and
bˆ, we obtain

ˆ.u/ D

´
0 for 0 � u � u0;

1 for u > u0;

where u0 D aˆ D bˆ. Moreover, for all f 2 Lˆs n ¹0º and k > u0kf k�11 , we have

Iˆ.kf / D1:

Therefore, by using the fact that s.0/ D 1, we obtain

kf kˆ;s D inf
k>0

1

k
s.Iˆ.kf // D inf

0<k�u0kf k�11

1

k
s.0/ D u�10 kf k1

from [18]. Hence, we have kf kˆ;s D u�10 kf k1. Then, Lˆs is linearly isometric to L1.
By [1], we know that L1 is an AM-space. Then, we conclude that Lˆs is an AM-space.

Necessity. Suppose thatLˆs is an AM-space for any s 2 �0; then we know that bˆ <1
by Lemma 5.2. Assume that aˆ D 0. Then, we know that s-norm is strictly increasing by
Proposition 4.2. Therefore, we obtain

kf C gkˆ;s > max¹kf kˆ;s; kgkˆ;sº
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for any f; g 2 Lˆs n ¹0º. This gives the fact that Lˆs is not an AM-space, which is a
contradiction. Hence, aˆ > 0.

Now, assume that 0 < aˆ < bˆ <1. Take " > 0 such that .1C "/aˆ < bˆ � " and
choose a measurable subset A of X with 0 < �.A/ <1 such that

Iˆ..bˆ � "/�A/ D ˆ.bˆ � "/�.A/ � ":

Then, we obtain

k�Akˆ;s D inf
k>0

1

k
s.Iˆ.k�A// �

1

bˆ � "
s.Iˆ..bˆ � "/�A//

�
1

bˆ � "
.1C Iˆ..bˆ � "/�A// �

1C "

bˆ � "
<

1

aˆ
:

Similarly, as in the proof of Lemma 5.2,

k�B C �AnBkˆ;s D k�Akˆ;s > max¹k�Bkˆ;s; k�AnBkˆ;sº;

where for a measurable set B � A with �.B/D �.A nB/D 1
2
�.A/. Hence, we conclude

that Lˆs with any s 2 �0 is not an AM-space, and the proof is complete.

By [1], we know that L1 is an AM-space. Then, we conclude that the following
corollary from Theorem 5.3.

Corollary 5.4. The Orlicz space Lˆs with s 2 �0 is an AM-space if and only if Lˆs is
linearly isometric to L1.

We can give the following example.

Example 5.5. For u 2 R, let sp.u/ D .1C up/
1
p , where 1 � p <1 and

ˆ.u/ D

´
0 for juj � 1;

1 otherwise:

We have sp 2 �0 and aˆ D bˆ D 1. By Theorem 5.3, Lˆsp is an AM-space. Hence, Lˆsp is
just equal to L1.

Lemma 5.6. If the Orlicz space Lˆs with s 2 �C is an AM-space, then bˆ <1.

Proof. Suppose that Lˆs with an s 2 �C is an AM-space. Let us prove bˆ < 1. First,
assume that bˆ D 1. Take disjoint measurable subsets A, B of X and a number c > aˆ
such that ˆ.c/�.A/ D �s and ˆ.c/�.B/ D �s . Define

f D c�A; g D c�B :

Then, we have Iˆ.f /D Iˆ.g/D �s and Iˆ.f C g/ > �s . Now, we divide the proof into
two cases.
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Case 1. Assume that k��.f C g/ < 1. We investigate the following three situations.
Assume that k�.f C g/ � 1 � k��.f C g/. Note that s is strictly increasing on Œ�s;1/,
so by Corollary 3.3, we have

kf C gkˆ;s D s.Iˆ.f C g// > s.Iˆ.f // � inf
k>0

1

k
s.Iˆ.kf // D kf kˆ;s :

We can prove in the same way that

kf C gkˆ;s > kgkˆ;s;

and so,

kf C gkˆ;s > max¹kf kˆ;s; kgkˆ;sº:

Hence, we conclude that Lˆs with an s 2 �C is not an AM-space.
Second, assume that k��.f C g/ < 1. We obtain

1 < .k��.f C g//�1 � kf C gkˆ;s

from Lemma 3.4. By using the fact that

Iˆ.f / D Iˆ.g/ D �s;

then we have kf kˆ;s � s.Iˆ.f // D 1, and similarly, kgkˆ;s � 1. Therefore, we have

kf C gkˆ;s > max¹kf kˆ;s; kgkˆ;sº:

Hence, we conclude that Lˆs with any s 2 �C is not an AM-space.
Finally, assume that k�.f C g/ > 1. We have Iˆ.k�.f C g/.f C g// > �s and

Iˆ.k
�.f C g/f / � �s . Note that s is a strictly increasing function on Œ�s;1/, so by

Corollary 3.3, we have

kf kˆ;s �
1

k�.f C g/
s.Iˆ.k

�.f C g/f //

<
1

k�.f C g/
s.Iˆ.k

�.f C g/.f C g/// D kf C gkˆ;s :

We can prove in the same way that

kf C gkˆ;s > kgkˆ;s;

and so,

kf C gkˆ;s > max¹kf kˆ;s; kgkˆ;sº:

Hence, we conclude that Lˆs with any s 2 �C is not an AM-space.
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Case 2. Assume that k��.f C g/D1. Therefore, by using the fact that u� s.u/� 1Cu
for all u � 0, by Corollary 3.3, we have

kf C gkˆ;s D lim
k!1

1

k
s.Iˆ.k.f C g/// � lim

k!1

1

k
.ˆ.kc/�.A [ B//

D 2 lim
k!1

1

k
.ˆ.kc/�.A// D 2 lim

k!1

1

k
.Iˆ.kf //

D 2 lim
k!1

1

k
.1C Iˆ.kf // � 2 lim

k!1

1

k
s.Iˆ.kf //

� 2 inf
k>0

1

k
s.Iˆ.kf // > inf

k>0

1

k
s.Iˆ.kf // D kf kˆ;s :

Similarly, kf C gkˆ;s > kgkˆ;s . Therefore,

kf C gkˆ;s > max¹kf kˆ;s; kgkˆ;sº:

Hence, we conclude that Lˆs with any s 2 �C is not an AM-space, and the proof is com-
plete.

Note that if Orlicz space Lˆs is an AM-space, then k�.f / is finite by Theorem 3.2.
We have the following criteria for the Orlicz space equipped with s-norms to be AM-

space in the case s 2 �C.

Theorem 5.7. For an Orlicz function ˆ and an s 2 �C, the following are equivalent.

(i) The Orlicz space Lˆs is an AM-space.

(ii) bˆ <1 and ˆ.bˆ/ D 0 if �.X/ D1 or ˆ.bˆ/�.X/ � �s if �.X/ <1.

(iii) Lˆs is linearly isometric to L1.

Proof. Let us prove (i))(ii). Suppose that Lˆs with an s 2 �C is an AM-space. By using
Lemma 5.6, we have bˆ<1. Assume thatˆ.bˆ/�.X/> �s . Then, we obtainˆ.bˆ/ > 0.
Take disjoint measurable subsets A;B of X and a number c > aˆ such that ˆ.c/�.A/ D
�s and ˆ.c/�.B/ D �s . Define

f D c�A; g D c�B :

Then, we have Iˆ.f /D Iˆ.g/D �s and Iˆ.f C g/ > �s . By using the fact that bˆ <1,
then we know that s-norm is k��-finite from Corollary 3.3. Since k��.f C g/ < 1,
similarly, as in the proof of Lemma 5.6,

kf C gkˆ;s > max¹kf kˆ;s; kgkˆ;sº:

Hence, we conclude that Lˆs with an s 2 �C is not an AM-space.
Now, let us prove (ii))(iii). Assume that f 2 L1. Then, by (ii),

Iˆ

�
bˆjf j

kf k1

�
D

Z
X

ˆ

�
bˆjf j

kf k1

�
�

Z
X

ˆ.bˆ/ D ˆ.bˆ/�.X/ � �s :
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Therefore,

kf kˆ;s D inf
k>0

1

k
s.Iˆ.kf // �

kf k1

bˆ
s

�
Iˆ

�
bˆjf j

kf k1

��
�
kf k1

bˆ
:

Then, kf kˆ;s � b�1ˆ kf k1, and so, f 2 Lˆs . On the other hand, take f 2 Lˆs . Since
bˆ <1, by using Lemma 4.1, we obtain

b�1ˆ kf k1 � kf kˆ;s :

Since the opposite inequality was also proved, we obtain the equality

kf kˆ;s D b
�1
ˆ kf k1:

Therefore, Lˆs is linearly isometric to L1.
Finally, let us prove (iii))(i). By using the fact thatL1 is an AM-space [1], we obtain

that Lˆs is an AM-space.

In the following corollary, we specialize Theorems 5.3 and 5.7 to some special outer
functions.

Corollary 5.8. (i) For s D sp with p D 1, the corresponding Orlicz space is an
AM-space if and only if 0 < aˆ, bˆ <1, and aˆ D bˆ.

(ii) For s D sp with 1 < p <1, the corresponding Orlicz space is an AM-space if
and only if 0 < aˆ, bˆ <1, and aˆ D bˆ.

(iii) For s D sp with p D1, the corresponding Orlicz space is an AM-space if and
only if it provides one of the following.

(a) bˆ <1 and ˆ.bˆ/ D 0 if �.X/ D1 or ˆ.bˆ/�.X/ � 1 if �.X/ <1.

(b) Lˆs is linearly isometric to L1.

(iv) For s D sc with 0 � c < 1, the corresponding Orlicz space is an AM-space if
and only if it provides one of the following.

(a) bˆ <1 and ˆ.bˆ/ D 0 if �.X/ D1 or ˆ.bˆ/�.X/ � 1� c if �.X/ <
1.

(b) Lˆs is linearly isometric to L1.

The statements (i) and (iii) of this corollary are obtained in [5]. Theorems 5.3 and 5.7
generalize and unify all the cases of Orlicz, Luxemburg, and p-Amemiya norms for 1 <
p <1.

We will indicate the connection between the relations of Theorems 5.3 and 5.7 in the
following corollary.

Corollary 5.9. For any Orlicz function ˆ, measure space X , and outer function s, the
Orlicz space Lˆs is an AM-space if and only if it is linearly isometric to the space L1.
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