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Fractional Schrödinger–Poisson system involving concave
and convex nonlinearities
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Abstract. In this paper, we investigate the following fractional Schrödinger–Poisson system:´
.��/suC V.x/uC �u D P.x/jujp�2u �Q.x/jujq�2u in R3;

.��/s� D u2 in R3;

where 1 < p < 2 < q < C1, .��/s denotes the fractional Laplacian of order s 2 .34 ; 1/, and
V.x/, P.x/, and Q.x/ are given functions satisfying certain conditions. We aim to establish the
existence of infinitely many solutions for this system, considering nonlinearities P.x/jujp�2u and
Q.x/jujq�2u with varying growth rates, including subcritical, critical, and supercritical cases.

1. Introduction and main results

In this paper, we study the existence of solutions for the following fractional Schrödinger–
Poisson system:´

.��/suC V.x/uC �u D P.x/jujp�2u �Q.x/jujq�2u in R3;

.��/s� D u2 in R3;
(1.1)

where 1 < p < 2 < q < C1 and .��/s denotes the fractional Laplacian of order s 2
.3
4
; 1/. When s D 1

2
, this system becomes particularly intriguing from a physical per-

spective. It arises in the semi-relativistic theory within the context of repulsive Coulomb
interactions in plasma physics (see, for instance, [1]). By substituting the second equation
into the first, the system reduces to the semi-relativistic Hartree equation, which plays a
significant role in the quantum theory of boson stars [19].

When �.x/ D 0 in this system, equation (1.1) reduces to the fractional Schrödinger
equation like:

.��/suC V.x/u D P.x/jujp�2u �Q.x/jujq�2u in R3; (1.2)

which is related to standing wave solutions of the fractional time-dependent Schrödinger
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equation of the form

i
@ 

@t
D .��/s C V.x/ � f .x; j j/; x 2 RN ;

which is a fundamental equation in fractional quantum mechanics (see [18]). It is well
known that, different from the classical Laplacian operator, the usual analysis tools for
elliptic PDEs cannot be directly applied to (1.2) since .��/s is a nonlocal operator.

When s D 1, (1.1) is the following classical Schrödinger–Poisson system´
��uC V.x/uC ��u D f .x; u/ in R3;

��� D u2 in R3;
(1.3)

which was proposed by Benci and Fortunato [7] in 1998 on a bounded domain and is
related to the Hartree equation [21]. In the past several years, the existence and multiplic-
ity of solutions to the systems similar to (1.3) have been studied extensively by means of
variational tools; we refer the interested readers to see [2, 4, 5, 9, 13, 15, 39] and the ref-
erences therein. In particular, when f .x; u/ D up�1.2 < p < 6/, V � 1, and � > 0 is a
positive parameter, Ruiz [26] obtained some general results about existence and nonexis-
tence of positive solutions. In the case p < 4, the problem (1.3) becomes more delicate
since the corresponding energy functional does not possess the mountain pass geometry
in general. To overcome this difficulty, Ruiz considered a new constrained minimization
problem on a new manifold which is obtained by combining the usual Nehari manifold
and the Pohožaev’s identity. After that, Wang, and Zhou [31] proved that (1.3) has a posi-
tive solution for � small and has no nontrivial solution for � large when the nonlinearity
f .x; u/ is asymptotically linear with respect to u at infinity. The existence of solutions
of (1.3) involving nonconstant positive potentials was considered independently in [6,40].
Ambrosetti and Ruiz [3] constructed multiple solutions to (1.3) with a potential vanishing
at infinity. A system under the effect of a general nonlinear term was considered in [4, 5].
The existence of sign-changing solutions for (1.3) was established in [10,12,14,16,27,32]
under different conditions on V.x/ and f .x; u/. Recently, in [24], Liu, Wang and Zhang
obtained the existence of infinitely many sign-changing solutions to (1.3) with a general
nonlinearity f .u/ � jujp�1u .3 < p < 5/ and a coercive potential by using the method
of invariant sets of descending flow.

Recently, there is an increasing interest in the existence of solutions to the fractional
Schrödinger–Poisson system. A fractional Schrödinger–Poisson system with V D 0 and
a general nonlinearity in the subcritical and critical case was considered in [38]. In [29,
30], Teng adapted the monotonicity trick to obtain the existence of ground state solutions
to critical and subcritical cases, respectively. For the other results about existence and
concentration of solutions, we refer to [20, 23, 25, 34–37] and the references therein.

In this paper, we are concerned with the existence of multiplicity of solutions for (1.1)
with concave and convex nonlinearities which have subcritical, critical, or supercritical
growth. To the best of our knowledge, there are no results in this direction for fractional
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problems. We assume that V.x/, P.x/, and Q.x/ are three measurable functions satisfy-
ing the following conditions.

.V / V 2 C.R3;R/ and 0 < inf
x2R3

V.x/.

.P / P 2 L
6

6�.3�2s/p .R3/ \ L1.R3/ and P.x/ � 0 is not identically zero.

.Q/ Q 2 L1.R3/ and Q.x/ � 0 for a.e. x 2 R3.

Now, we state our main results as follows.

Theorem 1.1. Assume that 1 < p < 2 < q < C1 and .V /, .P /, and .Q/ hold; then,
system (1.1) admits infinitely many solutions inH s.R3/�Ds;2.R3/ with negative energy.

As was remarked in a previous column, when �.x/ D 0 in (1.1), the system (1.1) can
reduce to equation (1.2); then, we have the following result.

Corollary 1.1. Assume that 1 < p < 2 < q < C1 and .V /, .P /, and .Q/ hold; then,
equation (1.2) admits infinitely many solutions in H s.R3/ with negative energy.

The main difficulty is the loss of compactness of the Sobolev embedding when we
work on R3. Moreover, since 2 < p < C1 is allowed to be supercritical, the usual space
H s.R3/ cannot be used as our framework for the study of problem (1.1). To overcome
these difficulties, we introduce a new space which is similar to that in the paper [22, 28].

This paper is organized as follows. In Section 2, besides describing the functional
setting to study problem (1.1), we prove some preliminary lemmas which will be used
later. In Section 3, we give the proof of Theorem 1.1.

Notation. In this paper, we make use of the following notations.

• The letter C stands for any positive constants.

• “!” and “*” represent strong convergence and weak convergence, respectively.

• on.1/ is a quantity tending to 0 as n!1.

• k � kr is the usual norm of the space Lr .R3/.

• Br .x/ denotes the open ball with center at x and radius r .

2. Variational settings and preliminary results

Firstly, fractional Sobolev spaces are the convenient setting for our problem, so we will
give some sketches of the fractional-order Sobolev spaces and the complete introduc-
tion can be found in [11]. We recall that, for any s 2 .0; 1/, the fractional Sobolev space
H s.R3/ D W s;2.R3/ is defined as follows:

H s.R3/ D

²
u 2 L2.R3/ W

Z
R3

.j�j2sjF .u/j2 C jF .u/j2/d� <1

³
;
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whose norm is defined as

kuk2
H s.R3/

D

Z
R3

.j�j2sjF .u/j2 C jF .u/j2/d�;

where F denotes the Fourier transform. We also define the homogeneous fractional
Sobolev space Ds;2.R3/ as the completion of C10 .R

3/ with respect to the norm

kukDs;2.R3/ WD

�“
R3�R3

ju.x/ � u.y/j2

jx � yj3C2s
dxdy

� 1
2

D Œu�H s.R3/:

The embedding Ds;2.R3/ ,! L2
�
s .R3/ is continuous, and for any s 2 .0; 1/, there

exists a best constant Ss > 0 such that

Ss WD inf
u2Ds;2.R3/

kuk2
Ds;2.R3/

kuk2
2�s .R3/

:

The fractional laplacian, .��/su, of a smooth function u W R3 ! R, is defined by

F ..��/su/.�/ D j�j2sF .u/.�/; � 2 R3;

that is,

F .�/.�/ D
1

.2�/
3
2

Z
R3

e�i��x�.x/dx;

for functions � in the Schwartz class. Also, .��/su can be equivalently represented [11]
as

.��/su.x/ D �
1

2
C.s/

Z
R3

u.x C y/C u.x � y/ � 2u.x/

jyj3C2s
dy; 8x 2 R3;

where

C.s/ D

�Z
R3

.1 � cos�1/

j�j3C2s
d�

��1
; � D .�1; �2; �3/:

Also, by the Plancherel formula in Fourier analysis, we have

Œu�2
H s.R3/

D
2

C.s/
k.��/

s
2uk22:

As a consequence, the norms on H s.R3/ defined above,

u 7!

�Z
R3

juj2dx C

“
R3�R3

ju.x/ � u.y/j2

jx � yj3C2s
dxdy

� 1
2

;

u 7!

�Z
R3

.j�j2sjF .u/j2 C jF .u/j2/d�

� 1
2

;

u 7!

�Z
R3

juj2dx C k.��/
s
2uk22

� 1
2

are equivalent.
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It is known that problem (1.1) can be reduced to a single equation; see [7]. In fact, for
a fixed u 2 H s.R3/, there exists a unique �su 2 Ds;2.R3/ which is the solution of

.��/s� D u2 in R3:

We can write an integral expression for �su in the form

�su.x/ D Cs

Z
R3

u2.y/

jx � yj3�2s
dy; 8x 2 R3;

which is called s-Riesz potential (see [17]), where

Cs D
1

�
3
2

�.3 � 2s/

22s�.s/
:

To be more precise about the solution � of the fractional Poisson equation, we have the
following lemma.

Lemma 2.1 ([29]). For any u 2 H s.R3/ and s � 1
2

, we have the following:

(i) �su � 0;

(ii) �su W H
s.R3/! Ds;2.R3/ is continuous and maps bounded sets into bounded

sets;

(iii)
R

R3 �
s
uu
2dx � S2s kuk

4
12
3C2s

� Ckuk4;

(iv) If un * u in H s.R3/, then �sun * �su in Ds;2.R3/;

(v) If un ! u in H s.R3/, then �sun ! �su in Ds;2.R3/ andZ
R3

�sunu
2
ndx !

Z
R3

�suu
2dx:

Define N W H s.R3/! R by

N.u/ D

Z
R3

�suu
2dx

it is clear that N.u.� C y// D N.u/ for any y 2 R3, u 2 H s.R3/ and N is weakly lower
semi-continuous inH s.R3/. Moreover, similar to the well-known Brézis–Lieb lemma [8],
we have the next lemma.

Lemma 2.2 ([29]). Let un * u in H s.R3/ and un ! u a.e. in R3 with s > 3
4

. Then,

(i) N.un � u/ D N.un/ �N.u/C o.1/;

(ii) N 0.un � u/ D N
0.un/ �N

0.u/C o.1/, in .H s.R3//�1.

Putting � D �su into the first equation of (1.1), we obtain a semilinear elliptic equation

.��/suC V.x/uC �suu D P.x/juj
p�2u �Q.x/jujq�2u in R3;
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with a nonlocal term. Note that if s � 1
2

, there holds 2 � 12
3C2s

� 2�s and thusH s.R3/ ,!

L
12
3C2s .R3/; then, by Hölder inequality and Sobolev inequality, we haveZ

R3

�suu
2dx �

�Z
R3

juj
12
3C2s dx

� 3C2s
6
�Z

R3

j�suj
2�s dx

� 1
2�s

� S
� 12
s

�Z
R3

juj
12
3C2s dx

� 3C2s
6

k�sukDs;2

� Ckuk2k�sukDs;2 <1:

In view of the presence of potential V.x/, we introduce the subspace

H D

²
u 2 H s.R3/ W

Z
R3

V.x/u2dx < C1

³
;

which is a Hilbert space equipped with the inner product

.u; v/H D

Z
R3

.��/
s
2u.��/

s
2 vdx C

Z
R3

V.x/uvdx;

and the norm

kuk2H D .u; u/ D

Z
R3

j.��/
s
2uj2dx C

Z
R3

V.x/u2dx:

Unfortunately, since 1 < p < 2 < q < C1, which means the nonlinearities have sub-
critical, critical, or supercritical growth, we cannot use H as our framework for the study
of system (1.1); then, we have to introduce a new space. For the nonnegative measurable
function P.x/ and 1 < p < C1, we define the weighted Lebesgue space

L
p
P .R

3/ WD

²
u is measurable W

Z
R3

P.x/jujpdx <1

³
and associate with the seminorm

juj
p
p;P D

Z
R3

P.x/jujpdx: (2.1)

Motivated by [22], letLpP .R
3/ be defined as (2.1) andE the completion ofC10 .R

3/ under
the norm

kuk D kukH C jujp;P :

Then, E is a Banach space; however, it is difficult to judge whether E is reflexive as
pointed out in [22]. The following inclusions also hold:C10 �E �Ds;2 \L

p
P . Moreover,

from the following lemma, we have some compactness of E.

Lemma 2.3. Suppose P.x/ 2 L
2N

2N�.N�2/p .RN / \ L1.RN / with 1 < p < 2�s . Then, for
every u 2 Ds;2.RN /, the equation

.��/sw D P.x/jujp�2u in RN
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possesses a unique solution w 2 Ds;2.RN /. Further, the operator

K
p
P W D

s;2.RN / 7! Ds;2.RN /

defined by KpP .u/ D w is compact.

Proof. We define the linear form

‰v D

Z
RN

P.x/jujp�2uvdx; 8u; v 2 Ds;2.RN /:

Obviously, ‰ is continuous, and by Riesz’s representation lemma, there exists a unique
w 2 Ds;2.RN / satisfyingZ

RN

.��/
s
2w.��/

s
2 vdx D

Z
RN

P.x/jujp�2uvdx; 8v 2 Ds;2.RN /;

which means that w is a weak solution of

.��/sw D P.x/jujp�2u in RN :

Next, we prove the compactness of the operatorKpP ; taking ¹unº �Ds;2.RN / as a bound-
ed sequence, up to a subsequence, we may assume that un * u in Ds;2.RN /. Let wn D
K
p
P .un/ and w D KpP .u/; we have

kwn � wk
2
Ds;2.R3/

D

Z
R3

P.x/
�
junj

p�2un � juj
p�2u

�
.wn � w/dx

�


P.x/�junjp�2un � jujp�2u�

 2N

NC2s
kwn � wk 2N

N�2s

� C1


P.x/�junjp�2un � jujp�2u�

 2N

NC2s
kwn � wkDs;2.R3/I

then,
kwn � wkDs;2.R3/ � C1



P.x/�junjp�2un � jujp�2u�

 2N
NC2s

:

After that, we only need to prove that the last norm tends to zero. In fact, for an arbitrary
" > 0, we have

P.x/�junjp�2un � jujp�2u�

 2N

NC2s
2N
NC2s

D


P.x/�junjp�2un � jujp�2u�

 2N

NC2s

L
2N
NC2s .BR/

C


P.x/�junjp�2un�jujp�2u�

 2N

NC2s

L
2N
NC2s .RN nBR/

:

Note that 

�junjp�2un � jujp�2u�


L

2N
.N�2s/.r�1/ .RN nBR/

� C2I

we can choose a ball BR with enough large radius to obtain

kP.x/k
2N
NC2s

L
2N

2N�.N�2s/r .RN nBR/

�
"

2C
2N
NC2s

2

:
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Therefore, 

P.x/�junjp�2un � jujp�2u�

 2N
NC2s
2N
NC2s

�


P.x/�junjp�2un � jujp�2u�

 2N

NC2s

L
2N
NC2s .BR/

C
"

2
:

Moreover, due to the compact embedding of Ds;2.RN / ,! Lr .BR/ with r 2 Œ2; 2�s /
(see, [11]), we have un ! u in L

2N
NC2s .BR/, and then,

P.x/�junjp�2un � jujp�2u�

 2N

NC2s

L
2N
NC2s .BR/

<
"

2

for n sufficiently large. Thus, we deduce that

P.x/�junjp�2un � jujp�2u�

 2N
NC2s
2N
NC2s

< "

for n sufficiently large. This means kP.x/.junjp�2un � jujp�2u/k 2N
NC2s

! 0, and we
conclude that wn ! w, which completes the proof.

Lemma 2.4. If .V / and .P / hold, then the embedding E ,! L
p
P .R

3/ is compact.

Proof. It follows from Lemma 2.3 that the embedding Ds;2.R3/ ,! L
p
P .R

3/ .p 2 .1; 2//

is compact. Then, the compactness of E ,! L
p
P .R

3/ follows from the compactness of
Ds;2.R3/ ,! L

p
P .R

3/ .p 2 .1; 2// and the continuity of E ,! Ds;2.R3/ (see [11]).

The corresponding functional I W E ! R is defined by

I.u/ D
1

2

Z
R3

j.��/
s
2uj2dx C

1

2

Z
R3

V.x/u2dx C
1

4

Z
R3

�suu
2dx

�
1

p

Z
R3

P.x/jujpdx C
1

q

Z
R3

Q.x/jujqdx

D
1

2
kuk2 C

1

4

Z
R3

�suu
2dx �

1

p

Z
R3

P.x/jujpdx C
1

q

Z
R3

Q.x/jujqdx:

Therefore, by Lemma 2.4, the functional I is well defined for every u 2 E and belongs to
C 1.E;R/. Moreover, for any u; v 2 E, we have

hI 0.u/; vi D

Z
R3

.��/
s
2u.��/

s
2 vdx C

Z
R3

V.x/uvdx C

Z
R3

�suuvdx

�

Z
R3

jujp�2uvdx �

Z
R3

jujq�2uvdx:

It is standard to verify that a critical point u of the functional I corresponds to a weak
solution .u; �/ of (1.1) with � D �su. Hence, in the following, we consider critical points
of I using the variational method.
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3. Proof of Theorem 1.1

As has been mentioned in above, we only need to prove that I has infinitely many critical
points. Let E be a real Banach space and the functional I 2 C 1.E;R/. Recall that the
functional I is said to satisfy Palais–Smale (for short .PS/) condition if every sequence
¹unº � E with

I.un/ being bounded; I 0.un/! 0; as n!1; (3.1)

possesses a convergent subsequence. Moreover, we need the following critical point theo-
rem to complete our proof.

Theorem 3.1 ([33]). Suppose I.0/ D 0 and I satisfies the .PS/ condition and is even
and bounded from below. If, for any n 2N, there exists a n-dimensional subspace En and
�n > 0 such that

sup
En\S�n

I < 0;

where S�n D ¹u2E W kukD �nº, then I has a sequence of critical values cn <0 satisfying
cn ! 0 as n!1.

To apply the above critical point theorem, the .PS/ condition is important. First, we
will verify this condition for I WE!R. For this, we have the following useful inequalities.

Lemma 3.1. Given ˛; ˇ > 0, there is a C > 0 such that

˛kuk2H C ˇ

Z
R3

Q.x/jujqdx � C.kuk2 C kukq/

and

˛kuk2H C ˇ

Z
R3

Q.x/jujqdx �

´
Ckuk2 if kuk � 1;

Ckukq if kuk � 1:

Proof. This conclusion follows easily from the definition of k � kH and k � k.

Lemma 3.2. Under the assumptions of Theorem 1.1, the function I is coercive on E.

Proof. By the best Sobolev constant and .P /, we haveZ
R3

P.x/jujpdx � kP k 6
6�.3�2s/p

S
�
p
2

s kuk
p

Ds;2.R3/
� Ckukp: (3.2)

For kuk large enough, Lemma 3.1 together with (3.2) implies

I.u/ D
1

2
kuk2 C

1

4

Z
R3

�suu
2dx �

1

p

Z
R3

P.x/jujpdx C
1

q

Z
R3

Q.x/jujqdx

� Ckuk2 � Ckukp;

which implies I.u/!C1 as kuk ! C1.
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In general, to prove the .PS/ condition, the reflexivity of the space is needed. How-
ever, we do not know whether E is reflexive. We borrow some ideas from [22] to avoid
this difficulty.

Lemma 3.3. Under the assumptions of Theorem 1.1, the function I satisfies the .PS/
condition.

Proof. It follows from Lemma 3.2 that every sequence ¹unº satisfying (3.1) is bounded
in E. Thus, ¹unº is bounded in Ds;2.R3/, and we can assume that for some u 2 E, up to
a subsequence,

un * u in H;

un ! u in Lrloc.R
3/; 2 � r < 2�s ;

un.x/! u.x/ a:e: in R3:

(3.3)

Claim 1. I 0.u/ D 0.
For any ' 2 C10 .R

3/, since

hI 0.un/; 'i D on.1/k'k;

we have Z
R3

..��/
s
2un.��/

s
2 ' C V.x/un'/dx C

Z
R3

�sunun'dx

�

Z
R3

P.x/junj
p�2un'dx C

Z
R3

Q.x/junj
q�2un'dx

D on.1/k'k: (3.4)

We only need to prove the following convergence:Z
R3

�sunun'dx !

Z
R3

�suu'dx; (3.5)Z
R3

P.x/junj
p�2un'dx !

Z
R3

P.x/jujp�2u'dx; (3.6)

and Z
R3

Q.x/junj
q�2un'dx !

Z
R3

Q.x/jujq�2u'dx: (3.7)

In fact, it follows from Lemma 2.1 that (3.5) holds. Then, we prove (3.6) and (3.7). Since

¹unº is bounded in E, then ¹P
p�1
p junj

p�2unº is bounded in L
p
p�1 .R3/. From (3.3), up to

a subsequence, we can assume that

P
p�1
p junj

p�2un * P
p�1
p jujp�2u in L

p
p�1 .R3/:

This together with P
1
p ' 2 Lp.R3/ implies that (3.6). Similarly, (3.7) holds.
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Therefore, letting n!1 in (3.4), we haveZ
R3

..��/
s
2u.��/

s
2 ' C V.x/u'/dx C

Z
R3

�suu'dx

�

Z
R3

P.x/jujp�2u'dx C

Z
R3

Q.x/jujq�2u'dx D 0;

which implies that I 0.u/ D 0.

Claim 2. un ! u in H .
From hI 0.un/; uni D on.1/kunk, hI 0.u/; ui D 0 and Lemma 2.4, we have

lim
n!1

�
kunk

2
H C

Z
R3

�sunu
2
ndx C

Z
R3

Q.x/junj
qdx

�
D lim
n!1

Z
R3

P.x/junj
pdx

D

Z
R3

P.x/jujpdx

D kuk2H C

Z
R3

�suu
2dx C

Z
R3

Q.x/jujqdx: (3.8)

Note that k�sunkDs;2.R3/ � Ckunk
2
12
3C2s

; we know that �sun is bounded in Ds;2.R3/ and

then
�sun * �su in Ds;2.R3/:

Thus, by the weak semi-continuity of norm, we haveZ
R3

�suu
2dx D k�sukDs;2.R3/ � lim inf

n!1
k�sunkDs;2.R3/ D lim inf

n!1

Z
R3

�sunu
2
ndx: (3.9)

Further, by Fatou’s lemma, one hasZ
R3

Q.x/jujqdx � lim inf
n!1

Z
R3

Q.x/junj
qdx: (3.10)

From (3.9) and (3.10), we have

lim
n!1

�
kunk

2
H C

Z
R3

�sunu
2
ndx C

Z
R3

Q.x/junj
qdx

�
� lim inf

n!1
kunk

2
H C lim inf

n!1

Z
R3

�sunu
2
ndx C lim inf

n!1

Z
R3

Q.x/junj
qdx

� lim inf
n!1

kunk
2
H C

Z
R3

�suu
2dx C

Z
R3

Q.x/jujqdx:

This together with (3.8) gives

kuk2H � lim inf
n!1

kunk
2
H :

From this and the weak low semi-continuity, we have that

kunk
2
H ! kuk

2
H ; (3.11)

which means that un ! u in H .
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Claim 3. un ! u in E.
In fact, it suffices to prove thatZ

R3

Q.x/junj
qdx !

Z
R3

Q.x/jujqdx: (3.12)

Note that un ! u in H implies that un ! u in L
12
3C2s .R3/ and �sun * �su in L2

�
s .R3/.

Thus, by Hölder inequality and Sobolev inequality, we haveˇ̌̌̌ Z
R3

�sunu
2
ndx �

Z
R3

�suu
2dx

ˇ̌̌̌
�

Z
R3

�sun.u
2
n � u

2/dx C

Z
R3

.�sun � �
s
u/u

2dx

� k�sunk2�s kun � uk 12
3C2s
kun C uk 12

3C2s
C

Z
R3

.�sun � �
s
u/u

2dx

� Ckun � uk 12
3C2s
C

Z
R3

.�sun � �
s
u/u

2dx

! 0I

this together with (3.8) and (3.11) implies that (3.12). The proof is completed.

Let
� WD ¹x 2 R3 W P.x/ D 0º;

and
� WD ¹u 2 E W u.x/ D 0 a.e. x 2 �º;

then, we can see that � is an infinite-dimensional linear subspace of E. After having
verified the .PS/ condition, we will investigate the geometry of I and complete our proof.

Lemma 3.4. The seminorm jujp;P D .
R

R3 P.x/juj
pdx/

1
p is a norm on � .

Proof. We only need to show that

u 2 �; jujp;P D 0 ) u D 0:

In fact, since P.x/ > 0, we have

0 D jujp;P D

Z
R3

P jujpdx D

Z
P>0

P jujp:

We see that u D 0 a.e. on ¹x 2 R3 j P.x/ > 0º. But u 2 � , that is, u D 0 a.e. on �. So,
u D 0 a.e. on R3.

Proof of Theorem 1.1. From Lemmas 3.2 and 3.3, we know that I satisfies the .PS/ con-
dition and is bounded from below. In order to apply Theorem 3.1, we only need to prove
that, for any n 2 N, there exists an n-dimensional subspace En and �n > 0 such that

sup
En\S�n

I < 0;
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where S�n D ¹u 2 E W kuk D �nº. Let j�j denote the Lebesgue measure of �; we have
the following two cases.

Case 1. j�j D 0.
In this case, we have P > 0 a.e. on R3. By Lemmas 2.1 and 3.1, we have

I.u/ D
1

2
kuk2H C

1

4

Z
R3

�suu
2dx �

1

p

Z
R3

P.x/jujpdx C
1

q

Z
R3

Q.x/jujqdx

� Ckuk2 C Ckukq C ckuk4 �
1

p
juj

p
p;P :

For any n 2 N, we can choose an n-dimensional subspace En in E, and j � jp;P is a
norm of En. Then, for u 2 En, using the fact that all norms on finite-dimension space are
equivalent and 1 < p < 2 < q, there exists �n > 0 small such that, for kuk D �n,

I.u/ � Ckuk2 C Ckukq C ckuk4 �
1

p
juj

p
p;P < 0:

Therefore, we completed the proof for this case.

Case 2. j�j > 0.
In this case, Lemma 3.4 implies that the seminorm j � jp;P is a norm on the space � .

Since dim � D 1, given n 2 N, let En be an n-dimensional subspace in �; then, for
u 2 En, Lemma 3.1 means that

I.u/ D
1

2
kuk2H C

1

4

Z
R3

�suu
2dx �

1

p

Z
R3

P.x/jujpdx C
1

q

Z
R3

Q.x/jujqdx

� Ckuk2 C Ckukq C ckuk4 �
1

p
juj

p
p;P

� Ckuk2 C Ckukq C ckuk4 � CkukpI

then, there exists a �n > 0 such that

I.u/ < 0; for kuk D �n; with u 2 En:

The proof is completed.
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