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Schrodinger equation for Sturm-Liouville operator
with singular propagation and potential

Michael Ruzhansky and Alibek Yeskermessuly

Abstract. In this paper, we consider an initial/boundary value problem for the Schrodinger equation
with the Hamiltonian involving the fractional Sturm—Liouville operator with singular propagation
and potential. To construct a solution, first considering the coefficients in a regular sense, the method
of separation of variables is used, which leads the solution of the equation to the eigenvalue and
eigenfunction problem of the Sturm-Liouville operator. Next, using the Fourier series expansion in
eigenfunctions, a solution to the Schrédinger equation is constructed. Important estimates related
to the Sobolev space are also obtained. In addition, the equation is studied in the case where the
initial data, propagation, and potential are strongly singular. For this case, the concept of “very weak
solutions” is used. The existence, uniqueness, negligibility, and consistency of very weak solution
of the Schrodinger equation are established.

1. Introduction

The main goal of this paper is to establish the existence of physical solutions for the
Schrodinger equation, specifically when it involves the Sturm-Liouville operator with
singular potentials. When tackling problems with strong singularities, a prior study by
[8] introduced the concept of “very weak solutions”. This approach is necessary because
when the equation involves products of various terms, it can no longer be clearly defined
in spaces of distributions. Consequently, we require an alternative way to determine the
well posedness of the equation.

The development of very weak solutions for various types of problems continued in
several works, such as [1-06, 13, 14, 16]. In the works [12, 15], the concept of very weak
solutions of the wave equation for the Sturm—Liouville operator with singular potentials
in bounded domains was expanded.

It is known that the Schrddinger equation can be simplified into ordinary linear equa-
tions using the “separation of variables” method; see, e.g., [9]. To present our main find-
ings, we provide some initial information about the Sturm—Liouville operator with singu-
lar potentials. Savchuk and Shkalikov’s study in [18] yielded eigenvalues and eigenfunc-
tions for this operator. Additionally, studiesin [11,17,19,20] explored the Sturm—Liouville
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operator with potential distributions. To establish the framework for very weak solutions,
our focus is primarily on estimating solutions for more regular problems while also con-
sidering the impact of a regularization parameter on these solutions.

For further reasoning and obtaining our results, we need some preliminaries about
the Sturm—Liouville operator with singular potentials. More specifically, we consider the
Sturm-Liouville operator &£ generated on the interval (0,1) by the differential expression

d2
Ly :=-——5y+a)y. (L.1)
with the boundary conditions
y(0) = y(1) =0. (1.2)
The potential g is defined as
g(x) =1v'(x) >0, velL*0,1). (1.3)

The eigenvalues of the Sturm-Liouville operator £ generated on the interval (0,1) by
the differential expression (1.1) with the boundary conditions (1.2) are real [10] and given
by

o = (@n)?!(1+o(m™Y), n=1.2,..., (1.4)

and the corresponding eigenfunctions are
$n(x) = rax) sin 6y (x), (1.5)
where

rp(x) = exp ( — /Ox v(s) cos 26, (s)ds + 0(1)) =1+4o0(1),
On(x) = v/ Anx + 0(1)

for n — oco. According to (1.3), (1.4), and (1.5), it is clear that the 43,1 are real. Here and
below, we will have the positive operator (£y, y) > 0, which implies that all eigenvalues
An are real and non-negative.

The first derivatives of ¢~,, are given by the formulas

B () = vV Aurn (x) cO8(6 (X)) + v(x)n (). (1.6)

According to [17, Theorem 2], we have
e 1

Gn(x) = sin vV Apx + Yu(x), n=12,..., Z ¥ l* < C/ [v(x)*dx.
n=1 0

On the other hand, we can estimate the ||@, ||;2 using formula (1.5) as follows:

~ _1
Ipnll7> < exp (Ivliez +A72vII72) < oo 1.7



Schrodinger equation for Sturm-Liouville operator with singularities 99

Also, according to [18, Theorem 4], we have
Gn(x) = sin(nx) + o(1) (1.8)
for sufficiently large n. Along with (1.5), we see that there exist some Cy > 0 such that
0<Co < |gnllL> < o0

for all n.
Since the eigenfunctions of the Sturm—Liouville operator form an orthogonal basis in
L2(0, 1), we normalise them for further use:

b (x) = Pn(x)  _ dn(x) (19)

V@ g 19l

2. Non-homogeneous Schrodinger equation

We consider the non-homogeneous Schrodinger equation with initial/boundary conditions
id,u(t,x) +a(@)L’ut,x) = f(t,x), (t,x)€[0,T]x(0,1),
u(0,x) = uo(x), x € (0, 1), 2.0
u(t,0) =0=u(,1l), te[0,T],
where a(t) > ag > 0fort € [0,T] anda € L*°[0,T], s € R, with operator £ defined by
32
£=——+4qx), xe(0,1),
dx2
andg =v' >0,v e L2(0,1).
It is well known [12, 15] that the general solution to this equation is
u(t,x) = uy(t,x) + us(t, x),
where 11 (¢, x) is the general solution to the homogeneous Schrédinger equation

i0su(t,x) +a@)L’u(t,x) =0, (¢t,x)e€[0,T]x(0,1), (2.2)

with initial condition
u(0,x) =up(x), x€(0,1), (2.3)

and with Dirichlet boundary conditions
u®,0)=0=u(,1), te][0,T], 2.4)

and u, (¢, x) is the particular solution to the non-homogeneous Schrodinger equation with
initial/boundary conditions (2.1). In other words, to get a solution to (2.1), we need to
consider problem (2.2)—(2.4).
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In our results below, concerning the initial/boundary problem (2.2)—(2.4), as a prelim-
inary step, we first carry out the analysis in the regular case for bounded ¢ € L*°(0, 1).
In this case, we obtain the well posedness in the Sobolev spaces ng associated to the
operator &£: we define the Sobolev space W;g associated to &£, for any k € R, as the space

Wk = {f € Dp(0,1): 2 f € L?(0, 1)},

with the norm ||f||W§ := || £*/2 f||.2. The global space of distributions DL (0,1) is
defined as follows.

The space Cg°(0, 1) := Dom(£L>) is called the space of test functions for &£, where
we define

Dom(£%) := ("] Dom(£™).

m=1

where Dom(£™) is the domain of the operator £, in turn defined as
Dom(£™) := {f € L*(0,1) : £/ f € Dom(&), j =0,1,2,...,m —1}.
The Fréchet topology of Cg°(0, 1) is given by the family of norms
I¢llcn = max 1€ ¢llz20.1, M € No. ¢ € CZ(0,1).
The space of £-distributions
D%(0,1) :=L(CF(0,1),C)

is the space of all linear continuous functionals on C¢°(0, 1). For @ € D% (0, 1) and ¢ €
CZ(0, 1), we will write

w(¢) = {0, ¢).
For any ¢ € Cg°(0, 1), the functional

1
CZO0,1)s2¢—~ /0 Y (x)p(x)dx

is an £-distribution, which gives an embedding ¥ € C¢°(0, 1) < D% (0, 1).
We introduce the spaces C/ ([0, T, W!g (0, 1)) given by the family of norms

n

1A len oy wh 0.1y = (max, Z:) [7 1) g
]=

where k € R, f € C7([0, T], Wk(0. 1)).

Theorem 2.1. Assume that ¢ € L*°(0,1), ¢ > 0, a(t) > ag > 0 forall t € [0, T], and
a€L®[0,T]. Foranyk € R, if the initial condition satisfies uo€ Wk, then the Schrodinger
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equation (2.2) with the initial/boundary conditions (2.3)—(2.4) has a unique solution u €
C([o, 71, ng ). We also have the following estimates:

u@, 2 < lluollz2s (2.5
10:(z,)llz> < ll@llzoogo, 71 llttollyrzs - (2.6)
When s = 1, we also have
[0x2 (2, )llz> < lluollwy (1 4+ [[vIiL2) + lluollL2 IV zee 2.7
1020z, )lz2 < ligllzeelluollz2 + lluollw: - (2.8)
et M S oy 2.9)

where the constants in these inequalities are independent of ug, v, ¢, and a.

We note that ¢ € L>°(0, 1) implies that v € L>°(0, 1) and hence v € L2(0, 1) so that
the formulas in the introduction hold true.

Proof. We apply the technique of the separation of variables (see, e.g., [9]). In particular,
we are looking for a solution of the form

u(t, x) =T () X(x),

where T'(¢), X(x) are unknown functions that must be determined. Substituting u (¢, x) =
T(t)X(x) into equation (2.2) and after simple transformations, we get for the function
T (t) the equation

T'(t) = ipa(H)T(t), t€][0,T], (2.10)

and for the function X (x), we get
EEX(x) = uX(x), (2.11)

where u is a spectral parameter. When s = 1, we obtain the Sturm—Liouville boundary
value problem

EX(x) = —X"(x) + q(x)X(x) = A X(x), (2.12)
X(0) = X(1) = 0. (2.13)

Equation (2.12) with the boundary condition (2.13) has the eigenvalues of the form
(1.4) with the corresponding eigenfunctions of the form (1.5) of the Sturm-Liouville oper-
ator £ generated by the differential expression (1.1). Substituting

Hn :A‘:“

we get the eigenvalues of the form (1.4) and the corresponding eigenfunctions of the
form (1.5) for equation (2.11), i.e.,

L2 pn(x) = A3 (x). (2.14)
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The solution to equation (2.10) with the initial conditions (2.3) is
To(t) = D, e'*h f(;a(r)dr’
where
1
Dy = [ o) ().
0

Taking into account the last expressions, we can write the solution of the homogeneous
equation (2.2) with initial/boundary conditions (2.3)—(2.4) in the following form:

o0
u(t.x) =Y Dyetiloa®drg, (v,
n=1

Further, we will prove that u € C2([0, T], L?(0, 1)). By using the Cauchy—Schwarz
inequality and fixed ¢, we can deduce that

1 1 oo . 2
el = [ e = [ Y DeBeodng, ) ax
0 0 ln=1
1 ©© .
< [ [Daeilbain g, o, @.15)
0 u=1

According to (1.4), (1.9), using Euler’s formula and Parseval’s identity, we obtain

1 % o0 1
sas ot 2
||M(l‘,)||22 < /(; Z |Dnellnfo a(f)dt| |¢n(x)|2dx — Z |Dn|2/0 |¢n(x)|2dx
n=1 n=1

00 1
=Y |Duf = / luo(x)[2dx = |[uol|?.. (2.16)
n=1 0
Since a € L*°[0, T'] and using (2.16), we obtain
1 1] o L 2
19,22, )72 = f |8,u(t, x)*dt = / > ((iA3)a(t) Dye'tnlo @dT g, (x))| dx
0 0 n=1
1 > . .
5/ ZIa(t)lzllZDne’”’f““(’)dflzl%(X)lzdx
0

n=1

e°] 1
<3 @l g 25 Dal? /0 I ()P dx
n=1

o
= lalfogo.ry D 145 Dnl?. 2.17)
n=1
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Since A, are eigenvalues and ¢, are eigenfunctions of the operator &£, using Parseval’s
identity, we obtain

o0 o0 1 2 (e} 1 2
DD =) )Lf,/ Uo(X)n (X)dx| = f ASuo(x)n (X)dx
n=1 n=1 0 n=1 0
o0 1 2
=3 | [ Lutsd| = 1£u0li = luol.  @19)
n=1 0 £

Thus,
2 2 2
[0cu(t, )72 < ||a||Loo[o,T]||uO||Wés-

Let s = 1; then to estimate the norm of d,u(z, -) in L? we use (1.6) and (1.9) for o

2
dx

ad Lot
Z Dnet)t,, Jo a(r)drd)’/l (x)

n=1

2
dx.

1 1
ot N = [ osutexPar = |
0 0
Z Dpe'*n fé“(f)df(mr" (x) cos b (x) +v(x)Pn (x))
n=1

1
- /0 a2

According to (2.16), (1.7), and (1.8), there exist some Cy > 0 such that Cy < ||$n lz2 < o0
so that

e’} 1 oo 1
ot s 5 3 (WDl [ imoPax )+ 3 (1042 [ bna o).
n=1

n=1

Here, for r,,(x) according to [17, Theorem 2], we have

ra(xX) =1+ pa(x),  lpnllzz S L2,

where the constant is independent of v and n. Therefore,

1
/ Ira () 2dx < 14 ]2,
0

For the second term, we obtain

1
/0 W@ () Pdx < [0 [ZolibalZa = ]2,

since {¢,,} is an orthonormal basis in L2. Using the property of the operator & and the
Parseval identity, we obtain

S IWanDul? =Y
n=1 no=ol

2

1
/0 Vontto () (x)dx

2
= | £3uolz = luoly,

1
/0 £ 3 10(x) by (x)dlx
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Using the last relations, we obtain

o0 o0
181t )22 < Y VA D (1 + 1V122) + 3 1DaP VI3
n=1 n=1

< ||uo||f,@(1 + vIZ2) + lluollZ2 V17 (2.19)

implying (2.7).
Let us get the next estimate by using the fact that ¢/ (x) = (g(x) — A,)¢n(x) in the

case whens = 1,

(o) . 2

> Due P o)) dx

n=1

1 1
|92u(. )7, =/0 |a§u(z,x)|2dx=/0

1 [ee]
iAn [y a(z)dz|2 _ 2
5/0 (Z\Dne *16a(0) = )¢ ()| )dx

n=1

1 0 1 o©
2 n2 . 2d /\n n2 . Zd
s/o |q<x)|;|D||¢ )| x+/0 ,;' D2l ()P

o0 o
< lgl3e D 1Dal* + > 1Aa Dal?. (2.20)
n=1 n=1

Taking into account (2.18) for the last terms in (2.20), we obtain

o0

ntn| = 0 2.
D 1Dl = ol
n=1

Using the last expressions and (2.18), we finally get
2
|93, )2 < gl luolZz + ||uo||§,§,

implying (2.8).
Let us carry out the last estimate (2.9) using the fact that £¥u = Aﬁ u and Parseval’s
identity:

1 1| o0 o 2
||u(t,-)||§V:,z - ||;c%u(z,.)||§2 =/0 |x%u(z,x)|2dx=/0 ZDneM"’)L,fqﬁn(x) dx
n=1
.k 2 k 2 2
S A Dl = | E2uo|;. = o -
n=1
The proof of Theorem 2.1 is complete. ]

The following statement removes the reliance on Sobolev spaces with respect to £
while sacrificing the regularity of the data. This statement will be important for further
analysis.
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Corollary 2.2. Let s = 1. Assume that q, v € L*°(0,1), g > 0, a(t) > ao > 0 forallt €
[0,T), and a € L>°[0, T). If the initial condition satisfies ug € L*(0, 1) and uj € L?(0, 1),
then the Schrodinger equation (2.2) with the initial/boundary conditions (2.3)—(2.4) has a
unique solution u € C([0, T], L(0, 1)) which satisfies the estimates

flu, ez < luollzz, (2.21)
10:u(t. )2 < llallzeo,r(lugliz + llgllz=lluollz2). (2.22)
95t )z < (hugllze + lglizee luollz2) (1 + [vliz2) + luollz2lvlize.  (2.23)
|82, |12 S luglizz + lglzeluollz2. (2.24)

where the constants in these inequalities are independent of uy, q, and a.

Proof. The inequality (2.21) immediately follows from (2.5). Let us move on to estim-
ating the inequality (2.22). In Theorem 2.1, we obtained estimates with respect to the
operator £, but here we want to obtain estimates with respect to the initial condition u¢
and potential g (x).

By (2.17), we have

o0
19,2 )1 S Nl ooy D 1AnDal*.

n=1
Since A, are the eigenvalues of the operator £, we obtain

o

) 1
> 1D = 30| [ Ao
n=1 =

3 [ (—u () + (o (X)) () dx

=1

00 1
Z /0 Mg(x)(ﬁn

n=1

2

2

S

2 2

1

| q(x)uo(x)$n(x)dx

A

(2.25)

Using Parseval’s identity for the first and second terms in (2.25) and since g € L*°, we
have

e 1

2
g (X)n (x)dx

Z|AD|

1 2
A q(x)uo(x)¢n(x)dx

o0
|<(quo),¢n>|2+2|u:;, = llquoll?> + llugli?.

i

Il
-

n
< llglzelluollz2 + lugl7-. (2.26)
Thus,
18w, )72 < NallFoopo. (161172 + 1g11Zo0 2t0]172).

proving (2.22).
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Taking into account (2.19), (1.4), using (2.26) and Parseval’s identity, we get

19u (. )12 sZ|J—D| (1+ [v]22) +ZID PlviiZe

o0
ZAD| 1+ v]I2,) +ZID 217
n=

n=1

(IIM 172 + gz lluoliz2) (1 + 11vIIZ2) + luollZ2 IVIIZ e

implying (2.23).
Using (2.20), (2.26), and Parseval’s identity, we obtain

o0 o0
|02, )72 < 1alFe Y 1D + " 120 Dal?
n=1 n=1

< llgl7 < lluollZz + luglz + llgliZeolluolZ2
= lluglz> + 2llg 1z lluollZ--
The proof of Corollary 2.2 is complete. ]

Using the statements for the homogeneous case, one can establish the following state-
ments for the non-homogeneous Schrédinger initial/boundary problem (2.1).

Theorem 2.3. Assume that ¢ € L*°(0,1), ¢ > 0, a € L*°[0,T], a(t) = ao > 0 for all
t€[0,T],and f € C'([0, T], ng (0, 1)) for some k € R. If the initial condition satisfies
Ug € ng (0, 1), then the non-homogeneous Schrodinger equation with initial/boundary
conditions (2.1) has the unique solution u € C([0, T], W;g ) which satisfies the estimates

lu@, )z < lluwollez + TN f lleqo,m1,220,1))» (2.27)
l0:u(t, )Lz < ||a||Loo[o,T](||uo||W3€s + TIIfIICI([O,T],WE%S(O,I)))
+ Tl fllcrqo,r1,22(0,1))- (2.28)

When s = 1, we also have

10x2(z, )2 < (L [Ivlizee) (luollwy + T leqo, 1w 0,1 (2.29)
1020, M2 < lgllze oz + TS leqo.r1.L20.1))
+ ||MO||W;2C + T||f||Cl([0,T],W§C(0,1))v (2.30)

where the constants in these inequalities are independent of uy, q, a, and f.
Proof. We can use the eigenfunctions (1.5) of the corresponding (homogeneous) eigen-

value problem (2.11) and look for a solution in the series form

u(t, %) = D un(1)pn (%), (231)

n=1
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where .
n(0) = /0 u(t, ) n (X)dx.

We can similarly expand the source function

o] 1
00 =3 hOne. HiO= [ feopmds @3
n=1

Now, since we are looking for a twice differentiable function u(¢, x) that satisfies the
homogeneous Dirichlet boundary conditions, we can use (2.14) to the Fourier series (2.31)
term by term and using ¢, (x) satisfies equation (2.11) to obtain

Lut,x) =Y L5 Wn(On(x)) = D n()A5¢n(x). (2.33)

n=1 n=1

We can also differentiate the series (2.32) with respect to ¢ to obtain

ue(t,x) = Y up (Oga(x), (2.34)

n=1

since the Fourier coefficients of u, (¢, x) are

1 B 1 ,
/0 u(t, x)pn(x)dx = E[/o u(t,x)qbn(x)dx] =u,(t).

Differentiation under the above integral is allowed since the resulting integrand is con-
tinuous.
Substituting (2.34) and (2.33) into the equation and using (2.32), we have

iy up (Oga(x) +a() Y un(OApa(x) = Y fulO)gn(x).

n=1 n=1 n=1

Due to the completeness,
iu, (1) + Apa(®un(t) = fu(t), n=12,...,

which are ODEs for the coefficients uy (¢) of the series (2.31). By the method of variation
of constants, we get

t
Un (1) = D, e'*h Joya(@dz + it fs a(t)a’r/ oA fga(r)drfn(s)ds’
0

where

D, = fol Uo(x)@n(x)dx.
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Thus, we can write a solution to equation (2.1) in the form

o0
u(t,x) = Y Dyt a@drg, ()

n=0
e t 4 S

+Y e foa(r)dr/ it S 9T (0 1ch (1),
n=0 0

Let us estimate ||u(z, ) ||i2 For this, we use the estimates

/01 lu(t, x)*dx = /01

i t
Z Dneilf, fO a(r)dr¢n (x)
n=0

2

o0 t
+ 3 eidatae / e o a®dT £ (dsh, (x)| dax
0

n=0

00 2
Z D, e f;a(r)dz¢n(x) dx

1
5[
0 n=0

1| % t
+ / Z ol f(;a(r)dr/ oA fga(z)drfn(s)ds¢n(x)
0 n=0 0

=1 + b (2.35)

2
dx

For 11, by using (2.15)—(2.16) for the homogeneous case, we have that

1
11 ZZ[
0

Now, we estimate I, in (2.35) taking into account that s € [0, ]:

2

dx < JuollZ--

° t
Y Dy 44, ()

n=0

2
1 o0 t
I ::/ it /ga(r)dr/ =it 3 a@d g (o acs ()| dx
0 n=0 0
1) %o st st t 2
S/ Zet)t,,foa(r)dre—t/l,,/oa(r)dr/ Fu(s)dsn(x)| dx
0 n=0 0

L 2 0 t 2
Z/o 2[, Jn(9)dsgn(x) dxsg[[o |fn<s>|ds]

Using Holder’s inequality and taking into account that ¢ € [0, T'], we get

t 2 T 2 T
n d f * n d f n Zd,
UO fu(s)] s} [/0 L1 fa®)] z] T/o (0Pt
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since f,(¢) is the Fourier coefficient of the function f(¢, x), and by Parseval’s identity, we

obtain
= d 2 r& 2 T 2
n§=1:T/0 (0] dr=T/0 n§=lﬁ|fn(r>| dr=T[0 1 £ )2,

Since
I/ lcqo,m1,L200,1)) = omax £t ) L2

we arrive at the inequality

T
T/o I 72dr < T2 f e o,r1,2200,10)-

Thus,
1| o . . 2
12 = / Z ei/ln /é a(r)dr/ e*iln fga(f)dtfn(s)ds(pn(x) dx
0 |n=0 0
2 2
S TN fleqo.rLz 0.1 (2.36)
We finally get
)22 < ollZ + T2 Wgo.r.2200.00-
implying (2.27).
Let us estimate ||d,u(z,)||2; for this, we calculate d,u(z, x) as follows:
o0 ) .
d,u(t,x) = Z il;a(t)Dne’Af‘ foa(”"”@,(x)
n=0
ad . t t . X
+ Z l'kfla([)emf‘ Joadz / e—tki, Jo a(r)drfn (5)dsn (x)
n=0 0
o0
+ D faO)n ().
n=0
Then,
1 1| o0 o 2
19, )17 = / |9,u(t, x)|2dx < / Y iAsa(t) Dyt o a g, ()| dx
0 0 n=0
1| oo - ¢ s 2
~|—/ Zi/\f,a(t)e"ln Jo “(’)d’/ e~ iAnlo ”(T)dtfn(s)dsqﬁn(x) dx
0 n=0 Y
1] o 2
+ / . @en(x)| dx = Ji + T2 + Js. (2.37)
0 n=0
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Here, for J; by using (2.17) and (2.18) and taking into account (2.32) for the function
f(t,x) in J3, we obtain

19,2, )72 < IIallioo[o,T]lluolli@s + J2 L f @) 7e

To estimate J», conducting evaluations as in (2.36) and taking into account (2.32), we
obtain

1 N t 4 S 2
Iy = / 3 i23a(i)eits o awd / T Lo T £ (5)dspu(x)| dx
0 (1o 0
1 o0 t 2 ] t 2
< [ 2 e [ fodssao0| dr < laluon X | [ A s0)ds
Y n=0 0 n=0 0

[ele] T 2 T o0
<lal}oory Y. / A faydt| < Tlla)F oo / PN AGIR
n=0 0 0 n=0

T ©° 1 2

= Tal}wp.1) / > / AS (1, x)n(x)dx| dt
(U—

2 T 2 2
= T2y /0 1225 £ (0. Bade
2 2 2
E T ||a||L°°[0,T]||f||C([0,T],W§S(O,l))'
Therefore,

2 2 2 2 2 2
30022 5 Nl g,y (100l 3z + T21F Wy was o) + 1 Woor. 2200
implying (2.28).
Let s = 1. Then, we carry out the next estimate as follows:

00 2
Lot
§ : Dneu\,, Jo a(t)dt¢; (x)| dx

n=0

1 1
(e )25 = / 9yt x)Pdx < /
0 0

1 o0 t
+/ Zem,,jga(r)dr/ en I3 adT 1 (o (1)
0 n=0 0

= K; + K>.

2
dx

Using (2.7), we get

o0 2
. "t
E Dyei*nlo ”(’)drqb,’, (x)| dx

1
Kl = /
0 |n=0

2 2 2 112
< ||M0||W;1€(l + IvlIz2) + luollZ2 [V IZ e
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For K>, using (2.36), (2.7), and (1.6), (1.9) for ¢,,, we obtain
2

K; = dx

1
</-
0

t
idn [La(e)dr / en I3 @At £ (o (x)
0

(s)ds ( VAnTn(x) cos O, (x)

2
= + » d
AP Ve (x)) x

2
@ds| (L+1vIZ2) + W12 T2 1 f 180,71, 2200,1)-

Taking into account (2.32) and (2.36), we get

e’} t 2
[ WV solds 52[ N
=0 0

n=0

_T/

=T/H$wvnmw<TwﬂumTWmm,

< T/ Z!J_fn(z)l di

dt

/ Vo £t )b (x)dx

and we finally obtain
st )2a S (luolyy + T21F Vo 7y wa o) (1 I0122)

+ (ol + T2 W2 go.r1.2201) 101320
< (1 7o T?
~ ( + ”U”L )(HMOH 1 + ”f”C(OT] Wx(o 1)))

which gives (2.29).
For the estimate [|02u(Z,-)||z2, we use the fact that ¢//(x) = (g(x) — An)Pn(x) to
deduce

193 (2, )17

1
=/ |02u(t, x)|*dx
0

1
S/
0

2

" Daelrh a4t (q(x) = 1) (x)| dx

n=0

2

"t t . S
halbarde [ ihn KOO £ (5)ds(g(e) = 2o ()| d
0

and using (2.8), (2.36), we arrive at the estimates
182u(t. )22 < g3 (luolZs + T2/ 12 q0.r1.220.00)
2 2 2
+ ”u0” 2 +T "f”Cl([O,T],WE%(O,l))'

The proof of Theorem 2.3 is complete. ]
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Corollary 2.4. Lets = 1. Assume that g € L?(0,1), ¢ >0, a € L*®[0,T], a(t) > ag > 0 for
allt € [0,T), and f € C'([0,T], L?(0, 1)). I the initial condition satisfies ug € L*(0, 1)
andug € L?(0,1), then the non-homogeneous Schrodinger equation with initial/boundary
conditions (2.1) has a unique solution u € C([0, T], L?(0, 1)) such that

lu(z, )z < luollez + Tl fllcqo,11,22(0,1)) (2.38)

90 (z, )2 < ||a||L°°[0,T](||ug||L2 + lIgllzeelluollz2 + %||f||cl([o,T],L2(o,1)))

+ | flleqo.r1,22(0,1)> (2.39)
ot Mz 5 (1llee + gl olles + 21 oz )0+ Iolia)

+ vlizee (luoll2 + Tl f leqo.r1.22(0.1)))- (2.40)
[#u.9]2 % leglee + -1 flerqomzzom)

+ llgllizee (luollz> + T1f leqo,r1.2(0,17)) (2.41)
where the constants in these inequalities are independent of ug, q, a, and f.

Proof. The inequality (2.38) follows from Theorem 2.3. For ||0;u(t, )12, using (2.37),
we have
2

dx

o0

> idna(t)Dyettn foa@idrg, (x)

n=0

1
)
0

1
)
0

According to (2.17), (2.18), and (2.26), we get

1
Jliz/
0

< ||a||]%w[0,r](||Q||iw||”0||iz + ||“g||1242)

1
1t )z < /O

2
dx

0o t
D idnae e [ o ) (0
0

n=0

2
dx = J1+ J2 + J3.

> Fa(O)n(x)
n=0

2
dx

o0

> idna() Dyettn foa@drg, (x)

n=0

For J3, taking into account (2.32) and Parseval’s identity, we obtain

1 o0
Jy = /O ’;fm

< flleqo,m1,220,1))-

2
dx =

2 o0
SY AOP = 11093
n=0

> fu@u(x)
n=0
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To estimate J5, integrating by parts, we obtain

1
n= |
0

1

-

2
dx

o0

1 t . s
3 idna(etn e [ om0 )5, 1
n=0 0
oo .
2 (ikna(t)e”nféa(r)dr it faar 1)

/\,, a(s) |o

n=0

2
t 4 . ~S
+a(r)eiin fhads / —Mnfoa(f)df(f”(s))dS)¢n(x) dx

(s)

(f,{(s) _ fn(s)a’<s)) sl
a(s) a?(s)

o

t)2 00

fn()

n=0

= Jo1 + Jaa.

Since a(x) > ag > 0int € [0, T], we can use the estimate | (t)| L forallt €[0,T],
0
and using Parseval’s identity, we obtain

_ Sn(s)
1= ,;) a(s) fo
S ?

la|? o ( +

o 2 faw | + 2

1 o0 o0

%nanzwm,ﬂ ( SIAOP+Y |fn<0)|2)
n=1

n=1

t )2

a(r)

A

fn(0) 7
a(0)

IA

1
= a—zllalliw[o,r](llf(h iz +1£0.)172)-

0

Carrying out similar reasoning, integrating by parts and using (2.36), we get

= N MO ACHON S
f2im 2 o | (G )
o[ e vl )}
= ds w(s)d
};a(t)(o +/f() ©)
o E (A [,
< %Ha”iw[oﬂ ,;/(; |fn(s)|ds +||a||i°°[0,T] r;(a(s) o o a(s) )‘
T2 1
< a_z”auiw[o,T]”f/”%‘([o,TLLZ(O,l)) + a_2||a||]2dw[0,T](||f(tv )”1sz + 1. £(0, )”1242)
0 0

2

2 2
+ s llalzopo. | /e o200
0
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And finally, for J,, we have

1 0 t
Jr = f 3 dpe T lia@ds / et lo @@ £ (5)dspn (x)
0 | =0 0

2
dx

2 T?
S 1o (/I + 17091 +2 5 ko 1 Tegonom)
2 2 2
= 22 ||a”L°°[0,T]”f”Cl([o,T],LZ(o,l))-
0
Therefore,
2 < 2 "2 2 2 2T2 2
1900t s % N oy (16122 + Nl ol + =1 121071220,
0

2
+ ||f||c([o,T],L2(0,1))’

implying (2.39). Taking into account Corollary 2.2 and similar to previous estimates, we
obtain the inequalities (2.40) and (2.41).
The proof of Corollary 2.4 is complete. ]

3. Very weak solutions

In this section, we consider the differential case s = 1. We will analyse the solutions for
less regular coefficients ¢, a and the initial condition u¢. For this, we will be using the
notion of very weak solutions.

Assume that the coefficient ¢ and initial condition 1 are the distributions on (0, 1);
the coefficient a is the distribution on [0, T']. To regularise distributions, we introduce the
following definition.

Definition 3.1. (i) A net of functions (1, = u.(t, x)) is said to be uniformly L2-moderate
if there exist N € Ng and C > 0 such that

lue(t, )2 < Ce™ forallt € [0, T].

(i) A net of functions (19, = ug ¢(x)) is said to be H2-moderate if there exist N € Ny
and C > 0 such that

leoelle < Ce™™,  Jluglle < Cs7V.
Definition 3.2. (i) A net of functions (¢. = ¢:(x)) is said to be L°°-moderate if there
exist N € Ny and C > 0 such that
Igellzo(0,1y < Ce™™.

(ii) A net of functions (a, = a.(t)) is said to be L°°-moderate if there exist N € Ny
and C > 0 such that
laelloopo,r) < Ce™™.
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Remark 3.3. We note that such assumptions are natural for distributional coefficients
in the sense that regularisations of distributions are moderate. Precisely, by the structure
theorems for distributions (see, e.g., [7]), we know that distributions

D’(0,1) C {L*°(0, 1) — moderate families}, 3.1

and we see from (3.1) that a solution to an initial/boundary problem may not exist in the
sense of distributions, while it may exist in the set of L°°-moderate functions.

To give an example, let us take f € L2(0,1), f : (0, 1) — C. We introduce the function

7o f, on(0,1),
]o, onR\ (0, 1);

then f : R — C, and f € &'(R).
Let f; = f * Y be obtained as the convolution of f with a Friedrich mollifier v,
where

Ve(x) = éw(g) for ¢ € C$°(R), /w = 1.

Then, the regularising net ( fe) is L?-moderate for any p € [1, 00), and it approximates f
on (0, 1):

0 1= FlZwgy ~ 1o = F 1200y + 112 oury-
Now, let us introduce the notion of a very weak solution to the initial/boundary problem
(2.2)-(2.4).

Definition 3.4. Letg € D’(0,1),a € D'[0, T]. The net (ue)e>0 is said to be a very weak
solution to the initial/boundary problem (2.2)—(2.4) if there exists an L°°-moderate regu-
larisation ¢, of ¢, L°°-moderate regularisation a, of a, and an H ?>-moderate regularisation
Ug,¢ of ug such that

ial‘us(l5 x)+a€(t)(_aiu€(t7 x)+q€(x)u8(z9 x)) = 0? (t’ x) € [0» T] X (07 1)’
us(o, x) = uO,S(x)v X € (07 1)7 (32)
ue(t.0) = 0 = u,(r. 1), t €0.7T),
and (u.) and (9,u,) are uniformly L2-moderate.
Then, we have the following properties of very weak solutions.

Theorem 3.5 (Existence). Let the coefficients q and initial condition ug be distributions
in (0,1), g >0, and let the coefficient a be distribution in [0, T'| and there exists ag > 0 such
that a > ag > 0 in the sense that {a — ag, ¢) > 0 for any ¢ > 0. Then, the initial/boundary
problem (2.2)—(2.4) has a very weak solution.

Proof. Since the formulation of (2.2)—(2.4) in this case might be impossible in the distri-
butional sense due to issues related to the product of distributions, we replace (2.2)—(2.4)
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with a regularised equation. In other words, we regularise g and 1y by some correspond-
ing sets g, > 0 and u¢ . of smooth functions from C*°(0, 1), and a by the set a, of smooth
functions from C*°[0, T'].

Hence, g, a, are L°°-moderate regularisations and ug, is an H 2_moderate reg-
ularisation of the coefficients ¢, a and the Cauchy condition ug, respectively. So, by
Definition 3.1, there exist N € Ng and C; > 0, C, > 0, Cz, C4 such that

Igellee < Cre™,  Jluoslrz < Coe™V, llug ellz2 < Cae™™, lafpe < Cae™.

Now, we fix € € (0, 1], and consider the regularised problem (3.2). Then, all discussions
and calculations of Theorem 2.1 are valid. Thus, by Corollary 2.2, the equation (3.2) has
a unique solution u,(¢, x) in the space C([0, T]; L2(0, 1)).

By Corollary 2.2, there exist N € Ny and C > 0 such that

et )2 < lluoelle < Ce,
19,ue(t. )2 < lallFoogo,ry(14G ll2 + lgellzeelluo el L2) < Ce™,

where the constants in these inequalities are independent of ug, ¢, and a. Therefore, (u,)
is uniformly L2-moderate, and the proof of Theorem 3.5 is complete. ]

Describing the uniqueness of the very weak solutions amounts to “measuring” the
changes of involved associated nets: negligibility conditions for nets of functions/distri-
butions read as follows.

Definition 3.6 (Negligibility). Let (i), (ii;) be two nets in L2(0, 1). Then, the net (1, —
ii¢) is called L2-negligible if for every N € N there exist C > 0 such that the following
condition is satisfied:

lue —digll2 < Ce™

for all € € (0, 1]. In the case where u, = u.(z, x) is a net depending on ¢ € [0, T'], the
uniformly L2-negligibility condition can be described as follows:

e (2, ) = die (. )2 < Ce™,
uniformly in ¢ € [0, T']. The constant C can depend on N but not on &.
Let us state the “e-parameterised problems” to be considered:
i1 (1, %) e (1) (=03ue (1, X) +qe(Xue (1, X)) =0, (£,x)€[0,T] x (0, 1),

Ug(0,x) = uge(x), x €(0,1), (3.3)
us(t,0) = 0 = u.(t, 1), t €1[0,7],

and
i0011(t, x)+ae(t) (=020 (2, X)+Ge(X)Tie (2, X)) =0, (¢,x)€[0,T] x (0, 1),
Ue(0,x) = tge(x), x €(0,1), (3.49)
Ue(t,0) =0 =t (2, 1), t€[0,T].
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Definition 3.7 (Uniqueness of the very weak solution). Let ¢ € D’(0, 1), a € D’'[0, T].
We say that initial/boundary problem (2.2)—(2.4) has a unique very weak solution, if for
all L°°-moderate nets ¢, g,, such that (g. — g.) is L°°-negligible; for all L°°-moderate
nets d, d., such that (a; — a.) is L*>°-negligible; and for all H 2_moderate regularisations
Ug,e, Uo,e, such that (g — tig), IS H2-negligible, we have that u, — %, is uniformly
L?-negligible.

Theorem 3.8 (Uniqueness of the very weak solution). Let the coefficient q and initial
condition ug be distributions in (0, 1), g > 0, the coefficient a be a distribution in [0, T']
and there exists ag > 0 such that a > ag > 0 in the sense that (a — ag, $) > 0 for any
¢ > 0. Then, the very weak solution to the initial/boundary problem (2.2)—(2.4) is unique.

Proof. We denote by u, and i, the families of solutions to the initial/boundary prob-
lems (3.3) and (3.4), respectively. Setting U, to be the difference of these nets U, :=
ug(t, ) —ug(t,-), then U, solves

19 Us(t, X) +as (1) (=03Us (1, X) +qe(x)Ue(t, X)) = f(t, ), (£,x)€[0,T]x (0, 1),
UE(O’X) = (MO,E - ﬁo,é‘)(-x)v X € (07 1)7

Us(t,0) =0 = Uz, 1),
3.5
where we set

felt, x) 1= (as(t) — @ (1)) 3316 (t, x)
+{ae (1) (e (x) — gs(x)) + go(x)(@s(x) — ae(x))}ile (1, x)

for the forcing term to the non-homogeneous initial/boundary problem (3.5).
Passing to the L2-norm of the Uy, by using (2.38), we obtain

”Us(t» )”1sz S ”UE(Ov )”22 + T2”fs”zc([o,T]’Lz(O,l))‘

For the || f¢ by using (2.16) and (2.24), we get

2
||C([O,T],L2(0,1))

2 ~ 2 ~ 2 ~ 112 ~ 2
”fs”C([O,T],LZ(o,l)) < llae — aa”Loo[o,T](”“g,g”LZ + 2[|Gell 700 ||u0,s||L2)

+ [1ge — 518”200 ||da||zoo[o,T] ||ﬁa||é([0,T],L2(o’1))
+ [|ae — as||1%w[0,T] ||%||]%°° ||ﬁs||é([0,T],L2(o,1))~
Next, using the initial condition of (3.5), we obtain
1Ue(, )17 < luo,e —tioell7z + T?Mde — aell7ooro 71 (170 172 + 21200 067 2)
+ T21Ge — qellFoe el oogo 1 e N2 o, 71, 220,10

+ T?|a — as||124m[05T] ||%||ioo ||ﬁe||é([o,T],L2(o,1))-
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Taking into account the negligibility of the nets ug s — to,e, ¢ — G, and a, — dg, We get
[U(t, )12, < Cre™ + N2 (Coe™3 + C3e7™M4) + N5 (Cye™ + C567V7)

f0rsomeC1 >0, C2 >O, C3 >0, C4 >0, C5 >O, N3,N4,N6,N7 eN andallNl,Nz,Ns (S
N, since 1, is moderate. Then, for some Cpy > Oand all M € N,

1U:(t, )22 < Cue™.

The last estimate holds true uniformly in #, and this completes the proof of Theorem 3.8.
(]

Theorem 3.9 (Consistency). Assume that ¢ € L*°(0,1), ¢ > 0, a(t) > ag > 0 for all
t €[0,T), and let (q¢) be any L*°-regularisation of q and (a.) any L*°-regularisation
of a, that is, ||ge — qllL~ — 0, |lag — a||Le[o,r] = 0 as ¢ — 0. Let the initial condition
satisfy ug € L?(0,1). Let u be a very weak solution to the initial/boundary problem (2.2)—
(2.4). Then, for any families qg, ag, Uo,¢ such that |g — qs|lLo — 0, |a — ag||Lopo,77 = O,
luo — uoellL2 = 0 as e = 0, any representative (ug) of the very weak solution converges
as
sup [Ju(t, ) —ue(, )|z = 0

0<t<T

for € = 0 to the unique classical solution u € C([0, T]; L2(0, 1)) to the initial/boundary
problem (2.2)—(2.4) given by Theorem 2.1.

Proof. For u and for u,, as in our assumption, we introduce an auxiliary notation
Ve(t,x) :=u(t,x) —ug(t, x).
Then, the net V is a solution to the initial/boundary problem

10, Ve(t,x) + ag(t)(—ang(t,x) + qe(X)Ve(t, x)) = felt, x),
Ve(0,x) = (uo — uo,e)(x), x €(0,1),
Ve(t,0) =0 = V,(z, 1), t [0, T],

where
fet,x) = (a(t) — as(0))d3u(t, x) +{as(1)(qs (x) — g (x)) +q (x)(@s (1) — a(®) hu(t, x).
Analogously to Theorem 3.8, we have that
Vet )17 < luo —uoel72 + T2lla — aellzoogo 7y (1”172 + 211117 c0 1u72)
+ T?lla — ael3oego 1413 1120 71.220.00

+ T2||q - 618”]%00”as”ioo[o,T]||“||%‘([0,T],L2(0,1))~
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Since
[uo —uoellz >0, llge —qllee — 0, [la —aeLofo,r) — 0

for ¢ — 0 and u is a very weak solution to the initial/boundary problem (2.2)—(2.4), we
get
Ve, )Lz — 0

for ¢ — 0. This proves Theorem 3.9. ]
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