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On the well posedness and the stability of a thermoelastic
Gurtin-Pipkin-Timoshenko system without the second
spectrum

Salim A. Messaoudi and Ahmed Keddi

Abstract. In this work, we establish the well-posedness and the asymptotic stability of a linear
thermoelastic Gurtin—Pipkin—-Timoshenko system free of second spectrum. We give a detailed proof
of the well-posedness, using the semigroup theory and with the help of some new operators. Then,
we prove that the system is exponentially stable irrespective of the parameters. Our result generalizes
an earlier result, one in the paper of Keddi, Messaoudi, and Alahyane [Journal of Thermal Stresses
46 (2023), 823-838].

1. Introduction

In the linear theory of beams, the Timoshenko model [19] is one of the most suitable
and widely used models to describe the vibrations of the majority of the elastic structures
of plane beams due to its consideration of the effects of shear deformation and rotatory
inertia. This is contrary to the model of Euler—Bernoulli and Rayleigh [18]. One can think
of the Timoshenko beam theory then as an improvement of the classical Euler—Bernoulli
theory.

The Timoshenko beam model is described by the following conservative system of
hyperbolic equations:

(1.1)

P1@1r — k(@x +¥)x =0,
P2V — wax + K((px + w) =0,

where the functions ¢ and Y denote, respectively, the transverse displacement and the
angular rotation and the parameters p; = pA, po = pl,b = E I, and k = k' GA are positive
constants such that p is the mass density of material, A is the cross-sectional area, [
is the inertia momentum of cross-sectional area, E is Young’s modulus of elasticity, G
is the shear modulus and «’ is the transverse shear factor. The asymptotic behavior of
the Timchenko system (1.1) has been studied by many authors, using different damping
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mechanisms, and several stability results, depending on the structural parameters of the
equations, have been established. See, for example, [11, 13,15, 16].

Later on, in some analytical studies (for example, [1, 7]), it was shown that the “clas-
sical” Timoshenko system has a second non-physical spectrum leading to a physical
paradox, known as the second spectrum. In 2010, Elishakoff [10] proposed the follow-
ing modified version of the Timoshenko system:

P1¢1r — k(@x + ¥)x =0,
—P2@Pttx — bWxx + K((px + w) =0,

(1.2)

which is free of non-physical spectrum or the second spectrum and has only one spectrum
(physical spectrum).

Almeida Junior et al. [4] considered system (1.2) with the linear frictional damping
W acting on the angle rotation equation and proved that the energy decays exponentially
for any choice of positive parameters of the system. In [5], the same exponential result
was proved, where a linear frictional damping acts on the transverse displacement instead.
Also, similar results were obtained in [2, 3].

Concerning the Timoshenko system (1.2), in the presence of a thermal damping,
Apalara et al. [6] studied the following system:

P19 — k(@x +¥)x =0,

—P2@ttx — wax + K((px + W) + }/ex =0, (1.3)

)0391,‘ - ,Bexx + y¥xe =0.
Here, 0 is the temperature difference and the parameters p3, 8 > 0 and y # 0 represent the
capacity, diffusivity, and coupling constants, respectively. The authors proved an exponen-
tial decay result irrespective of the parameters of the system. Recently, Keddi et al. [14]

considered the following Timoshenko system free of the second spectrum coupled with a
heat system of the Cattaneo type:

P1¢1r — k(Px +¥)x =0,
—P2@Pttx — bWxx + K((px + W) + 380 =0,
ctr + qx + 8Yx =0,

(1.4)

tq: + Bq + 6 =0,

where ¢ is the heat flux and the positive parameter t represents the relaxation time. The
authors established an existence and uniqueness result, using the semigroup theory and
with the help of some new operators, and proved that the system (1.4) is exponentially
stable independently of any relationship between the parameters of the system.

In the present paper, we are interested in the study of the well-posedness and the
asymptotic stability of a thermoelastic Timoshenko system with one spectrum and where
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the heat conduction is given by the Gurtin—Pipkin thermal law and the coupling is via the
rotation angle equation. More specifically, this system is given by

P191r — k(Px +¥)x =0 in (0,1) x (0, 00),
—P2Pttx — bl//xx + K(an + Ir/f) +80, =0 in (0, 1) X (07 OO), (1.5)

1 [Fe
ch; — —/ g(5)0xx(t —s)ds + 8¥x; =0 in (0,1) x (0, 00),
B Jo

supplemented with the following boundary conditions of Dirichlet-Neumann—Dirichlet
type:
00,1) = @(1,1) = Yx(0,1) = ¥x(1,1) = 6(0,1) =0(1,t) =0 V>0, (1.6)
the initial conditions
9(x,0) = @o(x),  ¢:(x,0) = ¢1(x)
¥(x.0) = Yo(x). 0(x,0) = bo(x)
and the history of 6,

Vx € (0,1), (1.7)

O(x,—s) = wo(x,s) Vxe€(0,1),s>0. (1.8)

The memory kernel g : RT™ — R™ is a convex integrable function on R™ of a total

mass
+o00
/ g(s)ds = 1.
0

From (1.5), and the boundary conditions (1.6), we have

1
[ Ydx = 0;
0

consequently, the use of Poincaré’s inequality for ¥ is justified.

This paper is divided into four sections, in addition to the introduction. Section 2 gives
some preliminaries and the semigroup setting of the problem. The well posedness is given
in detail in Section 3, and the stability result is presented in Section 4. We then conclude
our work in Section 5.

2. Preliminaries and semigroup setting
In this section, we present some notations and our assumption on the memory kernel g,

then, we introduce the semigroup setting of our problem.
Concerning the memory kernel g, we assume that for s > 0

+o0
g(s) = / w(r)dr.
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where

82

(h1) u:RT — R* is a non-increasing absolutely continuous function, possibly un-

bounded near zero.

(hy) p is differentiable almost everywhere and there exists £ > 0 such that, for almost

every s > 0,
W (s) + &u(s) < 0.

2.1)

Remark 2.1. Note that g is a bounded and non-increasing function vanishing at infinity.

Moreover, u is integrable on R with

+o0
A u(s)ds = g(0).

In addition, the fact that g has unit total mass implies that

+o0
/ su(s)ds = 1.
0

Now, we consider 7, the integrated past history of 6, defined by

S
n(x,t,s)= / O(x,t —r)dr,
0
for (x,¢,5) € (0,1) x (0,00) x (0, 00). Clearly, n satisfies the equation
T]t(t’s) + nS(sz) = G(Z)
Combining this latter equation with (1.5), we obtain

P1¢1r — k(@x + ¥)x =0,
—P2011x — bYxx + Kk (@x + ) + 86, =0,

1 +o00
ct; — E W) Nxx($)ds + 8Yx; = 0,
0
Nt + Ns = 9,

with boundary conditions

{MQO=WAQ0=9®U=n@Lﬂ=O vis0

Gﬂ(l»f) = wX(l’t) = 9(1’t) = 77(1%5) = 0

and initial conditions

@(x,0) = @o(x), ¢r(x,0) = @1(x)
Y (x,0) = Yo(x), 9(x,0)s= Bo(x) Vx e (0,1).

n(x,0,s) = no(x,s) = /o wo(x, r)dr

2.2)

(2.3)

(2.4)
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To rewrite the problem (2.2)—(2.4) in an abstract form, we introduce the following
operators:

R = (p11 — p20xx),
S=cl —82,01(3_1 o axx)v

K
= [(pal +Bp?B ) 0],
bp1+lcp2[(p2 +OpiBT 0 8]

where B is the positive self-adjoint operator defined, on H 2(0,1)N Ho1 (0,1), by
B = pixl — (pak + bp1)0xx.
Then, from the system (2.2), we can get the following auxiliary system:

Roi +bToxx +6TH =0,
1 +o00
SO, — E W(S)Nxx(8)ds — 8T, = 0, (2.5)
0

e +ns—60=0.

By introducing the state vector ® = (¢, ¢, 6, 7)T, where ¢ = ¢;, the system (2.5)
becomes

{ D'(1) = AD(1) V1 >0, (2.6)

®(0) = @ = (¢o. ¢1.60.10)7 .

where

¢
—bR ' Trx —8R™'TH

AD = S_l(% [0+°° 1) (s)ds + 8T0)
—ns + 6

Now, we consider the following space:
H(0.1) ={p € H*(0,1) N HJ(0.1) : gxx € Hy (0, 1)}
and the weighted Hilbert space
+o0
M= @ H0.0) = iR = 00\ [ renlBds < +oof,
0

with the inner product
+o0
(0= [ pO s bds

and the associated norm

—+o00
11 = /0 w(5) 7 (5)]12ds.
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Also, we define the energy space by
H = (H*(0,1) N H{(0,1)) x Hy (0,1) x L*(0,1) x M,

equipped with the inner product
1
(©.9%) 5 = b(To.¢r,) + (Rp.¢%) + (S6.6%) + EM’ T

for ® = (¢, ¢, 0,07, d* = (¢*,¢*, 6%, n*)T € H and the domain of 4 is given by
D= (p.9.0,m" €H:peHNO0 1) e H>0,1)N Hy(O, 1);}

DA) = { 6 € Hy(0.1)in € N,/W 1(s)nxx(s)ds € L2(0.1)
0

where
N ={neM:n; e Mn)=0}.

Finally, we put
H=(H?*0,1) N HJ(0,1)) x Hy(0,1) x H'(0,1) x L*(0,1) x M
and
{q> = (.. v, 0,mT € H:9 e H30,1);¢ € H*(0,1) N HL(0, 1);}

+o00
Ve H20,1):6 € H(0, 1):n € N, / J($)nex(5)ds € L2(0, 1)
0

where
HZ(0,1) = {y € H*(0,1) : ¥ (0) = y(1) = 0}.

Before proceeding, we need the following lemma.

Lemma 2.2 ([12, page 348]). Forn € N and 6 € L?(0, 1), we have

+o00 d 00
[ o )Eds = [ W ©ln ) Bds 2.7
0 s 0

and

+o00 +o0
- / 1($)(8. 15(5))ds = [ W (5)(6. n(s))ds. 2.38)
0 0

3. The well-posedness of the problem

Before stating and proving our main well-posedness theorem, we establish the following
auxiliary result.
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Theorem 3.1. Let ®y € H. Then, there exists a unique solution ® € C(R™, J), of prob-
lem (2.5). Moreover, if ®g € D(), then ® € C(RT, D(4)) N CY(RT, #).

Proof. The proof will be based on the semigroup theory. First, we prove that +4 is dissi-
pative. So, for any ® € D(A), we have

(AD, D) gp = —(bT pxx +8T0,9) + b(T, pxx)

+<(l/+°° (s) (S)dS+5T¢) 9>+l((— +0),n)
B o HAS)Nxx ) B Ns > MM

By integrating by parts and taking into account the properties of the operators R, S

and T, we get
+oo

__1 2
(WRQﬂ_—m | m Sl (s)l2ds.

Therefore, thanks to (2.7), we have

+o0
(40,00 = 32 [ W) lds <o

and hence, + is dissipative. Secondly, we prove that the operator / — # is surjective. Let
= (¢*.¢*,0%*,7")T € H and look for ® € D(s) satisfying

(I—A)®=G. 3.1

This can be written as

p—¢ =9
Rop + bT pxx + 6TO = Rp*,
+oo 3.2)
SO — —/ w(S)nxx(s)ds —8T¢p = SO*,
n+ns—0=n"
The solution of the differential equation (3.2)4 is
S
nis)=(1-e"*)0 +/ e"n*(r)dr. (3.3)
0

From (3.2) and (3.3), we find that ¢ and 6 satisfy
Rp +bT@xx +8TO = R(¢p* + ¢*)in H71(0, 1),

1
S6 — Ec,ﬁxx —8Tp = 8S0* —8To*

+%/(;+oou(s)(fs r Sn;x(r)d;')ds in H71(0, 1),
(3.4)
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where oo
cp = /0 w1 —e)ds < g(0).

Therefore, the variational formulation for the system (3.4) is to find (¢, 0) € V =
(H?(0,1) N Hy(0,1)) x Hy(0,1) such that

a((¢.0), (¢1,601)) = F(e1,61) V(p1,01) €V, (3.5
where a is the bilinear form on V, given by

a((ﬁﬂ, 9)’ (9017 91)) = (R(p» ‘Pl) + b(T(p’ (Plxx) + S(Te’ <P1)

1
+ <SQ, 91) + Ecu(exv Qxl) _8<T§0’ 91),

and F is the linear functional on V, defined by

+oo Ky
F(p1,0)) = <SO* —8Te* + %/ ;L(s)(/ e’_sn;x(r)dr)ds, 01>
0 0

It is easy to check the boundedness of @ and F. Furthermore, from the definition of
R, S and T, we obtain

a((p,0),(¢.0)) = p1{e, @) + p2(@x. ¢x)

Kbp2 )+
bpr + Kpa Pxxs Pxx b1 + Kpa

1
+¢(0.0) + 6%p1 (B™0y. 0;) + 5 (6x: 62)

Kb2p2 B
! (B lﬁoxxv Oxx)

Then, thanks to the properties of the operator B, we deduce that
L _kbe

bpy + kp2
> M(lpx |3 + lgxxll3 + 16x113) = Mll(e. )17

1
a((e,0),(p.0)) = p2(@x, ¢x) (@xx> xx) + Ecu(exv 0x)

Thus, a is coercive. Consequently, by Lax—Milgram lemma [17], problem (3.5) has a
unique solution (¢, 0) € V.

By substituting ¢ into (3.2);, we get ¢ € H?(0,1) N H{ (0, 1) and by using (3.3), we
have

+o0 +o0 K
/0 () Ine(s)13ds < 2,102 +2 /0 (s) /0 & s () |3drds

+o00 “+o00
= 2e, 1012 + 2 /0 / p(s)e™ dsl| () .
r
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and since p(s) < u(r) for any s > r, we obtain

+o00 +o0 +o00
/0 1) lnx($)l5ds < 2¢,)10x 15 + 2/0 (/ e"de)u(r)llni(r)Ilidr
r

—+o00
= 2,16, 12+ 2 /0 W) () 3dr < o.

This implies that € M. Moreover, (0) = 0 and

ns(s) =e "0 +n"(s) — /OS e I (r)dr =60 4+ n"(s) — n(s) € M.

So, n € N. Furthermore, if 8; = 0 in (3.5), then we get
b(Te.¢1xx) = (R(@" + ¢*) = 8T6 — Ry, ¢1) (3.6)
for all ¢; € CJ(0,1) C H*(0,1) N H{ (0, 1), which implies that
bT gxx = R(¢p* + ¢*) —8TH — Rp € H™1(0,1).
From the definition of T and the elliptic regularity theory, we conclude that
@xx € H}(0,1) and R + bT¢xy + 8T = Rp™.

Similarly, if ¢; = 01in (3.5), we obtain

1 1 +oo s
<Se—Ecuexx—aw—se*ww*—g/ u(s)(/ e"snix(r)dr)ds, 91> =0
0 0

3.7
for all 6, € CO1 0,1 C HO1 (0, 1). Thus, with the help of (3.2); and (3.3), we arrive at

1 +o0
E/ w(s)xx(s)ds = SO —8T¢p — S6* € L*(0, 1).
0

Therefore, we have proved the existence of a unique solution (¢, ¢, 8, n) € D(A)
such that (3.2) is satisfied. Consequently, the operator 4 is maximal. Then, the result of
Theorem 3.1 follows directly from the Lumer—Phillips theorem (see [8, 17]). [

Our main well-posedness result is the following theorem:

Theorem 3.2. Let (g, ¢1, Yo, 60, n0) € D, where the following compatibility condition:

B(gox + ¥0) = —p1(b@oxxx + §60x) (3.8

is satisfied. Then, there exists a unique solution (¢, ¢;,¥,0,1) € CRT, DYNCY(R™T, H)
of problem (2.2)—(2.4).
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Proof. Theorem 3.1 yields the existence of a unique solution
(@.¢:1,0.m) € CRT, D(A)) NCH(RF, H)
for the system
p1k@rr — (bp1 + p2K)Prexx + bk@xxxx + Skbxx =0,
© [0
et = [ W 0)ds + 8prguas = kpear) = 0. (39)
ne+ns—6=0.
From the equation (3.9); and the definition of B, we have
Bt + bk @xxxx + 8k0xx =0,
which gives, by differentiation,
@111 = —(B™' 0 8xx) (bk@xxs + 8k0;) € C(RT, L?(0, 1)).
Now, we take .
v = =pe(r)+ 2 [0y,
hence, v € C(R*, H2(0,1)) N CY(R™, L?(0, 1)) and
P19 — k(px + ¥)x = 0.

Therefore, it follows, from (3.9) that

P1¢1r — k(@x + ¥)x =0,
—P2011xx — bVxxx + k(@x + Y)x +80xx =0,

| o (3.10)
cl; — E w($)Nxx($)ds + 8Yx; = 0,

0
N +ns—60 =0.

Thanks to the expression of the equation (3.10)3, we get ¥, € C(R™, L2(0, 1)), which
implies that v € C1(R*, H'(0, 1)). This completes the proof. n

Remark 3.3. From the equations

P1@1r —k(px +Y)x =0,
By + bK¢xxxx + 6Kkb0xy =0

and the compatibility condition (3.8), we can define ¢;; at = 0 as follows:
p1911(x,0) 1= Kk(@ox + V0)x(x) = —kp1 B~ (b@oxxxx + 800xx).

Consequently, £(0) makes sense, where E () is given in (4.1) below.
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4. Exponential stability

In order to establish our main stability result, we begin this section by introducing some
functionals and proving some auxiliary results.

Lemma 4.1. Let (¢, ¥, 0, n) be the solution of problem (2.2)—(2.4). Then, the energy

functional, given by

P21
07+ P20, + bYZ + k(px + ¥)* + c6%)dx

1 1
EO =5 [ (it +
0

+o00

Y L (8)lnx (5)lI3ds. (4.1)

satisfies
1 +o0 , )
B0 =5 [ w6)lno)lEds <o 42)
28 Jo
Proof. By multiplying the first three equations in (2.2) by ¢;, ¥, and 6, respectively,
integrating over (0, 1), with respect to x, employing integration by parts, the boundary

conditions (2.3) and
KVxt = P1@1er — KPxxt,

and adding the results together, we obtain

1 d 400
9= ; / ( / (s)nxx(s)ds)dwﬁa /0 () I (5)12ds.

“4.3)
But equation (2.2)4 yields
1 +00 +oo 1
[ 9( [ u(s)nxx(s)ds)dx == [ [ natoraxas
0 0 0 0
1d +o0o )
v 3 RGO
1 +o00 d )
S A RO
Recalling (2.7), we arrive at
1 +oo 1 d +oo )
[o( [ nomas)ix =34 [ wonaolias
0 0 tJo
1 +o0 )
w3 [ wOInRs. e

Substituting (4.4) into (4.3), we get the desired result. [ ]
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Now, we consider the following two functionals:

+o00o

c ! Sp1 (!
Fi(t) = —— /,L(S)/ On(s)dxds + — 0 0dx
£(0) Jo 0 k Jo

8p1 1 +o0
- Kg(O)/(; ‘p”/o u(s)n(s)dsdx,

1 1
F () = b/ Yr@rdx — 8[ Oprdx,
0 0

and the two positive constants

bc + 82
M2 = s
c
§p1
M1 = .
cK

Lemma 4.2. Let (¢, ¥, 8, 1) be the solution of problem (2.2)—(2.4). Then, the functional
F =1 + 1 F

satisfies the estimate

1 1 2 1
7w < =52 [0t = P [ = [y a

1 1 +o00
+ €1 / Predx — m(l + a) / 1 () Inx (s)115ds (4.5)
0 0

for any €1 > 0 and for some constant m > 0 independent of €.

Proof. Direct differentiation, using (2.2)1, (2.2)3, and (2.2)4, leads to

+o00

1 +00 1
Ao =z [ uo [ ( / M(S)nxx(S)dS)n(S)dde

1 c +o00 1
— c[ 0%dx + — ,u(s)/ Ons(s)dxds
0 8(0) Jo 0

%% 0+°° ueo | ey - 221 [ e
8 “+o00 1

-5 [ o /0 Pexin(s)dxds
8p1

o0 1
kg (0) Jo /“‘(S)/O Puuns(s)dxds.
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Thanks to the integration by parts and (2.8), we have
1 o0
F/(t) = —c/ 6%dx + —— H/ g (s)nx(s)ds
0 Bg (0)
1

c +o0o , 5 o1
— uw (s)/ On(s)dxds — —— Ot Pxrdx
0 0 ck Jo

Q)
8 p18(0) / oo / !
1— dxd
aw( T ) o [ et
5P1 +o0 , 1
- W) | pun(s)dxds. (4.6)
kg(0) Jo 0
Next, taking the derivative of F,, using the equations of (2.2), and integrating by parts,
we get
1 2 pl 52 1
/ 2 Kk 2
A0 =p: [ hax =5 [ epians (04 7) [ vupar
0 P1 Jo ¢ 0

5 +o00 1
2 / u(s) / owenx(s)dxds. @)
ﬂ 0 0

From (4.6) and (4.7), we find that

/ ! 2 ! 2 K2M1 ! 2
T =—cna [ 0%dx—paur [ afidx = [+ pian
0 0

2

B % 400 , 1 +o0
o [ e /0 On(s)dxds — oL H / pome)ds|
8 +o0 ! oo
- [ ) /0 pun(s)dxds + 1 /0 u(s) /0 oninx(s)dxds.

4.8)

where y = %(1 - %g))) + %ML Thus, exploiting Young’s, Cauchy-Schwarz, and

Poincarés inequalities, we infer that

+oo 1
_ 1 (s) / 0(s)dxds
0 0

2(0)
1 +o0o
CM/ 2 cp2kcp / 2
< 6%dx — () lInx (s)ll2ds,
> ), 220 ), M 7x ()2
§ +o0 , 1
2 [0 [ gn(o)dxds
kg(0) Jo 0
1 2 “+oo
P21 5 (Bp1142) Ecp/ ) 2
< dx — 2022 2P ) nx(s)|I5ds,
< 220 [ = SRR [ o)1

+o0 1 1 ) ng(o) +o0 )
16 [ eunsraxas e [atdx+ LED [Tl Bas.
0 0 0 €t Jo

Substituting all these latter inequalities in (4.8), we easily obtain (4.5). ]
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Lemma 4.3. Let (¢, ¥, 0, 1) be the solution of problem (2.2)—(2.4). Then, the functional

1
g() = —K/ Ox Pxrdx
0

satisfies the estimate

1 1 1 1
§'(t)<—« | ¢Xdx+e | vidx+m|1+— @2 dx (4.9)
0 0 €2/ Jo

for any e, > 0 and for some constant m > 0 independent of €.

Proof. Calculating the derivative of §, exploiting the first equation in (2.2) and integrating
by parts, we get

1 1 1
50 = [ ghdx+pr [ dhdx—x [ vagud
0 0 0
Inequality (4.9) follows by using Young’s inequality. ]

Lemma 4.4. Let (¢, V, 0, 1) be the solution of problem (2.2)—(2.4). Then, the functional

1

H(1) = pzfc/ PxrPxdX
0

satisfies, for some m > 0, the estimate
bic 1 1 1
H'(1) < —7/0 vRdx +sz/0 Prdx +M/0 ¢irdx

1 1
+ m/ (px +¥)%dx + m/ 6%dx. (4.10)
0 0

Proof. The multiplication of the second equation in (2.2) by k¢, and integration by parts
give

1 1 1
H(1) = pak / w2dx + bi / Vegrndx + 12 / (0x + ¥)2dx
0 0 0

1 1
— /c2/ (px + V)¥dx — 8/([ Opxxdx.
0 0

Then, the use of the first equation in (2.2) leads to
1 1 1 1
H'(t) = —b/c/ Vvidx + sz/ @2, dx + bp / Yy @rrdx + KZ/ (ox + ¥)%dx
0 0 0 0

1 1 1
—KZ/ (ox +1//)de—5;01/ 9%de+8/€/ Oy dx.
0 0 0

Finally, the application of Young’s and Poincaré’s inequalities yields (4.10). ]
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Lemma 4.5. Let (¢, ¥, 0, 1) be the solution of problem (2.2)—(2.4). Then, the functional

1
X(t) = —pr / Gepdx
0

satisfies, for some m > 0, the estimate

1 1 1
K'(t) < —p1 / prdx + m/ (px + V)2dx + m/ Vidx. 4.11)
0 0 0

Proof. By performing a simple differentiation of X, using the first equation in (2.2), we

obtain
1 1 1
K0 ==p [ gdx -+ [ ot v [ ot v,
0 0 0
Using Young’s and Poincaré’s inequalities, estimate (4.11) is established. ]

Now, we are ready to state and prove the main result.

Theorem 4.6. The energy functional given by (4.1) is exponentially stable. That is,
E() < Be™ Vi>0, (4.12)
where 8 and A are positive constants.
Proof. First, we define the following Lyapunov functional:
E() = NE(t) + n1F 4+ ny§ + n3#H + X,

where n; and N are positive constants to be properly chosen later.
Direct computations, using (4.2), (4.5), (4.9), (4.10), and (4.11), and taking &; =
ni_l,i = 1,2, imply that

1 b 1
L) < —p1/ @?dx — —Kn3 —m—1 / V2dx
0 2 0
1
— (an — paknsz — 1) / gaitdx
0

2 1
—(K s nl—mn3—m)/ (¢x + ¥)%dx
P1 0

1
_ |:P2M1m —mna(1 + ny) —mng}/ ordx
0

2
1
— (%nl —mn3)/ 6%dx
2 0

+o0
N —mni(1 + n1>] /0 () lInx (s)113ds. (4.13)

—
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At this point, we fix n3 so that
bknz —2m —2 >0,
then, we choose n, large enough so that
Kny — paknz —1> 0.
After fixing n,, we select n; such that

Kz,ulnl —mpinz —mp; > 0,
papiny —2mny(l + ny) —2mns > 0,

cuany —2mns > 0.

On the other hand, thanks to Young’s, Poincaré’s and Cauchy—Schwarz inequalities,
we have
(N-—m)E(t) = £(1) < (N +m)E(1). (4.14)

Now, we choose N large enough so that
N —2B8mni(1+n1) >0

and
ME() < £(1) < A E(1) (4.15)

for two positive constants A; and A,. Therefore, there exist two positive constants A3 and
A4 such that (4.13) becomes

1
£'(t) < —2s /0 (0] + 97 + 0% + Vi + (ox +¥)* + 0%)dx

+o0
[ WO I©IBds. ®.16)
From the hypotheses on p and thanks to (4.15), we get, for some A > 0,
(@) <-AL(t) VYi=>0. 4.17)
A simple integration of (4.17) over (0, ¢) leads to
L) < 20)e ™ Vi>0. (4.18)
A combination of (4.15) and (4.18) gives (4.12), which completes the proof. ]

Remark 4.7. It is well known that the Gurtin—Pipkin law is more general than Cattaneo’s
law. Therefore, this result generalizes that of [14]. In fact, if

I _s
ge(s) = —e "=,
&
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with & = 87!, then the heat flux, given by

+o0

q= _E A ge(8)0x(t — s5)ds,

1 Y L
Bqr = ——0; (e_s / efex(s)ds)
€ —00

+00
Lo - / 46(5)05 (1 — $)ds).
€ 0

satisfies

Therefore, simple calculations show that g satisfies (1.4)4. In addition, using (1.5)3, we
obtain (1.4)3. Moreover, it is easy to check that g, satisfies the hypotheses (1) and (h5);
consequently, the exponential stability result of [14] is a particular case of this present
result. In fact, as it is shown in [9], the energy functional of the Timoshenko—Gurtin—
Pipkin system is exponentially stable if and only if the same holds for the energy generated
by the Timoshenko—Cattaneo system.

5. Conclusion

In this article, we have investigated a thermoelastic Timoshenko—Gurtin—Pipkin system
without the second spectrum. We established the existence of solution, using the semig-
roup theory and with the help of unusual functionals and proved that the solution decays to
the rest state in an exponential rate. This result generalizes that of [14], where a Cattaneo—
Timoshenko model, without the second spectrum, was discussed.
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