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Embeddings and pointwise multiplication in Kondratiev
spaces on polyhedral type domains

Markus Hansen and Cornelia Schneider

Abstract. In this paper, we investigate Kondratiev spaces on domains of polyhedral type. In par-
ticular, we will be concerned with necessary and sufficient conditions for continuous and compact
embeddings and in addition, we will deal with pointwise multiplication in these spaces.

1. Introduction

Since the midsixties scales of weighted Sobolev spaces have become popular in the study
of regularity of solutions to elliptic PDEs on polygonal and polyhedral domains in R2 and
R3, respectively. In this context, we refer to the pioneering work of Kondratiev [22, 23],
see also the survey of Kondratiev and Oleinik [21]. Later on, these types of spaces, partly
more general, have been considered by many authors. Let us mention just a few: Babuška,
Guo [14], Bacuta, Mazzucato, Nistor, Zikatanov [3], Dauge [12], Kozlov, Maz’ya, Ross-
mann [24,25], Kufner, Sändig [28], Maz’ya, Rossmann [30], Mazzucato, Nistor [32], and
Nazarov, Plamenevskii [34]. Whereas in the mentioned references the weight was always
chosen to be a power of the distance to the singular set of the boundary, there are also
publications dealing with the weight being a power of the distance to the whole boundary.
We refer, e.g., to Kufner, Sändig [28], Triebel [39, Section 3.2.3] and Lototsky [29].

Kondratiev spaces provide a very powerful tool in the context of the qualitative the-
ory of elliptic and parabolic PDEs, especially on nonsmooth domains. In particular, on
domains with edges and corners, these nonsmooth parts of the boundary induce singu-
larities for the solution and its derivatives. By means of Kondratiev spaces, it is possible
to describe very precisely the behaviour of these singularities. Moreover, these specific
smoothness spaces allow for certain shift theorems in the following sense. Suppose that
we are given a second order elliptic differential equation on a polygonal or polyhedral
domain. Then, under certain conditions on the coefficients and on the domain, it turns
out that if the right-hand side has smoothness m � 1 in the scale of Kondratiev spaces,
then the solution u of the PDE has smoothness m C 1. We refer to [3] and particularly
to [30] for further information. While for smooth domains similar statements also hold
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for classical smoothness spaces such as Sobolev spaces, the situation is completely differ-
ent on the nonsmooth domains we are concerned with here. In this case, the singularities
at the boundary diminish the Sobolev regularity. Let us in this context recall the famous
H 3=2-theorem proved by Jerison and Kenig [20], which states that for the Poisson equa-
tion there exist Lipschitz domains and right-hand sides f 2 C1 such that the smoothness
of the corresponding solution is limited by 3=2.

The above remarks reflect that Kondratiev spaces have been shown to be an indis-
pensable tool in the theory of elliptic equations, in particular, on non-convex polyhedral
domains. Our intention in this paper is twofold: the first part has a survey character on
the basic properties of Kondratiev spaces. We systematically present what is known about
these classes with respect to continuous and compact embeddings. Moreover, we provide
examples to illustrate the sharpness of the embedding results. In the second part we present
new results concerning pointwise multiplication in Kondratiev spaces, where we would
like to understand the mappings u 7! un, n 2 N, in the framework of these scales. To do
this we will allow a greater generality. Moreover, we will give the final answer under which
conditions Kondratiev spaces form algebras with respect to pointwise multiplication.

There is also an interesting relationship of Kondratiev spaces with important issues
in numerical analysis. As is well known, the approximation order that can be achieved
by adaptive and other nonlinear methods usually depends on the regularity of the exact
solutions in scales of Besov spaces [7, 10, 11, 17]. Since there exist a lot of embeddings
of Kondratiev spaces into Besov spaces, cf. [16, 17], Besov regularity estimates can very
often be traced back to regularity questions in Kondratiev spaces. Therefore, the results
presented in this paper will be used in a follow-up paper [9] in order to look at Besov
regularity of solutions to nonlinear elliptic partial differential equations, e.g.,

��u.x/C un.x/ D f .x/; x 2 �; n > 2;

u.x/ D 0; x 2 @�:

The paper is organized as follows. In Section 2, we will give the definition of the scales
Km
a;p.�;M/. Therein, we also discuss in detail which types of domains we are interested

in, cf. Subsection 2.2. The next two sections are then devoted to the study of necessary
and sufficient conditions for continuous and compact embeddings of Kondratiev spaces. In
Section 5, we discuss pointwise multipliers for Kondratiev spaces in great detail. Whereas
other parts of the paper have the character of a survey, the contents of this section are
completely new. Firstly, we investigate under which conditions on the parameters m; p,
and a a space Km

a;p.�;M/ forms an algebra with respect to pointwise multiplication.
Secondly, under certain conditions on the parameters, we also deal with the more general
case of products of the form Km1

a1;p1.�;M/ �Km2
a2;p2.�;M/.

In almost all cases, the following strategy is used. In a first step, we deal with the cor-
responding problem for simplified Kondratiev spaces defined on Km

a;p.R
d ;R`�/. Though

our main interest is in domains in R2 and R3, those simplified (yet prototypical) spaces
usually can be treated without additional technical effort in general dimensions. After-
wards, using linear and continuous extension operators, we extend the obtained results
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to Kondratiev spaces defined on smooth cones, nonsmooth cones and specific dihedral
domains, see Cases I–III. In a third step, by making use of a simple decomposition, we are
able to handle Kondratiev spaces defined on polyhedral cones, see Case IV. Furthermore,
the decomposition from Lemma 10 allows us to extend everything to so-called domains
of polyhedral type. Note, however, that in Rd with d > 3 our definition of such domains
of polyhedral type is quite restrictive and allows only for very special situations like, e.g.,
domains with smooth boundary except for finitely many conical points.

Some final remarks concerning the choice of our weighted Sobolev spaces are in order.
In our setting, see Definition 1 of Subsection 2.1, all derivatives that occur are weighted
by some power of the distance to the singularity set, where the power depends on the order
˛ of the corresponding derivative. This is of course not the only possible choice. Indeed,
several authors worked with the scale Jm
 , where the power does not depend on ˛. Let us
just mention the work of Babuška and Guo [14] and Costabel, Dauge and Nicaise [6] (this
list is clearly not complete). It is sometimes claimed that the scale Jm
 is more versatile
in order to describe the global regularity of solutions of PDEs. And indeed, these spaces
have the advantage that for large enough m they may contain all polynomials, which is
not true in our case. Consequently, based on (intersections of) these spaces, Babuška and
Guo [14] and Guo [15] have been able to show exponential convergence of hp-versions
of finite element methods. However, for our purposes, the Kondratiev scale as introduced
in Section 2 is more suitable for several reasons. In particular, (complex) interpolation of
these spaces is much simpler and the desired embeddings into scales of Besov spaces also
arise very naturally.

2. Kondratiev spaces

Let us start by collecting some general notation used throughout the paper.
As usual, N stands for the set of all natural numbers, N0 D N [ ¹0º, and Rd , d 2 N,

is the d -dimensional real Euclidean space with jxj, for x 2 Rd , denoting the Euclidean
norm of x. Let Nd

0 , where d 2 N, be the set of all multi-indices, ˛ D .˛1; : : : ; ˛d / with
j̨ 2 N0 and

j˛j WD

dX
jD1

j̨ :

Furthermore, B".x/ is the open ball of radius " > 0 centered at x.
We denote by c a generic positive constant which is independent of the main paramet-

ers, but its value may change from line to line. The expressionA. B means thatA� c B .
If A . B and B . A, then we write A � B .

Given two quasi-Banach spaces X and Y , we write X ,! Y if X � Y and the natural
embedding is bounded.

A domain � is an open bounded set in Rd . Let Lp.�/, 1 � p � 1, be the Lebesgue
spaces on� as usual. Furthermore, form 2N and 1 � p �1, we denote byW m

p .�/ the
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standard Sobolev space on the domain � equipped with the norm

ku j W m
p .�/k WD

� X
j˛j�m

Z
�

j@˛u.x/jp dx

�1=p
(with the usual modification if p D 1). If p D 2 we will also write Hm.�/ instead of
W m
2 .�/.

2.1. Definition and basic properties

Definition 1. Let � be a domain in Rd and let M be a non-trivial closed subset of its
boundary @�. Furthermore, let m 2 N0 and a 2 R. We put

�.x/ WD min
®
1; dist.x;M/

¯
; x 2 �: (2.1)

(i) Let 1 � p <1. We define the Kondratiev spaces Km
a;p.�;M/ as the collection of all

measurable functions which admit m weak derivatives in � satisfying

kujKm
a;p.�;M/k WD

� X
j˛j�m

Z
�

j�.x/j˛j�a@˛u.x/jp dx

�1=p
<1:

(ii) The space Km
a;1.�;M/ is the collection of all measurable functions which admit m

weak derivatives in � satisfying

ku jKm
a;1.�;M/k WD

X
j˛j�m



�j˛j�a@˛u j L1.�/

 <1:
Remark 2. (i) Many times the set M will be the singularity set S of the domain �, i.e.,
the set of all points x 2 @� such that for any " > 0 the set @� \ B".x/ is not smooth.

(ii) We will not distinguish spaces which differ by an equivalent norm.

Basic properties

We collect basic properties of Kondratiev spaces that will be useful in what follows.

• Km
a;p.�;M/ is a Banach space, see [26, 27].

• The scale of Kondratiev spaces is monotone in m and a, i.e.,

Km
a;p.�;M/ ,!Km0

a;p.�;M/ and Km
a;p.�;M/ ,!Km

a0;p.�;M/ (2.2)

if m0 < m and a0 < a.

• Regularized distance function: there exist a function z% W x�! Œ0;1/, which is infinitely
often differentiable in �, and positive constants A;B;C˛ such that

A�.x/ � z%.x/ � B �.x/; x 2 �
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and for all ˛ 2 Nd
0 , ˇ̌

@˛ z%.x/
ˇ̌
� C˛�

1�j˛j.x/; x 2 �;

see Stein [38, Theorem VI.2.2] (the construction given there is valid for arbitrary
closed subsets of Rd ).

• By using the previous item and replacing � by z% in the norm of Km
a;p.�;M/ one can

prove the following.
Let b 2 R. Then, the mapping Tb W u 7! z%b u yields an isomorphism of Km

a;p.�;M/

onto Km
aCb;p

.�;M/.

• Let a � 0. Then, Km
a;p.�;M/ ,! Lp.�/.

• A function W�!R such that the ordinary derivatives @˛ are continuous functions
on � for all ˛, j˛j � m,

k j Cm.�/k WD max
j˛j�m

sup
x2�

j@˛ .x/j <1;

is a pointwise multiplier for Km
a;p.�; M/, i.e.,  � u 2 Km

a;p.�; M/ for all u 2
Km
a;p.�;M/.

• For 1 � p <1, the subspace

C1� .�;M/ D
®
uj� W u 2 C

1
0 .R

d
nM/

¯
is a dense subset of Km

a;p.�;M/. A proof can be found in [40].

2.2. Domains of polyhedral type

In the sequel, we will mainly be interested in the case that d is either 2 or 3 and that �
is a bounded domain of polyhedral type. The precise definition will be given below in
Definitions 4 and 5. Essentially, we will consider domains for which the analysis of the
associated Kondratiev spaces can be reduced to the following four basic cases:

• smooth cones;

• specific nonsmooth cones;

• specific dihedral domains;

• polyhedral cones.

Let d � 2. Below, an infinite smooth cone with vertex at the origin is the set®
x 2 Rd W 0 < jxj <1; x=jxj 2 �

¯
;

where� is a simply connected subdomain of the unit sphere Sd�1 in Rd with C1 bound-
ary.

Case I. Let K 0 be an infinite smooth cone in Rd as described above, and let M WD ¹0º.
Then, we define the truncated cone K by

K WD K 0 \ B1.0/ (2.3)
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x3

1

M

x1

x2

K D K 0 \ B1.0/

Figure 1. Kondratiev spaces on smooth cones.

and put

kujKm
a;p.K;M/k WD

� X
j˛j�m

Z
K

j jxjj˛j�a@˛u.x/jp dx

�1=p
: (2.4)

Observe that M is just a part of the singular set of the boundary of the truncated cone
K (see Figure 1). We further remark that the truncation in (2.3) not necessarily has to be
done with the unit ball. Any smooth hypersurface in Rd , particularly a hyperplane (see
Case II below) would be sufficient (since it does not generate additional singularities).

Case II. Let K 0 denote a rotationally symmetric smooth cone with opening angle 
 2
.0; �=2/ (the precise value of 
 will be of no importance), and let K be its truncated
version K WD K 0 \ ¹x 2 Rd W 0 < xd < 1º as in Case I. Moreover, we put

I WD
®
x 2 Rd W 0 < xi < 1; i D 1; : : : ; d

¯
; (2.5)

the unit cube in Rd . Then, we define two (non-diffeomorphic) versions of specific non-
smooth cones P : in both situations, we choose

M D � WD
®
x 2 Rd W x D .0; : : : ; 0; xd /; 0 � xd � 1

¯
and define

ku jKm
a;p.P; �/k WD

� X
j˛j�m

Z
P

ˇ̌
�.x/j˛j�a@˛u.x/

ˇ̌p
dx

�1=p
; (2.6)

where �.x/ denotes the distance of x to � , i.e., �.x/D j.x1; : : : ; xd�1/j. Also, in this case
the set � is a proper subset of the singular set of P (see Figure 2).
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x3

K 0

1

P DK 0 \ I

M

I

x1

x2

(a) We consider P D K 0 \ I , or equivalently
P D K \ I .

x3

K 0

1

P DK n I

M

I

x1

x2

(b) Alternatively, also P D K n xI will be called
a specific non-smooth cone.

Figure 2. Kondratiev spaces on specific nonsmooth cones.

Case III. Let 1 � ` < d and let I be the unit cube defined in (2.5). For x 2 Rd , we write

x D .x0; x00/ 2 Rd�` �R`;

where x0 WD .x1; : : : ; xd�`/ as well as x00 WD .xd�`C1; : : : ; xd /. Hence, I D I 0 � I 00 with
the obvious interpretation (see Figure 3).

Additionally, also sets of the form I D I 0 �K, where K � Rd�` is a truncated cone
as in Case I, are considered. Then, we choose

M` WD
®
x 2 @I W x1 D � � � D xd�` D 0

¯
(2.7)

and define

kujKm
a;p.I;M`/k WD

� X
j˛j�m

Z
I

j jx0jj˛j�a@˛u.x/jp dx

�1=p
: (2.8)

Case IV. Let K 0 be an infinite cone in R3 with vertex at the origin, such that xK 0 n ¹0º is
contained in the half space ¹x 2 R3 W x3 > 0º. We assume that the boundary @K 0 consists
of the vertex x D 0, the edges (half lines) M1; : : : ;Mn, and smooth faces �1; : : : ; �n (see
Figure 4). This means � WD K 0 \ S2 is a domain of polygonal type on the unit sphere
with sides �k \ S2. Therein, without loss of generality, we may assume that � is simply
connected. We put

Q WD K 0 \
®
x 2 R3 W 0 < x3 < 1

¯
:
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x3

1

M1

x1

x2

Figure 3. Kondratiev spaces on specific dihedral domains.

In this case, we choose
M WD .M1 [ � � � [Mn/ \ xQ

and define

kujKm
a;p.Q;M/k WD

� X
j˛j�m

Z
Q

j �.x/j˛j�a@˛u.x/jp dx

�1=p
; (2.9)

where �.x/ denotes the distance of x to M .

Remark 3. The technical assumption xK 0 n ¹0º � ¹x 2 R3 W x3 > 0º immediately implies
that the truncated cone Q is bounded (alternatively we can truncate the cone K 0 by inter-
secting with the unit ball B1.0/). Moreover, if #.x/ denotes the angle between the line

�!
0x

and the positive x3-axis, then #.x/ � #0 < �=2 for all x 2 Q.

Based on these four cases, which we define the specific domains we will be concerned
with in this paper.

Definition 4. Let D be a domain in R2 with singularity set S . Then, D is of polyhedral
type, if there exist finite disjoint index sets ƒ1 and ƒ2 and a covering .Ui /i of bounded
open sets such that

xD �

� [
i2ƒ1

Ui

�
[

� [
j2ƒ2

Uj

�
;

where

(i) for i 2 ƒ1 the set Ui is a ball such that Ui \ S D ;;

(ii) for j 2ƒ2 there exists a C1-diffeomorphism �j WUj ! �j .Uj /�Rd such that
�j .Uj \D/ is a smooth cone K as described in Case I. Moreover, we assume
that for all x 2Uj \D the distance to S is equivalent to the distance to the point
xj WD ��1j .0/.
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�l

M

x �.x/ Mk

�k

Figure 4. Kondratiev spaces on polyhedral cones.

Definition 5. Let D be a domain in R3 with singularity set S . Then, D is of polyhedral
type, if there exist finite disjoint index sets ƒ1; : : : ; ƒ5 and a covering .Ui /i of bounded
open sets such that

xD �

� [
i2ƒ1

Ui

�
[

� [
j2ƒ2

Uj

�
[

� [
k2ƒ3

Uk

�
[

� [
`2ƒ4

U`

�
[

� [
m2ƒ5

Um

�
;

where

(i) for i 2 ƒ1 the set Ui is a ball such that Ui \ S D ;;

(ii) for j 2ƒ2 there exists a C1-diffeomorphism �j WUj ! �j .Uj /�R3 such that
�j .Uj \D/ is a smooth cone K as described in Case I. Moreover, we assume
that for all x 2Uj \D the distance to S is equivalent to the distance to the point
xj WD ��1j .0/;

(iii) for k 2 ƒ3 there exists a C1-diffeomorphism �k W Uk ! �k.Uk/ � R3 such
that �k.Uk \D/ is the nonsmooth cone P as described in Case II. Moreover,
we assume that for all x 2 Uk \D the distance to S is equivalent to the distance
to the set �k WD ��1

k
.�/;

(iv) for ` 2ƒ4 there exists a C1-diffeomorphism �` W U`! �`.U`/�R3 such that
�`.U` \D/ is a specific dihedral domain as described in Case III. Moreover,
we assume that for all x 2 U` \D the distance to S is equivalent to the distance
to the set M ` WD ��1

`
.Mn/ for some n 2 ¹1; : : : ; d � 1º;
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(v) form 2 ƒ5 there exists a C1-diffeomorphism �m W Um! �m.Um/ � R3 such
that �m.Um \D/ is a polyhedral cone as described in Case IV. Moreover, we
assume that for all x 2 Um \D the distance to S is equivalent to the distance
to the set M 0m WD �

�1
m .M/.

Remark 6. (i) Below we will not always distinguish between the cases d D 2 and d D 3,
as clearly the case d D 2 is similar to the situation of a domain with conical points in R3,
that is, a domain with ƒ3 D ƒ4 D ƒ5 D ;.

(ii) Cases I–III are formulated for general d , and indeed, in the sequel, our arguments
usually work in arbitrary dimensions. However, the counterpart of Definition 5 in d > 3
either leads to a very restricted class of domains (even the unit cube Œ0; 1�d would not
be included) or it requires further standard situations beyond Cases I–IV. Therefore, a
detailed discussion of higher-dimensional domains is beyond the scope of this paper. In
most numerical applications the case d D 3 is the most interesting one anyway.

(iii) In our considerations, domains of polyhedral type are always bounded, as they can
be covered by finitely many bounded sets Ui . While a number of results can be extended
to unbounded domains, in the sequel we will not discuss this case.

(iv) In the literature, many different types of polyhedral domains are considered. As
will be discussed below, in our context, only Cases I and III are essential. Therefore, our
definition coincides with the one of Maz’ya and Rossmann [30, Definition 4.1.1]. Further
variants can be found in Babuška, Guo [14], Bacuta, Mazzucato, Nistor, Zikatanov [3],
and Mazzucato, Nistor [32].

(v) While the types of polyhedral domains coincide, in [30] more general weighted
Sobolev spaces on those polyhedral domains are discussed. In particular, Km

a;p.D; S/

coincide with the classes V `;p
ˇ;ı
.D/ if m D `,

ˇ D .ˇ1; : : : ; ˇk/ D .` � a; : : : ; ` � a/ and ı D .ı1; : : : ; ık0/ D .` � a; : : : ; ` � a/:

For the meaning of k and k0, we refer to [30, Lemma 4.1.1].

The definition contains certain redundancies. Cases II and III coincide when only
functions with support within such subdomains are considered, e.g., when working with
resolutions of unity as in Lemma 10 below; for restrictions of functions to subdomains,
the cases are not equivalent. A little less obvious (though via still quite basic geomet-
ric arguments) it can be seen that also Case IV can be reduced to Cases I and II (see
Lemma 11 below). However, this simple domain covering and the resulting norm decom-
position are not applicable to every situation: the method does not allow the usage of
a resolution of unity with compactly supported functions within the subdomains as dis-
cussed in Lemma 10—while a finite cover can be given, the compact supports of the
functions from the resolution of unity prevent from getting arbitrarily close to the vertex
of the polyhedral cone. Alternatively, one has to specifically include a neighbourhood of
that vertex, on which the distance function is neither equivalent to the distance to an edge
nor to the distance to the vertex. Fortunately, it turns out that the results presented in this
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article can be proven without the decomposition result from Lemma 10. One situation
where the usage of a resolution of unity as in Lemma 10 is necessary arises when consid-
ering extension operators. This is discussed in detail in [18, 19]. Despite this redundancy,
we still decided to include polyhedral cones in the above definition since they represent
an important special case and, moreover, a number of results can be proved directly for
such cones. This makes a reduction to other cases unnecessary and the presentation itself
more accessible.

Remark 7. A discussion of a number of examples, as well as a slight generalization of
Definition 5 to include also certain non-Lipschitz domains which the naïve geometric
intuition would also label “polyhedral domain”, can be found in [8].

Remark 8. In the literature, scales of weighted Sobolev spaces are also discussed in far
more general domains. Exemplary, let us mention the work of Schrohe and Schulze [36,
37]. The authors discuss pseudodifferential operators on manifolds with conical singularit-
ies, that is, topological spacesX � Œ0;1/=X � ¹0º withX being a smooth n-dimensional
compact manifold. In this context, with the help of local coordinates .x; t/, spaces H s;


can be defined to contain functions for which

t
n
2�
 .t@t /

k@˛xu.x; t/ 2 L2

for all k C j˛j � s 2 N. In case of a smooth cone as in Case I (i.e., X being a smooth
submanifold of Sn) the coordinate t is equivalent to the weight function �, the (Euclidean)
distance to the origin. Moreover, derivatives @˛xu w.r.t. the spherical coordinates in X
can be expressed in terms of �jˇ j@ˇu w.r.t. the standard cartesian coordinates. In other
words, on smooth cones and for s 2N those spacesH s;
 correspond to Kondratiev spaces
Ks

� n2 ;p

. However, note that the general definition of the spacesH s;
 immediately allows
for fractional smoothness parameters, i.e., s 2 R.

We continue with a few well-known properties of Kondratiev spaces.

Lemma 9. Let D be a domain of polyhedral type with singularity set S . The space
Km
a;p.D;S/ is invariant under C1 diffeomorphisms, i.e., if � W D! �.D/ DW U denotes

a C1 diffeomorphism, then the function u W D! R belongs to Km
a;p.D;S/ if and only if

the function u ı ��1 W U ! R belongs to Km
a;p.U; �.S//. Furthermore, ku jKm

a;p.D;S/k

and ku ı ��1 jKm
a;p.U; �.S//k are equivalent.

Proof. For convenience of the reader, we give a proof. For unweighted Sobolev spaces
such a result is well known, we refer to Adams [1, Theorem 3.35].

Step 1. For the time being we restrict ourselves to the standard situations described in
Case I–Case IV. Recall that in these specialized situations we do not deal with the distance
to the associated singularity set. We need a common notation. Let .R;N / refer to one of
the above four cases. We will need a geometrical property of the underlying domain.
Concentrating on Case I–Case IV, it is obvious that there exists some " > 0 such that for
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all x 2 N and all y 2 B".x/ \ R the lines connecting x and y are contained in R. Let
� D .�1; : : : ; �d /. For all such pairs x and y it follows that

j�.x/ � �.y/j �

�
sup
�2D

max
j;iD1;:::;d

ˇ̌̌̌
@

@�j
�i .�/

ˇ̌̌̌�
jx � yj:

Of course, xR and its image xU D �. xR/ are compact. Hence, there must exist a constant
C� > 0 such that

1

C�
jx � yj � j�.x/ � �.y/j � C�jx � yj; x; y 2 xR: (2.10)

Let � WD ��1. The Faà di Bruno formula for derivatives of the composition, cf. [4, Theorem
3.4], gives us

@˛.u ı �/.y/ D
X

1�j
 j�j˛j

.@
u/.�.y//
X

ˇ11 ;:::;ˇ

d
d

c
˛;ˇ11 ;:::;ˇ


d
d

dY
jD1


jY
kD1

@ˇ
k
j �j .y/; (2.11)

where the second sum runs over all multiindices

ˇ11 ; : : : ; ˇ

1
1 ; : : : ; ˇ

1
d ; : : : ; ˇ


d
d
2 Nd

0 n ¹0º satisfying ˛ D
dX
jD1


jX
kD1

ˇkj ;

with appropriate positive constants c
˛;ˇ11 ;:::;ˇ


d
d

. We put

�R.y/ WD min.1; dist.y;N //; y 2 R;

�U .y/ WD min.1; dist.y; �.N ///; y 2 U:

Let x 2 N be fixed. Hence, the boundedness of the derivatives @ˇ
k
j �j and a change of

coordinates lead toZ
�.B".x/\R/

j�U .y/
j˛j�a@˛.u ı �/.y/jp dy

.
Z
�.B".x/\R/

ˇ̌̌̌
�U .y/

j˛j�a
X

1�j
 j�j˛j

.@
u/.�.y//

ˇ̌̌̌p
dy

.
X

1�j
 j�j˛j

Z
�.B".x/\R/

ˇ̌
�U .y/

j˛j�a.@
u/.�.y//
ˇ̌p
dy

.
X

1�j
 j�j˛j

Z
B".x/\R

ˇ̌
�U .�.z//

j˛j�a.@
u/.z/
ˇ̌p
dz: (2.12)

Applying (2.10), we can replace �U .�.z// by �R.z/ itself on the right-hand side. We
define

N"=2 WD
[
x2N

B"=2.x/:
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Obviously, N"=2 is a compact set which has an open covering given by
S
x2N B".x/. The

theorem of Heine–Borel yields the existence of finitely many points x1; : : : ; xJ in N such
that

N"=2 �

J[
jD1

B".xj /:

Furthermore, let
R0 WD

®
x 2 R W dist.x;N / � "=2

¯
:

On the set R0, the function �R is equivalent to 1 and at the same time, the function �U is
equivalent to 1 on U0 WD �.R0/. Hence, on this part of R, we may use the invariance with
respect to the unweighted case, i.e.,

ku ı � jKm
a;p.U0; �.N //k . ku jKm

a;p.R0; N /k; (2.13)

see Adams [1, Theorem 3.35]. Clearly,

R �

�
R0 [

J[
jD1

B".xj /

�
:

Finally, summing up the inequalities (2.12) with x replaced by xj and taking into account
(2.13), we get

ku ı � jKm
a;p.U; �.N //k . ku jKm

a;p.R;N /k:

Interchanging the roles of � and �, we obtain the reverse inequality.

Step 2. The necessary modifications for the general case are obvious.

Now, we are going to discuss the importance of the existence of an associated decom-
position of unity.

Lemma 10. LetD, .Ui /i , .�i /i , andƒj with j D 1; : : : ; 5 be as in Definition 5. Moreover,
denote by S the singularity set ofD and let .'i /i be a decomposition of unity subordinate
to our covering, i.e., 'i 2 C1, supp'i � Ui , 0 � 'i � 1, andX

i

'i .x/ D 1 for all x 2 xD:

We put ui WD u � 'i in D.
(i) If u 2Km

a;p.D; S/, then

ku jKm
a;p.D; S/k

�

WD max
i2ƒ1
kui jW

m
p .D \ Ui /k C max

i2ƒ2
kui .�

�1
i . � // jK

m
a;p.K; ¹0º/k

C max
i2ƒ3
kui .�

�1
i . � // jK

m
a;p.P; �/k C max

i2ƒ4
kui .�

�1
i . � // jK

m
a;p.I;M`/k

C max
i2ƒ5
kui .�

�1
i . � // jK

m
a;p.Q;M/k

generates an equivalent norm on Km
a;p.D; S/.
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(ii) If u W D ! C is a function such that the pieces ui satisfy

(a) ui 2 W
m
p .D \ Ui /, i 2 ƒ1;

(b) ui .�
�1
i . � // 2Km

a;p.K; ¹0º/, i 2 ƒ2;

(c) ui .�
�1
i . � // 2Km

a;p.P; �/, i 2 ƒ3;

(d) ui .�
�1
i . � // 2Km

a;p.I;M`/, i 2 ƒ4;

(e) ui .�
�1
i . � // 2Km

a;p.Q;M/, i 2 ƒ5;

then u 2Km
a;p.D; S/ and

ku jKm
a;p.D; S/k . ku jKm

a;p.D; S/k
�:

Proof. Step 1. Proof of (i). Let Si WD S \ .Ui \D/. We claim

min.1; dist.x; S// � min.1; dist.x; Si //; x 2 Ui \D: (2.14)

To prove this, we argue by contradiction. Let us assume that there exists a real number
" > 0 and a sequence .xj /1jD1 � U1 \D such that

dist.xj ; S1/ � " and lim
j!1

dist.xj ; S/ D 0:

Hence, there exists a subsequence .xj`/` which is convergent with limit x0. Necessarily,
x0 2 S and x0 2 U1 \D. But this implies x0 2 S1, which is a contradiction to our previ-
ously made assumption. The boundedness of D yields the claim (2.14). Observe that this
implies

ku jKm
p;a.D; S/k D

� X
j˛j�m

Z
D

j�.x/j˛j�a
X
i

@˛ui .x/j
p dx

�1=p
�

X
i

� X
j˛j�m

Z
Ui\D

j�.x/j˛j�a@˛ui .x/j
p dx

�1=p
.
X
i

kui jK
m
p;a.Ui \D;Si /k: (2.15)

We split the summation on the right-hand side into the five sums
P
i2ƒj

, j D 1; : : : ; 5. In
the first case, we will use

dist.Ui \D;S/ � c > 0; i 2 ƒ1:

This yields c � mini2ƒ1 dist.Ui \D;S/ and consequently, by using � � 1, we haveX
i2ƒ1

kui jK
m
p;a.Ui \D;Si /k .

X
i2ƒ1

� X
j˛j�m

Z
Ui\D

j@˛ui .x/j
p dx

�1=p
.
X
i2ƒ1

kui jW
m
p .D \ Ui /k . max

i2ƒ1
kui jW

m
p .D \ Ui /k:

(2.16)
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Concerning the remaining terms, we will apply Lemma 9 and find

kui jK
m
p;a.Ui \D;Si /k . kui .��1i . � // jK

m
p;a.K; ¹0º/k; i 2 ƒ2; (2.17)

kui jK
m
p;a.Ui \D;Si /k . kui .��1i . � // jK

m
p;a.K; P /k; i 2 ƒ3; (2.18)

kui jK
m
p;a.Ui \D;Si /k . kui .��1i . � // jK

m
p;a.I;Ml /k; i 2 ƒ4; (2.19)

kui jK
m
p;a.Ui \D;Si /k . kui .��1i . � // jK

m
p;a.Q;M/k; i 2 ƒ5: (2.20)

Inserting (2.16)–(2.20) into (2.15), we have proved

ku jKm
p;a.D; S/k . ku jKm

p;a.D; S/k
�:

In view of Lemma 9, the reverse inequality is obvious.

Step 2. Proof of (ii). Lemma 9 yields ui2Km
p;a.D;S/ for all i ; hence,

P
iui2Km

p;a.D;S/.
On the other hand, we have X

i

ui D u:

Now, let us consider the case d D 3 in a little more detail. If we omit the usage of a
resolution of unity, we can decompose a polyhedral domain without the explicit inclusion
of polyhedral cones. Thus, let the polyhedral cone Q and the set M be as in Case IV,
with edges M1; : : : ; Mn and vertex in 0. The angles in the plane x3 D 1 are denoted by
�1; : : : ; �n; see Figure 4.

Recall the definition of nonsmooth cones from Case II: for a rotationally symmetric
smooth cone K 0, this notion refers to either the set K 0 \ I or K n xI . Using diffeomorph-
isms, we can further replace the unit cube I by general parallelepipeds.

Then, we can construct a covering of a polyhedral cone as follows (see Figure 5). For
every edge Mj with angle �j , we choose a nonsmooth cone Pj with axis Mj as described
above with sufficiently small opening angle 
j so that none of these cones intersect. Next,
we choose a further nonsmooth cone zPj with axis Mj and opening angle 
j =2. Then,
there exists a smooth cone zK (i.e., a cone whose intersection with S2 is a smooth subset)
such that �

Q

� n[
jD1

Pj

�
� zK �

�
Q

� n[
jD1

zPj

�
:

Since the original cone Q had been simply connected, this cone zK fits the requirements
for Case I.

This construction ensures that zK has a non-empty intersection with each cone Pj ; on
Pj � Q, the distance to M is equivalent to the distance to Mj ; and on zK, the distance to
M is equivalent to the distance to the vertex 0. Altogether, we have a decomposition

Q D zK [

n[
jD1

Pj ;
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zP5
P5 P4

zK

P1

zP1

P3

P2

Figure 5. Covering of a polyhedral cone.

where each point x2Q belongs to at most 2 of the subsets. Let �.x/WDmin.1;dist.x;M//.
The latter then immediately implies

kujKm
a;p.Q;M/kp

�

X
j˛j�m

�Z
zK

ˇ̌
�.x/j˛j�a@˛u.x/

ˇ̌p
dx C

nX
jD1

Z
Pj

ˇ̌
�.x/j˛j�a@˛u.x/

ˇ̌p
dx

�
� kujKm

a;p.
zK; ¹0º/kp C max

jD1;:::;n
kujKm

a;p.Pj ;Mj /k
p:

We see that the above considerations lead to the following.

Lemma 11. Let P be a polyhedral cone and let M be the particular set from Case IV.
(i) Then,

ku jKm
a;p.P;M/k�� WD ku jKm

a;p.
zK; ¹0º/k C max

jD1;:::;n
ku jKm

a;p.Pj ;Mj /k

generates an equivalent norm on Km
a;p.P;M/.
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(ii) Let u0 W zK ! C and uj W Pj ! C, j D 1; : : : ; n, be given functions satisfying
u0.x/ D uj .x/ for x 2 zK \ Pj and ui .x/ D uj .x/ for x 2 Pi \ Pj , respectively, and

• u0 2Km
a;p.
zK; ¹0º/,

• uj 2Km
a;p.Pj ;Mj /, j D 1; : : : ; n.

Then, the function u W P ! C, piecewise-defined via u.x/ D u0.x/, x 2 zK, and u.x/ D
uj .x/, x 2 Pj , j D 1; : : : ; n, satisfies u 2Km

a;p.P;M/ and

ku jKm
a;p.P;M/k . ku jKm

a;p.P;M/k��:

Proof. It will be enough to comment on (ii). The compatibility condition implies that the
function u is well defined. Moreover, since the sets zK, Pj are assumed to be open (hence
their intersections are open as well), also the weak differentiability of the pieces uj carries
over.

Remark 12. All domains of polyhedral type satisfy the cone condition, cf. [2, Definition
4.6]. But, in general, they do not have a Lipschitz boundary, see, e.g., the example [13,
Example 6.5]. For our investigations within this article, we do not require any additional
regularity assumptions on the domain (or its boundary) beyond being of polyhedral type.

2.3. Extensions

Stein’s linear extension operator E, see [38, Section VI.3.2], has become a standard tool
in the framework of Sobolev spaces on Lipschitz domains. It can be used in the framework
of Kondratiev spaces as well. The following proposition contains particular cases of more
general results which can be found in [17–19]. We need one more notation, compare with
(2.7):

R`� WD
®
x 2 Rd W x1 D � � � D xd�` D 0

¯
: (2.21)

Clearly, if ` D 1, we will simply write R�. For brevity, we also put

R0� WD ¹0º; Km
a;p.R

d ;R`�/ WDKm
a;p.R

d
nR`�;R

`
�/; 0 � ` < d:

Proposition 13. Let d � 2, 1 � p <1, a 2 R, and m 2 N.
(i) LetK be our smooth cone from Case I. Then, the Stein extension operator E yields

a linear and bounded mapping of Km
a;p.K; ¹0º/ into Km

a;p.R
d ; ¹0º/.

(ii) Let P and � be as in Case II. Then, the Stein extension operator E yields a linear
and bounded mapping of Km

a;p.P; �/ into Km
a;p.R

d ;R�/.

(iii) Let I and M`, 1 � ` < d; be as in Case III. Then, the Stein extension operator E

yields a linear and bounded mapping of Km
a;p.I;M`/ into Km

a;p.R
d ;R`�/.

(vi) Let Q and M be as in Case IV. Then, there exists a linear and bounded extension
operator E WKm

a;p.Q;M/!Km
a;p.R

d ;M/.
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With Proposition 13 and Lemma 10 at hand, we can reduce the basic properties of the
spaces Km

a;p.D; S/ to the model cases Km
a;p.R

d ;R`�/, 0 � ` < d . In this model setting,
we find for the weight function that

�.x1; : : : ; xd�`; : : : ; xd / D min
�
1;
�d�X̀
iD1

jxi j
2
�1=2�

: (2.22)

2.4. A localization principle

The following decomposition of the norm of weighted Sobolev spaces is in some sense
standard. We will allow a slightly greater generality than before.

Let � � Rd be an open, nontrivial connected set and let M be a closed nontrivial
subset of the boundary. Then, we define

�j WD
®
x 2 Rd W 2�j�1 < �.x/ < 2�jC1

¯
; j 2 N0; (2.23)

where �.x/ WD min.1; dist.x;M//, x 2 Rd . Next, we choose the largest number j0 2 N0

such that ®
x 2 � W �.x/ � 2�j0C1

¯
D ;:

This implies
� \�j0 D

®
x 2 � W 2�j0�1 < �.x/ < 2�j0C1

¯
¤ ;:

Because � is open and connected, the continuity of � yields

j� \�j j > 0 for all j � j0: (2.24)

Hence,

� D

1[
jDj0

.� \�j /:

For technical reasons, we need to distinguish the following two cases:

(a) ¹x2� W 2�j0C2�j0�2<�.x/<2�j0C2�2�j0�2ºD;. Then, we define j1 WDj0,

(b) ¹x 2� W 2�j0 C 2�j0�2 < �.x/ < 2�j0C2 � 2�j0�2º ¤ ;. Then, we define j1 WD
j0 � 1.

Of course, we will need some regularity of �. We will use a condition guaranteeing
that for x 2 � an essential part of the ball centred at x and with radius proportional to the
distance of x to M lies inside �. We put � WD 2�j0 .

Proposition 14. Let 1 � p <1, a 2 R, and m 2 N. Let �;M; �, and j1 be as above.
We assume that there exist two constants c > 0 and t 2 .0; 1/ such that

• for all x 2 �, dist.x;M/ < � , the balls B�.x/ satisfy

jB�.x/ \�j � c �
d for all � 2

h t
32
�.x/; t �.x/

i
I (2.25)
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• for all x 2 �, dist.x;M/ � � , the balls B�.x/ satisfy

jB�.x/ \�j � c �
d for all � � t�: (2.26)

Then, there exist positive constants A; B , and a smooth decomposition of unity .'j /j�j1
such that

• 'j 2 C
1.Rd /, j � j1;

• supp'j � �j , j � j1;

• 0 � 'j .x/ � 1 for all j � j1 and all x 2 �;
1X
jDj1

'j .x/ D 1 for all x 2 �;

and

Aku jKm
a;p.�;M/kp �

1X
jDj1

k'ju jK
m
a;p.�;M/kp � Bku jKm

a;p.�;M/kp (2.27)

for all u 2Km
a;p.�;M/.

Proof. Step 1. The lengthy construction of the family .'j /1jDj1 can be found in [8]. We
only note that, in addition to the claimed properties, we also have

j@˛'j .x/j . 2j j˛j; j � j1: (2.28)

Step 2. Because of supp 'j � �j and on �j only 'jC`, j`j � 1; are not identically zero,
we conclude that

ku jKm
a;p.�;M/kp .

X
j˛j�m

� 1X
jDj1

Z
�\supp'j

j�.x/j˛j�a@˛u.x/jp dx

�
.
X
j˛j�m

� 1X
jDj1

2�j.j˛j�a/p
Z
�j\�

j@˛.u'j /.x/j
pdx

�
:

Applying the estimate (2.28) to the subsequence .'2j /j�j1=2, we findX
j˛j�m

X
j�j1=2

2�2j.j˛j�a/p
Z
�2j\�

ˇ̌
@˛.u'2j /.x/

ˇ̌p
dx

.
X
j˛j�m

X
j�j1=2

Z
supp'2j\�

ˇ̌
�.x/j˛j�a @˛.u'2j /.x/

ˇ̌p
dx

.
X
j˛j�m

X
ˇ�˛

X
j�j1=2

Z
supp'2j\�

ˇ̌
�.x/j˛j�a @ˇu.x/ @˛�ˇ'2j .x/

ˇ̌p
dx

.
X
jˇ j�m

X
j�j1=2

Z
supp'2j\�

ˇ̌
�.x/jˇ j�a @ˇu.x/

ˇ̌p
dx

.
X
jˇ j�m

Z
�

ˇ̌
�.x/jˇ j�a @ˇu.x/

ˇ̌p
dx D



u jKm
a;p.�;M/



p ;
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where we used in the last line supp'2j \ supp'2jC2 D ;. Taking a similar estimate with
'2jC1 instead of '2j into account, we obtain

ku jKm
a;p.�;M/kp �

X
j˛j�m

1X
jDj1

2�j.j˛j�a/p
Z
�j\�

ˇ̌
@˛.u'j /.x/

ˇ̌p
dx

�

1X
jDj1



'ju jKm
a;p.�;M/



p; (2.29)

as claimed.

Examples and comments

Lemma 15. Let 1 � p <1, a 2 R, and m 2 N. Let 0 � ` < d . Then, Rd nR`� satisfies
the restrictions (2.25) and (2.26) with respect to the set M WD R`�. The decomposition of
unity, constructed in the proof of Proposition 14, has the following additional properties:

• j0 D 0, i.e.,
P1
jD0 'j .x/ D 1 for all x 2 Rd nR`�;

• '0.x/C '1.x/ D 1 for all x 2 �0;

• 'j�1.x/C 'j .x/C 'jC1.x/ D 1 for all x 2 �j , j 2 N;

• 'j .x/ D '1.2
j�1x/, x 2 Rd , j 2 N.

Proof. Almost all properties of the decomposition of unity are immediate except for prob-
ably the last one. The sets �j with respect to the pair .Rd n R`�;R

`
�/ have a very simple

geometric structure. The transformation J W x 7! 2�jC1x restricted to �1, is a bijection
onto �j , j � 1. This is enough to show that

'j .x/ D '1.2
j�1x/; x 2 Rd ; j 2 N:

Mutatis mutandis, one can prove also the following.

Lemma 16. Proposition 14 is applicable with respect to the smooth cone, see Case I,
with respect to the specific nonsmooth cone, see Case II, the specific dihedral domain, see
Case III, and the polyhedral cone, see Case IV, always equipped with the appropriate sets
M .

Remark 17. (i) Those localized characterizations of Kondratiev spaces can be found also
in Maz’ya, Rossmann [30, Lemmas 1.2.1, 2.1.4] for smooth cones and dihedral domains.

(ii) In [39, Section 3.2.3] Triebel discusses function spaces defined by localized norms
as in (2.27). But he is working with M WD @�.

Remark 18. Let us stress the fact that a domain � needs not be a Lipschitz domain in
order to satisfy the assumptions in Proposition 14, see, e.g., [13, Example 6.5]. Moreover,
whereas a pair .�;M1/ may satisfy those restrictions, this is not necessarily true for an
alternative choice .�;M2/. Explicit examples can be found in [8].
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2.5. A general strategy

Beginning with the next subsection, we will employ Proposition 14 and its consequences,
see Lemmas 15 and 16, always in the following way.

• First step: localization of the underlying domain D by means of Proposition 14.

• Second step: reduction to some standard situation (unweighted Sobolev spaces defined
on �0 or �1) by using homogeneity arguments.

• Third step: application of some well-known properties of W m
p .�0/, W

m
p .�1/.

• Fourth step: rescaling and a second application of Proposition 14.

2.6. A further equivalent norm

Given x 2 �, let R.x/ consist of all points y in � such that the line segment joining x to
y lies entirely in �. Put

�.x/ WD
®
y 2 R.x/ W jy � xj < 1

¯
;

and let j�.x/j denote the Lebesgue measure of �.x/. Then, � satisfies the weak cone
condition if there exists a number ı > 0 such that

j�.x/j � ı for all x 2 �:

For classical Sobolev spaces, it is known that

kujW m
p .�/k� WD kujLp.�/k C

X
j˛jDm

kD˛ujLp.�/k (2.30)

is an equivalent norm in W m
p .�/ as long as the underlying domain � satisfies the weak

cone condition, cf. [2, Theorem 5.2].
We will show that also, in the case of Kondratiev spaces Km

a;p.D; S/ defined on
domains of polyhedral type, it suffices to consider the extremal derivatives (j˛j D m and
j˛j D 0) to obtain an equivalent norm.

As a preparation, we will deal with the model case � WD Rd nRl� with M WD Rl�.

Proposition 19. Let 1 � p <1, m 2 N, a 2 R, and 0 � ` < d . Then,

kujKm
a;p.R

d ;R`�/k� WD k�
�a ujLp.R

d /k C
X
j˛jDm

k�m�a @˛ujLp.R
d /k

is an equivalent norm in Km
a;p.R

d ;R`�/.

Proof. Recall that in this model case we have the explicit expression (2.22) for the weight
function �. We will employ the partition of unity .'j /j2N0 from Proposition 14 with

supp'j � �j WD
®
x 2 Rd W 2�j�1 < �.x/ < 2�jC1

¯
; j 2 N0:
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Moreover, .'j /j2N0 satisfies the properties from Lemma 15. In particular, the functions 'j
have finite overlap and 'j .x/D '1.2j�1x/ for all x and all j 2N. With this, we estimate

u jKm

a;p.R
d ;Rl�/




�

� X
j˛j�m

1X
jD0

Z
2�j�1<�.x/<2�jC1

ˇ̌
�.x/.j˛j�a/ @˛.'ju/.x/

ˇ̌p
dx

�1=p
�

� X
j˛j�m

1X
jD0

Z
�j

2�.j�1/.j˛j�a/pj@˛.'ju/.x/j
pdx

�1=p
; (2.31)

where for technical reasons we used 2�.j�1/.j˛j�a/p instead of 2�j.j˛j�a/p in the second
step. A homogeneity argument, applied to the terms with j � 1, yields

A WD

� X
j˛j�m

Z
�j

2�.j�1/.j˛j�a/pj@˛.'ju/.x/j
pdx

�1=p
D

� X
j˛j�m

2.j�1/ap2�.j�1/d
Z
�1

ˇ̌
@˛..'ju/.2

�jC1
� //.y/

ˇ̌p
dy

�1=p
D 2.j�1/a2�.j�1/d=pk.'ju/.2

�jC1
�/jW m

p .�1/k:

Since �1 has the weak cone property, we conclude from (2.30) that

A �

� X
j˛jDm

2.j�1/ap2�.j�1/d
Z
�1

j@˛..'ju/.2
�jC1

� //.y/jpdy

C 2.j�1/ap2�.j�1/d
Z
�1

j.'ju/.2
�jC1y/jpdy

�1=p
:

Now, it is easy to see that the right-hand side is equivalent to� X
j˛jDm

2.j�1/ap
Z
�j

j2�.j�1/j˛j @˛.'ju/.x/j
pdx C 2.j�1/ap

Z
�j

j.'ju/.x/j
pdx

�1=p
�

� X
j˛jDm

Z
�j

j�.x/j˛j�a @˛.'ju/.x/j
pdx C

Z
�j

j�.x/�a.'ju/.x/j
pdx

�1=p
:

On the other hand, for the term j D 0, we easily see that� X
j˛j�m

Z
�0

j�.x/j˛j�a @˛.'0u/.x/j
pdx

�1=p
�

� X
j˛j�m

Z
�0

j@˛.'0u/.x/j
pdx

�1=p
D k'0ujW

m
p .�0/k
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and

k'0ujW
m
p .�0/k

�

� X
j˛jDm

Z
�0

j@˛.'0u/.x/j
pdx C

Z
�0

j.'0u/.x/j
pdx

�1=p
�

� X
j˛jDm

Z
�0

j�.x/j˛j�a @˛.'0u/.x/j
pdx C

Z
�0

j�.x/�a.'0u/.x/j
pdx

�1=p
:

Inserting these estimates into (2.31), we find

kujKm
a;p.R

d ;Rl�/k

�

� X
j˛jDm

Z
Rd nRl

�

j�.x/j˛j�a @˛u.x/jpdx C

Z
Rd nRl

�

j�.x/�au.x/jpdx

�1=p
D kujKm

a;p.R
d ;Rl�/k�:

The proof is complete.

Theorem 20. Let the pair .D;M/ be a Lipschitz domain of polyhedral type. Furthermore,
let 1 � p <1, m 2 N, and a 2 R. Then,

kujKm
a;p.D;M/k� WD k�

�a ujLp.D/k C
X
j˛jDm

k�m�a @˛ujLp.D/k

is an equivalent norm in Km
a;p.D;M/.

Proof. Step 1. For simplicity, we deal with Case I, the smooth cone K with M D ¹0º.
As mentioned before, see the list of basic properties in Subsection 2.2, C1� .K; ¹0º/ is
a dense subset in Km

a;p.K; ¹0º/. Let u 2 C10 .K; ¹0º/. Then, it is readily checked that
Eu 2 C10 .R

d n ¹0º/, where E denotes Stein’s extension operator. A closer inspection of
the proof of Proposition 13 presented in [17] reveals that the estimates for the weighted
Lp-norms of partial derivatives of Eu of order m involve only partial derivatives of u
likewise of order m; thus, we find

kEu jKm
a;p.R

d ; ¹0º/k� � cku jK
m
a;p.K; ¹0º/k�:

Hence, with the help of Proposition 19, we conclude that

ku jKm
a;p.K; ¹0º/k � kEu jK

m
a;p.R

d ; ¹0º/k

� ckEu jKm
a;p.R

d ; ¹0º/k� � cku jK
m
a;p.K; ¹0º/k�:

Step 2. Clearly, Cases II and III can be handled in a similar fashion as in Step 1. The
domain decomposition strategies from [18, 19] then can be used to transfer the result
first to layers of polyhedral cones, i.e., intersections of polyhedral cones with sets ¹x 2
Rd W r < jxj < Rº, and subsequently to polyhedral cones. Ultimately, general domains of
polyhedral type D can be reduced to the standard situations with the help of Lemma 10.
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3. Continuous embeddings

With the help of the localization result from Subsection 2.4, Sobolev-type embeddings
for Kondratiev spaces can now be traced back to corresponding results for unweighted
Sobolev spaces. In a first step, we deal with the model case� WD Rd nR`� andM WD R`�.

3.1. Continuous embeddings in the model case

Again, we proceed as described in Subsection 2.5.

Proposition 21. Let 1� p � q <1,m 2N, a 2R. Let 0� ` < d . Then, Km
a;p.R

d ;R`�/

is embedded into Km0

a0;q.R
d ;R`�/ if and only if

m �
d

p
� m0 �

d

q
and a �

d

p
� a0 �

d

q
: (3.1)

Proof. Step 1. We will apply the decomposition of unity as constructed in Proposition 14
and with the additional properties as described in Lemma 15. Similar to (2.23) we put

Dj WD
®
x 2 Rd W 2�j�1 < �.x/ < 2�jC1

¯
; j 2 N0 (3.2)

and �.x/ D min.1; jx0j/, x D .x0; x00/, x0 2 Rd�`, x00 2 R`. We choose "j WD 2�j�4,
j 2 N0. Recall, 'j .x/ D '1.2j�1x/, j 2 N. In view of formula (2.29) we will consider
the terms

P
j˛j�m0 2

�j.j˛j�a0/q
R
Dj
j @˛.u'j /.x/j

q dx. For technical reasons, we replace

2�j.j˛j�a
0/q by 2�.j�1/.j˛j�a

0/q . A transformation of coordinates x WD 2�jC1y and the
just mentioned homogeneity property of the system .'j /j yieldX
j˛j�m0

2�.j�1/.j˛j�a
0/q

Z
Dj

j@˛.u'j /.x/j
q dx

D

X
j˛j�m0

2�.j�1/.j˛j�a
0/q

Z
D1

j@˛.u'j /.2
�jC1y/jq 2.�jC1/d dy

D

X
j˛j�m0

2�.j�1/.j˛j�a
0/q2.�jC1/d 2.j�1/j˛jq

Z
D1

ˇ̌
@˛.u.2�jC1 � /'1/. � / n

p
.y/
ˇ̌q
dy

D 2.j�1/a
0q2.�jC1/dku.2�jC1 � /'1 j W

m0

q .D1/k
q :

Here, W m0

q .D1/ denotes the standard Sobolev space with parameters m0 and q on D1.
Clearly,

W m
p .D1/ ,! W m0

q .D1/ if m � d=p � m0 � d=q; 1 � p � q <1; (3.3)

see [2, Theorem 4.12]. Therefore, we obtainX
j˛j�m0

2�.j�1/.j˛j�a
0/q

Z
Dj

j@˛.u'j /.x/j
q dx

. 2.j�1/a
0q2.�jC1/dku.2�jC1 � /'1jW

m
p .D1/k

q (3.4)
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with hidden constants independent of j and u. By applying the same homogeneity argu-
ments as above, but in reversed order, we find

ku.2�jC1 � /'1 j W
m
p .D1/k

q
D

� X
j˛j�m

Z
D1

j2.�jC1/j˛j @˛.u'j /.2
�jC1y/jp dy

�q=p
D

� X
j˛j�m

2.�jC1/j˛jp 2.j�1/d
Z
Dj

j@˛.u'j /.x/j
p dx

�q=p
:

Inserting this into (3.4), we obtainX
j˛j�m0

2�.j�1/.j˛j�a
0/q

Z
Dj

j @˛.u'j /.x/j
q dx

. 2.j�1/a
0q2.�jC1/d

� X
j˛j�m

2.�jC1/j˛jp 2.j�1/d
Z
Dj

j@˛.u'j /.x/j
p dx

�q=p
.
� X
j˛j�m

2
.j�1/. dp�

d
q �j˛jCa

0/p

Z
Dj

j@˛.u'j /.x/j
p dx

�q=p
.
� X
j˛j�m

2
.j�1/. dp�

d
qCa

0�a/p

Z
Dj

j2�j.j˛j�a/@˛.u'j /.x/j
p dx

�q=p
:

Obviously, 2�j.j˛j�a/ � �.x/j˛j�a on Dj . By assumption d
p
�
d
q
C a0 � a � 0. Hence,

X
j˛j�m0

1X
jD1

2�j.j˛j�a
0/q

Z
Dj

j@˛.u'j /.x/j
q dx

.
1X
jD1

� X
j˛j�m

Z
Dj

j�.x/j˛j�a@˛.u'j /.x/j
p dx

�q=p
:

Next, we will use that `1 ,! `q=p . This yields

X
j˛j�m0

1X
jD1

2�j.j˛j�a
0/q

Z
Dj

j@˛.u'j /.x/j
q dx

.
� 1X
jD1

X
j˛j�m

Z
Dj

j�.x/j˛j�a@˛.u'j /.x/j
p dx

�q=p
:

For the term with j D 0, it is enough to apply the Sobolev embedding (3.3) with D1
replaced by D0. In view of (2.29), this proves the sufficiency of our conditions.

Step 2. Necessity. The necessity of m � d=p � m0 � d=q is part of the classical Sobolev
theory, we refer to [1, Theorem 5.4]. It remains to prove necessity of a� d=p � a0 � d=q.
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Therefore, we choose a non-trivial function u 2 C10 .R
d / such that supp u � ¹x 2 Rd W

0 < jx0j < 1º. Such a function and all dilated versions u.� �/, � > 0, belong to all spaces
Km
a;p.R

d ;R`�/. Observe the following homogeneity property for values � > 1:

ku.� � /jKm
a;p.R

d ;R`�/k
p
D

X
j˛j�m

Z
Rd

�j˛jpj�.x/j˛j�a @˛u.�x/jp dx

D

X
j˛j�m

�j˛jp�d
Z

suppu
j�.y=�/j˛j�a @˛u.y/jp dy

�

X
j˛j�m

�ap�d
Z

suppu
j�.y/j˛j�a @˛u.y/jp dy

D �ap�dku jKm
a;p.R

d ;R`�/k
p: (3.5)

We assume Km
a;p.R

d ;R`�/ ,! Km0

a0;q.R
d ;R`�/. This implies the existence of a positive

constant c such that

ku.� � / jKm0

a0;q.R
d ;R`�/k � cku.� � / jK

m
a;p.R

d ;R`�/k

holds for all � � 1 and in view of (3.5) a0 � d=q � a � d=p, as claimed.

The counterpart for q D1 can be formulated as follows.

Proposition 22. Let a 2 R, m 2 N, and 0 � ` < d .
(i) Let 1 < p <1. Then, Km

a;p.R
d ;R`�/ is embedded into Km0

a0;1.R
d ;R`�/ if and only

if

m �
d

p
> m0 and a �

d

p
� a0:

(ii) Let p D 1. Then, Km
a;1.R

d ;R`�/ is embedded into Km0

a0;1.R
d ;R`�/ if and only if

m � d � m0 and a � d � a0:

Remark 23. Note that the different condition in Proposition 22 (i) is due to the fact that
the corresponding Sobolev embedding (3.3) is not valid in the limiting case, cf. [2, The-
orem 4.12].

3.2. Continuous embeddings for Kondratiev spaces on domains of polyhedral type

Theorem 24. Let 1�p� q <1,m2N, and a 2R. Let the pair .D;M/ be of polyhedral
type. Then, Km

a;p.D;M/ is embedded into Km0

a0;q.D;M/ if and only if

m �
d

p
� m0 �

d

q
;

a �
d

p
� a0 �

d

q
:
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Proof. Step 1. Let .D; M/ be as in Cases I–III. The linear and continuous extension
operator E in Proposition 13 allows to reduce sufficiency to Proposition 21. Concern-
ing necessity, we mention that our argument in Proposition 21 relied on a function u 2
C10 .R

d / with supp u � ¹x 2 Rd W 0 < jx0j < 1º. For notational convenience, we con-
sider Case I with D D K and M D ¹0º. Let u 2 C10 .K/. Again, all functions u.� � /,
� > 1, belong to C10 .K/. Now, similar to the proof of Theorem 20, we can reduce all to
Proposition 21.

Step 2. LetD be a polyhedral cone as in Case IV. It is enough to combine Lemma 11 with
Step 1.

Step 3. Let D be a domain of polyhedral type with singularity set S . Then, we make use
of Lemma 10 to reduce the problem to an application of Steps 1 and 2.

Arguing as in case q <1, we can derive also the following for q D1.

Theorem 25. Let a 2 R and m 2 N. Let the pair .D;M/ be of polyhedral type.
(i) Let 1 < p <1. Then, Km

a;p.D;M/ is embedded into Km0

a0;1.D;M/ if and only if

m �
d

p
> m0 and a �

d

p
� a0:

(ii) Let p D 1. Then, Km
a;1.D;M/ is embedded into Km0

a0;1.D;M/ if and only if

m � d � m0 and a � d � a0:

Remark 26. Embeddings of Kondratiev spaces have been proved also in Maz’ya and
Rossmann [30]. We refer to Lemma 1.2.2 and Lemma 1.2.3 (smooth cones), Lemma 2.1.1
(dihedron), Lemma 3.1.3 and Lemma 3.1.4 (cones with edges) and Lemma 4.1.2 (domains
of polyhedral type). Only sufficiency is discussed there. Except for smooth cones the case
of equality of m � d=p and m0 � d=q is always excluded.

4. Compact embeddings

Having dealt with continuous embeddings within the scale of Kondratiev spaces so far,
we now investigate when these embeddings are compact. Roughly speaking, it turns out
that whenever we deal with strict inequalities in Theorems 24 and 25 we obtain compact
embeddings. Recall that in a pair .D;M/ of polyhedral type D is a bounded domain.

Theorem 27. Let 1 � p � q � 1, m 2 N, and a 2 R. Let .D;M/ be either .K;M/

(Case I) or .P; �/ (Case II) or .I;M`/ (Case III) or .Q;M/ (Case IV) or a domain of
polyhedral type with S being the singularity set of D. Then, Km

a;p.D;M/ is compactly
embedded into Km0

a0;q.D;M/ if and only if

m �
d

p
> m0 �

d

q
and a �

d

p
> a0 �

d

q
:
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Proof. Step 1. Sufficiency. Here, we will follow Maz’ya, Rossmann [30, Lemma 4.1.4].
We fix " > 0. Moreover, for ı > 0, we put

Dı WD
®
x 2 D W �.x/ < ı

¯
:

If ı is small enough, then, as D itself, D n xDı has the cone property. This implies the
compactness of the embedding W m

p .D n
xDı/ ,!,! W m0

q .D n xDı/ and therefore (with a
slight abuse of notation) Km

a;p.D n
xDı ;M/ ,!,!Km0

a0;q.D n
xDı ;M/.

Let U denote the unit ball in Km
a;p.D;M/. Then, this compact embedding, together

with
sup
u2U

ku jKm0

a0;q.D n
xDı ;M/k � sup

u2U

ku jKm0

a0;q.D;M/k D C1 <1;

which in turn is a consequence of the continuity of the embedding Km
a;p.D; M/ ,!

Km0

a0;q.D;M/ (see Theorems 24, 25), implies the existence of a finite "-net u1; : : : ;uN 2U
such that for all u 2 U , we have

min
iD1;:::;N

ku � ui jK
m0

a0;q.D n
xDı ;M/k < ":

Next, we define � WD a � d
p
C

d
q
� a0. By assumption � > 0. If u 2 U , applying Theor-

ems 24 and 25, we conclude that

kujKm0

a0;q.Dı ;M/k D

� X
j˛j�m0

Z
Dı

j�.x/
j˛j�.a� dpC

d
q ��/@˛u.x/jq dx

�1=q
� ı�

� X
j˛j�m0

Z
Dı

j�.x/
j˛j�.a� dpC

d
q /@˛u.x/jq dx

�1=q
� ı�ku jKm0

a� dpC
d
q ;q
.D;M/k

� ı� C1ku jK
m
a;p.D;M/k

� ı� C1:

Choosing ı so small such that ı� C1 < ", we get

min
iD1;:::;N

ku � ui jK
m0

a0;q.D;M/k < 3 ":

Hence, the embedding is compact.

Step 2. We deal with necessity.

Substep 2.1. The necessity of m � d
p
> m0 � d

q
follows from the necessity of this condi-

tion for the compactness of the embeddingW m
p .�/ ,!,! W m0

q .�/, where� is a domain
in Rd satisfying a cone condition. It is enough to choose � as a ball contained in D such
that dist.�;M/ 2 ŒA; B� for 0 < A < B <1.
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Substep 2.2. Necessity of a� d
p
> a0 � d

q
. Let u 2 C10 .R

d / be a nontrivial function such
that suppu � B1.0/. Next, we select a sequence .xj /j � D such that

B2�.jC4/.x
j / �

®
x 2 D W 2�j < �.x/ < 2�jC1

¯
; j � j0.D/:

For D being a domain of polyhedral type it is clear that such a sequence exists if j0.D/
is chosen sufficiently large. We put

uj .x/ WD u.2
j .x � xj //; x 2 Rd ; j � j0.D/:

It follows that

kuj jK
m
a;p.D;M/kp �

X
j˛j�m

2�j.j˛j�a/p
Z
D

j@˛uj .x/j
p dx

�

X
j˛j�m

2�j.j˛j�a/p2j j˛jp
Z
B1.0/

j@˛u.y/jp 2�jd dy

� 2j.ap�d/ku j W m
p .B1.0//k:

Hence, we obtain

k2
�j.a� dp / uj jK

m
a;p.D;M/k � 1; j � j0.D/:

Let a00 WD a � d
p
C

d
q

. Then,

k2
�j.a00� dq / uj jK

m
a00;q.D;M/k D k2

�j.a� dp / uj jK
m
a00;q.D;M/k � c > 0; j � j0.D/:

Observe that
suppuj \ suppujC2 D ;; j � j0.D/:

Consequently, .2�2j.a�
d
p /u2j /j is a bounded sequence in Km

a;p.D;M/ which does not
have a convergent subsequence in Km

a00;q.D;M/.

Remark 28. For Sobolev spaces this result, usually called Rellich–Kondrachov theorem,
has been known for a long time, we refer to Adams [1, Theorem 6.2]. The sufficiency part
of Theorem 27 is essentially contained in Maz’ya, Rossmann [30, Lemma 4.1.4].

5. Pointwise multiplication in Kondratiev spaces

5.1. Pointwise multiplication in the model case

First, we deal with our model case Km
a;p.R

d ;R`�/. As before, the main idea consists in
tracing everything back to the standard Sobolev case.
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5.1.1. Algebras with respect to pointwise multiplication. Recall thatW m
p .R

d /,m2N,
1 � p < 1, is an algebra with respect to pointwise multiplication if and only if either
1 < p <1 andm> d=p or pD 1 andm� d , cf. [1, Theorem 5.23] and also [31, Section
6.1] for the limiting case. In particular,

ku � v j W m
p .R

d /k � cku j W m
p .R

d /kkv j W m
p .R

d /k (5.1)

for all u; v 2W m
p .R

d / and some c > 0. Observe, that these conditions are equivalent with
the L1-embedding of the Sobolev space.

As a first step, we now consider the following more general estimate of a product. The
strategy of the proof will be essential for the following results.

Theorem 29. Let 1 � p <1, m 2 N, 0 � ` < d , and a 2 R. In case that W m
p .R

d / is
an algebra with respect to pointwise multiplication there exists a constant c such that

ku � v jKm

2a� dp ;p
.Rd ;R`�/k � cku jK

m
a;p.R

d ;R`�/kkv jK
m
a;p.R

d ;R`�/k

holds for all u; v 2Km
a;p.R

d ;R`�/.

Proof. Step 1. Some preliminary estimates. Recall the definition of the sets Dj in (3.2)
and the weight function � from (2.22). Fix j � 1. We start withZ

Dj

j@ˇw.x/jp dx . 2�dj
Z
D1

ˇ̌
@ˇw.2�jC1y/

ˇ̌p
dy

. 2j jˇ jp 2�dj
Z
D1

ˇ̌
@ˇ
�
w.2�jC1 � /

�
.y/
ˇ̌p
dy;

where we used the transformation of coordinates y WD 2j�1x. Summation over ˇ then
implies X

jˇ j�m

2�j jˇ jp
Z
Dj

j@ˇw.x/jp dx . 2�dj kw.2�jC1 � / j W m
p .D1/k

p: (5.2)

We further note that

kw.2�jC1 � / j W m
p .D1/k

p
D

X
jˇ j�m

2�.j�1/jˇ jp
Z
D1

j@ˇw.2�jC1y/jp dy

D

X
jˇ j�m

2�.j�1/jˇ jp
Z
Dj

j@ˇw.x/jp 2d.j�1/ dx: (5.3)

Step 2. Let u; v 2Km
a;p.R

d ;R`�/ such that

suppu; supp v �
®
x D .x0; x00/ 2 Rd W jx0j � 3=4

¯
:



Embeddings and pointwise multiplication in Kondratiev spaces on polyhedral type domains 65

Since W m
p .R

d / is an algebra, (5.2) applied to w D u � v leads to

ku � v jKm
a;p.R

d ;R`�/k
p

.
1X
jD1

X
jˇ j�m

2�j.jˇ j�a/p
Z
Dj

j@ˇ .u � v/.x/jp dx

.
1X
jD1

2jap 2�dj ku.2�jC1 � /v.2�jC1 � / j W m
p .D1/k

p

.
1X
jD1

2jap 2�dj ku.2�jC1 � / j W m
p .D1/k

p
kv.2�jC1 � / j W m

p .D1/k
p: (5.4)

In view of (5.3), we finally find

ku � v jKm
a;p.R

d ;R`�/k
p .

1X
jD1

2jap 2�dj
� X
jˇ j�m

2�j jˇ jp 2dj
Z
Dj

j@ˇu.x/jpdx

�
�

� X
jˇ j�m

2�j jˇ jp 2dj
Z
Dj

j@ˇv.x/jp dx

�

.
1X
jD1

� X
jˇ j�m

2�j jˇ jp 2
j. a2C

d
2p /p

Z
Dj

j @ˇu.x/jp dx

�
� sup
j�1

� X
jˇ j�m

2�j jˇ jp 2
j. a2C

d
2p /p

Z
Dj

j @ˇv.x/jp dx

�
. ku jKm

a
2C

d
2p ;p

.Rd ;R`�/k
p
kv jKm

a
2C

d
2p ;p

.Rd ;R`�/k
p:

Step 3. Let u; v 2Km
a;p.R

d ;R`�/ such that

suppu; supp v �
®
x D .x0; x00/ 2 Rd W jx0j � 1=4

¯
:

In this situation, the weight does not play any role and we may apply the result for Sobolev
spaces directly.

Step 4. Let u; v 2 Km
a;p.R

d ;R`�/. There exists a smooth function � 2 Cm.Rd / with the
following properties:

�.x/ D 1 if jx0j � 1=2

and
supp � �

®
x 2 Rd W jx0j � 3=4

¯
:

Let � 2 Cm.Rd / be a function such that � D 1 on supp.1 � �2/ and supp � � ¹x 2 Rd W
jx0j � 1=4º. Making use of the basic properties of the Kondratiev spaces in Subsection 2.1
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and the results of Steps 2 and 3, we obtain

u � v jKm
a;p.R

d ;R`�/


p

D


u � v � �2 C u � v � .1 � �2/ jKm

a;p.R
d ;R`�/



p
.


.u � �/ � .v � �/ jKm

a;p.R
d ;R`�/



p C 

.u � .1 � �2// � .v � �/ jKm
a;p.R

d ;R`�/


p

.


u � � jKm

a
2C

d
2p ;p

.Rd ;R`�/


p

v � � jKm

a
2C

d
2p ;p

.Rd ;R`�/


p

C


u � .1 � �2/ jKm

a
2C

d
2p ;p

.Rd ;R`�/


p

v � � jKm

a
2C

d
2p ;p

.Rd ;R`�/


p

.


u jKm

a
2C

d
2p ;p

.Rd ;R`�/


p

v jKm

a
2C

d
2p ;p

.Rd ;R`�/


p:

The proof is complete.

Corollary 30. Let 1 � p <1, m 2 N, a 2 R, and 0 � ` < d .
(i) Let a � d

p
and either 1 < p <1 and m > d=p or p D 1 and m � d . Then, the

Kondratiev space Km
a;p.R

d ;R`�/ is an algebra with respect to pointwise multiplication,
i.e., there exists a constant c such that

ku � v jKm
a;p.R

d ;R`�/k � cku jK
m
a;p.R

d ;R`�/kkv jK
m
a;p.R

d ;R`�/k

holds for all u; v 2Km
a;p.R

d ;R`�/.
(ii) Let ` D 0. Then, the Kondratiev space Km

a;p.R
d ;R0�/ is an algebra with respect

to pointwise multiplication if and only if a � d
p

and either 1 < p <1 and m > d=p or
p D 1 and m � d .

Proof. Step 1. Sufficiency. As mentioned in Subsection 2.1, the spaces Km
a;p.�;M/ are

monotone in a. Since

Km

2a� dp ;p
.Rd ;R`�/ ,!Km

a;p.R
d ;R`�/ if a �

d

p
;

the claim follows from Theorem 29.

Step 2. Necessity in case `D 0. The necessity of the conditions 1 < p <1 andm> d=p
or p D 1 and m � d can be reduced to the necessity in case of Sobolev spaces by using
an obvious cut-off argument. It remains to prove the necessity of a � d=p. Therefore, we
construct a counterexample in case a < d=p. Employing Lemma 48 in the appendix, we
conclude that

z%b �  2Km
a;p.R

d ;R0�/ if and only if a � b <
d

p

as well as

.z%b �  /2 2Km
a;p.R

d ;R0�/ if and only if a � 2b <
d

p
:

We choose b < 0 such that

a �
d

p
< b <

a � d=p

2
:

Then, z%b �  2Km
a;p.R

d ;R0�/ but .z%b �  /2 does not belong to it.
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As the proof of Theorem 29 shows, we also have the following slightly more general
version.

Corollary 31. Let 1 � p <1, m;m1; m2 2 N0, a1; a2 2 R, and 0 � ` < d . If either
1 < p <1 and min.m1; m2/ � m > d=p or p D 1 and min.m1; m2/ � m � d , then
there exists a constant c s.t.

ku � v jKm

a1Ca2�
d
p ;p
.Rd ;R`�/k � cku jK

m1
a1;p

.Rd ;R`�/kkv jK
m2
a2;p

.Rd ;R`�/k (5.5)

holds for all u 2Km1
a1;p.R

d ;R`�/ and v 2Km2
a2;p.R

d ;R`�/.

5.1.2. Multiplication with unbounded functions. There are two known possibilities to
extend (5.1) to unbounded functions. The first one is as follows. Let 1 < p <1,m0 2N,
m1 2 N0, and

d

2p
� m0 <

d

p
: (5.6)

Then, there exists a constant c > 0 such that

ku � v j W m1
p .Rd /k � cku j W m0

p .Rd /kkv j W m0
p .Rd /k (5.7)

holds for all u; v 2 W m0
p .Rd /, where

m1 � 2m0 �
d

p
: (5.8)

Observe that these restrictions are natural in such a context. To see this, one may use the
following family of test functions:

f˛.x/ WD jx � x
0
j
�˛  .x � x0/; x 2 Rd ; ˛ > 0:

Here, x0 is an arbitrary point in Rd and  2 C10 .R
d / such that  .0/ > 0. Elementary

calculations yield f˛ 2W m
p .R

d / if and only if ˛ < d
p
�m, cf. [35, Lemma 2.3.1/1]. First,

we comment on the lower bound in (5.6). If m0 D d=.2p/ � " for some " > 0, then we
may choose ˛ D d=.2p/ getting f˛ 2W

m0
p .Rd /. But the product f˛ � f˛ does not belong

to Lp.Rd / since the order of the singularity is d=p.
Secondly, we deal with (5.8). Let m0 satisfy (5.6) and choose ˛ D d

p
�m0 � " with

" > 0 small. For the product f˛ � f˛ , we conclude that it belongs to W m1
p .Rd / if

m1 <
d

p
� 2˛ D �

d

p
C 2m0 C 2":

For " # 0, the restriction (5.8) follows.
For all this, we refer to [35], in particular, Corollary 4.5.2.
In terms of Kondratiev spaces, the following can be shown.
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Theorem 32. Let 1 < p <1, m0 2 N, m1 2 N0, 0 � ` < d , and a0 2 R. Suppose

d

2p
� m0 <

d

p
; m1 � 2m0 �

d

p
; a1 WD 2

�
a0 �

d

2p

�
:

Then, there exists a constant c such that

u � v jKm1
a1;p

.Rd ;R`�/


 � c

u jKm0

a0;p
.Rd ;R`�/



kv jKm0
a0;p

.Rd ;R`�/k (5.9)

holds for all u; v 2Km0
a0;p.R

d ;R`�/.

Proof. We follow the same strategy as used in the proof of Theorem 29. Therefore, only
some comments to the modification are made. We have to modify (5.4). Using (5.7)
instead of (5.1), we find

ku � v jKm1
a1;p

.Rd ;R`�/k
p

.
1X
jD1

2ja1p2�dj ku.2�jC1 � / j W m0
p .D1/k

p
kv.2�jC1 � / j W m0

p .D1/k
p:

Now, we continue as before and obtain

ku � v jKm1
a1;p

.Rd ;R`�/k
p .

1X
jD1

2ja1p 2�dj
� X
jˇ j�m0

2�j jˇ jp 2dj
Z
Dj

j @ˇu.x/jpdx

�
�

� X
jˇ j�m0

2�j jˇ jp 2dj
Z
Dj

j @ˇv.x/jp dx

�
.
1X
jD1

� X
jˇ j�m0

2�j jˇ jp 2
j.
a1
2 C

d
2p /p

Z
Dj

j@ˇu.x/jp dx

�
� sup
j�0

� X
jˇ j�m0

2�j jˇ jp 2
j.
a1
2 C

d
2p /p

Z
Dj

j@ˇv.x/jp dx

�
.


u jKm0

a1
2 C

d
2p ;p

.Rd ;R`�/


p

v jKm0

a1
2 C

d
2p ;p

.Rd ;R`�/


p:

This proves the claim.

Remark 33. Observe that we have to accept a loss in regularity in (5.9) since, by (5.6)
we always have m1 < m0.

As before, there exists a generalization in the dependence with respect to the parameter
a. It will be based on the following product estimate in case of Sobolev spaces, see [35,
Corollary 4.5.2]. Let 1 < p <1, m0; m1 2 N, m2 2 N0,

d

p
� m0 Cm1; m0; m1 <

d

p
: (5.10)
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Then, there exists a constant c > 0 such that

ku � v j W m2
p .Rd /k � cku j W m0

p .Rd /kkv j W m1
p .Rd /k (5.11)

holds for all u 2 W m0
p .Rd / and v 2 W m1

p .Rd /, where

m2 � m0 Cm1 �
d

p
: (5.12)

Proposition 34. Let 1 < p < 1, m0; m1 2 N, m2 2 N0, 0 � ` < d , and a0; a1 2 R.
Suppose (5.10) and (5.12). We put

a2 WD a0 C a1 �
d

p
:

Then, there exists a constant c such that

ku � v jKm2
a2;p

.Rd ;R`�/k � cku jK
m0
a0;p

.Rd ;R`�/kkv jK
m1
a1;p

.Rd ;R`�/k

holds for all u 2Km0
a0;p.R

d ;R`�/ and all v 2Km1
a1;p.R

d ;R`�/.

Proof. The proof follows along the same lines as the proof of Theorem 32.

There is a second possibility. Instead of a shift in the smoothness parameters as above,
we will now allow a shift in the integrability. Again, our approach will be based on The-
orem 4.5.2 and Corollary 4.5.2 in [35]. Let 1 < p <1, m 2 N, and

2d
� 1
p
�
1

2

�
< m <

d

p
: (5.13)

We put

t WD
d

2d
p
�m

: (5.14)

Then, there exists a constant c > 0 such that

ku � v j W m
t .R

d /k � ckujW m
p .R

d /k kv j W m
p .R

d /k (5.15)

holds for all u; v 2W m
p .R

d /. It is easy to see that the left-hand side of (5.13) is equivalent
to t > 1. The optimality of t follows by employing the family f˛ . Let t < t 0 and put

" WD
d

2

�1
t
�
1

t 0

�
:

Then, the function f˛ with ˛ D d
p
�m � " belongs to W m

p .R
d / and f˛ � f˛ 62 W m

t 0 .R
d /

because of 2˛ D d
t 0
�m.
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Theorem 35. Let 1 < p <1,m 2N, 0� ` < d , and a0 2R. Let t be defined as in (5.14)
and put Qa1 WD 2a0 �m. Suppose (5.13). Then, for any a1 < Qa1, there exists a constant c
such that

ku � v jKm
a1;t
.Rd ;R`�/k � cku jK

m
a0;p

.Rd ;R`�/k kv jK
m
a0;p

.Rd ;R`�/k

holds for all u; v 2Km
a0;p

.Rd ;R`�/.

Proof. We follow the same strategy as used in the proof of Theorem 29. Again, it suffices
to comment on the modifications needed in comparison with the proof of Theorem 29. We
need to modify (5.4) by using (5.15), which gives

ku � v jKm
a1;t
.Rd ;R`�/k

t

.
1X
jD1

2ja1t 2�dj ku.2�jC1 � / j W m
p .D1/k

t
kv.2�jC1 � / j W m

p .D1/k
t :

Let " WD t
2
. Qa1 � a1/ > 0 and a2 WD a1

2
C d. 1

p
�

1
2t
/. Observe d. 1

p
�

1
2t
/D m

2
. It follows

ku � v jKm
a1;t
.Rd ;R`�/k

t

.
1X
jD1

2ja1t 2�dj
� X
jˇ j�m

2�j jˇ jp 2dj
Z
Dj

j@ˇu.x/jpdx

�t=p
�

� X
jˇ j�m

2�j jˇ jp 2dj
Z
Dj

j@ˇv.x/jp dx

�t=p
.
1X
jD1

2�j" sup
j�0

2j"
� X
jˇ j�m

2�j jˇ jp 2
j.
a1
2 Cd.

1
p�

1
2t //p

Z
Dj

j @ˇu.x/jp dx

�t=p
� sup
j�0

� X
jˇ j�m

2�j jˇ jp 2
j.
a1
2 Cd.

1
p�

1
2t //p

Z
Dj

j@ˇv.x/jp dx

�t=p
. ku jKm

a2C"=t;p
.Rd ;R`�/k

t
kv jKm

a2;p
.Rd ;R`�/k

t :

Because of a0 D a2 C "=t and the monotonicity of Kondratiev spaces with respect to a,
i.e., Km

a2C
"
t ;p
.�;M/ ,!Km

a2;p
.�;M/, the claim follows.

Remark 36. We compare Theorems 32 and 35. Observe that

Km
2a0�m;t

.Rd ;R`�/ ,!Km1
2.a0�d=.2p//;p

.Rd ;R`�/;

see Proposition 21. However, again by Proposition 21, it follows

Km
2a0�m�";t

.Rd ;R`�/ 6�Km1
2.a0�d=.2p//;p

.Rd ;R`�/

for any " > 0. In addition, the assumptions in Theorem 32 and Theorem 35 are different.
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As already mentioned in the introduction, we are interested in some semilinear elliptic
PDEs with nonlinearity given by un for some n > 1. For later use, we now collect the
consequences of our previous results for the mapping u 7! un.

Corollary 37. Let m0; m 2 N, m1 2 N0, a 2 R, and 0 � ` < d .
(i) Let either 1 < p <1 and m > d=p or p D 1 and m � d . Then, we have for all

natural numbers n > 1,

un 2Km

na�
d.n�1/
p ;p

.Rd ;R`�/ for all u 2Km
a;p.R

d ;R`�/;

together with the estimate

kun jKm

na�
d.n�1/
p ;p

.Rd ;R`�/k � c
n�1
ku jKm

a;p.R
d ;R`�/k

n;

where c is the constant in (5.5).
(ii) Let 1 < p <1 and d=.2p/ � m0 < d=p. Let m1 � 2m0 � d=p. Then, we have

u2 2Km1

2a� dp ;p
.Rd ;R`�/ for all u 2Km0

a;p.R
d ;R`�/;

together with the estimate

ku2 jKm1

2a� dp ;p
.Rd ;R`�/k � cku jK

m0
a;p.R

d ;R`�/k
2;

where c is the constant in (5.9).
(iii) Let 1 < p <1, t as in (5.14) and

2d
� 1
p
�
1

2

�
< m <

d

p
:

Then, for any a1 < 2a �m, there exists a constant c such that

u2 2Km
a1;t
.Rd ;R`�/ for all u 2Km

a;p.R
d ;R`�/;

together with the estimate

ku2 jKm
a1;t
.Rd ;R`�/k � cku jK

m
a;p.R

d ;R`�/k
2:

Proof. The result in (i) follows by induction upon applying Corollary 31 to u and un�1.
Parts (ii) and (iii) are just special cases of Theorems 32 and 35, respectively.

Remark 38. Applying Proposition 34, one can use the same induction argument as for
the proof of part (i). However, the results obtained in this way seem to make sense only in
the very special situation that d=p is a natural number. The reason for that can be found
in the restriction (5.12). If d=p is not a natural number, one is losing too much regularity
through the induction process. For d=p 2 ¹1; : : : ; d � 1º and .n� 1/d

p
� nm one obtains

un 2K
nm�.n�1/ dp

na�.n�1/ dp ;p
.Rd ;R`�/ for all u 2Km

a;p.R
d ;R`�/;

together with the estimate


un ˇ̌̌Knm�.n�1/ dp

na�.n�1/ dp ;p
.Rd ;R`�/




 � cn�1ku jKm
a;p.R

d ;R`�/k
n:
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5.1.3. Moser-type inequalities. Moser [33] was the first to see that one can improve
the estimates of products in case one knows that both factors are bounded. In fact, the
following is true: let 1 < p <1 and m 2 N. Then, W m

p .R
d / \ L1.Rd / is an algebra

with respect to pointwise multiplication and there exists a constant c such that

ku � v j W m
p .R

d /k � c
�
ku j W m

p .R
d /k kv j L1.R

d /k

C kv j W m
p .R

d /k ku j L1.R
d /k

�
holds for all u; v 2 W m

p .R
d / \ L1.Rd /, see [35, Section 4.6.4].

Inserting this modification into Step 2 of the proof of Theorem 29, we obtain the
following.

Theorem 39. Let 1 < p <1,m 2N, 0� ` < d , and a 2R. Then, there exists a constant
c such that

ku � v jKm
a;p.R

d ;R`�/k � c
�
ku jKm

a;p.R
d ;R`�/k kv j L1.R

d /k

C kv jKm
a;p.R

d ;R`�/k ku j L1.R
d /k

�
holds for all u; v 2Km

a;p.R
d ;R`�/ \ L1.R

d /.

5.1.4. Products of Kondratiev spaces with different p. In the sequel, we are not inter-
ested in the most general situation, only in a few special cases. It is quite easy to prove the
following.

Proposition 40. Let 1 � p < 1, m 2 N, 0 � ` < d , and a 2 R. Then, there exists a
constant c such that

ku � v jKm
a;p.R

d ;R`�/k � ckv jK
m
0;1.R

d ;R`�/k ku jK
m
a;p.R

d ;R`�/k

holds for all u 2Km
a;p.R

d ;R`�/ and v 2Km
0;1.R

d ;R`�/.

Proof. The result follows by a modification of the arguments in the proof of Theorem 29;
details can be found in [8].

In our intended application in [9], we can also allow for a shift in the regularity para-
meter m in the pointwise multiplier assertion, i.e., for the product u � v, we require less
weak derivatives than for u and/or v. This aspect leads to the following modification.

Corollary 41. Let m; n 2 N and 0 � ` < d .
(i) Let max.1; d=n/ < p <1 and a � d

p
� n. Then, there exists a constant c such

that

ku � v jKm
a;p.R

d ;R`�/k � ckv jK
mCn
aCn;p.R

d ;R`�/k ku jK
m
a;p.R

d ;R`�/k (5.16)

holds for all u 2Km
a;p.R

d ;R`�/ and v 2KmCn
aCn;p.R

d ;R`�/.
(ii) Let p D 1, d � n, and a � d � n. Then, (5.16) is true as well.
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Proof. In view of Proposition 40 it is enough to apply KmCn
aCn;p.R

d ;R`�/,!Km
0;1.R

d ;R`�/,
which by Corollary 25 is the case if

mC n �
d

p
> mI

i.e.,

n >
d

p
; aC n �

d

p
� 0:

By our assumptions on p and a the proof is complete.

Remark 42. (i) Observe that in Corollary 41, we do not need thatm is large. We only use
that a is sufficiently large.

(ii) A simple reformulation yields in case n D 2:

ku � v jKm�1
a�1;p.R

d ;R`�/k � ckv jK
mC1
aC1;p.R

d ;R`�/k ku jK
m�1
a�1;p.R

d ;R`�/k (5.17)

if m 2 N, max.1; d=2/ < p <1, and a � d
p
� 1.

5.2. Pointwise multiplication in Kondratiev spaces on domains of polyhedral type

In order to shift the results on multiplication obtained for Km
a;p.R

d ;R`�/ to Km
a;p.D;M/

with .D;M/ being a pair of polyhedral type, we proceed as in case of the continuous
embeddings. As a first step, we employ Proposition 13 and conclude that all sufficient
conditions in Subsection 5.1 remain sufficient conditions for Kondratiev spaces on pairs
.D;M/ as in Cases I–III. Next, we use Lemma 11 to show the same for Kondratiev spaces
on polyhedral cones. Then, we are finally ready to prove sufficiency also for Kondratiev
spaces on domains of polyhedral type by making use of Lemma 10.

Theorem 43. Theorem 29, Corollary 30 (i), Corollary 31, Theorem 32, Proposition 34,
Theorem 35, Corollary 37, Theorem 39, Proposition 40, and Corollary 41 carry over to
Kondratiev spaces with respect to pairs .D;M/ of polyhedral type.

Also, Corollary 30 (ii) has a counterpart, but restricted to spaces on smooth cones.

Corollary 44. Let 1 � p <1, m 2 N, and a 2 R. Furthermore, let K be the smooth
cone from Case I.

The Kondratiev space Km
a;p.K; ¹0º/ is an algebra with respect to pointwise multiplic-

ation if and only if a � d
p

with either 1 < p <1 and m > d=p or p D 1 and m � d .

6. Appendix: concrete examples

The following three lemmas are based on straightforward elementary calculations. There-
fore, all details are omitted.
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Lemma 45. Let 1 � p � 1, a 2 R, and m 2 N0.

(i) Let K be a smooth cone as in Case I. Then, 1 2 Km
a;p.K; ¹0º/ if and only if either

a < d=p for p <1 or if a � 0 for p D1.

(ii) Let P be a specific nonsmooth cone as in Case II. Then, 1 2 Km
a;p.P; �/ if and

only if either a < .d � 1/=p for p <1 or if a � 0 for p D1.

(iii) Let I be a specific dihedral domain as in Case III. Then, 1 2Km
a;p.I;M`/ if and

only if either a < .d � `/=p for p <1 or if a � 0 for p D1.

(iv) Let Q be a polyhedral cone as in Case IV. Then, 1 2 Km
a;p.Q;M/ if and only if

either a < 2=p for p <1 or if a � 0 for p D1.

Remark 46. The case of a smooth cone is considered in [5, Lemma 2.5].

Let z% denote the regularized distance function. Then, for any b 2 R, the mapping Tb W
u 7! z%b u yields an isomorphism of Km

a;p.�;M/ onto Km
aCb;p

.�;M/. As an immediate
conclusion of Lemma 45 we obtain the following.

Lemma 47. Let 1 � p � 1, a; b 2 R, 0 � l < d , and m 2 N0.

(i) Let K be a smooth cone as in Case I. Then, z%b 2 Km
aCb;p

.K; ¹0º/ if and only if
either a < d=p for p <1 or if a � 0 for p D1.

(ii) Let P be a specific nonsmooth cone as in Case II. Then, z%b 2Km
aCb;p

.P;�/ if and
only if either a < .d � 1/=p for p <1 or if a � 0 for p D1.

(iii) Let I be a specific dihedral domain as in Case III. Then, z%b 2 Km
aCb;p

.I;M`/ if
and only if either a < .d � `/=p for p <1 or if a � 0 for p D1.

(iv) Let Q be a polyhedral cone as in Case IV. Then, z%b 2Km
aCb;p

.Q;M/ if and only
if either a < 2=p for p <1 or if a � 0 for p D1.

In our model case .Rd ;R`�/, we need a modification. Let  denote a smooth cut-off
function, i.e.,

 .x/ D 1; jxj � 1

and
 .x/ D 0 if jxj � 3=2:

Lemma 48. Let 1�p�1, a;b 2R, 0� `<d ,m2N0. Then, z%b � 2Km
aCb;p

.Rd ;R`�/
if and only if either a < .d � `/=p for p <1 or if a � 0 for p D1.
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