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The von Neumann extension theory for abstract
Friedrichs operators

Marko Erceg and Sandeep Kumar Soni

Abstract. The theory of abstract Friedrichs operators was introduced some fifteen years ago with
the aim of providing a more comprehensive framework for the study of positive symmetric systems
of first-order partial differential equations, nowadays better known as (classical) Friedrichs systems.
Since then, the theory has not only been frequently applied in numerical and analytical research
of Friedrichs systems, but has continued to evolve as well. In this paper, we provide an explicit
characterisation and a classification of abstract Friedrichs operators. More precisely, we show that
every abstract Friedrichs operator can be written as the sum of a skew-symmetric operator and a
bounded self-adjoint strictly positive operator. Furthermore, we develop a classification of realisa-
tions of abstract Friedrichs operators in the spirit of the von Neumann extension theory, which, when
applied to the symmetric case, extends the classical theory.

1. Introduction

Abstract Friedrichs operators were introduced by Ern, Guermond, and Caplain [25] some
fifteen years ago with the aim of providing a more comprehensive framework for the study
of positive symmetric systems. These systems originate from the work of Friedrichs [27]
(following his research on symmetric hyperbolic systems [26]), and today they are cus-
tomarily referred to as (classical) Friedrichs systems. The reason why these systems are
still attractive to the community lies in the fact that a wide variety of (semi)linear equations
of mathematical physics (regardless of their order), including classical elliptic, parabolic,
and hyperbolic equations, can be adapted, or rewritten, in the form of Friedrichs systems.
Moreover, the same applies to equations that change their type (the so-called mixed-type
equations), such as the Tricomi equation, the study of which was actually the main motiv-
ation of Friedrichs to introduce this concept. A nice historical exposition of the classical
Friedrichs theory (which was very active until 1970s) can be found in [32].

The renewed interest in Friedrichs systems arose from numerical analysis (see, e.g.,
[31, 32]) based on the need to apply (discontinuous) Galerkin finite-element methods to
partial differential equations of various types. The well-posedness results for Friedrichs
systems obtained within the classical theory were not satisfactory; there were only results
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on the existence of weak solutions and the uniqueness of strong ones, leaving the general
question open on the joint existence and uniqueness of either a weak or a strong solution.
This brings us to abstract Friedrichs operators since in [25] the authors obtained a proper
well-posedness result (Theorem 2.2 (xii) below) within the operator-theoretic framework
introduced for this purpose (see also [2]). This novel approach initiated a number of new
investigations in various directions, for example, studies of different representations of
boundary conditions and the relation with classical theory [2,3,5,7,9,21], applications to
diverse (initial-)boundary value problems of elliptic, hyperbolic, and parabolic type [6,12,
14,20,22,34], and the development of different numerical schemes [11,15,16,18,23,24].

While we postpone the introduction of the precise definition of abstract Friedrichs
operators to the subsequent section (Definition 2.1), here we discuss the main ideas.
Assume that we are given two densely defined linear operators T0, zT0 on a Hilbert space
H such that T0 � zT �0 and zT0 � T �0 (T �0 denotes the adjoint operator of T0 and zT0 � T �0
is understood in the standard way: dom zT0 � domT �0 and T �0 jdom zT0

D zT0). Now, we seek
for realisations (or extensions) T of T0, i.e., T0 � T � zT �0 , such that T W dom T ! H

is bijective. Namely, for any right-hand side f 2 H , the inverse linear problem induced
by T :

T u D f

has a unique solution u 2 domT . Hence, if we think of T as a differential operator (e.g.,
a classical Friedrichs operator), then the associated problem is well posed and the choice
of realisation T corresponds to the prescribed (initial-)boundary conditions. Then, it is
natural to develop a mechanism for recognition, i.e., classification, of all bijective realisa-
tions. Furthermore, we distinguish bijective realisations with signed boundary map (see
Theorem 2.2 (xii) below; cf., [2, 25]), and a particular representative of such a class is
given by domT D domT �. The latter case is particularly desirable in the analysis, as it is
evident in [25, Section 4], where such a situation ensures existence of certain projectors
which were needed to relate different abstract notions of imposing boundary conditions
(see also [2]). On the other hand, in [7, Theorem 18], the same is required to have a com-
plete characterisation of all bijective realisations with signed boundary map.

Concerning the classification of all bijective realisations, in [7], Grubb’s universal
operator extension theory for the non-symmetric setting [28] (see also [29, Chapter 13])
was applied. The first main result of this contribution is the development of an alternative
approach based on the adaptation (or generalisation) of the von Neumann extension the-
ory for symmetric operators (cf., [37, Section 13.2]), which in a way has already started
in [21, Section 3] by deriving the decomposition of the graph space (see Theorem 2.2 (ix)
below). This new approach proved to be better when restricting only to bijective realisa-
tions with signed boundary map (see Theorem 4.7 below). Moreover, it is recognised that
bijective realisations T with the property that dom T D dom T �, mentioned above, exist
if and only if the kernels of maximal operators zT �0 and T �0 are isomorphic.

In the second main result, we show that every abstract Friedrichs operator can be
written as a sum of a skew-symmetric operator and a bounded self-adjoint strictly positive
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operator (see Theorem 3.1 below). This result enables a convenient connection between
theories of abstract Friedrichs and (skew-)symmetric operators, many aspects of which
are addressed throughout the manuscript. In particular, in the last section, a generalisation
of the von Neumann extension theory for symmetric operators is provided. Therefore, we
hope that this article will bring the theory of abstract Friedrichs systems closer to a wider
group of people working (or interested in) on operator theory.

The paper is organised as follows. In Section 2, we recall the definition of abstract
Friedrichs systems and concisely present the main properties. Two main results of the
paper are the subject of the following two sections. A characterisation of abstract Friedrichs
operators is provided in Section 3, while the classification in the spirit of the von Neu-
mann extension theory is developed in Section 4. Finally, the paper is closed with some
corollaries for the symmetric setting.

2. Abstract Friedrichs operators

2.1. Definition and main properties

The abstract Hilbert space formalism for Friedrichs systems which we study in this paper
was introduced and developed in [2, 25] for real vector spaces, while the required differ-
ences for complex vector spaces have been supplemented more recently in [4]. Here, we
present the definition in the form given in [7, Definition 1].

Definition 2.1. A (densely defined) linear operator T0 on a complex Hilbert space H

(a scalar product is denoted by h� j �i, which we take to be anti-linear in the second entry)
is called an abstract Friedrichs operator if there exists a (densely defined) linear operator
zT0 on H with the following properties:

(T1) T0 and zT0 have a common domain D , i.e., dom T0 D dom zT0 D D , which is
dense in H , satisfying

hT0� j  i D h� j zT0 i; �;  2 D I

(T2) there is a constant � > 0 for which

k.T0 C zT0/�k 6 2�k�k; � 2 D I

(T3) there exists a constant � > 0 such that

h.T0 C zT0/� j �i > 2�k�k2; � 2 D :

The pair .T0; zT0/ is referred to as a joint pair of abstract Friedrichs operators. (The defin-
ition is indeed symmetric in T0 and zT0.)

Before moving to the main topic of the paper, let us briefly recall the essential prop-
erties of (joint pairs of) abstract Friedrichs operators, which we summarise in the form of
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a theorem. At the same time, we introduce the notation that is used throughout the paper.
The presentation consists of two steps: first, we deal with the consequences of conditions
(T1)–(T2), and then, we highlight the additional structure implied by condition (T3). A
similar approach can be found in [13, Theorem 2.2]. This result enables a convenient con-
nection between theories of abstract Friedrichs and symmetric operators, many aspects of
which are addressed throughout the manuscript.

Theorem 2.2. Let a pair of linear operators .T0; zT0/ on H satisfy (T1) and (T2). Then,
the following holds.

(i) T0 � zT
�
0 DW T1 and zT0 � T �0 DW zT1, where zT �0 and T �0 are adjoints of zT0 and

T0, respectively.

(ii) The pair of closures . xT0;
xzT0/ satisfies (T1)–(T2) with the same constant �.

(iii) dom xT0 D dom xzT0 DW W0 and domT1 D dom zT1 DW W .

(iv) The graph norms k � kT1 WD k � k C kT1 � k and k � k zT1 WD k � k C k
zT1 � k are

equivalent, .W ;k � kT1/ is a Hilbert space (the graph space), and W0 is a closed
subspace containing D .

(v) The linear operator T0 C zT0 is everywhere defined, bounded, and self-adjoint
on H such that on W it coincides with T1 C zT1.

(vi) The sesquilinear map

Œu j v� WD hT1u j vi � hu j zT1vi; u; v 2 W ; (2.1)

is an indefinite inner product on W (cf., [10]), and we have W Œ?� D W0 and
W
Œ?�
0 D W , where the Œ� j ��-orthogonal complement of a set X � W is defined

by
X Œ?� WD ¹u 2 W W .8v 2 X/ Œu j v� D 0º

and it is closed in W . Moreover, X Œ?�Œ?� D X if and only if X is closed in W

and W0 � X .
For future reference, let us define

WC WD ¹u 2 W W Œu j u� � 0º;

W� WD ¹u 2 W W Œu j u� � 0º:
(2.2)

Note that X � X Œ?� implies X � WC \W�.

Assume, in addition, (T3), i.e., .T0; zT0/, is a joint pair of abstract Friedrichs operators.
Then,

(vii) . xT0;
xzT0/ satisfies (T3) with the same constant �.

(viii) A lower bound of T0 C zT0 is 2� > 0.

(ix) We have
W D W0 u kerT1 u ker zT1;
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where the sums are direct and all spaces on the right-hand side are pairwise Œ� j ��-
orthogonal. Moreover, the linear projections

pk W W ! kerT1 and pQk W W ! ker zT1 (2.3)

are continuous as maps .W ; k � kT1/! .H ; k � k/, i.e., pk; pQk 2 L.W ;H /.

(x) Let V be a subspace of the graph space W such that W0 � V � WC (see (2.2)).
Then,

.8u 2 V/ kT1uk � �kuk:

In particular, ran.T1jV / D ranT1jV .
Analogously, if zV is a subspace of W such that W0 �

zV � W�, then k zT1vk �

�kvk, v 2 zV , and ran. zT1j zV / D ran zT1j zV .

(xi) Let V � W be a closed subspace (in W ) containing W0. Then, operators T1jV
and zT1j zV are mutually adjoint, i.e., .T1jV /� D zT1j zV and . zT1j zV /

� D T1jV , if and
only if zV D V Œ?�.

(xii) Let V �W be a closed subspace containing W0 such that V �WC and V Œ?� �

W�. Then, T1jV W V ! H and zT1jV Œ?� W V Œ?� ! H are bijective, i.e., isomorph-
isms when we equip their domains with the graph topology, and for every u 2 V ,
the following estimate holds:

kukT1 �

�
1C

1

�

�
kT1uk:

The same estimate holds for zT1 and V Œ?� replacing T1 and V , respectively.
These bijective realisations of T0 and zT0 we call bijective realisations with signed
boundary map.

(xiii) Let V �W be a closed subspace containing W0. Then, T1jV W V !H is biject-
ive if and only if V u kerT1 D W .

The statements (i)–(iv), (vii), and (viii) follow easily from the corresponding assump-
tions (cf., [7, 25]). The claims (v), (x), and (xii) are already argued in the first paper on
abstract Friedrichs operators [25] for real vector spaces (see Sections 2 and 3 therein),
while in [4] the arguments are repeated in the complex setting. The same applies for (vi)
with a remark that for a further structure of indefinite inner product space .W ; Œ� j ��/ we
refer to [2]. The decomposition given in (ix) is derived in [21, Theorem 3.1], while for
additional claims on projectors we refer to the proof of Lemma 3.5 in the aforementioned
reference. In the same reference, one can find the proof of part (xiii) (Lemma 3.10 therein).
Finally, a characterisation of mutual self-adjointness (xi) is obtained in [7, Theorem 9].

2.2. Additional remarks

Let us close this section with a few remarks concerning the statements of the previous
theorem.
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Remark 2.3. Not all bijective realisations, characterised in part (xiii), are bijective real-
isation with signed boundary map (described in part (xii)); i.e., V �WC and V Œ?� �W�

is only a sufficient condition. However, we have the following equivalence: T1jV is biject-
ive with V �WC if and only if zT1jV Œ?� is bijective with V Œ?��W�. Thus, there is no need
in considering pairs of bijective realisations with signed boundary map, but we can denote
(in this case) each of T1jV and zT1jV Œ?� as a bijective realisation with signed boundary map
of T1 and zT1, respectively. Let us comment on this.

Since .T1jV /�D zT1jV Œ?� (see part (xi)) and each of spaces V , V Œ?�, and H is complete,
we have equivalence on the level of bijectivity. Let us assume that V � WC, and let us
denote by V1 a maximal subspace of W such that V � V1 � WC. (It exists by Zorn’s
lemma; cf., [10, Section I.6].) Then, V

Œ?�
1 � W� (cf., [10, Lemma 6.3] or [2, Theorem

2 (b)] for a perspective in the context of abstract Friedrichs operators); hence, T1jV1 is
bijective as well. Since V � V1, it must be V D V1. Hence, V Œ?� D V

Œ?�
1 � W�. The

opposite implication can be proved analogously.
The previous argument actually shows that a subspace V � WC with the property of

T1jV being bijective is maximal nonnegative subspace; i.e., if for a subspace V1 � W we
have V � V1 �WC, then it must be V D V1. Then, it is known that such V defines a pair
of bijective realisations with signed boundary map (see [2, Theorem 2]).

Let us close this remark by recalling that for any joint pair of abstract Friedrichs oper-
ators there exist bijective realisations with signed boundary map (see [7, Theorem 13 (i)]
and [21, Corollary 3.2]).

Remark 2.4. In part (vi), it is commented that for any subset X of W we have that X �
X Œ?� implies X � WC \W�. On the other hand, if X is a subspace, then the converse
holds as well by the means of the polarisation formula (cf., [10, (2.3)]).

Remark 2.5. If V is a subspace of W satisfying V D V Œ?�, then V � WC \W� (see
part (vi)). Thus, V fulfils all assumptions of part (xii) implying that the corresponding
realisations are bijective realisations with signed boundary map. Since such realisations
are of particular interest (see Introduction), we will pay attention to examining when such
realisations exist (see Corollaries 3.12 and 4.10).

Remark 2.6. Note that in part (ix) of the previous theorem we can also consider the graph
norm in the codomain of projections, since the graph norm and the (standard) norm are
equivalent on the kernels kerT1 and ker zT1. Moreover, another equivalent norm on kerT1
is
p
�Œ� j �� (for �;� 2 kerT1, we have �Œ� j ��D h� j .T0 C zT0/�i), while on ker zT1, we

can take
p
Œ� j ��. In particular, .kerT1;�Œ� j ��/ and .ker zT1; Œ� j ��/ are Hilbert spaces.

A more detailed point of view can be found in [2], where the authors recognised that
the quotient space

yW WD W=W0

is a Kreı̆n space (cf., [10]), while the pair of subspaces .1ker zT1; 1kerT1/ represents a fun-
damental decomposition of yW (cf., [21, Remarks 2.13 (iii) and 3.3 (ii)]).
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Remark 2.7. It holds WC \ kerT1 DW� \ ker zT1 D ¹0º. Indeed, let � 2WC \ kerT1.
Then, �Œ� j �� � 0, but since .ker T1;�Œ� j ��/ is a Hilbert space, we get �Œ� j �� D 0,
implying � D 0. The second identity is proved in the same way.

Remark 2.8. A pair of operators satisfying (T1), and thus any pair of abstract Friedrichs
operators, is a special case of dual or symmetric pairs of operators, where in general it is
not required that the operators have the same domains (cf., [28,33]). However, the assump-
tion on common domains is not overly restrictive from the perspective of applications to
partial differential equations. Indeed, in this setting, a standard choice for the ambient Hil-
bert space H is the Lebesgue space of square integrable functions, while for the domain
D of minimal operators the space of smooth functions with compact support (cf., [2,25]).

3. Characterisation of abstract Friedrichs operators

3.1. Characterisation

Abstract Friedrichs operators were introduced in [25], while their reformulation com-
pletely in the spirit of Hilbert spaces was provided in [7]. Now, we take a step forward by
deriving the following simple and explicit characterisation that will allow us to connect the
theory of abstract Friedrichs operators with the well-established theory for (skew-)sym-
metric operators.

Theorem 3.1. A pair of densely defined operators .T0; zT0/ on H satisfies (T1) and (T2)
if and only if there exist a densely defined skew-symmetric operator L0 and a bounded
self-adjoint operator S , both on H , such that

T0 D L0 C S and zT0 D �L0 C S: (3.1)

For a given pair, the decomposition (3.1) is unique.
If in the above we include condition (T3), then the same holds with S being strictly

positive, i.e.,
hSu j ui � �kuk2; u 2 H ;

where � > 0 is the constant appearing in (T3).

Proof. Let .T0; zT0/ satisfies (T1) and (T2). First, we will comment on the uniqueness.
Let L0, L00 and S , S 0 be two densely defined skew-symmetric operator and two bounded
self-adjoint operators, respectively, such that T0 D L0 C S D L00 C S

0. Since dom T0 �

domL0 \ domL00, the operator L0 �L00 is densely defined and both skew-symmetric and
symmetric (since coincides with S 0 � S ). Thus, it is necessarily equal to the zero operator,
implying L0 D L00 and S D S 0. (Note that the boundedness of S did not play any role.)

Let us now proceed with the existence of such operators L0 and S . We define

S WD
1

2
.T0 C zT0/;
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which is a bounded and self-adjoint operator by Theorem 2.2 (v). Therefore, by

T0 D
T0 � zT0

2
C
T0 C zT0

2
and zT0 D �

T0 � zT0

2
C
T0 C zT0

2
;

it is left to prove that L0 WD T0�zT0
2

is skew-symmetric. Since

domL0 D domT0 \ dom zT0 D D ;

L0 is densely defined. Furthermore, using L0 D S � zT0 and the boundedness of S , we
get

L�0 D S
�
� zT �0 D S � T1 D S jW � T1 D

T1 C zT1

2
� T1 D �

T1 � zT1

2
� �L0;

where in addition we used the second part of Theorem 2.2 (v). Finally, if condition (T3) is
satisfied as well, S has a positive lower bound by Theorem 2.2 (viii).

The converse follows easily by direct inspection.

Remark 3.2. From the proof of the previous theorem, it is easy to see that for general
mutually adjoint closed realisations .T1jV ; zT1jV Œ?�/ (see Theorem 2.2 (xi)) we have

..T1 � zT1/jV /
�
D �.T1 � zT1/jV Œ?� :

Note that for V DW0 we have the identity obtained in the proof of the previous theorem.

Remark 3.3. Even for a pair of densely defined operators .T0; zT0/ on H satisfying solely
(T1), we can get decomposition (3.1), but with S being only densely defined and symmet-
ric. Of course, the decomposition is provided forL0 D .T0 � zT0/=2 and S D .T0C zT0/=2
and it is unique. Observe that the approach for proving existence of the previous theorem
is not appropriate here (since S is not bounded), but instead one just needs to notice that
for any ' 2 D we have

hL0' j 'i D �h' j L0'i and hS' j 'i D h' j S'i:

By Theorem 3.1, the study of (pairs of) abstract Friedrichs operators is reduced to
the study of operators of the form (3.1), which, in our opinion, makes the situation much
more explicit (cf., [16, Remark 4.3]). Let us illustrate some straightforward conclusions.
For a pair of abstract Friedrichs operators .T0; zT0/, let L0 and S be operators given in
Theorem 3.1. If we denote L1 WD �L�0 � L0, then we have

T0 D L0 C S; zT0 D �L0 C S;

T1 D L1 C S; zT1 D �L1 C S:
(3.2)

In particular, W0 D dom xL0 and W D domL1; i.e., spaces W0 and W are independent of
S . This is also clear by noting that the graph norms k � kT1 and k � kL1 are equivalent, due
to the boundedness of S . The same holds for the sesquilinear map (2.1) since

Œu j v� D hL1u j vi C hu j L1vi; u; v 2 W : (3.3)
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Thus, all conditions on subspaces V � W given in Theorem 2.2 (xii) depend only on L1
(i.e., L0). In particular, we can formulate the following corollary.

Corollary 3.4. Let .T0; zT0/ be a joint pair of abstract Friedrichs operators on H , and let
V � W be a closed subspace containing W0 such that V � WC and V Œ?� � W� (with
respect to .T0; zT0/). For any joint pair of abstract Friedrichs operators .A0; zA0/ on H

such that
.A0 � zA0/

�
D .T0 � zT0/

�;

we have that .. zA0/�jV ; .A0/�jV Œ?�/ is a pair of bijective realisations with signed boundary
map.

Remark 3.5. Another perspective to the previous corollary can be made in terms of
(linear) m-accretive operators [37, Section 3.3]. To start, note that by the definition of
accretive operators on Hilbert spaces for V � WC we have that L WD L1jV is accretive
(see (2.2) and (3.3)), where we use the notation given in (3.2). If in addition V Œ?� � W�

(i.e., V is a maximal nonnegative subspace; see Remark 2.3), then L is m-accretive.
Indeed, it is sufficient to apply Theorem 2.2 (xii) on a pair of abstract Friedrichs oper-
ators .L0 C 1;�L0 C 1/ for the identity operator 1 (see Theorem 3.1). Furthermore,
since S is bounded and positive, a standard perturbative argument (cf., [35, Chapter 3,
Corollary 3.3]) implies that T WD T1jV is m-accretive as well. Therefore, the statement of
the previous corollary can be seen in the following way: if LD L1jV is m-accretive, then,
for any S bounded and strictly positive, LC S is also m-accretive.

On the other hand, if a realisation T D LC S is m-accretive, one can show that then
T is a bijective realisation with signed boundary map [39, Theorem 5.2.2], and then, by
the discussion above, L is also m-accretive. Thus, we have that the study of bijective
realisations with a signed boundary map of abstract Friedrichs operators is tantamount to
the study of m-accretive extensions of skew-symmetric operators. This problem of study-
ing m-accretive extensions of skew-symmetric operators has been intensively investigated
over the past few decades. For instance, recent studies include [8,36,40,42], where various
approaches have been applied, as well as different levels of generality (e.g., linear and/or
nonlinear relations). In the following section, we will make a more precise comparison to
our results.

Not all domains of bijective realisations have the feature described in the previous
corollary; i.e., there are subspaces V � W such that realisations T D L1jV C S are
bijective for some admissible S ’s, but not all. Furthermore, if a subspace V � W defines
bijective realisations for any admissible S , that does not imply that V � WC and V Œ?� �

W�. All this can be illustrated by the following simple example.

Example 3.6. Let a < b, H D L2..a; b/IR/ (for simplicity, we consider only real func-
tions) and D D C1c .a; b/. For � > 0 and ˇ 2 L1.a; b/ such that ˇ � � a.e. on .a; b/,
we consider operators T0; zT0 W D ! H given by

T0u D u
0
C ˇu; zT0u D �u

0
C ˇu:
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Then, it is easy to see that .T0; zT0/ is a joint pair of abstract Friedrichs operators, while
W DH 1.a; b/ (which is embedded into C.Œa; b�/) and W0 DH

1
0 .a; b/. Of course, in the

notation of Theorem 3.1, here we haveL0uD u0 and SuD ˇu. Then,L1u WD �L�0uD u
0

(here the derivative is in the weak sense), T1 D L1 C S , zT1 D �L1 C S , and

Œu j v� D u.b/v.b/ � u.a/v.a/; u; v 2 W :

Let us comment on all bijective realisations of operators T0 and zT0, i.e., all bijective
restrictions of T1 and zT1.

We define closed subspaces V˛ � W , ˛ 2 R [ ¹1º (here we identify �1 and C1)
by

V˛ WD ¹u 2 W W u.b/ D ˛u.a/º; ˛ 2 R;

and V1 WD ¹u 2W W u.a/D 0º. Since .L1jV˛ /
� D�L1jV 1

˛

(this can be verified by direct

calculations), we have .T1jV˛ /
� D zT1jV 1

˛

, where we use the following convention: 1
1
D 0

and 1
0
D1. Thus, we want to see for which values of ˛,�

T1jV˛ ;
zT1jV 1

˛

�
(3.4)

is a pair of mutually adjoint bijective realisations (with signed boundary map).
By [21, Remark 5.1], we have that all mutually adjoint bijective realisations are given

for ˛ 2 R [ ¹1º n ¹˛ˇ º, where ˛ˇ WD e�
R b
a ˇ.y/dy . Indeed, since

kerT1 D span¹e�
R x
a ˇ.y/dyº;

we have ker T1 � V˛ˇ . Note that for ˛ 2 ¹�1; 1º, we have V˛ D V 1
˛

; hence, L1jV˛ is
skew-self-adjoint.

By direct inspection, we get that only for ˛ 2 .�1; 1/ bijective realisations are not
with signed boundary map. (One can also consider ˇ � � by Corollary 3.4 and read the
result from [1, Example 1].) This is in the correspondence with the above result since
˛ˇ 2 .�1; 1/. More precisely, we have ˛ˇ 2 .0; 1/, and by varying � and ˇ, one can get
any number in that interval for ˛ˇ .

Therefore, for ˛ 2R[ ¹1º n .�1; 1/, the corresponding domains, i.e., boundary con-
ditions, give rise to bijective realisations independent of the choice of admissible ˇ (see
Corollary 3.4). The same holds for ˛ 2 .�1; 0� although these bijective realisations are
not with signed boundary map. Here, the reason lies in the fact that V˛ \ ker T1 D ¹0º
(cf., Theorem 2.2 (xiii)) for any ˛ 2 .�1; 0� and any choice of admissible ˇ. Finally, there
is no ˛ in .0; 1/ with this property. However, for fixed ˇ, all ˛ 2 .0; 1/ but one (˛ D ˛ˇ )
correspond to mutually adjoint bijective realisations (3.4).

We will return to this example to consider general symmetric parts.

Remark 3.7. If we consider T0 D L0 CC , where L0 is skew-symmetric and C bounded
(i.e., C is not necessarily self-adjoint), then it is easy to see that the discussion preceding
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Corollary 3.4 still holds. More precisely, spaces W0, W and indefinite inner product Œ� j ��
are independent of C ((3.3) holds precisely as it is; recall that L1 D �L�0) and the graph
norm is equivalent with k � kL1 (cf., [13, Section 2.2]). Thus, these objects depend solely
on the unbounded component of the skew-symmetric part of T0.

3.2. Deficiency indices

The previous example illustrates that in order to get all bijective realisations (not only
with signed boundary map) it is not enough to consider L0 alone, we must also bring
the symmetric part S into play. In particular, information on kernels ker T1 and ker zT1 is
essential. By Theorem 2.2 (ix), we have

W D W0 u kerT1 u ker zT1:

Hence, the sum of dimensions of the kernels is constant and equals the codimension of
W0 in W . However, from here, we cannot conclude that (cardinal) numbers dim ker T1
and dim ker zT1 are independent of S , where T1 D L1 C S . If so, this would be beneficial
in the analysis (see Example 3.11 below). Let us motivate why one should expect such
a result. Since L0 is skew-symmetric, we have that �iL0 is symmetric. Thus, for any
positive constant ˇ > 0, we have

dim ker.L1 C ˇ1/ D dim ker.iL�0 � iˇ1/ D dim ker..�iL0/� � iˇ1/ D dC.�iL0/;

where 1 denotes the identity operator, and on the right, we have the deficiency index
(or the defect number) of �iL0, which is known to be independent of ˇ > 0 (see [37,
Section 3.1]). Analogously, dim ker.L1 � ˇ1/ D d�.�iL0/. Therefore, all we need is
to show that instead of ˇ1 we can put an arbitrary bounded self-adjoint strictly positive
operator. Below is a slightly more general statement.

Lemma 3.8. Let L0 be a densely defined skew-symmetric operator, and let us denote

L1 WD �L
�
0 :

For a bounded linear operator C with strictly positive symmetric part 1
2
.C C C �/, we

define

dCC .L0/ WD dim ker.L1 C C/ and dC� .L0/ WD dim ker.L1 � C/:

Then, dCC .L0/ and dC� .L0/ are independent of C , i.e., dC
˙
.L0/ D d˙.�iL0/.

Proof. Since L0 is closable and dC
˙
.L0/ D dim ker.L1 ˙ C/ D dC˙ .L0/, we can assume

that L0 is closed. We will prove the claim for dCC .L0/, while the same argument applies
on dC� .L0/.

Let us take arbitrary bounded operators C and C 0 with strictly positive symmetric
parts, and let us denote by � and �0 the greatest lower bounds of their symmetric parts,
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respectively. We will first argue in a specific situation when kC � C 0k < min¹�; �0º,
where here k � k denotes the operator norm. Before we start, let us note that, according
to Theorem 3.1, both operators �L0 C C � and �L0 C .C 0/� define a (pair of) abstract
Friedrichs operators. (The skew-symmetric part is equal to the sum ofL0 (unbounded part)
and the skew-symmetric component of C or C 0 (bounded part) with the negative sign.)
Hence, all results of Theorem 2.2 are applicable. In particular, since L0 is assumed to be
closed, part (x) of the aforementioned theorem implies that the ranges of the operators
�L0 C C

� and �L0 C .C 0/� are closed.
If dCC .L0/ > dC

0

C .L0/, then there exists 0 ¤ � 2 ker.L1 C C/ \ ker.L1 C C 0/?

(cf., [37, Lemma 2.3]). Since ran.�L0 C .C 0/�/ is closed, we have ker.L1 C C 0/? D
ran.�L0 C .C 0/�/. Thus, we also have � 2 ran.�L0 C C �/? \ ran.�L0 C .C 0/�/. Let
0 ¤ u 2 domL0 be such that � D .�L0 C .C 0/�/u. Then, it holds

h.�L0 C .C
0/�/u j .�L0 C C

�/ui D 0: (3.5)

Applying Theorem 2.2 (x) and the identity above, we have

�0kukk.�L0 C .C
0/�/uk � k.�L0 C .C

0/�/uk2

D h.�L0 C C
�/uC .C 0 � C/�u j .�L0 C .C

0/�/ui

D hu j .C 0 � C/.�L0 C .C
0/�/ui

� kukkC 0 � Ckk.�L0 C .C
0/�/uk:

Since u¤ 0 and �D .�L0C .C 0/�/u¤ 0, this implies kC 0 �Ck ��0, which contradicts
the starting assumption kC 0 � Ck < �0. Hence, it should be dCC .L0/ � d

C 0

C .L0/.
Since the identity (3.5) is symmetric with respect to C and C 0, the same holds even if

we start with the assumption dCC .L0/ < d
C 0

C .L0/. However, then we have

.�L0 C C
�/u ¤ 0:

Repeating the last calculations with C 0 and C swapping places, we come to the analogous
conclusion: � � kC � C 0k < �. Therefore, it must be dCC .L0/ D d

C 0

C .L0/.
It is left to prove the statement without the assumption kC � C 0k < min¹�;�0º. This

easily follows by noting that the set of all bounded operators on H with strictly positive
symmetric part is convex. More precisely, for each � 2 Œ0; 1�, we have that

C� WD �C C .1 � �/C
0

is bounded and the greatest lower bound of its symmetric part is �� C .1 � �/�0 �
min¹�;�0º. Moreover,

kC�1 � C�2k D j�1 � �2jkC � C
0
k:

Thus, we can pick finitely many values 0 D �1 < � < � � � < �m D 1 such that

kC�j � C�jC1k < min¹�;�0º; j D 1; 2; : : : ; m � 1:
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Therefore, by applying the previously obtained result, we get

dC
0

C .L0/ D d
C�1
C .L0/ D d

C�2
C .L0/ D � � � D d

C�m
C .L0/ D d

C
C .L0/;

concluding the proof.

Remark 3.9. The stability of the indices dC
˙
.L0/ with respect to C is, in fact, a con-

sequence of the homotopy argument. Indeed, for a fixed C , let us consider H˙.C 0; �/ D
d
.1��/CC�C 0

˙
.L0/, where C runs through all bounded linear operators with a strictly pos-

itive symmetric part and � 2 Œ0; 1�. Then, one just needs to show that H˙ behave well
(i.e., in a continuous manner) with respect to �, which is precisely what we studied in the
proof.

Remark 3.10. For a densely defined skew-symmetric operator L0, we will refer to the
cardinal numbers d˙.�iL0/ as the deficiency indices (or the defect numbers) of L0, and
we introduce the notation d˙.L0/ WD d˙.�iL0/. The definition is not ambiguous because
depending on whether the operator is symmetric or skew-symmetric the corresponding
definition applies.

Let us return to the analysis of Example 3.6.

Example 3.11. In Example 3.6, we studied specific (multiplicative) symmetric parts. Let
us now consider a general situation where

T0u D u
0
C Cu; zT0u D �u

0
C Cu;

for an arbitrary bounded linear operator C with strictly positive symmetric part 1
2
.C C

C �/.
Let us first note that by Example 3.6 (cf., [7, Section 6.1]) and Lemma 3.8 we have

dim kerT1 D dim zT1 D 1 (for any admissible C ).
The conclusion of Example 3.6 for the range R[ ¹1º n .�1;1/ remains the same (cf.,

Corollary 3.4); i.e., for these values of ˛, we get for any admissibleC bijective realisations
(even with signed boundary map).

Let us take ˛ 2 .�1; 0/. Since the codimension of V˛ in W equals 1 and dim kerT1 D
1, by Theorem 2.2 (xiii) it is sufficient to prove that V˛ and ker T1 D span¹'C º have a
trivial intersection to get that the corresponding realisations are bijective. Let us assume
on the contrary that 'C 2 V˛ . Since ˛ < 0, we have 'C .a/'C .b/ < 0. Thus, recalling that
W ,!C.Œa;b�/, there exists c 2 .a;b/ such that 'C .c/D 0. Moreover, 'C 2 kerT1 implies
that '0C C C'C D 0 in .c; b/ as well. This together with 'C .c/ D 0 implies that 'C � 0
in .c; d/. Indeed, just recall that V1 defines a bijective realisation. In particular, we have
'C .b/ D 0, implying ˛ D 0, which is a contradiction. Therefore, for any ˛ 2 .�1; 0/, we
get bijective realisations independent of the choice of C . Note that here we were not able
to capture the value ˛ D 0.

The argument given in Example 3.6 is sufficient to conclude that in general there is
no ˛ in .0; 1/ with the property that the pair of domains .V˛;V 1

˛
/ gives rise to (mutually
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adjoint) bijective realisations (3.4) for any choice of admissible C . On the other hand, for
fixed C , since dim ker T1 D 1, there exists precisely one ˛ D ˛C 2 Œ0; 1/ for which the
corresponding realisations are not bijective. Even though we have bijective realisations
for all other values of ˛, i.e., ˛ 2 Œ0; 1/ n ¹˛C º, this case still depends on C .

A particularly interesting case of bijective realisations with signed boundary map is
when V DV Œ?� (see Introduction). By Remark 3.2, this occurs if and only if the associated
realisation of the skew-symmetric part L0 is skew-self-adjoint. Thus, such subspace V

exists if and only if dC.L0/ D d�.L0/ (see [37, Theorem 13.10]). Applying Lemma 3.8,
we can formulate the following corollary.

Corollary 3.12. Let .T0; zT0/ be a joint pair of abstract Friedrichs operators on H . There
exists a closed subspace V of W with W0 � V and such that .T1jV ; zT1jV / is a pair of
mutually adjoint bijective realisations related to .T0; zT0/ if and only if ker T1 and ker zT1
are isomorphic.

Remark 3.13. The notion of isomorphism of Hilbert spaces used in the previous corol-
lary is the standard (and natural) one (cf., [19, I.5.1. Definition]): two Hilbert spaces are
isomorphic if there exists a linear surjective isometry (isomorphism or unitary transform-
ation) between them.

One can find several characterisations; e.g., two Hilbert spaces are isomorphic if and
only if

(i) they have the same dimension.

(ii) there exists a linear bounded bijection between them.

For the first claim, we refer to [19, I.5.4. Theorem], while in the latter, one needs to
discuss only the converse. This can be done in a straightforward constructive way. Indeed,
if we denote by A a linear bounded bijection between two given Hilbert spaces, then
U WD A.A�A/�

1
2 is an isomorphism (in the above sense).

Remark 3.14. Since ker zT1 is a Hilbert space when both equipped with h� j �i (the standard
inner product of the ambient space H ) and Œ� j �� (the indefinite inner product on W ) and
the identity map i W .ker zT1; h� j �i/! .ker zT1; Œ� j ��/ is continuous (due to the boundedness
of T1 C zT1 on H ), it is irrelevant which Hilbert space structure we consider on ker zT1
in Corollary 3.12. The same applies on ker T1 as well, with the only difference that Œ� j ��
should be replaced by �Œ� j ��.

4. Classification of the von Neumann type

4.1. Preliminaries

Applying von Neumann’s extension theory of symmetric operators (cf., [37, Theorem
13.9]) on �iL0, we can classify all skew-self-adjoint (even closed skew-symmetric)
realisations of L0 in terms of unitary transformations between (closed subspaces of)
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ker.L1 C 1/ and ker.L1 � 1/. Of course, by Lemma 3.8 (see also Remark 3.13), this can
also be done when ker.L1C 1/ and ker.L1 � 1/ are replaced by kerT1 and ker zT1. We are
about to focus on this situation since, as it was demonstrated in Examples 3.6 and 3.11,
often it is desirable to keep abstract Friedrichs operators T0 and zT0 as a whole (e.g., not
all bijective realisations of T0 D L0 C S correspond to skew-symmetric realisations of
L0). Also, in terms of partial differential operators (especially with variable coefficients),
it is sometimes easier to work with the operator L0 C C , for some C , than with skew-
symmetric operator L0 itself. However, we will not make use of [37, Theorem 13.9] but
develop an independent constructive proof. This will allow for an explicit classification
and at the same time provide an alternative proof in the symmetric setting (for even more
general situations).

Let us start with the following lemma.

Lemma 4.1. Let .T0; zT0/ be a joint pair of abstract Friedrichs operators on H . Let V �

W be a closed subspace containing W0, and let us define G WD pk.V/ and zG WD pQk.V/,
where pk and pQk are given by (2.3). Then, we have the following.

(i) T1jV is a bijective realisation of T0 if and only if V \ ker T1 D ¹0º and zG D
ker zT1.

(ii) Let V \ kerT1 D ¹0º. Then, U W zG ! G defined by

U.pQk.u// D pk.u/; u 2 V ; (4.1)

is a well-defined closed linear map. Moreover, U is bounded if and only if zG is
closed in ker zT1 (cf., Remark 3.14).

(iii) If V � WC, then zG is closed and U W . zG ; Œ� j ��/ ! .ker T1;�Œ� j ��/ is non-
expansive; i.e., the norm of U with respect to the indicated norms is less than or
equal to 1.

(iv) If V �WC \W�, then both zG and G are closed andU W . zG ; Œ� j ��/! .G ;�Œ� j ��/

is a unitary transformation (cf., Remark 3.13).

(v) Let V \ kerT1 D ¹0º. Then, V coincides with VU given by

VU WD ¹u0 C U z� C z� W u0 2 W0; z� 2 zG º; (4.2)

where U is defined by (4.1), and T1jV .u0 C U z� C z�/ D xT0u0 C .T0 C zT0/z�.
Moreover, such U is unique; i.e., if for a subspace zG �W and a closed operator
U W zG ! ker T1 we have V D VU , where VU is defined by the formula above,
then U is given by (4.1).

Remark 4.2. Notice that the assumptions in statements (ii)–(iv) are gradually strength-
ened (see Remark 2.7). Furthermore, by Remark 2.4, the assumption of part (iv) is equi-
valent to V � V Œ?�.

Remark 4.3. Of course, in part (iv), it is implicitly required that zG and G are isomorphic.
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A trivial situation when the assumption V �WC \W� is satisfied occurs for V DW0.
Then, G D zG D ¹0º; hence, they are obviously isomorphic.

Remark 4.4. By Remark 3.13, in the regime V �WC \W� of part (iv) of the previous
lemma from the mapping U , given by (4.1), we can construct an isomorphism between
spaces zG and G when both are equipped with the standard inner product h� j �i. Indeed, if
we denote by Q� W zG ,! H and � W G ,! H canonical embeddings (note that then Q�� and ��

are orthogonal projections in H onto zG and G , respectively), then a unitary transformation
is given by

U
�
Q��T0 C zT0 U

���.T0 C zT0/
�1U

�� 12
:

A trivial situation is when T0 C zT0D ˛1, for some ˛ 2C, since then the expression above
equals U .

Remark 4.5. It is clear that, for any given U W zG ! ker T1, VU defined by (4.2) is
a subspace of W which contains W0. Moreover, if U is closed, then VU is closed as
well. Indeed, from un0 C U z�n C z�n ! u0 C � C z� 2 W , it follows (see the proof of [21,
Lemma 3.5]) that U z�n ! � and z�n ! z�. Hence, for closed U , we have z� 2 domU and
� D U z�, implying that u0 C � C z� D u0 C U z� C z� 2 VU .

Proof of Lemma 4.1. (i) Let us assume that T1jV is a bijective realisation. Injectivity
implies that V \ ker T1 D ¹0º, while pQk.V/ � ker zT1 is trivial. Let us prove the oppos-
ite inclusion. By Theorem 2.2 (xiii), we have W D V PC ker T1. Thus, for any z� 2 ker zT1
(recall that ker zT1 � W ), there exist unique u 2 V and � 2 ker T1 such that z� D uC �.
This implies u D �� C z�, so z� D pQk.u/ 2 pQk.V/.

For the converse, we will make use of Theorem 2.2 (xiii) again. Let us take an arbitrary
w 2 W . By Theorem 2.2 (ix), there exist unique w0 2 W0, � 2 ker T1, and z� 2 ker zT1
such that w D w0 C � C z�. The assumption ensures existence of u 2 V such that u D
u0C�C z� for some u0 2W0 and � 2 kerT1. By subtracting z� from the second equation
and inserting it into the first, we get

w D .w0 � u0 C u/C .� � �/:

Since the first term on the right-hand side belongs to V (note that W0 � V ) and the second
one to kerT1, Theorem 2.2 (xiii) is applicable.

(ii) We start by showing that U is a well-defined function. Let u; v 2 V be such that
pQk.u/ D pQk.v/. By the decomposition given in Theorem 2.2 (ix), there exist u0; v0 2 W0

such that
u D u0 C pk.u/C pQk.u/; v D v0 C pk.v/C pQk.v/:

Thus,
u � v D .u0 � v0/C .pk.u/ � pk.v//:

Since .u � v/ � .u0 � v0/ 2 V , we get pk.u/ � pk.v/ 2 V \ ker T1 D ¹0º. Hence, U is
well defined.
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Linearity follows from the linearity of projections pk and pQk. Let us show that U is
closed. Take .un/ in V such that pQk.un/! z� in ker zT1 and UpQk.un/ D pk.un/! � in
ker T1 (as n tends to infinity). This implies that .pQk.un/C pk.un// converges to z� C �
in W . Since W0 � V , for each n 2 N, we have pQk.un/ C pk.un/ 2 V . Thus, by the
closedness of V , we obtain u WD z� C � 2 V , implying z� D pQk.u/ 2 pQk.V/ and U z� D
UpQk.u/ D pk.u/ D �.

Similarly as with the closedness of U , in the last part, the goal is to exploit the fact
that V is closed. Indeed, let us assume that U is bounded; i.e., there exists c > 0 such
that kpk.u/k � ckpQk.u/k, u 2 V . Let us take .un/ in V such that pQk.un/! z� in ker zT1,
as n tends to infinity. Using the boundedness of U , we get that the sequence .pk.un// is
a Cauchy sequence in ker T1, hence convergent. Now, we get z� 2 pQk.V/ following the
previous reasoning. On the other hand, if pQk.V/ is closed, then U is a closed linear map
between two Hilbert spaces pQk.V/ and ker T1. Thus, U is bounded by the closed graph
theorem.

(iii) Let u 2 V � W . Using u D u0 C pk.u/ C pQk.u/, W Œ?� D W0 (see Theorem
2.2 (vi)), and V � WC, we get

0 � Œu j u� D Œpk.u/ j pk.u/�C ŒpQk.u/ j pQk.u/�; (4.3)

which in terms of the operator U reads

�ŒUpQk.u/ j UpQk.u/� � ŒpQk.u/ j pQk.u/�:

Thus, U W zG ! ker T1 is bounded (hence, zG is closed by part (ii)) and kU k � 1 (with
respect to the norms

p
Œ� j �� and

p
�Œ� j ��, respectively).

(iv) When V � WC \W�, then in (4.3) we have equality. This allows us to follow
the last part of the proof of part (ii) to conclude that G is closed as well. Furthermore, U
is obviously a unitary transformation between Hilbert spaces . zG ; Œ� j ��/ and .G ;�Œ� j ��/.

(v) Since for any u 2 V there exists u0 2 W0 such that u D u0 C pk.u/C pQk.u/ D

u0 C UpQk.u/C pQk.u/, it is clear that V D VU .
For arbitrary u0 2 W0 and z� 2 zG , we have

T1jV .u0 C U z� C z�/ D T1.u0 C U z� C z�/ D T1u0 C T1z� D xT0u0 C .T1 C zT1/z�;

where we have used V � W , T1.U z�/ D 0, T1jW0
D xT0, and zT1z� D 0.

Let us take two subspaces zGi � ker zT1, i 2 ¹1; 2º and two closed operators Ui W zGi !
ker T1, i 2 ¹1; 2º, such that VU1 D VU2 . This means that for an arbitrary z�1 2 zG1 there
exist u0 2 W0 and z�2 2 zG2 such that

U1z�1 C z�1 D u0 C U2z�2 C z�2:

Applying Theorem 2.2 (ix), we get u0 D 0, z�1 D z�2 and U1z�1 D U2z�2. Hence, U1 � U2.
By the symmetry, we can conclude that in fact we have U1 D U2. This proves that such U
is unique, and by the first part, we have that U is necessarily given by (4.1).
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Remark 4.6. For VU given by (4.2), we can explicitly write V
Œ?�
U (i.e., the domain of

.T1jVU /
�; see Theorem 2.2 (xi)) in terms of the adjoint operator U �. For simplicity, let us

elaborate on this only in the case of bounded U W zG ! ker T1, i.e., zG D pQk.V/ is closed
(see Lemma 4.1 (ii)). Then, U � W ker T1 ! zG is also bounded and pk.V

Œ?�/ D ker T1.
Moreover,

U �pk.v/ D U
�P xGpk.v/ D zP zGpQk.v/; v 2 V Œ?�;

where we use P xG and zP zG to denote the orthogonal projections on xG and zG within spaces
.kerT1;�Œ� j ��/ and .ker zT1; Œ� j ��/, respectively ( xG is the closure of G D pk.V/ in kerT1).
Furthermore, V

Œ?�
U is then given by

V
Œ?�
U WD

®
v0 C �1 C U

��1 C �2 C z�2 W v0 2 W0; �1 2 xG ;

�2 2 G Œ?� \ kerT1; z�2 2 zG Œ?� \ ker zT1
¯
:

Note that G Œ?�\kerT1 is just the orthogonal complement of G in the space .kerT1;�Œ� j ��/,
and analogously for zG Œ?� \ ker zT1.

As an example, let us consider V D W0 C ker zT1, for which obviously we have
pQk.V/ D ker zT1 and V �WC. It is also easy to check that V Œ?� DW0 C kerT1 (see [21,
Corollary 3.2]). For this V , we get zG D ker zT1 and G D ¹0º; hence both U and U � are
zero operators. Since G Œ?� \ ker T1 D ker T1 and zG Œ?� \ ker zT1 D ¹0º, it is easy to read
that the above expression for V

Œ?�
U gives the right space W0 C kerT1.

4.2. Classification

Now, we are ready to formulate and prove the main result concerning a classification of
realisations (of interest) of abstract Friedrichs operators.

Theorem 4.7. Let .T0; zT0/ be a joint pair of abstract Friedrichs operators on H , and let
T be a closed realisation of T0, i.e., T0 � T � T1. In what follows, we use VU to denote
the space (4.2) for a given U .

(i) T is bijective if and only if there exists a bounded operator U W ker zT1! kerT1
such that domT D VU .

(ii) dom T � WC if and only if there exist a closed subspace zG � ker zT1 and a
non-expansive linear operator U W . zG ; Œ� j ��/! .ker T1;�Œ� j ��/; i.e., the norm
of U with respect to the indicated norms is less than or equal to 1 such that
domT D VU .

(iii) T is a bijective realisation with signed boundary map if and only if there exists
a non-expansive linear operator U W .ker zT1; Œ� j ��/! .kerT1;�Œ� j ��/ such that
domT D VU .

(iv) dom T � dom T � if and only if there exist closed subspaces zG � ker zT1 and
G � kerT1 and a unitary transformationU W . zG ; Œ� j ��/! .G ;�Œ� j ��/ (cf., Remark
3.13) such that domT D VU .
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(v) domT D domT � if and only if there exists a unitary transformation

U W .ker zT1; Œ� j ��/! .kerT1;�Œ� j ��/

such that domT D VU .

(vi) By the mapping U 7! T1jVU , a one-to-one correspondence between realisations
T , i.e., dom T , and classifying operators U is established in each of the above
cases.

Proof. Existence of such U in all parts is a direct consequence of Lemma 4.1. Thus, it
remains to comment only on the converse of each claim.

Since in all parts U is bounded, by Remark 4.5, we have that VU is a closed subspace
of W containing W0. This means that T1jVU is indeed a closed realisation of T0.

In part (i), it is evident that pQk.VU / D ker zT1; hence, we just apply Lemma 4.1 (i) to
conclude.

For parts (ii) and (iii), we need to show that VU � WC. (Bijectivity in part (iii) is
again a consequence of Lemma 4.1 (i); see also Remark 2.3.) For an arbitrary u D u0 C
U z� C z� 2 VU , we have

Œu j u� D ŒU z� j U z��C Œz� j z�� � �Œz� j z��C Œz� j z�� D 0;

where we have used that the norm of U is less than or equal to 1 (see also Theorem
2.2 (ix)).

Let us recall that by Theorem 2.2 (xi) we have dom.T1jVU /
� D V

Œ?�
U . Thus, for parts

(iv) and (v), we need to show that VU � V
Œ?�
U and (only for part (v)) V

Œ?�
U � VU . This

can be done using Remark 4.6, but let us present here a direct proof. For arbitrary u D
u0 C U z� C z� and v D v0 C U z�C z� from VU , similarly as in the previous calculations,
we have

Œu j v� D ŒU z� j U z��C Œz� j z�� D �Œz� j z��C Œz� j z�� D 0;

where we have used that U is an isometry. Thus, VU � V
Œ?�
U .

Let us prove now the opposite inclusion for U given in part (v). Let v 2 V
Œ?�
U � W .

By Theorem 2.2 (ix), there exist v0 2 W0, � 2 ker T1, and z� 2 ker zT1 such that v D
v0 C �C z�. For any u D u0 C U z� C z� 2 VU , we have

0 D Œu j v� D ŒU z� j ��C Œz� j z��

D ŒU z� j �� � ŒU z� j U z�� D ŒU z� j � � U z��;

where we have used the fact that U is a unitary transformation. The identity above holds
for any z� 2 ker zT1. Since U is surjective and .ker T1;�Œ� j ��/ is a Hilbert space, we get
� D U z�. Thus, v 2 VU and hence, V Œ?�U � VU .

Surjectivity of the map U 7! T follows from parts (i)–(v), while injectivity holds by
Lemma 4.1 (v).
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Remark 4.8. In [7, Section 4], Grubb’s classification was applied on abstract Friedrichs
operators, which differs significantly from the method of the previous theorem. For
instance, in the result just developed, a realisation is bijective if and only if the classi-
fying operator is defined on the whole kernel (Theorem 4.7 (i)), while in the theory of [29,
Chapter 13] (see also [7, Theorem 17]) the same holds for bijective classifying operators.
Another difference is that Grubb’s classification is developed around the reference oper-
ator, while such distinguished operator is not needed here. One can notice the same also
in the symmetric case (see, e.g., [17]) when comparing von Neumann’s (absolute) theory
(cf., [37, Section 13.2]) and the (relative) theory developed by Kreı̆n, Višik, and Birman
(cf., [29, Section 13.2]).

If we focus on bijective realisations with signed boundary map, then the result of
part (iii) of the previous theorem (see also part (vi)) offers a full and explicit character-
isation contrast to [7, Theorem 18], where the result is optimal only when kernels are
isomorphic (cf., Corollary 3.12).

Remark 4.9. It is evident that parts (iv) and (v) of Theorem 4.7 pertain to closed skew-
symmetric and skew-self-adjoint realisations of L0 (see (3.2)), respectively. Furthermore,
in light of Remark 3.5, we observe that parts (ii) and (iii) are associated to accretive and
m-accretive realisations, respectively. Such results can readily be found in the literature
for the case S D 1, which are in complete agreement with ours (cf., Remark 4.4). How-
ever, the theory extends for even more general nonlinear relations, following both the
von Neumann approach [36] and the more recent approach based on boundary systems
(or boundary quadruples) [8, 40, 42]. It is worth mentioning that boundary systems were
introduced in [38] as a generalisation of boundary triplets, with the advantage over the
latter being the applicability of the theory irrespective of the values of the deficiency
indices [41], which is the feature we also have with our results.

In conclusion, the main novelty of Theorem 4.7 lies in connecting the theory with
abstract Friedrichs operators and considering general positive symmetric parts S , while
still preserving the geometrical structure.

By Theorem 4.7, we know that the number of certain type of realisations agrees with
the number of corresponding classifying operators U . For instance, it is easy to deduce
the number of isomorphisms between Hilbert spaces. Hence, having this point of view at
our hands, we can formulate the following straightforward quantitative generalisation of
Corollary 3.12.

Corollary 4.10. Let .T0; zT0/ be a joint pair of abstract Friedrichs operators on H , and
let us denote by m the cardinality of the set of all subspaces V of W such that V D V Œ?�,
i.e., such that .T1jV ; zT1jV / is a pair of mutually adjoint bijective realisations related to
.T0; zT0/.

(i) If dim kerT1 ¤ dim ker zT1, then m D 0.

(ii) If dim kerT1 D dim ker zT1 D 0, then m D 1.
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(iii) If dim kerT1 D dim ker zT1 D 1, then m D 2 in the real case, and m D1 in the
complex case.

(iv) If dim kerT1 D dim ker zT1 � 2, then m D1.

Let us conclude the section by illustrating the obtained results with several examples.

Example 4.11. (a) In Example 3.11, we have commented that dim kerT1 D dim ker zT1 D
1. Thus, since the problem was addressed in the real setting, by Corollary 4.10, there are
two closed subspaces with the property that V D V Œ?�. They are precisely V˛ , ˛ 2 ¹�1; 1º
(see Example 3.6).

(b) Let us consider operators from Examples 3.6 and 3.11 on .0;1/, instead of
the bounded interval .a; b/, i.e., L0u D u0 and H D L2..0;1/IR/. Then, (see [37,
Example 3.2]) we have dC.L0/ D dC.�iL0/ D 1 and d�.L0/ D d�.�iL0/ D 0. Thus,
there is no closed subspace V � W such that V D V Œ?�, or in other words, there is no
skew-self-adjoint realisation of the operator L0.

(c) The previous example is very specific since there is also only one bijective realisa-
tion. This can be justified by Theorem 4.7 (i), but we also refer to [7, Theorem 13].

Let us now present an example where still there is no closed subspace V �W such that
V D V Œ?�, but for which there are infinitely many bijective realisations. More precisely,
we need min¹dim kerT1; dim ker zT1º � 1 and dim kerT1 ¤ dim ker zT1.

Let H D L2..0; 1/IC2/ (all conclusions are also valid for the real case) and D D

C1c ..0; 1/IC
2/. For u 2 D and

A.x/ WD
�
1 0

0 1 � x

�
;

we define T0u WD .Au/0 C u and zT0u WD �.Au/0 CA0uC u. It is easy to see that .T0; zT0/
is a joint pair of abstract Friedrichs operators (just apply Theorem 3.1 or notice that T0 is
a classical Friedrichs operator [25, Section 5]). As usual, we put T1 WD zT �0 and zT1 WD T �0 .
Since both T1 and zT1 are of a block structure, calculations of the kernels can be done by
studying each component separately. More precisely, u D .u1; u2/ 2 kerT1 if and only if

u01 C u1 D 0 and .a2u2/
0
C u2 D 0;

where a2.x/ WD 1 � x. Thus, we can apply the available results for scalar ordinary differ-
ential equations (see, e.g., the second example of [21, Section 6]).

Informally speaking, the equation above for the first component u1 contributes with
1 for both dim ker T1 and dim ker zT1. On the other hand, the second equation contributes
with 1 for dim kerT1 and 0 for dim ker zT1. The overall result then reads

dim kerT1 D 2 and dim ker zT1 D 1;

which corresponds to what we wanted to get.
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Remark 4.12. Another possibility to connect joint pairs of abstract Friedrichs operators
.T0; zT0/ with symmetric operators is to study the operator matrix

J0 D

�
0 T0
zT0 0

�
on H ˚H , with dom J0 D D ˚D . Indeed, J0 is symmetric (cf., [33, Theorem 2.17])
and

J1 WD J
�
0 D

�
0 T1
zT1 0

�
; domJ1 D W ˚W :

Moreover, dC.J0/ D d�.J0/ [33, Theorem 2.20], and it is easy to see that all self-adjoint
realisations of J0 are given by J1jV Œ?�˚V (see Theorem 2.2 (xi)), where V �W is a closed
subspace containing W0 (or equivalently D).

5. Symmetric case

In this last part of the paper, we focus on symmetric operators and present several results
that can be directly extracted from the theory just developed.

Corollary 5.1. Let A be a densely defined symmetric operator on H , and let S1, S2 be
bounded self-adjoint linear operators such that S2 is in addition strictly positive. Define
an indefinite inner product on domA� by

Œu j v�A WD i.hA
�u j vi � hu j A�vi/; u; v 2 domA�:

Then, we have the following.

(i) It holds

dim ker.A� � S1 � iS2/ D dC.A/ and dim ker.A� � S1 C iS2/ D d�.A/;

where d˙.A/ denote deficiency indices of A (cf., [37, Section 3.1]).

(ii) domA�D dom xAu ker.A� � S1 � iS2/u ker.A� � S1C iS2/, where the sums
are direct and all spaces on the right-hand side are pairwise Œ� j ��A-orthogonal.

(iii) There is one-to-one correspondence between all closed symmetric realisations
of A and all unitary transformations U between any closed isomorphic sub-
spaces of .ker.A� � S1 C iS2/; Œ� j ��A/ and .ker.A� � S1 � iS2/; �Œ� j ��A/,
respectively.

(iv) There is one-to-one correspondence between all self-adjoint realisations of A
and all unitary transformations

U W .ker.A� � S1 C iS2/; Œ� j ��A/! .ker.A� � S1 � iS2/;�Œ� j ��A/:
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(v) Correspondences of parts (iii) and (iv) can be expressed by U 7!AUDA�jdomAU ,
where

domAU WD ¹u0 C U z� C z� W u0 2 dom xA; z� 2 domU º;

AU .u0 C U z� C z�/ D xAu0 C .S1 C iS2/z� C .S1 � iS2/U z�:

Proof. If we define T0 WD iA� iS1CS2 and zT0 WD�iAC iS1CS2, then the pair .T0; zT0/
is a joint pair of abstract Friedrichs operators by Theorem 3.1. Moreover, corresponding
indefinite inner product (2.1) agrees with Œ� j ��A (see Remark 3.7).

Therefore, the statements of the corollary follow from Lemma 3.8, Theorem 2.2 (ix),
and Theorem 4.7. (Note that domAU agrees with (4.2) for the above choice of .T0; zT0/.)

If Si D ˛i1, i D 1; 2, where ˛1 2 R and ˛2 > 0, then the statement of the previous
theorem is well known and can be found in many textbooks on unbounded linear operators.
For instance, in [37], part (i) is present in Section 3.1, and part (ii) in Proposition 3.7
(von Neumann’s formula) and parts (iii)–(v) are studied in Section 13.2 as part of the
von Neumann extension theory (see also [19, Chapter X]). Moreover, the correspondence
given in part (v) completely agrees with the one of [37, Theorem 13.9] since for this choice
of bounded operators Si , i D 1; 2, the same U represents a unitary transformation when
the standard inner product of the Hilbert space H is considered (see Remark 4.4).

Let us just remark that the geometrical point of view provided in part (ii), i.e., ortho-
gonality with respect to Œ� j ��A, is something that is not commonly present, although
Œ� j ��A is (up to a multiplicative constant). More precisely, in [37, Definition 3.4] (see
also Lemma 3.5 therein) the indefinite inner product �i Œ� j ��A is referred to as the bound-
ary form and it is an important part of the extension theory of boundary triplets ([37,
Chapter 14] and [29, Section 13.4]; see also [38] for more general boundary systems). A
more advanced study of boundary forms for Hilbert complexes can be found in a recent
work [30].

Of course, in the standard theory of symmetric operators, it is usually satisfactory to
observe only the case S1 D 0 and S1 D 1. Thus, the preceding corollary may seem like an
excessive technical complication. Here, we want to stress one more time that our primary
focus was in developing a classification result for abstract Friedrichs operators where such
approach can be justified, e.g., by perceiving that not all bijective realisations of T0 D
L0 C S correspond to skew-symmetric realisations of L0 (see Section 4). Therefore, our
intention is to see the last corollary principally as a way to connect two theories, while an
additional abstraction can sometimes offer a better sense of the underlying structure.
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[5] N. Antonić, K. Burazin, and M. Vrdoljak, Connecting classical and abstract theory of
Friedrichs systems via trace operator. ISRN Math. Anal. (2011), article no. 469795
Zbl 1244.35084 MR 2845125
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