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Topological model for q-deformed rational numbers
and categorification

Li Fan and Yu Qiu

Abstract. Let D3 be a bigraded 3-decorated disk with an arc system A. We associate
a bigraded simple closed arc y�r=s on D3 to any rational number r=s 2QDQ[ ¹1º.
We show that the right (respectively, left) q-deformed rational numbers associated to
r=s, in the sense of Morier-Genoud–Ovsienko (respectively, Bapat–Becker–Licata)
can be naturally calculated by the q-intersection between y�r=s and A (respectively,
dual arc system A�). The Jones polynomials of rational knots can be also given by
such intersections. Moreover, the categorification of y�r=s is given by the spherical
object Xr=s in the Calabi–Yau-X category of Ginzburg dga of type A2. Reducing to
the CY-2 case, we recover result of Bapat–Becker–Licata with a slight improvement.

1. Introductions

1.1. Motivations

The notion of (right) q-deformed rational numbers Œr=s�] was originally introduced by
Morier-Genoud and Ovsienko in [10] via continued fractions. Moreover, the q-deforma-
tions can also be described via the action of PSL2;q.Z/ by fractional linear transforma-
tions. They also extended the notion of q-deformation to irrational numbers in [11] by the
convergency property. Such q-deformations own many good combinatorial properties and
are related to a wide variety of areas, such as the Farey triangulation, F -polynomials of
cluster algebras, and the Jones polynomial of rational (two-bridge) knots [10].

Motivated by the study of compactification of spaces of stability conditions, Bapat,
Becker and Licata [1] developed a twin notion, the left q-deformation Œr=s�[, which has
already been noticed in [11]. It also shares all the good properties of Œr=s�] and can also
be described via the action of PSL2;q.Z/. Moreover, the Farey graph plays an important
role in the definition of q-deformations, where the edges are assigned weights according
to some iterative rules [10].

On the other hand, the homotopy classes of simple closed curves on the torus with at
most one boundary component can be parameterized by Q D Q[ ¹1º. We aim to give a
topological realization of q-deformations and their categorification.

Mathematics Subject Classification 2020: 16G60 (primary); 05E10 (secondary).
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1.2. The topological model and categorification

The topological model. We study the decorated surface S4 with bigrading introduced
by Khovanov and Seidel in [7]. The bigrading of arcs provides bi-indices for their inter-
sections, which we call q-intersections. We consider the A2 case, where S4 D D3 is a
disk with three decorations and the set of simple closed arcs on D3 can be parameterized
by Q. We prove the following results, which imply that the right/left q-deformed ration-
als can be naturally calculated by the q-intersections between the corresponding arcs (see
Theorems 3.18 and 3.21).

Theorem 1.1. For any rational number r=s 2Q, we havehr
s

i[
q
D
" Intq.y�r=s; y�0/
Intq.y�r=s; y�1/

ˇ̌̌̌
qDq�11 q2

;

corresponding to the left q-deformation of r=s, where

" D

²
q�11 ; if r=s � 0;
�1; if r=s < 0:

Theorem 1.2. For any rational number r=s 2Q, we havehr
s

i]
q
D
" Intq.y1; y�r=s/
Intq.y0; y�r=s/

ˇ̌̌̌
qDq�11 q2

;

corresponding to the right q-deformation of r=s, where

" D

²
1; if r=s � 0;
�q�11 ; if r=s < 0;

and the polynomials in the numerator and denominator are polynomials in ZŒq�11 q2�.

We see that the left and right q-deformations are “dual” to each other in the sense
that they are computed as the the q-intersections with dual arcs. Two examples of �2
and 3=2 (see Figure 13) for the left/right q-deformations are illustrated in Examples 3.19
and 3.22. The topological realization directly implies many combinatorial properties of
q-deformations, including positivity and specialization (Corollary 3.23). Surprisingly, the
bi-index always collapses into one, which is not obvious from the construction/definition
of q-intersection.

Categorification. For the categorification, we shall consider the Calabi–Yau-X category
DX.S4/ associated to S4 (cf. [5, 7]), which is the perfect valued derived category of the
bigraded Ginzburg algebra constructed from S4. The X-spherical objects in DX.S4/ cor-
respond to the bigraded simple closed arcs in S4, and their q-dimensions of Hom-spaces
equal to the q-intersections between the corresponding arcs [5, 7, 13]. As a result, we can
restate the left/right q-deformations homologically, i.e., via q-dimension of bigraded Hom
of corresponding objects (Corollary 4.6 and Corollary 4.7).

Moreover, one can specialize X D N , and DX.S4/ becomes a Calabi–Yau-N cat-
egory, for any integerN � 2. WhenN D 3, D3.S4/ provides an additive categorification
of cluster algebras of surface type (see, e.g., [12]). When S4 DD3 andN D 2, we recover
the result of [1] (with a slight improvement).
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1.3. Contents

The paper is organized as follows. In Section 2, we recall several equivalent definitions
of left and right q-deformed rationals from [1,10], via continued fractions, the braid twist
action and the q-weighted Farey graph, respectively. In Section 3, we recall the graded
decorated surface in the sense of [5, 7] and prove the main results. In Section 4, we give
the categorification, and in Section 5, we discuss reduction and the relation with Jones
polynomials.

2. q-deformed rationals and Farey graphs

In the paper, we fix the following conventions.
• Let q be a formal parameter.

• A rational number always belongs to Q WDQ[ ¹1º. We also denote Q�0 WDQ�0 [
¹1º. We usually state the results for Q but prove the non-negative case since the
negative case holds by applying the PSL2.Z/-actions.

• We denote a rational number by r=s, including the exceptional cases when 0 D 0=1
and1D 1=0. We assume that r=s is irreducible.

2.1. Right and left q-deformed rationals

We first recall the definitions of right and left q-deformations of rational numbers via finite
continued fractions and formulate their basic properties. For a positive rational r=s, it can
be expressed as an expansion of continued fraction as

(2.1)
r

s
D a1 C

1

a2 C
1

: : : C
1

a2m

W D Œa1; : : : ; a2m�;

for a1 2N and a2; : : : ; a2m 2N n ¹0º, which is known as the (regular) continued fraction
(expansion). For the exceptional cases, we denote 0 D Œ�1; 1� and1D Œ �.

For a non-negative integer a, the right q-deformation is defined as

Œa�]q WD
1 � qa

1 � q
D 1C qC q2 C � � � C qa�1;

and the corresponding left q-deformation is defined as

Œa�[q WD
1 � qa�1 C qa � qaC1

1 � q
D 1C qC � � � C qa�2 C qa:

Definition 2.1 ([1,10]). Let r=s 2QC be a rational number with continued fraction expan-
sion Œa1; : : : ; a2m�.
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(1) We define its right q-deformation by the following formula:hr
s

i]
q
WD Œa1�

]
q C

qa1

Œa2�
]

q�1
C

q�a2

Œa3�
]
q C

qa3

Œa4�
]

q�1
C

q�a4

: : :

Œa2m�1�
]
q C

qa2m�1

Œa2m�
]

q�1
:

(2) We define its left q-deformation by the following formula:hr
s

i[
q
WD Œa1�

]
q C

qa1

Œa2�
]

q�1
C

q�a2

Œa3�
]
q C

qa3

Œa4�
]

q�1
C

q�a4

: : :

Œa2m�1�
]
q C

qa2m�1

Œa2m�
[
q�1
:

We normalize them ashr
s

i]
q
D

R]q.r=s/

S]q.r=s/
and

hr
s

i[
q
D

R[q.r=s/

S[q.r=s/
,

so that the denominators are polynomials of q with lowest non-zero constant term. For 0
and1, we set

R]q.0/ D 0; S]q.0/ D 1; R[q.0/ D q � 1; S[q.0/ D qI

R]q.1/ D 1; S]q.1/ D 0; R[q.1/ D 1; S[q.1/ D 1 � q:

Next, we consider the group

PSL2.Z/ D
²�
a b

c d

� ˇ̌̌
a; b; c; d 2 Z; ad � bc D 1

³
;

which is generated by

t1 WD

�
1 1

0 1

�
and t2 WD

�
1 0

�1 1

�
:

It acts on rational numbers Q by linear fractional transformation as follows:

(2.2)
�
a b

c d

�
�

�
r

s

�
D
ar C bs

cr C ds
,
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where r=s 2Q and
�
a b
c d

�
2 PSL2.Z/. For a rational number r=s 2 Q�0 with continued

fraction expansion as (2.1), it is well known (see Proposition 2.2 in [1]) that

(2.3)
r

s
D t

a1
1 t
�a2
2 t

a3
1 t
�a4
2 � � � t

a2m�1
1 t

�a2m
2

�1
0

�
:

Proposition/Definition 2.2 ([1,10]). Consider the q-deformation PSL2;q.Z/ of PSL2.Z/,
which is generated by

t1;q D

�
q 1

0 1

�
and t2;q D

�
1 0

�q q

�
:

For a rational number r=s 2 Q�0 with expression (2.1), we have8̂̂<̂
:̂
hr
s

i]
q
D t

a1
1;q t

�a2
2;q t

a3
1;q t

�a4
2;q � � � t

a2m�1
1;q t

�a2m
2;q

�1
0

�
;hr

s

i[
q
D t

a1
1;q t

�a2
2;q t

a3
1;q t

�a4
2;q � � � t

a2m�1
1;q t

�a2m
2;q

� 1

1 � q

�
:

2.2. q-deformations via Farey graphs

The classical Farey graph FG is an infinite graph with set of vertices

FG0 D Q:

There is an edge between p=q and u=v if and only if pv � uq D˙1 (see Figure 1). If p=q
and u=v are connected by an edge, we define their Farey sum by

p

q
˚
u

v
WD

p C u

q C v
�

Moreover, FG0 is parametrized by homotopy classes of simple closed arcs on the
torus with at most one boundary component and the edges are those arcs with intersection
number one. PSL2.Z/ acts on FG by (2.2) taking one edge to another. In particular, if
T2PSL2.Z/ takes the form

Tr=s D

�
1C rs �r2

s2 1 � rs

�
;

then it is a rotation which fixes r=s.

Lemma/Definition 2.3 (Section 2.2 of [10]). Let r=s 2 QC be any rational number with
continued fraction expansion as (2.1). Then it can be uniquely written as the Farey sum of
two rationals p=q; u=v 2 Q�0 :

r

s
D
p

q
˚
u

v
,

with uq � pv D 1 and p=q < r=s < u=v. In fact,

p

q
D

´
Œa1; a2; : : : ; a2m�2 C 1�; if a2m�1 D 1 and m > 1I

Œa1; a2; : : : ; a2m�1 � 1; 1�; otherwise;
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1=3

0

1=2

2=3
1

3=2

�1

�1=2�2

1

3

2

Figure 1. The Farey graph.

and
u

v
D

´
Œa1; a2; : : : ; a2m�1; a2m � 1�; if a2m � 2I
Œa1; a2; : : : ; a2m�2�; if a2m D 1:

Moreover, there is an associated integer defined as

l D l
�r
s

�
D

²
0; if a2m � 2I
a2m�1; if a2m D 1:

In particular, we have l.nC 1 D .n=1/˚ .1=0// D n � 1.

On the other hand, l can also be defined for an edge in FG connecting p=q and u=v,
provided p=q < u=v. More precisely, l.p=q; u=v/ WD l..p=q/˚ .u=v//.

As in [10], we assign a weight to each edge of the Farey graph, that goes along with the
right or left q-deformations associated to vertices. Then the right and left q-deformations
can also be defined via q-Farey sum.

Let us recall a standard fact. Let r=s 2QC be a rational with the decomposition r=s D
.p=q/˚ .u=v/ and l D l.p=q; u=v/ as above. For right q-deformation, we have

R]q
�r
s

�
WD R]q

�p
q

�
C qlC1 R]q

�u
v

�
and S]q

�r
s

�
WD S]q

�p
q

�
C qlC1S]q

�u
v

�
:

For left q-deformation, if we set R[q.0/ D S[q.0/, R[q.1/ D S[q.1/ and define

R[q
�r
s

�
WD R[q

�p
q

�
C .q�1/lC1 R[q

�u
v

�
and S[q

�r
s

�
WD S[q

�p
q

�
C .q�1/lC1 S[q

�u
v

�
;

then we have hr
s

i[
q
D

R[q.r=s/

S[q.r=s/
�
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We label a weight to each edge and a right or left q-deformation to each vertex in
the Farey graph, which are drawn in Figure 2 and Figure 3, respectively. Here the integer
l D l.p=q; u=v/ is as above.

h0
1

i]
q

h1
0

i]
q

h1
1

i]
q

1 1

q�1

R]q.p=q/

S]q.p=q/

R]q.u=v/

S]q.u=v/

R]q.r=s/

S]q.r=s/

1 qlC1

ql

Figure 2. The right q-deformation via a q-Farey sum.

h0
1

i[
q

h1
0

i[
q

h1
1

i[
q

1 1

q

R[q.p=q/

S[q.p=q/

R[q.u=v/

S[q.u=v/

R[q.r=s/

S[q.r=s/

1 .q�1/lC1

.q�1/l

Figure 3. The left q-deformation via a q-Farey sum.

Remark 2.4. For r=s 2 QC with continued fraction expression Œa1; : : : ; a2m�, we have

�
r

s
D Œ�a1; : : : ;�a2m�; and �

r

s
D t
�a1
1 t

a2
2 t
�a3
1 t

a4
2 � � � t

�a2m�1
1 t

a2m
2

�1
0

�
:

The right and left q-deformations for negative rational numbers are defined as:8̂̂<̂
:̂
h
�
r

s

i]
q
D t
�a1
1;q t

a2
2;q t

�a3
1;q t

a4
2;q � � � t

�a2m�1
1;q t

a2m
2;q

�1
0

�
;h

�
r

s

i[
q
D t
�a1
1;q t

a2
2;q t

�a3
1;q t

a4
2;q � � � t

�a2m�1
1;q t

a2m
2;q

� 1

1 � q

�
:

In fact, we can obtain q-deformations of negative rationals from positive ones by the
following formula: h

�
r

s

i�
q
WD �q�1

hr
s

i�
q�1
;

where � 2 ¹]; [º.
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3. The topological model

In this section, we introduce decorated (marked) surfaces as the topological model which
we will use. We first summarize the setting and results in [5, 7] and then show that the
q-intersections of certain arcs describe the left/right q-deformations for rational numbers.

3.1. Decorated surfaces

Let S be an oriented surface with non-empty boundary @S and denote its interior by Sı D
S n .@S/. We decorate S with a finite set4 of points (decorations) in Sı, denoted by S4.

Let Sı
4
D S n .@S [4/. An arc c in S4 is a curve cW Œ0; 1�! S such that c.t/ 2 Sı

4

for any t 2 .0; 1/. The inverse c of an arc c is defined as c.t/ D c.1� t / for any t 2 Œ0; 1�.

Definition 3.1. A closed arc c is an arc whose endpoints c.0/ and c.1/ are in 4. It is
simple if moreover it satisfies c.0/¤ c.1/, without self-intersections in Sı

4
. We denote by

CA.S4/ the set of simple closed arcs.

In this paper, we always consider arcs up to taking inverse and homotopy relative
to endpoints and exclude the arcs which are isotopic to a point in S4. Two arcs are in
minimal position if their intersection is minimal in the homotopy class. For three simple
closed arcs, they form a contractible triangle if they bound a disk which is contractible.

For �; � 2 CA.S4/, their intersection number, which is in 1
2
Z, is defined as follows:

IntS4.�; �/ WD
1

2
� Int4.�; �/C IntSı

4
.�; �/;

where
Int….�; �/ D min¹j� 0 \ � 0 \…j; � 0 � �; � 0 � �º

with…D4 or Sı
4

. For example, as drawn in the middle of Figure 13, y�3=2 and y�0 intersect
twice, where one is at z� and the other is in the interior of S4. Then their intersection
number is counted as IntS4.�; �/ D 1=2C 1 D 3=2.

The mapping class group MCG.S4/ of a decorated surface S4 consists of the isotopy
classes of the homeomorphisms of S which fix @S pointwise and fix 4 setwise. For any
˛ 2 CA.S4/, the associated braid twist B˛ 2 MCG.S4/ is defined in Figure 4.

�ı �ı
B˛ ˛

�ı �ı

Figure 4. The braid twist.
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We have the formula

B‰.˛/ D ‰ ı B˛ ı‰
�1; for any ˛ 2 CA.S4/ and ‰ 2MCG.S4/.

We define BT.S4/ to be the subgroup of MCG.S4/ generated by B˛ for ˛ 2CA.S4/.
The braid twist can be illustrated by smoothing out.

Construction 3.2. For any �; � 2CA.S4/ with �.0/D �.0/D z 24, the extension � ^ �
of � by � (with respect to the common starting point), which is the operation of smoothing
out the intersection moving from � to � clockwise, is defined in Figure 5.

Notice that if IntS4.�; �/ D 1=2, i.e., if they only intersect at one decoration, then

(3.1) � ^ � D B� .�/ D B
�1
� .�/:

�
�

� ^ �

�ı
z

Figure 5. The extension as smoothing out.

Lemma 3.3. Assume that j4j � 3. For any �2CA.S4/, we have

CA.S4/ D BT.S4/ � ¹�º:

Proof. Let � be a simple closed arc in CA.S4/. We notice first that the intersection
IntS4.�; �/ 2

1
2
� ZC. When IntS4.�; �/ > 0, we use induction on it. For the starting case

when IntS4.�; �/ D 1=2, we take ˛ D � ^ � 2 CA.S4/, and then � D B˛.�/ by (3.1).
Now suppose the assertion holds when IntS4.�; �/ < k and consider the case when

IntS4.�; �/D k 2
1
2
�ZC. There exists some decoration z which is not the endpoint of � (if

the endpoints of � and � do not coincide, we take z to be an endpoint of �) and we connect
z to � by l such that it intersects � at p (see Figure 6). We cut � at p and then smooth out
the two resulting parts of � and l at p, respectively. Then we obtain �1; �2 2 CA.S4/ such
that � D �1 ^ �2 and

IntS4.�; �/ D IntS4.�; �1/C IntS4.�; �2/:

By assumption, there is b2 BT.S4/ such that �1D b.�/. Thus � DB�2.�1/D .B�2 � b/.�/.
Finally, we consider the case when IntS4.�; �/ D 0. We can choose a simple closed

arc ˛ such that IntS4.�; ˛/ D IntS4.�; ˛/ D 1=2. By the starting case, we have that ˛ 2
BT.S4/ � � and � 2 BT.S4/ � ˛ � BT.S4/ � �.
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�

p

l

�ı

�ı
z

�ı

�2
�1

�

Figure 6. Decomposing �.

The branched double cover. Let †� be a branched double cover of S4 branching at
decorations. We denote the covering map by � W†� ! S4.

We consider the special case when S4 D D3 is a disk and 4 D ¹z1; z�; z0º. We fix
two initial simple closed arcs �0 and �1 such that �0 \ �1 D ¹z�º, see Figure 7. Notice
that there is an anti-clockwise angle from �1 to �0. The branched double cover †� is
a torus with one boundary component @†. For simplicity, we draw @† as a puncture in
the figures.

z0 z� z1

�0 �1
�ı �ı �ı

Figure 7. D3 is a disk with three decorations.

We take the Z2-covering z†� of †�, where the white area is a fundamental domain
(see Figure 8), and we denote the covering map by z� W z†� ! †�. When forgetting the
punctures and decorations of z†�, this is the universal cover of the torus. Hence we
embed z†� into R2 such that all decorations and punctures are integer points, where its
fundamental domain is a unit square. For each line (it is not allowed to pass through the
punctures) in z†� with rational slope r=s2Q, it becomes a simple closed curveCr=s in†�
under the map z� .

Lemma 3.4 (Section 10 of [8]). The set CA.D3/ of simple closed arcs in D3 can be
parameterized by rational numbers, i.e., there is a bijection

CA.D3/

Br3 =Z.Br3/
�

Š

Q

PSL2.Z/

sending �r=s to r=s.
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z1

z0

z1

z0
z�

z1

z0

z1

z0

� �

� �

�

�

�

��

�

��

�

�

�

� �

�

�� � � �

� �

�ı

�ı

�ı

�ı�ı

�ı

�ı �ı

�ı

�ı�ı �ı �ı �ı

�ı �ı

Figure 8. The Z2-covering of †� and its fundamental domain.

Proof. We lift simple closed arcs in CA.S4/ to simple closed curves in †�, which can
be parametrized by rational numbers in Q. That is, for any r=s 2Q, there exists an
�r=s 2 CA.S4/ which corresponds to a simple closed curve Cr=s in †�. Notice that the
homology group H1.†�/ D ZŒC1� ˚ ZŒC0�. Thus the homology class ŒCr=s� corres-
ponds to .r; s/ inH1.†�/Š Z2. Notice that the braid twist BT.D3/Š Br3 lifts to a Dehn
twist DT.†�/ � MCG.†�/, which is generated by C0 and C1. By the identification
DT.†�/=Z.DT.†�// Š PSL2.Z/, the lemma holds.

Remark 3.5. Here is a consequence of the lemma above. For a rational number r=s 2QC

with expression (2.3), the corresponding arc in CA.D3/ is

�r=s D B
a1
�1
B�a2�0

Ba3�1B
�a4
�0
� � � Ba2m�1�1

B�a2m�0
.�1/:

Moreover,
��r=s D B

�a1
�1

Ba2�0 B
�a3
�1

Ba4�0 � � � B
�a2m�1
�1

Ba2m�0
.�1/:

3.2. Bigraded arcs and q-intersections

Let S4 be a decorated surface. In this section, we define the bigraded arcs and their
q-intersections. Let PT S4D PT .S n4/ be the real projectivization of the tangent bundle
of S n 4. We want to introduce a particular covering of PT S4 with covering group
Z˚ ZX Š Z2, which is a rank two free module spanned by the basis 1 and X.

A grading ƒW S4 ! PT S4 on S4 is determined by a class in H1.PT S4;Z˚ ZX/,
with value 1 on each anti-clockwise loop ¹pº � RP1 on PTpS4 for p … 4 and value
�2CX on each anti-clockwise loop lz � ¹xº on S4 around any z 2 4; x 2 RP1. For any
simple loop ˛ on S4, we denoteƒ1.˛/ the Z part ofƒ.˛/ and denoteƒ2.˛/ the ZX part
of ƒ.˛/. In fact, the first grading is a line field � of S4 which is determined by a class in
H1.PT S4;Z/. The X-grading is the Adams Z-grading and we refer to the log surfaces
in Figure 4 of [5] for more details. Define P̂T S4 to be the Z˚ ZX covering of PT S4
classified by the grading ƒ, and denote the Z˚ ZX action on P̂T S4 by �.

Definition 3.6. A graded decorated surface Sƒ
4

consists of a decorated surface S4 and a
grading ƒ on S4.
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Let Sƒ
4

be a graded decorated surface and let cW Œ0; 1�! S be an arc in S. There is a
canonical section sc W c n 4 ! PT S4 given by sc.z/ D Tzc. A bigrading on c is given
by a lift yc of sc to P̂T S4. The pair .c; yc / is called a bigraded arc, and we usually denote
it by yc. Note that there are Z2 lifts of c, which are related by the Z2-action defined by �.
One is the shift grading such that yc Œm�.t/ D �.m; 0/yc.t/, and the other is the X-grading
such that yc¹mº.t/ D �.0; m/yc.t/ for any m 2Z. For any � 2 CA.S4/, we call any of
its lifts y� in P̂T S4 a bigraded simple closed arc. Denote by cCA.S4/ the set of bigraded
simple closed arcs.

For any bigraded arcs y� and y� which are in minimal position with respect to each
other, let p D �.t1/ D �.t2/ 2 Sı be the point where � and � intersect transversally. Fix
a small circle a � S n 4 around p. Let ˛W Œ0; 1�! a be an embedded arc which moves
anti-clockwise around p, such that ˛ intersects � and � at ˛.0/ and ˛.1/, respectively (see
Figure 9). If p 24, then ˛ is unique up to a change of parametrization (see Figure 9, left
picture); otherwise there are two possibilities, which are distinguished by their endpoints
(right picture of Figure 9). Take a smooth path �W Œ0; 1�! PT S4 with �.t/ 2 PT˛.t/S4
for all t , going from �.0/ D T˛.0/� to �.1/ D T˛.1/� , such that �.t/ ¤ T˛.t/l for all t .
Lift � to a path y�W Œ0; 1�! P̂T S4 with y�.0/ D y�.˛.0//. Then there exist some integers
%; & 2Z such that

(3.2) y�.˛.1// D �.%C &X/ y�.1/:

˛ ��

��ı
p

˛

˛

��

�
p

Figure 9. Intersection at p when p is a decoration or not.

Definition 3.7 ([7]). For any bigraded arcs y� and y� in Sƒ
4

, the bi-index of an intersection p
of y� and y� is given by

indZ2
p .y�; y�/ D indp.y�; y�/C indX

p .y�; y�/X;

where indp.y�; y�/ WD % and indX
p .y�; y�/ WD & are defined in (3.2).

We have the following equations among bi-indices, which will be used later.

Lemma 3.8 (Lemma 2.6 in [5]). Let y� and y� be bigraded arcs in Sƒ
4

with an intersection
p 2 Sı. If p … 4, we have

indZ2
p .y�; y�/C indZ2

p .y�; y�/ D 1:
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If p 24, we have

(3.3) indZ2
p .y�; y�/C indZ2

p .y�; y�/ D X:

Lemma 3.9 (Lemma 2.7 in [5]). Let y� , y� and y̨ be bigraded arcs in Sƒ
4

. If they are in the
left case of Figure 10, we have

indZ2
p .y�; y̨/ D indZ2

p .y�; y/C indZ2
p .y; y̨/:

If they are in the left case of Figure 9, we have

indZ2
p .y�; y�/ D indZ2

˛.0/.y�; y̨/ � indZ2

˛.1/.y�; y̨/ D indZ2

˛.1/.y̨; y�/ � indZ2

˛.0/.y̨; y�/:

y�

� y̨

y�

p
�

y�

�ı y̨

y�

z

O�

Figure 10. Bigraded arcs intersect at the same point (or decoration) in anti-clockwise

Lemma 3.10. Let y� , y� and y̨ be bigraded arcs on Sƒ
4

which share the same decoration z
and sitting in anti-clockwise order in the right picture of Figure 10. We have

indZ2
z .y�; y̨/ D indZ2

z .y�; y�/C indZ2
z .y�; y̨/:

Proof. Fix a small circle a � S n 4 around z. Let O� W Œ0; 1�! a be an embedded bigraded
arc winding anti-clockwise at z such that the underlying arc � intersect �; � and ˛ at
�.0/; �.1=2/ and �.1/, respectively (see the right picture of Figure 10). The arc O� is unique
up to a change of parametrization. By Lemma 3.9, we have

indZ2
z .y�; y̨/ D indZ2

�.0/.y�;
O�/ � indZ2

�.1/.y̨;
O�/

D ŒindZ2

�.0/.y�;
O�/ � indZ2

�.1=2/.y�;
O�/�C ŒindZ2

�.1=2/.y�;
O�/ � indZ2

�.1/.y̨;
O�/�

D indZ2
z .y�; y�/C indZ2

z .y�; y̨/:

Definition 3.11. For y�; y� 2 cCA.S4/ satisfying that IntS4.�; �/D 1=2 and indX
z .y�; y�/D a,

let z 2 4 be their common endpoint. Denote by y� ^ y� to be the bigraded arc in cCA.S4/
whose underlying arc is obtained by the smoothing out y� [ y�Œ.a � 1/X� at z and whose
grading inherits from y� . That is, we have indZ2

z .y�; y� ^ y�/ D 0, cf. Figure 11.
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��

�

�ı�ı

�ı

v2 v1

v3

y� ^ y�

y� y�

Figure 11. The sum of bi-indices of intersections between bigraded arcs via smoothing out

Proposition 3.12. For y�; y� and y� ^ y� in cCA.S4/ as in Definition 3.11, we have

indZ2
v2
.y�; y� ^ y�/C indZ2

v1
.y� ^ y�; y�/C indZ2

v3
.y�; y�/ D 1:

Proof. We calculate the two gradings separately. For the first grading, it is a line field
which is determined by H1.PT S4;Z/. We can identify all the projectization of the tangent
space of any point in the contractible triangle formed by the three arcs (except the decor-
ations) simultaneously. Hence, the sum of the first grading is 1 (rotating anti-clockwise).
For the second grading, we use the log surface in the sense of Section 2.4 of [5]. By Defin-
ition 3.11, the segments of y� ^ y� and y�Œ.a� 1/X� near v1 are in the same sheet of log.S4/
and the anti-clockwise angle does not cross the cut (cf. Figure 5 in [5]). Thus we have

indX
v2
.y�; y� ^ y�/C indX

v1
.y� ^ y�; y�/C indX

v3
.y�; y�/ D 0C .a � 1/XC .1 � indX

v3
.y�; y�//

D .a � 1/C .1 � a/ D 0

as required, where indX
‹ denote the second grading.

Notations 3.13. For .%; &/ 2 Z2, we write
T%C&X

.y�; y�/ for the set of intersections
between y� and y� with bi-index %C &X. We will use the notations

Int%C&X
… .y�; y�/W D

ˇ̌̌\%C&X
.y�; y�/ \…

ˇ̌̌
;

Int%C&X
S4 .y�; y�/W D

1

2
� Int%C&X
4

.y�; y�/C Int%C&X
Sı
4

.y�; y�/;

for the bi-index .%C &X/ intersection numbers at any proper subset … of S4 and at all
of Sı, respectively. The total intersection

Int‹.y�; y�/ D
X
%;&2Z

Int%C&X
‹

.y�; y�/

is the sum over all bi-indices, where ‹ D 4 or Sı
4

.

Definition 3.14 ([5,7]). Let q1 and q2 be two formal parameters. The Z2-graded q-inter-
section of y�; y� 2 cCA.S4/ is defined to be

(3.4) Intq.y�;y�/D
X
%;&2Z

q
%
1q
&
2 � Int%C&X

4
.y�;y�/C .1C q�11 q2/

X
%;&2Z

q
%
1q
&
2 � Int%C&X

Sı
4

.y�;y�/:

Note that we have Intq.�;�/ jq1Dq2D1D 2 IntS4.�;�/ D Int†�.�;�/, where †� is the
branched double cover of S4.
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3.3. Left q-deformations as q-intersections

Recall that D3 is a disk and4D ¹z1; z�; z0º. By Lemma 3.3, we can label simple closed
arcs by Q as follows. We fix two initial bigraded simple closed arcs and denote them y�0
and y�1 such that indz�.y�1; y�0/ D 1 (see Figure 13).

Construction 3.15. We define a map

y� W Q! cCA.D3/
r

s
7! y�r=s;

as follows. For any rational r=s 2 QC, by Lemma/Definition 2.3 we know that it can be
uniquely written as

r

s
D
p

q
˚
u

v
�

We iteratively define that

y�r=s WD B�u=v .y�p=q/ D y�p=q ^ y�u=v;

noticing that IntD3.�p=q; �u=v/ D 1=2. For negative case, we set y��1 WD y�1 and define

y��r=s WD B��p=q .y��u=v/:

Thus, we get some bigraded closed arcs in cCA.D3/ which are y�r=sŒ%C &X�, where %; & 2
Z and r=s 2Q.

Let r=s 2 QC with r=s D .p=q/˚ .u=v/. By Definition 3.11, the grading of the new
arc y�.p=q/˚.u=v/ inherits the grading of y�p=q . That is, for any bigraded arc y� intersect-
ing y�r=s and y�.p=q/˚.u=v/ at p1; p2 2 Sı, respectively (see Figure 12), we have

(3.5) indZ2
z .y�p=q; y�.p=q/˚.u=v// D 0 and indZ2

p1
.y�; y�p=q/ D indZ2

p2
.y�; y�.p=q/˚.u=v//;

where z 2 4 is the common endpoint of y�p=q and y�.p=q/˚.u=v/. The second equation
in (3.5) follows from the fact that y�p=q; y�.p=q/˚.u=v/ and y�u=v form a contractible triangle.

From Proposition 3.12, we know that these three simple closed arcs y�p=q; y�.p=q/˚.u=v/
and y�u=v (take y� D y�p=q; y� D y�u=v in Figure 11) satisfy

(3.6) indZ2
v2
.y�p=q; y�.p=q/˚.u=v//C indZ2

v1
.y�.p=q/˚.u=v/; y�u=v/C indZ2

v3
.y�u=v; y�p=q/ D 1;

where v1, v2 and v3 are the corresponding intersecting decorations.
We fix the following setting.

Setting 3.16. Recall that in Lemma/Definition 2.3, any fraction r=s 2QC can be uniquely
written as

r

s
D
p

q
˚
u

v
,

with p=q; u=v 2 Q�0; uq � pv D 1 and an associated integer l.p=q; u=v/. The corres-
ponding arcs in cCA.D3/ of these fractions are y�p=q , y�.p=q/˚.u=v/ and y�u=v , where y�p=q
and y�u=v intersect at only one decoration z in 4. We do not distinguish between r=s and
.p=q/˚ .u=v/ in the following.
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y�.p=q/˚.u=v/

y�r=s

y�

p1

p2

Figure 12. The bigrading inherited from braid twist.

Lemma 3.17. For any two arcs y�p=q and y�u=v in cCA.D3/ in Setting 3.16, the bi-index is
of the form l.1 �X/, where l 2N, i.e.,

(3.7) indZ2
z .y�p=q; y�u=v/ D l.1 �X/;

except the special case
indZ2

z�
.y�0; y�1/ D X � 1:

Here l D l.p=q; u=v/ in Lemma/Definition 2.3.

Proof. For the special case, we know that

indZ2
z�
.y�0; y�1/ D X � indZ2

z�
.y�1; y�0/ D X � 1;

from (3.3). In general, we prove the lemma by induction on l . For initial bigraded simple
closed arcs y�0; y� 1

1
and y�1 in cCA.D3/, we have indz0.y�0; y�1=1/D indz1.y�1=1; y�1/D 0 and

thus the lemma holds obviously. We assume that (3.7) holds for l and consider the l C 1
case. For any y�p=q and y�u=v in cCA.D3/ in Setting 3.16, we assume that they intersect at
only one decoration v3 with

indZ2
v3
.y�p=q; y�u=v/ D l.1 �X/;

where l 2N. By (3.3), we have

indZ2
v3
.y�u=v; y�p=q/ D .l C 1/X � l:

Since the grading of y�.p=q/˚.u=v/ inherits the grading of y�p=q , we have

(3.8) indZ2
v1
.y�p=q; y�.p=q/˚.u=v// D 0:

By (3.6), we deduce that

(3.9) indZ2
v2
.y�.p=q/˚.u=v/; y�u=v/ D 1 � 0 � Œ.l C 1/X � l � D .l C 1/ � .l C 1/X:

Finally, combining (3.8) and (3.9), the lemma is true.
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Theorem 3.18. For any rational number r=s 2Q, we have

(3.10)
hr
s

i[
q
D
" Intq.y�r=s; y�0/
Intq.y�r=s; y�1/

ˇ̌̌̌
qDq�11 q2

;

corresponding to the left q-deformation of r=s, where

" D

²
q�11 ; if r=s � 0;
�1; if r=s < 0:

In particular, for r=s 2 Q�0, we have´
R[q.r=s/ D q�11 Intq.y�r=s; y�0/

ˇ̌
qDq�11 q2

;

S[q.r=s/ D Intq.y�r=s; y�1/
ˇ̌
qDq�11 q2

:

z1

z�

z0

y��2=1

�ı�ı�ı

�

��

y1y0

z1z�z0

y�3=2

�ı�ı�ı

�

��

y1y0

z1z�z0

y�1y�0

y�1

�ı�ı�ı

�

��

y1y0

Figure 13. Red arcs: examples of bigraded closed arcs in cCA.D3/.

Proof. For 0 and1, we have

Intqz�.y�0; y�1/ D q
�1
1 q2 and Intqz�.y�1; y�0/ D q1

by definition. We set

R[q.0/ D q2 � q1 and S[q.1/ D 1 � q
�1
1 q2:

We prove the non-negative case by induction using Setting 3.16. At the starting step, the

fractions in the theorem are q�11 q2�1

q�11 q2
and 1

1�q�11 q2
, which coincide the left q-deformation

of 0 and1, respectively, when q D q�11 q2. We assume that the formula (3.10) holds for
p=q; u=v 2 Q�0 in Setting 3.16 which satisfy

indZ2
z .y�p=q; y�u=v/ D l.1 �X/;

where l D l..p=q/˚ .u=v//2N and z is the common endpoint of y�p=q and y�u=v . We use
the Z2-covering z†� to compute the q-intersection between y�.p=q/˚.u=v/ and y�0 (and y�1 is
similar). We lift the arcs in cCA.D3/ to lines in z†�. Then y�0 becomes a series of horizontal
lines which pass through z� and z0. The topological triangle T in D3 bounded by y�p=q ,
y�u=v and y�.p=q/˚.u=v/ becomes a triangle zT in R2 up to translation (or reflection). We may



L. Fan and Y. Qiu 18

assume that the vertices of zT are Qz, Qz C .p; q/ and Qz C .r; s/, which says that z0, z and z00

are in T . The area of zT equals to 1=2 by the relation uq � pv D 1. By Pick’s theorem,
there are no decorations or punctures in zT . The intersections between y�.p=q/˚.u=v/ and y�0
consist of two parts (see Figure 14):

• intersections below and on a, which inherit the bi-indices from y�p=q , and
• intersections above a, which are induced from y�u=v .

�

�

�

�ı

�ı

�ı

y�p=q

y�u=v

y�.p=q/˚.u=v/

y�0
z0

z

z00

a
p
�

Figure 14. Intersections whose bi-indices inherit (respectively, are induced from) the one
between y�p=q (respectively, y�u=v) and y�0.

For the first case, if the two intersections are both either in the interior or at decor-
ations, the bi-indices are the same. For the second case, the two bi-indices differ from
indZ2

z00 .y�.p=q/˚.u=v/; y�u=v/ D .l C 1/ � .1 �X/. Thus we have

IntqD3n¹pº.y�.p=q/˚.u=v/; y�0/ D IntqD3n¹zº.y�p=q; y�0/C q
lC1
1 q�l�12 � IntqD3n¹zº.y�u=v; y�0/:

For the intersection on a, by inheritance, we have bi-index given directly by

indZ2
p .y�0; y�.p=q/˚.u=v// D indZ2

z .y�0; y�p=q/:

Hence we have

indZ2
p .y�.p=q/˚.u=v/; y�0/ D 1 � indZ2

p .y�0; y�.p=q/˚.u=v// D 1 � indZ2
z .y�0; y�p=q/

D 1 �XC indZ2
z .y�p=q; y�0/:

Thus, the bi-index in Dı3 contributes .1�X/C indZ2
z .y�p=q; y�0/ and indZ2

z .y�p=q; y�0/ to the
q-intersection in (3.4).

On the other hand, we have

indZ2
z .y�u=v; y�0/ D indZ2

z .y�p=q; y�0/ � indZ2
z .y�p=q; y�u=v/

D ŒindZ2
z .y�p=q; y�0/C .1 �X/� � ŒindZ2

z .y�p=q; y�u=v/C .1 �X/�

D ŒindZ2
z .y�p=q; y�0/C .1 �X/� � .l C 1/ � .1 �X/:
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Thus, we deduce that

Intqz .y�.p=q/˚.u=v/; y�0/ D Intqz .y�p=q; y�0/C q
lC1
1 q�l�12 � Intqz .y�u=v; y�0/:

Therefore, we have

Intq.y�.p=q/˚.u=v/; y�0/ D Intq.y�p=q; y�0/C qlC11 q�l�12 � Intq.y�u=v; y�0/;

which coincides with R[q.r=s/ after multiplication by q�11 if we take qD q�11 q2. Similarly,
we deduce that

Intq.y�.p=q/˚.u=v/; y�1/ D Intq.y�p=q; y�1/C qlC11 q�l�12 � Intq.y�u=v; y�1/:

If we take q�11 q2 D q, the fraction we get in the theorem coincides the left q-deformation
of r=s D .p=q/˚ .u=v/, which completes the proof.

Example 3.19. We give examples of �2 and 3=2 (see Figure 13) for the left q-defor-
mations. We know that

�
2

1
D �

1

1
˚�

1

0
and

3

2
D
1

1
˚
2

1
�

By the strategy of our proof, we compute that²
Intq.y��2=1; y�0/ D q31 q

�2
2 C q1;

Intq.y��2=1; y�1/ D q2I

and ²
Intq.y�3=2; y�0/ D q1 C q2 C q31 q

�2
2 ;

Intq.y�3=2; y�1/ D 1C q21 q
�2
2 :

By Theorem 3.18, we haveh
�
2

1

i[
q
D �

Intq.y��2=1; y�0/
Intq.y��2=1; y�1/

ˇ̌̌
qDq�11 q2

D �
q2 C 1

q3

and h3
2

i[
q
D
q�11 Intq.y�3=2; y�0/

Intq.y�3=2; y�1/

ˇ̌̌
qDq�11 q2

D
q3 C q2 C 1

q2 C 1
�

3.4. Right q-deformations as q-intersections

In this section, we add a finite set M of (open) marked points to @S satisfying jMj D j4j
and get a decorated marked surface (or DMS for short). We still denote the DMS by S4.
An arc c is called open if c.0/ and c.1/ are in M, without self-intersections in Sı

4
. We call

two open arcs do not cross each other if they do not have intersections in Sı
4

.
We also have bigraded open arcs as before. For an open arc  , we define the Z2-graded

q-intersection between a lift y of  and y� 2 cCA.S4/ to be

Intq.y; y�/ D
X
%;&2Z

q
%
1 q

&
2 � Int%C&X

Sı
4

.y; y�/:

Note that we have Intq.y; y�/ jq1Dq2D1D IntS4.; �/. We define a special class of open
(bigraded) arcs.
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Definition 3.20. An open full formal arc system A D ¹1; : : : ; nº of a DMS S4 is a
collection of pairwise non-crossing open arcs that divides the surface S4 into polygons,
called A-polygons, satisfying that each A-polygon contains exactly one decoration. We
call � 2 CA.S4/ the dual to i if i intersects it once and j does not intersect it for any
j ¤ i . Denote si the dual to i and let A� D ¹s1; : : : ; snº.

Let y1; : : : ; yn; ys1; : : : ; ysn be their bigraded lifts with

indZ2.yi ; ysi / D 0:

We add three open marked points to the boundary of D3 in Section 3.3. Let 0, 1
be two open arcs which form an open arc system in D3 and intersect with �0 and �1
transitively only once respectively. Let y0; y1 be their bigraded lifts respectively which
satisfy

indZ2.y1; y�1/ D indZ2.y0; y�0/ D 0:

We draw them as blue arcs in Figure 13.

Theorem 3.21. For any rational number r=s 2Q, we have

(3.11)
hr
s

i]
q
D
" Intq.y1; y�r=s/
Intq.y0; y�r=s/

ˇ̌̌
qDq�11 q2

;

corresponding to the right q-deformation of r=s, where

" D

´
1; if r=s � 0;
�q�11 ; if r=s < 0;

and the polynomials in the numerator and denominator are polynomials in ZŒq�11 q2�. In
particular, for r=s 2 Q�0, we have´

R]q.r=s/ D Intq.y1; y�r=s/
ˇ̌
qDq�11 q2

;

S]q.r=s/ D Intq.y0; y�r=s/
ˇ̌
qDq�11 q2

:

Proof. The theorem follows the same way of the left version, and we prove the non-
negative case by induction using Setting 3.16. For the starting case, we have

Int.y1; y�0/ D Int.y0; y�1/ D 0;

Int.y1; y�1/ D Int.y0; y�0/ D q01q
0
2 D 1:

Thus, they coincide with the right q-deformation of 0 and 1, respectively. We assume
that the formula (3.11) holds for p=q; u=v 2 Q�0 in Setting 3.16 which satisfy

indZ2
z .y�p=q; y�u=v/ D l.1 �X/;

where l D l..p=q/˚ .u=v//2N.
As in the left version, the intersection between y0 and y�.p=q/˚.u=v/ consist of two

parts. One inherits the bi-indices from y�p=q , whose bi-indices are the same; and the other
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one is induced from y�u=v , whose bi-indices differ from � indZ2
z00 .y�.p=q/˚.u=v/; y�u=v/ D

.l C 1/ � .X � 1/. Notice that the intersections are all in the interior, which simplifies
things a lot. Thus, we have

Intq.y0; y�.p=q/˚.u=v// D Intq.y0; y�p=q/C q�l�11 qlC12 � Intq.y0; y�u=v/;

which coincides with the denominator of the right q-deformation of .p=q/˚ .u=v/ if we
take q�11 q2 D q. Similarly, we deduce that

Intq.y1; y�.p=q/˚.u=v// D Intq.y1; y�p=q/C q�l�11 qlC12 � Intq.y1; y�u=v/:

Thus, we finish the proof.

Example 3.22. We continue the examples of �2 and 3=2 (see Figure 13) for the right
q-deformations. We compute that²

Intq.y1; y��2=1/ D 1C q�11 q2;

Intq.y0; y��2=1/ D q�31 q22 I
and

²
Intq.y1; y�3=2/ D 1C q�11 q2 C q

�2
1 q22 ;

Intq.y0; y�3=2/ D 1C q�11 q2:

By Theorem 3.21, we haveh
�
2

1

i]
q
D �

q�11 Intq.y1; y��2=1/
Intq.y0; y��2=1/

ˇ̌̌
qDq�11 q2

D �
qC 1

q2

and h3
2

i]
q
D

Intq.y1; y�3=2/
Intq.y0; y�3=2/

ˇ̌̌
qDq�11 q2

D
q2 C qC 1

qC 1
�

3.5. Combinatorial properties via q-intersections

Next, we give some topological explanation of some properties in [10] via q-intersections.
We draw 0 and 1 as foliations in the branched double cover †�, which intersect C0
and C1 only once, respectively (see Figure 15). We obtain the following corollary, where
there is a statement much stronger than that of [10].

z1

z0

z1

z0
z�

1

0

1

0

� �

� �

�

��

�

�

�ı

�ı

�ı

�ı�ı

Figure 15. The branched double cover †� of D3 and its foliations.
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Corollary 3.23 ([10]). For any rational number r=s 2Q�0, the right and left q-deforma-
tions satisfy the following properties.

(Positivity) The polynomials R]q.r=s/, S]q.r=s/, R[q.r=s/ and S[q.r=s/ have positive inte-
ger coefficients.

(Specialization) If we take q D 1, we have´
R]q.r=s/jqD1 D R[q.r=s/jqD1 D r;
S]q.r=s/jqD1 D S[q.r=s/jqD1 D s:

Proof. The positivity follows from Theorem 3.21, Theorem 3.18 and the fact that the
intersection numbers are all positive.

For specialization, we consider the branched double covering †� of D3. Then the
closed arc �r=s becomes the simple closed curve Cr=s , whose preimage under z� is a
line with slope r=s, on †� through these corresponding decorations which are endpoints
of �r=s . When we take q1 D q2 D 1, the q-intersection degenerates to usual intersection.
By the construction above, we have

IntD3.�r=s; �0/D
1
2
� Int†�.Cr=s; C0/Dr; IntD3.�r=s; �1/D

1
2
� Int†�.Cr=s; C1/DsI

IntD3.1; �r=s/D
1
2
� Int†�.1; Cr=s/Dr; IntD3.0; �r=s/D

1
2
� Int†�.0; Cr=s/Ds:

Therefore, the results follows from Theorem 3.18 and Theorem 3.21.

Example 3.24. We notice that in the example of 3=s, �3=2 hits 1 three times and hits 0
twice in S4, which implies that R]q.3=2/ jqD1D 3 and S]q.3=2/ jqD1D 2.

4. Categorification

4.1. Ginzburg algebra and derived categories

Definition 4.1 ([4, 6]). Let Q D .Q0; Q1/ be a finite quiver with set of vertices Q0 D
¹1;2; : : : ;nº and arrows setQ1. The Ginzburg Calabi–Yau-X differential bigraded algebra
(dbg algebra for short) �XQ WD .kQ; d/ is defined as follows. We define a Z ˚ ZX-
graded quiver Q with the same vertices set as Q0 and the following arrows:

• original arrows aW i ! j 2Q1 with degree 0;
• opposite arrows a�W j ! i 2Q1 associated to a 2 Q1 with degree 2 �X;
• a loop e�i for each i 2 Q0 with degree 1 �X, where ei is the idempotent at i .

Let kQ be a Z˚ZX-graded path algebra ofQ, and define a differential d WkQ! kQ of
degree 1 by

• da D da� D 0 for a2Q1;
• de�i D ei

�P
a2Q1

.aa� � a�a/
�
ei .

We denote by DX.Q/ WD pvd�XQ the perfect value derived category of �XQ, which
is the same as the finite-dimensional derived category of �XQ. We consider the A2 case,
where A2 is a quiver with vertices set ¹1; 2º and an arrow 1! 2, and the corresponding
category is denoted by DX.A2/.



Topological model for q-deformed rational numbers and categorification 23

4.2. Rational case via spherical objects

In this section, we aim to find spherical objects in some category which correspond to
rational numbers and represent their hom space via right and left q-deformations. We
particularly consider the case of the Calabi–Yau-X category of the A2 quiver. Recall that
a triangulated category D is called Calabi–Yau-X if for any objects L;M in D , we have
a natural isomorphism

HomD.L;M/ Š DHomD.M;LŒX�/;

whereD D Hom.�;k/ is the dual functor and k is an algebraically closed field. In partic-
ular, DX.A2/ is a Calabi–Yau-X category with a distinguish auto-equivalence

X W DX.A2/! DX.A2/:

Definition 4.2 ([5]). For any M;N 2D , we define the bigraded Hom as

HomZ2.M;N / WD
M
%;&2Z

HomD.M;N Œ%C &X�/;

and its q-dimension as

dimq HomZ2.M;N /W D
X
%;&2Z

q
%
1q
&
2 � dim HomD.M;N Œ%C &X�/:(4.1)

WhenM DN , HomZ2.M;M/ becomes a Z2-graded algebra, called the Ext-algebra ofM
and denoted by ExtZ

2
.M;M/.

By definition, we directly have

dim HomZ2.M;N / D dimq HomZ2.M;N / jq1Dq2D1 :

Definition 4.3 ([5]). An object S is called X-spherical if

Hom�.S; S/ D k˚ kŒ�X�:

For any spherical object S in a Calabi–Yau-X category D , there is an associated auto-
equivalence, namely the twist functor �S WD ! D , defined by

�S .X/ D Cone.S ˝ Hom�.S;X/! X/

with inverse
��1S .X/ D Cone.X ! S ˝ Hom��.X; S//Œ�1�:

By Lemma 2.11 in [14], we have the formula

� .M/ D  ı �M ı  
�1

for any spherical object M and any automorphism  in Aut D .
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We define dSph.�XA2/ to be the set of all spherical objects in DX.A2/ which are
simples in some hearts (see Section 10 in [8]). Let

Sph.�XA2/ WDdSph.�XA2/=hŒ1�; ŒX�i:

We let ST.A2/ be the subgroup of Aut DX.A2/ generated by �S for any S 2dSph.�XA2/.
Let D3 be the three decorated disk as before. There are reachable spherical objects up

to shifts Œ1� and X in DX.A2/ corresponding to rational numbers. We have a categorific-
ation of Lemma 3.4 as follows.

Proposition 4.4 (Section 4 of [5]). There are a bijection X and an isomorphism � which
fit into the following:

cCA.D3/

BT.D3/
�

X dSph.�XA2/

ST.A2/

sending y�˙r=s to X˙r=s and B�˙r=s to �X˙r=s , and satisfying

XB�u=v .y�p=q/
D �Xu=v .Xp=q/ and XB��p=q .y��u=v/

D �X�p=q .X�u=v/

for r=s 2 Q�0. Hence, (3.7) translates to the triangle

(4.2) Xp=q X.p=q/˚.u=v/ Xu=vŒ.l C 1/.1 �X/� Xp=qŒ1�;

where l D l..p=q/˚ .u=v// is the integer in Setting 3.16.

In fact, when we draw ¹Xr=sºr=s2Q�0 on the weighted Farey graph in the right picture
of Figure 16, ql , l � 0, represents that there is a morphism of degree l.1 � X/ between
the connected spherical objects.

X0 X1X1=1

1 1

Xp=q Xu=vX.p=q/˚.u=v/

1 qlC1

ql

Figure 16. The categorification.

Here is the iterative construction of Proposition 4.4. Let X0 and X1 be two spherical
objects which are simple in some canonical heart with Ext1.X1; X0/ ¤ 0. Let X1=1 D
�X1.X0/; we deduce that X1=1 is also a spherical object. We have a triangle

X0 X1=1 X1 X0Œ1�
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by construction. We assume that the triangle in (4.2) holds for l and consider the l C 1
case. By the Calabi–Yau-X duality, we have non-zero morphismsX.p=q/˚.u=v/!Xp=qŒX�
and Xu=v ! X.p=q/˚.u=v/Œ.l C 1/X � l �. Hence we can extend them to triangles:

Xp=q Y X.p=q/˚.u=v/Œ1 �X� Xp=qŒ1�

and

X.p=q/˚.u=v/ Y 0 Xu=vŒ.l C 1/.1 �X/� X.p=q/˚.u=v/Œ1�;

where these new spherical objects are

Y D �X.p=q/˚.u=v/Œ1�X�.Xp=q/ D �X.p=q/˚.u=v/.Xp=q/

and
Y 0 D �Xu=v Œ.lC1/.1�X/�.X.p=q/˚.u=v// D �Xu=v .X.p=q/˚.u=v//:

Thus we construct the spherical objects associated to non negative rational numbers and
the negative case is similar.

Theorem 4.5 (Lemma 3.4 and Proposition 4.6 in [5]). For any y�; y� 0 2 cCA.D3/ satisfying
IntDı3.y�; y�

0/ D 0, and yi 2 A, we have

dimq HomZ2.Pi ; Xy�/ D Intq.yi ; y�/

and
dimq HomZ2.Xy�; Xy� 0/ D Intq.y�; y� 0/;

where Pi is the indecomposable projective module corresponding to yi .

By Theorems 3.18, 3.21 and 4.5, we have the following direct corollaries.

Corollary 4.6. For any rational number r=s 2 Q n ¹0º, the fraction

(4.3)
" dimq HomZ2.Xr=s; X0/

dimq HomZ2.Xr=s; X1/

ˇ̌̌
qDq�11 q2

corresponds to the left q-deformation of r=s, where

" D

²
q�11 ; if r=s � 0;
�1; if r=s < 0:

Corollary 4.7. For any rational number r=s 2Q, the fraction

(4.4)
" dimq HomZ2.P1; Xr=s/

dimq HomZ2.P0; Xr=s/

ˇ̌̌
qDq�11 q2

corresponds to the right q-deformation of r=s, where P0 and P1 are the corresponding
indecomposable projectives satisfying that dimq HomZ2.Pi ; Xj / D ıi;j ; i; j 2 ¹0;1º.
Here

" D

²
1; if r=s � 0;
�q�11 ; if r=s < 0:
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5. Applications

5.1. Reduction to single grading as foliations

Let N � 2 be an integer. We collapse the double grading ƒ on S4 to a single grading �,
which is a line field (or foliation) in PT S4 by setting X D N . More precisely, a double
grading .a; b/ 2 Z ˚ ZX collapses into a C bN 2 Z. The foliations in such cases are
given by quadratic differentials

.z3 C az C b/N�2 dz˝2

on CP1 with real blow-up at 1, cf. Figure 17 for N D 2; 3; 4 and S4 D D3. Notice
that the foliations come from quadratic differential (cf. [2, 3]). Then q2 D qN1 and the
q-intersection formula (3.4) reduces to

Intq.y�; y�/ D
X
k2Z

qk1 � Intk4.y�; y�/C .1C q
N�1
1 /

X
k2Z

qk1 � IntkSı
4

.y�; y�/:

for y�; y� 2 cCA.S4/. Moreover, q D qN�11 in Theorem 3.18 and Theorem 3.21. When
N D 2, q D q1 and no specialization is required.

�

�

�ı �ı �ı

�

� �

��

�ı �ı �ı

��

��

��

��

�ı �ı �ı

Figure 17. The foliations of the CY-2,3,4 case.

5.2. Relation with BBL’s results

In Definition 4.1, if we replace X by an integer N � 2, we obtain the N -Ginzburg dg
algebra �NQ and the corresponding Calabi–Yau-N category DN .Q/. That is, there is a
projection

�N W �XQ! �NQ

collapsing the double grading Z ˚ ZX into Z by setting X D N similar as above. It
induces a functor �N WDX.Q/ ! DN .Q/. We consider the case when Q D A2. For
r=s 2 Q�0, we claim that

dimq HomZ2.P‹; Xr=s/ D
X
k2Z

m
�r
s
; k
�
q�k1 qk2 ;
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where m.r=s; k/ is the occurrence times of X‹Œk � kX� in the HN-filtration of Xr=s , ‹ 2
¹0;1º. This follows from the fact that

(5.1) dimq HomZ2.Pi ; Xj Œ%C &X�/ D ıi;j ı%;0 ı&;0

where i; j 2 ¹0;1º and induction on l.r=s/.
Consider the case whenN D 2 again with qD q1, and write q1 D q. In [1], they define

two functionals

occq; homq WdSph
Z
.�2A2/ �dSph

Z
.�2A2/! ZŒq�1; q�;

where dSph
Z
.�2A2/ is the set of spherical objects in D2.A2/. The first one, occq.X‹;Xr=s/,

counts the occurrences of X‹ in the HN-filtration of Xr=s for ‹ 2 ¹0;1º. By (5.1), we
deduce that

occq.X‹; X/ D dimq HomZ2.P‹; X/ jq�11 q2Dq�1
:

The second one is

homq.L;M/ WD

´
qk.q�2 � q�1/; if M Š LŒk�;P
k2Z dim Hom.L;MŒk�/q�k ; otherwise:

Recall, from Remark 2.4, that the q-deformations for negative rational numbers are
defined as h

�
r

s

i�
q
WD �q�1

hr
s

i�
q�1

;

where r=s 2 QC [ ¹1º and � 2 ¹]; [º.

Corollary 5.1. When specializing X D 2, the formulae (4.4) and (4.3) in Corollary 4.7
and Corollary 4.6 become the formulae in Theorem 3:7 and Theorem 3:8 of [1], respect-
ively. Notice that the condition X � 0 corresponds to our X�r=s with r=s � 0.

5.3. Grothendieck group interpretation

Recall that DX.A2/ is a Calabi–Yau-X category. The Grothendieck group K.DX.A2//

admits a basis ¹ŒX0�; ŒX1�º and is a ZŒq˙1�-module defined by the action

ql1q
k
2 � ŒE� WD ŒEŒ�l � kX��:

We have the following result.

Proposition 5.2. For any r=s 2Q, we have

ŒXr=s� D R]
q�11 q2

�r
s

�
ŒX0�C S]

q�11 q2

�r
s

�
ŒX1�;

where R]
q�11 q2

.respectively, S]
q�11 q2

/ is a polynomial of q�11 q1 if we take q D q�11 q1 in R]q
.respectively, S]q/.



L. Fan and Y. Qiu 28

Proof. We only prove the non-negative case by induction on l.r=s/. For the initial case, it
holds obviously for X0 and X1. We assume that it holds for Xp=q and Xu=v , where p=q
and u=v are in Setting 3.16. For X.p=q/˚.u=v/, we have

ŒX.p=q/˚.u=v/� D ŒXp=q�C ŒXu=vŒ.l C 1/.1 �X/�� D ŒXp=q�C q
�l�1
1 qlC12 ŒXu=v�

DR]
q�11 q2

�p
q

�
ŒX0�CS]

q�11 q2

�p
q

�
ŒX1�Cq

�l�1
1 qlC12

�
R]
q�11 q2

�u
v

�
ŒX0�CS]

q�11 q2

�u
v

�
ŒX1�

�
DR]

q�11 q2

�p
q
˚
u

v

�
ŒX0�C S]

q�11 q2

�p
q
˚
u

v

�
ŒX1�;

which implies the result.

5.4. Relation to Jones polynomials for rational case

For every rational number r=s > 1 with continued fraction expansion Œa1; a2; : : : ; a2m�,
there is an associated rational (two-bridge) knot/link C.r=s/ defined as follows (see Sec-
tion 4 of [9] for more details). The knot or link is composed of 2m segments, each
representing a 2-strand braid with ai crossings, where i D 1; 2; : : : ; n. These segments
are connected in a manner that ensures the link is alternating. We refer to Figure 18 for an
illustrative example.

Figure 18. The knot associated to 15=11 D Œ1; 2; 1; 3�:

For an oriented link, we define the associated Jones polynomial recursively. Specific-
ally, the Jones polynomial of the unknot is 1. For any three oriented links L�; LC and L0
that are identical except in the neighborhood of a point where they appear as shown in
Figure 19, they satisfy the following skein relation:

t�1V.LC/ � tV .L�/C .t
�1=2
� t1=2/V .L0/ D 0:

L� LC L0

Figure 19. Definition of the Jones polynomial.

There are two ways to orient a knot or each component of a link. If we fix the orienta-
tion, then there is a natural orientation for C.r=s/ as described in Section 4.1 of [9]. The
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associated Jones polynomial is denoted by Vr=s.t/. By multiplying Vr=s.t/ by an appro-
priate power of t so that the highest degree term becomes constant, and setting qD �t�1,
we obtain a polynomial Jr=s.q/ 2 ZŒq�, called the normalized Jones polynomial. The fol-
lowing corollary holds.

Corollary 5.3. For every rational r=s > 1, we have

Jr=s.q/ D
ˇ̌
q�11 Intq.y�r=s; y�0/jqDq�11 q2

ˇ̌
;

where j � j is the normalized polynomial of q with lowest non-zero constant term.

Proof. By Theorem A.3 in [1] and Theorem 3.18, we have that

Jr=s.q/ D R[q.r=s/ D
ˇ̌
q�11 Intq.y�r=s; y�0/jqDq�11 q2

ˇ̌
:

Example 5.4. We have the following examples.
• For the Hopf link C.2/ in Figure 20, we have V2.t/ D �t5=2.1C t�2/ and R[q.2/ D
1C q2.

• For th eleft-handed Trefoil C.3/ in Figure 21, we have V3.t/ D t�1.1C t�2 � t�3/
and R[q.3/ D 1C q2 C q3.

'

Figure 20. The Hopf link, which is associated to 2 D Œ1; 1�.

'

Figure 21. The left-handed Trefoil, which is associated to 3 D Œ2; 1�.
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