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On strictly elliptic K3 surfaces and del Pezzo surfaces
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Abstract. This article primarily aims at classifying, on certain K3 surfaces, the
elliptic fibrations induced by conic bundles on smooth del Pezzo surfaces. The key
geometric tool employed is the Alexeev—Nikulin correspondence between del Pezzo
surfaces with log-terminal singularities of Gorenstein index two and K3 surfaces with
non-symplectic involutions of elliptic type: the latter surfaces are realized as appro-
priate double covers obtained from the former ones. The main application of this
correspondence is in the study of linear systems that induce elliptic fibrations on K3
surfaces admitting a strictly elliptic non-symplectic involution, i.e., whose fixed locus
consists of a single curve of genus g > 2. The obtained results are similar to those
achieved by Garbagnati and Salgado for jacobian elliptic fibrations.

1. Introduction

We work over the field of complex numbers C.

One of the principal algebraic invariants of a projective algebraic variety X is its group
of biregular automorphisms, denoted as Aut(X). In many cases, this group can be used
to discover geometric properties of the underlying algebraic variety and its projective
models. Furthermore, as we will explore, the mere existence of suitable involutions has
non-trivial consequences regarding special linear systems on the corresponding variety.

One of the main successful approaches to study the automorphism group of a smooth
projective variety X is to consider the natural induced action on cohomology lattices.
Indeed, a classical result by Lieberman [26] states that the neutral component Aut®(X)
has finite index in the kernel of the linear representation Aut(X) — GL(H?(X,Z)), i.e.,
Aut(X) splits into its neutral component Aut®(X) and its discrete image in GL(H?(X, Z))
(see, e.g., [9] for further details).

The aforementioned strategy has been classically employed to investigate the auto-
morphism groups of smooth del Pezzo surfaces, which are projective algebraic surfaces Z
such that the anti-canonical divisor — Kz is ample. In cases where these groups are finite,
they are realized as subgroups of the Weyl group of an appropriate lattice (see Chapters 8-9
of [17] for details and a historical account). Another remarkable class of algebraic varieties
for which this method is commonly used are projective K3 surfaces, i.e., simply connected
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smooth projective surfaces X with trivial canonical bundle Ky ~ 0. Indeed, for these
surfaces the relevance of the study of automorphisms is a consequence of the celebrated
Torelli theorem due to Pyatetskii-Shapiro and Shafarevich [35], and general lattice theor-
etic results by Nikulin [31,32].

Remarkably, these two classes of surfaces are naturally related thanks to the work
of Alexeev and Nikulin [2] (see also [30, 43]) on the classification of del Pezzo sur-
faces Z of Gorenstein index 2, i.e., the Weil divisor —2K 7z is an ample Cartier divisor.
More precisely, let us recall that in any K3 surface X, there is a holomorphic and non-
vanishing (i.e., symplectic) 2-form wy such that H’(X, Q)Zf) = C- wy, and thus we say that
o € Aut(X) is symplectic if 0*(wx) = wy, and that is non-symplectic otherwise. In this
terms, the correspondence [2] between K3 surfaces X and (possibly) singular del Pezzo
surfaces Z of Gorenstein index 2 goes as follows: the so-called smooth divisor theorem
(see Theorem 1.5 in [2]) ensures that, given such a del Pezzo surface, there is a smooth
irreducible curve C in the linear system | — 2K z|. Subsequently, a double cover W — Z
can be constructed, branched over both C and Sing(Z). The crucial observation lies in the
fact that the minimal resolution X — W is a K3 surface, and the involution ¢: X — X asso-
ciated with the covering is such that t*wy = —wy, i.e., t is a non-symplectic involution.
Through an analysis of X and the quotient surface X /(t), the authors in [2] reduce the
classification problem for Z to the study of K3 surfaces with non-symplectic involutions.

It is worth mentioning that the above construction is a vast generalization of the fact
that the double cover of P? branched over a smooth sextic curve C is a K3 surface with
a non-symplectic involution. This classical construction (revisited by Dolgachev [16] and
Reid [36] using modern methods) was considered by Enriques and Campedelli (see [8]),
who investigated double coverings of P? that are birational to a K3 surface. Another
remarkable recent construction in birational geometry, closely related to our context, is
the work of Peters and Sterk [34] where they consider nodal Enriques surfaces constructed
from a K3 surface obtained as a double cover of a smooth del Pezzo surface of degree 6.

Even in the simplest case where the quotient del Pezzo surfaces are smooth (which will
be our case of interest), the correspondence by Alexeev and Nikulin enables a connection
between the geometric properties of the del Pezzo surface Z = X/(t) and the lattice-
theoretic properties of the invariant lattice NS(X)"" associated with the non-symplectic
involution ¢ on the K3 surface (see Section 2.2 for details). For instance, it follows from
results by Nikulin in [32] that the topology of the fixed locus X* is determined by suit-
able discrete invariants (r, a, §) of the lattice NS(X )‘* which, in turn, can be interpreted
through Z (e.g., the genus of the fixed curve X* = C, will be given by g = K% + D).

After understanding the topology of the fixed locus, a natural next step is to describe
the possible linear systems on these K3 surfaces, following the work initiated by Saint-
Donat in [38]. Notably, linear systems inducing elliptic fibrations (see Definition 2.11,
and note that we do not require the existence of a section) are of special interest, as they
can be characterized numerically thanks to the results in Section 3 of [35] and since they
have important arithmetic applications (see, e.g., [40]). Significant progress has been made
in this direction, particularly in the case where the K3 surface is generic among those
admitting a non-symplectic automorphism with a given fixed locus (see Convention 2.15).
More precisely, in [13, 19,20, 23, 32, 33], the authors classify elliptic fibrations on K3
surfaces with a non-symplectic involution in many cases, using the fact that the fixed locus
of the involution is either empty, the disjoint union of two elliptic curves or contains at least
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arational curve (we refer the reader to Remark 3.4 for further details). In order to complete
the classification of elliptic fibrations on such generic surfaces, it remains to study the case
when X* = C, consists of a single smooth irreducible curve of genus g > 2. In regard of
the previous discussion,

the main purpose of this article is to address, through the Alexeev—Nikulin cor-
respondence, the remaining case in the classification of (not necessarily jacobian)
elliptic fibrations on generic K3 surfaces (in the sense of Convention 2.15) that
admit a non-symplectic involution ¢: X — X.

To achieve this, we will restrict ourselves to the case where X* = Cy is a smooth
irreducible curve of genus g > 2, and we will say that «: X — X is a strictly elliptic
involution (see Definition 3.1). As we will observe in Proposition 3.5, the main feature of
the pair (X, ¢) is that the Alexeev—Nikulin correspondence results in a smooth del Pezzo
surface Z = X /(t). In this context, our main result (see Theorem 3.10) establishes that
the quotient projection 7: X — Z = X /(1) induces a correspondence between elliptic
fibrations §: X — P! and conic bundles (see Definition 2.4) fizZ— P!, and moreover,
& = f om. It is worth noting that analogous results have been obtained for other K3
surfaces with non-symplectic involutions, provided the fixed locus X* contains rational
curves (see, e.g., Section 5 of [19], Section 7.1 of [20] and Section 5.10 of [13]). In con-
trast, the main advantage of our approach using del Pezzo surfaces, as opposed to previous
works relying on lattice-theoretic methods (where the existence of a section of the elliptic
fibration or the presence of a rational curve in the fixed locus X* is important), is its com-
patibility with standard tools from Mori theory (see, e.g., Chapter 6 of [14]). Notably, in
our case, we can classify the effective classes of curves inducing conic bundles on the sur-
face Z (see Proposition 2.9), following a similar approach as in the case of (—1)-curves in
Section 26 of [27], and use them to describe all admissible singular fibers of the induced
elliptic fibrations on the corresponding K3 surface X (see Section 5).

Finally, it is noteworthy that, as a consequence of recent work [12] by Clingher and
Malmendier, the considered elliptic fibrations are not jacobian, i.e., they do not admit
sections. However, it is not difficult to observe (see Section 5) that they admit bisec-
tions which can be induced by the (—1)-curves in the associated del Pezzo surface (see
Example 3.11). Despite the absence of jacobian elliptic fibrations, and consequently the
inability to consider Weierstrass models, these K3 surfaces are quite special due to the
fact that by Section 2.8 in [2], they have finite automorphism groups. Remarkably, they
fall within the recent work by Roulleau [37], where some explicit projective models are
studied and where the full lattice NS(X) is described (see Section 4).

2. Background and preliminaries

2.1. Conic bundles and smooth del Pezzo surfaces

Let us recall that a smooth projective surface Z is called a del Pezzo surface if the anti-
canonical divisor —K 7 is ample. The positive integer d(Z) = (—Kz)? is called the degree
of Z: it is the main invariant that allows for their classification. More precisely, we have
the following classical result (see, e.g., Section 24 of [27] and Proposition 8.1.25 in [17]).
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Theorem 2.1. Let Z be a smooth del Pezzo surface of degree d. Then, 1 <d < 9 and we
have that:
() Ifd =09, then Z ~ P2,
(i) If d =8, then Z is isomorphic to either P! x P! or to the blow-up of P? at one
point (i.e., the Hirzebruch surface Fy).
(iii) If 1 <d <7, then Z is isomorphic to the blow-up of P? at 9 — d points in general
position.
Here, we say that the points are in general position if the following hold:
(1) no three points are on a line;
(2) no six points are on a conic;
(3) no nodal or cuspidal cubic passes through eight points with one of them being the
singular point.
Conversely, any blow-up of i points in general position, i = 1,...,8, is a smooth del
Pezzo surface.

Convention 2.2. We will denote by Z an arbitrary smooth del Pezzo surface. Addition-
ally, we will denote by Z; the del Pezzo surface of degree d € {1, ..., 8} obtained as the
blow-up of 9 — d points in general position in P2, and by E1, ..., E9_g the corresponding
exceptional divisors.

It is worth mentioning that the geometry of exceptional curves on del Pezzo surfaces is
completely understood. For instance, it is known that every irreducible curve with negative
self-intersection on a smooth del Pezzo surface Z is a (—1)-curve (see, e.g., Theorem 24.3
in [27]). More precisely, we have the following result (see Section 26 of [27] and Sec-
tion 8.2.6 of [17]).

Theorem 2.3. Let Z 4 be a smooth del Pezzo surface of degree 1 <d <8 and let s: Z 5 — P?
be its representation as the blow-up of 9 — d points p; € P2, i €{1,...,9—d}, in gen-
eral position. Let T' € Zg be a (—1)-curve. Then the image £(I') C P? is of one of the
following types:
(1) one of the points p;;
(2) a line passing through two of the points p;;
(3) a conic passing through five of the points p;;
(4) a cubic passing through seven of the points p; such that one of them is a double point;
(5) a quartic passing through eight of the points p; such that three of them are double
points;
(6) a quintic passing through eight of the points p; such that six of them are double
points;
(7) a sextic passing through eight of the points p; such that seven of them are double
points and one is a triple point.

Moreover, the number n of (—1)-curves on Z g is given by the following table:

6 5 4 3 2 1
6 10 16 27 56 240

d| 8 7
nil 3
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Following the same line of ideas that allow the classification of the images of (—1)-
curves in the above result, we can describe the possible conic bundles on smooth del Pezzo
surfaces. For the reader’s benefit, we recall the relevant notions about conic bundles below.

Definition 2.4 (Section 1 of [39]). A conic bundle on a smooth projective surface Z is
a surjective morphism onto a smooth curve f:Z — C whose general fiber is a smooth,
irreducible curve of genus 0.

Remark 2.5. According to Liiroth’s theorem, if Z is a rational surface (e.g., a smooth del
Pezzo surface), then the curve C must be isomorphic to P!

Definition 2.6. Let Z be a smooth projective surface. We say that an element [D] € NS(Z)
is a conic class if D is nef, D2 = 0,and D - Kz = —2.

Lemma 2.7. Let Z be smooth rational surface. Then there exists a correspondence be-
tween the set of conic bundles on Z and the set of conic classes of NS(Z).

Proof. First, let [D] € NS(Z) be a conic class. Then, by the Riemman—Roch theorem and
Theorem II1.1. (a) in [21], the associated map ¢|p|: Z — P! is a well-defined morphism,
and since every fiber is linearly equivalent to D it is a conic bundle on Z. On the other
hand, let f: Z — P! be a conic bundle, then it is clear that the class of any fiber of f,
say F, is a conic class. [

Remark 2.8. The number of singular fibers of a conic bundle is a numerical invariant. For
instance, for a conic bundle f:Z; — P! on the del Pezzo surface Zg, it is well known
that the number of singular fibers is 8§ — K %d = 8 — d, as seen in Section 1 of [24].

Proposition 2.9. Let Z; be a del Pezzo surface of degree d < 8 obtained as the blow-up
of 9 — d points in general position in P2. Then the conic classes are listed in Table 1.
Moreover, the number N of conic bundles on Z ; is given by the following table:

d || 8

7 4 3 2 1
N |1l 2

10 27 126 2160

6 5
35

Proof. This is a classical fact that can be found in Section 2 of [15] (see also Table 2
in [41]). For the reader’s convenience, we give a self-contained proof.

Lemma 2.7 allows us to classify for each Z4, with 1 < d < 8, the conic classes [D] €
NS(Z,) that produce conic bundles. Indeed, since Z is the blow-up of P? in 9 — d points

in general position, then
9—d

Pic(Zq) = ZL & (P ZE;.
i=1
where L is the class of pull-back of a line and each E; is an exceptional divisor. Thus,
Kz, =-3L+Ei+--+E9_gand D =LL+a1E;+---+ag_qE9_g, so the numer-
ical conditions that impose Lemma 2.7 are

52=a%+"'+a§_d»
-3 +2=a1+-+a9—g4.
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For each d, one gets the possibilities for D of Table 1 solving the Diophantine equa-
tion system. A straightforward combinatorial computation gives the total number of conic
bundles N for each d depending on n. ]

Remark 2.10. If Z ~ P! x P!, the only conic bundles are the two different projections
onto P!,

In what follows, we will relate the presence of conic bundles and elliptic fibration,
therefore we recall the definition of the latter.

Definition 2.11. An elliptic fibration on a smooth projective surface X is a surjective
morphism 7: X — T, where T is a smooth algebraic curve, the fiber 7~ (¢) is a curve of
genus 1 for all but finitely many ¢ € T', and r is relatively minimal.

Remark 2.12. Observe that following Definition 1.3.1 in [28], and contrary to other
works, e.g., [20], we do not ask for the presence of a section in the definition of elliptic
fibration. When a section exists, we will refer to the elliptic fibration as jacobian.

2.2. Non-symplectic involutions on K3 surfaces

We refer the reader to [22,25] for the notation and preliminaries on K3 surfaces and elliptic
fibrations (e.g., we consider the ADE lattices to be definite negative).

Let X be a projective K3 surface and let ¢: X — X be an automorphism of finite
order n. Let us recall that ¢ is symplectic (respectively, purely non-symplectic) if p*w = @
(respectively, ¢*w = Aw for some A a primitive n-rooth of the unity), where w is a non-
degenerate holomorphic 2-form on X (i.e., HO (X, 52?() = C . w). Given a K3 surface X
and a non-symplectic involution ¢ on X, we denote X* the fixed locus of the involution
and NS(X )‘* the invariant lattice, i.e.,

NS(X)" = {x € NS(X) : *x = x}.

Classical results on non-symplectic involutions on K3 surfaces allow us to classify
their fixed loci and invariant lattices. It is an elementary but very useful observation that
H2(X,Z)" c NS(X) as lattices for any non-symplectic involution :.

Proposition 2.13 (Theorem 4.2.2 in [32]). Let X be a K3 surface and let  be a non-
symplectic involution with a non-empty fixed locus. The fixed locus of t can be either the
disjoint union of two elliptic curves, X' = E1 U E,, or the disjoint union

X'=CqURiU---URg,

where Cq is a smooth curve of genus g and the R;’s are rational curves. Moreover, g =
(22—r—a)/2andk = (r —a)/2, where r = tkNS(X)"" and a is the length of NS(X)"",
ie, 2% = [NS(X)"|.

Remark 2.14. In the case X' = @, it follows from Theorem 4.2.2 in [32] that necessarily
(r,a,8) = (10,10, 0). Moreover, in that case, Theorem 4.2.4 and Proposition 4.2.5 in [32]
imply that NS(X)"" ~ U(2) @ Es(2) and the group Aut(X) is infinite. Since X* = @, we
have that X /(t) is an Enriques surface.
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L—Y e Ej,J C{l,....8),|J]| =4

L—2E Y e Epiefl,..8,J = {8 \{i}.lJ|=5

d=8|D=L-E
d=7|D=L-E;.i=1.>2
d=6|D=L-E;,i=123
d=5|D=L—E;i=1234
D=2l S
d=4|D=L-E;i=12345
D=2L-Y,E.JcC{l..5./]=4
d=3|D=L—-E;,i=1234,56.
D=2L-Y,,E.JC{l..6.J =4
D=3L-2E Yo, E.ic{l.....6), ] ={l.....6}\ {i}
d=2|D=L-E.i=1,...17
D=2L-Y,,E.JC{l..T.|/|=4
D=3L-2E Y, Enic{l.... 7] ={L.. T)\{i}.[J|[=5
D=4L-2Y ;B —~Ypex B J C{L... T/ =4 K={l.... )\ J
D=5L—E—2Y ., E.ic{l.... 7} J={l... T)\{i}
d=1|D=L-E.i=1,...8
D
D
D

Il
v

L—ZZJ-EJEJ—ZkeKEk,J,KC{l....,8},|J\:4,|K|:3,J|’1K=®

D=4L-3E —Y o, B ie{l....8, J={L...8\{i}

D =5L-3E —2Yc; Ej — Ypex Eigi €41.....8},
JKC{,. . . 8\{i}.|J|=3.K|=4,JNK=0

D=5L—E 2%, ,E.ie{l....8). JC{l... .8 \{i}. /]| =6

D :6L_3ZjeJ E]'_ZZkeKEk_ZreREr’
J,K,RC{1,....8},|J|=2,|K|=4,|R|=2,JNK=JNR=KNR=9

D=7L—4E; —3E; =2 icx Ex. i €{1.....8}, j €{l.....8)\ {i},
K={1,....8\{ij}

D=TL—E—2Y;c; Ej —3 Y kex Ex i €{1.....8}, J.K C{l.....8}\ {i}.
|J|=3, |K|l=4, JNK=0

D =8L—4E; —2Y ey Ej =3 yex Ex. i €{1.....8}, J.K C{l.....8}\ {i},
|J|=3, |K|=4, JNK=0

D=8L—E 3%, E.ic{l...8), J={l..8\{i)

D =9L—2E;—4Y ;c; Ej —3Y yeg Ex. 1€4l.....8). JK C{I.....8}\{i}.
[J|=2, |K|=5 JNK=20

D=10L-3Y;c, Ei—4Y e, I.JC{l.....8). [J|=|K|=4, JNK =0

D=11L=3E—4Y ., E. ie{l....8}, J ={I.....8) \ {i}

Table 1. Conic classes on the del Pezzo surface Z ;.

Convention 2.15. In what follows, we will assume that X is generic among the K3 sur-
faces admitting a non-symplectic involution with a given fixed locus. This is equivalent to
the condition the action of ¢* is trivial on NS(X).
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Figure 1. All possible invariants (r, a, §).

As observed in [32], the invariants (r, a) allow to recover the topological invariants
(g, k) of the fixed locus X*. Viceversa, if the pair (g, k) is known, a third invariant § is
needed to identify uniquely NS(X)"": § = 0 if and only if X* ~ 0 mod 2 in H»(X,Z),
otherwise § = 1. The picture of all possible invariant (7, a, §) is presented in Figure 1
of [1]. For completeness, we include it in Figure 1.

The following result characterizes the quotient of a K3 surfaces by a non-symplectic
automorphism.

Proposition 2.16. Let X be a projective K3 surface and let ¢ be a non-symplectic auto-
morphism of finite order. Then,

(1) the quotient X /(@) is a rational surface or birational to an Enriques surface;

(i) if @ is an involution, then the fixed locus of ¢ is empty if and only if X /{p) is an
Enriques surface.

Proof. See Lemma 4.8 in [22] for (i). For (ii), the “only if” part is proven in Lemma 1.2
of [43]. Suppose that ¢ is an involution. We know that if the fixed locus is non-empty, then
X% = D has codimension one and it is a disjoint union of smooth curves. Furthermore,
the canonical divisor of cyclic coverings implies that D ~ 2K (,) and so the quotient is
not an Enriques surface. Suppose that the fixed locus X ¢ is empty. Then,

27" Kx /() ~ Kx ~ 0,
implying that X /() is an Enriques surface. |

Remark 2.17. It is a classical fact that K3 surfaces admitting a non-symplectic auto-
morphism of finite order are projective and the Néron—Severi lattice is hyperbolic. See
Corollary 1.10 in Chapter 15 of [22] and Theorem 3.1 in [31], for instance.
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3. Strictly elliptic involutions

Let X be a K3 surface and ¢ a non-symplectic involution on X . According to the notation
in Section 2.8 of [2], it is natural to classify ¢ into three categories: ¢ is of elliptic type if X*
contains a curve of genus g > 2. This is equivalent to r 4+ a < 18, (r,a, §) # (10,8, 0).
The involution ¢ is of parabolic type if X* contains a genus 1 curve, which is equivalent
tor +a = 20or (r,a,8) = (10,8, 0). Finally, ¢ is of hyperbolic type if X* = @ or if X*
only contains rational curves, which is equivalent to r 4+ a = 22 or (r,a,§) = (10, 10, 0).

In this work, we specifically focus on the case of elliptic type, and in particular, we
consider K3 surfaces that admit a non-symplectic involution with no rational curves in the
fixed locus.

Definition 3.1. Let X be a K3 surface and let ¢ be a non-symplectic involution on X. We
say that ¢ is of strictly elliptic type if its fixed locus is given by X* = C,, where Cy is a
smooth irreducible curve of genus g > 2.

Remark 3.2. Looking at Figure 1, one can observe that the Néron—Severi groups of the
strictly elliptic type K3 surfaces correspond to points on the line r = a with r < 9, and
they all have § = 1 except for the case r = 2, where both § = 0 and § = 1 are possible.
As a consequence of [32], possibilities for NS(X) are as follows: if » = 2,§ = 0, then
NS(X) = U(2); otherwise, if 6 = 1, one has

(2), ifr=1,
NS(X) = { (2) ® Ay, if r =2,
UR) @ A% 2, ifr > 3.

Observe that by Section 2.8 of [2], the automorphism group of a K3 surface with a non-
symplectic involution of elliptic type is finite. Moreover, in Section 2 of [20], the authors
consider a non-symplectic involutions t: X — X such that X satisfies the Convention 2.15
and divide the possible elliptic fibrations &: X — P! into two types:

e Type 1: ¢ maps each fiber of & to itself.
* Type 2: ¢ maps at least one fiber of & to another fiber of &.
The next statement follows from the proof of Proposition 2.5 in [20].

Lemma 3.3 (Garbagnati—Salgado). Let X be a K3 surface and let 1: X — X be a non-
symplectic involution of strictly elliptic type satisfying Convention 2.15. Then, X only
admits elliptic fibrations of Type 1 with respect to L.

Remark 3.4. As mentioned in the introduction, our methods rely on the correspond-
ence between strictly elliptic K3 surfaces and smooth del Pezzo surfaces, as established
in [2]. This correspondence allows us to analize the case where the fixed locus corres-
ponds to a single smooth irreducible curve Cy of genus g > 2. Additionally, prior works
[13,19,20,23,33] are devoted to describe all (jacobian) elliptic fibrations in Figure 1 except
for the cases (r,a,§) = (10, 10,0) and (r,a,8) = (10, 10, 1). The former case corresponds
precisely to the situation X* = @ (see Remark 2.14) and thus X/{¢) is an Enriques sur-
face, while the latter case arises when the fixed locus is given by a single smooth elliptic
curve E.
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It is noteworthy that the case (r,a, §) = (10, 10, 1) falls beyond our analysis, and it
should be noted that, by Lemma 3.3, the nature of the corresponding elliptic fibrations is
necessarily different from the strictly elliptic case.

On the other hand, in the case (r,a,8) = (10, 10, 1) we have that the quotient Z = X/ {t)
is a smooth rational surface with K % =0and —2Kz ~ E, where X' ~ E is an elliptic
curve (cf. the proof of Proposition 3.5 below). In particular, it follows from Proposition 2.2
in [10] that there exist an irreducible pencil of sextics in P2 with 9 nodes Pls---, Do as
base points such that Z = Bl ,,(P?), and that the elliptic fibration ¢|g|: Z — P! is
the proper transform of this pencil.

Finally, observe that by Corollary 3.3 in [12], the case (r,a, §) = (6,4, 0) does not
admit jacobian elliptic fibrations and therefore it is not considered in the analysis of [20]
despite the presence of a rational curve in X*‘. On the other hand, by Table 9 in [30],
Z = Proj @m0 H*(X, Ox (mCy))" is a singular del Pezzo surface of Gorenstein index
two that can be realized via a Sarkisov link starting from P(1, 1, 4) or as a hypersurface of
degree 5in P(1, 1, 1, 4) (see Propositions 7.4 and 7.11 in [30]).

Proposition 3.5. Let X be a K3 surface admitting an involution of strictly elliptic type.
Suppose that Cg is the smooth irreducible curve of genus 2 < g < 10 fixed by .

(1) If 8§ = 0, then the K3 surface X can be realized as the double cover of P! x P! over
a smooth irreducible curve B € |Opiyp1(4,4)| of genus 9.

(2) If § = 1, then the K3 surface X can be realized as the double cover of a del Pezzo
surface Z 4 of degree d = g — 1 ramified over a smooth irreducible curve B belong-
ing to the linear system | — 2Kz, |.

Moreover, in the case § = 1, the image of B in P? is a nodal sextic curve Ty that
passes through 9 — d points corresponding to the points where the blow-up of P? is done
to obtain Z ;.

Proof. By Proposition 2.16 and the fact that X* is of pure codimension 1 (see Proposi-
tion 2.13), the quotient X /(t) is a smooth rational surface. Furthermore, since the fixed
locus of ¢ is an irreducible curve C, of genus g > 2, the quotient X /(t) is a del Pezzo
surface of degree d = KJZ(/(L) = g — 1. Denote by Z = X/(t) and by B the image under
the quotient map of the curve C,. We have that B € | — 2Kz|, and by the genus for-
mula, g(B) = g(Cg) = K% + 1 =d + 1. According to the classification of strictly
involutions of elliptic type, we know that g is an integer number at most 10, hence the
degree of Z; satisfies 1 < d < 9. Consequently, either Z ~ P! x P! (and d = 8) or
Z ~ Z, is obtained as the blow-up of P? at some generic points p1, ..., po_q. In the lat-
ter case, let  be the blow-up map and E/s be the corresponding exceptional divisors, then
Be|-2Kz,|=|6L—-2 Z?;f E;|, where L is the pull-back of a line in P? via 8. This
implies that B can be considered as the strict transform of an irreducible curve I'y C P2
of degree 6 passing with multiplicity two at each point pq, ..., pg—g. It is worth noting
that curves with these properties can always be found; see, e.g., Theorem 1 in Section 5.2,
Chapter 5, of [18].

Finally, the fact that § = 0 corresponds precisely to double covers of P! x P! follows
from Proposition 2.13, Table 1, and the topological condition (see formula (38) on page 32
of [2]) imposing that %[B] is an integral homology class in Hy(X/(t),Z). |
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Remark 3.6. It is worth noticing that the case where X* consist of a curve of genus 10 fits
in the framework of the previous proposition when considering d = 9, i.e., the rational
surface is Zo9 ~ P2. In this case, as we will see in Theorem 3.10, there are no elliptic
fibrations on X, therefore our analysis will focus on d < 8.

Following the construction presented in Proposition 3.5, if we take the double cover of
the plane P? branched at a nodal sextic curve I'; we get a singular surface Y, with ADE
singularities, such that its minimal resolution X is a K3 surface, and the strict transform
of I'y is a smooth curve Cy on X. So, we have a diagram as below.

Cg c X min. res Y
11:1 2:ll lll
B C Za _F ., p2 oIy

Figure 2. Strictly elliptic K3 surfaces and smooth del Pezzo surfaces as in Proposition 3.5 (2).

Remark 3.7. It is worth mentioning that in Section 7 of [20], the authors consider a K3
surface X together with a non-symplectic involution : X — X as in Convention 2.15
and such that X* = C, U Ry U --- LU Ry consists of a smooth irreducible curve Cg of
genus g > 2 and k > 1 rational curves. In this setting, some of these K3 surfaces are
such that X /(1) ~ P2, and it is observed that in such instances, X can be realized as the
double covering of P? along a reducible sextic curve. We refer the reader to the Table in
Section 7.1 of [20] for further details (see also Section 5 of [19] and Section 5.10 of [13]).

Lemma 3.8. Let Z be a del Pezzo surface of degree d and let f:Z — P! be a conic
bundle on Z with Fy the fiber over a point x € PL. If E is an irreducible curve such
that E C Supp(Fy), then E?> € {—1,0} and g(E) = 0. Let' B €| —2Kz| be a smooth
irreducible curve, then

£ {—1 ifE-B =2,

0 ifE-B=4
Proof. By the correspondence in Lemma 2.7, to any conic bundle f:Z — P!, we can
associate a conic class, i.e., an effective class [D]€NS(Z) such that D>=0,Kz-D = —2,
and f = ¢|p| is corresponding the induced map. Furthermore, if £ is an irreducible com-
ponent of Supp(Fyx), we have that E - F, = E - D = 0. Suppose that E2 > 0. By the
Hodge index theorem, D is numerically trivial. However, this contradicts Kz - D = —2.
Thus, E2 < 0.
By the genus formula, we have that

2pa(E)—2=E*>+Kz-E <0,

IThe existence of such a curve can be deduced from the smooth divisor theorem (see Theorem 1.5 in [2]), or
simply from the classification of smooth del Pezzo surfaces. Indeed, the divisor —2Kz, is very ample for d > 2
and it defines a double cover ¢|_»x,|: Z — Q ford = 1, where Q C P3 is a quadric cone. See Chapter IV
of [6] for details.
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and thus
2pq(E)—2 <0,

since E2 <0 and —Kz - E > 0 by the Nakai-Moishezon ampleness criterion. Hence,
pa(E) = 0, and thus E ~ P!. Finally, for a smooth irreducible curve B € Z such that
—2K7 ~ B, we have that E - B = 2E? + 4, from which the last statement of the lemma
follows thoroughly. |

Remark 3.9. Note that the smooth fibers of any such conic bundle over del Pezzo surfaces
are rational curves intersecting the curve B € | — 2K 7| at four points, taking multipli-
cities into account. Additionally, the singular fibers consist of two rational curves with
self-intersection —1 that intersect at a single point and each component intersects B at
two points.

We can now state our main theorem concerning the correspondence between conic
bundles on Z and elliptic fibrations on X.

Theorem 3.10. Let X be a K3 surface and 1: X — X a non-symplectic involution of
strictly elliptic type. Let Z = X /(1) be the quotient smooth del Pezzo surface as in Pro-
position 3.5, and let w: X — Z be the quotient map.

If d = 9and g = 10, the K3 surface X does not admit any elliptic fibration. If d <8,
there is a correspondence

Conic bundles ~ Elliptic fibrations
{f:Z—>P1 } { €:X - P! } S fom

Moreover, the fixed curve X' = C is a bisection of &, i.e., E -C = 2 for the general
fiber E of &: X — P,

Proof. The case Z ~ P! x P! is treated in Proposition 2.4 of [16] and in Section 3 of [36]:
observe that the composition of the projection 7 with the projection p; on P! x P! (and
similarly for p,) defines an elliptic fibration on X, as a consequence of the genus for-
mula for the double cover. Hence, X admits at least two distinct elliptic fibrations. Now
assume & is an elliptic fibration on X ; this induces a pencil on P! x P!, but the only conic
bundles are the projections (see Remark 2.10). Therefore, the elliptic fibration & must be
of the form 7 o f, where f is either p; or p,.

In what follows, we will assume that Z ~ Z is the blow-up of 9 — d points in P2 in
general position (cf. Theorem 3.2 in [36], where the case of Zg ~ F; is also considered).

We first observe that when g = 10, the K3 surface X does not admit elliptic fibrations.
Indeed, as observed in Remark 3.2, in this case NS(X) =~ (2), i.e., it is generated by a
class of square 2. Thus there are no classes D £ 0 with D? = 0, and therefore no elliptic
fibrations.

First, let us consider &: X — P! an arbitrary elliptic fibration. Since ¢ is strictly elliptic,
we know that ¢ must map each fiber of & to itself (see Lemma 3.3), and thus & factors
through a fibration f: X /(1) ~ Z4; — P'. Since Z is a smooth del Pezzo surface and f
has connected fibers, it follows that f is a K z,-negative contraction with one-dimensional
fibers and thus is a conic bundle by Theorem 3.1 (ii) in [3].
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x —&., pt

g%

Figure 3. Elliptic fibrations on strictly elliptic K3 surfaces and conic bundles on del Pezzo surfaces.

Conversely, consider a conic bundle f: Z; — P! and define &:= f om: X — PL.
Here, we have that B := n(C) € | —2Kz,|. In particular, if we denote by F' the general
fiber of f:Z; — P!, we have that B - F = 4 and then it follows from the Riemann—
Hurwitz formula that &: X — P! is an elliptic fibration. The induced conic bundle is
precisely f:Z; — P! and thus we get the desired correspondence. Finally, the fact that C
is a bisection of &: X — P! follows directly from the projection formula. ]

Example 3.11. Let Z; be a del Pezzo surface of degree d < 8 obtained as the blow-up
of 9 — d points in general position in P2. Now fix a conic bundle f: Z; — P! and let
&: X — P! be the corresponding elliptic fibration.

Let F be the general fiber of &: X — P!, let I" be the general fiber of f: Z; — P!,
and let £ € Z4 be a (—1)-curve. By the projection formula,

F-n*(E) =deg(m)(I'-E) =deg(r) =2 aslongasT-E =1,

and hence these (—1)-curves on Z, induce bisections of &: X — P!. The condition
I' - E =1 can be explicitly verified by means of Theorem 2.3 and Proposition 2.9. For
instance, following Convention 2.2, in Z4 we can consider

E=2L—-FE,—E,—E;—E4—Es
and we can check that
e f’'=L—E{,thenE-T =1;
e fI’'=2L—FE;—E;—FE3—E4,thenE-T =0.

4. Examples and Néron—-Severi lattices

We will now present some examples.
Example 4.1. Let X be the smooth quartic surface given by the equation
{xg + X7 4+ x5 + x5 +6(x3x] —xTx3 +x7xF + x5 x5 —x3x5 +x5x3) =0} C P2
We consider the automorphism
t: X > X, [x0:x1:x2:x3] > [x0:X1:x2: —Xx3],

which is a non-symplectic involution on X, and the fixed locus of ¢ is the smooth quartic
curve

C = {xg +x7 + x5 +6(xgx? —xIx2+x3x3) =0} C {xo = 0} = P?

of genus g(C) = 3.
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The quotient X /(1) = Z is a smooth rational surface, and by the formula of the
canonical divisor of double coverings (see Section 22 in Chapter V of [7]), we have
that B := 7(C) ~ —2Kz. Therefore, the bi-anticanonical divisor —2Kz is ample and
K % = 2,i.e., Z >~ Z, adel Pezzo surface of degree two. Conversely, a del Pezzo surface
of degree 2 is isomorphic to a double cover of P? branched at a smooth quartic curve (see,
e.g., Chapter IV of [6]).

More generally, Section 5.3 of [11] gives a correspondence between plane sextic
curves with 7 nodes in general position and smooth planar quartic curves. In particular, the
smooth quartic curve C C P? corresponds a sextic curve I' € P? with 7 nodes in general
position. By considering the blow-up of P? at the 7 nodes of T, followed by taking the
double cover ramified at the strict transform of I', we obtain the K3 surface X.

The surface X has Néron—Severi lattice U(2) & A?G, as outlined in Section 8.4 of [37].
It is noteworthy, in accordance with Theorem 8.2 in [5], that X is projectively equivalent to
Burnside’s quartic surface. Specifically, its group of projective automorphisms is Z5 - Gs.

As we observed, K3 surfaces of strictly elliptic type have finite automorphism group
(see Section 2.8 of [2]) and thus they are related with the works of Roulleau, Artebani and
Correa Deisler [4,37].

For instance, if d = 7, the corresponding K3 surface has Picard rank 3 and is obtained
as double cover of P? branched over a sextic curve with two nodes p; and p,. By Propos-
ition 3.4 in [37], the surface admits three (—2)-curves. Two of them are contracted to p;
and p,, while the image of the third is the line through the two nodal points.

Similar descriptions and properties regarding the configuration of the (—2)-curves for
1 < d < 6 are provided in [4,37]. We have summarized the references for each case in
Table 2, where r = rk NS(X).

NS(X)

S1,1,2 =~ U(2) & Ay, Section 3.4 of [37]
U(2) ® A®2, Proposition 2.11 in [4]
U(2) ® A%, Section 5.2 of [37]

U(2) ® A®*, Section 6.7 of [37]

U(2) ® A®?, Section 7.3 of [37]

U(2) ® A%, Section 8.4 of [37]

U(2) ® A®7, Section 9.4 of [37]

Oolo|w|la|n|s~|w]|=
—|o|lwir|n|o| s

Table 2. Néron—Severi group of strictly elliptic K3 surfaces with r > 3.

In the case d = 8 (and subsequently r = 2), we distinguish between the cases § = 0
and § = 1, where Z ~ P! x P! and Z ~ F respectively. In the § = 0 case, the Néron—
Severi lattice NS(X) is generated by the pull-back via 7: X — Z of the two fibers of the
canonical projections, and thus NS(X) ~ U(2). In the § = 1 case, NS(X) is generated by
the pull-back via 7: X — Z of the unique (—1)-curve in F; and the class in F; obtained
by the pull-back of a line in P? via the contraction F; — P2, yielding NS(X) ~ (2) @ 4,
(cf. Remark 3.2).
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Example 4.2. Let X be the double cover of P! x P! branched at a smooth bi-quartic
curve B = { fa.4([x, y], [s,t]) = O}, i.e.,

X = {w? = faa(lx, y][s, 1)}

We will exhibit an elliptic fibration &: X — P! that admits fibers of types Io, I, I, II
and II1. Let B be the smooth bi-quartic curve in P! x P! given by the equation

B = {X4S4 _ %x3ys3t + %X3yS2t2 —X2y2S4 _ %x2y2s3t + %x2y2s2t2

- x2y2t4 + %xy3s2t2 + y4z4 — 2y4s2t2 + y4t4 = 0}.
We consider the elliptic fibration &: X — P! obtained composing with the first pro-
jection onto P!. In the affine chart t = 1, the fiber over a generic point [a : b] € P! is
given by

1 1
w? = (a* —a®b* + b*)s* + 5 (—a®b + a*b?)s3 + 3 (@®b + 3a%b* + ab® — 4b*) s?
+ (—a?b? + b*).

Using classical Weierstrass’ methods (see, e.g., Theorem 2 in Chapter 10 of [29]), we can
see that the generic fiber can be written as w? = f3(z,a, b), where f3(z) is a polynomial
of degree three in z such that for generic [a : b] € P! the corresponding curve is irreducible.
If we denote by L,.p) the line {[a : b]} x P!, we have the following:
(1) B N L.o) = {s* = 0}, so the fiber over [1 : 0] is w? = s*, of type I1L
(2) BN L) = {s* — 53t = 0}, so the fiber over [1 : 1] is w? = s3(s — 1), of type IL.
(3) BN Ljg:) = {s* —25%1% 4+ t* = 0}, so the fiber over [0: 1] is w? = (s — 1)*(s +1)2,
of type I,.
(4) BN L.y = {s* — 522 = 0}, so the fiber over [1 : —1] is w? = s?(s* —1?), of
type I;.
As mentioned in the introduction, the analysis of double covers of P! x P! branched
over curves of bi-degree (4, 4) was undertaken in [16, 36], where the authors already
observed that the corresponding K3 surface X admits an elliptic fibration (see Theorem 4.4

in [16] and Section 3 of [36]). This study builds upon classical works by Enriques and
Campedelli.

5. Singular fibers and bisections

Let (X,v) andlet 7: X — Z = X/(t) be as in Theorem 3.10. It is a well-known fact that
if there exists a primitive embedding of the lattice U < NS(X), then the K3 surface X
admits a jacobian elliptic fibration (see, e.g., Remark 1.4 in Section 11 of [22]). However,
according to Corollary 3.3 in [12], K3 surfaces of strictly elliptic type do not possess
such embeddings, and consequently, they do not admit jacobian elliptic fibrations. On
the other hand, since there is an embedding of the lattice U(2) in NS(X), these surfaces
admit bisections. More precisely, one can choose a class L in U(2) with L? = 0 and
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assume that L is nef modulo the action of the Weyl group. By Remark 2.13 in Section 8
of [22], X admits an elliptic fibration. Furthermore, since the divisibility of L is either 1
or 2, the elliptic fibration admits either sections or bisections. In our specific context,
where elliptic fibrations do not admit sections, we can therefore conclude the existence of
bisections.

Proposition 5.1. Let f: Z — P! be a conic bundle on the smooth del Pezzo surface Z
and let &: X — P! be the induced elliptic fibration on X. If B € | —2Kz| is the branching
locus of m: X — Z, then the following statements hold:

(1) If F is a smooth fiber of f, then the corresponding fiber of & can be of one of the
following types (see Table 3):

e lo, if B meets F in four distinct points;

e Iy, if B meets F in two simple points and a double point;

e I, if B meets F in two double points;

o 1L, if B meets F in two points: a simple one and a point with multiplicity 3;
o IIL, if B meets F in a single point with multiplicity 4.

2) If F = F1 + F, is a singular fiber of f, let P = F1 N F,. Then the corresponding
fiber of & can be of one of the following types (see Table 4):

e I, if B meets each F; in two simple points, distinct from P

e I3, if B meets F5 in two simple points, and B meets F; in a double point, distinct
from P;

e 4, if B meets each F; in a double point, distinct from P
o IIL if P € B and B meets each F; = 2 in two simple points;
o IV, if B meets Fy in two simple points, while B meets F in P with multiplicity 2.

T
_r OX= ><><_ﬂ, >li ><_ﬂ.
11 [3.1]

Iy [1,1,1,1] L 2,1,1] I [2,2] 111 [4]

Table 3. Singular fibers of the elliptic fibration induced by smooth fibers of the conic bundle.

oizd |=g|Soe g s

L [L1],[1.1] L .01 L [2.[2 o [LAL[L 1] IV 2]

Table 4. Singular fibers of the elliptic fibration induced by singular fibers of the conic bundle.
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Proof. Let F be a smooth fiber of f. By the previous construction, the branching locus
of w: X — Z is a smooth irreducible curve B (in red in Table 3) and by Remark 3.9, F
meets B in 4 points (with multiplicity). We study each case separately.

If B meets F in four distinct point, then the corresponding fiber of & is a double
cover of P! with four ramification points. In Table 3, we show the possible multiplicities
of the points. Then by Riemann—-Hurwitz formula, the fiber of & is a smooth curve of
genus 1, i.e., a curve of type Iy. If B meets F in two simple points and a double point p,
the preimage of p is a nodal point of the fiber, thus the fiber is of type I;. Similarly, one
obtains a fiber of type I, when B N F consists of two double points. If B meets F in
a triple point and a simple one, then the fiber of & has a singular point which is a cusp:
the triple point in the double cover gives a singular point of the fiber where the equation
is locally given by y? = x3, thus a cusp. Similarly, if B meets F in a single point with
multiplicity 4, the induced fiber of & is of type II1.

Now let F be a singular fiber of f. According to Remark 3.9, singular fibers of a
conic bundle on Z are union of two (—1)-curves F; and F, that intersect at one point
P = F; N F,. Furthermore, the branch curve B of the 2-cover X — Z (in red in Table 4)
intersects each rational curve F; at two points (with multiplicity). In Table 4, we show
the possible multiplicities of the points. If B meets each F; in two simple points, distinct
from P, this defines a fiber of type I, of &, since the preimage of each F; defines a
rational curve and 7 ~!(P) consists of two points. If B meets F, in two simple points
and F; in a double point, distinct from P, this defines a singular fiber of & of type I3: the
double cover of F; gives two components of the fiber I3, while F> contributes with one
component and 77~} (P) consist of two points. Similarly, if B meets each F; in a double
point, distinct from P, the fiber is of type I4. The last case to study is when B meets F;
in two simple points F, in P with multiplicity 2. In this case, the fiber 7! (F) has three
components and they all meet in 7~ !(P). Three concurrent rational curves form a fiber
of type I'V. ]

Now we want to classify which types of fibers are compatible in each case with the
classification given in Proposition 2.9. Note that in the case Z ~ P! x P! all types of
singular fibers in Proposition 5.1 (1) can be realized, as Example 4.2 shows. Now, given
a del Pezzo surface Z; (see Convention 2.2), Theorem 3.10 establishes a correspondence
between conic bundles on Z; and elliptic fibrations on the K3 surface X. Proposition 2.9
then classifies conic bundles on Z ;. Given the potential fibers outlined in Proposition 5.1,
our goal is to determine which ones are admissible for each Z; and to establish their
connection with the geometry of the sextic curve I'; introduced in Proposition 3.5.

Proposition 5.2. Let (X, 1) be a pair of strictly elliptic type and let Z; = X /(1) be the
quotient smooth del Pezzo surface as in Proposition 3.5(2). If d <5, all types of singular
fibers in Proposition 5.1 are admissible. If d = 6,7 (respectively, 8), then the fiber 14
and 1V (respectively, 13, 14 and IV) are not admissible.

In other words, the admissible fibers for the elliptic fibration &: X — P! are described
in Table 5.

Proof. Let d = 8. By Proposition 2.9, the only conic class on Zg is D = L — Ey,
where E is the exceptional divisor of the blow-up. In this case the conic bundle has no
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d | Singular fibers

8 Io, I, Ip, 11, 111
7,6 | Io,11,1p, 15, 1L 111
Io, I1, I, 15, Iy, IL IIL, IV

Table 5. Admissible singular fibers of the elliptic fibration &: X — P! induced by a conic bundle
f:Zg — Pl

singular fibers, thus I'j meets the fiber in the nodal point and four more points. According
to possibilities given in Table 3, one can have singular fiber of the elliptic fibrations of
types I, 11, I, IT or I1I.

If d = 7, the curve I'y is a sextic curve with 2 nodes and by Proposition 2.9, conic
classes on Z7 are D = L — E;, where E; is the exceptional divisor over one of the two
nodal points p;, p». We take i = 1 without loss of generality. If the conic bundle has no
singular fibers, then as before the possible fibers of the elliptic fibration are of types I,
Ii, L, Tor IIL. If F = F; + F, reducible, which corresponds to the case when L passes
through the other nodal point p,, we observe that each component F; and F, meets B,
the strict transform of I'y, in 2 points. If they are distinct for both Fj, F,, one has again
a fiber of type I, while if one of the two components meets B with multiplicity 2, one
obtains a fiber of type I3 (see case [1, 1], [1, 1] and case [2], [1, 1] of Table 4). Observe
that the strict transform always meets one of the two components in two distinct points
(coming from the blow-up of the nodal points). Thus the only cases of Table 4 that appear
are [1, 1], [1, 1] and [2], [1, 1], giving raise to fibers I and I3. One concludes that fibers of
type I4 and IV are not possible, since otherwise the sextic curve would have singularities
worse than nodes (cf. Table 2). The case d = 6 is analogous.

When d = 5, according to Proposition 2.9, one can have the conic class D = 2L —
Z?:l E;. In this case, we distinguish if conics of the bundle are irreducible or reducible.
The first case will give fibers of type o, 1, I, Il and I1I as in Table 3. In the case of conics
reduced as the union of two lines L; U L,, one observes that this allows the cases of
Table 4: each line passes through 2 of the 5 nodal points of the sextic I's, thus meeting I's
in two more points (with multiplicity). According to the distribution of these points, one
obtain all cases of Table 4.

The remaining cases with d < 4 can be treated in the same way, and thus admit all
types of fibers listed in Proposition 5.1. ]

Remark 5.3. The proof of the previous result, along with Table 1, not only allows for
the determination of admissible singular fibers in the induced elliptic fibration but also
the complete configuration of these fibers. In fact, given a del Pezzo surface of degree d
and a conic bundle, Table 5 tells which are possible types of singular fibers on the elliptic
fibration induced on the K3 surface X. Moreover, they can be computed explicitly, as we
show in the following example.

Example 5.4 (Wiman sextic). We describe the configuration of singular fibers of the
strictly elliptic K3 surface associated to the classical Wiman sextic [42]. More precisely,
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we consider
By ={x:y:z] € P2, W(x,y,z) =0},

where
W(x,y,z) =x8 + 0 + 28 + (x% + y? + 25 (x* + y* + z%) — 12x%y%22.

Wiman observed that By  P? has exactly four nodes py, p2, p3, p4 € By as singularit-
ies, with

pr=[1:1:1], pa=[1:—-1:1], ps=[-1:1:1] and pg=1[1:1:-1].

The blow-up &: Zw := Bly, p,.ps.p.(P?) — P? produces a smooth quintic del Pezzo
surface, with exactly ten exceptional (—1)-curves. Explicitly, these curves are given by
the exceptional divisors Eq, E», E3, E4 and the strict transforms Z,- j © Zw of the lines
Lij = pip; C P2, where

Li;=V(x—2z), Liz=V(y—z2), Lu=V(y-x), La=Vx+y),
Loy =V(y+z) and Lzs =V(x+2)
(see Figure 4). In particular, we observe that each intersection By N L;; is given by p;

and p; as double points and by two other simple points® ¢;; and g;; (not depicted in
Figure 4).

La3
Lyg
L3q
Lia
Figure 4. Conic bundle associated to the Wiman sextic.
Following Table 1, we study the conic bundle induced by the linear system
~ pl
2L — E| — E; — Ez — E4| = P[ML],
*Explicitly, Bw N Lij = {pi, pj.4ij.qij} where g2 = [1i~/3, 1], q13 = [iv/3,1,1], 14 = [i.i, /3],
g23 = [i,—i,—/3], q24 = [-~/3.i.—i], q34 = [i, +/3.i], and where gi;j is obtained by applying to each coordin-

ate of g;; € P2(Q(i, +/3)) the automorphism t € Gal(Q(i, +/3)/Q) given by 7(i) = i and 7(+/3) = —/3 (e.g.,
g1z = [-i+/3.1,1]).
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i.e., induced by the pencil of conics in P? passing through the points p1, p2., p3. ps € Bw.
Explicitly, this is given by the conics

Cpp i =1x:y:z]e P2 | A(y?> —x?) 4+ u(z2—x?) =0}, [A: u] € PL.

By Theorem 3.10, the fibers of the induced elliptic fibration &y : Xy — P! come from
fibers of the conic bundle. We first observe that for a general point [A : u] € P!, the
conic €[y, meets the sextic By in py, p2, p3 and ps, and in four more simple points by
Bezout’s theorem. Therefore the general fiber of the induced fibrations &y is of type Io.

Denote by xr the number of singular fibers of type F, which is a non-negative integer.
Observe that, since & : X — P! is an elliptic fibration on a K3 surface, we expect that
> F x(F) = 24 (see Remark 11.1.12 in [22]) and then

(51) X14 + 2X12 + 3X13 + 4X14 + 2XH + 3)61[[ + 4X1v =24.

Singular fibers of &y are obtained from
(1) either singular fiber of the conic bundle, i.e., reduced conics of the pencil, or
(2) conics €y.,) meeting By in less than 4 points.

We now study the two cases separately.

Case (1). The pencil of conics €Jy., has exactly three reducible conics: V/( y? — x2),
V(y? — z2), and V(22 — x?), corresponding to the points [A, u] given by [1 : 0], [1 : —1],
and [0 : 1], respectively. Consequently, the induced conic bundle f: Z — P! has three
singular fibers:

F1 = Z14 U Z23, F2 = Z13 U Z24, and F3 = le U Z34.

Each L; ; intersects the strict transform B € Zy of the Wiman sextic By C P? in pre-
cisely two simple points, and hence the corresponding three singular fibers of the associ-
ated elliptic fibration &y : Xy — P! are of type I,.

Case (2). Now consider smooth conics of the pencil such that the intersection with
the sextic is not four simple points (out of nodes). According to Table 3, the multiplicities
of the intersection points will determine the type of fibers of &y, . Since the case A = 0
corresponds to a reducible conic, we can assume A = 1 and thus conics the pencil have
equation

y?=x?—pu(z?—x?). peC\{0,-1}.

As observed in Proposition 5.1, the singular fibers of the elliptic fibration associated
with smooth fibers of the conic bundle €[,.,,) are induced by tangency conditions between
the strict transform of conics of the pencil and the strict transform B € Zy of the Wiman
sextic By € P2. Computation shows that there are nine values of 1 such that the conic and
the sextic meet in the four double points py, p», p3, p4 and in two additional points ¢, ¢»,
in each of them with multiplicity 2. Thus this corresponds to case I, of Table 3. The nine
values of [A : u], as well as the equations of the conics, are shown in Table 6. Observe that
everything is invariant applying a permutation of coordinates: this is due to the symmetric
form of the sextic polynomial W'.

Finally, one gets from Table 6 that x;, = 12 and xz = O for other types of fibers.
therefore (5.1) is satisfied.
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(A u] ‘ conic fiber type
[0:1] z—=x)z+x)=0 reducible, L1, U L3g | I
[1:0] y—-x)y+x)=0 reducible, L4 U L3 I,
[1:-1] +2)(y—2)=0 reducible, L3 U Log I
[1:-2] x24+y2-222=0 smooth, bitangent L
[1:1] y24+z2-2x2=0 smooth, bitangent I
2:-1] 224 x2-2y2=0 smooth, bitangent I
[4:—1+iV15] | 23 + @) — Y2+ 22(+5 - @) =0 | smooth, bitangent I,
[6: =3 +i/15] yz(% + @) —z22 4 x2(+% — @) =0 smooth, bitangent 1,
[4:-3+iV15] | 223 + @) —x2+ y2(+5 — @) =0 | smooth, bitangent I,
[4:—-1—-i15] xz(% — #) —y2+ 22(+% + @) =0 smooth, bitangent I,
[6:—3—iV15] | y2(3 - #) — 22+ x2 (45 + @) =0 | smooth, bitangent I
[4:-3—i17] 22(% - #) —x2+ yz(—i—% —+ @) =0 smooth, bitangent I,

Table 6. Singular fibers of &y .
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