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Local complete intersections and Weierstrass points

André Contiero and Sarah Mazzini

Abstract. This work presents a simple proof that the moduli space of complete integral Gorens-
tein curves with a prescribed symmetric Weierstrass semigroup becomes a weighted projective
space, even for fields of positive characteristic, when the associated monomial curve is a local
complete intersection.

1. Introduction

Given a numerical semigroup S �N of genus g � 1, minimally generated by a1; : : : ;
ar , let MS

g;1 be the moduli space parameterizing smooth pointed curves defined over
an algebraically closed field k (or compact Riemann surfaces when k D C), whose
Weierstrass semigroup at the marked point is S. It is well known that MS

g;1 can be
empty depending on S, but when it is non-empty, a major and very classical problem
is to describe the moduli space MS

g;1 and its compactification.
By allowing singularities, any numerical semigroup S can be realized as the Weier-

strass semigroup of a projectivization of the affine monomial curve

CS WD ¹.t
a1 ; : : : ; tar /I t 2 kº � Ar :

Herzog [10] showed that the ideal of CS can be generated by suitable polynomials
in kŒXa1 ; : : : ; Xar � which are differences of two monomials with the same weighted
degree, namely

G
.0/

dj
WD X

˛1;j
a1 � � �X

˛r;j
ar �X

ˇ1;j
a1 � � �X

ˇr;j
ar ;

where ˛i;j � ˇi;j D 0 and
P
ai˛i;j D

P
aiˇi;j for 1 � i � r and 1 � j � m.

The purpose of this paper is to establish the following result.
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Main Theorem. If S is such that the affine monomial curve CS D Spec kŒS� is a local
complete intersection and char.k/ D 0 or a prime not dividing any exponent ˛i;j and
ˇi;j of the defining equations of CS, then a compactification

MS
g;1 D P .T1;�/;

it is constructed and the closure is compounded by integral Gorenstein curves with a
smooth point whose Weierstrass semigroup is S.

The vector space T1;� stands for the negatively graded part of the first module of
the cotangent complex associated to the semigroup algebra kŒS� D

L
n2S ktn ,

T1.kŒS�/ D T1;�.kŒS�/˚ T1;C.kŒS�/:

We recall that a numerical semigroup S is a complete intersection if the affine
monomial curve CS is a complete intersection in Ar , where r is the embedding dimen-
sion of CS, i.e., the smallest number of elements required to generate S. Equivalently,
the semigroup algebra kŒS� is a complete intersection when we consider it as the quo-
tient of kŒXa1 ; : : : ; Xar � by the kernel I of the surjective map

kŒXa1 ; : : : ; Xar � �! kŒS�;
Xai 7�! tai ;

and I is the defining ideal of CS � Ar .
The affine monomial curve CS has a unique unibranch singular point at the ori-

gin 0, with singularity degree g D g.S/. Therefore CS, or even its closure in a suitable
(weighted) projective space, is a local complete intersection if and only if the local
ring of its unique singularity is a complete intersection. Since CS is affine and a locally
complete intersection, a minimal free resolution of the local ring singularity lifts to
a minimal free resolution of the semigroup algebra kŒS�, and hence CS is a global
complete intersection in Ar .

If kŒS� is a complete intersection, then there are no obstructions to formally deform
CS in characteristic zero, the second cohomology module of the cotangent complex
associated to CS is null, T2

CS
D 0, as shown in [11]. Hence, we can conclude that MS

g;1

is smooth. Furthermore, the base space T � of the miniversal deformation in negative
degrees is an affine space AN . Therefore, we can deduce that a closure of MS

g;1 is also
a projective space, whenever we apply Pinkham’s construction of MS

g;1 for smooth
fibers X� ! T � of the miniversal deformation (see Section 3.4 for more details).
The advantage of our techniques is that the proof of the main theorem presented here
is rather explicit and simple, and it also works for fields of positive characteristic and
describes the curves that compound the boundary.

A rather simple proof of the main theorem in characteristic zero can be obtained
as follows.



Local complete intersections and Weierstrass points 93

Proof. The dimension of MS
g;1 is at least 2g � 1 � dim T1;C, cf. [5, Theorem 2.4].

Since the monomial curve in Pg�1 associated to CS is a local complete intersection
and char.k/ D 0, we are able to show that dim T1;� D 2g � dim T1;C, meaning that
the Tjurina number of a complete intersection singularity is 2g. At this point we just
have to apply the results due to Stöhr and Contiero–Stöhr [6, 20] assuring that MS

g;1

is a closed subset of P .T1;�/.

The way we prove the main theorem for also fields of positive characteristic is
to apply a variant of Hauser’s algorithm (see [8, 9] and [18]) by deforming the affine
monomial curve CS � Ar instead of the associated canonical Gorenstein monomial
curve in Pg�1, as required by Stöhr’s original construction ([20]). The first step is
to take the unfold of the r � 1 defining equations of the ideal of CS. Next, since
CS is a complete intersection, we can show that no relations between the unfolded
coefficients arise from syzygies, with the exception of 1

2
r.r C 1/ normalizations to

zero. This is where the condition on the characteristic of the ground field appears.
Hence, the closure of the moduli space MS

g;1 is P .V /, where V is the k-vector space
spanned by the normalized unfolded coefficients. Finally, we just need to note that V
is in bijection with T1;�, cf. [20, Appendix].

We obtain the following two naive and immediate consequences of the above main
theorem, provided that char.k/D 0 or a prime not dividing any exponent ˛i;j and ˇi;j
of the defining equations of CS.

Corollary 1.1 (Schlessinger [17] and Pinkham [16]). A complete intersection numer-
ical semigroup is realized as a Weierstrass semigroup of a smooth curve.

Corollary 1.2. If CS is a local complete intersection, then the associated affine mono-
mial curve can be negatively smoothed without any obstruction.

In general, it is very difficult to describe a compactification of MS
g;1 and the

curves that make up its boundary. The authors are aware of two main approaches
to considering geometric features of a closure of MS

g;1 and properties of curves on
its boundary. In the following two subsections, we cite some results concerning these
two approaches. There are many high-standing works that are not cited here, most of
which are referenced in the works cited below.

1.1. MS
g;1

coming from versal deformation

The general theory of versal deformations of singularities dates back to the 1960s and
1970s, with the remarkable works of Schlessinger [17] and Artin [1]. The connection
between the spaces MS

g;1 and the miniversal deformation in negative degrees was
made by Pinkham in his Ph.D. thesis [16], using an affine monomial curve associated
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with the semigroup S. We shall briefly describe this connection in Section 3.4 below,
as it is one of the main techniques used in this paper.

Several works have investigated the application of versal deformations to the study
of MS

g;1. As demonstrated by Pinkham in [16], the miniversal deformation provides a
method for constructing a compactification of MS

g;1. The resulting closure of MS
g;1 is

totally described just for a few families of semigroups, as we note below.
In [20], Stöhr presents a rather explicit way to construct a compactification of

MS
g;1 as a variant of Hauser’s algorithm, when S is assumed to be a suitable symmetric

semigroup. Stöhr’s construction relies on the unfold of the defining equations of the
canonically embedded projective monomial curve associated to CS, extending Petri’s
analysis of the canonical ideal and then exploring appropriate syzygies coming from
the defining equations of CS. It is obtained a compactification of MS

g;1 as a closed
subset of a weighted projective space by allowing irreducible Gorenstein curves at
the boundary. Later on, Contiero–Stöhr [6] and Contiero–Fontes [4] extend Stöhr’s
construction to all symmetric semigroups, making it totally implementable as well.
In Section 3.4 below, we briefly recall this construction. We also refer to [13], where
the second author presents some algorithms to compute the defining equations of CS

and their unfolding, the defining equations of MS
g;1, and the equivariant tangent space

T1
CS

of the versal deformation space, whenever S is symmetric.
Nakano [14] computed MS

g;1 using Pinkham’s approach by computationally deter-
mining the base space of the miniversal deformation of the monomial curve CS in
negative degrees, for g � 5. He shows that for g � 5 the base space is an irreducible
rational variety, except in one case: the semigroup h4; 6; 11; 13i when it has the struc-
ture of a projective quasi-cone over P1 � P3. In this case, the base space is also
irreducible, but in negative degrees it contains two components, one smooth and the
other containing a curve with a double point (see [5, Remark 2.9]).

In a recent paper [19], Stevens extends the results of Nakano [14] and explicitly
computes the defining equations of the moduli space MS

g;1 for many cases of genus
at most seven and determines the dimension for all semigroups of genus not greater
than seven. Stevens uses Hauser’s algorithm in most cases, but in one case, he uses
the projection method developed by De Jong and Van Straten [7].

2. Reviewing Weierstrass points

We recall that a numerical semigroup S is a subset of the nonnegative integers N

containing 0, closed under addition such that only a finite number of elements are
missing from S. The genus of S is the number of its gaps, i.e., the number of positive
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integers that are not in S,

g.S/ WD #.N n S/ D #¹1 D `1 < � � � < `gº;

and we easily see that the largest gap `g is not bigger than 2g � 1.
Given an irreducible smooth pointed curve .C ; P / 2Mg;1 of genus g, its associ-

ated Weierstrass semigroup SP is the subset of all nonnegative integers n such that

H0.C ;OC ..n � 1/P // ¨ H0.C ;OC .nP //; (2.1)

i.e., n 2 SP if and only if there is a rational function on C whose pole divisor is
exactly nP . The point P 2 C is called a Weierstrass point if SP is different from the
ordinary semigroup ¹0; g C 1; g C 2; : : : º. The Riemann–Roch theorem implies that
the genus of the Weierstrass semigroup SP is equal to the genus of the curve C . It is
well known that only a finite number of Weierstrass points exist on a curve.

Since the i -th gap of S defines an upper semicontinuous function on Mg;1, it fol-
lows that MS

g;1 is a locally closed subset of Mg;1. However, it is also well known that
the moduli space MS

g;1 can be empty, meaning that there are numerical semigroups
that cannot be realized as Weierstrass semigroups of a smooth pointed curve. There
is no purely arithmetical criterion for determining when a numerical semigroup is
realizable, but one necessary numerical condition is given by Buchweitz in [3].

On the other hand, one can see that any numerical semigroup can be realized as
a Weierstrass semigroup of a monomial curve. Taking S WD ha1; : : : ; ari, a numeri-
cal semigroup, let kŒS� WD

L
n2S ktn be the associated semigroup algebra. The affine

monomial curve attached to S is

CS D Spec kŒS� � Ar ;

which in parametric terms is just

CS D ¹.t
a1 ; : : : ; tar / 2 Ar I t 2 A1º:

It is easy to produce the closure of CS in a weighted projective space P r by adding
just a smooth point P at infinity, and so the Weierstrass semigroup at P is S. Here, a
Weierstrass point on an integral curve C at a smooth point P is defined in the same
way that when C is smooth, i.e., for a smooth point P on C , a positive integer n is a
nongap if and only if equation (2.1) holds.

A criterion for determine if a numerical semigroup S is realizable was given by
Pinkham in his Ph.D. thesis. Namely, a numerical semigroup S is realizable if and
only if the affine monomial curve CS admits a negative smoothing, cf. [16, p. 108].
Dealing with this criterion is unfortunately far from easy.
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3. Gorenstein curves and subcanonical points

In this section, C stands for a non-hyperelliptic Gorenstein curve with a smooth sub-
canonical point P , i.e., the associated Weierstrass semigroup S at P is symmetric.
Recall that a numerical semigroup is symmetric if the Frobenius number `g of S is
the biggest possible, `g D 2g � 1. Equivalently,

`g�i D 2g � 1 � ni .0 � i � g � 1/;

where 0D n0 < n1 < n2 < � � � are the nongaps of the semigroup. Since it is assumed
S to be non-hyperelliptic, we may impose that `2 D 2, equivalently, ng�1 D 2g � 2.

We also fix at once a system of generators, S WD ha1; : : : ; ari. We are interested
in two suitable systems of generators: the minimal system, where r is the embedding
dimension of S, and the canonical system of generators, i.e., r D g � 1. In the former
case, S is generated by its first g nongaps, S D hn0; n1; : : : ; ng�1i.

As a general and important comment, if a curve C is a local complete intersection,
then C is also Gorenstein and non-hyperelliptic, because the dualizing sheaf of a local
complete intersection always induces an embedding.

3.1. On P-hermitian bases

By virtue of the Max Noether theorem for non-hyperelliptic Gorenstein curves ([6]),
the maps

Symn H0.C ; !/ �! H0.C ; !n/

are surjective for all n � 1, where ! Š OC ..2g � 2/P / is the dualizing sheaf of C .
Hence, each vector space H0.C ; !n/ admits a so-called P -hermitian basis, i.e., given
n � 1, for each nongap S � n.2g � 2/ we can choose a meromorphic function on C

of the form x˛s WD x
˛0
a0 : : : x

˛r
ar satisfying

ord1;P x˛s D
X

˛iai D s;

where each xai is a regular function on C n ¹P ºwhose pole order at P is ord1;P .xai /
D ai . We also may declare a0 D 0, so one can assume that xa0 D 1. Hence, each
H0.C ; !n/ admits a base formed by meromorphic functions on C whose pole orders
at P are pairwise distinct.

In order to have a uniqueness between the chosen basis elements x˛s , one can take
them in a way that ˛ WD .˛0; : : : ; ˛r/ 2 NrC1 is a minimal element according to the
lexicographical order� rX

iD0

˛i ;

rX
iD0

ai˛i ;�˛0;�˛r�1; : : : ;�˛1

�
: (3.1)
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Hence,
H0.C ; !n/ D Spam

[
s�n.2g�2/

¹x˛s I ˛ is minimalº: (3.2)

For each n � 1,�n stands for the vector subspace of kŒXa0 ; : : : ;Xar � spanned by
the lifting of the above monomial basis of H0.C ; !n/, namely

�n WD Spam
�[
s

®
X˛s I s � n.2g � 2/ and ˛ minimal

¯�
; (3.3)

where X˛s WD X
˛0
a0 : : : X

˛r
ar , with

Pr
iD1 ai˛i D s.

We define deg.Xai /D ai . It follows from the Riemann–Roch theorem for singular
curves that dimk�n D .2n � 1/.g � 1/ and so

dim kŒXa0 ; : : : ; Xar ��n D
�
nC g � 1

n

�
� .2n � 1/.g � 1/;

where kŒXa0 ; : : : ; Xar ��n stands for the vector space over k given by the isobaric
polynomials of (weighted) degree not bigger than n.2g � 2/.

Remark 3.1. Considering the canonical system of generators for SD hn0; : : : ;ng�1i,
the above process produces a basis for�n (respectively for H0.C ; !n/) that is formed
just by monomials on Xni (respectively on xni ) all of the same degree n, which does
not happen when we consider the minimal system of generators. For instance, the
base elements of �2, respectively �3, are given by quadratic forms XasXbs with
S � 4g � 4, respectively by cubic forms Xu�Xv�Xw� with � � 6g � 6, according to
the order fixed in (3.1). We may also conclude that

dim kŒXn0 ; : : : ; Xng�1 �n D
�
nC g � 1

n

�
� .2n � 1/.g � 1/;

where kŒXn0 ; : : : ; Xng�1 �n stands for the usual vector space given by the forms of
degree n.

3.2. The ideal of the canonically embedded C

We start by identifying C with its image under the canonical embedding given by
its dualizing sheaf !. In this way, C can be viewed as a curve of genus g and degree
2g � 2 in Pg�1. Let I.C/ D

L1
jD2 Ij .C/ be the homogeneous ideal of C . By

Riemann’s theorem, for each j � 2, the codimension of Ij .C/ in the vector space
kŒXn0 ; : : : ; Xng�1 �j is .2j � 1/.g � 1/ D dimk�j . Then we obtain

kŒXn0 ; : : : ; Xng�1 �j D �j ˚ Ij .C/; for each j � 2:
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Recall, see [15, Theorems 1.7 and 1.9], that each nongap s � 4g � 4 can be written
in �s different ways as a sum of two nongaps not bigger than 2g � 2, namely

s D as1 C bs1 D � � � D as�s C bs�s ;

where as1 < � � � < as�s and asi � bsi ; for all i D 1; : : : ; �s . Analogously, there are ��
different ways to write each nongap � � 6g � 6 as a sum of three nongaps,

� D u�1 C v�1 C w�1 D � � � D u��� C v��� C w��� :

Since xasixbsi and xu�j xv�j xw�j are elements inH 0.C ;!2/ andH 0.C ;!3/, respec-
tively, we may assume that xas1xbs1 WD xasxbs and xu�1xv�1xw�1 WD xu�xv�xw�
are base elements of �2 and �3, respectively, cf. Remark 3.1. Hence, for each i D
2; : : : ; �s and each j D 2; : : : ; �� the elements xasixbsi and xu�j xv�j xw�j can be
written as a linear combination of base elements, preserving the pole order at P ,
namely

xasixbsi D csisxasxbs C
X
n<s

csinxanxbn ;

xu�j xv�j xw�j D d�j�xu�xv�xw� C
X
m<�

d�jmxumxvmxwm

where n and m run over the nongaps and csin, d�jm 2 k are constants. We also may
assume that csis D d�j� D 1, because they must be different from zero and so we can
multiply them by suitable constants. By construction, the 1

2
.g � 2/.g � 3/ quadratic

forms

Fsi WD XasiXbsi �XasXbs �

s�1X
nD0

csinXanXbn 2 kŒXn0 ; : : : ; Xng�1 � (3.4)

and the
�
gC2
3

�
� .5g � 5/ cubic forms

G�j D Xa�jXb�jXc�j �Xa�Xb�Xc�

�

��1X
nD0

d�jnXa�Xb�Xc� 2 kŒXn0 ; : : : ; Xng�1 �; (3.5)

vanish identically on the canonical curve C , are linearly independent and because of
their number, form a basis of the vector spaces I2.C/ and I3.C/, respectively.

Petri’s analysis remains true for canonical Gorenstein curves and assures that the
ideal I.C/ is generated by quadratic relations, provided C is non-hyperelliptic, non-
trigonal and not isomorphic to a quintic plane curve. When C is trigonal or isomorphic
to a quintic plane curve, it assures that I.C/ is generated by quadratic and cubic forms.
It turns out that if S is such that 3 < n1 < g and S ¤ h4; 5i, then C is nontrigonal
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and not isomorphic to a quintic plane curve. Hence the ideal I.C/ is generated by
the quadratic forms in equation (3.4), see [20] or Theorem 3.4 below. Therefore, if
S is such that n1 D 3, n1 D g or S D h4; 5i, then the ideal I.C/ is generated by the
quadratic forms in (3.4) and suitable cubic forms picked up from (3.5), cf. [4, Theo-
rem 3.7].

It is worth to note that each non-hyperelliptic numerical semigroup S can be rea-
lized as the Weierstrass semigroup of a Gorenstein (canonical) curve. Namely, taking
the canonical monomial curve

C .0/ WD ¹.an0b`g�1 W an1b`g�1�1 W � � � W ang�1b`1�1I .a W b/ 2 P1/º � Pg�1; (3.6)

the Weierstrass semigroup at P D .0 W � � � W 0 W 1/ is equal to S, cf. [20, p. 190]. More-
over, the ideal of C .0/ is generated by the following 1

2
.g � 2/.g � 3/ folded quadratic

forms (see [6, Lemma 2.3]):

F
.0/
si D XasiXbsi �XasXbs ; (3.7)

provided that 3 < n1 < g and S¤ h4; 5i. In addition, if n1 D 3, n1 D g or SD h4; 5i,
then the ideal of I.C .0// is generated by the above 1

2
.g � 2/.g � 3/ folded quadratic

forms and suitable folded cubic forms

G
.0/
�j D Xa�jXb�jXc�j �Xa�Xb�Xc� ; (3.8)

cf. [4, Lemma 3.3].

3.3. Unfolding the defining equations

Given the monomial curve CS � Ar associated to any non-ordinary numerical semi-
group S D ha1; : : : ; ari, a result due to Herzog, [10], assures that the generators of
the ideal I.CS/ can be chosen to be isobaric forms which are given by the difference
of two monomials in the variables Xa1 ; : : : ; Xar , namely

X˛s � Xˇs ;

such that ˛iˇi D 0 for i D 1; : : : ; r and
P
ai˛i D

P
aiˇi D s is its weight.

When we assume non-hyperelliptic symmetric semigroups, we can consider two
systems of generators for S, namely the minimal and the canonical ones. By con-
sidering the minimal system of generators, a1; : : : ; ar , we can choose a basis of
�i � kŒXa0 ; Xa1 ; : : : ; Xar �, for i � 2, that is given by the lifting of the P -hermitian
basis of H0.C; !i /, where ! is the dualizing sheaf of CS, see equation (3.3) of Sec-
tion 3.1. If H .0/ is a generating form of I.CS/, say H .0/ D X˛s � Xˇs 2 I.CS/ of
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weight s, let n be the smallest positive integer such that s � n.2g � 2/. Thus the
unfold of H .0/ is the polynomial

Hs D H
.0/
s C

X
j<s

csjX
j jXa0D1 2 kŒ¹csj º�˝ kŒXa1 ; : : : ; Xar �; (3.9)

where each X
j is the unique basis element of�n of weight j , X
j jXa0D1 is the mono-
mial obtained from X
j making Xa0 D 1 and csj are variables over the ground field k.
We attach a weight s � j to each csj . Since the weight of Xa0 is zero, the unfold of
H .0/ is also an isobaric form of degree s.

By considering the canonical system of generators for S, namely n0; n1; : : : ; ng�1,
the canonical ideal of C .0/ is generated by isobaric forms that are also homogeneous
polynomials (quadratic and cubic) in the usual sense, cf. equation (3.7) and equa-
tion (3.8). Then the unfold of a defining quadratic form F

.0/
si is

Fsi D F
.0/
si �

s�1X
nD0

csinXanXbn 2 kŒ¹csij º�˝ kŒXn0 ; : : : ; Xng�1 �; (3.10)

while the unfold of a cubic defining form G
.0/
si is

G�j D G
.0/
�j �

��1X
nD0

d�jnXa�Xb�Xc� 2 kŒ¹d�ij º�˝ kŒXn0 ; : : : ; Xng�1 �: (3.11)

Note that the unfold of the quadratic and cubic defining equations of the canonical
curve C .0/ are again quadratic and cubic forms in kŒXn0 ; : : : ; Xng�1 � and isobaric as
well, provided the weight of csin and d�jn are s � n and � � n, respectively.

It is evident that the unfold of the defining equations of a monomial curve is a
perturbation of its defining ideal. To get a deformation preserving at least the dimen-
sion and the arithmetical genus over the fibers, these perturbations cannot be chosen
independently. Generally, they are related by syzygetic relations. This is precisely the
subject of the next subsection.

3.4. A variant of Hauser’s algorithm

In his Ph.D. thesis [16], Pinkham constructs the moduli space MS
g;1 using equivari-

ant (versal) deformation theory. In short, Pinkham starts by considering the versal
deformation space of the affine monomial curve CS, say

Xt0 Š CS //

��

X

��

¹t0º D Spec k // T
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where T D SpecA and A is a local, complete noetherian k-algebra, cf. [1]. The Gm-
action on CS, given by .�;Xai / 7! �aiXai , can be extended to the total and parameter
spaces, X and T , inducing a grading on the tangent space T1

CS
Š T1.kŒS�/ to T , that

is the cotangent complex associated to CS.
We declare that a deformation has negative weight �e if it decreases the weights

of the defining equations of the curve and the corresponding deformation variable has
then (positive) weight e. It is more than convenient to note that the unfolds of the
defining forms of CS and C .0/ in Equations (3.9), (3.10) and (3.11) of the preceding
subsection occur in negative degrees, once provided that they define a deformation of
CS and C .0/, respectively.

Let I be the ideal of A generated by the elements corresponding to the positive
graded part T1;C.kŒS�/. The space T � WD SpecA=I is the subspace of T in negative
degrees and the restriction X� ! T � is the versal deformation in negative degrees,

Xt0 Š CS //

��

X�

��

¹t0º D Spec k // T � D Spec.A=I/:

In addition, the total space X� and the parameter space T � are both defined
by polynomials. In general, the total and parameter spaces associated to an ana-
lytic singularity cannot be defined by polynomial equations alone, and sometimes
do not have a finite dimension. However, this does not happen when deforming quasi-
homogeneous singularities.

Next Pinkham produces a fiberwise compactification X� ! T � of the versal
deformation in negative degrees X�! T � without compactifying the parameter and
the total space, avoiding technical problems coming from inverse limits. Doing this,
Pinkham shows that each fiber of X� ! T � is an integral curve in a weighted pro-
jective space with one point P at infinity whose associated Weierstrass semigroup is
exactly S. All the fibers over a given Gm orbit of T � are isomorphic, and two fibers
are isomorphic if and only if they lie in the same orbit. This is proved in [16] for
smooth fibers and in general in the Appendix of [12].

Now, let us invert the above considerations starting with a possible singular inte-
gral curve C of arithmetic genus g > 1 defined over k. Given a smooth point P of C ,
let S be the Weierstrass semigroup of C at P . Consider the line bundle L D OC .P /

and form the ring of sections R D
L1
iD0H

0.C ; Li /. This leads to an embedding
of C D P .R/ in a weighted projective space, with coordinates Xa0 ; : : : ; Xar with
deg.Xa0/ D 1. The space Spec R is the corresponding quasi-cone in an affine space.
Setting Xa0 D 0 defines the monomial curve CS, all other fibers are isomorphic to
C n P . In particular, if C is smooth, this construction defines a smoothing of CS.
Then Pinkham establishes the following result.
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Theorem 3.2 ([16, Theorem 13.9]). Let X� ! T � be the equivariant miniversal
deformation in negative degrees of the monomial curve CS for a given semigroup S
and denote by U� the open subset of T � given by the points with smooth fibers. Then
the moduli space MS

g;1 is isomorphic to the quotient MS
g;1 D .U

�/=Gm of U� by the
Gm-action.

The remainder of this subsection is devoted to explicitly describing Pinkham’s
Theorem [16, Theorem 13.9] in the case where S is assumed to be a non-hyperelliptic
symmetric semigroup. We present the construction initiated by Stöhr [20], and subse-
quently developed by Contiero–Stöhr [6] and Contiero–Fontes [4]. This construction
can be viewed as a variant of Hauser’s algorithm for computing the versal deformation
space of a singularity; see [8, 9] and [18].

We start by fixing a numerical symmetric semigroup S D hn0; n1; : : : ; ng�1i of
genus g > 3 satisfying

3 < n1 < g and S ¤ h4; 5i:

These restrictions are also imposed to avoid simple and well-known cases. If n1 D 3
or SD h3;4i, then CS is a plane curve. Additionally, if n1D g, then S is not a complete
intersection, see [2], and the associated moduli is studied in [4].

So, if C is a Gorenstein curve with a smooth point whose associated Weierstrass
semigroup is S, then C can be identified with this image under the canonical embed-
ding in such a way that the Weierstrass point P that realizes S is the point P D .0 W
: : : W 0 W 1/. Hence, by Section 3.2, the canonical ideal I.C/ � kŒXn0 ; : : : ; Xng�1 � is
generated by the 1

2
.g � 2/.g � 3/ quadratic forms

Fsi D XasiXbsi �XasXbs �

s�1X
nD0

csinXanXbn 2 kŒXn0 ; : : : ; Xng�1 �;

where csij are suitable constants in k, the forms F .0/si D XasiXbsi �XasXbs generate
the ideal of the canonical monomial curve C .0/ � Pg�1 defined in (3.6), and each
XajXbj belongs to the fixed base �2 in equation (3.3).

Now let us invert the considerations on the previous paragraph. Let

F
.0/
si D XasiXbsi �XasXbs

be the defining polynomials of the canonical curve C .0/ as in (3.7). Now let us take
their unfolding

Fsi D F
.0/
si �

s�1X
nD0

csinXanXbn 2 kŒ¹csij º�˝ kŒXn0 ; : : : ; Xng�1 �;
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defined in Section 3.3, equation (3.10). We want to determine the constants csin in
order that the intersection of the V.Fsi / in Pg�1 is a canonical Gorenstein curve of
genus g whose Weierstrass semigroup at the smooth point P is S.

Since the coordinates functions xn introduced in Section 3.1, where n 2 S and
n � 2g � 2, are not uniquely determined by their pole divisor nP , we may transform

Xni 7�! Xni C

i�1X
jD0

˛ijXni�j ;

for each i D 1; : : : ; g � 1, and so we can normalize 1
2
g.g � 1/ of the coefficients csin

to be zero, see [20, Proposition 3.1]. Due to these normalizations and the normaliza-
tions of the coefficients csinD 1with nD s, the only freedom left to us is to transform
xni 7! ˛nixni for i D 1; : : : ; g � 1.

The first step to the explicit construction of a compactification of MS
g;1 due to

Contiero–Stöhr is the following lemma.

Lemma 3.3 ([6, Syzygy lemma]). For each of the 1
2
.g � 2/.g � 5/ quadratic bino-

mials F .0/s0i 0 different from F
.0/
niC2g�2;1

, i D 0; : : : ; g � 3, there is a syzygy of the form

X2g�2F
.0/
s0i 0 C

X
nsi

"
.s0i 0/
nsi XnF

.0/
si D 0 (3.12)

where the coefficients "s
0i 0

nsi are integers equal to 1;�1 or 0 and where the sum is taken
over the nongaps n � 2g � 2 and the double indices si with nC s D 2g � 2C s.

The algorithmic construction of the closure of MS
g;1 starts by replacing the initial

binomials F .0/s0i 0 and F .0/si in equation (3.12) by the corresponding unfolded forms Fs0i 0
and Fsi displayed in equation (3.10) of Section 3.3, obtaining a linear combination of
cubic monomials of weight smaller than s0C 2g � 2. By virtue of [6, Lemma 2.4] and
its proof, this linear combination of cubic monomials admits the following decompo-
sition:

X2g�2Fs0i 0 C
X
nsi

"
.s0i 0/
nsi XnFsi D

X
nsi

�
.s0i 0/
nsi XnFsi CRs0i 0 ;

where the sum on the right hand side is taken over the nongaps n � 2g � 2 and the
double indexes si with nC s < s0 C 2g � 2, the coefficients �.s

0i 0/
nsi are constants, and

where Rs0i 0 is a linear combination of cubic monomials of pairwise different weights
smaller than s0 C 2g � 2.

For each nongap m < s0 C 2g � 2, let %s0i 0m be the unique coefficient of Rs0i 0
of weight m. It is a quasi-homogeneous polynomial expression of weight s0 C 2g �
2 �m in the coefficients csin.

All the objects that are required to construct the compactification of MS
g;1 were

introduced above. The main results due to Stöhr and Contiero–Stöhr are the following.
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Theorem 3.4 (Cf. [6, Theorem 2.6]). Let S�N be a numerical symmetric semigroup
of genus g satisfying 3 < n1 < g and S¤ h4; 5i. Then the 1

2
.g � 2/.g � 3/ quadratic

forms Fsi D F
.0/
si �

Ps�1
nD0 csinXanXbn cut out a canonical integral Gorenstein curve

in Pg�1 if and only if the coefficients csin satisfy the quasi-homogeneous equations
%s0i 0mD 0. In this case, the point P D .0 W 0 W � � � W 1/ is a smooth point of the canonical
curve with Weierstrass semigroup S.

Theorem 3.5 (Cf. [6, Theorem 2.7]). Let S�N a symmetric numerical semigroup of
genus g WD #.N n S/ satisfying 3 < n1 < g and S ¤ h4; 5i. The isomorphism classes
of the pointed complete integral Gorenstein curves with Weierstrass semigroup S cor-
respond bijectively to the orbits of the Gm.k/-action

.c; : : : ; csin; : : :/ 7! .� � � ; cs�ncsin; : : :/

on the affine quasi-cone of the vectors whose coordinates are the coefficients csin of
the 1

2
.g � 2/.g � 3/ normalized quadratic forms Fsi that satisfy the quasi-homoge-

neous equations %s0i 0m D 0.

4. The main theorem

Let S be a non-hyperelliptic symmetric semigroup and 0 D n0 < n1 < � � � < ng�1

its canonical system of generators. Let us also take a1 < � � � < ar a minimal sys-
tem of generators of S. Considering the polynomial rings kŒXn0 ; : : : ; Xng�1 � and
kŒXa1 ; : : : ; Xar �, we attach to the variable Xk the degree deg.Xk/ D k and then
deg.X˛

k
/ D ˛ � deg.Xk/. The map

… W kŒXn0 ; : : : ; Xng�1 � �! kŒXa1 ; : : : ; Xar �;
Xn0 7�! 1;

Xni 7�! X˛ni

where X˛ni is the monomial in the variables Xai introduced in the above Section 3.1,
is a graded homomorphism between kŒXn0 ; : : : ;Xng�1 � and kŒXa1 ; : : : ;Xar �. Hence-
forward, the shrinking map stands to this homomorphism ….

4.1. Proof of the main theorem

Let S be a numerical symmetric non-hyperelliptic semigroup of genus g > 1. Then S
is realized as the Weierstrass semigroup of the canonical monomial curve C .0/ at the
point P D .0 W � � � W 0 W 1/. Considering the affine open chart X0 D 1, the parametriza-
tion of C .0/jX0D1 is given by

C .0/jX0D1 D
®
.tn1 ; tn2 ; : : : ; tng�1/I t 2 A1

¯
� Ag�1:
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On the other hand, let a1; : : : ; ar be the minimal system of generators of S and con-
sider the affine monomial curve CS D Spec kŒS�.

Then CS ' C .0/jX0D1 D C .0/ n P because their coordinate rings are both kŒS�.
Since the projectivization of C .0/ n P and CS are obtained by adding a single point
P D .0 W � � � W 0 W 1/ 2 Pg�1 and Q D .0 W � � � W 0 W 1/ 2 P r , respectively, at infinity,
we conclude that the projectivization of this two curves are also isomorphic. Since
we do not lose information on the coefficients of the unfolded quadratic forms that
generate the monomial curve C .0/, we can adapt Stöhr’s construction to provide a
compactification of MS

g;1, using the monomial affine curve CS instead of the canonical
one C .0/. To do this we shrink all the forms that are involved in Stöhr’s construction,
in particular the P -hermitian basis and the unfolded quadratic forms.

Let us fix an algebraic closed field k of arbitrary characteristic. In order to prove
the main theorem, we first shall prove the following theorem.

Theorem 4.1. Let C a non-hyperelliptic Gorenstein curve defined over k and S a
complete intersection numerical semigroup. Then C realizes S at a smooth point P 2
C if and only if there is an embedding of C into P r such that the defining equations
of C n P are given by the unfolding of the r � 1 defining equations of CS � Ar .

Proof. Let C be a complete integral Gorenstein curve and P be a smooth point on C

whose Weierstrass semigroup is equal to S. Let us take the line bundle L D OC .P /

and its associated ring of sections RD
L1
iD0H

0.C ;Li /. Since we are fixing a mini-
mal system of generators for S, the ring R induces an embedding of C D P .R/ in a
weighted projective space, with coordinates Y0; : : : ; Yr with deg Y0 D 0. The space
Spec R is the corresponding quasi-cone in an affine space. Setting Y0 D 0 defines the
monomial curve CS and all other fibers are isomorphic to C n P . In particular, C n P

is obtained by a deformation of CS, as predicted by Pinkham’s construction. Since
every deformation of CS that realizes S at an added point at the infinity is obtained by
unfolding the defining equations of CS, cf. Theorem 3.4, we are done.

Conversely, let D be an affine curve in Ar that is given by the unfold of the regular
sequenceG.0/

kj
2 kŒXa1 ; : : : ; Xar � that generates the ideal of CS, where eachG.0/

kj
is an

isobaric polynomial of degree k. So the ideal of D is given byGkj DG
.0/

kj
C
P
i eiˇi ,

with ˇi 2 �2, where �2 is the shrink P -hermitian basis ofH 0.C .0/;!2/ fixed in (3.2),
and ei 2 k.

Following Stöhr’s construction, a curve is in MS
g;1 if and only if it satisfies some

quasi-homogeneous equations %s0i 0n D 0 that come from suitable syzygies of the gen-
erators F .0/si of the affine monomial curve C .0/, cf. Theorem 3.4. Now, the Syzygy
lemma 3.12 assures the existence of 1

2
.g � 2/.g � 5/ syzygies of the form

Ss0i 0 WD X2g�2F
.0/
s0i 0 C

X
nsi

"
.s0i 0/
nsi XnF

.0/
si D 0:
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Taking the image of theses syzygies under the shrink map …, we get

….Ss0i 0/ D

r�1X
jD1

Ms0i 0jG
.0/

kj
D 0;

where Ms0i 0j 2 kŒXa1 ; : : : ; Xar � are isobaric polynomials of weight s0 � k. Using
the Koszul complex, we are able to show that the relations between the generators
G
.0/

ki
, for i D 1; : : : ; r � 1, must be trivial, because CS is a complete intersection.

Thus, when we exchange G.0/
kj

by the unfold Gkj , the relations %s0i 0m D 0 between
the coefficients given by Theorem 3.4 are trivially satisfied. Then the projectivized
unfolds of the forms that generate D cut out an integral curve in P r with Weierstrass
semigroup S in Q.0 W � � � W 0 W 1/.

Proof of the main theorem. By virtue of the above Theorem 4.1, an integral curve is
in MS

g;1 if and only if it is given by the unfolding of the regular sequence of the
complete intersection monomial curve CS. Then the space MS

g;1 is just determined
by the coefficients of the unfolded forms. The coordinate functions xn, for n 2 S,
were chosen as functions with pole divisors nP , so they are not uniquely determined.
Hence we are able to do the following changes of variables:

Xn 7�! Xn C

n�1X
mD0

dnmXm;

where the coefficients dnm are constant. As there are r minimal generators in S we
can normalize 1

2
r.r C 1/ coefficients with weights determined in the unfolds of the

generator polynomials of the complete intersection affine curve, provided the charac-
teristic of the ground field k is zero or not a prime divisor of any exponent of the
defining equations of CS. After these normalizations, the only change we can make is
to transform xai 7! caixai , i D 1; : : : ; r � 1, for some c 2 Gm.k/ D k�. According
to [20, Appendix] the coefficients of the normalized unfolded polynomials form a
basis for the negatively-graded part of the first cohomology module of the cotangent
complex T1;�.kŒS�/. Hence we conclude that MS

g;1 D P .T1;�.kŒS�/.

4.2. Examples

Example 4.1. We start with a simple example in codimension 2. Given a positive
integer � , consider the semigroup

SD h4; 3C 4�; 6C 4�i D 4N t .3C 4� C 4N/t .6C 4� C 4N/t .9C 8� C 4N/;
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of genus g D 3C 4� and whose Frobenius number is `g D 5C 8� D 2g � 1, so S is
symmetric. Consider the affine monomial curve

CS WD ¹.t
4; t3C4� ; t6C4� /I t 2 kº � A3

and C .0/ � Pg�1 the canonical monomial curve where P D .0 W � � � W 0 W 1/ realizes S.
Let ¹x0; xn1 ; : : : ; xng�1º be a basis for H0.C .0/;O.P //. For short we use

x WD x4; y3 WD x3C4� and y6 WD x6C4� :

Thus a P -hermitian base of H 0.C .0/; !/ D H 0.C .0/;O.4C 8�/P / is given by8̂<̂
:
x0; x; : : : ; x2�C1;

x0y3; xy3; : : : ; x
�y3;

x0y6; xy6; : : : ; x
��1y6;

� � 1:

We can consider y9 WD x9C8� as the product y3y6. Hence the P -hermitian basis for
the bicanonical divisor H 0.C .0/;O.8C 16�// is given by the 3g � 3 elements8̂̂̂̂

<̂
ˆ̂̂:
x0; : : : ; x2C4� ;

x0y3; xy3; : : : ; x
1C3�y3;

x0y6; xy6; : : : ; x
3�y6;

x0y3y6; xy3y6; : : : ; x
2��1y3y6:

Lifting the P -hermitian basis elements, we attach the variables x; y3 and y6 to X; Y3
and Y6 of weights 4; 3C 4� and 6C � , respectively. For short we use

Z4i WD X
i ; ZjC4�C4i WD X

iYj ; Z9C8�C4i WD X
iY3Y6:

As the curve D is a complete intersection, there are two polynomials in kŒX; Y3; Y6�
that vanish in D and generate its ideal. They are

G1 D Y
2
3 � Y6X

� and G2 WD Y
2
6 �X

3C2� :

The unfolds of the above polynomials are

zG1D Y
2
3 � Y6X

�
�

6C8�X
jD1

ajZ6C8��j and zG2 WD Y 26 �X
3C2�
�

12C8�X
jDk

bkZ12C8��k;

where the sums vary between the positive integers j and k such that 6C 8� � j 2 S
and 12C 8� � k 2 S. Doing the variable changes of the form

X 7�! X C ˛4;

Y3 7�! Y3 C ˇ3C4.��1/X C ˇ3C4� ;

Y6 7�! Y6 C 
3Y3 C 
2C4�X C 
6C4�
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we can normalize 6 coefficients of the unfolded forms to zero, provided that the
characteristic of k is zero or an odd prime that not divides � . The unfold of the
polynomials G1 and G2 have 3C 4� and 9C 3� coefficients, respectively. Then the
parameter space depends on 6C 7� coefficients, i.e.,

MS
g;1 ' P5C7� :

In the particular case � D 1, we have S D h4; 7; 10i and g D 7. The canonical ideal
of the monomial curve C .0/ is generated by 10 quadratic forms, namely

F
.0/
8;1 D X

2
4 �X0X8; F

.0/
11;1 D X4X7 �X0X11; F

.0/
12;1 D X4X8 �X0X12;

F
.0/
14;1 D X

2
7 �X4X10; F

.0/
15;1 D X7X8 �X4X11; F

.0/
16;1 D X

2
8 �X4X12;

F
.0/
18;1 D X8X10 �X7X11; F

.0/
19;1 D X8X11 �X7X12; F

.0/
20;1 D X

2
10 �X8X12;

F
.0/
22;1 D X

2
11 �X10X12:

The only syzygy coming from the Syzygy lemma 3.3 is

X12F
.0/
14;1 �X10F

.0/
16;1 CX7F

.0/
19;1 �X8F

.0/
18;1 D 0:

Applying the shrinking map, i.e., considering this syzygy in kŒX4; X7; X10�, we have
the trivial syzygy

X34 .X
2
7 �X4X10/ �X

3
4 .X

2
7 �X4X10/ D X

3
4F

.0/
14;1 �X

3
4F

.0/
14;1 D 0:

Thus, as there are no non-trivial syzygies, the space of parameters depends on 13
coefficients, and

MS
g;1 ' P12:

Example 4.2. Let us now consider an example in codimension 4. For each � > 0,
consider the semigroup S D h16; 1C 16�; 2C 16�; 4C 16�; 8C 16�i, whose genus
is 32� and Frobenius number `g D 64� � 1. The affine monomial curve

D D ¹.t16; t1C16� ; t2C16� ; t4C16� ; t8C16� /I t 2 kº � A5

is a complete intersection in A4, its ideal is generated by

G1 D Y
2
1 � Y2X

� ; G2 D Y
2
2 � Y4X

� ; G3 D Y
2
4 � Y8X

� ; G4 D Y
2
8 �X

3� ;

where X WD X16, Y1 WD Y1C16� , Y2 WD Y2C16� , Y4 WD Y4C16� , and Y5 WD Y5C16� .
Unfolding the defining polynomials of D we get

zG1 D Y
2
1 � Y2X

�
�

2C32�X
jD1

ajZ2C32��j ; zG2 D Y
2
2 � Y4X

�
�

4C32�X
jDk

bkZ4C32��k;

zG3 D Y
2
4 � Y8X

�
�

8C32�X
jDu

cuZ8C32��u; zG4 D Y
2
8 �X

3�
�

16C32�X
jDv

dvZ16C32��v;
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with

Z16i WD X
i ; Z1C16�C8i D X

iY1;

Z2C16�C8i D X
iY2; Z3C32�C8i D X

iY1Y2;

Z4C16�C8i D X
iY4; Z5C32�C8i D X

iY1Y4;

Z6C32�C8i D X
iY2Y4; Z7C48�C8i D X

iY1Y2Y4;

Z8C16�C8i D X
iY8; Z9C32�C8i D X

iY1Y8;

Z10C32�C8i D X
iY2Y8; Z11C48�C8i D X

iY1Y2Y8;

Z12C32�C8i D X
iY4Y8; Z13C48�C8i D X

iY1Y4Y8;

Z14C48�C8i D X
iY2Y4Y8; Z15C64�C8i D X

iY1Y2Y4Y8:

We can normalize 15 coefficients from the unfolding polynomials using

X 7�! X C ˛16;

Y1 7�! Y1 C ˇ�15C16�X C ˇ1C16� ;

Y2 7�! Y2 C 
1Y1 C 
�14C16�X C 
2C16� ;

Y4 7�! Y4 C �2Y2 C d3Y1 C ��12C16�X C �4C16� ;

Y8 7�! Y8 C �4Y4 C �6Y2 C �7Y1 C ��8C16�X C �8C16� :

Hence, counting coefficients we can conclude that MS
g;1 ' P8C24� .

The GAP System’s semigroup package simplifies finding complete intersection
numerical semigroups, like SDh32;33;34;36;40;48i of genus gD 80. Following the
procedure presented here, verifying MS

g;1 ' P53 becomes straightforward. For any
such semigroup S, a family like S D h32; 1C 32�; 2C 32�; 4C 32�; 8C 32�; 16C
32�i (� � 1) can be considered. Our procedure readily adapts to any family member,
as shown in Examples 4.1 and 4.2.
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