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On the Cauchy problem for logarithmic fractional
Schrödinger equation

Rémi Carles and Fangyuan Dong

Abstract. We consider the fractional Schrödinger equation with a logarithmic nonlinearity,
when the power of the Laplacian is between zero and one. We prove global existence results in
three different functional spaces: the Sobolev space corresponding to the quadratic form domain
of the fractional Laplacian, the energy space, and a space contained in the operator domain of
the fractional Laplacian. For this last case, a finite momentum assumption is made, and the
key step consists in estimating the Lie commutator between the fractional Laplacian and the
multiplication by a monomial.

1. Introduction

We consider the logarithmic Schrödinger equation

i@tu � .��/
su D � log.juj2/u; ujtD0 D u0; (1.1)

where 0 < s < 1, uD u.t;x/ represents a complex-valued function defined on .t; x/ 2
R � Rd , with d � 1. The fractional Laplacian .��/s is defined through the Fourier
transform as follows:

F Œ.��/su�.�/ D j�j2sF u.�/;

where the Fourier transform is given by

F u.�/ D
1

.2�/d=2

Z
Rd
u.x/e�i��xdx:

The fractional Laplacian .��/s is a self-adjoint operator acting on the space
L2.Rd /, characterized by a quadratic form domain H s.Rd / and an operator domain
H 2s.Rd /. The nonlocal operator .��/s serves as the infinitesimal generators in the
context of Lévy stable diffusion processes, as outlined in [2]. Fractional derivatives
of the Laplacian have applications in numerous equations in mathematical physics
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and related disciplines, as proposed in [28,29] in the case of linear Schrödinger equa-
tions; see also [2, 16, 22] and the associated references. Recently, there has been a
strong focus on studying mathematical problems related to the fractional Laplacian
purely from a mathematical perspective. Regarding specifically fractional nonlinear
Schrödinger equations, important progress has been made in, e.g., [4,6,12,13,18–21].

The problem (1.1) does not seem to have physical motivations (so far), and was
introduced in [15] as a generalization of the case s D 1, introduced in [5], and pro-
posed in different physical contexts since (see, e.g., [25, 33]). Note also that the
logarithmic nonlinearity may be obtained as the limit of a homogeneous nonlinear-
ity �juj2�u when � goes to zero, at least when ground states are considered (case
� < 0; see [31] for s D 1, [1] in the fractional case).

In [3], the author addresses the nonlinear fractional logarithmic Schrödinger equa-
tion (1.1) with � D �1 and d � 2, employing a compactness method to establish
a unique global solution for the associated Cauchy problem within a suitable func-
tional framework, inspired by [11] (for the logarithmic nonlinearity) and [13] (for the
fractional Laplacian). In [32], the authors investigate the existence of a global weak
solution to the problem (1.1) in the case of �D�1, when the space variable x belongs
to some smooth bounded domain, by using a combination of potential wells theory
and the Galerkin method. In this paper, we complement the approach from [3, 32] by
adapting the strategy employed in [24] in the case of the standard Laplacian, s D 1.

Formally, (1.1) enjoys the conservations of mass, momentum, and energy,

M.u.t// D ku.t/k2
L2.Rd /

;

J.u.t// D Im
Z

Rd
xu.t; x/ru.t; x/dx;

E.u.t// D
1

2
k.��/s=2u.t/k2

L2.Rd /
C
�

2

Z
Rd
ju.t; x/j2.log ju.t; x/j2 � 1/dx:

(1.2)

The energy is well defined in the subset of H s.Rd /,

W s
1 WD

®
u 2 H s.Rd /; x 7! ju.x/j2 log ju.x/j2 2 L1.Rd /

¯
:

When s D 1, Hayashi and Ozawa [24] revisit the Cauchy problem for the logarithmic
Schrödinger equation, constructing strong solutions in both H 1 and W1 D W 1

1 . This
approach deliberately avoids relying on compactness arguments, demonstrating the
convergence of a sequence of approximate solutions in a complete function space.
The authors in [24] also address the existence in the H 2-energy space, as discussed
below.
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The main contributions of this paper can be summarized as follows:

(1) Construction of H s strong solutions, without relying on the conservation of
the energy.

(2) Construction of solutions in the energy space W s
1 .

(3) The higher H 2s regularity is established by assuming some further spatial
decay of the initial data.

In all cases, no sign assumption is made on � 2 R.

Theorem 1.1. Let � 2 R and 0 < s < 1. For any ' 2 H s.Rd /, there exists a unique
solution u 2 C.R;H s.Rd // to (1.1) in the sense of

i@tu � .��/
su D � log.juj2/u in H�s.�/ (1.3)

for all bounded open sets � � Rd and all t 2 R, and with ujtD0 D '. If in addition
we assume ' 2 W s

1 , this H s-solution satisfies u 2 .C \ L1/.R; W s
1 / if � < 0 and

u 2 C.R; W s
1 / if � > 0. Moreover, the W s

1 -solution u satisfies equation (1.3) in the
sense of .W s

1 /
�, where .W s

1 /
� is the dual space of W s

1 . Finally, if ' 2 H 1.Rd /, then
the solution u 2 C.R;H s.Rd // to (1.1) satisfies in addition u 2 C.R;H 1.Rd //.

The next result addresses on the construction of strong solutions in W s
2 , where

W s
2 WD

®
u 2 H 2s.Rd /; x 7! u.x/ log ju.x/j2 2 L2.Rd /

¯
;

and this space is the natural counterpart of the space W2 of the H 2-energy space
introduced in [24] for the case s D 1. Note that considering this space is interesting
especially when s > 1=2, since we have seen in Theorem 1.1 that the H 1 regularity
is propagated, and H 1.Rd / � H 2s.Rd / when s � 1=2.

In the fractional case, it seems delicate to adapt the strategy introduced in [24], as
some algebraic structure is lost. More precisely, the strategy in [24] starts by showing
that @tu 2 L1loc.R;L

2/, to eventually conclude that�u 2 L1loc.R;L
2/. At this level of

generality, this is the standard approach, as presented in, e.g., [10], but the logarithmic
nonlinearity actually requires some special care. The above line of reasoning needs,
as an intermediary step, to know that u log juj2 2 L1loc.R; L

2/, which is by no means
obvious, due to the region ¹juj < 1º where the nonlinearity is morally sublinear. This
difficulty is overcome in [24] by a beautiful algebraic identity ([24, Lemma 3.3]),
whose derivation involves an integration by parts in the term

Re.�u; u log.juj C "//L2 D �Re
�
xuru;

rjuj

juj C "

�
L2
C .jruj2; log.juj C "//L2 :

In the present case, we would face

Re..��/su; u log.juj C "//L2 ;
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and the integration by parts would require to control a fractional derivative of
u log.juj C "/, at least in the case s < 1=2 (for s > 1=2, one could consider the gra-
dient again).

To overcome this issue, we adopt the approach considered in [7] for the case sD 1,
and rely on some finite momentum assumption. For 0 < ˛ � 1, we have

F .H˛/ D
®
u 2 L2.Rd /; x 7! hxi˛u.x/ 2 L2.Rd /

¯
;

where hxi WD
p
1C jxj2, and this space is equipped with the norm

kukF .H˛/ WD khxi
˛u.x/kL2.Rd /:

Denote, for ˛ > 0, X2s˛ WD H
2s \ F .H˛/: for any ˛ > 0, X2s˛ � W

s
2 , as can be

seen from the estimate, valid for any ı 2 .0; 1/,ˇ̌
u log.juj2/

ˇ̌
. juj1�ı C juj1Cı :

Theorem 1.2. Let � 2 R, 0 < s < 1. Consider 0 < ˛ < 2s with ˛ � 1. For any
' 2 X2s˛ D H 2s \ F .H˛/, there exists a unique solution u 2 Cw \ L1loc.R; X

2s
˛ /

to (1.1) in the sense of

i@tu � .��/
su D � log.juj2/u in L2.�/; (1.4)

for all bounded open sets � � Rd and a.e. t 2 R, with ujtD0 D '. Moreover, when
� < 0; u 2 C.R; X2s˛ / and (1.4) holds in L2.Rd / and for all t 2 R.

The new difficulty in proving the above result, compared to the case s D 1, lies in
the fact that the Lie bracket Œ.��/s; hxi˛� requires some extra care; see Lemma 2.3.

We underline the fact that we do not know whether the H � regularity is propa-
gated by the flow of (1.1), when � D 2s for s > 1=2, like in the case of the regular
Laplacian s D 1.

Notations.

•
R
f is employed in place of

R
Rd f .x/dx.

• The inner product in L2 is denoted by

.f; g/L2 D

Z
Rd
f .x/g.x/dx D

Z
f xg:

• Let C.I; X/ (resp. Cw.I; X/) be the space strongly (resp. weakly) continuous
functions from interval I .� R/ to X .

• Abbreviated notation: for T > 0, we write

CT .X/ D C.Œ�T; T �; X/; L1T .X/ D L
1..�T; T /;X/:

• A . B represents the inequality A � CB with some constant C > 0.
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Content. The rest of the paper is organized as follows. In Section 2, we collect lem-
mas which are of constant use in this paper. Section 3 is dedicated to the study of the
Cauchy problem for (1.1) in bothH s andW 1

s , proving Theorem 1.1. In Section 4, we
consider higher regularity and prove Theorem 1.2.

2. Useful lemmas

The following lemma is a generalization of the inequality proven initially by Cazenave
and Haraux [11] in the case " D � D 0.

Lemma 2.1 ([24, Lemma A.1]). For all u; v 2 C and "; � � 0, we haveˇ̌
Im.u log.juj C "/ � v log.jvj C �//.xu � xv/

ˇ̌
� ju � vj2 C j" � �jju � vj:

We will also use several times the fractional Leibniz rule. We state a simplified
version of a result from [30], by using the fact that BMO contains L1, and consider-
ing only the L2 setting.

Lemma 2.2 ([30, Corollary 1.4]). For � > 0, let A� be a differential operator such
that its symbol cA� .�/ is homogeneous of degree � and cA� .�/ 2 C1.Sd�1/.
• If 0 < � < 1,

kA� .fg/ � gA�f kL2 . kf kL2k.��/�=2gkL1 :

• If 1 � � < 2,

kA� .fg/ � gA�f � rg � A�;rf kL2 . kf kL2k.��/�=2gkL1

where 1A�;rg.�/ D �ir�.cA� .�//yg.�/.
We recall that the characterization of theH s norm, for 0 < s < 1, can be expressed

as follows (see, e.g., [17]):

kf k2H s D kf k
2
L2
C

“
Rd�Rd

jf .x/ � f .y/j2

jx � yjdC2s
dydx

D kf k2
L2
C

“
Rd�Rd

jf .x C y/ � f .x/j2

jyjdC2s
dydx:

We also have, for 0 < s < 1 and f 2 �.Rd / (see, e.g., [17]),

.��/sf .x/ D c.d; s/

“
Rd�Rd

f .x C y/C f .x � y/ � 2f .x/

jyjdC2s
dydx; (2.1)

for some constant c.d; s/ whose exact value is irrelevant here.
The following lemma will be crucial in the proof of Theorem 1.2.
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Lemma 2.3. Let 0 < s < 1. If 0 < ˛ < 2s and ˛ � 1, then the commutator
Œ.��/s; hxi˛� is continuous from H s.Rd / to L2.Rd /.

Proof. The proof relies on the fractional Leibniz rule stated in Lemma 2.2, withA� D
.��/s , hence � D 2s. Fix f 2 C1c .R

d /, and let g.x/ D hxi˛ .
We first show that under the assumptions of the lemma, .��/sg 2 L1.Rd /, by

using the characterization (2.1). In the region ¹jyj � 1º, we write, since 0 < ˛ � 1,

jhx ˙ yi˛ � hxi˛j � jhx ˙ yi � hxij˛ . jyj˛;

hence ˇ̌̌̌Z
jyj�1

hx C yi˛ C hx � yi˛ � 2hxi˛

jyjdC2s
dy

ˇ̌̌̌
.
Z
jyj�1

jyj˛

jyjdC2s
dy <1;

provided that ˛ < 2s. In the ball ¹jyj < 1º, Taylor’s formula yields

hx C yi˛ C hx � yi˛ � 2hxi˛ D hr2g.x/y; yi CO.jyj3/;

where the remainder is uniform in x 2 Rd , as the third order derivatives of g are
bounded. Also, the Hessian of g is bounded since jr2g.x/j . hxi˛�2, andˇ̌̌̌Z

jyj�1

hx C yi˛ C hx � yi˛ � 2hxi˛

jyjdC2s
dy

ˇ̌̌̌
.
Z
jyj�1

jyj2

jyjdC2s
dy <1;

since s < 1.

First case: 0 < s < 1=2. In view of the first case in Lemma 2.2,

kŒ.��/s; hxi˛�f kL2 . kf kL2k.��/sgkL1 . kf kL2 ;

and Œ.��/s; hxi˛� is continuous from L2.Rd / to L2.Rd /.

Second case: 1=2 � s < 1. In view of the second case in Lemma 2.2,

kŒ.��/s; hxi˛�f kL2 . krg � A2s;rf kL2 C kf kL2k.��/sgkL1 :

In view of the definition of A2s;r , with A2s D .��/s ,

kA2s;rf kL2 . kf k PH2s�1 . kf kH s ;

since 0 < s < 1. Recalling that since ˛ � 1, rg 2 L1, the lemma is proved.

3. The Cauchy problem in H s and the energy space

In this section, we prove Theorem 1.1, by resuming the strategy of [24], which re-
quires very few adaptations to treat this fractional case (essentially, the fractional
Leibniz rule).
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3.1. Approximate problems

For " > 0, we consider the approximate equation

i@tu" � .��/
su" D 2�u" log.ju"j C "/; u".0; x/ D '.x/: (3.1)

We set
g.u/ D 2u log juj; g".u/ D 2u log.juj C "/:

For � � 0 we haveZ �

0

g".�/d� D
1

2
�2 log..� C "/2/ �

1

2

Z �

0

2�2

� C "
d�:

We define G".u/ by

G".u/ D
1

2

Z
juj2 log..juj C "/2/ �

1

2

Z
�".juj/; for u 2 H s.Rd /,

where

�".�/ WD

Z �

0

2�2

� C "
d�; for � � 0:

We define E".u/ by

E".u/ D
1

2

Z
j.��/s=2uj2 C �G".u/

D
1

2

Z
j.��/s=2uj2 C

�

2

Z
juj2 log..juj C "/2/ �

�

2

Z
�".juj/: (3.2)

Lemma 3.1. Let ' 2 H s.Rd / and " > 0. Then (3.1) possesses a unique solution

u" 2 C.R;H
s.Rd // \ C 1.R;H�s.Rd //:

Moreover, the mass and energy are conserved: for all t 2 R,

ku".t/k
2
L2
D k'k2

L2
; E".u".t// D E".'/:

Proof. Unlike in the case of the regular Laplacian, s D 1, it seems delicate to invoke
Strichartz estimates independently of the space dimension d in order to solve (3.1) in
H s , since a loss of regularity is present when 0 < s < 1, see [14], and [23, 26]. We
rather adopt the approach of [13], which in turn resumes the arguments from [10].
A key step is to check that, for a given T > 0, (3.1) has at least one (weak) solution
u" 2 L

1
T H

s \W
1;1
T H�s . By interpolation, such a solution belongs to CTL2, and if

u"; v" are two such solutions, u" � v" solves

.i@t � .��/
s/.u" � v"/ D �.u" log.ju"j C "/ � v" log.jv"j C "//:
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We then proceed with the usual argument for L2 estimates in Schrödinger equations:
multiply by xu" � xv", integrate over Rd , and take the imaginary part. The term involv-
ing the fractional Laplacian vanishes by self-adjointness, and the nonlinear term is
controlled thanks to Lemma 2.1 (with � D "), so we get

d

dt
ku" � v"k

2
L2

. ku" � v"k2L2 ;

hence u"� v" by Gronwall’s lemma, since ku".t/� v".t/kL2 is continuous, and equal
to 0 at t D 0. The existence of such a weak solution is given by [10, Theorem 3.3.5],
which is readily adapted to the case of the fractional Laplacian, and since we note that
for fixed " > 0, there exists a function C ".�/ such that if kukH s ; kvkH s �M , then

kg".u/ � g".v/kH�s � kg".u/ � g".v/kL2 � C
".M/ku � vkH s :

With the above uniqueness property, we can resume the proof of [10, Theorem 3.3.9]
and [10, Theorem 3.4.1] for the globalization, since, as we have, for every ı > 0,ˇ̌

juj2 log.juj C "/ � �".juj/
ˇ̌
� C";ı juj

2Cı
C juj;

Gagliardo–Nirenberg and Young inequalities yield

j�G".u/j �
1

4
kuk2

PH s
C C.kukL2/;

so we obtain the lemma.

3.2. Construction of weak H s solutions

We initially establish a uniform estimate for approximate solutions within the H s

space.

Lemma 3.2. Let 0 < ˛ � 1 and ' 2 H s . For all t 2 R we have

k.��/s=2u".t/k
2
L2
� e4j�jjt jk.��/s=2'k2

L2
: (3.3)

Proof. We resume the energy estimate from [8]: in view of the conservation of the
L2-norm,

d

dt
ku".t/k

2
H s.Rd /

D 2Re
“

Rd�Rd
.u".t; x C y/ � u".t; x//@t .u".t; x C y/ � u".t; x//

dxdy

jyjdC2˛

D �2 Im
“

Rd�Rd
.u".t; x C y/ � u".t; x//

� .��/s.u".t; x C y/ � u".t; x//
dxdy

jyjdC2˛
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� 4� Im
“

Rd�Rd
.u".t; x C y/ � u".t; x//

� .g".u".t; x C y// � g".u".t; x///
dxdy

jyjdC2˛
:

Here, the first term on the right-hand side of the equation vanishes, since .��/s is self-
adjoint, and so the imaginary part of the integral in x is zero. By applying Lemma 2.1
with � D ", we obtain

d

dt
ku".t/k

2
H s.Rd /

� 4j�j

“
Rd�Rd

ˇ̌
ImŒ.u".t; x C y/ � u".t; x//

� .g".u".t; x C y// � g".u".t; x///�
ˇ̌ dxdy
jyjdC2˛

� 4j�j

“
Rd�Rd

ju".t; x C y/ � u".t; x/j
2 dxdy

jyjdC2˛
� 4j�jku".t/k

2
H s.Rd /

:

Gronwall’s lemma then yields

ku".t/k
2
H s.Rd /

� e4j�t jk'k2
H s.Rd /

; for all t 2 R;

hence the lemma.

It follows from Lemma 3.1 and (3.3) that for any T > 0 we have

MT WD sup
0<"<1

ku"kL1
T
.H s/ � C.T; k'kH s /: (3.4)

Next we prove that ¹u"º0<"<1 forms a Cauchy sequence in CT .L2loc.R
d // as " # 0 for

any T > 0. Take a function � 2 C1c .R
d / satisfying

�.x/ D

´
1 if jxj � 1;

0 if jxj � 2;
0 � �.x/ � 1 for all x 2 Rd :

For R > 0 we set �R WD �.x=R/. For "; � 2 .0; 1/, utilizing (3.1), (2.1), and (3.4), a
direct computation indicates that

d

dt
k�R.u" � u�/k

2
L2

D 2 Im.i�2R@t .u" � u�/; u" � u�/

D 2 Im.�2R.��/
s.u" � u�/; u" � u�/

C 4� Im.�2R.u" log.ju"j C "/ � u� log.ju�j C �//; u" � u�/:
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The first term on the right-hand side is estimated thanks to the fractional Leibniz rule
recalled in (the first case of) Lemma 2.2, since

Im..��/s=2.u" � u�/; �2R.��/
s=2.u" � u�// D 0;

by ˇ̌
Im..��/s=2.u" � u�/; .��/s=2.�2R.u" � u�///

ˇ̌
. ku" � u�k PH sku" � u�kL2k.��/

s=2.�2R/kL1 :

The estimate k.��/s=2�2RkL1 . 1=Rs follows by homogeneity (using, e.g., Fourier
transform), and thus

d

dt
k�R.u" � u�/k

2
L2
�
C

Rs
ku" � u�k PH sku" � u�kL2

C 4j�j.k�R.u" � u�/k
2
L2
C j" � �jk�2R.u" � u�/kL1/:

Gronwall’s lemma implies

k�R.u" � u�/.t/k
2
L2
� e4j�jT

�
C.MT /

Rs
C j" � �jjB2Rj

1=2
k'kL2

�
; (3.5)

for all t 2 Œ�T; T �, where we have used

k�2R.u" � u�/kL1 � ku" � u�kL2.B2R/ � 2jB2Rj
1=2
k'kL2 :

We now fix R0 > 0 and take R 2 .R0;1/ as a parameter. It follows from (3.5) that

ku" � u�k
2
CT .L2.BR0 //

� k�R.u" � u�/k
2
CT .L2/

� C.T; k'kH s /

�
1

Rs
C j" � �jjB2Rj

1=2

�
;

which yields

lim sup
";�#0

ku" � u�k
2
CT .L2.BR0 //

�
C.T; k'kH s /

Rs
����!
R!1

0:

AsR0 > 0 is arbitrary, we conclude that the sequence ¹u"º0<"<1 constitutes a Cauchy
sequence in CT .L2loc.R

d //. When combining this with Lemma 3.1, this entails that
there exists a function u 2 L1.R; L2.Rd // such that

u" ! u in CT .L2loc.R
d // as " # 0; (3.6)

for all T > 0.
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Lemma 3.3. We have u 2 L1loc.R;H
s.Rd // and

u".t/ * u.t/ in H s.Rd /; for all t 2 R: (3.7)

Proof. First it follows from (3.6) that

u".t/ * u.t/ in L2.Rd /; for all t 2 R. (3.8)

To prove u 2 L1loc.R;H
s.Rd //, we use the characterization of H s functions by

duality. For any  2 C1c .R
d / and t 2 Œ�T; T � we obtain from (3.4) thatˇ̌̌̌Z

u".t/.��/
s=2 

ˇ̌̌̌
D

ˇ̌̌̌Z
.��/s=2u".t/ 

ˇ̌̌̌
� ku".t/k PH sk kL2 �MT k kL2 :

Then it follows from (3.8) thatˇ̌̌̌Z
u.t/.��/s=2 

ˇ̌̌̌
�MT k kL2 for all t 2 Œ�T; T �:

We infer that for all t 2 Œ�T; T �,

u.t/ 2 H s.Rd / and k.��/s=2u.t/kL2 �MT ;

hence u 2 L1loc.R;H
s.Rd //. Also, in view of (3.8),Z
.��/s=2u".t/ !

Z
.��/s=2u.t/ ;

for any  2 C1c .R
d / and t 2 R. Using (3.4) and a density argument, we deduce that

.��/s=2u".t/ * .��/s=2u.t/ in L2.Rd /; for all t 2 R;

hence the lemma.

Next, we prove the convergence of the nonlinear term.

Lemma 3.4. For all t 2 R we have

g".u".t//! g.u.t// in L2loc.R
d / as " # 0:

Proof. We show that for any � �� Rd and t 2 R,

u".t/ log.ju".t/j C "/! u.t/ log ju.t/j in L2.�/ as " # 0.

In view of [24, Lemma A.2], we know that for ˛ 2 .0; 1/, there exists C.˛/ > 0 such
that for all u; v 2 C, " 2 .0; 1/ˇ̌
v log.jvj C "/ � u log juj

ˇ̌
� "C ju � vj C C.˛/

� .1C juj1�˛ logC juj C jvj1�˛ logC jvj/ju � vj˛;
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where logC x WD max.log x; 0/. Hence, for any ı > 0 small, there exists C.ı/ > 0

such thatˇ̌
u" log.ju"j C "/ � u logjuj

ˇ̌
� "C ju" � uj C C.˛/

� .1C ju"j
1=2Cı

C juj1=2Cı/ju" � uj
1=2:

Fixing ı > 0 sufficiently small so that H s.Rd / � L2C4ı.Rd /, we have

kju"j
1=2Cı

ju" � uj
1=2
k
2
L2.�/

D

Z
�

ju"j
1C2ı
ju" � uj � ku"k

1C2ı

L2C4ı
ku" � ukL2.�/

. ku"k1C2ıH s ku" � ukL2.�/:

Therefore, the results follow from (3.4) and (3.6).

From (3.1) it follows that for every ' 2 C1c .R
d / and every � 2 C 1c .R/,Z

R
.iu";  /L2�

0.t/dt

D �

Z
R
hi@tu";  iH�s ;H s�.t/dt

D �

Z
R
h.��/su" C 2�u" log.ju"j C "/;  iH�s ;H s�.t/dt

D �

Z
R
¹..��/s=2u"; .��/

s=2 /L2 C .�g".u"/;  /L2º�.t/dt:

From (3.7), u".t/ * u.t/ in H s.Rd /. In view of Lemma 3.4, taking the limit " # 0
yieldsZ

R
.iu;  /L2�

0.t/dt D �

Z
R
¹..��/s=2u; .��/s=2 /L2 C .�g.u/;  /L2º�.t/dt:

It can be easily verified for any � �� Rd ,

u 2 L1loc.R;H
s.Rd // \W s;1

loc .R;H�s.�//

and
i@tu � .��/

su D �g.u/ in H�s.�/; (3.9)

for almost all t 2 R.

3.3. Uniqueness and regularity

Following [11, Lemme 2.2.1], we have the next lemma.

Lemma 3.5. Assume that, for some T > 0, u; v 2 L1T .H
s.Rd // solve (1.1) in the

distribution sense. Then u D v.
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Proof. We set
M WD max¹kukL1

T
.H s/; kvkL1

T
.H s/º:

As mentioned above, u; v satisfy the equation in the sense of (3.9). Resuming the cut-
off function �R, and the computations from Section 3.2 (with u" replaced by u and
u� replaced by v), Gronwall’s lemma yields, like for (3.5) (with now " D � D 0),

k�R.u� v/.t/k
2
L2
� e4j�jT

�
k�R.u.0/� v.0//k

2
L2
C
C.M/

Rs
T

�
for all t 2 Œ�T;T �:

By Fatou’s Lemma,

k.u � v/.t/k2
L2
� lim inf

R!1
k�R.u � v/.t/k

2
L2
� 0;

for all t 2 Œ�T; T �. Therefore, u D v on Œ�T; T �.

Continuity in time and strong L2 convergence are established like in the proof of
[24, Lemma 2.10].

Lemma 3.6. We have u 2 Cw.R;H s.Rd // \ C.R; L2.Rd // and

u".t/! u.t/ in L2.Rd /:

Proof. First we note that u 2 Cw.R;H s.Rd //. Indeed, this easily follows from Lem-
ma 3.3 and u 2 C.R; L2loc.R

d //. Next, we obtain from Lemma 3.1 and (3.8) that

ku.t/k2
L2
� lim inf

"!0
ku".t/k

2
L2
D k'k2

L2
for all t 2 R:

Uniqueness of solutions yields that

ku.t/k2
L2
D k'k2

L2
for all t 2 R: (3.10)

As u 2 Cw.R; L2.Rd //, we deduce that u 2 C.R; L2.Rd //. Since no mass is lost in
the weak convergence (3.8), the convergence is strong in L2.

Lemma 3.7. We have u 2 C.R;H s.Rd //.

Proof. We just need to show the continuity t 7! u.t/ 2 H s.Rd / at t D 0. It follows
from (3.3), (3.7), and the weak lower semicontinuity of the norm that

ku.t/k2
PH s
� e4j�jjt jk'k2

PH s
:

Passing to the limit as t ! 0 we have

lim sup
t!0

ku.t/k2
PH s
� k'k2

PH s
:
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On the other hand, it follows from the weak continuity t 7! u.t/ 2 H s.Rd / at t D 0
that

k'k2
PH s
� lim inf

t!0
ku.t/k2

PH s
:

So we obtain
lim
t!0
ku.t/k2

PH s
D k'k2

PH s
:

Therefore, the weak convergence in (3.7) is actually strong.

3.4. Construction of solutions in W s
1

We now assume that ' 2 W s
1 � H

s.Rd /. From the dominated convergence theorem
we have

E".'/! E.'/ as " # 0;

recalling that E".'/ and E.'/ are defined in (3.2) and (1.2), respectively. Let � 2
C 1c .C;R/ satisfying

�.z/ D

´
1 if jzj � 1=4;

0 if jzj � 1=2;
0 � �.z/ � 1 for z 2 C;

and set, for " > 0,

F1".u/ D �.u/juj
2 log..juj C "/2/; F2".u/ D .1 � �.u//juj

2 log..juj C "/2/;

F1.u/ D �.u/juj
2 log.juj2/; F2.u/ D .1 � �.u//juj

2 log.juj2/:

In the subsequent discussion, we confine the range of " to .0; 1=2/. The energy
expressed in equation (3.1) is denoted as

E".u/ D
1

2

Z
j.��/s=2uj2 C

�

2

Z
F1".u/C

�

2

Z
F2".u/ �

�

2

Z
�".juj/:

Taking ı > 0 sufficiently small,Z
jF2.u/j .

Z
juj2Cı . .kuk

1��

L2
kuk

�

PH s
/2Cı ; � D

d

s

�
1

2
�

1

2C ı

�
2 .0; 1/:

(3.11)
In particular,

for u 2 H s.Rd /; u 2 W s
1 ”

Z
jF1.u/j <1:

Lemma 3.8. For all t 2 R we have, as "! 0,Z
�".ju".t/j/!

Z
ju.t/j2;

Z
F2".u".t//!

Z
F2.u.t//:
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The proof of this lemma is found in [24, Lemma 2.13], and relies on the observa-
tion that for any ı 2 .0; 1/ there exists C.ı/ > 0 such that

jF2".z/ � F2.w/j � C.ı/.jzj
1Cı
C jwj1Cı/jz � wj for all z; w 2 C:

Proposition 3.9. Let � < 0. Then, u 2 .C \ L1/.R; W s
1 / and E.u.t// D E.'/ for

all t 2 R.

Proof. For " 2 .0; 1=2/, we have F1".u/ � 0, and we can rewrite the first two terms
of E".u/ as

1

2

Z
j.��/s=2uj2 C

�

2

Z
F1".u/ D

1

2

Z
j.��/s=2uj2 C

j�j

2

Z
jF1".u/j:

The weak lower semicontinuity of the norm, Fatou’s lemma (for the second term),
and Lemma 3.8 imply

1

2

Z
j.��/s=2u.t/j2 C

j�j

2

Z
jF1.u.t//j

� lim inf
"!0

�
E".u".t// �

�

2

Z
F2".u".t//C

�

2

Z
�".u".t//

�
� E.'/ �

�

2

Z
F2.u.t//C

�

2

Z
ju.t/j2;

for all t 2 R. It implies that

u.t/ 2 W s
1 ; E.u.t// � E.'/; for all t 2 R:

Invoking Lemma 3.6, we obtain that the conservation of the energy

E.u.t// D E.'/; for all t 2 R: (3.12)

From inequality (3.11) with .2C ı/� < 2, and the identity (3.10) we getZ
j.��/s=2u.t/j2 C

Z
jF1.u.t//j � C.E.'/; k'kL2/;

for all t 2 R. Therefore we deduce that

u 2 L1.R;H s.Rd // and t 7!

Z
ju.t/j2 log.ju.t/j2/ 2 L1.R/;

and thus u 2 L1.R; W s
1 /. Moreover, from (3.12) and Lemma (3.7), we know that

t 7!

Z
ju.t/j2 log.ju.t/j2/ 2 C.R/” u 2 C.R; W s

1 /;

which completes the proof.
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Proposition 3.10. Let � > 0. Then, u 2 C.R; W s
1 /.

Proof. Step 1. We show that u 2 L1loc.R; W
s
1 /. It follows from (3.2) and (3.12) that

for any T > 0 and t 2 Œ�T; T �,

j�j

2

Z
jF1".u".t//j D �

�

2

Z
F1".u".t//

D �E".u".t//C
1

2

Z
j.��/s=2u".t/j

2

C
�

2

�Z
F2".u".t// �

Z
�".ju".t/j/

�
:

Fatou’s Lemma and (3.4) imply

j�j

2

Z
jF1.u.t//j � lim inf

"!0

j�j

2

Z
jF1".u".t//j � �E.'/C C.MT /;

for all t 2 Œ�T; T �. This entails

t 7!

Z
ju.t/j2 log.ju.t/j2/ 2 L1loc.R/;

hence the claim.

Step 2. We show that u 2 C.R; W s
1 /. We check that the map t 7!

R
F2.u.t// is con-

tinuous, and then we need to show that so is t 7!
R
F1.u.t//. As in the proof of

Lemma 3.7, we consider continuity at t D 0 only. Resuming the computation for the
preceding paragraph, we derive

j�j

2

Z
jF1".u".t//j D �E".u".t//C

1

2

Z
j.��/s=2u".t/j

2

C
�

2

�Z
F2".u".t// �

Z
�".ju".t/j/

�
� �E".'/C

1

2
e4j�jjt jk.��/s=2'k2

L2

C
�

2

�Z
F2".u".t// �

Z
�".ju".t/j/

�
:

In view of Fatou’s Lemma and Lemma 3.8, we infer

j�j

2

Z
jF1.u.t//j � �E.'/C

1

2
e4j�jjt jk.��/s=2'k2

L2

C
�

2

Z
F2.u.t// �

�

2

Z
ju.t/j2:
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Passing to the limit t ! 0 yields

lim sup
t!0

j�j

2

Z
jF1.u.t//j � �E.'/C

1

2
k.��/s=2'k2

L2
C
�

2

Z
F2.'/ �

�

2

Z
j'j2

D �
�

2

Z
F1.'/ D

j�j

2

Z
jF1.'/j:

Thanks to Fatou’s Lemma,Z
jF1.'/j � lim inf

t!0
jF1.u.t//j;

hence the proposition.

Since regardless of the sign of �, u 2 C.R; W s
1 /, arguing like in the proof of

[9, Lemma 2.6], we infer

i@tu � .��/
su D �u log .juj2/ in .W s

1 /
�:

3.5. The H 1 case

To conclude the proof of Theorem 1.1, we now assume ' 2H 1.Rd /. Since 0 < s < 1,
we already know that (1.1) has a unique solution u 2 C.R;H s.Rd //. We note that the
solution u" to (3.1) is bounded in H 1.Rd /, uniformly on any time interval Œ�T; T �
and in " 2 .0; 1�. Indeed, applying the gradient to (3.1) yields

i@tru" � .��/
s
ru" D 2�ru" log.ju"j C "/C 2�

u"

ju"j C "
rju"j;

and the standard L2 estimate readily provides

d

dt
kru"k

2
L2
� 4j�jkru"kL2krju"jkL2 � 4j�jkru"k

2
L2
:

The conclusion of Theorem 1.1 then follows from the same arguments as above, when
we proved that u 2 C.R;H s.Rd //.

4. The Cauchy problem in the H 2s regularity

In this section, we show that if ' 2 X2s˛ D H 2s \ F .H˛/, then the solution u 2
C.R;H s/ provided by Theorem 1.1 actually belongs to Cw \L1loc.R; X

2s
˛ / (note the

obvious relation X2s˛ � H
s).

The strategy is inspired by the classical one in the case of the nonlinear Schrö-
dinger equation, when H 2 regularity is addressed, see [27] (see also [10]): we first
prove that @tu 2 L1loc.R; L

2/, and eventually use equation (1.1) to conclude that
.��/su 2 L1loc.R; L

2/. The intermediate step consists in considering the nonlinear-
ity, to show that u log juj2 2 L1loc.R; L

2/: due to the singularity of the logarithm at



R. Carles and F. Dong 172

the origin, this is by no means obvious (in particular, the information u 2 C.R; H s/

and the Sobolev embedding do not suffice to conclude). The first step is indeed the
following.

Lemma 4.1. Let ˛ > 0, ' 2 X2s˛ , and, for " > 0, let u" solve (3.1). For all t 2 R we
have

k@tu".t/k
2
L2
� e4j�t jk@tu".0/k

2
L2
;

and there exists a map C independent of " 2 .0; 1/ such that

k@tu".0/kL2 � C.k'kH2s ; khxi
˛'kL2/:

Proof. For the first part of the lemma, we compute

d

dt
k@tu"k

2
L2
D 2Re.@2t u"; @tu"/

D �2 Im.@t¹.��/su" C 2�u" log.ju"j C "/º; @tu"/

D �4� Im
�

u"

ju"j C "
@t ju"j; @tu"

�
� 4j�jk@tu".t/k

2
L2
;

hence the announced inequality by Gronwall’s lemma. Now in view of (3.1),

k@tu".0/kL2 � k.��/
su".0/kL2 C 2j�jku".0/ log.ju".0/j C "/kL2

� k'kH2s C 2j�jk' log.j'j C "/kL2 :

For ı > 0,

j' log.j'j C "/j . j'j..j'j C "/�ı C .j'j C "/ı/ . j'j1�ı C j'j.j'jı C 1/;

and, provided that ı > 0 is sufficiently small (in terms of s and ˛),

kj'j1�ıkL2 . khxi˛'k1�ı
L2

; k'.j'jı C 1/kL2 . k'k1Cı
H2s
C k'kL2 ;

hence the lemma.

Combined with (3.4),

NT WD sup
"2.0;1/

.ku"kCT .H s/ C k@tu"kCT .L2// � C.T; k'kX2s˛ /: (4.1)

The unique solution u 2 C.R; H s.Rd // to (1.1) was constructed in Section 3,
obtained as the limit of u" as "! 0, and we deduce from (4.1) that

u 2 W
1;1

loc .R; L2.Rd //; @tu".t/ * @tu.t/ in L2.Rd /:

As announced above, the next step consists in showing that u log juj2 belongs to
L1loc.R; L

2/. Using the same estimates as in the proof of Lemma 4.1, it suffices to
prove the following result.
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Lemma 4.2. Let 0 < s < 1, 0 < ˛ < 2s with ˛ � 1, and ' 2 X2s˛ . Then the solution
u 2 C.R;H s/ provided by Theorem 1.1 also belongs to Cw \ L1loc.R;F .H

˛//.

Proof. Let " > 0: multiplying (3.1) by hxi˛ , we find

i@t .hxi
˛u"/ � hxi

˛.��/su" D 2�hxi
˛u" log .ju"j C "/;

which can be rewritten as

i@t .hxi
˛u"/ � .��/

s.hxi˛u"/ D 2�hxi
˛u" log .ju"j C "/ � Œ.��/s; hxi˛�u":

Multiplying the above equation by hxi˛ xu", integrating over Rd and taking the imagi-
nary part, we obtain, since .��/s is self-adjoint,

d

dt
khxi˛u"k

2
L2
� 2khxi˛u"kL2kŒ.��/

s; hxi˛�u"kL2 :

The last factor is estimated thanks to Lemma 2.3: for T > 0 and t 2 Œ�T; T �,

kŒ.��/s; hxi˛�u".t/kL2 . ku".t/kH s . MT . NT :

Gronwall’s lemma implies that u" is uniformly bounded in L1T F .H˛/, and the lem-
ma follows by the same arguments as in Section 3.

As explained above, we conclude that .��/su 2 Cw \ L1loc.R; L
2/, and Theo-

rem 1.2 follows, keeping Lemma 4.2 in mind.
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