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A construction of the Shephard–Todd group G32 through the
Weyl group of type E6

Cédric Bonnafé

Abstract. It is well known that the quotient of the derived subgroup of the Shephard–Todd
complex reflection group G32 (which has rank 4) by its center is isomorphic to the derived
subgroup of the Weyl group of type E6. We show that this isomorphism can be realized through
the second exterior power, and take the opportunity to propose an alternative construction of the
group G32.

Let G32 denote the complex reflection group constructed by Shephard–Todd [5] and
let E6 be a Weyl group of type E6 (which is denoted by G35 in the Shephard–Todd
classification). Let Sp4.F3/ (resp. SO5.F3/) denote the symplectic (resp. orthogo-
nal) group of dimension 4 (resp. 5) over the finite field with three éléments F3.
Let �5.F3/ be the image of Sp4.F3/ in SO5.F3/ through the natural morphism
Sp4.F3/! SO5.F3/ induced by the second exterior power: this is the normal sub-
group of index 2 of SO5.F3/. Finally, if G is a group, let D.G/ and Z.G/ denote
respectively its derived subgroup and its center and, if d is a non-zero natural num-
ber, let �d be the group of d -th roots of unity in C.

It is shown in [4, Thms. 8.43 and 8.54] that G32 ' �3 � Sp4.F3/ and that E6 '

SO5.F3/. In particular,

D.G32/=�2 ' �5.F3/ ' D.E6/: (*)

The purpose of this note is to present a direct elementary explanation of the iso-
morphism D.G32/=�2 ' D.E6/, which in fact allows us to construct the complex
reflection group G32 from the rational reflection group E6. This construction uses the
classical morphism SL4.C/! SO6.C/, and follows the same lines as our previous
paper [1] (in which we constructed the complex reflection group G31 from the Weyl
group of type B6).
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This note does not pretend to prove a deep result: it is just a nice example of
the application of the classical theory of reflection groups (invariants, Springer the-
ory, . . .).

Remark. It is shown in [4, Thm. 8.53] that G33 ' �2 ��5.F3/. In particular, this
gives an indirect isomorphism D.G33/ ' D.E6/. However, we do not know of any
construction of this isomorphism which would be in the same spirit as above.

1. The morphism SL4.C/ ! SO6.C/

We recall here the construction of this morphism, using some notation from [1]. Let
us fix a complex vector space V of dimension 4 and let

ƒ W GL.V /! GL.^2V /;

g 7! ^2g

be the natural morphism of algebraic groups. Note that ^2V has dimension 6 and that

Kerƒ ' �2 D ¹˙ IdV º:

The lists of eigenvalues of elements of GL.V / or GL.^2V /will always be given with
multiplicities. If g 2 GL.V / admits a, b, c and d as eigenvalues, then

ƒ.g/ admits ab, ac, ad , bc, bd and cd as eigenvalues. (1.1)

In particular,
detƒ.g/ D .detg/3:

Let us fix now a generator " of the one-dimensional vector space ^4V . The choice
of this generator allows to identify C and ^4V and to define a bilinear form

ˇ^ W ^
2V � ^2V ! C;

.x; y/ 7! x ^ y:

This bilinear form is symmetric and non-degenerate. By definition of the determinant,

ˇ^.ƒ.g/.x/;ƒ.g/.y// D .detg/ˇ^.x; y/

for all g 2 GL.V / and x, y 2 ^2V . For dimension and connectedness reasons, the
image of GL.V / through ƒ is the neutral component CO.^2V /ı of the conformal
orthogonal group CO.^2V /DCO.^2V;ˇ^/ andƒ induces an isomorphism of alge-
braic groups

SL.V /=�2 ' SO.^2V /:
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The next elementary lemma will be useful (in this paper, we denote by j a primi-
tive third root of unity).

Lemma 1.6. Let g 2 SO.^2V / having j , j , j , j 2, j 2 and j 2 as eigenvalues. Then
there exists a unique element zg 2 SL.V /, having 1, j , j and j as eigenvalues, and
such that

ƒ�1.¹g; g�1
º/ D ¹˙zg;˙zg�1

º:

Proof. Let h 2 SL.V / be such that ƒ.h/ D g. Then ƒ�1.¹g; g�1º/ D ¹˙h;˙h�1º.
Let a, b, c and d be the eigenvalues of h. By (1.1), by reordering if necessary the
eigenvalues of h, we may assume that abD ac D j . In particular, bD c. So bd D cd ,
which implies that bd D cd D j 2 (for otherwise j would be an eigenvalue of g with
multiplicity � 4). Still by (1.1), .ad; bc/ D .j; j 2/ or .ad; bc/ D .j 2; j /.

If .ad; bc/ D .j; j 2/, then b D c D d and b2 D j 2, so b D c D d D �j and
a D �, for some � 2 ¹˙1º. By replacing h by �h if necessary, the eigenvalues of h
are then 1, j , j , j and so h is indeed the unique element of ƒ�1.¹g; g�1º/ admitting
this list of eigenvalues.

If .ad; bc/ D .j 2; j /, then d D jb D jc and b2 D j , which implies that a D
b D c D �j 2 and d D �, for some � 2 ¹˙1º. By replacing h by �h if necessary, the
eigenvalues of h are then 1, j 2, j 2, j 2 and so h�1 is indeed the unique element of
ƒ�1.¹g; g�1º/ admitting 1, j , j , j as list of eigenvalues.

Corollary 1.7. Let g 2 SO.^2V / having j , j , j , j 2, j 2 and j 2 as eigenvalues. Then
g and g�1 are not conjugate in SO.^2V /.

Proof. Assume that we have foundw 2 SO.^2V / such thatwgw�1D g�1. Let! and

 be respective preimages of w and g in SL.V /. Thenƒ.!
!�1/ D g�1 D ƒ.
�1/.
This shows that 
�1 is conjugate to 
 or to �
 , which is impossible by examining the
possible lists of eigenvalues of 
 obtained in the proof of Lemma 1.6.

2. Construction of G32

Let us see E6 as a finite subgroup of O.^2V / generated by reflections. Set

jSO.^2V / D hSO.^2V /; j Id^2V i

and
3
p

SL.V / D ¹g 2 GL.V / j det.g/3 D 1º D hSL.V /; j IdV i:

Then
ƒ�1

�
jSO.^2V /

�
D

3
p

SL.V /:
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We then define
W D ƒ�1.hD.E6/; j Id^2V i/:

It is a subgroup of 3
p

SL.V /. The aim of this note is to show that W is isomorphic to
the complex reflection group G32 of Shephard–Todd. Note first that

�6 � W:

2.A. Reflections inW

The list of degrees of E6 is 2, 5, 6, 8, 9, 12 while its list of codegrees is 0, 3, 4, 6,
7, 10 (see [2, Table A.3]). In particular, exactly 3 of the degrees are divisible by 3,
which shows [6, Thm. 3.4] that E6 contains an element w3 admitting the eigenvalue
j with multiplicity 3. We will denote by C3 the conjugacy class of w3 in W . Since
also exactly 3 of the codegrees are divisible by 3, this implies, for instance by [3,
Thm. 1.2], that w3 is regular in the sense of Springer [6, §4] (that is, admits an eigen-
vector for the eigenvalue j whose stabilizer in E6 is trivial). Since E6 is a rational
group, w3 also admits j 2 as an eigenvalue with multiplicity 3. Hence, the eigenvalues
of w3 are j , j , j , j 2, j 2 and j 2. In particular, detw3 D 1 and so

w3 2 D.E6/ D E6 \ SO.^2V /:

By [6, Thm. 4.2 (iii)], the centralizer of w3 in E6 has order 6 � 9 � 12, which shows
that

jC3j D 2 � 5 � 8 D 80: (2.1)

Moreover [6, Thm. 4.2 (iv)], if w 2 E6, then

w 2 C3 if and only if dim Ker.w � j IdV / D 3. (2.2)

Hence, if w 2 C3, then w�1 2 C3 but w�1 is not conjugate to w in D.E6/ (by Corol-
lary 1.7).

Now, let Ref.W / denote the set of reflections of W . If s 2 Ref.W /, the eigenval-
ues ƒ.s/ are 1, 1, 1, det.s/, det.s/, det.s/. Since det.s/ 2 ¹j; j 2º, the eigenvalues of
det.s/ƒ.s/ are then j , j , j , j 2, j 2, j 2. Since the characteristic polynomials of ele-
ments of D.E6/ have coefficients in Q, this implies that ƒ.s/ and det.s/2ƒ.s/ do not
belong to D.E6/. So det.s/ƒ.s/ 2 D.E6/ and it follows from (2.2) that det.s/ƒ.s/ 2
C3. This defines a map

� W Ref.W /! C3;

s 7! det.s/ƒ.s/:

The next result will be very useful.
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Lemma 2.5. The map � is bijective.

Proof. First, if �.s/ D �.s0/, then there exists � 2 C� such that s0 D �s. Since s and
s0 are reflections, this is possible only if � D 1, and so s D s0. This shows that � is
injective.

Let us now show the surjectivity. Let w 2 C3. By Corollary 1.7, there exists a
unique zw 2ƒ�1.¹w;w�1º/ admitting 1, j , j , j as eigenvalues. Then j 2 zw and j zw�1

are reflections satisfying

�.j 2
zw/ D det.j 2

zw/ƒ.j 2
zw/ D j 8

� j 4ƒ. zw/ D ƒ. zw/

and
�.j zw�1/ D det.j zw�1/ƒ.j zw�1/ D j 4

� j 2ƒ. zw�1/ D ƒ. zw/�1:

So w 2 ¹�.j 2 zw/; �.j zw�1/º, which shows that � is surjective.

We then deduce from (2.1) and Lemma 2.5 that

jRef.W /j D 80: (2.6)

2.B. Structure ofW

Our main result is Theorem 2.7 below: the proof we propose here uses neither known
properties of the group G32 nor the classification of complex reflection groups and
so might be viewed as an alternative construction of G32 starting from E6 (however,
note that we use properties of E6).

Theorem 2.7. The group W

(a) has order 155 520;

(b) is generated by reflections of order 3;

(c) is irreducible and primitive;

(d) admits 12, 18, 24, 30 as list of degrees.

Proof. SetE#
6DhD.E6/;j Id^2V i andW CDW \ SL.V /. Recall that jE6j D 51840.

So

jD.E6/j D 25 920; jE
#
6j D 77 760; jW j D 155 520 and jW Cj D 51 840:

This shows (a). Moreover,

Z.W / D �6 and W=�6 ' D.E6/:

Let R D ¹det.s/�1s j s 2 Ref.W /º. Set

G D hRef.W /i and H D hRi:
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Statement (b) is equivalent to the following one:

W D G: (#)

First, ƒ.R/ D C3 and so ƒ.H/ D D.E6/ (as this last group is simple and C3 is a
conjugacy class). In particular, W D H � �6 and so, since H � G � �3, we obtain

W D G � �6;

which is almost the expected result (#). Before showing (#), note that, since ƒ.H/ D
D.E6/, we have that H (and so G) acts irreducibly on V (indeed, if H did not act
irreducibly on V , then the representation of D.E6/ on^2V would split as a direct sum
of four submodules, which is impossible since D.E6/ has index 2 in E6). Moreover,
if G is not primitive, then G (and so H ) would be monomial [4, Lem. 2.12], which
would imply that ƒ.H/ D D.E6/ is monomial, which is false. So

G is irreducible and primitive. (|)

Statement (c) follows.
Let us conclude this proof by showing simultaneously (b) and (d). Let d1, d2, d3,

d4 be the degrees of G. It follows from (2.6) and for instance from [2, Theo. 4.1] that´
d1d2d3d4 D jGj;

d1 C d2 C d3 C d4 D 84:
(})

The morphism det WG!�3 is surjective (since det.s/ 2 ¹j; j 2º for any s 2 Ref.W /),
and this implies that �3 � G (because G=.G \ �6/ ' D.E6/ is simple). It remains
to show that jGj ¤ jW j=2 D 77 760.

So assume that jGj D 77 760. Since �3 � G, all the di ’s are divisible by 3 and,
since �6 6� G, at least one of them (say d4) is not divisible by 6. Write ei D di=3.
Then 8̂<̂

:
e1e2e3e4 D 960 D 2

6
� 3 � 5;

e1 C e2 C e3 C e4 D 28;

e4 is odd.

From the second equality, we deduce that at least one more of the ei ’s (say e3) is
odd. From the first equality, we deduce that at least one of the ei ’s (say e2) is even
and so e1 is also even. The first equality shows that e1 or e2 (say e2) is divisible
by 8. So e2 2 ¹8; 16; 24º. A quick inspection of the possibilities shows that e1 D 4,
e2 D 16 and ¹e3; e4º D ¹3; 5º. The degrees of G are then 9, 12, 15 and 48. Since 16
divides one of the degrees, it then follows from [6, Thm. 3.4 (i)] that G D H � �3

contains an element of order 16 and soH contains an element of order 16. Therefore,
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D.E6/Dƒ.H/ contains an element of order 8, which is impossible (see Remark 2.11
below for a proof of this fact, based only on Springer theory). This contradicts the fact
that jGj D 77 760. So we have shown (#), that is,

W D hRef.W /i D G:

This is statement (b). In particular, �6 �W and so all the di ’s are divisibles by 6. Set
ai D di=6. Then (}) implies that´

a1a2a3a4 D 120 D 2
3
� 3 � 5;

a1 C a2 C a3 C a4 D 14:

By the same argument as before, since �12 6� W , we may assume that a3 and a4 are
odd and that a1 and a2 are even. A quick inspection of the possibilities shows that
¹a1; a2º D ¹2; 4º and ¹e3; e4º D ¹3; 5º. This concludes the proof of (d).

Corollary 2.10. The groupW is isomorphic to the reflection groupG32 of Shephard–
Todd.

Proof. This follows from Theorem 2.7 and from the classification of complex reflec-
tion groups [5].

Hence, Corollary 2.10 gives an explanation for the fact, mentioned in the intro-
duction, that D.G32/=�2 ' D.E6/: the isomorphism is realized by ƒ.

Remark 2.11. In the proof of Theorem 2.7, we have used the fact that D.E6/ does
not contain any element of order 8. This fact can be easily obtained by a computer
calculation for instance, but we propose here a proof using only Springer theory. Let
w 2 E6 be an element of order 8. Then w necessarily admits an eigenvalue which is
a primitive 8-th root of unity �. As only one of the degrees of E6 and only one of the
codegrees of E6 is divisible by 8, this implies that w is a regular element in the sense
of Springer [3, Thm. 1.2]. Then, by [6, Thm. 4.2 (v)] the list of eigenvalues of w is
��1, ��4, ��5, ��7, ��8, ��11, and so det.w/ D ��36 D �1. So w 62 D.E6/.
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