Port. Math. 82 (2025), 139-153 © 2024 Sociedade Portuguesa de Matemdtica
DOI 10.4171/PM/2130 Published by EMS Press
This work is licensed under a CC BY 4.0 license

Remarks on complete Weingarten hypersurfaces in the
Euclidean space

Eudes de Lima

Abstract. In this paper, first we provide a classification result for a large class of complete
rotational Weingarten hypersurfaces in the Euclidean space. Second, we prove sharp inequalities
for the norm of the second fundamental form of a class of Weingarten hypersurfaces. We show
that sharpness is attained by a cylinder of the Euclidean space.

1. Introduction and statement of the main results

In their 1983 very nice paper, do Carmo and Dajczer [9] introduced and studied
the notion of rotational hypersurfaces in spaces of constant sectional curvature, by
extending the classical definition of rotational surfaces of the 3-dimensional Euclidean
space R3. In particular, they exhibited explicit parametrizations and computed the
principal curvatures of such hypersurfaces, gave sufficient conditions for a hypersur-
face to be rotational and also proved characterizations of complete rotational hyper-
surfaces with constant mean curvature, among other results.

Then it has become a natural and interesting question to classify complete rota-
tional hypersurfaces under some mild geometric restrictions, mainly on the constancy
of the scalar curvature or, more generally, the constancy of some higher order mean
curvature. In fact, a few years after do Carmo and Dajczer’s results this was done in a
series of papers due to Leite [12], Mori [15], Palmas [17], Hounie and Leite [11]
and Colares and Palmas [5]. When the ambient space is the (n + 1)-dimensional
Euclidean space R”*!, we collect the following classification result from above men-
tioned papers.

Theorem 1.1. We can classify the complete rotational hypersurfaces in the Euclidean
space R" ™1 with constant r-th mean curvature H, as follows:
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(i)  There is only one monoparametric family of embedded complete rotational
hypersurfaces with constant r-th mean curvature H, for any H, > 0, 1 <
r < n. These hypersurfaces are periodic and cylindrically bounded and they
converge, on one side, to a sequence of spheres, which are pairwise verti-
cally, and on the other, to the cylinder R x S™(uy), for some ug > 0.

(i)  There is only one monoparametric family of embedded complete rotational
hypersurfaces with constant r-th mean curvature H, = 0, 1 <r < n, which
converges to a hyperplane.

@iii) There is no complete rotational hypersurface with constant r-th mean cur-
vature H, < 0,1 <r < n, forr even.

Let us recall that the proof of this theorem relies on an approach introduced by
Leite [12] and afterwards generalized by Palmas [17], which is based on a careful
analysis of the level sets of a suitable function which gives rise to all rotational hyper-
surfaces of the ambient space.

In this setting, our first aim in this paper is to extend this approach to a large class
of complete rotational Weingarten hypersurfaces immersed into the Euclidean space
R”*1 and to prove a classification result in the same spirit of [12, 17]. To this end,
given a hypersurface of R”*!, let us recall that it is said to be a Weingarten hyper-
surface (or a W-hypersurface) if there exists a smooth function W of the principal
curvatures Aq, ..., A, sothat W(Aq,...,A,) is constant (Chern [4], Hartman [10]). In
particular, hypersurfaces with some constant higher order mean curvature are exam-
ples of Weingarten hypersurfaces.

We consider here the class of Weingarten hypersurfaces immersed into the Euclid-
ean space whose higher order mean curvatures H, and Hy, 1 <k <r <n, are linearly
related, meaning that the following relation holds:

H, = aHy + b, (1.1)

for certain constants a, b € R.
Then we shall prove the following result.

Theorem 1.2. We can classify the complete rotational Weingarten hypersurfaces in
the Euclidean space R* ™ with H, = aHy + b as follows:

(i)  There is only one monoparametric family of embedded complete rotational
Weingarten hypersurfaces with Hr = aHy + b, 1 <k <r <n,a € R and
b > 0. These hypersurfaces are periodic and cylindrically bounded and they
converge, on one side, to a sequence of spheres, which are pairwise verti-
cally, and on the other, to the cylinder R x S™(uy), for some ug > 0.

(i1)  There are only two monoparametric families of embedded complete rota-
tional Weingarten hypersurfaces with H, = aHy, 1 <k <r <n, a € R
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(and b = 0). One of them is periodic and cylindrically bounded and con-
verges, on one side, to a sequence of spheres, which are pairwise vertically,
and on the other, to the cylinder R x S™(uy), for some ug > 0. The other
family is not cylindrically bounded and converges to a hyperplane.

@iii) There is no complete rotational Weingarten hypersurface with H, = aHy, +
b,1 <k <r <n,forreven,a <0andb < 0.

In the case a = 0, Theorem 1.2 coincides with the previous classification obtained
by Leite [12] and Palmas [17]. Thus, Theorem 1.2 is a generalization of results pre-
viously cited. The case of rotational Weingarten hypersurfaces with H, = aHy + b,
1 < k < n has been treated by the author in [7].

Our second aim is to get a sharp lower (upper) bound for the supremum (infi-
mum) of the norm of the second fundamental form of Weingarten hypersurfaces with
two distinct principal curvatures satisfying (1.1). Regarding this theme, many works
have been done nowadays to treat hypersurfaces with some constant higher order
mean curvature immersed into R”*!, by using different approaches (for instance,
Cheng—Yau’s ideas [3], Otsuki’s ideas [16], Omori—Yau maximum principle, rota-
tional hypersurfaces [9], principal curvature theorem [19], among others) and under
various assumptions (for instance, positive sectional curvature, two distinct principal
curvatures, upper or lower bounds of the squared norm of the second fundamental
form, among others).

Let us highlight two recent approaches. In [1], Alias and Garcia-Martinez, and
in [2], Alias and Meléndez, used the so-called principal curvature theorem due to
Smyth and Xavier [19], and in [14], Meléndez and Palmas introduced tools related to
rotational hypersurfaces, and proved a sharp lower (upper) estimate for the supremum
(infimum) of the norm of the second fundamental form of hypersurfaces in R *!
with some constant higher order mean curvature and two distinct principal curvatures
(in [14] the authors also were able to apply the method when the ambient space is the
Euclidean sphere or the hyperbolic space). In particular, we can state the following.

Theorem 1.3 ([2, Theorems 2 and 3] and [14, Corollary 1.8]). Let M"™ be a com-
plete oriented hypersurface of R"*1, n > 3 and 1 < r < n, with constant r-th mean
curvature H, > 0 and two distinct principal curvatures, one of them being simple.
Then

. 2 nH, 2 2
min|A4|* < (n—1) < max|A4|“, (1.2)
b n—r b

where |A| stands for the norm of the second fundamental form A of M". Moreover,
equality holds in the left-hand side (or right-hand side) of (1.2) if and only if M" is

isometric to the cylinder R x S"~(ug) with ug = (%)1/'.
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Here, by using both approaches aforementioned, we extend the above result to the
class of Weingarten hypersurfaces given by (1.1) as follows.

Theorem 1.4. Let M™ be a complete oriented Weingarten hypersurface of R"+1,
n >3 with H = aHy + b, where 1 <k <r <n,a € R and b > 0. Suppose that
M™ has two distinct principal curvatures A and |1, with |t being simple and A > 0.
Then,

min| A[* < | Ao|* < max|4?, (1.3)

where | Ag| is the norm of the second fundamental form of the cylinder R x S"~1(uy),
for some ug > 0. Moreover, equality holds in the left-hand side (or right-hand side)
of (1.3) if and only if M is isometric to the cylinder R x S"~!(uy).

Here, in the case a = 0, Theorem 1.4 agrees with the results due to Alias and
Meléndez ([2, Theorems 2 and 3]) and Meléndez and Palmas ([14, Corollary 1.8]).
When k = 1 we recover the very recent theorem due to the author (see [6, Theo-
rem 1]). If r = 2, we also recover [8, Theorem 1.1] (in the case p = 1 and ¢ =0
there).

Regarding the condition A > 0 on M”" in Theorem 1.4, we observe that it is
very mild and implied by various others conditions as shown by the author in [7,
Remark 1].

The paper is organized as follows. In Section 2, we recall some basic facts and
notations that will appear in the paper and some key lemmas that will be essential in
the proofs of the main results. Finally, Sections 3 and 4 are dedicated to exhibiting the
proofs of Theorems 1.2 and 1.4.

2. Preliminaries

Let M" be an oriented (connected) rotational hypersurface immersed into the Euclid-
ean space R" 1!, Following [9], M" is constructed by taking the orbit of a curve «,
called the profile curve, under the orthogonal transformations of R”*! leaving fixed
an axis, called the rotation axis, that does not meet the curve. Without loss of gener-
ality we can take the curve o generating M" parametrized by arc length as

a(s) = (x(5),0,...,0,z(s)): I CR - R"" x(s) >0,
and the rotation axis as being the x,1-axis. In particular,

24+z22=1,
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where the dot denotes the derivative relative to arc length s. Then a parametrization
for M" is
@I xS"TH SR (s, p) = (x()¥(p). 2(5)),

where ¥ (p) is an orthogonal parametrization of the unit sphere S”~!. It follows from
[9, Proposition 3.2] that there are at most two different principal curvatures on M”,

V1=32
M= = dpoy = @1

given by

and .
X

==
V1 —x2
The r-th mean curvature H, of the hypersurface M" is defined as the mean of the
r-th symmetric function of the principal curvatures:

n
(F)Hr:_ Z.Ail"'kir’ 1<r<n.
1 <<l

From the discussion above it is not difficult to check that a rotational hypersurface
M" has prescribed r-th mean curvature H, if and only if

nHyx" = (n—r)(1 — %27 —r(1 — 32) 2 #x. 2.2)

In what follows, we provide two auxiliary lemmas, which have been obtained by
the author in [7], and for the sake of completeness we also exhibit its proof here. The
first one gives a necessary and sufficient condition, in terms of a differential equation,
for a rotational hypersurface M" being Weingarten satisfying the relation

Hy, = aHy + b, 2.3)

for constants a, b € R.

Lemma 2.1. Let M" be a rotational hypersurface in R"*1. Then (2.3) holds if and
only if x satisfies the differential equation

nbx" "l = (n—r)(1 — ¥ 2x" L _p(1 — £2) T g

—a((n —k)(1 — )5 x" K1 _ k(1 = 52) 5 xR, (2.4)
Equation (2.4) is equivalent to its first integral
X = 225 xR = 125 —hx" = C, 2.5)

where C € R is a constant.
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Proof. From (2.2) we find
nH, X"V = (0 — r)(1 — 2)5x" 1 (1 — 52) 2 5x

and
nHx"' = (n — k)(1 — £2)5x"F1 _ k(1 — 52) T 5k,

Then it follows immediately that M" satisfies (2.3) if and only if it also satisfies (2.4).
Finally, by noting that
d

L (T =25 —ax" k(1 = 52)5) = nbx" %

ds

and taking the integral of both sides, we obtain (2.5), as desired. ]

Having Lemma 2.1 in mind, it becomes clear that the set of the points in R2,
(x(s), x(s)), where x(s) is a local solution of (2.4), is a level curve of the function

Grikapr,v)=u""(1- V22 —au" k(1 - vz)% —bu", withu >0, v?<1.
(2.6)
Following Leite [12] and Palmas [17], we deduce that the sets (x, x), where x is
a local solution of (2.4), are the connected components of the level sets of G, 4.5
contained in the region {u > 0 and v? < 1}. We also consider the definition below.

Definition 2.2. A solution of (2.4) is complete if either x is defined for every s € R
or if the pair (x, X) only admits (0, £1) as limit values.

Thus only the level sets
Gr,k,a,b(xvx) = Cv (27)

where x is a complete solution of (2.4), totally contained in the region {u > 0 and
v? < 1}, give rise to complete rotational Weingarten hypersurfaces satisfying (2.3).

Before stating our next auxiliary result and for the sake of clarity, let us compute
first the partial derivatives of G, x 4. Since 1 < k < r < n we obtain

8Gr a —p— r — LS
—31; LA 1((n —r) (1 —v%)2 —(n—k)au” k(l — v2)§ —nbur),
—8ng’a’b = u”_rv(—r(l — vz)% + kaur_k(l — vz)%z).

v

In particular, when b # 0, any level set of G, x 4 5 intersecting one of the horizontal
lines v2 = 1 must necessarily leave the region {u# > 0 and v? < 1}, except if it is one
of the horizontal lines v2 = 1.
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Lemma2.3. ForacR,b>00ra>0,b=0,and1 <k <r <n, the function G,y 4 »
has a unique critical point given by (ug, 0), where ug > 0 is the unique positive root
of

gu) =nbu" + (n —kyau" % —(n—r) = 0. (2.8

Moreover, (ug,0) is a local maximum and non-degenerate, Co := Gy j q,5(40,0) > 0
and, for every 0 < C < Cy, the level set G 45U, v) = C is a closed curve sur-
rounding (uo, 0) and contained in the region interior to the zero level set of G,k 4 p.

Proof. The case a = 0 was proved in [14, Lemma 3.1 and Proposition 3.2]. Now, let

8Gr,k,a,l:'
kD)

us assume that @ # 0. Then = 0 implies that

v=0 or —r(l —vz)% + kau"7*(1 —vz)% =0.

In the first case, v = 0, we deduce from {)Gr{;% = 0 that g(u) = 0, where g(u)
is given by (2.8). Then it is not difficult to see that there exists a unique positive root
ug > 0 of equation (2.8). The corresponding critical point (u¢, 0) satisfies, by (2.6),

Grkab(uo, 0) = ug ™" (1 —aug™™ —bug).
From g(uy) = 0 we deduce that
Grkap (0. 0) = g™ (7 — akug™). 29)

If a < 0, it follows immediately that G,k 4540, 0) > 0. In the case a > 0, it is
straightforward to check that
1
r r—k
— > 0,
g((ak) )

so that ug < (#)ﬁ and, consequently, from (2.9) we find G,k 4.5 (10,0) > 0. To
classify the critical point (¢, 0), we calculate the second partial derivatives to obtain

82 Gr,k,a,b
u?
82 Gr,k,a,b
v
82 Gr,k,a,b
dudv

Therefore, (ug, 0) is a local maximum and non-degenerate.

(ug,0) = —ug_r_Z((n —r)(r —k) +nkbug) <0,
(10.0) = —ug " (r — akug_k) < 0,

(Ll(), 0) =0.

In the second case,
—r(l — vz)% + kaw"7*(1 - v2)¥ =0,

= 0 has no solution.

a simple computation shows that w?’%
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Finally, let us observe that the zero level set G, k 4.5 (1, v) = 0 1is given by a portion
of the ellipse
a?u? +v2 =1, u>0,

where o > 0 is the unique positive root of a” — ack —b =0. By the unicity of the
critical point, (ug, 0) belongs to the region interior to the zero level set. Moreover,
every 0 < C < Cy is aregular value of G, i 45, so that the level set G, x 4 (4, v) = C
is a smooth curve and a compact set. This jointly with the classification of 1-manifolds
concludes the proof of the lemma. ]

At this point and for future reference, let us recall that a rotational hypersurface
M™ is said to be cylindrically bounded if there exists a complete cylinder Xo = R x
S™~1(r) with the same axis of rotation of M" such that M" is contained in the closure
of the component of R”*! — % containing the rotation axis.

To close this section, for the sake of completeness and to establish the notation
that we will use in the proofs of our theorems, we state below two well-known results
that will be crucial ingredients in the next sections. The former one due to do Carmo
and Dajczer [9] gives sufficient conditions for hypersurfaces of the Euclidean space
to be rotational.

Theorem 2.4 ([9, Theorem 4.2]). Let M" be an arbitrary hypersurface in R"+1,
n > 3. Assume that the principal curvatures Ay, ..., A, of M" satisfy Ay = -+ =
A1 =AF#0, Ay =pu=u(d), and A — u # 0. Then M" is contained in a rotational
hypersurface.

The second one is the so-called principal curvature theorem due to Smyth and
Xavier [19].

Theorem 2.5 (The principal curvature theorem, see [19, §1]). Let M" be a complete
immersed orientable hypersurface in R**1, which is not a hyperplane, and let A
denote its second fundamental form with respect to a global unit normal field. Let
A C R be the set of nonzero values assumed by the eigenvalues of A and let A* =
A NRE

(i) IfAY and A~ are both nonempty, inf AT = sup A~ = 0.

(i) If AT or A™ is empty then the closure A of A is connected.

3. Proof of Theorem 1.2

As said above, to prove Theorem 1.2 we must analyze the admissible values for C in
(2.7), those that give rise to complete rotational Weingarten hypersurfaces. Since the
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case a = 0 was proved by Palmas [17] (see [17, Section 1.2]), here we always assume
thata # 0.

Case (i). When C = 0, we note that the zero level set G,k 4,5 (X, x) = 0 consists of
the portion of the ellipse

a’x?+ 32 =1, withx >0,

where @ > 0 is the unique positive root of the equation a” — aaX — b = 0. Then by
integration we see that the corresponding hypersurface is a sphere parametrized by

sin(as) cos(as)

x(s) = and z(s) = prt

The translation of this sphere along the x,1-axis gives a sequence of spheres which
are pairwise vertically.

When C = Cy, since (1, 0) is an isolated critical point, then it follows that the
level set G,k 4,5 (x,X) = Cp is a unitary set {(4o, 0)}. Thus x(s) = uo must be con-
stant and the principal curvatures of the corresponding hypersurface are also constant
and given by

M= =Ay_1 = L and u =0.
Uo
Hence, by the classical results due to Levi-Civita [13] and Segre [18] on isoparametric
hypersurfaces of R”*!, we have that M" is isometric to the cylinder R x S"~1(uy),
Uy > 0.

Next, for every 0 < C < Cp, we obtain from the proof of [12, Theorem 3.4] that
all level curves G,k 4.5(x, X) = C correspond to embedded, complete, periodic and
cylindrically bounded hypersurfaces.

If C < 0, then the level curves G,k 4,5(x, X) = C are given by

k

, c
(1-x)2 —ax"*1-x%2 = ==+ bx",

and leave the region {x > 0 and x? < 1} at the point C + bx" = 0 or X2 reaches 1 in
a finite interval. Thus the corresponding hypersurfaces are not complete.

Case (ii). In this case, for C = 0 the connected components of the zero level set
Gy k,a,0(x, %) = 0 are given by

. 2 .
x2=1 and arka2+x2:1, x > 0.

In the first case, x(s) = s and z(s) = 0, so that the corresponding hypersurface is a
hyperplane. In the second case, we have a sphere.
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Now let us consider C > 0. If @ > 0, the result follows as in Case (i). Fora < 0
the level sets G, k 4,0(x, X) = C are given by
C

(1— 325 —ax™ (1 - 55 = . G.1)
xn—r

Then x(s) attains a minimum value and is unbounded from above. So x(s) — 400
implies x2 — 1. Hence, as in Leite [12], every corresponding hypersurface is not
cylindrically bounded and this family converges to a hyperplane.

When C < 0, we obtain for a > 0 that the level sets G,k 4,0(x, X) = C are given
as in (3.1) and the result follows. In the case a < 0, not even local solutions x () exist.

Case (iii). In this case, for every C < 0 there are no local solutions of G, 4,5 (X, X) =
C in the region {x > 0 and x? < 1}. When C > 0 the level curves Griab(x,x)=C

leave the region {x > 0 and X2 < 1} at the point C + bx" = 0 or x? reaches 1 in a

finite interval. In any case there are no complete hypersurfaces. This finishes the proof
of the theorem.

4. Proof of Theorem 1.4

As already said, let us denote by A and p the distinct principal curvatures of M" with
multiplicities n — 1 and 1, respectively. Then a straightforward computation shows
that

nHy = A=Y ((n =X + kp)

and
nH, = A""Y(n —r)A + rp).

By the relation between the mean curvatures (1.1), we deduce that
pAF LA R —ka) = nb + (n — k)al* — (n —r)A". 4.1)
Since A is assumed to be positive on M " we have
A *(p)—ka #£0, Vpex,

because, otherwise, by equation (4.1), we would get

r—k
k

for some pog € X", contradicting the hypothesis & > 0. Then the following relation
holds:

b=-—

A"(po) <0,

nb + (n —k)ark — (n —r)A”
A=L(rAr—k — ka) '

pw= ) = (4.2)
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In particular, letting A, := (l%)ﬁ, we find that eithera > 0 and 0 < A < A, or
a>0 and A > A,

or
a<0 and A >0.

We claim that the first case, a > 0 and 0 < A < A,, cannot happen. Indeed, if
k = 1, it is not difficult to see that (A7) is strictly decreasing on 0 < A < A,; and

M(A)e—@ <0, as A—>0T,
a

so that AT and A~ are nonempty with sup A~ < 0, contradicting the principal curva-
ture theorem. When k > 1, we see that u is also a negative functionon 0 < A < A,
and

u(A) > —oco, as A —0F
u(d) = —oo, as A — A,

so that p(1) attains its maximum at some A, € (0, A,) with (1) < 0. Thus A
and A~ are nonempty with sup A~ < 0 and the claim follows.
By the discussion above we have two cases to consider:

(i) a>0and A > A,;
(i) a <0and A > 0.

From now on, whenever we write A > 0, we let it be implicit that in case (i) we
must have A > A,%, unless we explicitly specify otherwise.

For the sake of clarity let us proceed by dividing the proof into three steps as
follows.

Step 1. Properties of (1)
A simple computation by using (4.2) gives the following expression to p(A4):

nb n(r —k)ak n—r

1) = — A. 4.3
W) = T GarF —ka) Tt —ka) | r (4.3)
In particular,
m r(r— DA% —k(k — 1)a
2 =—nb
da M = T TR T ka2

_nr(r=k)(r—k— Dal™* + n(r — k)ka? n-—r
(rA7=k — ka)? ro’

(4.4)
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and it is not difficult to verify that the following properties hold:

(o)

(1)

(12)

(13)

((a)

M™" is a rotational hypersurface.
This follows directly from the result due to do Carmo and Dajczer (Theo-
rem 2.4 above) and equation (4.3).

There exists a unique A¢ > 0 such that (1o) = 0.
Of course, by (4.2), A is the unique positive root of the equation

—(n—r)A" + (n —kyark +nb = 0. (4.5)

Further, in case (i), it must be that A > A,x. Moreover, denoting by 7, the
interval (A, Ao], in case (i), and (0, A¢), in case (ii), we also deduce that

w(A) >0 only,,

and
pw(d) <0 if A > .

p(A) is strictly decreasing on 1.
Indeed, when a > 0, we see from (4.4) that u’(1) <0 on (A,x,+00) D I,.
For a < 0, the claim follows directly from (4.2) and p1).

There exists a unique X > 0 such that u(z) =
Of course, by using equation (4.3), we see that X is the unique positive root
of the equation

A"+ ark+b=0.
In case (i), it follows that A, < . Moreover, it is simple to see that 1< Ao,
because of (4.5). Let I3 be the interval (4, X), in case (i), and (0, X), in
case (ii). Analogously, we define /* = (X, A2]. Then

w(A) > A onlj,

and B

u() <A onl”
Via a somewhat more involved computation we can rewrite equation (4.4)
as

dw _

n(r(r — DA% —k(k — a)(=A" + aAk + b)
dr '

(=1 (A —* — ka)?

In particular, Z—‘/{“(A) = —(n — 1) ifand only if A = X. Moreover,
d
ﬁ(x) <—(n—1) onl,

and J
ﬁ(x) >_(n—1) onlI*.
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Step 2. Analysis of the second fundamental form
The squared norm of the second fundamental form is given by

[AP() = AP = (n — DA? + 2.
Then properties (/¢3) and (/¢4) imply the following:
(A1) |A|?() is strictly decreasing on I5;

(A3) |A|?*(A) is strictly increasing on / X

In particular, |4|?(1) attains its global minimum on I, at X (in case (i), A is the
global minimum on A > A,).

Step 3. Conclusion
Property (110) gives that M” is a rotational hypersurface. Let G, 45(x,x) = C
be the level curve associated to M". Then

T —5)E —ax"F(1— 5% —px" = C.

Let us observe that the proof of Theorem 1.2 gives C > 0, because of the completeness
of M™. Moreover, from the previous equation and (2.1) we find

A —ark = < +b. (4.6)

xn

In particular, we can look at the principal curvature A as a function of x and C, that
is, A = A(x, C). Then it follows from (4.6) that

A nC
dx  antl

A
(ram1 —ka)&k_l)% = — >0,

xn

(rA7 ' — kadk1 <0,

which implies that A(x, C) is decreasing in x and increasing in C. By using (4.6)
once more, we still observe that

A (x,C) +arf(x,C)+b = —% <0.
X

Then the definition of A implies A(x,C) > X. We also claim that Alx, C) < Ao,
because, otherwise, we would get, by (1¢1), that £(1) < 0 and, consequently, A+ and
A~ are nonempty with inf A" > 0, arriving at a contradiction to the principal cur-
vature theorem, proving the claim. Then taking into account property (A,) we obtain
that |[A|?(x, C) = |A|*(A(x, C)) is strictly decreasing in x and strictly increasing
inC.

From Lemma 2.3 we know that the level curve G,k 45(x, %) = C is a closed
curve surrounding the critical point (1o, 0) of G,k 45. Thus x(s) has a minimum
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x(50) = Xmin and a maximum x (1) = Xpax With Xpmin < Ug < Xmax. Then |A4]%(x, C)
attains its minimum value | A|?(Xpax, C) and its maximum value |A|? (Xpin, C). Also,
since X (s9) = x(s1) = 0, it follows by (2.1) that

A(xmauu C) = A(MO’ CO) =< A(xmina C)
Since |A|?(A(x, C)) is strictly increasing in A on / % we find
|41 (max. ©) < |4 (0. Co) = |AJ* (Xinin. ©),

that is,
min |A]* < |A4o|* < max |A|?,
p) p)

where |Ag| is the norm of the second fundamental form of the cylinder R x S"~!(uy).

Finally, if equality on the left-hand side holds in the last inequality, then x (s) = ug
is constant and the level curve reduces to the critical point (u¢, 0). Therefore, by the
proof of Theorem 1.2, M™ is isometric to the cylinder R x S”~!(u). The same occurs
if equality on the right-hand side holds. This concludes the proof of Theorem 1.4.
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