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Free extensivity via distributivity

Fernando Lucatelli Nunes, Rui Prezado, and Matthijs Vákár

Abstract. We consider the canonical pseudodistributive law between various free limit com-
pletion pseudomonads and the free coproduct completion pseudomonad. When the class of
limits includes pullbacks, we show that this consideration leads to notions of extensive cat-
egories. More precisely, we show that extensive categories with pullbacks and infinitary lex-
tensive categories are the pseudoalgebras for the pseudomonads resulting from two of these
pseudodistributive laws. Moreover, we introduce the notion of doubly-infinitary lextensive cat-
egory, and we establish that the freely generated ones are cartesian closed. From this result, we
further deduce that, in freely generated infinitary lextensive categories, the objects with a finite
number of connected components are exponentiable. We conclude our work with remarks on
examples, descent theoretical aspects of this work, results concerning non-canonical isomor-
phisms, and relationship with other work.

1. Introduction

Two-dimensional monad theory [5, 7, 27, 30] is the categorical approach to bidimen-
sional universal algebra, which mainly deals with the problem of understanding alge-
braic structures, in a suitable sense, over objects in a 2-category.

Focusing on the case where the base 2-category is the 2-category of categories
CAT, this leads to the systematic study of categories with additional (algebraic)
structures (or properties) [5, 25, 30]. The 2-categories of interest usually arise as 2-
categories of pseudoalgebras or lax algebras of a given pseudomonad – we refer, for
instance, to [28, 32] for the definitions of these concepts.

There are many well-known examples of such 2-categories of interest, namely:

– the 2-category of monoidal categories, monoidal functors and monoidal natural
transformations is the 2-category of pseudoalgebras for the free monoid 2-monad
(also known as the list 2-monad) on CAT, e.g., [5, 20, 34];
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– the 2-category of monads is given by the 2-category of lax algebras with respect
to the identity 2-monad on CAT, e.g., [31, page 33] and [32];

– 2-categories of pseudofunctors and pseudonatural transformations between two
suitable 2-categories with weighted bicolimits is given by the 2-category of pseu-
doalgebras with respect to a pseudomonad induced by a suitable pseudo-Kan
extension, e.g., [30, 33];

– the 2-category of categories with ˆ-(co)limits and ˆ-(co)limit preserving func-
tors is the 2-category of pseudoalgebras and pseudomorphisms with respect to a
suitable free (co)limit completion pseudomonad on CAT, e.g., [25, 34, 39, 44].

The framework of two-dimensional monad theory is well suited for studying the
age-old problem of distributivity between limits and colimits of a given category.
Specifically, our focus lies on the canonical pseudodistributive law [40, 41] between
various sorts of free limit completion pseudomonads and the free coproduct comple-
tion pseudomonad. Previous considerations of such distributivity properties include
(infinitary) distributive categories [9], completely distributive categories [42], and
doubly-infinitary distributive categories [37]. In this paper, we show that a similar
analysis gives rise to well-known and novel notions of extensive categories.

Recall that, if C has (in)finite coproducts, C is said to be an (infinitary) extensive
category [9] if the canonical functorY

i2I

C # Xi

`
���! C #

a
i2I

Xi

is an equivalence of categories for every (in)finite family .Xi /i2I of objects in C. It
has been observed in [10] and [47, Section 7] that “(infinitary) extensivity” can be
viewed as a distributivity condition of pullbacks over (infinitary) coproducts.

The present work, which is a sequel to [37], aims to study categories with a
given class of limits, small coproducts, and a (pseudo)distributive law between them.
More precisely, given a class ˆ of diagrams, we remark that there is a canonical
pseudodistributive law between the free ˆ-limit completion pseudomonad and the
free coproduct completion, denoted by Fam [26, 39, 54]. We show that the pseudo-
algebras for the composite pseudomonad can be easily described; namely, they can be
given as the categories with ˆ-limits and coproducts such that the coproduct functora

WFam.C/! C (1.1)

preserves ˆ-limits.
Our key contribution is the observation that various flavors of infinitary extensive

categories are pseudoalgebras for such composites of pseudomonads. More precisely,
assuming that C is a category with coproducts:
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– if C has pullbacks, and (1.1) preserves them, then C is infinitary extensive with
pullbacks;

– if C has finite limits, and (1.1) preserves them, then C is infinitary lextensive;

– if C has small limits, and (1.1) preserves them, we say that the category C is
doubly-infinitary lextensive. We observe that C satisfies such properties if and
only if C is simultaneously a doubly-infinitary distributive category [37] as well
as a lextensive category.

The observations presented above, coupled with the findings of [36], contribute
to the understanding of extensive categories and distributive categories through the
prism of two-dimensional universal algebra, adding to the comparison of these notions
originally started in [9].

In [37], it was demonstrated that freely generated doubly-infinitary distributive
categories are cartesian closed. Furthermore, this investigation extended to encom-
pass the study of exponentials in freely generated infinitary distributive categories.
More generally, in [38], a comprehensive analysis was conducted, yielding general
results concerning exponentiability and cartesian closedness of Grothendieck con-
structions. Notably, these results are applicable to a wide array of contexts, including
freely generated categorical structures.

Motivated by [36,38], we further study the exponentiable objects of the free pseu-
doalgebras for the pseudomonads we considered; namely, we find that

– in a freely generated infinitary lextensive category, objects with a finite number of
connected components are exponentiable;

– freely generated doubly-infinitary extensive categories are cartesian closed.

Outline: We revisit the notion of free ˆ-colimit completions for a class ˆ of dia-
grams (small categories) in Section 2. Several authors have worked on free (co)limit
completions; namely, we have [1, 19, 51] for ordinary categories, and [3, 24] in the
context of enriched category theory. We also have the accounts [26, 39, 44, 54] which
study free ˆ-(co)limit completions from the perspective of two-dimensional monad
theory [5,30,32,34], which is the approach we employ, so some familiarity with these
methods is assumed. We focus specifically on four classes of free (co)limit comple-
tions:

– the free coproduct completion, denoted Fam,

– the free finite limit completion, denoted Lfin,

– the free pullback completion, denoted Lpb,

– the free small limit completion, denoted L.

In Section 3, we study the distributivity ofˆ-limits over coproducts. Similar work
has been carried out in [2, 42, 52] and in the prequel [37]. After recalling the nec-
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essary concepts pertaining to pseudodistributive laws [40, 41, 53], we confirm that
there is a pseudodistributive law between any free ˆ-limit completion pseudomonad
and the free coproduct completion pseudomonad Fam (Lemma 3.4). Instantiating this
result with each of the aforementioned free limit completions, we obtain the compos-
ite pseudomonads Fam ıLfin, Fam ıLpb, and Fam ıL.

The study of these pseudomonads and their pseudoalgebras have given us novel
characterizations of (infinitary) extensivity. More specifically, we prove that:

– .FamıLfin/-pseudoalgebras are precisely the lextensive categories (Theorem 3.6),

– .FamıLpb/-pseudoalgebras are precisely the extensive categories with pullbacks
(Theorem 3.8).

Moreover, in Section 3.3, we introduce the notion of doubly-infinitary lextensive
categories: these are the .Fam ıL/-pseudoalgebras. Finally, we prove in Theorem 3.9
that doubly-infinitary lextensive categories correspond to lextensive categories that
are also doubly-infinitary distributive as introduced in [37].

Mainly motivated by [37, 38], in the present work, our study of exponentiable
objects in freely generated categorical structures is the content of Section 4. This
includes our main results, which respectively state that

– freely generated doubly-infinitary lextensive categories are cartesian closed (The-
orem 4.4),

– in freely generated infinitary lextensive categories, finite coproducts of connected
objects are exponentiable (Theorem 4.7).

In Section 5, we discuss examples of (doubly)-infinitary lextensive categories.
Finally, in Section 6, we show that analogous results also hold for the free finite
coproduct completion pseudomonad, leading to similar characterizations of (finitely)
extensive categories. Further, we discuss possible avenues for future work, descent
theoretical considerations of our findings, and we note a result on non-canonical iso-
morphisms, as a direct consequence of the work of [34].

2. Free colimit completions

Let CAT be the 2-category of locally small (Set-enriched) categories. Any other cat-
egory considered in this work is assumed to be an object of CAT.

Let ˆ be a class of small categories. We say that a category C has ˆ-colimits if
any functor DW J ! C with J 2 ˆ has a colimit in C. Moreover, if F WC ! D is a
functor between categories with ˆ-colimits, we have a morphism

colimFD ! F.colimD/ (2.1)
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which is natural in DWJ ! C for J 2 ˆ. We say that F preserves ˆ-colimits if (2.1)
is a natural isomorphism.

We let ˆ-Colim be the 2-category of categories with ˆ-colimits, ˆ-colimit pre-
serving functors and natural transformations. We have a forgetful 2-functor

ˆ-Colim! CAT (2.2)

which is pseudomonadic – we let Pˆ be the left biadjoint to (2.2), as well as the
induced pseudomonad by the biadjunction – the free ˆ-colimit completion pseudo-
monad. We can justify this abuse of notation, by noting that a category C has ˆ-
colimits if and only if the (fully faithful) unit of Pˆ at C, denoted by yWC! Pˆ.C/,
has a left adjoint [3]. Thus, being a Pˆ-pseudoalgebra is a property of the category C,
as opposed to structure [25]. In other words, Pˆ is a lax idempotent pseudomonad [13,
15,26,39,44] (also known as Kock–Zöberlein pseudomonad), and, hence, a property-
like pseudomonad [25, 33].

Dually, we say that a category C has ˆ-limits whenever Cop has ˆ-colimits, and
we say that a functor F WC! D between categories with ˆ-limits preserves ˆ-limits
if F opWCop ! Dop preserves ˆ-colimits. We denote by ˆ-Lim the 2-category of
categories withˆ-limits,ˆ-limit preserving functors and natural transformations. We
also have a pseudomonadic 2-functor

ˆ-Lim! CAT

whose left biadjoint and induced pseudomonad are denoted by Lˆ, so that we have a
biequivalence Lˆ-PsAlg ' ˆ-Lim. In fact, we note that Lˆ.C/ D Pˆ.Cop/op. We
likewise denote the (fully faithful) unit at a category C by yWC ! Lˆ.C/. This unit
has a right adjoint if and only if C has ˆ-limits.

Remark 2.1. In [3, 24], the notions of ˆ-colimits and ˆ-colimit completions were
worked out in the more general setting of enriched category theory, where ˆ is taken
to be a class of small weights instead (that is, functors J op ! V with J small), where
V is the base monoidal category.

In our setting, the notions we provided correspond to the classesˆ of weights that
are constant functors to the terminal object. We leave the consideration of our results
in an enriched setting for future work.

As argued in [3, 24], the free ˆ-colimit completion Pˆ.C/ of a category C is
most succinctly described as the smallest full subcategory of CAT.Cop; Set/ that has
ˆ-colimits. Dually, Lˆ.C/ is the smallest full subcategory of CAT.C; Set/op that
has ˆ-limits. With this, we can obtain an expression for the hom-sets of ˆ-(co)limit
completions.
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Lemma 2.2. Let ˆ be a class of small categories, let C be an object of C, and let
EWK! Pˆ.C/ be a diagram with K 2 ˆ. We have a natural isomorphism

Pˆ.C/.y.C /; colim
k2K

Ek/ Š colim
k2K

Pˆ.C/.y.C /; Ek/;

and dually, for a diagram F WK! Lˆ.C/,

Lˆ.C/. lim
k2K

Fk;y.C // Š colim
k2K

Lˆ.C/.F k;y.C //:

Proof. We have

Pˆ.C/.y.C /; colim
k2K

Ek/

Š CAT.Cop;Set/.C.�; C /; colim
k2K

Ek/

Š .colim
k2K

Ek/.C / Yoneda lemma,

Š colim
k2K

..Ek/C / componentwise colimits,

Š colim
k2K

CAT.Cop;Set/.C.�; C /; Ek/ Yoneda lemma,

Š colim
k2K

Pˆ.C/.y.C /; Ek/:

This leads to the following formulas for the sets of morphisms (hom-sets), based
on the observation that representable functors preserve limits.

Corollary 2.3. Let ˆ be a class of small categories. If J ;K 2 ˆ, and F W J ! C,
GWK! Pˆ.C/, then

Pˆ.C/.colim
j2J

Fj; colim
k2K

Gk/ Š lim
j2J

colim
k2K

Pˆ.C/.Fj;Gk/; (2.3)

and dually, if H WK! Lˆ.C/, then

Lˆ.C/. lim
k2K

Hk; lim
j2J

Fj / Š lim
j2J

colim
k2K

Lˆ.C/.Hk; Fj /; (2.4)

where we identify an object of C with its image in Pˆ.C/ and Lˆ.C/.

Alternatively, one may construct Pˆ.C/, and, dually, Lˆ.C/, via transfinite in-
duction [3, 24], by iteratively adjoining (co)limits of diagrams with domain in ˆ, and
taking unions at limit ordinals. In certain important cases, such as those of small (or
finite) (co)limit or (co)product completions (see below), the induction stabilises after
only one step.

Therefore, if ˆ is a class of small categories such that the transfinite construction
converges in one step, every object in Pˆ.C/ is obtained as the ˆ-colimit of a dia-
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gram in C, from which we obtain the following characterization of the ˆ-(co)limit
completion of C; Pˆ.C/ consists of

– diagrams F W J ! C with J 2 ˆ as objects,

– hom-sets given by the formula1

Pˆ.C/.F;G/ D lim
j2J

colim
k2K

C.Fj;Gk/

for diagrams F W J ! C, GWK! C with J ;K 2 ˆ.

Dually, in case every object in Lˆ.C/ is obtained as the ˆ-limit of a diagram
in C, the free limit completion of a category C is given by Lˆ.C/ D Pˆ.Cop/op.
Explicitly, it consists of

– diagrams F W J ! C with J 2 ˆ as objects,

– hom-sets given by the formula

Lˆ.C/.F;G/ D lim
k2K

colim
j2J

C.Fj;Gk/ (2.5)

for diagrams F W J ! C, GWK! C with J ;K 2 ˆ.

Such a characterization is appropriate, for example, when ˆ consists of the class
of all small (resp. finite) discrete categories, yielding small (resp. finite) coproduct and
product completions, or, if ˆ consists of the class of all small (resp. finite) categories,
yielding small (resp. finite) colimit and limit completions.

Free coproduct completion: If ˆ is the class of discrete small categories (sets),
then ˆ-Colim is the 2-category of categories with coproducts, coproduct-preserving
functors and all natural transformations. In this case, we write Fam D Pˆ.

We can explicitly describe the objects of Fam.C/ – these are given by set-indexed
families of objects .Xi /i2I , with Xi 2 C. Using the representation coming out of
Corollary 2.3, we can also describe the hom-sets of morphisms from .Xi /i2I to
.Yj /j2J as Y

i2I

a
j2J

C.Xi ; Yj /:

There is a wealth of literature studying free coproduct completions and their proper-
ties. For instance, we refer the reader to [1,9], [6, Chapter 6], [47, Section 7], and [38].

Free (co)limit completion: When ˆ consists of all small categories, ˆ-Colim is the
2-category of categories with small colimits and small-colimit preserving functors.

Given a category C, its free colimit completion P .C/ is the full subcategory of
CAT.Cop; Set/ consisting of the essentially small or accessible functors [24]. When
C is itself essentially small, we have P .C/ ' CAT.Cop;Set/.

1See [51, Section 1], and compare with (2.3).
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Alternatively, as noted above, we can characterize P .C/ as the category with
diagrams F W J ! C with J small as objects and hom-sets

P .C/.F;G/ D lim
j2J

colim
k2K

C.Fj;Gk/

for diagrams F W J ! C, GWK! C with J ;K small.

Free finite limit completion: We consider the class ˆ D fin of all finite categories,
in which caseˆ-Lim is the 2-category of categories with finite limits and the functors
that preserve them. We denote the free finite limit completion pseudomonad by Lfin.

For any given category C, the category Lfin.C/ also admits a description as a
category of diagrams, similar to L.C/.

Free pullback completion: We consider the class ˆ D pb consisting of a single
element, the cospan category: � ! �  �

The 2-category ˆ-Lim is the 2-category of categories with pullbacks and pull-
back preserving functors between them, and we denote the free pullback completion
pseudomonad by Lpb.

Unlike previous examples, not every object in Lpb.C/ can be obtained by taking
the pullback of a diagram in Lpb.C/ of objects in the essential image of yWC !

Lpb.C/, so we cannot recover any formulas analogous to (2.5); we refer the interested
reader to [3, Section 7] for further details.

3. Three pseudomonads

Let T be a pseudomonad on CAT. We consider the following instance of the main
result from [53].

Lemma 3.1. The following are equivalent:

(i) Fam lifts to a (lax idempotent) pseudomonad FamT on T -PsAlg.

(ii) There exists a pseudodistributive law ıW T ı Fam! Fam ı T .

Proof. Since Fam is a lax idempotent pseudomonad [26], we may instantiate [53,
Theorem 35] with P D Fam.

In the presence of a pseudodistributive law ıWT ıFam! Fam ı T , the composite
Fam ı T also has the structure of a pseudomonad on CAT [40, Section 5]. We also
recall the following result from [41, Section 6].

Lemma 3.2. We have a biequivalence FamT -PsAlg ' .Fam ı T /-PsAlg.
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In [41] we also find a description of the FamT -pseudoalgebras; they are the cate-
gories C together with

– a T -pseudoalgebra structure ƒW T .C/! C on C,

– a Fam-pseudoalgebra structure
`
WFam.C/! C on C – in other words, C is a

category with coproducts,

– the coproduct functor
`
WFam.C/! C lifts to a T -pseudomorphism.

Moreover, a FamT -pseudomorphism F WC ! D is a functor F that preserves
coproducts and is a T -pseudomorphism in a compatible way (up to natural isomor-
phism).

Our work focuses on pseudomonads T that are free ˆ-limit completions for a
class ˆ of small categories. For simplicity, we introduce the following terminology.

Definition 3.3. For a class ˆ of small categories, we say that the .Fam ı Lˆ/-
pseudoalgebras are the ˆ-coproduct distributive categories.

In this setting, we have the following result.

Lemma 3.4. For a class ˆ of small categories, Fam lifts to a pseudomonad FamLˆ

on ˆ-Lim. Consequently, FamLˆ
-PsAlg is biequivalent to .Fam ıLˆ/-PsAlg.

Proof. Since Fam.C/ has whichever ˆ-limits that C has and Fam.F / is ˆ-limit
preserving whenever F is [18, Section 4], we conclude that Fam lifts to an endo-2-
functor onˆ-Lim, and yWC! Fam.C/ preservesˆ-limits. Moreover, since we have
a fully faithful adjoint string

Fam � y a m a y � Fam;

we note that, in particular, m is a right adjoint, and therefore preserves ˆ-limits.

In [37], we study the pseudodistributive laws of the free product completion pseu-
domonad LSet D Fam..�/op/op and the free finite product completion pseudomonad
LfinSet D FinFam..�/op/op over Fam, taking Set (finSet) to be the class of small
(finite), discrete categories. The composite pseudomonads Dist D Fam ı LSet and
Fam ıLfinSet are the pseudomonads whose pseudoalgebras are the doubly-infinitary
distributive categories and infinitary distributive categories, respectively. Under the
terminology we introduced, these are the product-coproduct distributive categories
and the finite product-coproduct distributive categories. In the current work, we shall
see that

– ˆ-coproduct distributive categories are infinitary lextensive categories, for the
class ˆ of finite categories (which corresponds to distributivity of finite limits
over coproducts);
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– ˆ-coproduct distributive categories are the infinitary extensive categories with
pullbacks, for the singleton class ˆ consisting of the cospan category � ! �  �
(which corresponds to distributivity of pullbacks over coproducts);

– ˆ-coproduct distributive categories are the infinitary lextensive categories that are
doubly-infinitary distributive as well, for the classˆ of all small categories (which
corresponds to distributivity of limits over coproducts).

3.1. Infinitary lextensive categories

We recall that a category with small coproducts C is infinitary extensive if it has
pullbacks along coproduct inclusions, and if the coproducts are disjoint and pullback-
stable. This can be expressed in three conditions:

(a) for every pair of objects A;B 2 C, we have a pullback diagram

0 A

B AC B;

p

(b) for each morphism f WY !
`
i2I Xi , if we take pullbacks along the coprod-

uct inclusions Xi
�i
�!

`
i2I Xi ,

Yi Y

Xi
`
i2I Xi ;

�i

p

f

�i

we have that Yi
�i
�! Y form a coproduct diagram as well, and

(c) for every family .fi WYi ! Xi /i2I of morphisms, the following commutative
square:

Yi
`
i2I Yi

Xi
`
i2I Xi

�i

fi

p `
i2I fi

�i

is a pullback diagram.

We also make use of the following notation: if C is a category with coproducts and
a terminal object 1, we let � � 1WSet! C be the functor left adjoint to C.1;�/WC!

Set. We highlight that if C has a terminal object 1, then so does Fam.C/, so we have
a functor � � 1WSet! Fam.C/.

The following result, appearing in [10] and [47], is an important step in the char-
acterization of the FamLfin -pseudoalgebras.
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Lemma 3.5. Let C be a category with finite limits and coproducts. Then the following
are equivalent:

(i) C is infinitary lextensive;

(ii)
`
WFam.C/! C preserves finite limits.

Proof. For an infinitary lextensive C, [47, Lemma 7.1] guarantees that we have an
equivalence Fam.C/ ' .C # .� � 1//, and that the projection .C # .� � 1//! C

preserves finite limits. Moreover, we also establish that the composite

Fam.C/
'
��! .C # .� � 1//! C

corresponds to the coproduct functor Fam.C/! C. This shows that (i) H) (ii).
Now, if we assume (ii), it follows in particular that

`
preserves pullbacks. So, we

consider the following pullback diagrams in Fam.C/

¿ A0

A1 .Ai /i2¹0;1º;

p .Yi /i2I Y

.Xi /i2I
`
i2I Xi ;

p

f

Vj .Vj /j2J

Wj .Wj /j2J

p

(3.1)

for objectsA0;A1 2C, a morphism f WY !
`
i2I Xi in C, and a family of morphisms

.gj WVj ! Wj /j2J in C.
Since the coproduct functor preserves pullbacks, it can be composed with each

diagram (3.1) to respectively obtain the pullback diagrams in (a), (b) and (c). Hence,
we witness the infinitary extensivity of C, thereby confirming that (ii) H) (i).

Now, by Lemma 3.2 and the description for FamLfin -pseudoalgebras, we conclude
the following.

Theorem 3.6. The 2-category .Fam ı Lfin/-PsAlg consists of infinitary lextensive
categories and functors preserving coproducts and finite limits.

3.2. Infinitary extensive categories with pullbacks

We can still obtain results analogous to Lemma 3.5 even in the absence of terminal
objects.

Lemma 3.7. Let C be a category with coproducts and pullbacks. The following are
equivalent:

(i) The coproduct functor
`
WFam.C/! C preserves pullbacks.

(ii) C is infinitary extensive.
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Proof. If C is infinitary extensive and has pullbacks, then C # X is infinitary lexten-
sive for all objects X . Thus, we may apply Lemma 3.5 to conclude that

Fam.C/ # X ' Fam.C # X/ �̀�! C # X

preserves finite limits. Since Fam.C/ is infinitary extensive, we have

Fam.C/ # .Xi /i2I '
Y
i2I

Fam.C/ # Xi ;

and a product of finite limit preserving functors preserves finite limits as well. Thus,
we deduce that

`
WFam.C/! C preserves pullbacks, confirming that (ii) H) (i).

Conversely, if
`
W Fam.C/! C preserves pullbacks, we follow the same argu-

ment used for Lemma 3.5: we compose the coproduct functor with each of the dia-
grams (3.1) to respectively obtain (a), (b) and (c), exhibiting infinitary extensiveness.
This proves that (i) H) (ii).

As a consequence, by Lemma 3.2 and the description of FamLpb -pseudoalgebras,
we conclude the following.

Theorem 3.8. The 2-category .Fam ıLpb/-PsAlg consists of infinitary extensive cat-
egories with pullbacks and functors which preserve coproducts and pullbacks.

3.3. Doubly-infinitary lextensive categories

Inspired by the terminology of [37], we call the .Fam ıL/-pseudoalgebras doubly-
infinitary lextensive categories.

Theorem 3.9. Let C be a category with coproducts and limits. The following are
equivalent:

(i) The coproduct functor
`
WFam.C/! C preserves limits.

(ii) C is doubly-infinitary extensive.

(iii) C is lextensive and doubly-infinitary distributive.

Proof. We have the equivalence (i)” (ii) by definition.
The equivalence (iii)” (ii) follows by Lemma 3.7 and [37, Lemma 3.1]. We

use the basic facts that any limit can be obtained via pullbacks and arbitrary prod-
ucts, and that infinitary extensive categories with products are, in particular, infinitary
distributive (see [9, Proposition 4.5]).
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4. Exponentiability in freely generated structures

The purpose of this section is to study the exponentiable objects of the free comple-
tions Fam.Lfin.C// and Fam.L.C//, which constitute the main results of this work.
Aiming for a self-contained account of exponentiability, we begin by recalling the
definition of exponentiable object, as well as some elementary properties.

In order to fix notation, we recall that an objectE in a category C with finite prod-
ucts is exponentiable at X if there exists an object E) X and a natural isomorphism

C.� �E;X/ Š C.�; E ) X/: (4.1)

We say that E is exponentiable if (4.1) holds naturally for every object X in C.
We revisit the following elementary observation about exponentiable objects used

in [37, Remark 1].

Lemma 4.1. Let C be a category with finite products and J -limits for a small cate-
gory J . If F WJ ! C is a diagram, and E is an object such that E is exponentiable at
Fj for each j in J , then E is exponentiable at limj2J F and

E ) lim
j2J

Fj Š lim
j2J

.E ) Fj /:

Proof. For each object A, we have a natural isomorphism

C.A �E; lim
j2J

Fj / Š lim
j2J

C.A �E;Fj / Š lim
j2J

C.A;E ) Fj /

Š C.A; lim
j2J

.E ) Fj //

as desired.

We recall from [6, Definition 6.1.3] that an object A of a category C is connected
if the hom-functor C.A;�/ preserves coproducts. It is an immediate consequence of
Lemma 2.2 that the objects in the essential image of yWC ! Fam.C/ are precisely
the connected objects in Fam.C/. We confirm that an analogous characterization is
available for the internal hom-functor.

Lemma 4.2. If C is a category with finite products, and C is an exponentiable object
in Fam.C/, then the following are equivalent:

(i) C is connected.

(ii) C ) � preserves coproducts.
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Proof. Let .Ai /i2I be a family of objects in C, and let .Xj /j2J be a family of objects
in Fam.C/. If C is connected, then we have natural isomorphisms

Fam.C/
�
.Ai /i2I � C;

a
j2J

Xj

�
Š Fam.C/

�
.Ai � C/i2I ;

a
j2J

Xj

�
products in Fam.C/;

Š

Y
i2I

a
j2J

Fam.C/.Ai � C;Xj / (2.3);

Š

Y
i2I

a
j2J

Fam.C/.Ai ; C ) Xj / C exponentiable;

Š Fam.C/
�
.Ai /i2I ;

a
j2J

.C ) Xj /
�

(2.3):

Hence, we conclude that a
j2J

.C ) Xj / Š C )
a
j2J

Xj ;

which confirms that (i) H) (ii).
Conversely, if C )� preserves coproducts, then for a family .Xj /j2J of objects

in Fam.C/, we have

Fam.C/
�
C;
a
j2J

Xj

�
Š Fam.C/

�
1; C )

a
j2J

Xj

�
C exponentiable;

Š Fam.C/
�
1;
a
j2J

C ) Xj

�
by hypothesis (ii);

Š

a
j2J

Fam.C/.1; C ) Xj / terminal connected;

Š

a
j2J

Fam.C/.C;Xj /;

hence, we conclude that (ii) H) (i).

Let ˆ be a class of small categories that includes all finite, discrete categories,
so that every Lˆ-pseudoalgebra has finite products. For the sake of succinctness, we
say that an object of Fam.Lˆ.C// is a generator if it is in the essential image of the
inclusion C ! Fam.Lˆ.C//.

We will give an inductive perspective on exponentials in Fam.Lˆ.C//, and the
following result is the cornerstone for our development (see [37, Remark 1]).
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Lemma 4.3. If X is a generator and D is connected in Fam.Lˆ.C//, then D is
exponentiable at X and we have

D) X Š X C yC.D;X/ � 1

where yC D Fam.Lˆ.C//.

Proof. Let .Ei /i2I be a family of objects in Lˆ.C/. We have natural isomorphisms

yC..Ei /i2I �D;X/

Š yC..Ei �D/i2I ; X/ products in yC

Š

Y
i2I

yC.Ei �D;X/ yC.�; X/ preserves products;

Š

Y
i2I

Lfin.C/.Ei �D;X/ full faithfulness;

Š

Y
i2I

Lfin.C/.Ei ; X/CLfin.C/.D;X/ (2.4);

Š

Y
i2I

yC.Ei ; X/C yC.D;X/ full faithfulness;

Š yC..Ei /i2I ; X C yC.D;X/ � 1/ (2.3):

4.1. Exponentials for free doubly-infinitary lextensive categories

Having reviewed the elementary properties of exponentiable objects, we proceed to
prove our main result on exponentiability of the objects of freely generated doubly-
infinitary lextensive categories.

Theorem 4.4. The category Fam.L.C// is cartesian closed.

Proof. First, we note that connected objects are exponentiable:

– By Lemma 4.3, we have that any connected object in Fam.L.C// is exponen-
tiable at the generators.

– Any connected object is a limit of generators, so by Lemma 4.1 we conclude that
connected objects are exponentiable at any connected object in Fam.L.C//.

– Since any object in Fam.L.C// is a coproduct of connected objects, we simply
apply Lemma 4.2 to deduce our claim.

Now, let .Ei /i2I and .Dj /j2J be families of objects in L.C/, and X any object
in yC. We have natural isomorphisms

yC..Ei /i2I � .Dj /j2J ; X/

Š yC..Ei �Dj /.i;j /2I�J ; X/ binary products in yC;
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Š

Y
i2I

Y
j2J

yC.Ei �Dj ; X/ yC.�; X/ preserves limits;

Š

Y
i2I

Y
j2J

yC.Ei ;Dj ) X/ Dj connected (exponentiable);

Š

Y
i2I

yC
�
Ei ;

Y
j2J

.Dj ) X/
�

Š yC
�
.Ei /i2I ;

Y
j2J

.Dj ) X/
�
:

Thus, we obtain
.Dj /j2J ) X Š

Y
j2J

.Dj ) X/;

confirming that coproducts of connected objects are exponentiable. But every object
in Fam.L.C// is a coproduct of connected objects, hence the result follows.

4.2. Explicit descriptions of the exponentials

Let .Dj /j2J and .Ek WAk ! C/k2K be families of objects in L, where Ak is a small
category for each k 2 K.

The results of the previous subsection can be used to calculate an explicit expres-
sion for the exponential .Dj /j2J ) .Ek/k2K in Fam.L.C//: via Lemmas 4.1–4.3,
one of Theorems 4.7 or 4.4, and the key ideas of the proof of [37, Theorem 2.3], we
obtain

.Dj /j2J ) .Ek/k2K Š
�Y
j2J

lim
l2A

f K
j

�f;j;l

�
f 2�

(4.2)

where

� D
Y
j2J

a
k2K

lim
l2Ak

.1CL.C/.Dj ; Ek;l//;

�f;j;l D

8<:EfK
j
;l if fj .l/ 2 1;

1 if fj .l/ 2 L.C/.Dj ; EfK
j
;l/;

and f Kj is the projection of fj onto K for each f 2 �, j 2 J .

Remark 4.5. As long as C has an initial object 0, the exponentials may be given
explicitly by

.Dj /j2J ) .Ek/k2K Š
�Y
j2J

dc.�2.f .j ///
�
f 2�
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where
� D

Y
j2J

a
k2K

.Lfin.C//.Dj � 0; Ek/;

and dc.g/ is defined via the following pushout in Lfin.C/, by co-extensivity:

Di � 0 E�1.f .i//

0 dc.g/:

g

�2

p

4.3. Exponentials for free infinitary lextensive categories

As we remarked in Section 2, we have a fully faithful, finite limit preserving functor

uWLfin.C/! L.C/

for every category C. By studying the fully faithful functor

u D Fam.u/WFam.Lfin.C//! Fam.L.C//;

we can deduce results about exponentiability of objects in Fam.Lfin.C//. More pre-
cisely, we have the following lemma.

Lemma 4.6. The functor u reflects exponentials of finite coproducts of connected
objects.

Proof. Let .Dj /j2J be a finite family of objects in Lfin.C/, and let .Ek WAk!C/k2K
be a family of objects in Lfin.C/, where Ak is a finite category for each k 2 K. Given
any object X in Fam.Lfin.C//, we have

Fam.Lfin.C//.X � .Dj /j2J ; .Ek/k2K/

Š yC
�
u.X � .Dj /j2J /;u..Ek/k2K/

�
u fully faithful;

Š yC
�
u.X/ � u..Dj /j2J /;u..Ek/k2K/

�
u preserves binary products

Š yC
�
u.X/;u..Dj /j2J /) u..Ek/k2K/

�
Fam.L.C// is cartesian closed;

where yC D Fam.L.C//. Moreover, we have

u..Dj /j2J /) u..Ek/k2K/ Š .u.Dj //j2J ) .u.Ek//k2K ;

and calculating the exponential as in (4.2), we obtain

.u.Dj //j2J ) .u.Ek//k2K Š
�Y
j2J

lim
l2L

f K
j

u.�f;j;l/
�
f 2„
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where

„ D
Y
j2J

a
k2K

lim
l2Lk

.1CLfin.C/.Dj ; Ek;l//;

�f;j;l D

8<:EfK
j
;l if fj .l/ 2 1;

1 if fj .l/ 2 Lfin.C/.Dj ; EfK
j
;l/;

and f Kj is the projection of fj onto K for each f 2 „, j 2 J .
Now, since u is fully faithful and preserves finite limits, it must reflect them as

well. Since we are given that J is finite, as well as Ak for all k 2 K, we haveY
j2J

lim
l2A

f K
j

u.�f;j;l/ Š u
�Y
j2J

lim
l2A

f K
j

�f;j;l

�
and thus

u..Dj /j2J /) u..Ek/k2K/ Š u
�Y
j2J

lim
l2L

f K
j

�f;j;l

�
f 2„

so, since u is fully faithful, we conclude that the exponential .Dj /j2J ) .Ek/k2K in
Fam.Lfin.C// exists and

.Dj /j2J ) .Ek/k2K Š
�Y
j2J

lim
l2L

f K
j

�f;j;l

�
f 2„

;

as desired.

As an immediate corollary, we obtain our second main result.

Theorem 4.7. Finite coproducts of connected objects in Fam.Lfin.C// are exponen-
tiable.

5. Examples

In this section, we intend to give a brief discussion on examples of the various notions
of (l)extensive categories arising from the ˆ-coproduct distributive categories dis-
cussed herein. More interestingly, we discuss examples of the doubly-infinitary lex-
tensive categories introduced in 3.3.

Recall that we consider the notion of doubly-infinitary distributive categories in-
troduced in [37], and the 2-functor Dist D Fam.Fam.�/op/op. By Theorem 3.9, dou-
bly-infinitary lextensive categories are precisely the doubly-infinitary distributive cat-
egories which are also lextensive. With this in mind, we refer the reader to the exam-
ples discussed in [37], and we make some considerations tailored to our setting.
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5.1. Fundamental examples

Let 1 be the terminal category (the category with precisely one object and the identity
morphism), and ¿ the initial category (the empty category).

Let ˆ be a class of small categories containing ¿. The category of sets

Set ' Fam.1/ ' Fam.Lˆ.¿//

is the free ˆ-coproduct distributive category on the empty category. Hence, it is the
initial object in the 2-category of ˆ-coproduct distributive categories.

Let ˆ be a class of small categories containing all discrete categories. Then the
category

Fam.Setop/ ' Fam.L.1// ' Dist.1/

is the free ˆ-coproduct distributive category on the terminal category 1. As such,
Fam.Setop/ is both the free doubly-infinitary lextensive category, and the free doubly-
infinitary distributive category on 1. By Theorem 4.4 (or [37, Theorem 2.3]), we
conclude that Fam.Setop/ (also known as the category of polynomials) is cartesian
closed – recovering the result of [4].

5.2. Monadicity and presheaves

Let ˆ be a class of categories. The “ˆ-coproduct distributivity” properties can be
lifted through functors that create ˆ-limits and coproducts. To be precise, we have
the following elementary result.

Lemma 5.1. Let GWD ! C be a functor that creates coproducts and ˆ-limits. If C

is a ˆ-coproduct distributive category, then so is D.

Since pseudomonadic pseudofunctors create bicategorical products (see, for in-
stance, [30, 32] for lifting results on the pseudomonad setting, and [49, 50] and [33,
3.8] for bilimits), we find the following.

Lemma 5.2. The 2-categories ˆ-Lim and .Fam ı Lˆ/-PsAlg have bicategorical
products, given by the product of the underlying categories.

More specifically, if .Ci /i2I is a family of ˆ-limit complete (ˆ-coproduct dis-
tributive) categories, then Y

i2I

Ci

is ˆ-limit complete (ˆ-coproduct distributive).

By applying Corollary 5.1, we conclude the following theorem.
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Theorem 5.3. Let J be a small category. If C is a ˆ-coproduct distributive category,
then the functor category CAT.J ;C/ is ˆ-coproduct distributive as well.

Proof. The result follows from the fact that the restriction/forgetful functor

CAT.J ;C/! CAT.ob J ;C/ Š
Y
j2ob J

C

creates limits and colimits that exist in C, and Lemma 5.2.

As a consequence, if A is a small category, the presheaf category CAT.Aop; Set/
is ˆ-coproduct distributive, provided that ˆ contains ¿. In particular, CAT.Aop;Set/
is doubly-infinitary extensive.

5.3. Finite and small bicategorical biproducts

As remarked in [37, Subsection 4.3], the 2-category of categories with products is
bicategorically semi-additive. This observation also extends to our setting.

Let ˆ be a class of small categories containing the finite discrete categories. We
note that the 2-category ˆ-Lim of ˆ-limit complete categories is naturally enriched
over the 2-category of symmetric monoidal categories with the multilinear multicate-
gorical structure. Together with Lemma 5.2, we conclude that the 2-category ˆ-Lim
has finite bicategorical coproducts, which are equivalent to the finite bicategorical
products. In other words, this results in the following lemma.

Lemma 5.4. The 2-category ˆ-Lim has finite bicategorical biproducts.

Moreover, it is clear that the hom-categories in the 2-category ˆ-Lim are them-
selves ˆ-limit complete – moreover, noting that composition of ˆ-limit preserving
functors preserve ˆ-limits componentwise, we conclude the following.

Lemma 5.5. The 2-category ofˆ-limit complete categories is naturally enriched over
itself, with the multilinear multicategorical structure.

Ifˆ contains all (small) discrete categories, then by Lemmas 5.2 and 5.5, we con-
clude that the 2-category ofˆ-limit complete categories has bicategorical coproducts,
which are equivalent to the bicategorical products. This is given in the next lemma.

Lemma 5.6. If ˆ is a class of small categories containing the discrete categories,
then the 2-category of ˆ-limit complete categories has infinite bicategorical biprod-
ucts.

This allows us to understand freely generated ˆ-coproduct distributive categories
over coproducts of categories, as we, for instance, show in Section 5.4.
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5.4. Freely generated categorical structures on discrete categories

Now, we assume ˆ be a class of small categories that contains all the small (respec-
tively, finite) discrete categories.

If C is a small (finite) discrete category, we have C '
`
c2ob C 1. Since Lˆ pre-

serves small (finite) bicategorical biproducts and Lˆ.1/ ' Setop, we have that

Lˆ.C/ ' Lˆ

� a
c2ob C

1
�
'

Y
c2ob C

Lˆ.1/ '
Y
c2ob C

Setop

by Lemma 5.6. Therefore, we have the following.

Theorem 5.7. If C is a small discrete category, then

Fam.Lˆ.C// ' Fam
� Y
c2ob C

Setop
�
:

In particular, this result describes the free doubly-infinitary distributive categories,
and free doubly-infinitary lextensive categories on a small, discrete category C.

5.5. More on doubly-infinitary lextensive categories via free coproduct
completions

As we showed in Lemma 3.4, Fam lifts to a pseudomonad FamLˆ
on Lˆ-PsAlg.

Thus, if a category C has ˆ-limits, then Fam.C/ has ˆ-limits as well, which are
preserved by the coproduct mWFam.Fam.C//! Fam.C/. In particular,

– if C has pullbacks, then Fam.C/ is infinitary extensive with pullbacks,

– if C has finite limits, then Fam.C/ is infinitary lextensive,

– if C has small limits, then Fam.C/ is doubly-infinitary lextensive,

– if C has products, then Fam.C/ is doubly-infinitary distributive by [37, Exam-
ple 1].

So, even if a category C with products does not have small limits, we can still
establish that the category Fam.C/ is doubly-infinitary distributive, and it is extensive
[9] by virtue of being a free coproduct completion. Hence, if Fam.C/ has small limits,
we conclude that it is doubly-infinitary lextensive, by Theorem 3.9.

Before discussing our examples, we let Conn.C/ be the full subcategory of a
category C with coproducts consisting of the connected objects [6, Definition 6.1.3].

We begin by noting that the category Cat' Fam.Conn.Cat// of small categories
is doubly-infinitary lextensive, as it is both doubly-infinitary distributive and exten-
sive, and Cat has small limits. Likewise, we can prove that the category !-CPO '
Fam.Conn.!-CPO// of !-complete partial orders is also a doubly-infinitary lexten-
sive category.
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Again similarly, the category LocConTop of locally connected topological spaces
and continuous functions is doubly-infinitary lextensive. Indeed, from [37, Exam-
ple 8], we learn that LocConTop ' Fam.Conn.LocConTop// is both doubly-infini-
tary distributive and extensive, as the free coproduct completion of a category with
products. Moreover, LocConTop is a coreflective subcategory of Top [17], therefore,
LocConTop has small limits, letting us conclude that LocConTop is doubly-infinitary
lextensive.

5.6. Doubly-infinitary distributive categories that are not extensive

As observed in [37], a distributive lattice D (seen as a distributive, thin category) is
extensive if and only if D ' 1, so any non-trivial example of a completely distributive
lattice D will be doubly-infinitary distributive, but not extensive.

Another example is the full subcategory Set2� of Set� Set consisting of those pairs
of sets that are either both empty, or both non-empty. Since coproducts and products
are calculated componentwise in Set2�, this category is doubly-infinitary distributive
as well, but it is not extensive.

5.7. Cartesian closedness vs. doubly-infinitary lextensivity

The category Fam.Top/ is an example of a doubly-infinitary lextensive category that
is not cartesian closed. We note that the category Top of topological spaces is infini-
tary distributive, but not cartesian closed. So, by [37, Theorem 4.2], we conclude that
Fam.Top/ is not cartesian closed as well. However, Fam.Top/ is doubly-infinitary
lextensive, since Top has small limits.

An example of a cartesian closed category with all coproducts and limits, but
not doubly-infinitary lextensive, is given in [37, Counter-example 2], the category of
Quasi-Borel spaces.

6. Epilogue

Motivated particularly by the insights from [37, 38], the present work explores the
distributive properties of limits over coproducts through the lens of two-dimensional
monad theory [5, 30].

We have demonstrated that the canonical (pseudo)distributivity of pullbacks over
coproducts leads to a pseudomonad whose pseudoalgebras are precisely the infinitary
extensive categories equipped with pullbacks. Similarly, the distributivity of finite
limits over coproducts leads to the notion of a pseudomonad whose 2-category of
pseudoalgebras is precisely the 2-category of infinitary lextensive categories. Finally,
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we showed that the distributivity of limits over coproducts leads to the concept of
doubly-infinitary lextensivity, characterized as infinitary extensive categories that are
also doubly-infinitary distributive as introduced in [37].

We also studied the exponentiable objects of the free completions Fam.Lfin.C//

and Fam.L.C//, confirming that the latter is a cartesian closed category for any cat-
egory C. These free completions enjoy various other known properties since they end
up being the free coproduct completion of a well-behaved category – we refer the
reader to [1, 9, 36–38] for further results.

Free finite coproduct completion

By replacing the free coproduct pseudomonad Fam with its finite counterpart
FinFam, we recover nearly all of our results, provided we make some adaptations
to be finitary setting. Namely, we obtain a pseudodistributive law

Lˆ ı FinFam! FinFam ıL� ;

for any class ˆ of finite categories, by reworking the proof of Lemma 3.4. We then
obtain two more characterizations:

– the .FinFam ı Lpb/-pseudoalgebras are precisely the extensive categories with
pullbacks,

– the .FinFam ıLfin/-pseudoalgebras are precisely the lextensive categories.

Most consequentially, an adaptation of our exponentiability results will confirm that
FinFam.Lfin.C// is a cartesian closed category whenever C is locally finite.

Descent theory

Effective descent morphisms [16, 22] (see also [35, Sections 3 and 4]) are the back-
bone of Grothendieck’s descent theory [21, 33], which has significant consequences
in various fields [8,43,48]. Besides their wide range of applications, effective descent
morphisms hold intrinsic interest, as their purpose is the reconstruction of data over
the codomain from given data over the domain, plus some additional algebraic struc-
ture.

Of particular relevance to the present work are effective descent morphisms of
freely generated categorical structures. For instance, [45, Section 4] studied categories
of descent data for families of morphisms �W .Xi /i2I ! Y , as well as conditions under
which � is an effective descent morphism in Fam.C/, provided that C has finite
limits. Namely, it was shown that all such descent data is a coproduct of connected
descent data, which provided simpler conditions for a morphism �W .Xi /i2I ! Y

to be of effective descent – this gives evidence that Fam.C/ is a good proxy for
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the study of effective descent morphisms of C. This perspective was useful in the
study of effective descent functors between enriched categories, establishing precise
connections between the work of [29], [33, Theorem 9.11], [46], and the work of
[11, 12, 48].

Since the free completions Dist.C/ and Fam.L.C// are even better behaved
categories, enjoying properties such as cartesian closedness, an inquiry on whether
studying effective descent morphisms in such free completions seems to be a reason-
able avenue for future work.

Non-canonical isomorphisms

In analogy with [37, Subsection 5.2], we may use the results of [34] to prove that a
category C is ˆ-coproduct distributive if it has coproducts, ˆ-limits, and there exists
a(ny) invertible natural isomorphisma

x2limj 2J UF

lim
j2J

Fj;xj

Š
���! lim

j2J

a
x2UFj

Fj;x

for every functor F W J ! Fam.C/ with J 2 ˆ, where we let U WFam.C/! Set be
the functor that outputs the underlying indexing set.

More generally, if we have a pseudomonad T on CAT and a pseudodistributive
law ıW T ı Fam! Fam ı T , then for any category C with coproducts and the struc-
ture of a T -pseudoalgebra, the coproduct functora

WFam.C/! C

is an oplax T -morphism by doctrinal adjunction [23, 31]. The (codual version of the)
techniques of non-canonical isomorphisms from [34] can be applied just as well to
this setting.

Comparison to Cockett and Lack [14]

In [14], the authors address the extensive completion Bool.C/ of a distributive cat-
egory C, whereas our work concerns, among others, the free lextensive category on
any (possibly non-distributive) category C.

If C is already distributive, this raises the question of whether our completion
coincides with Cockett and Lack’s construction. The answer is “no”. In our setting,
the canonical inclusion

yWC ! FinFam.Lfin.C// (6.1)

does not preserve finite coproducts nor finite limits, as we are dealing with a free
completion. In contrast, the embedding constructed in [14]

I WC ! Bool.C/
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preserves coproducts and products, so this is not a free completion. In fact, if C is
extensive to begin with, we obtain an equivalence I WC ' Bool.C/, but this is far
from the case for the embedding (6.1).

This distinction between free and non-free completions is encompassed by the
difference between lax idempotent monads and pseudo-idempotent monads, which is
a topic we plan to discuss in future work.

Acknowledgments. We acknowledge the community for the prompt reactions to our
work. In particular, we thank Robin Kaarsgaard for useful queries, which brought
forth the final topic of Section 6. We are grateful to the anonymous referees for their
informative reports.

The first author wishes to extend a special thanks to Tim Van der Linden for his
warm hospitality at Université catholique de Louvain during a brief stay in May 2024,
for the UCLouvain-ULB-VUB Category Theory Seminar. The inspiring environment
and their kindness nurtured a much needed peace of mind, which aided the advance-
ment of this work.

Funding. This project has received funding via NWO Veni grant number VI.Veni.
201.124. The first two named authors acknowledge partial financial support by Cen-
tro de Matemática da Universidade de Coimbra (CMUC), funded by the Portuguese
Government through FCT/MCTES, DOI 10.54499/UIDB/00324/2020.

References

[1] J. Adámek and J. Rosický, How nice are free completions of categories? Topology Appl.
273 (2020), article no. 106972 MR 4074756

[2] J. Adámek, J. Rosický, and E. M. Vitale, On algebraically exact categories and essential
localizations of varieties. J. Algebra 244 (2001), no. 2, 450–477 Zbl 1004.18006
MR 1859036

[3] M. H. Albert and G. M. Kelly, The closure of a class of colimits. J. Pure Appl. Algebra 51
(1988), no. 1-2, 1–17 Zbl 0656.18004 MR 0941885

[4] T. Altenkirch, P. Levy, and S. Staton, Higher-order containers. In Programs, proofs, pro-
cesses, pp. 11–20, Lecture Notes in Comput. Sci. 6158, Springer, Berlin, 2010
Zbl 1286.68327 MR 2678110

[5] R. Blackwell, G. M. Kelly, and A. J. Power, Two-dimensional monad theory. J. Pure Appl.
Algebra 59 (1989), no. 1, 1–41 Zbl 0675.18006 MR 1007911

[6] F. Borceux and G. Janelidze, Galois theories. Cambridge Stud. Adv. Math. 72, Cambridge
University Press, Cambridge, 2001 Zbl 0978.12004 MR 1822890

[7] J. Bourke, Two-dimensional monadicity. Adv. Math. 252 (2014), 708–747
Zbl 1294.18004 MR 3144247

https://doi.org/10.1016/j.topol.2019.106972
https://mathscinet.ams.org/mathscinet-getitem?mr=4074756
https://doi.org/10.1006/jabr.2000.8577
https://doi.org/10.1006/jabr.2000.8577
https://zbmath.org/?q=an:1004.18006
https://mathscinet.ams.org/mathscinet-getitem?mr=1859036
https://doi.org/10.1016/0022-4049(88)90073-4
https://zbmath.org/?q=an:0656.18004
https://mathscinet.ams.org/mathscinet-getitem?mr=0941885
https://doi.org/10.1007/978-3-642-13962-8_2
https://zbmath.org/?q=an:1286.68327
https://mathscinet.ams.org/mathscinet-getitem?mr=2678110
https://doi.org/10.1016/0022-4049(89)90160-6
https://zbmath.org/?q=an:0675.18006
https://mathscinet.ams.org/mathscinet-getitem?mr=1007911
https://doi.org/10.1017/CBO9780511619939
https://zbmath.org/?q=an:0978.12004
https://mathscinet.ams.org/mathscinet-getitem?mr=1822890
https://doi.org/10.1016/j.aim.2013.11.007
https://zbmath.org/?q=an:1294.18004
https://mathscinet.ams.org/mathscinet-getitem?mr=3144247


F. Lucatelli Nunes, R. Prezado, and M. Vákár 202

[8] R. Brown and G. Janelidze, Van Kampen theorems for categories of covering morphisms
in lextensive categories. J. Pure Appl. Algebra 119 (1997), no. 3, 255–263
Zbl 0882.18005 MR 1453515

[9] A. Carboni, S. Lack, and R. F. C. Walters, Introduction to extensive and distributive cate-
gories. J. Pure Appl. Algebra 84 (1993), no. 2, 145–158 Zbl 0784.18001 MR 1201048

[10] C. Centazzo and E. M. Vitale, Sheaf theory. In Categorical foundations, pp. 311–357,
Encyclopedia Math. Appl. 97, Cambridge University Press, Cambridge, 2004
Zbl 1061.18002 MR 2056586

[11] M. M. Clementino and D. Hofmann, Effective descent morphisms in categories of lax
algebras. Appl. Categ. Structures 12 (2004), no. 5-6, 413–425 Zbl 1078.18008
MR 2107395

[12] M. M. Clementino and D. Hofmann, The rise and fall of V -functors. Fuzzy Sets and Sys-
tems 321 (2017), 29–49 Zbl 1390.18019 MR 3655712

[13] M. M. Clementino and F. Lucatelli Nunes, Lax comma 2-categories and admissible 2-
functors. Theory Appl. Categ. 40 (2024), no. 6, 180–226 Zbl 07844805 MR 4732696

[14] J. R. B. Cockett and S. Lack, The extensive completion of a distributive category. Theory
Appl. Categ. 8 (2001), 541–554 Zbl 1005.18003 MR 1870616

[15] I. Di Liberti, G. Lobbia, and L. Sousa, KZ-pseudomonads and Kan injectivity. Theory
Appl. Categ. 40 (2024), no. 16, 430–479 MR 4749716

[16] J. Giraud, Méthode de la descente. Bull. Soc. Math. France Mém. 2 (1964)
Zbl 0211.32902 MR 0190142

[17] A. M. Gleason, Universal locally connected refinements. Illinois J. Math. 7 (1963), 521–
531 Zbl 0117.16101 MR 0164315

[18] J. W. Gray, Fibred and cofibred categories. In Proc. Conf. Categorical Algebra (La Jolla,
Calif., 1965), pp. 21–83, Springer New York, Inc., New York, 1966 Zbl 0192.10701
MR 0213413

[19] A. Grothendieck and J. L. Verdier, Prefaisceaux. In Théorie des topos et cohomologie
étale des schémas, pp. 1–21, Séminaire de Géométrie Algébrique du Bois Marie 1963/64
(SGA 4) 269, Springer, Berlin, 1972

[20] C. Hermida, Representable multicategories. Adv. Math. 151 (2000), no. 2, 164–225
Zbl 0960.18004 MR 1758246

[21] G. Janelidze and W. Tholen, Facets of descent. I. Appl. Categ. Structures 2 (1994), no. 3,
245–281 Zbl 0805.18005 MR 1285884

[22] G. Janelidze and W. Tholen, Facets of descent. II. Appl. Categ. Structures 5 (1997), no. 3,
229–248 Zbl 0880.18007 MR 1466540

[23] G. M. Kelly, Doctrinal adjunction. In Category Seminar (Proc. Sem., Sydney, 1972/1973),
pp. 257–280, Lecture Notes in Math. 420, Springer, Berlin-New York, 1974
Zbl 0334.18004 MR 0360749

[24] G. M. Kelly, Basic concepts of enriched category theory. London Math. Soc. Lecture Note
Ser. 64, Cambridge University Press, Cambridge-New York, 1982 Zbl 0478.18005
MR 0651714

[25] G. M. Kelly and S. Lack, On property-like structures. Theory Appl. Categ. 3 (1997), no. 9,
213–250 Zbl 0935.18005 MR 1476422

https://doi.org/10.1016/S0022-4049(96)00028-X
https://doi.org/10.1016/S0022-4049(96)00028-X
https://zbmath.org/?q=an:0882.18005
https://mathscinet.ams.org/mathscinet-getitem?mr=1453515
https://doi.org/10.1016/0022-4049(93)90035-R
https://doi.org/10.1016/0022-4049(93)90035-R
https://zbmath.org/?q=an:0784.18001
https://mathscinet.ams.org/mathscinet-getitem?mr=1201048
https://zbmath.org/?q=an:1061.18002
https://mathscinet.ams.org/mathscinet-getitem?mr=2056586
https://doi.org/10.1023/B:APCS.0000049310.37773.fa
https://doi.org/10.1023/B:APCS.0000049310.37773.fa
https://zbmath.org/?q=an:1078.18008
https://mathscinet.ams.org/mathscinet-getitem?mr=2107395
https://doi.org/10.1016/j.fss.2016.09.005
https://zbmath.org/?q=an:1390.18019
https://mathscinet.ams.org/mathscinet-getitem?mr=3655712
https://zbmath.org/?q=an:07844805
https://mathscinet.ams.org/mathscinet-getitem?mr=4732696
https://zbmath.org/?q=an:1005.18003
https://mathscinet.ams.org/mathscinet-getitem?mr=1870616
https://mathscinet.ams.org/mathscinet-getitem?mr=4749716
https://doi.org/10.24033/msmf.2
https://zbmath.org/?q=an:0211.32902
https://mathscinet.ams.org/mathscinet-getitem?mr=0190142
https://doi.org/10.1215/ijm/1255644959
https://zbmath.org/?q=an:0117.16101
https://mathscinet.ams.org/mathscinet-getitem?mr=0164315
https://doi.org/10.1007/978-3-642-99902-4_2
https://zbmath.org/?q=an:0192.10701
https://mathscinet.ams.org/mathscinet-getitem?mr=0213413
https://doi.org/10.1006/aima.1999.1877
https://zbmath.org/?q=an:0960.18004
https://mathscinet.ams.org/mathscinet-getitem?mr=1758246
https://doi.org/10.1007/BF00878100
https://zbmath.org/?q=an:0805.18005
https://mathscinet.ams.org/mathscinet-getitem?mr=1285884
https://doi.org/10.1023/A:1008697013769
https://zbmath.org/?q=an:0880.18007
https://mathscinet.ams.org/mathscinet-getitem?mr=1466540
https://doi.org/10.1007/bfb0063105
https://zbmath.org/?q=an:0334.18004
https://mathscinet.ams.org/mathscinet-getitem?mr=0360749
https://zbmath.org/?q=an:0478.18005
https://mathscinet.ams.org/mathscinet-getitem?mr=0651714
https://zbmath.org/?q=an:0935.18005
https://mathscinet.ams.org/mathscinet-getitem?mr=1476422


Free extensivity via distributivity 203

[26] A. Kock, Monads for which structures are adjoint to units. J. Pure Appl. Algebra 104
(1995), no. 1, 41–59 Zbl 0849.18008 MR 1359690

[27] S. Lack, A coherent approach to pseudomonads. Adv. Math. 152 (2000), no. 2, 179–202
Zbl 0971.18008 MR 1764104

[28] S. Lack, Codescent objects and coherence. J. Pure Appl. Algebra 175 (2002), 223–241
Zbl 1142.18301 MR 1935980

[29] I. Le Creurer, Descent of Internal Categories. Ph.d. thesis, Université Catholique de Lou-
vain, 1999

[30] F. Lucatelli Nunes, On biadjoint triangles. Theory Appl. Categ. 31 (2016), no. 9, 217–256
Zbl 1359.18003 MR 3491845

[31] F. Lucatelli Nunes, Pseudomonads and Descent. Ph.d. thesis, Universidade de Coimbra,
2017 MR 4478808

[32] F. Lucatelli Nunes, On lifting of biadjoints and Lax algebras. Categ. Gen. Algebr. Struct.
Appl. 9 (2018), no. 1, 29–58 Zbl 1454.18018 MR 3833110

[33] F. Lucatelli Nunes, Pseudo-Kan extensions and descent theory. Theory Appl. Categ. 33
(2018), no. 15, 390–444 Zbl 1405.18002 MR 3806333

[34] F. Lucatelli Nunes, Pseudoalgebras and non-canonical isomorphisms. Appl. Categ. Struc-
tures 27 (2019), no. 1, 55–63 Zbl 1411.18009 MR 3901949

[35] F. Lucatelli Nunes, Descent data and absolute Kan extensions. Theory Appl. Categ. 37
(2021), no. 18, 530–561 Zbl 1466.18013 MR 4266479

[36] F. Lucatelli Nunes and M. Vákár, CHAD for expressive total languages. Math. Structures
Comput. Sci. 33 (2023), no. 4-5, 311–426 Zbl 07813349 MR 4640115

[37] F. Lucatelli Nunes and M. Vákár, Free doubly-infinitary distributive categories are carte-
sian closed. 2024, arXiv:2403.10447v3

[38] F. Lucatelli Nunes and M. Vákár, Monoidal closure of Grothendieck constructions via
†-tractable monoidal structures and Dialectica formulas. 2024, arXiv:2405.07724

[39] F. Marmolejo, Doctrines whose structure forms a fully faithful adjoint string. Theory Appl.
Categ. 3 (1997), no. 2, 24–44 Zbl 0878.18004 MR 1432190

[40] F. Marmolejo, Distributive laws for pseudomonads. Theory Appl. Categ. 5 (1999), No. 5,
91–147 Zbl 0919.18004 MR 1673316

[41] F. Marmolejo, Distributive laws for pseudomonads. II. J. Pure Appl. Algebra 194 (2004),
no. 1-2, 169–182 Zbl 1055.18002 MR 2086080

[42] F. Marmolejo, R. Rosebrugh, and R. J. Wood, Completely and totally distributive cate-
gories I. J. Pure Appl. Algebra 216 (2012), no. 8-9, 1775–1790 Zbl 1278.18001
MR 2925871

[43] I. Moerdijk, Descent theory for toposes. Bull. Soc. Math. Belg. Sér. A 41 (1989), no. 2,
373–391 Zbl 0688.18003 MR 1031756

[44] A. J. Power, G. L. Cattani, and G. Winskel, A representation result for free cocompletions.
J. Pure Appl. Algebra 151 (2000), no. 3, 273–286 Zbl 0971.18007 MR 1776428

[45] R. Prezado, On effective descent V -functors and familial descent morphisms. J. Pure Appl.
Algebra 228 (2024), no. 5, article no. 107597 Zbl 1532.18012 MR 4686360

[46] R. Prezado and F. Lucatelli Nunes, Descent for internal multicategory functors. Appl.
Categ. Structures 31 (2023), no. 1, article no. 11 Zbl 1504.18017 MR 4537391

https://doi.org/10.1016/0022-4049(94)00111-U
https://zbmath.org/?q=an:0849.18008
https://mathscinet.ams.org/mathscinet-getitem?mr=1359690
https://doi.org/10.1006/aima.1999.1881
https://zbmath.org/?q=an:0971.18008
https://mathscinet.ams.org/mathscinet-getitem?mr=1764104
https://doi.org/10.1016/S0022-4049(02)00136-6
https://zbmath.org/?q=an:1142.18301
https://mathscinet.ams.org/mathscinet-getitem?mr=1935980
https://zbmath.org/?q=an:1359.18003
https://mathscinet.ams.org/mathscinet-getitem?mr=3491845
https://mathscinet.ams.org/mathscinet-getitem?mr=4478808
https://zbmath.org/?q=an:1454.18018
https://mathscinet.ams.org/mathscinet-getitem?mr=3833110
https://zbmath.org/?q=an:1405.18002
https://mathscinet.ams.org/mathscinet-getitem?mr=3806333
https://doi.org/10.1007/s10485-018-9541-3
https://zbmath.org/?q=an:1411.18009
https://mathscinet.ams.org/mathscinet-getitem?mr=3901949
https://zbmath.org/?q=an:1466.18013
https://mathscinet.ams.org/mathscinet-getitem?mr=4266479
https://doi.org/10.1017/s096012952300018x
https://zbmath.org/?q=an:07813349
https://mathscinet.ams.org/mathscinet-getitem?mr=4640115
https://arxiv.org/abs/2403.10447v3
https://arxiv.org/abs/2405.07724
https://zbmath.org/?q=an:0878.18004
https://mathscinet.ams.org/mathscinet-getitem?mr=1432190
https://zbmath.org/?q=an:0919.18004
https://mathscinet.ams.org/mathscinet-getitem?mr=1673316
https://doi.org/10.1016/j.jpaa.2004.04.008
https://zbmath.org/?q=an:1055.18002
https://mathscinet.ams.org/mathscinet-getitem?mr=2086080
https://doi.org/10.1016/j.jpaa.2012.02.017
https://doi.org/10.1016/j.jpaa.2012.02.017
https://zbmath.org/?q=an:1278.18001
https://mathscinet.ams.org/mathscinet-getitem?mr=2925871
https://zbmath.org/?q=an:0688.18003
https://mathscinet.ams.org/mathscinet-getitem?mr=1031756
https://doi.org/10.1016/S0022-4049(99)00063-8
https://zbmath.org/?q=an:0971.18007
https://mathscinet.ams.org/mathscinet-getitem?mr=1776428
https://doi.org/10.1016/j.jpaa.2023.107597
https://zbmath.org/?q=an:1532.18012
https://mathscinet.ams.org/mathscinet-getitem?mr=4686360
https://doi.org/10.1007/s10485-022-09706-9
https://zbmath.org/?q=an:1504.18017
https://mathscinet.ams.org/mathscinet-getitem?mr=4537391


F. Lucatelli Nunes, R. Prezado, and M. Vákár 204

[47] R. Prezado and F. Lucatelli Nunes, Generalized multicategories: change-of-base, embed-
ding and descent. 2024, to appear in Appl. Categor. Structures

[48] J. Reiterman and W. Tholen, Effective descent maps of topological spaces. Topology Appl.
57 (1994), no. 1, 53–69 Zbl 0829.54011 MR 1271335

[49] R. Street, Fibrations in bicategories. Cahiers Topologie Géom. Différentielle 21 (1980),
no. 2, 111–160 Zbl 0436.18005 MR 0574662

[50] R. Street, Correction to: “Fibrations in bicategories” [Cahiers Topologie Géom. Dif-
férentielle 21 (1980), no. 2, 111–160]. Cahiers Topologie Géom. Différentielle Catég. 28
(1987), no. 1, 53–56 Zbl 0622.18005 MR 0903151

[51] W. Tholen, Pro-categories and multiadjoint functors. Canad. J. Math. 36 (1984), no. 1,
144–155 Zbl 0529.18002 MR 0733712

[52] T. von Glehn, Polynomials, fibrations and distributive laws. Theory Appl. Categ. 33 (2018),
no. 36, 1111–1144 Zbl 1408.18010 MR 3874990

[53] C. Walker, Distributive laws via admissibility. Appl. Categ. Structures 27 (2019), no. 6,
567–617 Zbl 1444.18004 MR 4020670

[54] V. Zöberlein, Doctrines on 2-categories. Math. Z. 148 (1976), no. 3, 267–279
MR 0424896

Received 3 May 2024.

Fernando Lucatelli Nunes
Department of Information and Computing Sciences, Utrecht University, Utrecht, The
Netherlands; Department of Mathematics, University of Coimbra, Coimbra, Portugal;
f.lucatellinunes@uu.nl

Rui Prezado
Department of Mathematics, University of Coimbra, Coimbra, Portugal;
ruiprezado@gmail.com

Matthijs Vákár
Department of Information and Computing Sciences, Utrecht University, Utrecht, The
Netherlands; matthijsvakar@gmail.com

https://doi.org/10.1016/0166-8641(94)90033-7
https://zbmath.org/?q=an:0829.54011
https://mathscinet.ams.org/mathscinet-getitem?mr=1271335
https://zbmath.org/?q=an:0436.18005
https://mathscinet.ams.org/mathscinet-getitem?mr=0574662
https://zbmath.org/?q=an:0622.18005
https://mathscinet.ams.org/mathscinet-getitem?mr=0903151
https://doi.org/10.4153/CJM-1984-010-2
https://zbmath.org/?q=an:0529.18002
https://mathscinet.ams.org/mathscinet-getitem?mr=0733712
https://zbmath.org/?q=an:1408.18010
https://mathscinet.ams.org/mathscinet-getitem?mr=3874990
https://doi.org/10.1007/s10485-019-09567-9
https://zbmath.org/?q=an:1444.18004
https://mathscinet.ams.org/mathscinet-getitem?mr=4020670
https://doi.org/10.1007/BF01214522
https://mathscinet.ams.org/mathscinet-getitem?mr=0424896
mailto:f.lucatellinunes@uu.nl
mailto:ruiprezado@gmail.com
mailto:matthijsvakar@gmail.com

	1. Introduction
	2. Free colimit completions
	3. Three pseudomonads
	3.1. Infinitary lextensive categories
	3.2. Infinitary extensive categories with pullbacks
	3.3. Doubly-infinitary lextensive categories

	4. Exponentiability in freely generated structures
	4.1. Exponentials for free doubly-infinitary lextensive categories
	4.2. Explicit descriptions of the exponentials
	4.3. Exponentials for free infinitary lextensive categories

	5. Examples
	5.1. Fundamental examples
	5.2. Monadicity and presheaves
	5.3. Finite and small bicategorical biproducts
	5.4. Freely generated categorical structures on discrete categories
	5.5. More on doubly-infinitary lextensive categories via free coproduct completions
	5.6. Doubly-infinitary distributive categories that are not extensive
	5.7. Cartesian closedness vs. doubly-infinitary lextensivity

	6. Epilogue
	Free finite coproduct completion
	Descent theory
	Non-canonical isomorphisms
	Comparison to Cockett and Lack [14]

	References

