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Suprema of Lévy processes with completely monotone jumps:
Spectral-theoretic approach

Mateusz Kwaśnicki

Abstract. We study spectral-theoretic properties of non-self-adjoint operators arising in the
study of one-dimensional Lévy processes with completely monotone jumps with a one-sided
barrier. With no further assumptions, we provide an integral expression for the bivariate Laplace
transform of the transition density pCt .x; y/ of the killed process in .0;1/, and under a minor
regularity condition, a generalised eigenfunction expansion is given for the corresponding trans-
ition operator PCt . Assuming additionally appropriate growth of the characteristic exponent, we
prove a generalised eigenfunction expansion of the transition density pCt .x; y/. Under similar
conditions, we additionally show integral formulae for the cumulative distribution functions of
the infimum and supremum functionals

x
Xt and xXt . The class of processes covered by our results

include many stable and stable-like Lévy processes, as well as many processes with Brownian
components. Our results recover known expressions for the classical risk process, and provide
similar integral formulae for some other simple examples of Lévy processes.

1. Introduction

1.1. Motivation

Spectral theory proved to be an important tool in the study of Markov processes. In
the simplest discrete setting, it is one of the standard tools in the theory of Markov
chains. For a brief introduction to the case of discrete time processes in continuous
state space, and a summary of related literature, we refer to [26, Chapter 22]. When
both time and the state space are continuous, spectral theory of Markov processes is
strongly linked with functional inequalities and the analysis of transition probabilities,
or heat kernels; see, for example, [18, 22, 80]. On the analysis side, this connection
provides a very intuitive and powerful way to work with operators arising naturally
in harmonic analysis, theory of PDEs and quantum physics; we refer to [9,22, 25,52]
for further discussion and references.
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A vast number of works apply spectral theory to the study of symmetric (or self-
dual) Markov processes. In this case, the underlying operators are self-adjoint. When
considering non-symmetric processes, however, one typically has to deal with operat-
ors that are no longer normal, let alone self-adjoint. The lack of general spectral theory
of such operators makes spectral-theoretic approach to non-symmetric Markov pro-
cesses extremely difficult. The only exceptions known to the author include Markov
chains with discrete state space, and only a few articles dealing with Markov processes
in continuous space; see [14, 38, 47, 49–51, 56, 58–61, 63].

The main purpose of the present article is to develop spectral theory for a relat-
ively wide class of non-symmetric Markov processes: Lévy processes with completely
monotone jumps (defined below) killed upon leaving a half-line. Our primary motiv-
ation is to study eigenfunction expansions of the transition density (the heat kernel)
and related objects, and to derive explicit, or at least semi-explicit expressions for
them. This work is meant to be a “proof of concept” rather than a complete theory,
so we are not aiming at the greatest generality possible; nevertheless, the class of
Lévy processes covered by our results includes many examples that appear frequently
in literature. We show that even though the transition operators are not normal, they
allow a spectral decomposition similar to the one provided by the spectral theorem
for normal operators. We also apply the same technique to study the distribution of
the supremum and infimum functionals of Lévy processes with completely monotone
jumps, the fundamental objects in the fluctuation theory of Lévy processes.

Our results extend the previous work [38] by Alexey Kuznetsov and the author
for stable processes. Although the arguments used here and in [38] share a number
of similar ideas (Wiener–Hopf factorisation, heavy use of complex-analytic tools),
there are essential differences that we would like to highlight here. Scale invariance
played an essential role in [38]: it allowed to work with one generalised eigenfunction
and its dilations rather than with a continuous family of generalised eigenfunctions,
and it also eliminated the need for complicated contours of integration. Additionally,
the key objects in [38] were defined in terms of known special functions. Here, we
need to work with rather intricate integral expressions and bivariate functions, and a
detailed analysis of the appropriate contour of integration is an essential step in our
development.

The present work is closely related to the article [55] by Pierre Patie and Rohan
Sarkar, where self-similar Markov processes in .0;1/ are studied using Mellin trans-
form methods. In this case, generalised eigenfunctions are again dilations of each
other; in contrast to [38], however, they are no longer given in terms of known special
functions. Instead, the authors of [55] describe the Mellin transform of generalised
eigenfunctions in terms of Bernstein-gamma functions, which are holomorphic solu-
tions of a certain function equation. The theory of Bernstein-gamma functions was
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developed by Pierre Patie and Mladen Savov in [57], and the functional equation was
first considered by the same authors and Juan Carlos Pardo in [53].

Our results partially resemble the statements in [55], but in a different context of
Lévy processes: the only processes that are covered by both works are strictly stable
Lévy processes, studied already in [38]. Additionally, we use Laplace transform meth-
ods and the theory of Rogers functions (closely related to Nevanlinna–Pick functions),
while the main tools for self-similar Markov processes are the Mellin transform and
Bernstein-gamma functions.

Another partially related work is the article [58] by Pierre Patie and Mladen Savov,
which builds upon another paper [56] by the same authors. In these two documents,
the authors provide generalised eigenfunction expansion for generalised Laguerre
semigroups, which correspond to certain ergodic space-time transformations of pos-
itive self-similar Markov processes. Unlike in the present paper and in [55], however,
in [56, 58] the spectrum is discrete, and there are countably many eigenfunctions and
co-eigenfunctions.

There is one more line of research that should be mentioned here, focused on con-
tinuous state branching processes with or without immigration. Spectral theory for the
corresponding operators was developed by Yukio Ogura in [50, 51], and significantly
refined recently by Marie Chazal, Ronnie L. Loeffen, and Pierre Patie in [13]. These
works again focus on cases when the eigenfunction expansion involves countably
many eigenvalues and eigenfunctions, but [50, 51] also include some results about
generalised eigenfunction expansions, to some extent similar to those discussed here.

The present work builds upon the results obtained in [39, 42] in the symmetric
case, and the fluctuation theory developed in [41]. The development for the half-line
is, to some extent, parallel to the theory in R n ¹0º, studied in [37, 40, 49].

The author hopes that the present article will stimulate the development of spectral
theory for non-normal operators arising in the field of Lévy and Markov processes,
and possibly also beyond this scope. Additionally, the results can be of interest for
probabilists: the explicit expressions that we find below may lead to certain mono-
tonicity properties of the densities of first-passage times (just as it was the case for
symmetric processes, see [42]), and they might be applicable for numerical methods.

We state our results using probabilistic language, in terms of transition densities
and passage times of appropriate stochastic processes. We remark, however, that the
transition density (or heat kernel) pCt .x; y/ can be defined without using probability;
see Remark 1.3. Furthermore, the proofs of our main results are purely analytic. Thus,
statements and proofs of Theorems 1.2, 1.5 and 1.6 require essentially no knowledge
of probability.
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1.2. Main results

In order to formulate the main theorems, we need a number of definitions. Let Xt be
a Lévy process: a stochastic process with independent and stationary increments, and
càdlàg paths. Throughout the article, we assume that Xt has completely monotone
jumps: the Lévy measure of Xt has a density function �.x/ such that

both �.x/ and �.�x/ are completely monotone functions of x > 0.

This class of processes was introduced by L. C. G. Rogers in 1983, see [68], in the
context of Wiener–Hopf factorisation of Lévy processes, and recently revisited by
the author in [41]. In the present article, we extend the methods and results of the
latter paper to find spectral-type integral expressions for the distribution functions of
the supremum and infimum functionals of Xt , as well as for the transition density
pCt .x; y/ of Xt in the half-line .0;1/. The supremum and infimum functionals are
defined by

xXt D sup¹Xs W s 2 Œ0; t �º;
x
Xt D inf¹Xs W s 2 Œ0; t �º;

while if Px is the probability corresponding to the process Xt started at X0 D x and
�.0;1/ D inf¹t � 0 W Xt � 0º is the first exit time from .0;1/, then pCt .x; y/ satisfies

Px.Xt 2 E; t < �.0;1// D

Z
E

pCt .x; y/dy

for every Borel set E and x > 0. Detailed definitions and further properties are dis-
cussed in Sections 2 and 4, and existing literature on the subject is described later in
this section.

Throughout the paper, by f .�/ we denote the characteristic exponent of Xt ,
defined by the formula

E0ei�Xt D e�tf .�/

for t � 0 and � 2 R. By a result of Rogers, f .�/ extends to a holomorphic func-
tion in the right complex half-plane ¹� 2 C W Re � > 0º – coined Rogers function
in [41] – and it is shown in [41] that the equation Im f .�/ D 0 defines a curve � in
the right complex half-plane – the spine of f – which can be parameterised as

� D ¹�.r/ W r 2 Zº;

with j�.r/j D r andZ an open subset of .0;1/. Furthermore, the real-valued function

�.r/ D f .�.r//
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is continuous and increasing with r . This description is slightly simplified, and we
refer to Section 3 for a detailed exposition. Here we mention that if Xt is symmet-
ric, then � is the horizontal ray .0;1/ and �.r/ D f .r/: we have Z D .0;1/ and
�.r/ D r . We also make the following remark: in our main results, we impose cer-
tain conditions on the shape of � , which are satisfied when � is contained in the
sector ¹� 2 C W jArg �j � �=2 � "º for some " > 0; that is, when Z D .0;1/ and
jArg �.r/j � �=2 � " for r > 0. However, apparently this condition cannot be easily
expressed directly in terms of the characteristics of the processXt ; see Section 6.4 for
a closely related discussion.

The expressions in our main theorems involve certain functions FC.r I y/ and
F�.r I x/, where r 2 Z and x; y > 0. These functions play the role of generalised
eigenfunctions of the generator of the process Xt killed at the first exit time from
.0;1/, with corresponding generalised eigenvalues �.r/. They are rigorously intro-
duced in Definition 4.5; here we are satisfied with the following description: we have

FC.r Iy/ D e
b.r/y sin.a.r/y C cC.r// �GC.r Iy/;

F�.r I x/ D e
�b.r/x sin.a.r/x C c�.r// �G�.r I x/;

where a.r/C ib.r/ D �.r/, cC.r/; c�.r/ 2 Œ0; �/, and GC.r I y/ and G�.r I x/ are
certain completely monotone functions of x;y > 0. We stress that whileGC.r Iy/ and
G�.r Ix/ are smooth, positive, bounded and integrable functions of x;y > 0, the other
terms eb.r/y sin.a.r/y C cC.r// and e�b.r/y sin.a.r/y C c�.r// are oscillatory, and
unless �.r/ is real, one of them has exponential growth at infinity.

The Laplace transforms of FC.r Iy/ and F�.r Ix/, which we denote by LFC.r I�/

and LF�.r I�/, are well defined when Re�>max¹b.r/;0º and Re� >max¹�b.r/;0º,
respectively. Both Laplace transforms extend analytically to �; � 2 .0;1/. We denote
these extensions by the same symbols, and furthermore we write LFC.r I 0

C/ and
LF�.r I 0

C/ for the corresponding right limits at 0.
The following are the main results of this article. In all of them we assume that

Xt is a non-deterministic Lévy process with completely monotone jumps.

Theorem 1.1. Let " 2 .0; �=2/, ˇ 2 .1; 1C "=.�=2 � "//, ı 2 Œ0; �=2/, and % > 0.

(a) Suppose that

lim sup
r!1

Arg �.r/ <
�

2
� "; (1.1)

sup¹Argf .�ieiır/ W r 2 .0; %/º < 0 (1.2)

(see Figure 1 (a)), and that for every t > 0 there is a constant C such that for
s > 0 we have Z

Z

esmax¹Im �.r/;0º�t�.r/
j�0.r/jdr � eC.1Cs/

ˇ

: (1.3)
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Then,

P0. xXt < y/ D
2

�

Z
Z

e�t�.r/FC.r Iy/LF�.r I 0
C/j�0.r/jdr (1.4)

for t � 0 and y > 0.

(b) Similarly, suppose that

lim inf
r!1

Arg �.r/ > �
�

2
C "; (1.5)

inf¹Argf .ie�iır/ W r 2 .0; %/º > 0; (1.6)

and that for every t > 0 there is a constant C such that for s > 0 we haveZ
Z

esmax¹� Im �.r/;0º�t�.r/
j�0.r/jdr � eC.1Cs/

ˇ

: (1.7)

Then,

P0.
x
Xt > �x/ D

2

�

Z
Z

e�t�.r/LFC.r I 0
C/F�.r I x/j�

0.r/jdr (1.8)

for t � 0 and x > 0.

Theorem 1.2. Let " 2 .0; �=2/ and ˇ 2 .1; 1C "=.�=2 � "//. Suppose that

lim sup
r!1

jArg �.r/j <
�

2
� " (1.9)

(see Figure 1 (b)), and that for every t > 0 there is a constant C such that for s > 0
we have Z

Z

esjIm �.r/j�t�.r/j�0.r/jdr � eC.1Cs/
ˇ

: (1.10)

Then,

pCt .x; y/ D
2

�

Z
Z

e�t�.r/FC.r Iy/F�.r I x/j�
0.r/jdr (1.11)

for t � 0 and x; y > 0.

Remark 1.3. The transition density pCt .x; y/ is the Dirichlet heat kernel in .0;1/,
with zero exterior condition in .�1; 0�, for the Lévy operator L defined for smooth,
compactly supported function u by the formula

Lu.x/ D
1

2
�2u00.x/C �u0.x/C

1Z
�1

�
u.x C y/� u.x/� yu0.x/ 1.�1;1/.y/

�
�.y/dy;
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Argf > 0

"

sup Argf < 0ı

Re

Im

Argf < 0

Argf > 0

"

"

Re

Im

(a) (b)

Figure 1. (a) Setting for Theorem 1.1 (a). (b) Setting for Theorems 1.2 and 1.6.

where � � 0, � 2 R and both �.z/ and �.�z/ are completely monotone functions on
.0;1/. The Fourier symbol of L is equal to the characteristic exponent f .�/ of the
Lévy process, and it is given by the Lévy–Khintchine formula

f .�/ D
1

2
�2�2 � i�� C

1Z
�1

�
1 � ei�x C i�x 1.�1;1/.x/

�
�.x/dx:

The operator L is the generator of the Lévy process Xt . Noteworthy, estimates of
Dirichlet heat kernels of Lévy processes attracted significant attention over the past
decade, and explicit expressions for the Dirichlet heat kernel are rarely available.

Remark 1.4. Our formulae for the distribution of the supremum and infimum func-
tionals in Theorem 1.1 are, in general, relatively complicated: they include several
integrals, and they involve implicitly defined quantities, such as �.r/. Nevertheless,
for some relatively simple Lévy processes with completely monotone jumps one
can simplify these expressions significantly, and obtain an explicit integral formula
for P0. xXt < y/ or P0.

x
Xt > �x/. Some examples are given in Section 6. Thus,

we extend the (surprisingly short) list of Lévy processes for which numerically tract-
able expressions for distribution functions of xXt or

x
Xt are available. Other contri-

butions to this list known to the author include: Brownian motion [45], Brownian
motion with drift [11, 72, 76], symmetric Poisson process [4], Poisson process with
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drift [30, 66], symmetric 1-stable Lévy process (or Cauchy process) [17], classical
risk process [2, 3], one-sided stable Lévy processes [5, 7, 23, 33, 35, 75], and virtu-
ally all stable Lévy processes [36]. Additional examples are provided by specialising
Takács’s formula [16, 65, 78] to particular one-sided Lévy processes.

Assumptions (1.1), (1.5), and (1.9) should be regarded as (rather mild) geometric
constraints on the curve � . While assumptions (1.2) and (1.6) also impose geometric
conditions on � , they additionally require that the decay of jf .�/j near 0 is faster than
some power of j�j; see Lemma 3.23. Assumptions (1.3), (1.7), and (1.10) are another
growth conditions on jf .�/j, but this time for large �. They are automatically satisfied
if jf .�/j grows at least as fast as j�j raised to a power greater than 1; we refer to
Section 6 for further discussion and examples.

The assumptions in the above theorems may appear inexplicit. In practice, how-
ever, they turn out to be easily applicable and relatively general. In particular, Theor-
ems 1.1 and 1.2 cover at least some typical examples of Lévy processes with com-
pletely monotone jumps: a wide class of processes with non-zero Brownian compon-
ent; symmetric Lévy processes with completely monotone jumps under mild growth
condition on jf .�/j at infinity; all strictly stable Lévy processes with index ˛ > 3=2,
and some strictly stable Lévy processes with index ˛ 2 .1; 3=2�; and many stable-like
Lévy processes. These examples are discussed in Section 6.

Although apparently our results hold true in a slightly wider context (for example,
the main results of the present paper are proved in [38] for all stable processes with
index ˛ > 1), it is clear that Theorems 1.1 and 1.2 do not extend directly to all Lévy
processes with completely monotone jumps. Indeed, if, for example, Xt is a non-
symmetric strictly stable Lévy process with index ˛ � 1, then the integral in (1.11),
as well as one of the integrals in (1.4) and (1.8), diverges. Once again, we refer to
Section 6 for more examples and a detailed discussion.

It is easy to see that

P0.
x
Xt > �x/ D Px.

x
Xt > 0/ D

1Z
0

pCt .x; y/dy;

and, by Hunt’s switching identity ([6, Theorem II.5]), similarly

P0. xXt < y/ D

1Z
0

pCt .x; y/dx:

This suggests that Theorem 1.1 is a simple consequence of Theorem 1.2. Due to
exponential growth of FC.r I y/ or F�.r I x/, however, this does not seem to be the
case, and our proofs follow a different path. On the other hand, these two results
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clearly have a common root. In fact, both are derived from the following general
result, in which, for notational convenience, we extend the definition of �.r/ to all
r > 0 in such a way that it is continuous on .0;1/ and piecewise linear on .0;1/ nZ.
We stress that here we impose no restrictions on the Lévy process Xt other than it is
non-deterministic and it has completely monotone jumps.

Theorem 1.5. Let t � 0. For every �; � > 0 such that Arg �.�/ < �=2 and Arg �.�/ >
��=2, we have

1Z
0

1Z
0

e��x��ypCt .x; y/dydx D
2

�

Z
Z

e�t�.r/LFC.r I �/LF�.r I �/j�
0.r/jdr:

We remark that the above result also covers the case when the distribution of Xt
contains an atom, and in this case pCt .x; y/dy needs to be understood appropriately.
We also point out that the sets of admissible � and admissible � in Theorem 1.5 always
contain the (non-empty) open set Z, and that the union of these sets is .0;1/.

Theorem 1.5 can be viewed as a spectral-type decomposition of the transition
operators of Xt in .0;1/. More precisely, let

PCt u.x/ D

1Z
0

pCt .x; y/u.y/dy

whenever the integral converges. Furthermore, write

hu; vi D

1Z
0

u.x/v.x/dx

whenever the integral is finite. If we define u.y/ D e��y and v.x/ D e��x , then the
assertion of Theorem 1.5 can be formally written as

hv; PCt ui D
2

�

Z
Z

e�t�.r/hv; F�.r I �/ihFC.r I �/; uij�
0.r/jdr;

except that the integrals on the right-hand side:

hv; F�.r I �/i D

1Z
0

F�.r I x/e
��xdx D LF�.r I �/;

hFC.r I �/; ui D

1Z
0

FC.r Iy/e
��ydy D LFC.r I �/
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are not necessarily well defined. A rigorous statement of that kind requires a more
careful choice of test functions u.y/ and v.x/, and an additional assumption.

Theorem 1.6. Let " > 0, and suppose that

lim sup
r!1

jArg �.r/j <
�

2
� "

(see Figure 1 (b)). Let t � 0, and let u.y/ and v.x/ be holomorphic functions in the
region ¹z 2C W jArgzj<�=2� "º, which are real-valued on .0;1/, and which satisfy

ju.y/j � C1e
�C2jyj log.1Cjyj/; jv.x/j � C1e

�C2jxj log.1Cjxj/

for some constants C1 and C2 and all x and y in the region ¹z 2 C W jArg zj <
�=2 � "º. Then,

hv; PCt ui D
2

�

Z
Z

e�t�.r/hv; F�.r I �/ihFC.r I �/; uij�
0.r/jdr: (1.12)

Theorem 1.5 is proved in Section 4 as Proposition 4.6. The above result follows
then by an involved argument, which requires various contour deformations; see Pro-
position 5.3. On the other hand, Theorem 1.2 is deduced from Theorem 1.6 in a rather
straightforward way: we use Fubini’s theorem to change the order of the three integ-
rals on the right-hand side of (1.12) and then apply a density argument. This is done
in Section 5.1, where Theorem 1.2 is restated as Corollary 5.5. Theorem 1.1 is proved
in Section 5.2, and it requires a minor modification of Theorem 1.6 given in Proposi-
tion 5.6.

Remark 1.7. The operators PCt are closely related to the Wiener–Hopf factorisation
of convolution operators. More precisely, the generator LC of the semigroup of oper-
ators PCt (or its inverse .LC/�1, known as the potential operator) is the Wiener–Hopf
operator for the Lévy operator L introduced in Remark 1.3 (or its inverse L�1).

At least in the following two cases: (a) when Xt is a compound Poisson process
(and thenL is a bounded operator onL2.R/), or (b) whenXt is killed at a positive rate
(this case is not covered in the introduction, but it is allowed in Section 2; then L�1

is a bounded operator on L2.R/), spectral properties of LC or .LC/�1 are relatively
well understood. In particular, it is known that if Xt is not symmetric, then LC (in
case (a)) or .LC/�1 (in case (b)) is not a normal operator on L2..0;1//, as either this
operator or its adjoint has an uncountable family of eigenfunctions. This means that
for no t > 0 is PCt a normal operator on L2..0;1//. We refer the reader to [1] for
these properties, further discussion and references.

While it is natural to expect that the operators PCt are not normal for general non-
symmetric Lévy processes with completely monotone jumps, such a result does not
seem to be available in literature; see also Remark 1.8.
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1.3. Spectral-theoretic motivations

As mentioned in the first part of this section, our main results are one of the first
examples of spectral decomposition of operators associated to non-symmetric Markov
processes. Here, we extend this discussion by providing additional context.

Suppose first that the operators Pt , t � 0, form a strongly continuous semigroup
of finite-dimensional self-adjoint contractions. Then, Pt take a diagonal form in the
basis of eigenvectors of Pt (which do not depend on t ). More precisely, there is a
complete orthonormal set of eigenvectors Fn, nD 1; : : : ;N , of the operators Pt , with
corresponding eigenvalues of the form e�t�n , such that

hv; Ptui D

NX
nD1

e�t�nhv; FnihFn; ui (1.13)

for all vectors u and v; here h�; �i is the usual (complex) inner product. The same
result is true if Pt is a strongly continuous semigroup of compact self-adjoint con-
tractions on a Hilbert space of infinite dimension; in this case, N D 1 in (1.13), and
limn!1 �n D1.

In the context of general strongly continuous semigroups of bounded self-adjoint
contractions on a Hilbert space L2.X; m/, a similar spectral resolution of Pt is
provided by the classical spectral theorem. This is a much more abstract result, com-
pared to the case of compact operators. The spectral theorem takes the following more
explicit form, essentially due to Gårding [31], when Pt are Carleman operators, that
is, when the kernel function pt .x; y/ is square-integrable with respect to y for almost
every x (or, equivalently, due to the Chapman–Kolmogorov equation, p2t .x; x/ <1
for almost every x; see [34] for a general account on Carleman operators). There is a
set Z, a � -finite measure �.dr/ on Z, a measurable real-valued function �.r/ on Z,
and a family of generalised eigenfunctions Fr.x/, with r 2 Z and x 2 X , with the
following property: for every t > 0 we have

pt .x; y/ D

Z
Z

e�t�.r/Fr.x/Fr.y/�.dr/

for almost all x;y 2X . If we denote hu;vi D
R
X
u.x/v.x/m.dx/whenever the integ-

ral is finite, then also

hv; Ptui D

Z
Z

e�t�.r/hv; FrihFr ; ui�.dr/ (1.14)

for all bounded functions u, v which vanish outside of a set of finite measure m.
Here, Fr are real-valued, they need not belong to L2.X;m/, but nevertheless we have
PtFr.x/ D e

�t�.r/Fr.x/ for almost all x 2 X with respect to m, for all t > 0 and all
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r 2 Z; this explains the name generalised eigenfunction. The above description is a
reformulation of the results of Getoor, see [32, Section 7].

The picture is much less clear when we drop the assumption that Pt are self-
adjoint, and we allow Pt to be arbitrary (not even normal) contractions. In the finite-
dimensional case, if Pt are diagonalisable, one can still write

hv; Ptui D

NX
nD1

e�t�nhv; F �n ihF
C
n ; ui; (1.15)

where F �n are eigenvectors of Pt , and FCn are co-eigenvectors of Pt (that is, eigen-
vectors of the adjoint operator); more generally, Jordan normal form can be used.
However, even in the case of compact operators on an infinite-dimensional Hilbert
space, the author is aware of no general result similar to the ones given above. In
particular, even when the operators Pt have linearly dense families of eigenvectors
F �n and co-eigenvectors FCn , convergence of the series (1.15) is problematic. Virtu-
ally nothing seems to be known in general, when Pt are not assumed to be compact.
The results of [38] for strictly stable Lévy processes, of [55, 56, 58] for positive self-
similar Markov processes, and of [50, 51] for continuous state branching processes
were, already discussed in the introduction, while discrete counterparts of positive
self-similar Markov processes are discussed in this context in [48]. Other loosely
related works include: non-normal perturbations of self-adjoint operators [67], oper-
ators with “small” commutators [12,21], and certain differential operators [10,20,63];
see also [73, 74, 79] for a more general discussion.

When Xt is non-symmetric, the operators PCt considered in Theorem 1.6 are, in
general, not normal (see Remark 1.7). Therefore, Theorem 1.6 is a rare example of
spectral resolution of a non-normal operator. We emphasise that it fits into the above
picture: by Theorem 1.6, for an appropriate class of functions u and v, we have

hv; PCt ui D

Z
Z

e�t�.r/hv; F �r ihF
C
r ; ui�.dr/; (1.16)

with Z and �.r/ as in Theorem 1.6, with �.dr/D .2=�/j�0.r/jdr , and with general-
ised eigenfunctions F �r .x/ D F�.r I x/ and generalised co-eigenfunctions FCr .y/ D
FC.r Iy/.

It should be emphasised that the spectral resolution described in Theorem 1.6 is
likely not unique. Here, it is instructive to consider the transition semigroup of Xt in
R rather than in .0;1/. Let pt .x/ be the density function of the distribution of Xt
with respect to P0, and let

Ptu.x/ D

1Z
�1

pt .y � x/u.y/dy D Exu.Xt /
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whenever the integral converges. If e�tf .�/ is an integrable function of � 2R for every
t > 0, then, by the Fourier inversion formula, transition densities pt .y � x/ indeed
exist, and we have

pt .y � x/ D
1

2�

1Z
�1

e�tf .r/eirxe�irydr:

If we write Fr.x/ D eirx , and if we denote by hu; vi D
R1
�1

u.x/v.x/dx the usual
inner product in L2.R/ (with a complex conjugate: now all functions are complex-
valued), then it follows that

hv; Ptui D
1

2�

1Z
�1

e�tf .r/hv; FrihFr ; uidr (1.17)

if, say, u and v are smooth and compactly supported. This follows the pattern (1.14)
discussed above (note that Pt are normal operators, so �.r/ D f .r/ and Fr.x/ D
e�irx are now complex-valued). However, under mild assumptions, we can deform
the contour of integration on the right-hand side to the contour � discussed above,
and get a similar expression that only involve real-valued functions. Indeed, after a
short calculation that we omit here, we arrive at

hv; Ptui D
1

�

Z
Z

e�t�.r/hv; F �1;rihF
C
1;r ; uij�

0.r/jdr

C
1

�

Z
Z

e�t�.r/hv; F �2;rihF
C
2;r ; uij�

0.r/jdr; (1.18)

where we denoted

F˙1;r.x/ D e
˙y Im �.r/ cos.y Re �.r/� #.r//;

F˙2;r.x/ D e
˙y Im �.r/ sin.y Re �.r/� #.r//;

with #.r/ D Arg �0.r//2. This is again of the same form as in (1.16), with Z replaced
by ¹1; 2º �Z, with �.j; r/ D �.r/ and

�.dj; dr/ D
1

�
.ı1.dj /C ı2.dj //j�

0.r/jdr:

This example shows that the spectral resolution of the form (1.16) is not unique, even
if the operators Pt are normal.

It is not clear in general which choice of FCr .y/ and F �r .x/ is more appropriate.
In the above example, it seems more natural to consider the decomposition given
in (1.17): in this expression the eigenfunctions and co-eigenfunctions coincide, and
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additionally they are bounded functions. On the other hand, expressions in (1.18) only
involves real-valued quantities. Our Theorem 1.6 provides an analogue of the latter
formula for the transition semigroup PCt of the processXt in .0;1/. In this case, that
seems to be an optimal choice: a perfect analogue of (1.17) is not possible because
the operators PCt are not normal, and apparently it is not possible to choose a more
regular (for example: bounded) family of generalised eigenfunctions.

In some cases, described in Theorem 1.2, the class of admissible functions u and
v in (1.16) (or in Theorem 1.6) is sufficiently rich in order to get an expression for the
kernel pCt .x;y/ of PCt . Note, however, that this class does not include any compactly
supported functions, and it is apparently a difficult question under what assump-
tions (1.16) can be extended to (sufficiently regular) compactly supported functions u
and v.

1.4. Potential spectral-theoretic implications

At a purely formal level, Theorem 1.6 can be regarded as a similarity (or intertwin-
ing) relation between the operator PCt with kernel pCt .x; dy/, defined on the class of
admissible functions u described in the statement of the proposition, and the multi-
plication operator with symbol e�t�.r/. This is to be understood as follows.

Let U denote the class of functions u.y/ or v.x/ satisfying the assumptions of
Theorem 1.6, and define

…Cu.r/ D

1Z
0

FC.r Iy/u.y/dy; …�v.r/ D

1Z
0

F�.r I x/v.x/dx

whenever u.y/ and v.x/ are in U . Then, Proposition 5.3 can be stated as
1Z
0

u.x/PCt v.x/dx D
2

�

Z
Z

e�t�.r/…Cu.r/…�v.r/j�
0.r/jdr:

In particular, for t D 0, we find that
1Z
0

u.x/v.x/dx D
2

�

Z
Z

…Cu.r/…�v.r/j�
0.r/jdr:

Let us consider …� and …C as densely defined unbounded operators from the
Hilbert space V D L2..0;1/; dx/ to the Hilbert space W D L2.Z; j�0.r/jdr/, with
domainU � V (see Remark 5.4). Denote byQt the multiplication operatorQth.r/D

e�t�.r/h.r/ on W . We thus have

hu; PCt viV D
2

�
h…Cu;Qt…�viW
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and
hu; viV D

2

�
h…Cu;…�viW :

The latter equality implies that for every v 2 U , the function…�v is in the domain of
the adjoint of …C, and …�C…�v D v. Thus, by the former equality,

hu; PCt …
�
C…�viV D hu; P

C
t viV D

2

�
h…Cu;Qt…�viW D

2

�
hu;…�CQt…�viV :

This proves the following partial similarity relation:

PCt …
�
C D …

�
CQt on …�U ,

which becomes more meaningful if …�U is dense in W . Exactly the same reasoning
shows that …��…Cu D u for every u 2 U , and so

h…��…Cu; P
C
t viW D h…Cu;Qt…�viW for u; v 2 U .

If we were able to prove that …CU is dense in W , …� is closable, and PCt v lies in
the domain of the closure x…� of …�, then we would obtain another partial similarity
relation

…�P
C
t D Qt…� on U .

However, we end this discussion here, and we leave a more detailed study of the above
similarity relations for a future work. We also refer to [54] for a thorough discussion
of related ideas for normal operators on a more abstract level.

We conclude this part with the following observation.

Remark 1.8. Consider r 2 Z. If Im �.r/ < 0, then FC.r I y/ is in L2..0;1// as a
function of y, while if Im �.r/ > 0, then F�.r I x/ is in L2..0;1// as a function
of x. It is natural to expect that in the latter case, F�.r I x/ is a true (not generalised)
eigenfunction of the operators PCt , and similarly in the former case FC.r I y/ is a
true co-eigenfunction of PCt . In particular, this would imply that PCt is never a nor-
mal operator unless the process is symmetric; see Remark 1.7. However, the results
obtained in the present article do not seem to immediately imply that FC.r I y/ or
F�.r I x/ is necessarily a (co-)eigenfunction whenever it is square integrable, and we
postpone a detailed analysis of spectral properties of PCt to a future work.

Let us also note that if Im�.r/� 0, thenFC.r Iy/ is a bounded function of y, while
if Im �.r/ � 0, then F�.r I x/ is a bounded function of x, and it is natural to expect
that these functions are then (co-)eigenfunctions of the operators PCt on L1..0;1//.
This is known to be the case for symmetric processes; see [39, 42].
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1.5. Idea of the proof

The proof of our main theorems is rather lengthy, so for the convenience of the reader,
below we outline the main ideas. The argument is given in Section 4, where The-
orem 1.5 is proved, and Section 5, containing the proof of the other main results.

In Section 4, we begin with the following well-known identity essentially due to
Pecherskii and Rogozin:

1Z
0

1Z
0

1Z
0

e��t��x��ypCt .x; y/dxdydt D
1

� C �

1

�C.�; �/��.�; �/
I

see Proposition 4.2. Here �C.�; �/ and ��.�; �/ are the Wiener–Hopf factors corres-
ponding to Xt , and by the Baxter–Donsker formula we have

�C.�; �/

�C.�; 0/
D exp

�
1

2�

1Z
�1

�
1

� C iz
�
1

iz

�
log.� C f .z//dz

�
��.�; �/

��.�; 0/
D exp

�
1

2�

1Z
�1

�
1

� � iz
�

1

�iz

�
log.� C f .z//dz

�
:

(the above formula requires that f .�/=� is integrable near � D 0, but let us ignore this
technicality here). In [41], the contour of integration with respect to z in the above
Baxter–Donsker formulae was deformed from R to � , the spine of f .�/. This led to
a more convenient expression for the Wiener–Hopf factors, and in our case it allows
us to write the (tri-variate) Laplace transform of pCt .x; y/ as
1Z
0

1Z
0

1Z
0

e��t��x��ypCt .x; y/dxdydt D
1

�.� C �/
exp

�
�
1

�

1Z
0

 .r/
dr

� C �.r/

�
;

for an appropriate function  ; see (4.2). We recall that the spine � is the line along
which the holomorphic extension of f .�/ takes real values, �.r/ is the parameterisa-
tion of �r such that j�.r/j D r , and �.r/ D f .�.r// are the values taken by f along
the spine � . We emphasise that the derivation of the above variant of Baxter–Donsker
formula crucially depends on the properties of the holomorphic extension of f .�/,
which is a consequence of our assumptions that the Lévy process Xt has completely
monotone jumps (or, equivalently, that f .�/ is a Rogers function).

It is now rather straightforward to inverse the Laplace transform with respect to
the temporal variable t . Indeed, it suffices to use inverse Fourier–Laplace transform
on the right-hand side, and deform the contour of integration to Hankel’s contour (the
one that goes from �1 to 0 on the bottom side of the real axis, turns around 0, and
goes back to�1 along the top side of the real axis). The corresponding result is given
in Proposition 4.3.
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A much more challenging task is to identify the expressions obtained by the
above procedure in terms of the Laplace transforms of the generalised eigenfunc-
tions FC.r I y/ and F�.r I x/. In order to do so in Proposition 4.4, we need to show
appropriate regularity of �.r/ (Proposition 3.14) and �.r/ (Proposition 3.15), as well
as prove an auxiliary result about the Wiener–Hopf factors of the Rogers function
f .�/ (Proposition 3.20). The last property mentioned above has a very natural and
seemingly simple statement, and a surprisingly technical proof.

Strictly speaking, Proposition 4.4 is stated in terms of the Wiener–Hopf factors
f C.r I �/ and f �.r I �/ of the Rogers function

f .r I �/ D
.� � �.r//.� C �.r//

f .�/ � �.r/
:

In Definition 4.5, we define the generalised eigenfunctions FC.r Iy/ and F�.r Ix/ by
providing a formula for their Laplace transforms in terms of f C.r I �/ and f �.r I �/.
Next, a minor extension of Proposition 4.4 to complex (rather than real) �; � is stated
in terms of LFC.r I �/ and LF�.r I �/ in Proposition 4.6, and this is tantamount to
Theorem 1.5. In the final part of Section 4, we give two auxiliary estimates of the
eigenfunctions (Lemma 4.8) and their Laplace transforms (Lemma 4.7).

In Section 5.1, we prove Theorems 1.6 and 1.2. As this is quite technical, we begin
with a simplified variant of Theorem 1.2, given as Proposition 5.1. For the proof of the
general result, we need an auxiliary estimate of Laplace transforms of test functions
u.y/ and v.x/ (Lemma 5.2). Theorem 1.6 is restated as Proposition 5.3. The rather
lengthy and technical proof essentially boils down to contour deformation arguments
and various estimates.

As explained above, Theorem 1.2, restated as Corollary 5.5, follows now easily
by Fubini’s theorem and a density argument; the details are somewhat complicated,
though. In particular, we need to show continuity of both sides of (1.11) in order to
have equality everywhere rather than almost everywhere.

The proof of Theorem 1.1 is given in Section 5.2. Since it is similar to the proof
of Theorem 1.2, we only sketch some parts of the argument. There are, however,
important differences. In fact, we study first the integral

1Z
0

e��ypCt .x; y/dy (1.19)

for � > 0, and only then we consider the limit as � ! 0C in order to recover the
expression for

P .
x
Xt > �x/ D

1Z
0

pCt .x; y/dy:
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The first part requires a result halfway between Theorem 1.5 and Theorem 1.6, given
in Proposition 5.6. The expression for the Laplace transform (1.19) is given in Corol-
lary 5.7, and the limit as � ! 0C is discussed in Corollary 5.8, which is a reformula-
tion of Theorem 1.1 (b).

Some of our results involve more than one Rogers function. For this reason, with
some exceptions, we generally indicate the dependence on f by writing it explicitly
in the subscript. Thus, in the remaining part of the text we tend to write, for example,
�f ; Zf ; �f .r/; �f .r/; FfC.r I y/; Ff �.r I x/, instead of �; Z; �.r/; �.r/; FC.r I y/;
F�.r I x/ used in the introduction.

We conclude the introduction with a brief description of the structure of the paper.
The remaining part of the article consists of five sections. In Section 2, we fix the
notation and discuss the notions of Stieltjes and complete Bernstein functions. Sec-
tion 3 is devoted to Rogers function, that is, holomorphic extensions of characteristic
exponents of Lévy processes with completely monotone jumps. We recall the relevant
results from [41] and prove additional auxiliary lemmas. The contents of Sections 4
and 5, where proofs of our main results are given, is discussed above. We conclude
the article with a number of examples in Section 6.

2. Preliminaries

2.1. Basic notation

We use the standard notation R and C for the sets of real and complex numbers, and
Re � and Im � for the real and imaginary part of � 2C. We use Arg � 2 .��;�/ for the
principal argument of � 2 C n .�1; 0�, and log � D log j�j C i Arg � for the principal
branch of the complex logarithm. We denote by

H D ¹� 2 C W Re � > 0º

the right complex half-plane. We write iR for the imaginary axis, we let Œ�; �� be the
interval in the complex plane with endpoints �; � 2 C, and if � 2 C and # 2 R, then
Œ�; ei#1/ denotes the ray � C rei# , where r 2 Œ0;1/.

To avoid confusion with complex conjugation, we denote the closure of a set A by
ClA. The interior and boundary of A are denoted by IntA and @A, respectively.

Following [41], we generally use x; y for spatial variables, �; � for the corres-
ponding Fourier or Laplace variables, t � 0 for a temporal variable, and � for the
corresponding Laplace variable. Whenever this causes no confusion, we write expli-
citly the arguments of a function or a measure, for example, we usually write “function
f .�/”, rather than “function f ”, or “process Xt”, rather than “process X”.
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2.2. Completely monotone, Stieltjes and complete Bernstein functions

We briefly recall the definitions and basic properties of three classes of functions
commonly used throughout the article.

A function f .x/ on .0;1/ is said to be completely monotone if f is smooth and
.�1/nf .n/.x/� 0 for all x 2 .0;1/ and nD 0;1; : : : , where f .n/ is the nth derivative
of f ; see Chapter 1 in [71]. By Bernstein’s theorem, f is completely monotone if and
only if f .x/ is the Laplace transform of a Borel measure on Œ0;1/:

f .x/ D

Z
Œ0;1/

e�sx�.ds/ (2.1)

for a Borel measure � on Œ0;1/ such that the above integral is finite for every x > 0.
Completely monotone functions thus extend to holomorphic functions in H.

A function f .�/, defined initially on .0;1/, is a Stieltjes function if there are
constants b; c � 0 and a Borel measure � on .0;1/ such thatZ

.0;1/

min.1; s�1/�.ds/ <1

and

f .�/ D
b

�
C c C

1

�

Z
.0;1/

1

� C s
�.ds/ (2.2)

for all � 2 C n .�1; 0�; see [71, Chapter 2]. Note that if c D 0 and �.¹0º/ D b, then
f .�/ is the Laplace transform of the completely monotone function given by the right-
hand side of (2.1). Thus, up to addition by a non-negative constant, Stielties functions
are Laplace transforms of Laplace transforms of Borel measures. Note that Stieltjes
functions automatically extend to holomorphic functions on C n .�1; 0�. If f .�/ is
given by (2.2), then

b D lim
�!0C

�f .�/; c D lim
�!1

f .�/;

and, in the sense of vague convergence of measures on .0;1/,

�.ds/ D lim
t!0C

.� Imf .�s C i t/ds/:

Similarly, a function f .�/, defined initially on .0;1/, is a complete Bernstein
function, if there are constants b; c � 0 and a Borel measure � on .0;1/ such thatZ

.0;1/

min.s�1; s�2/�.ds/ <1
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and

f .�/ D b� C c C
1

�

Z
.0;1/

�

� C s

�.ds/

s
(2.3)

for all � 2 C n .�1; 0�; see [71, Chapter 6]. As before, every complete Bernstein
function extends to a holomorphic function in C n .�1; 0�. For a function f .�/ given
by (2.3), we have

b D lim
�!1

f .�/

�
; c D lim

�!0C
f .�/;

and, in the sense of vague convergence of measures on .0;1/,

�.ds/ D lim
t!0C

.Imf .�s C i t/ds/:

We remark that f .�/ is a complete Bernstein function if and only if f .�/=� is a
Stieltjes function, and if f is not identically zero, then f .�/ is a complete Bernstein
function if and only if 1=f .�/ is a Stieltjes function. Additionally, a holomorphic
function f .�/ in C n .�1; 0� is a complete Bernstein function if and only if f .�/� 0
for � 2 .0;1/ and Imf .�/ � 0 for all � 2 C such that Im � > 0.

In particular, if f .�/ is a complete Bernstein function, then �=f .�/ is a complete
Bernstein function, and hence Im.�=f .�// � 0 when Im � > 0, and Im.�=f .�// � 0
when Im � < 0. In other words,

0 � Argf .�/ � Arg � when Im � > 0,

0 � Argf .�/ � Arg � when Im � < 0.
(2.4)

For a detailed discussion of the classes of functions introduced above, we refer
to [71]. A summary of properties related to the present context is given in [41].

2.3. Lévy processes

A Lévy process is a stochastic processXt with independent and stationary increments,
and càdlàg paths. More formally, we assume that Xt , where t 2 Œ0;1/, is a collection
of random variables such that the distribution of the increment XsCt � Xs does not
depend on s � 0, increments over disjoint intervals are independent random variables,
and the paths t 7! Xt are right-continuous and have left limits.

It is customary to assume thatX0D 0with probability one. However, we will work
with an arbitrary starting pointX0 D x 2R, and denote the corresponding probability
and expectation by Px and Ex . We additionally allowXt to be killed at a uniform rate
c � 0. By this, we mean that we augment the state space R by an additional cemetery
point @, and, given s > 0, with probability 1� ecs we haveXsCt D @ for all t 2 Œ0;1/.
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A Lévy process is completely determined by its characteristic exponent: a func-
tion f .�/, defined initially on R, such that

E0ei�Xt D e�tf .�/:

The characteristic exponent is given by the Lévy–Khintchine formula: we have

f .�/ D a�2 � ib� C c C

Z
Rn¹0º

�
1 � ei�z C i�z 1.�1;1/.z/

�
�.dx/;

where a � 0 is the Gaussian coefficient, b 2 R corresponds to the drift of the pro-
cess, c � 0 is the killing rate, and the Lévy measure �.dx/ satisfies the integrability
condition

R
Rn¹0ºmin¹1; x2º�.dx/ <1 and describes the intensity of jumps of Xt .

We remark that most authors denote the Gaussian coefficient a by �2=2, and some
use the symbols� and q for the drift term b and the killing rate c. There is no common
notation for Lévy measure, various references use, for example, �, � ,… or J . In most
applications one has c D 0, and in many other situations assuming that c D 0 leads
to no loss of generality. This will be the case here, and in Sections 4 and 5 we will
restrict our attention to non-killed Lévy processes with c D 0.

If the Lévy measure �.dx/ has a density function �.x/ such that �.x/ and �.�x/
are completely monotone functions of x 2 .0;1/, then we say thatXt has completely
monotone jumps. Modifying the drift coefficient b appropriately, we can rewrite the
Lévy–Khintchine formula as

f .�/ D a�2 � ib� C c C

1Z
�1

�
1 � ei�x C i�.1 � e�jxj/ sign x

�
�.x/dx;

and by using Bernstein’s theorem for �.x/ and �.�x/, we find that

f .�/ D a�2 � ib� C c C
1

�

Z
Rn¹0º

� �

� C is
C
i� sign s
1C jsj

��.ds/
jsj

;

where � is a Borel measure on R n ¹0º such that
R

Rn¹0º jsj
�3 min¹1; s2º�.ds/ <1;

see [41, Theorem 3.3].
In particular, it follows that characteristic exponents of Lévy processes with com-

pletely monotone jumps extend to holomorphic functions in C n iR, which we call
Rogers functions, following [41]. We refer to that article for a more detailed discussion
of Lévy processes with completely monotone jumps, and to Section 3 for a summary
of properties of Rogers functions.

Recall that the transition probabilities of Xt are defined by

pt .x; A/ D Px.Xt 2 A/:
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Since Xt has stationary increments, the transition probabilities are translation invari-
ant, in the sense that pt .x;A/ D pt .0;A� x/. We denote by �.0;1/ the first exit time
from .0;1/, and by pt .x; A/ the transition probabilities of the killed process Xt on
.0;1/:

pCt .x; A/ D Px.Xt 2 A; t < �.0;1//:

If pt .x; A/ or pCt .x; A/ has a density function, we denote it by the same symbol
pt .x; y/ D pt .0; y � x/ and pCt .x; y/. In analysis, pt .x; y/ is said to be the heat
kernel for the generator L of Xt , and pCt .x; y/ is the heat kernel in .0;1/ with zero
(or Dirichlet) condition in .�1; 0�; see Remark 1.3.

By xXt D sup¹Xs W s 2 Œ0; t �º and
x
Xt D inf¹Xs W s 2 Œ0; t �ºwe denote the supremum

and infimum functionals. The events �.0;1/ > t and
x
Xt > 0 differ by a set of probab-

ility zero, and thus

P0.
x
Xt > �x/ D Px.

x
Xt > 0/ D Px.�.0;1/ > t/ D p

C
t .x; .0;1//:

As it is customary, we denote by �C.�; �/, ��.�; �/ the bivariate Laplace expo-
nents of ladder processes corresponding to Xt , defined by

�C.�; �/ D exp
� 1Z
0

Z
.0;1/

e�t � e��t��x

t
P .Xt 2 dx/dt

�
;

��.�; �/ D exp
� 1Z
0

Z
.�1;0/

e�t � e��tC�x

t
P .Xt 2 dx/dt

�
I

(2.5)

see [28,62,69]. These functions are closely related to Wiener–Hopf factorisation of the
characteristic exponent f .�/, and thus they are often called the Wiener–Hopf factors
of the processXt . The above definition, with inner integrals over .�1; 0/ and .0;1/,
follows the convention used in [41], where the missing integral over ¹0º is denoted by

�ı.�/ D exp
� 1Z
0

e�t � e��t

t
P .Xt D 0/dt

�
:

Of course, �ı.�/ D 1, unless Xt is a compound Poisson process (or, equivalently,
f is bounded on R).

We only use the functions �C.�; �/ and ��.�; �/ in Proposition 4.2, where we
apply the Pecherski–Rogozin identities (see [28, 62, 69])

E0 exp.�� xXS / D
�C.�; 0/

�C.�; �/
; E0 exp.�

x
XS / D

��.�; 0/

��.�; �/
(2.6)
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where Re � � 0, Re � � 0, and the factorisation identity (see [41, formula (2.7)])

�ı.�/�C.�;�i�/��.�; i�/ D
� C f .�/

1C f .0/
; (2.7)

where � > 0 and � 2 R. Then, we immediately switch from the Wiener–Hopf factors
�C.�; �/ and ��.�; �/ of Xt to the analytical Wiener–Hopf factors f C� .�/ and f �� .�/
of the function f� .�/D � Cf .�/. In particular, we will never need the definition (2.5).
For this reason, we stop our discussion of �C.�; �/ and ��.�; �/ here, and we refer
to [41] and the references given there for further details.

2.4. Auxiliary estimates

The following simple inequality is used a few times below. If # D jArg.�=�/j, then

j� � �j2 D j�j2 C j�j2 � 2Re.� N�/ D j�j2 C j�j2 � 2j��j cos#

D

�
sin

#

2

�2
.j�j C j�j/2 C

�
cos

#

2

�2
.j�j � j�j/2 �

�
sin

#

2

�2
.j�j C j�j/2:

Thus,

j� � �j � .j�j C j�j/ sin
#

2
(2.8)

We also note that if � 2 C n .�1; 0�, then

Re �
j�j
D cos Arg �;

and that
cos
�
˛ C

�

4

�
cos
�
˛ �

�

4

�
D
1

2
cos.2˛/: (2.9)

3. Rogers functions

The term Rogers function was introduced in the unpublished paper [43] as a name for
a class of functions introduced by L. C. G. Rogers in [68]. The core of [43] appeared
recently in [41], which contains a detailed analysis of the Wiener–Hopf factorisation
of Rogers functions. Below, we recall the definition and some properties of Rogers
functions, and we prove several auxiliary lemmas.

3.1. Definition and basic properties

We begin with the definition of a Rogers function.



M. Kwaśnicki 36

Definition 3.1 ([41, Definition 3.2]). A function f .�/ is a Rogers function if it is a
holomorphic function in the right complex half-plane H D ¹� 2 C W Re � > 0º such
that Re.f .�/=�/ � 0 whenever Re � > 0.

A Rogers function f .�/ is said to be non-zero if f .�/ is not identically equal to
zero in H; f .�/ is non-constant if f .�/ is not a constant function in H; finally, f .�/
is non-degenerate if f .�/ is not of the form ib� for some b 2 R.

Every characteristic function of a Lévy process with completely monotone jumps
(possibly killed at a uniform rate) extends to a Rogers function, and every Rogers
function corresponds in this way to some Lévy process with completely monotone
jumps. More precisely, we have the following equivalent characterisations of the class
of Rogers functions.

Theorem 3.2 ([41, Theorem 3.3]). Suppose that f .�/ is a continuous function on R,
satisfying f .��/ D f .�/ for all � 2 R. The following conditions are equivalent:

(a) f .�/ extends to a Rogers function;

(b) f .�/ is the characteristic exponent of a Lévy process with completely mono-
tone jumps, possibly killed at a uniform rate;

(c) we have

f .�/ D a�2 � ib� C c C
1

�

Z
Rn¹0º

� �

� C is
C
i� sign s
1C jsj

��.ds/
jsj

(3.1)

for all � 2 R, where a � 0, b 2 R, c � 0 and �.ds/ is a Borel measure on
R n ¹0º such that

R
Rn¹0º jsj

�3 min¹1; s2º�.ds/ <1;

(d) either f .�/ D 0 for all � 2 R or

f .�/ D c exp
�
1

�

1Z
�1

� �

� C is
�

1

1C jsj

�'.s/
jsj

ds

�
(3.2)

for all � 2 R, where c > 0 and '.s/ is a Borel function on R with values in
Œ0; ��.

We say that (3.1) is a Stieltjes representation of a Rogers function f .�/, while (3.2)
gives an exponential representation of a (non-zero) Rogers function f .�/. If f .�/ is
a non-zero Rogers function with exponential representation (3.2), then we define the
domain of f .�/ by the formula

Df D C n .�i ess supp'/;

where ess supp ' denotes the essential support of ', that is, the smallest closed
set A such that ' D 0 almost everywhere on R n A; see [41, formula (3.3)].
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By [41, Remark 3.4 (a)], f .�/ extends to a holomorphic function in Df , denoted
by the same symbol f .�/, and this extension satisfies f .�N�/ D f .�/.

We will use the following results from [41]. The first one was given there without
proof, so we include the details below.

Proposition 3.3 ([41, Propostion 3.12]). For all Rogers functions f .�/ and g.�/,

(a) �2f .1=�/ is a Rogers function;

(b) �2=f .�/ and 1=f .1=�/ are Rogers functions if f .�/ is non-zero;

(c) g.�/f .�=g.�// is a Rogers function if g.�/ is non-zero;

(d) af .b�/C c is a Rogers function if a; b; c � 0.

Proof. Suppose that Re.f .�/=�/ � 0 and Re.g.�/=�/ � 0 when Re � > 0, and define
f1.�/ D �2f .1=�/, f2.�/ D �2=f .�/, f3.�/ D 1=f .1=�/, f4.�/ D g.�/f .�=g.�//

and f5.�/ D af .b�/C c. If Re � > 0, then Re.1=�/ > 0, and hence

Re
f1.�/

�
D Re

f .1=�/

1=�
� 0:

If f .�/ is non-zero, then additionally

Re
f2.�/

�
D Re

�

f .�/
� 0; Re

f3.�/

�
D Re

1=�

f .1=�/
� 0:

Similarly, if g.�/ is non-zero, then Re.�=g.�// > 0, and so

Re
f4.�/

�
D Re

f .�=g.�//

�=g.�/
� 0:

Finally, Re.f5.�/=�/ D ab Re.f .b�/=.b�//C c Re.1=�/ � 0.

Proposition 3.4 ([41, Proposition 3.14]). If f .�/ is a Rogers function, then the limit
f .0C/ D lim�!0C f .�/ exists. More precisely, if f .�/ has Stieltjes representation
(3.1), then f .0C/ D c, and if f .�/ has the exponential representation (3.2), then

f .0C/ D c exp
�
�
1

�

1Z
0

1

1C jsj

'.s/

jsj
ds

�
;

where we understand that exp.�1/ D 0. Similarly, f .1�/ D lim�!1 f .�/ exists,
and if f .�/ has the exponential representation (3.2), then

f .1�/ D c exp
�
1

�

1Z
0

jsj

1C jsj

'.s/

jsj
ds

�
;

where we understand that exp.1/ D1
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Proposition 3.5 ([41, Proposition 3.17]). If f .�/ is a Rogers function and r > 0, then

1
p
2

j�j2

r2 C j�j2

�Re �
j�j

�
jf .r/j � jf .�/j �

p
2
r2 C j�j2

r2

�
j�j

Re �

�
jf .r/j

when Re � > 0.

If h.�/ is a complete Bernstein function, then f .�/ D h.�2/ is a Rogers function.
In this case, the above estimate applied to f .�/ reads as follows.

Corollary 3.6. If h.�/ is a complete Bernstein function, r > 0 and � 2 C n .�1; 0�,
then

1
p
2

j�j

r C j�j

�Re
p
�

j
p
�j

�
h.r/ � jh.�/j �

p
2
r C j�j

r

�
j
p
�j

Re
p
�

�
h.r/:

The following result is an extension of [41, Proposition 3.18], which corresponds
to the case f .�/ 2 .0;1/ and p D 0. Since the proof is exactly the same as that
of [41, Proposition 3.18], we omit it.

Proposition 3.7. Suppose that f .�/ is a non-zero Rogers function and p � 0. Let � 2
Df , and suppose that Argf .�/ � pRe �=j�j if Im � � 0, or Argf .�/ � �pRe �=j�j
if Im � � 0. Then, ˇ̌̌f 0.�/

f .�/

ˇ̌̌
�
� C 2p

j�j
;

and, for some c > 0,

jlogf .�/j � jlog cj C
p
2.� C 2p/

1C j�jp
j�j

:

More precisely, c is the constant in the exponential representation (3.2) of f .�/, and
with the notation of (3.2), we have

1

�

1Z
�1

ˇ̌̌ 1

� C is
�

1

1C jsj

ˇ̌̌'.s/
jsj

ds �
p
2.� C 2p/

1C j�jp
j�j

:

The spine of f .�/ is the system of curves

�f D ¹� 2 H W f .�/ 2 .0;1/ºI

see [41, Definition 4.1]. Regularity of the spine is described by the following two
results. The author recently learned that Proposition 3.8 (d) was in fact first observed
in [19], with a better constant, and an optimal constant was found in [77].

Proposition 3.8 ([41, Theorem 4.2]). Let f .�/ be a non-constant Rogers function.
There is a unique continuous complex-valued function �f .r/ on .0;1/ such that the
following assertions hold.
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(a) We have j�f .r/j D r and Arg �f .r/ 2 Œ��=2; �=2� for all r > 0.

(b) If Re � > 0 and r D j�j, then

sign Imf .�/ D sign.Arg � � Arg �f .r//:

(c) The spine �f is the union of pairwise disjoint simple real-analytic curves,
which begin and end at the imaginary axis or at infinity. Furthermore, �f
has parameterisation

�f D ¹�f .r/ W r 2 Zf º;

where
Zf D

°
r 2 .0;1/ W Arg �f .r/ 2

�
�
�

2
;
�

2

�±
:

(d) For every r > 0, the spine �f restricted to the annular region r � j�j � 2r is
a system of rectifiable curves of total length at most Cr , where one can take
C D 300. Furthermore, if �f .r/ D rei#.r/ for r 2 Zf , then

jr.r# 0.r//0j �
9..r# 0.r//2 C 1/

cos#.r/

for r 2 Zf .

Proposition 3.9 ([41, Theorem 4.3]). Suppose that f .�/ is a non-constant Rogers
function.

(a) For every r 2 .0;1/ n @Zf , we have �f .r/ 2 Df .

(b) The function �f .r/, defined for r 2 .0;1/ n @Zf by

�f .r/ D f .�f .r//;

extends in a unique way to a continuous, strictly increasing function of r 2
.0;1/, and �0

f
.r/ > 0 for every r 2 .0;1/ n @Zf .

(c) We have �.0C/ D f .0C/ and �.1�/ D f .1�/.

We define the symmetrised spine �?
f

to be the union of the spine �f , its mirror
image �x�f , and the endpoints of �f (which necessarily lie on the imaginary axis);
see [41, Section 4.2]. The symmetrised spine (or, more precisely, its closure) divides
the complex plane into two regions (see Figure 2):

DC
f
D Int¹rei˛ 2 C W r � 0; ˛ 2 Œ#.r/; � � #.r/�º;

D�f D Int¹rei˛ 2 C W r � 0; ˛ 2 Œ�� � #.r/; #.r/�ºI
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�f .r/�N�f .r/

r

�f�?
f

DC
f

D�
f

Re

Im

Figure 2. The spine �f (purple dotted line), the symmetrised spine �?
f

(teal line), and the

regions DC
f

(grey) and D�
f

(white).

again, see [41, Section 4.2]. On the complement of the imaginary axis, these sets are
simply the regions where Imf .�/ is positive or negative, respectively:

DC
f
n iR D ¹� 2 C n iR W Imf .�/ > 0º;

D�f n iR D ¹� 2 C n iR W Imf .�/ < 0º:

Proposition 3.10 ([68, Theorem 2] and [41, Theorem 5.1]). A function f .�/ holo-
morphic on H is a non-zero Rogers function if and only if it admits a Wiener–Hopf
factorisation

f .�/ D f C.�i�/f �.i�/

for some non-zero complete Bernstein functions f C.�/, f �.�/ and for all � 2 H,
or, equivalently, � 2 Df . The factors f C.�/ and f �.�/ are defined uniquely, up to
multiplication by a constant: for a given pair of Wiener–Hopf factors f C.�/ and
f �.�/, all other pairs are of the form Cf C.�/ and C�1f �.�/ for C > 0.

By [41, formula (5.2)], if f .�/ has the exponential representation (3.2), then the
Wiener–Hopf factors are given by

f C.�/ D cC exp
�
1

�

1Z
0

� �

� C s
�

1

1C s

�'.s/
s
ds

�
;

f �.�/ D c� exp
�
1

�

1Z
0

� �

� C s
�

1

1C s

�'.�s/
s

ds

�
;

(3.3)
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where cC; c� > 0 satisfy the condition cCc� D c. We stress that expressions of the
form f C.�/=f C.�/, f �.�/=f �.�/, and f C.�/f �.�/ do not depend on the choice
of the pair of Wiener–Hopf factors in Proposition 3.10.

The next result is [41, Theorem 5.7] applied with R D 0 to the Rogers function
f� .�/ D � C f .�/, combined with Lemma 6.1 in [41].

Proposition 3.11 ([41, Theorem 5.7 and Lemma 6.1]). If f .�/ is a non-constant
Rogers function such that f .0C/D 0, � > 0, and f� .�/D � C f .�/, then for �; � > 0
we have

f C� .�/f
�
� .�/ D � exp

�
1

�

1Z
0

�
Arg.�f .r/C i�/ � Arg.�f .r/ � i�/

� d�f .r/

� C �f .r/

�
;

and the above expression defines a complete Bernstein function of � . Similarly, if
0 < � < �, then

f C� .�/

f C� .�/
D exp

�
1

�

1Z
0

�
Arg.�f .r/ � i�/ � Arg.�f .r/ � i�/

� d�f .r/

� C �f .r/

�
;

f �� .�/

f �� .�/
D exp

�
1

�

1Z
0

�
Arg.�f .r/C i�/ � Arg.�f .r/C i�/

� d�f .r/

� C �f .r/

�
;

and both expressions define a complete Bernstein function of � .

3.2. Extensions and auxiliary results

We will need a few more properties of Rogers functions. The first one is a simple
observation.

Proposition 3.12. If f .�/ is a Rogers function, then jf .�/j is a non-decreasing func-
tion of � > 0.

Proof. Suppose that f .�/ is a non-zero Rogers function with exponential representa-
tion (3.2). Since Re.�=.� C is// D �2=.�2 C s2/ for � > 0 and s 2 R, we have

log jf .�/j D Re Argf .�/ D log c C
1

�

1Z
�1

� �2

�2 C s2
�

1

1C jsj

�'.s/
jsj

ds

for � > 0, and the right-hand side is clearly a non-decreasing function of � .

Our next result extends [41, Theorem 5.5]. Its proof is exactly the same as that
of [41, Theorem 5.5], with one modification: where originally [41, Proposition 3.18]
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is used to justify the use of Fubini’s theorem, one should apply its extension given in
Proposition 3.7 above. We omit the details.

Proposition 3.13. If f .�/ is a non-constant and non-degenerate Rogers function,
h.�/ is a non-zero Rogers function, �1; �2 2 DCf [D

�
f

, and for some constant C we
have jArg h.�/j � C Re �=j�j for all � 2 �f , then

1

2�i

Z
�?
f

� 1

z � �1
�

1

z � �2

�
log h.z/dz

D

8̂̂<̂
:̂

log hC.�i�1/ � log hC.�i�2/ if �1; �2 2 DCf ,

log h�.i�2/ � log h�.i�1/ if �1; �2 2 D�f ,

log hC.�i�1/C log h�.i�2/ if �1 2 DCf , �2 2 D�f ;

in particular, the integral is absolutely convergent.

If Zf D .0;1/, then �f .r/ and ��1
f
.s/ are smooth functions. In the general case,

we will need the following two technical results.

Proposition 3.14. If f .�/ is a non-constant Rogers function, then �f .r/ is a locally
Hölder continuous function of r 2 .0;1/, with exponent 1=30.

Proof. We use the notation and results of [41, Section 7]. We write r D eR, and we
let ‚.R/ D Arg �f .eR/. By [41, Lemma 7.1], we have

j‚00.R/j �
9..‚0.R//2 C 1/

cos‚.R/
(3.4)

when eR 2 Zf , or, equivalently, when ‚.R/ 2 .��=2; �=2/. Furthermore, by [41,
Lemma 7.3], if ‚.R1/ D ‚.R2/ D 0 and j‚0.R1/j � 1, then jR2 �R1j > 1=2.

Local Hölder continuity of �f .r/ D ei‚.log r/ on .0;1/ is equivalent to local
Hölder continuity of ‚.R/ on R. Below we prove the latter property. We begin with
the following observation: for every interval ŒA;B�, the set of points R 2 ŒA;B� such
that ‚.R/ D 0 and j‚0.R/j � 1 is finite (because every pair of such points is more
than 1=2 apart), and hence

M.A;B/ D sup¹j‚0.R/j W R 2 ŒA; B�; ‚.R/ D 0º

is finite for every A and B such that ‚.R/ D 0 for some R 2 ŒA; B�. We set
M.A; B/ D 0 if ‚.R/ ¤ 0 for R 2 ŒA; B�. Let p D 9� C 1. Our goal is to prove
that ‚.R/ is Hölder continuous on ŒA; B� with exponent 1=p, with constant in the
Hölder condition determined by M.A;B/.
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We consider an auxiliary function

ˆ.R/ D
�
1 �

2

�
‚.R/

�p
:

We claim that ˆ.R/ is locally Lipschitz continuous on the set ¹R 2 R W ‚.R/ � 0º.
Let

zZC
f
D

°
R 2 R W ‚.R/ 2

�
0;
�

2

�±
:

Observe that cos‚.R/ > .1 � 2‚.R/=�/ for R 2 zZC
f

, while if j‚0.R/j � 1, then

we have .‚0.R//2 C 1 � 2.‚0.R//2. Thus, formula (3.4) implies that if R 2 zZC
f

and
j‚0.R/j � 1, then

j‚00.R/j <
18.‚0.R//2

1 � 2
�
‚.R/

:

In this case,

ˆ00.R/ D
4p.p � 1/

�2
.‚0.R//2

�
1 �

2

�
‚.R/

�p�2
�
2p

�
‚00.R/

�
1 �

2

�
‚.R/

�p�1
>
4p.p � 1/

�2
.‚0.R//2

�
1 �

2

�
‚.R/

�p�2
�
36p

�
.‚0.R//2

�
1 �

2

�
‚.R/

�p�2
D 0:

On the other hand,

ˆ0.R/ D �
2p

�
‚0.R/

�
1 �

2

�
‚.R/

�p�1
;

so that if jˆ0.R/j � 2p=� , then j‚0.R/j � 1. The above observations show that

if R 2 zZC
f

and jˆ0.R/j �
2p

�
, then ˆ00.R/ > 0.

By the above property, if ˆ0.R1/ � 2p=� for some R1 2 zZCf , then ˆ0.R/ � ˆ0.R1/
in some right neighbourhood of R1, and it follows that there is R2 such that one has
ŒR1; R2/ � zZ

C

f
, ‚.R2/ D 0 (or, equivalently, ˆ.R2/ D 1), and ˆ00.R/ > 0 for

R 2 ŒR1;R2/. Consequently, jˆ0.R1/j � jˆ0.R2/j. Similarly, ifˆ0.R1/��2p=� for
some R1 2 zZCf , then ˆ00.R/ > 0 for R 2 .R2; R1� for some R2 such that ‚.R2/ D
0, and again jˆ0.R1/j � jˆ0.R2/j. Furthermore, in both cases jR2 � R1j � �=2p.
It follows that for every interval ŒA; B� we have

sup¹jˆ0.R/j W R 2 zZC
f
\ ŒA; B�º � max

°2p
�
;M

�
A �

�

2p
;B C

�

2p

�±
:

Since ˆ is continuous on R, we find that ˆ.R/ is locally Lipschitz continuous on
the closure of zZC

f
, as claimed. Consequently,‚.R/ is locally Hölder continuous with

exponent 1=p on the closure of zZC
f

.
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A very similar argument involving another auxiliary function .1 C 2‚.R/=�/p

shows that ‚.R/ is locally Hölder continuous with exponent 1=p also on the closure
of

zZ�f D
°
R 2 R W ‚.R/ 2

�
�
�

2
; 0
�±
;

and, consequently,‚.R/ is locally Hölder continuous with exponent 1=p on the clos-
ure of

zZf D
°
R 2 R W ‚.R/ 2

�
�
�

2
;
�

2

�
n ¹0º

±
:

Since ‚.R/ is continuous on R and piecewise constant on the complement of zZf ,
we conclude that ‚.R/ is locally Hölder continuous on all of R, and the proof is
complete.

We conjecture that in fact �f .r/ is locally Hölder continuous with exponent 1=2.

Proposition 3.15. If f .�/ is a non-constant Rogers function, then ��1
f
.s/ is a locally

Hölder continuous function of s 2 .�f .0C/; �f .1//, with exponent 1=3.

Proof. Denote ˆ.r/ D log�f .r/. We first prove that ˆ.r/ increases fast enough.
For r in .0;1/ n @Zf , which is a dense subset of .0;1/, we have �f .r/ 2 Df

(by Proposition 3.9 (a)), and hence ˆ.r/ D log f .�f .r//. By the exponential repres-
entation (3.2), for � 2 Df we have

logf .�/ D log c C
1

�

1Z
�1

� �

� C is
�

1

1C jsj

�'.s/
jsj

ds:

If � D x C iy with x � 0 and y 2 R, then an elementary calculation shows that

Re logf .�/ D log c C
1

�

1Z
�1

�
�.y C s/ sign s
x2 C .y C s/2

C
1

1C jsj

�
'.s/ds;

Im logf .�/ D �
1

�

1Z
�1

x sign s
x2 C .y C s/2

'.s/ds:

We set � D �f .r/ for some r 2 .0;1/ n @Zf . If r 2Zf , then x > 0, and consequently
x�1 Im logf .�/ D 0, so that

1

�

1Z
�1

sign s
x2 C .y C s/2

'.s/ds D 0 if x > 0. (3.5)

In the other case, if r 2 .0;1/ n ClZf , we have x D 0, and the integral in (3.5) need
not be equal to zero. However, we claim that

y

�

1Z
�1

sign s
x2 C .y C s/2

'.s/ds � 0 if x D 0: (3.6)
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Indeed, observe that either � D ir or � D�ir . In the former case, Im logf .ie�i"r/D
Argf .ie�i"r/ � 0 for " 2 .0; �/ (by Proposition 3.8 (b)), and hence

0 � � lim
"!0C

Im logf .ie�i"r/
Re.ie�i"r/

D lim
"!0C

1

�

1Z
�1

sign s
.r sin "/2 C .r cos "C s/2

'.s/ds D
1

�

1Z
�1

sign s
.r C s/2

'.s/ds

(we used the dominated convergence theorem in the final step). Formula (3.6) follows.
A similar argument can be given in the latter case, when � D �ir , and our claim is
proved.

We now fix r1; r2 2 .0;1/ n @Zf such that r1 < r2, and we apply the above
expression for Re logf .�/ to � D �f .r1/ D x1 C iy1 and to � D �f .r2/ D x2 C iy2.
This leads to

ˆ.r2/ �ˆ.r1/

D logf .�f .r2// � logf .�f .r1//

D
1

�

1Z
�1

� y1 C s

x21 C .y1 C s/
2
�

y2 C s

x22 C .y2 C s/
2

�
'.s/ sign s ds

D
1

�

1Z
�1

x22.y1 C s/ � x
2
1.y2 C s/C .y2 � y1/.y1 C s/.y2 C s/

.x21 C .y1 C s/
2/.x22 C .y2 C s/

2/
'.s/ sign s ds:

We define

˛1 D
y1.x

2
1 C y

2
1 C x

2
2 C y

2
2/ � 2y2.x

2
1 C y

2
1/

x22 C y
2
2 � x

2
1 � y

2
1

;

˛2 D
y2.x

2
1 C y

2
1 C x

2
2 C y

2
2/ � 2y1.x

2
2 C y

2
2/

x22 C y
2
2 � x

2
1 � y

2
1

:

Note that if x1 D 0, then

˛1

y1
D
y21 C x

2
2 C y

2
2 � 2y1y2

x22 C y
2
2 � y

2
1

� 0;

so that ˛1 and y1 have equal sign. Thus, by (3.6),

˛1

�

1Z
�1

sign s
x21 C .y1 C s/

2
'.s/ds � 0:
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If x1 > 0, then the integral in the above expression is zero by (3.5), and so the above
inequality holds trivially. In a similar way,

˛2

�

1Z
�1

sign s
x22 C .y2 C s/

2
'.s/ds � 0:

It follows that

ˆ.r2/ �ˆ.r1/ � ˆ.r2/ �ˆ.r1/ �
˛1

�

1Z
�1

sign s
x21 C .y1 C s/

2
'.s/ds

�
˛2

�

1Z
�1

sign s
x22 C .y2 C s/

2
'.s/ds:

By an explicit (but tedious) calculation, we find that

ˆ.r2/ �ˆ.r1/ �
˛1

�

1Z
�1

sign s
x21 C .y1 C s/

2
'.s/ds �

˛2

�

1Z
�1

sign s
x22 C .y2 C s/

2
'.s/ds

D
1

�

1Z
�1

.x22 � x
2
1/
2 C 2.x21 C x

2
2/.y2 � y1/

2 C .y2 � y1/
4

.x22 C y
2
2 � x

2
1 � y

2
1/.x

2
1 C .y1 C s/

2/.x22 C .y2 C s/
2/
jsj'.s/ds:

Finally, we have

.x22 � x
2
1/
2
C 2.x21 C x

2
2/.y2 � y1/

2
C .y2 � y1/

4

� ..x2 � x1/
2
C .y2 � y1/

2/2

D j�f .r2/ � �f .r1/j
4
� .r2 � r1/

4

and x21 C y
2
1 D r

2
1 , x22 C y

2
2 D r

2
2 . By combining the above observations, we arrive at

ˆ.r2/ �ˆ.r1/ �
.r2 � r1/

4

r22 � r
2
1

1

�

1Z
�1

1

.x21 C .y1 C s/
2/.x22 C .y2 C s/

2/
jsj'.s/ds

�
.r2 � r1/

3

r1 C r2

1

�

1Z
�1

1

4.r21 C s
2/.r22 C s

2/
jsj'.s/ds: (3.7)

This is the desired lower bound for the growth of ˆ.r/. Recall that here r1; r2 2
.0;1/ n @Zf , and r1 < r2. However, ˆ.r/ D log �f .r/ is continuous, and there-
fore (3.7) extends to arbitrary r1; r2 2 .0;1/ such that r1 < r2.
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Fix an interval ŒR1; R2� � .0;1/. If R1 � r1 < r2 � R2, then, by (3.7),

�f .r2/ � �f .r1/ D e
ˆ.r1/.eˆ.r2/�ˆ.r1/ � 1/

� eˆ.R1/.ˆ.r2/ �ˆ.r1//

� C.f;R1; R2/.r2 � r1/
3

for some constant C.f; R1; R2/ > 0 (depending on f and the interval ŒR1; R2�).
This estimate is equivalent to Hölder continuity of ��1

f
.s/ on Œ�f .R1/; �f .R2/� with

exponent 1=3.

The exponent 1=3 is sharp, as it is easily seen by inspecting the example

f .�/ D �2.i� C 14/
�
i� C

1

2

��1
.�i� C 2/�1

near � D 2i ; see [41, Figure 1 (f)].

3.3. Difference quotients

If f .�/ is a complete Bernstein function and � 2 .0;1/, then the difference quo-
tient .� � �/=.f .�/� f .�// (extended continuously at � D �) is a complete Bernstein
function of �. This property played an important role in [39]. The following result
provides an analogous statement for Rogers functions.

Proposition 3.16. If f .�/ is a Rogers function and Re � > 0, then

g.�/ D
�2

.� � �/.� C N�/

�
f .�/ � Ref .�/ �

i� C Im �

Re �
Imf .�/

�
;

defined for � 2 H n ¹�º and extended continuously at � D �, is a Rogers function. In
particular, if f .�/ is a non-constant Rogers function and � 2 �f , then

h.�/ D
.� � �/.� C N�/

f .�/ � f .�/
; (3.8)

where � 2 H n ¹�º, extended continuously at � D � so that h.�/ D .2Re �/=f 0.�/, is
a Rogers function. Similarly, if � 2 iR is an accumulation point of �f and j�j D r 2
Œ0;1/, then

h.�/ D
.� � �/2

f .�/ � �f .r/
(3.9)

defines a Rogers function of � 2 H.
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Proof. Suppose that f .�/ has the Stieltjes representation (3.1). By a simple calcula-
tion,

f .�/ D a.�2 � 2i� Im �/ � i Qb� C c C
1

�

Z
Rn¹0º

� �

� C is
C

i�s

j� C isj2

��.ds/
jsj

for some Qb 2 R; namely,

Qb D b � 2a Im � C
1

�

Z
Rn¹0º

� s

j� C isj2
�

sign s
1C jsj

��.ds/
jsj

:

If we set � D �, we obtain

f .�/ D a.�2 � 2i� Im �/ � i Qb� C c C
1

�

Z
Rn¹0º

�. N� � is/C i�s

j� C isj2
�.ds/

jsj

D aj�j2 � i Qb� C c C
1

�

Z
Rn¹0º

j�j2

j� C isj2
�.ds/

jsj
:

In particular, Im f .�/ D �Qb Re �. After a short calculation (we omit the details), the
above two equalities lead to

f .�/ � Ref .�/ �
i� C Im �

Re �
Imf .�/

D a.�2 � 2i� Im � � j�j2/C
1

�

Z
Rn¹0º

� �

� C is
C

i�s

j� C isj2
�

j�j2

j� C isj2

��.ds/
jsj

:

By another simple calculation,

�

� C is
C

i�s

j� C isj2
�

j�j2

j� C isj2
D
�j� C isj2 C .i�s � j�j2/.� C is/

.� C is/j� C isj2

D
is.�2 � 2i� Im � � j�j2/

.� C is/j� C isj2
;

and
�2 � 2i� Im � � j�j2 D .� � �/.� C N�/:

It follows that

f .�/ � Ref .�/ �
i� C Im �

Re �
Imf .�/

D .� � �/.� C N�/
�
aC

1

�

Z
Rn¹0º

is

� C is

�.ds/

jsjj� C isj2

�
: (3.10)
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Therefore,

g.�/ D a�2 C
1

�

Z
Rn¹0º

is�2

� C is

�.ds/

jsjj� C isj2

D a�2 C
1

�

Z
Rn¹0º

� �

� C is
C
i�

s

�
jsj�.ds/

j� C isj2

D a�2 � iB� C
1

�

Z
Rn¹0º

� �

� C is
C
i� sign s
1C jsj

�
jsj�.ds/

j� C isj2
(3.11)

for an appropriate B 2 R; namely,

B D
1

�

Z
Rn¹0º

� sign s
1C jsj

�
1

s

�
jsj

j� C isj2
�.ds/:

The right-hand side of (3.11) is the Stieltjes representation (3.1) of a Rogers function,
and therefore g is a Rogers function. The first assertion of the lemma is proved.

If � 2 �f , then Im f .�/ D 0, and hence h.�/ D �2=g.�/ is a Rogers function.
This proves the second statement of the lemma. The last one follows by the following
observation: if � is an accumulation point of �f , then there is a sequence �n 2 �f
which converges to �, and the corresponding Rogers functions hn.�/ converge locally
uniformly in H to the function h.�/ given by (3.9). It remains to note that a locally
uniform limit of Rogers functions is a Rogers function.

Remark 3.17. If f .�/ is a non-constant Rogers function and f .�/ 2 .0;1/ for some
� 2H, then f .�/ is non-degenerate, and from (3.11) it follows that also g.�/ and h.�/
are non-degenerate.

When r 2 ClZf and � D �f .r/ in Proposition 3.16, then we denote the function
h.�/ defined there (in (3.8)) by f .r I �/. In other words, we let

f .r I �/ D
.� � �f .r//.� C �f .r//

f .�/ � �f .r/
(3.12)

for � 2 H n ¹�º, where �f .r/ D f .�f .r//, and if r 2 Zf , then we additionally set

f .r I �f .r// D
2Re �f .r/
f 0.�f .r//

:

The next result specialises Proposition 3.16 for Rogers functions of the form
h.�i�/ or h.i�/, where h.�/ is a complete Bernstein function. A special case cor-
responding to � 2 .0; i1/ was proved in [39].
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Proposition 3.18 (see [39, Lemma 2.20]). If h.�/ is a complete Bernstein function
and Im � > 0, then, for some Stieltjes function g.�/,

h.�/

.� � �/.� � N�/
D

1

2i Im �

� h.�/
� � �

�
h. N�/

� � N�

�
� g.�/

for � 2Dh. Furthermore, the constants b and c in the Stieltjes representation (2.2) of
g.�/ are equal to 0.

Proof. Suppose that h.�/ has the Stieltjes representation (2.3) and Im � > 0. Then,
f .�/ D h.�i�/ is a Rogers function with Stieltjes representation

f .�/ D �ib� C c C
1

�

Z
.0;1/

�

� C is

�.ds/

s

D �i Qb� C c C
1

�

Z
.0;1/

� �

� C is
C

i�s

j� C isj2

��.ds/
s

for some Qb 2 R. Identity (3.10) from the proof of Proposition 3.16, with � and �
replaced by i� and i N�, leads to

h.�/ � Ref . N�/ �
�� C Re �

Im �
Imf . N�/

D .i� � i N�/.i� � i�/
1

�

Z
.0;1/

is

i� C is

�.ds/

jsjji N� C isj2

for � 2 C n .�1; 0�. After simplification, this gives

h.�/ �
.� � N�/h.�/ � .� � �/h. N�/

2i Im �
D �.� � N�/.� � �/

1

�

Z
.0;1/

1

� C s

�.ds/

j� C sj2
:

Hence,

1

2i Im �

� h.�/
� � �

�
h. N�/

� � N�

�
�

h.�/

.� � �/.� � N�/
D
1

�

Z
.0;1/

1

� C s

s

j� C sj2
�.ds/

s
;

and because s=j� C sj2 is positive and bounded, the right-hand side defines a Stieltjes
function of � .

We conclude this part with an application of Proposition 3.13 which will play a
crucial role in our development. The proof of this result is unexpectedly complicated,
and requires the following auxiliary lemma.
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��N�

�?
f �?

#

# Re

Im

Figure 3. Setting for the proof of Lemma 3.19. Function h has a branch cut at the purple arc.
Contour �?

f
(teal line) is approximated by the contour �?

#
(olive dotted line).

Lemma 3.19. If f .�/ is a non-constant and non-degenerate Rogers function, � 2 �f ,

h.�/ D
.� � �/.� C N�/

.� C i j�j/2
;

and �1; �2 2 DCf [D
�
f

, then

1

2�i

Z
�?
f

� 1

z � �1
�

1

z � �2

�
log h.z/dz

D 1
D
C

f

.�1/ log h.�1/ � 1
D
C

f

.�2/ log h.�2/: (3.13)

Similarly, if

h.�/ D
.� � �/.� C N�/

.� � i j�j/2
;

and �1; �2 2 DCf [D
�
f

, then

1

2�i

Z
�?
f

� 1

z � �1
�

1

z � �2

�
log h.z/dz

D 1D�
f
.�2/ log h.�2/ � 1D�

f
.�1/ log h.�1/: (3.14)

Proof. Both identities are proved essentially in the same way, so we only discuss the
case of (3.13). The argument is in fact very similar to the proof of [41, Lemma 5.4],
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so we omit some details. As in that result, by continuity, with no loss of generality we
may assume that �1 and �2 do not lie on the imaginary axis.

Observe that logh.�/D log..� � �/.�C N�/=.�C i j�j/2/ is a holomorphic function
of � with a branch cut along the arc of the circle j�j D r with endpoints � and �N�
which also contains �i j�j (see Figure 3). We note that for the other function h.�/
in the statement of the lemma, the one appearing in (3.14), the function log h.�/ is
holomorphic with a branch cut along the complementary arc, that is, the other arc of
the circle j�j D r with endpoints � and �N�.

For a given # 2 .0; �=2/, we consider the curve �?
#

which can be informally
defined to be the curve �?

f
truncated at lines Arg.˙�/ D ˙# . More formally, �?

#
is a

curve parameterised by the function �#.r/ of r 2 R, which for r > 0 is given by

�#.r/ D

8̂̂<̂
:̂
�f .r/ if jArg �f .r/j � # ,

rei# if Arg �f .r/ > # ,

re�i# if Arg �f .r/ < �# ,

and which satisfies �#.�r/D��#.r/ and �#.0/D 0. (This is a minor modification of
the definition of the curve �?p in the proof of [41, Lemma 5.4].) We also defineDC

#
to

be the region above �?
#

:

DC
#
D ¹rei˛ W r > 0; ˛ 2 .Arg �#.r/; � � Arg �#.r//º:

Observe that �?
#

is a simple curve, and it is the boundary of the region DC
#

. Further-
more, if # > Arg �, then log h.�/ is a holomorphic function of � 2 DC

#
, continuous

on .ClDC
#
/ n ¹�;�N�º, bounded at infinity, and with logarithmic growth near � D �

and � D �N�. Therefore, a standard application of the residue theorem in ¹� 2 DC
#
W

j�j < R; j� � �j > "; j� C N�j > "º and a limiting procedure as "! 0C and R!1
lead us to

1

2�i

Z
�?
#

� 1

z � �1
�

1

z � �2

�
log h.z/dz D 1

D
C

#

.�1/ log h.�1/ � 1
D
C

#

.�2/ log h.�2/

whenever �1; �2 do not lie on �?
#

. Finally, for # 2 .0;�=2/ large enough and j D 1; 2,
we have 1

D
C

#

.�j / D 1
D
C

f

.�j /. Let �f .0/ D 0 and �f .�r/ D ��f .r/. Then j�0
#
.r/j �

j�0
f
.r/j for almost all r 2 R, and hence, by the dominated convergence theorem, the

integrals

1

2�i

Z
�?
#

� 1

z � �1
�

1

z � �2

�
log h.z/dz

D
1

2�i

1Z
�1

� 1

�#.r/ � �1
�

1

�#.r/ � �2

�
log h.�#.r//�0#.r/dr
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converge to the integral

1

2�i

1Z
�1

� 1

�f .r/ � �1
�

1

�f .r/ � �2

�
log h.�f .r//�0f .r/dr: (3.15)

Finally, note that �f .r/ for r 2 .�Zf / [ Zf is a parameterisation of �?
f

, and the
integral restricted to r 2 .�1; 0/ n .�Zf / cancels with the integral restricted to
.0;1/ nZf . We conclude that the integral in (3.15) is equal to

1

2�i

Z
�?
f

� 1

z � �1
�

1

z � �2

�
log h.z/dz;

and formula (3.13) follows.

Proposition 3.20. Let f .�/ be a non-constant and non-degenerate Rogers function
and r 2 Zf . Denote by f .r I �/ the Rogers function h.�/ defined in Proposition 3.16,
as in (3.12), and let f C.r I�/ and f �.r I�/ denote the Wiener–Hopf factors of f .r I�/.

Let g.�/ denote the branch of
q
�.� � �f .r//.� C �f .r// which is a holomorphic

function inDC
f
[D�

f
, equal to j� � �f .r/j onDC

f
\ .0; i1/ and onD�

f
\ .�i1; 0/.

If �1; �2 2 DCf [D
�
f

, then

exp
�
1

2�i

Z
�?
f

� 1

z � �1
�

1

z � �2

�
log jf .z/ � �f .r/jdz

�

D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

g.�1/f
C.r I �i�2/

g.�2/f C.r I �i�1/
if �1; �2 2 DCf ,

g.�2/f
�.r I i�1/

g.�1/f �.r I i�2/
if �1; �2 2 D�f ,

g.�1/g.�2/

f C.r I �i�1/f �.r I i�2/
if �1 2 DCf , �2 2 D�f .

Proof. Let us write � D �f .r/, so that �f .r/ D f .�/ and (see (3.12))

f .�/ � �f .r/ D
.� � �/.� C N�/

f .r I �/
:

Roughly speaking, our goal is to write jf .�/ � �f .r/j for � 2 �?
f

as a product of
four terms, apply Proposition 3.13 to two of them, and perform direct integration for
the other two. Throughout the proof, we denote by C a generic positive constant,
depending on parameters listed in brackets. We stress that the value of C may change
even within a single equation.
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Step 1. Suppose that

f .r I �/ D cr exp
�
1

�

1Z
�1

�
�

� C is
�

1

1C jsj

�
'r.s/

jsj
ds

�
is the exponential representation of the Rogers function f .r I �/, and define three aux-
iliary Rogers functions

h0.�/ D exp
�
1

�

� �rZ
�1

C

1Z
r

�� �

� C is
�

1

1C jsj

� �
jsj
ds

�
; (3.16a)

h1.�/ D
p
cr exp

�
1

�

rZ
�r

� �

� C is
�

1

1C jsj

�'r.s/
jsj

ds

�
; (3.16b)

h2.�/ D
p
cr exp

�
1

�

� �rZ
�1

C

1Z
r

�� �

� C is
�

1

1C jsj

�� � 'r.s/
jsj

ds

�
: (3.16c)

By (3.3), with an appropriate choice of multiplicative constants, we have

hC0 .�i�/ D exp
�
1

�

1Z
r

� �

� C is
�

1

1C jsj

� �
jsj
ds

�
;

hC1 .�i�/ D c
1=4
r exp

�
1

�

rZ
0

� �

� C is
�

1

1C jsj

�'r.s/
jsj

ds

�
;

hC2 .�i�/ D c
1=4
r exp

�
1

�

1Z
r

� �

� C is
�

1

1C jsj

�� � 'r.s/
jsj

ds

�
;

and

h�0 .i�/ D exp
�
1

�

�rZ
�1

� �

� C is
�

1

1C jsj

� �
jsj
ds

�
;

h�1 .i�/ D c
1=4
r exp

�
1

�

0Z
�r

� �

� C is
�

1

1C jsj

�'r.s/
jsj

ds

�
;

h�2 .i�/ D c
1=4
r exp

�
1

�

�rZ
�1

� �

� C is
�

1

1C jsj

�� � 'r.s/
jsj

ds

�
:
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Clearly,

f .r I �/ D
h0.�/h1.�/

h2.�/
; f C.r I �/ D

hC0 .�/h
C
1 .�/

hC2 .�/
; f �.r I �/ D

h�0 .�/h
�
1 .�/

h�2 .�/
:

(3.17)
In particular,

logf .r I �/C log h2.�/ D log h0.�/C log h1.�/C 2n�i

for some integer n. By the definition of a (non-constant) Rogers function, the complex
arguments of f .r I �/ and hj .�/, j D 1; 2; 3, belong to .Arg � � �=2;Arg � C �=2/
when Re � > 0, so that necessarily n D 0. Thus,

logf .r I �/ D log h0.�/C log h1.�/ � log h2.�/ (3.18)

when Re � > 0. Finally, by a short calculation (we omit the details),

hC0 .�i�/ D
r � i�

1C r
; h�0 .i�/ D

r C i�

1C r
; h0.�/ D

�2 C r2

.1C r/2
: (3.19)

Step 2. We claim that Proposition 3.13 applies both to h1.�/ and to h2.�/. Thus,
we need to show that jArg hj .�/j � C.f; r/ Re �=j�j for � 2 �f and j D 1; 2. If
jArg �j � jArg �j, then Re �=j�j � Re �=j�j, and so jArghj .�/j � � � C.�/Re �=j�j.
Therefore, it suffices to consider � such that jArg �j > jArg �j.

Observe that if � 2 �f and j�j < r , then f .�/ < f .�/, and hence

Argf .r I �/ D Arg
.� � �/.� C N�/

f .�/ � f .�/
D Arg..� � �/. N� C �//: (3.20)

Similarly, if � 2 �f , j�j > r and jArg �j > jArg �j, then f .�/ > f .�/, and

Arg.�f .r I �// D Arg..� � �/. N� C �//: (3.21)

Finally, it is relatively simple to see that

jArg..� � �/. N� C �//j � C.�/
Re �

1C j�j2
� C.�/

Re �
j�j

(3.22)

whenever Re � > 0 and jArg �j > jArg �j. Indeed, if

# D jArg..� � �/. N� C �//j D
ˇ̌̌
Arg

� � �

� C N�

ˇ̌̌
;

then, by (2.8),

sin
#

2
�
j.� � �/ � .� C N�/j

j.� � �/C .� C N�/j
D

Re �
j� � i Im �j

� C.�/
Re �

1C .Im �/2
:
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However, since jArg �j > jArg �j, we have j�j � C.�/jIm �j, and hence

# �
�

2
sin

#

2
� C.�/

Re �
1C j�j2

:

We turn to estimates of h0.�/, h1.�/, and h2.�/. Suppose that � 2 �f and j�j < r .
Then it is easy to see that j� C isj2 � C.f; r/.1C s2/ when s < �r or s > r ; again
we omit the details. Therefore,

jArg h2.�/j D jIm logh2.�/j

D

ˇ̌̌̌
1

�

� �rZ
�1

C

1Z
r

�
s Re �
j� C isj2

� � 'r.s/

jsj
ds

ˇ̌̌̌

� C.f; r/

� �rZ
�1

C

1Z
r

�
jsjRe �
1C s2

�

jsj
ds

D C.f; r/Re � � C.f; r/
Re �
j�j

:

By the same calculation, using the expression for h0 given in (3.16), we have

jArg h0.�/j � C.f; r/
Re �
j�j

:

By (3.17), (3.20), and (3.22), we also have

jArg h1.�/j D
ˇ̌̌
Arg

f .r I �/h2.�/

h0.�/

ˇ̌̌
� C.f; r/

Re �
j�j

:

A very similar argument works if � 2�f , j�j> r and jArg�j> jArg�j. In this case, we
have j� C isj � C.f; r/.1C j�j2/ when �r < s < r ; once again we omit the details.
Thus,

jArg h1.�/j D jIm logh2.�/j D
ˇ̌̌̌
1

�

rZ
�r

s Re �
j� C isj2

'r.s/

jsj
ds

ˇ̌̌̌

� C.f; r/

rZ
�r

s Re �
1C j�j2

�

jsj
ds D C.f; r/

Re �
1C j�j2

� C.f; r/
Re �
j�j

:

Furthermore, it is again easy to see that

jArg.�h0.�//j D jArg.��2 � r2/j � C.f; r/
Re �

1C j�j2
� C.f; r/

Re �
j�j

;
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and again we omit the details. Consequently, by (3.17), (3.21), and (3.21),

jArg h2.�/j D
ˇ̌̌
Arg

h1.�/.�h0.�//

.�f .r I �//

ˇ̌̌
� C.f; r/

Re �
j�j

:

We have thus proved that jArghj .�/j � C.f; r/Re �=j�j whenever � 2 �f , jArg �j >
jArg �j and j D 1; 2. This implies that Proposition 3.13 indeed applies to h1 and h2:
for j D 1; 2 and �1; �2 2 DCf [D

�
f

, we have

1

2�i

Z
�?
f

� 1

z � �1
�

1

z � �2

�
log hj .z/dz

D

8̂̂<̂
:̂

log hCj .�i�1/ � log hCj .�i�2/ if �1; �2 2 DCf ,

log h�j .i�2/ � log h�j .i�1/ if �1; �2 2 D�f ,

log hCj .�i�1/C log h�j .i�2/ if �1 2 DCf , �2 2 D�f .

(3.23)

Step 3. As in Lemma 3.19, we define

h3.�/ D
.� � �/.� C N�/

.� C ir/2
; h4.�/ D

.� � �/.� C N�/

.� � ir/2
: (3.24)

By that result, for �1; �2 2 DCf [D
�
f

we have

1

2�i

Z
�?
f

� 1

z � �1
�

1

z � �2

�
log h3.z/dz

D 1
D
C

f

.�1/ log h3.�1/ � 1
D
C

f

.�2/ log h3.�2/; (3.25)

and

1

2�i

Z
�?
f

� 1

z � �1
�

1

z � �2

�
log h4.z/dz

D 1D�
f
.�2/ log h4.�2/ � 1D�

f
.�1/ log h4.�1/: (3.26)

Step 4. We are ready to combine all results that we have found in the previous steps.
By (3.18), for � 2 �f such that j�j < r , we have

log jf .�/ � f .�/j

D log.f .�/ � f .�// D log.�.� � �/.� C N�// � logf .r I �/

D log.�.� � �/.� C N�// � log h0.�/ � log h1.�/C log h2.�/

D log.�.� � �/.� C N�// � log.�2 C r2/C log.1C r/2 � log h1.�/C log h2.�/:
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Observe that if f1.�/, f2.�/ are holomorphic functions of � in some (connected)
region, and f1.�/; f2.�/; f1.�/f2.�/ 2 C n .�1; 0�, then

log.f1.�/f2.�// � logf1.�/ � logf2.�/

is constant. Applying this to f1.�/ D �.� � �/.� C N�/ and f2.�/ D 1=.�2 C r2/ (we
omit the details), we find that

log jf .�/ � f .�/j D log
�.� � �/.� C N�/

�2 C r2
C log.1C r/2 � log h1.�/C log h2.�/

when j�j < r . The same argument applied to

f1.�/ D f2.�/ D �
.� � �/.� C N�/

�2 C r2

(again we omit the details) shows that

log jf .�/ � f .�/j

D
1

2
log

.� � �/2.� C N�/2

.�2 C r2/2
C log.1C r/2 � log h1.�/C log h2.�/

D
1

2
log h3.�/C

1

2
log h4.�/C log.1C r/2 � log h1.�/C log h2.�/

when j�j < r . A similar calculation can be carried out when � 2 �f and j�j > r : in
this case we have

log jf .�/ � f .�/j

D log.f .�/ � f .�//

D log..� � �/.� C N�// � logf .r I �/

D log..� � �/.� C N�// � log h0.�/ � log h1.�/C log h2.�/

D log
.� � �/.� C N�/

�2 C r2
C log.1C r/2 � log h1.�/C log h2.�/

D
1

2
log h3.�/C

1

2
log h4.�/C log.1C r/2 � log h1.�/C log h2.�/I

once again we omit the details. In either case, we obtain the same expression

log jf .�/ � f .�/j D
1

2
log h3.�/C

1

2
log h4.�/

C log.1C r/2 � log h1.�/C log h2.�/; (3.27)



Suprema of Lévy processes with completely monotone jumps 59

and all that remains is to combine this with the results of the previous steps. If �1 2
DC
f

, and �2 2 D�f , then, by (3.23), (3.25), and (3.26),

exp
�
1

2�i

Z
�?
f

�
1

z � �1
�

1

z � �2

�
log jf .z/ � f .�/jdz

�

D exp
�1
2

log h3.�1/C
1

2
log h4.�2/C log.1C r/2

�
�
log hC1 .�i�1/C log h�1 .i�2/

�
C
�
log hC2 .�i�1/C log h�2 .i�2/

��
D .1C r/2

p
h3.�1/

p
h4.�2/

hC2 .�i�1/

hC1 .�i�1/

h�2 .i�2/

h�1 .i�2/
:

Using (3.17), and then the explicit expressions (3.19) for h0.�/ and (3.24) for h3.�/
and h4.�/, we arrive at

exp
�
1

2�i

Z
�?
f

� 1

z � �1
�

1

z � �2

�
log jf .z/ � f .�/jdz

�
D .1C r/2

p
h3.�1/

p
h4.�2/

hC0 .�i�1/

f C.r I �i�1/

h�0 .i�2/

f �.r I i�2/

D

s
.�1 � �/.�1 C N�/

.�1 C ir/2

s
.�2 � �/.�2 C N�/

.�2 � ir/2
r � i�1

f C.r I �i�1/

r C i�2

f �.r I i�2/
:

Therefore, slightly abusing the notation,

exp
�
1

2�i

Z
�?
f

� 1

z � �1
�

1

z � �2

�
log jf .z/ � f .�/jdz

�

D

q
�.�1 � �/.�1 C N�/

q
�.�2 � �/.�2 C N�/

f C.r I �i�1/f �.r I i�2/
;

as desired; strictly speaking, instead ofq
�.�j � �/.�j C N�/

we should have written g.�j / on the right-hand side.
The argument is very similar if �1; �2 2 DCf , and we only sketch the calcula-

tion: using first (3.27) combined with (3.23), (3.25), and (3.26), then (3.17), and
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finally (3.19) and (3.24), we obtain

exp
�
1

2�i

Z
�?
f

� 1

z � �1
�

1

z � �2

�
log jf .z/ � f .�/jdz

�

D

p
h3.�1/p
h3.�2/

hC2 .�i�1/

hC1 .�i�1/

hC1 .�i�2/

hC2 .�i�2/

D

p
h3.�1/p
h3.�2/

hC0 .�i�1/

f C.r I �i�1/

f C.r I �i�2/

hC0 .�i�2/

D

s
.�1 � �/.�1 C N�/

.�1 C ir/2

s
.�2 C ir/2

.�2 � �/.�2 C N�/

r � i�1

f C.r I �i�1/

f C.r I �i�2/

r � i�2

D

q
�.�1 � �/.�1 C N�/ f

C.r I �i�2/q
�.�2 � �/.�2 C N�/ f C.r I �i�1/

:

We omit essentially the same calculations for the remaining case �1; �2 2 D�f .

3.4. Balance conditions

In most results, we require that for some " > 0, �f .r/ lies in the sector ¹� 2 C W

jArg �j � �=2 � "º for r large enough. This balance condition is needed in order to
deform the contour of integration from R to �?

f
when the integrand is singular near

the imaginary axis. However, it also implies some balance between the Wiener–Hopf
factors, as stated in the following two results. Throughout this section, byC we denote
a generic positive constant that may depend on parameters listed in brackets, and the
exact value of C can be different every time it appears, even in a single expression.

Lemma 3.21. If f .�/ is a non-constant Rogers function, 0 < � < � , M > 0, and

Arg
�f .r/ � i�

�f .r/ � i�
�M Arg

�f .r/C i�

�f .r/C i�

for every r > 0, then
f C.�/

f C.�/
�

�
f �.�/

f �.�/

�M
:

Similarly, if 0 < � < � , M > 0, and

Arg
�f .r/C i�

�f .r/C i�
�M Arg

�f .r/ � i�

�f .r/ � i�
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for every r > 0, then
f �.�/

f �.�/
�

�f C.�/
f C.�/

�M
:

In particular, for every # 2 .0; �=2/ there is a constant C.#/ > 0 with the follow-
ing properties. If f .�/ is a non-constant Rogers function, 0 � %1 � %2 � 1 and
Arg �f .r/ � # when %1 < r < %2, then

f C.�/

f C.�/
�

�f �.�/
f �.�/

�C.#/
;

whenever 2%1 � � < � � %2=2. Similarly, if f .�/ is a non-constant Rogers function,
0 � %1 � %2 � 1, and Arg �f .r/ � �# when %1 < r < %2, then

f �.�/

f �.�/
�

�f C.�/
f C.�/

�C.#/
;

whenever 2%1 � � < � � %2=2.

Proof. By [41, Theorem 5.7] (see Proposition 3.11 above), for �; � > 0 we have

log
f C.�/

f C.�/
D
1

�

1Z
0

Arg
�f .r/ � i�

�f .r/ � i�

d�f .r/

�f .r/
;

log
f �.�/

f �.�/
D
1

�

1Z
0

Arg
�f .r/C i�

�f .r/C i�

d�f .r/

�f .r/
;

and the first assertion of the lemma follows.
For the proof of the other one, we observe that if 0 < � < � and r > 0, then

Arg
�f .r/ � i�

�f .r/ � i�
D Im log

�f .r/ � i�

�f .r/ � i�
D

�Z
�

Im
i

�f .r/ � is
ds D

�Z
�

Re �f .r/
j�f .r/ � isj2

ds;

and, in a similar way,

Arg
�f .r/C i�

�f .r/C i�
D

�Z
�

Re �f .r/
j�f .r/C isj2

ds:

Suppose that Arg �f .r/ � # when %1 < r < %2. Note that if 2%1 < s < %2=2 and
either r � %2 or r � %1, we have

j�f .r/C isj

j�f .r/ � isj
�
s C r

jr � sj
� 3:
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On the other hand, if 2%1 < s < %2=2 and %1 < r < %2, then, by (2.8),

j�f .r/C isj

j�f .r/ � isj
�

s C r

.s C r/ sin
�
1
2

�
�
2
� #

�� D C.#/:
It follows that if 2%1 < s < %2=2, then for all r > 0 we have

1

j�f .r/ � isj
� C.#/

1

j�f .r/C isj
:

Integrating both sides of the above inequality, we find that if 2%1 � � < � � %2=2,
then for all r > 0 we have

Arg
�f .r/ � i�

�f .r/ � i�
� C.#/Arg

�f .r/C i�

�f .r/C i�
:

It remains to apply the first part of the lemma with M D C.#/ to get the desired
inequality. A very similar argument applies if we assume that Arg �f .r/ � �# when
%1 < r < %2.

Corollary 3.22. If 0� %1� %2�1, # 2 .0;�=2/, and f .�/ is a non-constant Rogers
function such that Arg �f .r/ � # when %1 < r < %2, then there are positive constants
C1 and C2.#/ such that

f �.�/

f �.�/
� C1

�
jf .�/j

jf .�/j

�C2.#/
whenever 2%1 � � < � � %2=2. Similarly, if Arg �f .r/ � �# when %1 < r < %2, then

f C.�/

f C.�/
� C1

�
jf .�/j

jf .�/j

�C2.#/
whenever 2%1 � � < � � %2=2.

Proof. By Corollary 3.6 applied to the complete Bernstein functions f C.�/ and
f �.�/, we have

jf .�/j

jf .�/j
D
jf C.�i�/f �.i�/j

jf C.�i�/f �.i�/j
� C

f C.�/

f C.�/

f �.�/

f �.�/
:

Using Lemma 3.21, we find that if Arg �f .r/ � # for r � %, then

jf .�/j

jf .�/j
� C

�f �.�/
f �.�/

�C.#/ f �.�/
f �.�/

when 2% � � < �. This implies the first part of the corollary. The other one is proved
in a very similar way.



Suprema of Lévy processes with completely monotone jumps 63

The next lemma provides a sufficient condition for a power-type behaviour of a
Rogers function near 0.

Lemma 3.23. Suppose that f .�/ is a non-constant Rogers function, 0< %�1, " > 0
and ı 2 Œ0; �=2/, and either

Argf .ie�iır/ � "

whenever 0 < r < %, or
Argf .�ieiır/ � �"

whenever 0 < r < % (if ı D 0, we understand that Arg f .ie�iır/ D Arg f .ir/ D
'.�r/ and Arg f .�ieiır/ D Arg f .�ir/ D '.r/, where '.s/ is the function in the
exponential representation (3.2) of the Rogers function f .�/). Then there is a constant
C."; ı/ > 0 such that

jf .�/j

jf .�/j
� C."; ı/

��
�

�"=.��ı/
(3.28)

whenever 0 < � � � < %.

Proof. We only consider the case Arg f .ie�iır/ � " when 0 < r < %, with % finite.
The case % D 1 is then an immediate extension, and the case Arg f .�ieiır/ � �"
when 0 < r < % is completely analogous.

We first consider the case ı D 0. With the notation of the exponential represent-
ation (3.2), we thus have '.r/ � " when �% < r < 0. Define the auxiliary Rogers
functions

g.�/ D c exp
�
1

�

1Z
�1

� �

� C is
�

1

1C jsj

�'.s/ � " 1.�%;0/.s/

jsj
ds

�
;

h.�/ D exp
�
1

�

0Z
�%

� �

� C is
�

1

1C jsj

� "
jsj
ds

�
;

so that f .�/ D g.�/h.�/. By a simple calculation,

h.�/ D
� .1C %/i�
i� C %

�"=�
;

and jg.�/=g.�/j � 1 when 0 < � � � by Proposition 3.12. It follows that

jf .�/j

jf .�/j
D
jg.�/j

jg.�/j

jh.�/j

jh.�/j
�

��ji�C %j
�ji� C %j

�"=�
whenever 0 < � � � . It remains to note that

ji�C %j2

ji� C %j2
D
�2 C %2

�2 C %2
�
1

2

when additionally � < %.
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Let us record the following observation. If Re � > 0 and j�j < %, then, by a short
calculation,

Im
i�

.i� C %/2
D
.%2 � j�j2/Re �
ji� C %j2

� 0;

and so Arg.i�/ � 2Arg.i� C %/. From the definition of a Rogers function, it follows
that

Argf .�/ D Argg.�/C Arg h.�/

D Arg
g.�/

�
C Arg � C

"

�
.Arg.i�/ � Arg.i� C %//

� �
�

2
C Arg � C

"

2�
Arg.i�/

D

�
1C

"

2�

�
Arg � �

�
1 �

"

2�

��
2
:

In particular,
Argf .�/ �

�
1 �

"

2�

� "
4

(3.29)

when Arg � D �.1� "=.2�//=2 and j�j < %. In other words, if the assumption of the
lemma is satisfied with ı D 0, then it is also satisfied for some ı > 0 (with " replaced
by the right-hand side of (3.29)).

Let us now consider the case 0 < ı < �=2. We define an auxiliary function

h.�/ D eiı=2�ı=�f .e�iı=2�1�ı=�/:

Note that g.�/ D eiı=2�ı=� is a Rogers function, and hence, by Proposition 3.3 (c),
h.�/ is a Rogers function. Furthermore, if 0 < r < %�=.��ı/, we have

Arg h.�ir/ D Arg
�
eiırı=�f .ie�iır1�ı=�/

�
� ı C ":

Therefore, by the first part of the proof,

jh.�/j

jh.�/j
� C."; ı/

��
�

�.ıC"/=�
whenever 0 < � � � < %�=.��ı/. Using the definition of h, we find that

jf .e�iı=2�1�ı=�/j

jf .e�iı=2�1�ı=�/j
� C."; ı/

��
�

�"=�
:

Finally, combining the above estimate with Proposition 3.5 (applied with r and �
replaced by �1�ı=� and e�iı=2�1�ı=� for the expression in the numerator, and by
�1�ı=� and e�iı=2�1�ı=� for the one in the denominator), we conclude that

jf .�1�ı=�/j

jf .�1�ı=�/j
� C."; ı/

��
�

�"=�
when 0 < � � � < %�=.��ı/, which is equivalent to (3.28).
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Lemma 3.24. Suppose that 0 < % � 1, " > 0 and ı 2 Œ0; �=2/. Suppose that f .�/
is a non-constant Rogers function, and we have

Argf .ire�iı/ � ";

whenever 0 < r < % (if ı D 0, we understand that Arg f .�ieiır/ D Arg f .�ir/ D
'.r/ and Arg f .ie�iır/ D Arg f .ir/ D '.�r/, where '.s/ is the function in the
exponential representation (3.2) of the Rogers function f .�/). Suppose also that

inf¹Arg �f .r/ W r 2 .0; %/º > �
�

2
:

If r 2 Zf , then, for some constants C1."; ı/; C2."; ı/; C3."; ı; f / > 0, the Wiener–
Hopf factor f �.r I �/ of the Rogers function f .r I �/ satisfies

f �.r I �/

f �.r I �/
� C1."; ı/

��
�

�1�C2.";ı/
whenever 0 < C3."; ı; f /r � � < � < %=2.

Similarly, if
Argf .�ireiı/ � �"

whenever 0 < r < %, and

sup¹Arg �f .r/ W r 2 .0; %/º <
�

2
;

then
f C.r I �/

f C.r I �/
� C1

��
�

�1�C2.";ı/
whenever 0 < C3."; ı; f /r � � < � � %=2.

Proof. As both parts of the lemma are completely analogous, we only prove the first
statement. As it was noted in the proof of Lemma 3.23 (see (3.29)), with no loss of
generality, we may assume that ı > 0. We fix r 2 Zf , and we consider the Rogers
function

g.�/ D
�2

f .r I �/
D

�2

.� � �f .r//.� C �f .r//
.f .�/ � �f .r//; (3.30)

introduced in Proposition 3.16. We will show that Corollary 3.22 applies to g.�/, and
then use this fact to prove the desired estimate for the Wiener–Hopf factors of f .r I �/.
We will frequently use the estimate

jArg.1 � �/j � jlog.1 � �/j � 2j�j;



M. Kwaśnicki 66

Argf < 0

Argf > 0

inf Argf � "
ı

#

#

Re

Im

Figure 4. Setting for the proof of Lemma 3.24.

valid when j�j � 1=2. We let

# D sup¹jArg �f .r/j W r 2 .0; %/º:

Note that # < �=2.

Step 1. We first estimate Arg.f .�/ � �f .r// when Arg � D �=2 � ı and j�j=r is
sufficiently large. Observe that if jf .�/j � 2�f .r/, then

jArg.f .�/ � �f .r// � Argf .�/j D
ˇ̌̌
Arg

�
1 �

�f .r/

f .�/

�ˇ̌̌
� 2
j�f .r/j

jf .�/j
:

In particular, if additionally jf .�/j � 4"�1�f .r/, then

jArg.f .�/ � �f .r// � Argf .�/j �
"

2
: (3.31)

We now find the lower bound on jf .�/j using Proposition 3.5 and Lemma 3.23. Recall
that Arg�D�=2� ı, �f .r/D f .�f .r//, and jArg�f .r/j �# . Thus, if 0< r � j�j<%,
we have

jf .�/j � C.ı/f .j�j/ � C."; ı/
�
j�j

r

�"=.��ı/
jf .r/j � C."; ı; #/

�
j�j

r

�"=.��ı/
�f .r/

(we applied Proposition 3.5 with r and � replaced by j�j and � in the former inequal-
ity, and by �f .r/ and r in the latter one). In particular, if Arg � D �=2 � ı and
0 < C."; ı; #/r � j�j < %, then jf .�/j > 4"�1�f .r/, and consequently (3.31) holds.
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Step 2. We now turn to the estimate of the argument of the other factor on the right-
hand side of (3.30). If j�j � 2r , we haveˇ̌̌

Arg
�2

.� � �f .r//.� C �f .r//

ˇ̌̌
D

ˇ̌̌
Arg

�
1 �

�f .r/

�

�
C Arg

�
1C

�f .r/

�

�ˇ̌̌
� 2
j�f .r/j

j�j
C 2
j�f .r/j

j�j
D 4

r

j�j
:

In particular, if j�j > 8r"�1, thenˇ̌̌
Arg

�2

.� � �f .r//.� C �f .r//

ˇ̌̌
<
"

2
:

Step 3. By combining the estimates from the previous two steps, we find that if
Arg � D �=2 � ı and 0 < C."; ı; #/r < j�j < %, then

Argg.�/ D Arg
�2

.� � �f .r//.� C �f .r//
C Arg.f .�/ � f .�f .r///

� �
"

2
C

�
Argf .�/ �

"

2

�
� 0:

Consequently, if sD j�j, then Arg � >Arg�g.s/ by Proposition 3.8 (b). Thus, we have
Arg �g.s/ � �=2 � ı whenever 0 < C."; ı; #/r < s < %. By Corollary 3.22, we find
that

g�.�/

g�.�/
� C

�
jg.�/j

jg.�/j

�C.ı/
whenever 0 < C."; ı; #/r < � < � � %=2.

Step 4. Clearly, f C.r I �/ D �=gC.�/ and f �.r I �/ D �=g�.�/ are the Wiener–Hopf
factors of the Rogers function f .r I �/D �2=g.�/D f C.r I�i�/f �.r I i�/. Therefore,

f �.r I �/

f �.r I �/
D
�g�.�/

�g�.�/
� C

�

�

�
jg.�/j

jg.�/j

�C.ı/
whenever 0 < C."; ı; #/r � � < � � %=2. Finally, when 0 < C."; ı; #/r � � < %,
then, as in Step 1,

jf .�/j � C."; ı/
��
r

�"=.��ı/
jf .r/j � C."; ı; #/

��
r

�"=.��ı/
�f .r/ � 2�f .r/;

and hence

jg.�/j D
�2

j� � �f .r/jj� C �f .r/j
jf .�/ � �f .r/j

�
�2

.� C r/2
.jf .�/j � �f .r// �

jf .�/j

8
;
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and

jg.�/j D
�2

j� � �f .r/jj� C �f .r/j
jf .�/ � �f .r/j

�
�2

.� � r/2
.jf .�/j C �f .r// � 8jf .�/j:

It follows that if 0 < C."; ı; #/r � � < � � %=2, then

f �.r I �/

f �.r I �/
� C

�

�

�
jf .�/j

jf .�/j

�C.ı/
:

It remains to again apply Lemma 3.23 to bound jf .�/j=jf .�/j byC.";ı/.�=�/"=.��ı/.

3.5. Notation

For reader’s convenience, we gather the notation used in the remaining part of the
article. We always assume that f .�/ is a non-constant and non-degenerate Rogers
function, and we use freely the following symbols:

• Df � C is the domain of f .�/, equal to C n iR possibly augmented by an appro-
priate part of iR;

• �f is the spine of f .�/, the set of � 2 C such that Re � > 0 and f .�/ 2 .0;1/;

• �f .r/ is the parameterisation of the spine �f , augmented by appropriate
segments of iR: for every r > 0, Re �f .r/ D rei# , where # 2 Œ��=2; �=2�
and sign Im f .ei˛r/ D sign.˛ � #/ for every ˛ 2 .��=2; �=2/ (see Proposi-
tion 3.8 (b));

• Zf is a subset of .0;1/, consisting of those r > 0 for which Re �f .r/ > 0; equi-
valently, Zf is the set of moduli of points on �f ;

• �f .r/ describes the values of f .�/ along �f : �f .r/ D f .�f .r// for r 2 Zf (or,
more generally, whenever �f .r/ 2 Df ), and �f .r/ is an increasing continuous
function of r > 0;

• �?
f

is the symmetrised spine of f .�/: the union of �f , its mirror image ��f , and
the endpoints of �f ;

• for r 2 Zf , f .r I �/ is the (inverse) difference quotient of f .�/, defined by (3.12),
and f C.r I �/ and f �.r I �/ are the Wiener–Hopf factors of the Rogers function
f .r I �/.

For simplicity, in all proofs we drop subscript f from the notation whenever this
causes no confusion. As we have already done a few times above, in the remaining
part of the articleC denotes a generic positive constant that may depend on parameters
listed in brackets, and the value of C may change even within a single expression.
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4. Inversion of temporal Laplace transform

This section contains the first part of the proof of our main results, Theorem 1.2
and Theorem 1.1. The argument is completed in the next section. We follow, with
major modifications, the approach of [38], where strictly stable Lévy processes were
studied, and we heavily use the results of [41] and Section 3. In particular, we use the
notation summarised in Section 3.5.

Except in Section 4.1, throughout this part we assume that Xt is a (non-killed and
non-constant) Lévy process with completely monotone jumps, and f .�/ is the corres-
ponding Rogers function (the holomorphic extension of the characteristic exponent
of Xt ). Note that f .�/ is non-zero and we have f .0C/ D 0, so that �f .0C/ D 0.
Later on, we will impose additional assumptions on f .�/. In particular, we will have
�f .1/ D 1, which implies that the transition kernel pt .x; dy/ of Xt has a density
function pt .y � x/, and consequently also pCt .x;dy/ has a density function pCt .x;y/.

For notational convenience, except in statements of results, we commonly drop
the subscript f from the notation. For example, we write �.r/, �.r/ and � rather than
�f .r/, �f .r/ and �f .

4.1. Pecherskii–Rogozin-type expression

Suppose that � > 0, Re � > 0, and Re� > 0. Our first goal is to express the tri-variate
Laplace transform

1Z
0

1Z
0

Z
.0;1/

e��t��x��ypCt .x; dy/dxdt

in terms of the Wiener–Hopf factors �C.�; �/ and ��.�; �/. Our method is quite
standard – see, for example, [38, Section 2.1] – and it applies to an arbitrary Lévy
process Xt . It is based on the following fundamental result in fluctuation theory of
Lévy processes.

Proposition 4.1 (see [44, Theorem 6.15(i) and identity (6.28)]). Suppose that Xt is
a Lévy process, � > 0, e is an exponentially distributed random time with mean 1=� ,
and e is independent of the process Xt . Then, the random variables

x
Xe � X0 and

Xe �
x
Xe are independent, and the random variables xXe � X0 and Xe �

x
Xe have

equal distribution.

For e as in the above proposition, we have
1Z
0

Z
.0;1/

e��t��ypCt .x; dy/dt D

1Z
0

e��tEx
�
exp.��Xt / 1.0;1/.

x
Xt /

�
dt

D
1

�
Ex
�
exp.��Xe/ 1.0;1/.

x
Xe/

�
:
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By the above proposition,

Ex
�
exp.��Xe/ 1.0;1/.

x
Xe/

�
D Ex

�
exp.��.Xe �

x
Xe// exp.��

x
Xe/ 1.0;1/.

x
Xe/

�
D Ex

�
exp.��.Xe �

x
Xe//

�
Ex
�
exp.��

x
Xe/ 1.0;1/.

x
Xe/

�
D Ex

�
exp.��. xXe � x//

�
Ex
�
exp.��

x
Xe/ 1.0;1/.

x
Xe/

�
:

Translation invariance implies that

Ex
�
exp.��. xXe � x//

�
D E0

�
exp.�� xXe/

�
and

Ex
�
exp.��

x
Xe/ 1.0;1/.

x
Xe/

�
D E0

�
exp.��

x
Xe/e

��x 1.�x;1/.
x
Xe/

�
:

It follows that
1Z
0

Z
.0;1/

e��t��ypCt .x; dy/dt

D
1

�
E0
�
exp.�� xXe/

�
E0
�
exp.��

x
Xe/e

��x 1.�x;1/.
x
Xe/

�
Since for y < 0 we have

1Z
0

e��xe��x 1.�x;1/.y/dx D

1Z
�y

e�.�C�/xdx D
e.�C�/y

� C �
;

we eventually find that
1Z
0

1Z
0

Z
.0;1/

e��t��x��ypCt .x; dy/dxdt

D
1

�.� C �/
E0
�
exp.�� xXe/

�
E0
�
exp.�

x
Xe/

�
:

By the Pecherskii–Rogozin identities (2.6),

E0 exp.�� xXe/ D
�C.�; 0/

�C.�; �/
; E0 exp.�

x
Xe/ D

��.�; 0/

��.�; �/
:

Furthermore, by the factorisation identity (2.7)

�C.�; 0/��.�; 0/ D
�

�ı.�/
:

We have thus proved the following result, which seems to be rather standard, but
difficult to trace in the literature in this particular form; see [24, Theorem 18] or [44,
Theorem 7.7] for related developments.
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Proposition 4.2. If Xt is a Lévy process, pCt .x; dy/ D Px.Xt 2 dy;
x
Xt > 0/ is its

transition kernel in the half-line .0;1/, and �C.�; �/, ��.�; �/ and �ı.�/ are the
corresponding Wiener–Hopf factors, then

1Z
0

1Z
0

Z
.0;1/

e��t��x��ypCt .x; dy/dxdt D
1

� C �

1

�ı.�/�C.�; �/��.�; �/
(4.1)

whenever � > 0, Re � > 0 and Re � > 0.

4.2. Baxter–Donsker-type expression and inversion of the Laplace transform

By [41, Theorem 1.1], the right-hand side of (4.1) is a Stieltjes function of � . This
allows us to invert the Laplace transform with respect to the temporal variable (t 7! � )
in (4.1). To this end, we use integral expressions for the Wiener–Hopf factors �C.�; �/
and ��.�; �/ in terms of the characteristic exponent f .�/, developed in [41].

Let f� .�/ D � C f .�/ for � > 0. By [41, formula (6.2)], we have

�ı.�/�C.�; �/��.�; �/ D f C� .�/f
�
� .�/

when � > 0, Re � > 0 and Re � > 0; here f C� .�/ and f �� .�/ are the Wiener–Hopf
factors of the Rogers function f� .�/, see Proposition 3.10. Using Proposition 3.11,
we find that, for �; �; � > 0,

�ı.�/�C.�; �/��.�; �/ D � exp
�
1

�

1Z
0

 .r/
d�.r/

� C �.r/

�

D � exp
�
1

�

�.1/Z
0

 .��1.s//
ds

� C s

�
;

where
 .r/ D Arg.�.r/C i�/ � Arg.�.r/ � i�/:

Note that  .r/ takes values in Œ0; ��, and  .0C/ D � ,  .1/ D 0; see the proof
of [41, Lemma 6.1] for further details. It follows that

1Z
0

1Z
0

Z
.0;1/

e��t��x��ypCt .x; dy/dxdt

D
1

�.� C �/
exp

�
�
1

�

�.1/Z
0

 .��1.s//
ds

� C s

�
: (4.2)
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Clearly, the right-hand side of (4.2) extends to a holomorphic function of � 2 C n

Œ��.1/;0�. We denote this function by‰.�/ (for fixed �;� > 0). By Proposition 3.11,
1=‰.�/ is a complete Bernstein function, and hence ‰.�/ is a Stieltjes function. We
have thus essentially proved the following result.

Proposition 4.3. Suppose thatXt is a Lévy process with completely monotone jumps,
pCt .x; dy/D Px.Xt 2 dy;

x
Xt > 0/ is its transition kernel in the half-line .0;1/, and

f .�/ is the corresponding Rogers function; then
1Z
0

Z
.0;1/

e��x��ypCt .x; dy/dx D
1

�

Z
.0;�f .1//

e�st�f .�; �; ds/ (4.3)

for t � 0 and �; � > 0. Here, �f .�; �; ds/ is a non-negative measure on .0; �f .1//,
given by

�f .�; �; ds/ D � lim
t!0C

Im‰f .�; �;�s C i t/ds (4.4)

in the sense of vague convergence of measures on Œ0; �f .1/�, with

‰f .�; �; �/ D
1

�.� C �/
exp

�
�
1

�

�f .1/Z
0

 f .�; �; �
�1
f .s//

ds

� C s

�
(4.5)

for � 2 C n .�1; 0�, and

 f .�; �; r/ D Arg.�f .r/C i�/ � Arg.�f .r/ � i�/

for r > 0.

Proof. We continue to use the simplified notation ‰.�/ D ‰f .�; �; �/, and  .r/ D
 f .�; �; r/. We have already observed that ‰.�/ is a Stieltjes function and ‰.�/ is
holomorphic on C n Œ��.1/; 0�, so that ‰.�/ has the following Stieltjes representa-
tion (2.2): when � 2 C n Œ��.1/; 0�, we have

‰.�/ D
b

�
C c C

1

�

Z
.0;�.1/�

1

� C s
�.ds/ (4.6)

for some b; c � 0 and an appropriate measure �.ds/ D �f .�; �; ds/. In order to
complete the proof, we only need to prove that bD cD 0 and�.¹�.1/º/D 0. Indeed,
the Stieltjes measure �.ds/ is given by (4.4), and formula (4.3) follows from (4.2) and
continuity of the left-hand side.

By (4.5) and the monotone convergence theorem, we have

b D lim
�!0C

�‰.�/ D
1

� C �
exp

�
�
1

�

�.1/Z
0

 .��1.s//
ds

s

�
:
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Since the measure ds=s is infinite in every right neighbourhood of 0, ��1.0C/ D 0
and  .0C/ D � , the above integral diverges, and, consequently, b D 0. Furthermore,
again by (4.5),

c D lim
�!1

‰.�/ � lim
�!1

1

�.� C �/
D 0;

so that also c D 0. Finally, let �0 D �.1/ and suppose that �0 < 1. Then �.ds/
is concentrated on .0; �0�, ‰.��/ is given by (4.6) for � > �0, and we have, by the
dominated convergence theorem,

�.¹�0º/ D lim
�!�

C

0

Z
.0;�0�

� � �0

� � s
�.ds/ D lim

�!�
C

0

.��.� � �0/‰.��//:

In order to prove that �.¹�0º/ D 0, we observe that, by (4.5),

�.¹�0º/ D
�

� C �
lim
�!�

C

0

� � �0

�0
exp

�
1

�

�0Z
0

 .��1.s//
ds

� � s

�

D
�

� C �
lim
�!�

C

0

�

�0
exp

�
�
1

�

�0Z
0

.� �  .��1.s///
ds

� � s

�
:

By the monotone convergence theorem, we find that

�.¹�0º/ D
�

� C �
exp

�
�
1

�

�0Z
0

.� �  .��1.s///
ds

�0 � s

�
:

Since ��1.��0 / D 1 and  .1/ D 0, the above integral diverges, and consequently
�.¹�0º/ D 0.

4.3. Reformulation in terms of difference quotients

Our goal in this section is to transform the expression for �f .�; �; ds/ in Proposi-
tion 4.3 to a more manageable form. Recall that in (3.12) we defined

f .r I �/ D
.� � �f .r//.� C �f .r//

f .�/ � �f .r/

whenever r 2 Zf , and that f .r I �/ is a Rogers function of � . We denote by f C.r I �/
and f �.r I �/ the Wiener–Hopf factors of this Rogers function.
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Proposition 4.4. Suppose thatXt is a Lévy process with completely monotone jumps,
and f .�/ is the corresponding Rogers function. Let t � 0, �; � > 0, and suppose that
i� 2 DC

f
and �i� 2 D�

f
. Then,

1Z
0

Z
.0;1/

e��x��ypCt .x; dy/dx

D
1

�

Z
Zf

e�t�f .r/
f C.r I �/

j�f .r/ � i�j2
f �.r I �/

j�f .r/C i�j2
Re �f .r/d�f .r/:

Similarly, if t � 0, �; � > 0, and i�;�i� 2 DC
f

, then

1Z
0

Z
.0;1/

e��x��ypCt .x; dy/dx

D
1

�

Z
Zf

e�t�f .r/
f C.r I �/

j�f .r/ � i�j2
�1

f C.r I ��/
Re �f .r/d�f .r/;

while if t � 0, �; � > 0, and i�;�i� 2 D�
f

, then

1Z
0

Z
.0;1/

e��x��ypCt .x; dy/dx

D
1

�

Z
Zf

e�t�f .r/
�1

f �.r I ��/

f �.r I �/

j�f .r/C i�j2
Re �f .r/d�f .r/:

Proof. We continue to use the notation ‰.�/ D ‰f .�; �; �/, �.ds/ D �f .�; �; ds/
and  .r/ D  f .�; �; r/ introduced in the proof of Proposition 4.3.

Suppose that i� 2 DC
f

and �i� 2 D�
f

. Observe that

Q .z/ D Arg.z C i�/ � Arg.z � i�/

is a differentiable function in the region Re z � 0, z ¤ i� , z ¤ �i�. By Proposi-
tions 3.14 and 3.15, �.r/ and ��1.s/ are locally Hölder continuous on .0;1/

and .0; �.1//, respectively, and hence also  .��1.s// D Q .�.��1.s/// is Hölder
continuous. Therefore, the Hilbert transform of  .��1.s// is well defined and
continuous on .0; �.1//, and by the Sokhotski–Plemelj’s formula we have (see,
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e.g., [29, equation (4.8)])

lim
�!0C

1

�

�.1/Z
0

 .��1.s//
ds

�� C i� C s

D
1

�
pv

�.1/Z
0

 .��1.s//
ds

s � �
� i .��1.�//

locally uniformly with respect to � 2 .0; �.1//. It follows that

lim
�!0C

‰.�� C i�/ D �
1

�.� C �/
exp

�
i .��1.�// �

1

�
pv

�.1/Z
0

 .��1.s//
ds

s � �

�
locally uniformly with respect to � 2 .0; �.1//; here the principal value integral pv

R
is defined as the limit of integrals over the complement of .� � "; � C "/ as "! 0C.
Consequently, �.ds/ is absolutely continuous on .0; �.1//, and by Proposition 4.3,

1Z
0

Z
.0;1/

e��x��ypCt .x; dy/dx

D
1

�.� C �/

�.1/Z
0

e��t

�
exp

�
�
1

�
pv

�.1/Z
0

 .��1.s//
ds

s � �

�
sin. .��1.�///d�

D
1

�.� C �/

1Z
0

e�t�.r/

�.r/
exp

�
�
1

�
pv

1Z
0

 .q/
d�.q/

�.q/ � �.r/

�
sin. .r//d�.r/I

here, on the right-hand side, for simplicity, by pv
R

we denote the limit of integrals
over the complement of .�.��1.r/ � "/; �.��1.r/C "// as "! 0C. Observe that if
r … Zf , then �.r/ 2 iR, so that  .r/ 2 ¹0;�º and sin. .r//D 0. Thus, we conclude
that

1Z
0

Z
.0;1/

e��x��ypCt .x; dy/dx

D
1

�.� C �/

Z
Zf

e�t�.r/

�.r/
exp

�
�
1

�
pv

1Z
0

 .q/
d�.q/

�.q/ � �.r/

�
sin. .r//d�.r/

(4.7)

for every t > 0.
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Below we simplify the above expression. Recall that

 .r/ D Arg.�.r/C i�/ � Arg.�.r/ � i�/:

Thus,

sin. .r// D
�C Im �.r/

j�.r/C i�j

Re �.r/
j�.r/ � i�j

�
Re �.r/
j�.r/C i�j

�� C Im �.r/

j�.r/ � i�j

D
.� C �/Re �.r/

j�.r/C i�jj�.r/ � i�j
: (4.8)

We now transform the inner integral in (4.7). Fix r 2 Zf , and denote

I D exp
�
�
1

�
pv

1Z
0

 .q/
d�.q/

�.q/ � �.r/

�
:r

As in the proof of [41, Theorem 5.7], we find that  .q/ � C.�; �/=q (see [41,
(5.14) and the comments at the end of the proof of Theorem 5.7]), and that
log j�.q/ � �.r/j � C.f; r/q1=2 for q > 2r (see [41, (5.16)]). It follows that
 .q/ log j�.q/ � �.r/j converges to zero as q ! 1. Furthermore, we have that
 .q/ log j�.q/ � �.r/j converges to � log �.r/ as q ! 0C. Therefore, integrating
by parts, we find that

pv

1Z
0

 .q/
d�.q/

�.q/ � �.r/
D �� log�.r/ �

1Z
0

 0.q/ log j�.q/ � �.r/jdq:

Since

 0.q/ D Im
� �0.q/

�.q/C i�
�

�0.q/

�.q/ � i�

�
(see [41, (5.15)]), we obtain

I D �.r/ exp
�
1

�

1Z
0

Im
� �0.q/

�.q/C i�
�

�0.q/

�.q/ � i�

�
log j�.q/ � �.r/jdq

�
:

As in the proof of [41, Theorem 5.7], we have �.q/; �0.q/ 2 iR for almost all q 2
.0;1/ n Zf , and then the integrand on the right-hand side of the above equation is
equal to zero. Thus,

I D �.r/ exp
�
1

�

Z
Zf

Im
� �0.q/

�.q/C i�
�

�0.q/

�.q/ � i�

�
log j�.q/ � �.r/jdq

�
:
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Recall that if we define �.0/ D 0 and �.�r/ D ��.r/, then �.r/ for r 2 .�Zf /[Zf
is a parameterisation of �?. Furthermore, as in the proof of [41, Corollary 5.6], we
have

Im
� �0.q/

�.q/C i�
�

�0.q/

�.q/ � i�

�
D

1

2i

� �0.q/

�.q/C i�
�

�0.q/

�.q/ � i�

�
�
1

2i

� �0.q/

�.q/ � i�
�

�0.q/

�.q/C i�

�
D

1

2i

� �0.q/

�.q/C i�
�

�0.q/

�.q/ � i�

�
C
1

2i

� �0.�q/

�.�q/C i�
�

�0.�q/

�.�q/ � i�

�
:

Therefore, we find that

I D �.r/ exp
�
1

2�i

Z
�?
f

� 1

z C i�
�

1

z � i�

�
log jf .z/ � �.r/jdz

�

D �.r/ exp
�
�
1

2�i

Z
�?
f

� 1

z � i�
�

1

z C i�

�
log jf .z/ � �.r/jdz

�
:

Recall that i� 2 DC
f

and �i� 2 D�
f

. From Proposition 3.20 with �1 D i� and �2 D
�i�, it follows that

I D
�.r/f C.r I �/f �.r I �/

ji� � �.r/jj�i� � �.r/j
: (4.9)

By combining (4.7), (4.8), and (4.9), we arrive at

1Z
0

Z
.0;1/

e��x��ypCt .x; dy/dx

D
1

�.� C �/

Z
Zf

e�t�.r/

�.r/

�.r/f C.r I �/f �.r I �/

j�.r/ � i�jj�.r/C i�j

.� C �/Re �.r/
j�.r/C i�jj�.r/ � i�j

d�.r/

D
1

�

Z
Zf

e�t�.r/
f C.r I �/f �.r I �/Re �.r/
j�.r/ � i�j2j�.r/C i�j2

d�.r/;

as desired.
The proof in the remaining two cases, when i� 2 DC

f
and �i� 2 DC

f
, or when

i� 2 D�
f

and �i� 2 D�
f

, is very similar, with two modifications. First, the function
 .r/ has a jump at r D � or at r D � . This makes the treatment of the Hilbert transform
near s D �.�/ or s D �.�/ somewhat more complicated, but otherwise this does not
affect the argument. Second, the application of Proposition 3.20 for (4.9) is slightly
different, and thus the final formula takes a different form. We omit the details.
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4.4. Generalised eigenfunctions

Recall that by Proposition 4.4, under suitable assumptions on �; � > 0,

1Z
0

Z
.0;1/

e��x��ypCt .x; dy/dx

D
1

�

Z
Zf

e�t�.r/
f C.r I �/

j�.r/ � i�j2
f �.r I �/

j�.r/C i�j2
Re �.r/d�.r/: (4.10)

In order to invert the double Laplace transform in the above identity, we first identify
the factors

f C.r I �/

j�.r/ � i�j2
and

f �.r I �/

j�.r/C i�j2
;

up to appropriate normalisation factors, with Laplace transform of what we call gen-
eralised eigenfunctions. As before, we assume that f .z/ is a non-constant, non-de-
generate Rogers function associated to a Lévy process Xt with completely monotone
jumps. Recall that for r 2 Zf , f .r I z/ is the Rogers function defined as in Proposi-
tion 3.16, and f C.r I z/ and f �.r I z/ are the corresponding Wiener–Hopf factors.

Since f C.r I�/ is a complete Bernstein function of � , we have, by Proposition 3.18
applied to h.�/ D f C.r I �/ and � D �.r/,

f C.r I �/

j�.r/ � i�j2
D

f C.r I �/

.� C i�.r//.� � i�.r//

D
1

2i Re �.r/

�f C.r I i�.r//
� � i�.r/

�
f C.r I �i�.r//

� C i�.r/

�
� Qg.�/ (4.11)

for � 2 C n .�1; 0�, where Qg.�/ is an appropriate Stieltjes function (depending on f
and r). Observe that

f C.r I i�.r// D f C.r I �i�.r//

and
� � i�.r/ D � C i�.r/

when � > 0. Therefore, the expression in brackets on the right-hand side of (4.11) is
equal to �2i Im.f C.r I �i�.r//=.� C i�.r///. It follows that for � > 0 we have

Re �.r/
jf C.r I �i�.r//j

f C.r I �/

j�.r/ � i�j2

D �
1

jf C.r I �i�.r//j
Im
f C.r I �i�.r//

� C i�.r/
� gC.r I �/; (4.12)
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where

gC.r I �/ D
Qg.�/Re �.r/
jf C.r I �i�.r//j

is a Stieltjes function of � . Note that for a given � 2 C, the function 1=.� C i�/
(defined in the region Re � > Im �) is the Laplace transform of ei�x . Therefore, if
� > max¹0; Im �.r/º, then the expression given in (4.12) is the Laplace transform of
the function

FC.r Iy/ D �
1

jf C.r I �i�.r//j
Im
�
f C.r I �i�.r//e�i�.r/y

�
�GC.r Iy/

D eby sin.ay C cC/ �GC.r Iy/;

where GC.r I y/ is an appropriate completely monotone function, �.r/ D a C bi ,
cC D �Argf C.r I�i�.r//, and a > 0, b 2 R and cC 2 .��;�/. Similarly, for � > 0
we have

Re �.r/
jf �.r I i�.r//j

f �.r I �/

j�.r/C i�j2
D

Re �.r/
jf �.r I i�.r//j

f �.r I �/

.� � i�.r//.�C i�.r//

D
1

jf �.r I i�.r//j
Im
f �.r I i�.r//

� � i�.r/
� g�.r I �/;

and, given that � > max¹0;� Im �.r/º, the above expression is the Laplace transform
of the function

F�.r I x/ D
1

jf �.r I i�.r//j
Im.f �.r I i�.r//ei�.r/x/ �G�.r I x/

D e�bx sin.ax C c�/ �G�.r I x/I

here g�.r I �/ is an appropriate Stieltjes function, G�.r I x/ is an appropriate com-
pletely monotone function, �.r/ D aC bi as above, and c� D Argf �.r I i�.r//.

We abuse the notation and write LFC.r I �/ for the holomorphic extension to
C n ..�1; 0� [ ¹�i�.r/; i�.r/º/ of the Laplace transform of FC.r Iy/ (as a function
of y), defined originally in the region ¹� 2 C W Re � > max¹0; Im �.r/ºº. Likewise,
LF�.r I �/ denotes a similar extension of the Laplace transform of F�.r I x/. Recall
that

f C.r I �i�.r//f �.r I i�.r// D f .r I �.r//

D
2Re �.r/
f 0.�.r//

;

and observe that on Zf we have

d�.r/ D f 0.�.r//�0.r/dr D jf 0.�.r//jj�0.r/jdr:
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Thus, we conclude that (4.10) is equivalent to

1Z
0

Z
.0;1/

e��x��ypCt .x; dy/dx

D
1

�

Z
Zf

e�t�.r/
� Re �.r/
jf C.r I �i�.r//j

f C.r I �/

j�.r/ � i�j2

�� Re �.r/
jf �.r I i�.r//j

f �.r I �/

j�.r/C i�j2

�
�
jf C.r I �i�.r//f �.r I i�.r//j

Re �.r/
d�.r/

D
2

�

Z
Zf

e�t�.r/LFC.r I �/LF�.r I �/j�
0.r/jdr:

We have thus essentially proved the main result of this section, Proposition 4.3. Before
we state it, let us introduce the following formal definition of the generalised eigen-
functions FC.r Iy/ and F�.r I x/.

Definition 4.5. Suppose that f .�/ is a Rogers function, and let Zf , �f .r/ and �f .r/
be defined as in Section 3. Let r 2 Zf , let

f .r I z/ D .z � �f .r//
z C �f .r/

f .z/ � �f .r/

be the Rogers function defined in Proposition 3.16, and let f C.r I �/ and f �.r I �/
denote the corresponding Wiener–Hopf factors. Define

af .r/ D Re �f .r/; cfC.r/ D �Argf C.r I �i�f .r//;

bf .r/ D Im �f .r/; cf �.r/ D Argf �.r I i�f .r//;

and let

FfC.r Iy/ D e
bf .r/y sin.af .r/y C cfC.r// �GfC.r Iy/;

Ff �.r I x/ D e
�bf .r/x sin.af .r/x C cf �.r// �Gf �.r I x/;

where GfC.r I y/ and Gf �.r I y/ are completely monotone functions with Laplace
transforms

LGfC.r I �/ D � Im
e�icfC.r/

� C i�f .r/
�

Re �f .r/
jf C.r I �i�f .r//j

f C.r I �/

j�f .r/ � i�j2
;

LGf �.r I �/ D Im
eicf�.r/

� � i�f .r/
�

Re �f .r/
jf �.r I i�f .r//j

f �.r I �/

j�f .r/C i�j2

for �; � > 0.
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The notation introduced above is kept until the end of the article. We stress that

LFfC.r I �/ D
Re �f .r/

jf C.r I �i�f .r//j

f C.r I �/

.� C i�f .r//.� � i�f .r//
;

LFf �.r I �/ D
Re �f .r/

jf �.r I i�f .r//j

f �.r I �/

.� � i�f .r//.�C i�f .r//

whenever Re � > max¹0; Im �f .r/º and Re � > max¹0;� Im �f .r/º, and the above
expressions extend to meromorphic functions of �; � 2 C n .�1; 0�, with two simple
poles at �D�i�f .r/ and �D i�f .r/, and at �D i�f .r/ and �D�i�f .r/, respectively.
Since f C.r I �/ and f �.r I �/ are complete Bernstein functions, by (2.4) we have

0 � cfC.r/ �
�

2
� Arg �f .r/; 0 � cf �.r/ �

�

2
C Arg �f .r/:

Furthermore, we observe that

cfC.r/ � cf �.r/ D �Argf C.r I �i�f .r// � Argf �.r I i�f .r//

D �Arg
�
f C.r I �i�f .r//f

�.r I i�f .r//
�

D �Argf .r I �f .r//:

Since f .r I �f .r// D 2Re �f .r/=f 0.�f .r//, Re �f .r/ > 0, f 0.�f .r// D �0f .r/=�
0
f
.r/,

and �0
f
.r/ > 0, we find that

cfC.r/ � cf �.r/ D Argf 0.�f .r// D �Arg �0f .r/:

The following result is a restatement of Theorem 1.5.

Proposition 4.6. Suppose thatXt is a Lévy process with completely monotone jumps,
and f .�/ is the corresponding Rogers function. Let t � 0, Re �;Re� > 0, and suppose
that i� 2 DC

f
and �i� 2 D�

f
. Then,

1Z
0

Z
.0;1/

e��x��ypCt .x; dy/dx

D
2

�

Z
Zf

e�t�f .r/LFfC.r I �/LFf �.r I �/j�
0
f .r/jdr: (4.13)

Proof. We have already proved that formula (4.13) holds for �; � > 0 such that i� 2
DC
f

and �i� 2 D�
f

. The bivariate Laplace transform on the left-hand side of (4.13)
clearly defines a holomorphic function of � and � in the region Re �;Re � > 0. It is
therefore sufficient to prove that the right-hand side of (4.13) defines a holomorphic
function of � and � in the region Re �;Re � > 0, i� 2 DC

f
, �i� 2 D�

f
. This follows
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from Morera’s theorem and Fubini’s theorem. Indeed, for every � such that Re � > 0
and �i� 2 D�

f
, and for every closed contour z� contained in the region Re � > 0,

i� 2 DC
f

, we will momentarily show that we may apply Fubini’s theorem to find that

Z
z�

�
2

�

1Z
0

e�t�.r/LFfC.r I �/LF�.r I �/j�
0.r/jdr

�
d�

D
2

�

1Z
0

e�t�.r/
�Z
z�

LFfC.r I �/d�

�
LF�.r I �/j�

0.r/jdr D 0: (4.14)

By Morera’s theorem, this implies that the function defined by the right-hand side
of (4.13) is holomorphic with respect to �. A similar argument proves that it is holo-
morphic with respect to �, and the desired result follows by Hartog’s theorem.

Therefore, it remains to find a sufficiently good estimate of the integrand on the
right-hand side of (4.13), which will allow us to apply Fubini’s theorem in (4.14). Fix
any �0 > 0 such that i�0 2 DCf . Since i z� is a compact subset of DC

f
, the distance ı

between i z� andDC
f

is positive, and z� lies in a disk ¹� 2C W j�j<Rº for someR > 0.

Hence, for all � 2 z� and r 2 Zf we have

j� C i�.r/jj� � i�.r/j � .max¹ı; r �Rº/2

� C.ı;R; �0/j�0 C i�.r/jj�0 � i�.r/j

D C.ı;R; �0/.�0 C i�.r//.�0 � i�.r//:

On the other hand, we observe that, by Corollary 3.6 applied to the complete Bernstein
function f C.r I �/, for all � 2 z� we have

jf C.r I �/j � C.z�; �0/f
C.r I �0/:

Therefore,

jLFC.r I �/j D
Re �.r/

jf C.r I �i�.r//j

jf C.r I �/j

j� C i�.r/jj� � i�.r/j

� C.f; z�; �0/
Re �.r/

jf C.r I �i�.r//j

f C.r I �0/

.�0 C i�.r//.�0 � i�.r//

D C.f; z�; �0/LFC.r I �0/:

Similarly, with any fixed �0 > 0 such that �i�0 2 D�f ,

jLF�.r I �/j � C.f; �0; �/LF�.r I �0/:
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It follows thatZ
z�

1Z
0

e�t�.r/jLFfC.r I �/jjLF�.r I �/jj�
0.r/jdr jd�j

� C.f; z�; �0; �0; �/

1Z
0

e�t�.r/LFfC.r I �0/LF�.r I �0/j�
0.r/jdr <1;

as desired.

4.5. Properties of eigenfunctions

Proposition 4.6, which is the main result of this section, requires no assumptions on
the (non-constant) Rogers function f .�/. More specialised results are given in the
next section. Before we move on, however, we prove two estimates of the generalised
eigenfunctions FfC.r I y/ and Ff �.r I x/, defined in Definition 4.5. Recall that �f ,
Zf , �f .r/, and �f .r/ were introduced in Section 3 (see, in particular, Section 3.5).

Lemma 4.7. Suppose that Xt is a Lévy process with completely monotone jumps,
and f .�/ is the corresponding Rogers function. Let dist.z; �f / denote the distance
between z and �f , let r 2 Zf , let #f .r/ D Arg �f .r/, and let r0 D infZf . Then,

jLFfC.r I �/j �
36.r0 C j�j/

2

.dist.i�; �f //2
1

r C j�j

cos#f .r/
cos
�
1
2
#f .r/ �

�
4

�
cos
�
1
2

Arg �
� ;

jLFf �.r I �/j �
36.r0 C j�j/

2

.dist.�i�; �f //2
1

r C j�j

cos#f .r/
cos
�
1
2
#f .r/C

�
4

�
cos
�
1
2

Arg �
� ;

for �; � 2 C n .�1; 0�. In particular, if �; � > 0, then

0 � LFfC.r I �/ �
72.� C r0/

2

.dist.i�; �f //2
1

� C r
;

0 � LFf �.r I �/ �
72.�C r0/

2

.dist.�i�; �f //2
1

�C r
:

Proof. Denote d D dist.i�;�/, �D �.r/ and # D #.r/DArg�. Clearly, Arg
p
�i�D

#=2 � �=4. Recall that, by definition,

LFfC.r I �/ D
Re �
j� C i�j2

f C.r I �/

jf C.r I �i�/j
:
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Clearly, LFfC.r I �/� 0when � > 0. For a general � 2C n .�1; 0�, by Corollary 3.6
applied to the complete Bernstein function f C.r I �/, we have

jf C.r I �i�/j

f C.r I r/
�

1

2
p
2

cos
�#
2
�
�

4

�
and

jf C.r I �/j

f C.r I r/
�
p
2
r C j�j

r

1

cos
�
1
2

Arg �
� :

Thus,

jLFfC.r I �/j � 4
r cos#
j� C i�j2

r C j�j

r

1

cos
�
1
2

Arg �
�

cos
�
#
2
�
�
4

�
By definition, j� C i�j � d , and additionally j� C i�j � r � j�j � .r C j�j/=3 when
r > 2j�j. Since d � r0 C j�j, we obtain j� C i�j � .d=.r0 C j�j//.r C j�j/=3, and
hence

jLFfC.r I �/j � 36
r.r0 C j�j/

2 cos#
d2.r C j�j/2

r C j�j

r

1

cos
�
1
2

Arg �
�

cos
�
#
2
�
�
4

� :
This is the desired bound for jLFfC.r I �/j. When � > 0, then cos..Arg �/=2/ D 1,
and the desired estimate follows by the trigonometric identity (2.9).

The results for LFf �.r I �/ are proved in a similar way.

Lemma 4.8. Suppose thatXt is a Lévy process with completely monotone jumps, and
f .�/ is the corresponding Rogers function. For every r 2 Zf , we have

jFfC.r Iy/j � 22ry
�
1C

Re �f .r/
r

f C.r I 1=y/

jf C.r I �i�f .r//j

�
;

jFf �.r I x/j � 22rx
�
1C

Re �f .r/
r

f �.r I 1=x/

jf �.r I i�f .r//j

�
;

when 0 < x; y < 1=.2r/, and

jFfC.r Iy/j � 2e
ymax¹Im �f .r/;0º; jFf �.r I x/j � 2e

xmax¹� Im �f .r/;0º

for general x; y > 0.

Proof. Again, we consider only the estimate of FC.r Iy/. With �.r/ D a.r/C ib.r/,
we have

FC.r Iy/ D e
b.r/y sin.a.r/y C cC.r// �GC.r Iy/

D Im
�
e�icC.r/.1 � e�i�.r/y/

�
C .sin cC.r/ �GC.r Iy//: (4.15)
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Using j�.r/j D r and the mean value property, we find that

j1 � e�i�.r/y j � j�i�.r/yjmax¹1; eb.r/yº

� ry.1C eb.r/y/ � ry.1C ery/: (4.16)

Furthermore, for � > 0 we have

1Z
0

e��y.sin cC.r/ �GC.r Iy//dy D
sin cC.r/

�
�LGC.r I �/

D
sin cC.r/

�
C Im

e�icC.r/

� C i�.r/
C

Re �.r/
jf C.r I �i�.r//j

f C.r I �/

j�.r/ � i�j2
:

Since GC.r I y/ is completely monotone, it is a decreasing function of y > 0, and we
have

GC.r I 0
C/ D lim

�!1

1Z
0

�e��yGC.r Iy/dy

D lim
�!1

�
�� Im

e�icC.r/

� C i�.r/
�

Re �.r/
jf C.r I �i�.r//j

�f C.r I �/

j�.r/ � i�j2

�
D sin cC.r/ �

Re �.r/
jf C.r I �i�.r//j

lim
�!1

f C.r I �/

�
� sin cC.r/I

the last inequality follows from f C.r I �/ � 0. Thus, sin cC.r/ � GC.r I y/ � 0. On
the other hand, since sincC.r/�GC.r Iy/ is an increasing function of y > 0, we have

1Z
0

e��y.sin cC.r/ �GC.r Iy//dy �

1Z
p

e��y.sin cC.r/ �GC.r Ip//dy

D
e��p.sin cC.r/ �GC.r Ip//

�

when p; � > 0. It follows that

sin cC.r/ �GC.r Ip/

� �e�p
1Z
0

e��y.sin cC.r/ �GC.r Iy//dy

D �e�p
�sin cC.r/

�
C Im

e�icC.r/

� C i�.r/
C

Re �.r/
jf C.r I �i�.r//j

f C.r I �/

j�.r/ � i�j2

�
D e�p

�
Im
�i�.r/e�icC.r/

� C i�.r/
C

Re �.r/
jf C.r I �i�.r//j

�f C.r I �/

j�.r/ � i�j2

�
:
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When � > r , then we find that

sin cC.r/ �GC.r Ip/ � e�p
� r

� � r
C

Re �.r/
jf C.r I �i�.r//j

�f C.r I �/

.� � r/2

�
:

Let y 2 .0; 1=.2r//, and set p D y and � D 1=y. Then, the above estimate reads

sin cC.r/ �GC.r Iy/ � e
� ry

1 � ry
C

Re �.r/
jf C.r I �i�.r//j

yf C
�
r I 1
y

�
.1 � ry/2

�
� 2e

�
ry C

2Re �.r/
jf C.r I �i�.r//j

yf C
�
r I
1

y

��
: (4.17)

By (4.15), (4.16), and (4.17), whenever r 2 Zf , y > 0 and ry < 1=2, we have

jFC.r Iy/j � j1 � e
�i�.r/y

j C .sin cC.r/ �GC.r Iy//

� .1C ery/ry C 2e
�
ry C

2Re �.r/
jf C.r I �i�.r//j

yf C
�
r I
1

y

��
� 22

�
ry C

Re �.r/
jf C.r I �i�.r//j

yf C
�
r I
1

y

��
;

as desired. On the other hand, if ry � 1=2, we have

jFfC.r Iy/j � e
b.r/y

C 1 � 2emax¹b.r/;0ºy ;

and the proof is complete.

5. Inversion of spatial Laplace transforms

In this section we prove the main results of the paper. We continue to assume that
Xt is a (non-killed) Lévy process with completely monotone jumps, and f .�/ is the
corresponding Rogers function – the characteristic exponent of Xt .

5.1. Transition densities

We have the following direct corollary of Proposition 4.6. Since we give a more gen-
eral result below in Corollary 5.5, we only sketch the proof.

Proposition 5.1. Suppose thatXt is a Lévy process with completely monotone jumps,
and f .�/ is the corresponding Rogers function. Suppose, furthermore, that Im �.r/ is
bounded on .0;1/, t > 0, and that exp.�t�f .r// is integrable over r 2 Zf . Then
pt .x; dy/ is absolutely continuous with respect to y 2 .0;1/ for every x > 0, and
the continuous version of the density function is given by

pCt .x; y/ D
2

�

Z
Zf

e�t�f .r/FfC.r Iy/Ff �.r I x/j�
0
f .r/jdr:
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Proof. By Proposition 4.6 and Fubini’s theorem (we omit the proof of absolute integ-
rability of the corresponding double integral), when �; � > sup¹jIm �.r/j W r > 0º, we
have

1Z
0

Z
.0;1/

e��x��ypCt .x; dy/dx

D
2

�

1Z
0

1Z
0

e��x��y
� Z
Zf

e�t�.r/FC.r Iy/F�.r I x/j�
0.r/jdr

�
dydx:

The desired result follows by uniqueness of the Laplace transform.

Below we extend the above identity to a more general class of Lévy processes
with completely monotone jumps. To this end, we apply the key idea of this section:
we replace the kernel of the Laplace transform (e��y and e��x) by functions u.y/
and v.x/ admitting a suitable holomorphic extension; a typical example is

u.y/ D exp.�py log.1C y//; v.x/ D exp.�qx log.1C x//

for any p; q > 0. However, we still need to impose a technical assumption about the
spine of the Rogers function f .�/. Before we state the main result, we first recall a
simple property of the class of admissible functions u.y/ and v.x/, which is a minor
modification of the result from [38].

Lemma 5.2 ([38, Lemma 2.14]). Let " 2 .0; �=2/, and let u.y/ and v.x/ be holo-
morphic functions in the region ¹z 2 C W jArg zj < �=2 � "º, which are real-valued
on .0;1/, and which satisfy

ju.y/j � C.u; "/e�C.u;"/jyj log.1Cjyj/; jv.x/j � C.v; "/e�C.v;"/jxj log.1Cjxj/

for x and y in the region ¹z 2 C W jArg zj < �=2 � "º. Then, the Laplace transforms
of u.y/ and v.x/ are entire functions, and for every ı > 0 and p � 0 we have

jLu.�/j � C.u; "; ı; p/
1

1C j�j
; jLv.�/j � C.v; "; ı; p/

1

1C j�j

when jArg.p C �/j � � � " � ı and jArg.p C �/j � � � " � ı.

For reader’s convenience, we sketch the proof.

Proof. By considering epyu.y/ and epxv.x/ rather than u.y/ and v.x/, it is sufficient
to consider the case p D 0. If �; y 2 C and jArgyj < �=2 � ", then

ju.y/e��y j � C.u; "; �/ exp
�
�.1C j�j/jyj C j�jjyj

�
� C.u; "; �/ exp.�jyj/:
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Therefore, by a standard contour deformation argument, whenever j˛j < �=2� ", we
have

Lu.�/ D

1Z
0

u.y/e��ydy D

Z
Œ0;ei˛1/

u.y/e��ydy D ei˛
1Z
0

u.ei˛r/ exp.�ei˛�r/dr:

Suppose that 0 � Arg � � � � " � ı. If we choose ˛ D ��=2C "C ı=2, then we
find that

j exp.�ei˛�r/j D exp
�
�j�jr cos

� � ı

2

�
� exp.�C.ı/j�jr/;

and therefore

jLu.�/j �

1Z
0

ju.ei˛r/j exp.�C.ı/j�jr/dr

� C.u; "/

1Z
0

exp
�
�C.u; "/r log.1C r/ � C.ı/j�jr

�
dr

� C.u; "; ı/
1

1C j�j
;

as desired. A similar argument leads to the upper bound for jLv.�/j.

Our next result is a restatement of Theorem 1.6.

Proposition 5.3. Suppose thatXt is a Lévy process with completely monotone jumps,
and f .�/ is the corresponding Rogers function. Assume that " > 0, and

lim sup
r!1

jArg �f .r/j <
�

2
� ":

Let u.y/ and v.x/ satisfy the assumptions of Lemma 5.2: u.y/ and v.x/ are holo-
morphic functions in the region ¹z 2 C W jArg zj < �=2 � "º, which are real-valued
on .0;1/, and

ju.y/j � C.u; "/e�C.u;"/jyj log.1Cjyj/; jv.x/j � C.v; "/e�C.v;"/jxj log.1Cjxj/

for x and y in the region ¹z 2 C W jArg zj < �=2 � "º. Then, for t � 0,
1Z
0

Z
.0;1/

u.y/v.x/pCt .x; dy/dx

D
2

�

Z
Zf

e�t�f .r/
� 1Z
0

FfC.r Iy/u.y/dy

�� 1Z
0

Ff �.r I x/v.x/dx

�
j�0f .r/jdr:

(5.1)
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z�

�2r C iR

�p�3p

�

i�

�i N�

˛ ˛ � ı Re

Im

Figure 5. Setting for the proof of Proposition 5.3: � lies on the purple contour z� , while i� and
�i N� lie to the right of the teal dotted line.

Proof. By the assumption, there are ı > 0 and p > 0 such that

Arg.�.r/C ip/ � �
�

2
C "C 2ı; Arg.�.r/ � ip/ �

�

2
� " � 2ı

for every r 2 Zf . We let ˛ D � � " � ı. The remaining part of the proof is divided
into four steps.

Step 1. Observe that e�2ryFC.r I y/ and e2ryu.y/ are square integrable. Hence, by
Plancherel’s theorem,

1Z
0

FC.r Iy/u.y/dy D

1Z
0

.e�2ryFC.r Iy//.e
2ryu.y//dy

D
1

2�

1Z
�1

LFC.r I 2r � is/Lu.�2r C is/ds

D
1

2�i

Z
�2rCiR

LFC.r I ��/Lu.�/d�: (5.2)

Our goal now is to deform the contour of integration from �2r C iR to

z� D .�3p C e�i˛1;�3p� [ Œ�3p;�3p C ei˛1/;

which no longer depends on r (see Figure 5). Note that z� is the boundary of the region
¹� 2 C W jArg.3p C �/j � ˛º.
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Recall that

LFC.r I ��/ D
Re �.r/

jf C.r I �i�.r//j

f C.r I ��/

.� � i�.r//.� C i�.r//

is a holomorphic function in C n .Œ0;1/[ ¹i�.r/;�i�.r/º/. By Lemmas 4.7 and 5.2,
we have

jLFC.r I ��/Lu.�/j �
C.f; p; r/

1C j�j

C.u; "; ı; p/

1C j�j
D
C.f; u; "; ı; p; r/

.1C j�j/2

in the regions contained between the contours �2r C iR and z� , namely the triangle

¹� 2 C W jArg.3p C �/j � ˛ and Re � � �2rº

(if �2r < �3p), and the unbounded region

¹� 2 C W jArg.3p C �/j � ˛ and Re � � �2rº

(which has one component if �2r > �3p and two components otherwise). We stress
that the poles at � D i�.r/ and � D �i�.r/ lie outside of this region due to inequality
Arg.�.r/ � ip/ � �=2 � " � 2ı. By (5.2) and a standard contour deformation argu-
ment,

1Z
0

FC.r Iy/u.y/dy D
1

2�i

Z
z�

LFC.r I ��/Lu.�/d�: (5.3)

Similarly, using the other inequality Arg.�.r/C ip/ � �=2 � " � 2ı, we obtain

1Z
0

F�.r I x/v.x/dx D
1

2�i

Z
z�

LF�.r I ��/Lv.�/d�: (5.4)

It follows that if we denote the right-hand side of (5.1) by I , then

I D
2

�

Z
Zf

e�t�.r/
�
1

2�i

Z
z�

LFC.r I ��/Lu.�/d�

�

�

�
1

2�i

Z
z�

LF�.r I ��/Lv.�/d�

�
j�0.r/jdr; (5.5)

and in particular I is well defined if the outer integral on the right-hand side of (5.5)
is well defined. We claim that in fact the triple integral on the right-hand side is abso-
lutely convergent, and hence not only indeed both sides of (5.5) are well defined, but
also we may apply Fubini’s theorem to change the order of integration on the right-
hand side.
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Step 2. Let r 2 Zf and � 2 z� . Observe that (see Figure 5)

jArg.2p C �/j � jArg.3p C �/j D ˛

and
jArg.2p C i�.r//j � jArg.p C i�.r//j � ˛ � ı;

so that, by (2.8), we have j� � i�.r/j � .r C j�j/ sin ı=2. Also, j� � i�.r/j � 2p sin ı.
It follows that

dist.�i�; �/ � C.ı; p/.1C j�j/:

Also, jArg.��/j < �=2. Thus, by Lemma 4.7, if #.r/ D Arg �.r/, we have

jLFC.r I ��/j � C.f; ı; p/
1

r C j�j

cos#.r/
cos
�
1
2
#.r/ � �

4

� :
On the other hand, by Lemma 5.2,

jLu.�/j � C.u; "; ı; p/
1

1C j�j
:

Combining the above two estimates, we obtainZ
z�

jLFC.r I ��/Lu.�/jjd�j

� C.f; u; "; ı; p/
cos#.r/

cos.1
2
#.r/ � �

4
/

Z
z�

1

.1C j�j/.r C j�j/
jd�j

The integral on the right-hand side is bounded by

C."; ı/

1Z
p

1

.1C s/.r C s/
ds

� C."; ı/

1Z
0

1

.1C s/.r C s/
ds D C."; ı/

log r
r � 1

:

Thus,Z
z�

jLFC.r I ��/Lu.�/jjd�j � C.f; u; "; ı; p/
cos#.r/

cos
�
1
2
#.r/ � �

4

� log r
r � 1

: (5.6)

An analogous estimate holds for the integral of jLF�.r I ��/Lv.�/j:Z
z�

jLF�.r I ��/Lv.�/jjd�j � C.f; v; "; ı; p/
cos#.r/

cos
�
1
2
#.r/C �

4

� log r
r � 1

: (5.7)
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Additionally,

cos
�#
2
�
�

4

�
cos
�#
2
C
�

4

�
D
1

2
cos#

(see (2.9)), and so we find that�Z
z�

jLFC.r I ��/Lu.�/jjd�j

��Z
z�

jLF�.r I ��/Lv.�/jjd�j

�
� C.f; u; "; ı; p/

� log r
r � 1

�2
cos#.r/:

It follows thatZ
Zf

e�t�.r/
�Z
z�

jLFC.r I ��/Lu.�/jjd�j

��Z
z�

jLF�.r I ��/Lv.�/jjd�j

�
j�0.r/jdr

� C.u; v; "; ı; p/

1Z
0

� log r
r � 1

�2
j�0.r/jdr;

and by Proposition 3.8 (d) and a simple calculation, the right-hand side is finite.
Indeed, since log r=.r � 1/ is decreasing on .0;1/, we have

1Z
0

� log r
r � 1

�2
j�0.r/jdr D

1X
nD�1

2nC1Z
2n

� log r
r � 1

�2
j�0.r/jdr

�

1X
nD�1

�n log 2
2n � 1

�2 2nC1Z
2n

j�0.r/jdr

� 300.log 2/2
1X

nD�1

2nn2

.2n � 1/2
<1;

where, abusing the notation, we agree that n log 2=.2n � 1/ D 1 when n D 0. Our
claim from Step 1 is thus proved.

Step 3. We are now almost ready to complete the proof. By (5.5) and Fubini’s the-
orem,

I D
2

�

1

2�i

1

2�i

Z
z�

Z
z�

� Z
Zf

e�t�.r/LFC.r I ��/LF�.r I ��/j�
0.r/jdr

�
�Lu.�/Lv.�/d�d�:

Using Proposition 4.6, we find that

I D
2

�

1

2�i

1

2�i

Z
z�

Z
z�

� 1Z
0

Z
.0;1/

e�xC�ypCt .x; dy/dx

�
Lu.�/Lv.�/d�d�: (5.8)
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We will momentarily prove that the quadruple integral on the right-hand side is abso-
lutely convergent. Thus, by Fubini’s theorem,

I D
2

�

1Z
0

Z
.0;1/

�
1

2�i

Z
z�

e�yLu.�/d�

��
1

2�i

Z
z�

e�xLv.�/d�

�
pCt .x; dy/dx: (5.9)

To complete the proof, we apply an appropriate contour deformation and the Fourier
inversion formula. Suppose that y > 0 and observe that

1

2�i

Z
z�

e�yLu.�/d� D
1

2�i
lim
R!1

Z
Œ�3pCe�i˛R;�3p�[Œ�3p;�3pCei˛R�

e�yLu.�/d�:

Furthermore,ˇ̌̌̌ Z
Œ�3pCei˛R;iR sin˛�

e�yLu.�/d�

ˇ̌̌̌
�

0Z
�3pCR cos˛

je.sCiR sin˛/yLu.s C iR sin˛/jds

�

0Z
�1

esy jLu.s C iR sin˛/jds:

By Lemma 5.2, we have jLu.�/j � C.u; "; ı; p/.1C j�j/�1 in the region contained
between z� and iR, that is, in ¹� 2 C W jArg.3p C �/j � ˛; Re � � 0º, and hence, by
the dominated convergence theorem,

lim
R!1

Z
Œ�3pCei˛R;iR sin˛�

e�yLu.�/d� D 0:

Similarly,

lim
R!1

Z
Œ�3pCe�i˛R;�iR sin˛�

e�yLu.�/d� D 0:

By Cauchy’s theorem,� Z
Œ�3pCe�i˛R;�3p�[Œ�3p;�3pCei˛R�

C

Z
Œ�3pCei˛R;iR sin˛�

�

Z
Œ�iR sin˛;iR sin˛�

�

Z
Œ�3pCe�i˛R;�iR sin˛�

�
e�yLu.�/d� D 0;
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and therefore

1

2�i

Z
z�

e�yLu.�/d� D
1

2�i
lim
R!1

Z
Œ�iR sin˛;iR sin˛�

e�yLu.�/d�:

Finally, using the Fourier inversion formula (see, for example, [27, Theorem 7.6]), we
conclude that

1

2�i

Z
z�

e�yLu.�/d� D u.y/:

A similar argument shows that

1

2�i

Z
z�

e�xLv.�/d� D v.x/ (5.10)

for x > 0, and the desired result follows from (5.9).

Step 4. It remains to prove that the integral on the right-hand side of (5.8) is absolutely
convergent. Denote

J D

1Z
0

Z
.0;1/

Z
z�

Z
z�

je�xC�yLu.�/Lv.�/jjd�jjd�jpCt .x; dy/dx:

Using Lemma 5.2, we obtain

J � C.u; v; "; ı; p/

1Z
0

Z
.0;1/

Z
z�

Z
z�

ex Re�Cy Re �

.1C j�j/.1C j�j/
jd�jjd�jpCt .x; dy/dx:

The estimate Z
z�

ey Re �

1C j�j
jd�j � 2

1Z
0

e�3pyCsy cos˛

1C s
ds

� C.˛/e�3py
log.e C y�1/

1C y

and a similar estimate for the integral with respect to � lead to

J � C.u; v; "; ı; p/

1Z
0

Z
.0;1/

log.e C x�1/ log.e C y�1/
.1C x/.1C y/

pCt .x; dy/dx:
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By the Cauchy–Schwarz inequality,

J � C.u; v; "; ı; p/

� 1Z
0

Z
.0;1/

� log.e C x�1/
1C x

�2
pCt .x; dy/dx

�1=2

�

� 1Z
0

Z
.0;1/

� log.e C y�1/
1C y

�2
pCt .x; dy/dx

�1=2
:

Finally,
R
.0;1/

pCt .x; dy/ � 1 for every x, and, by Hunt’s switching identity ([6, The-
orem II.5]),

R1
0
pCt .x; A/dx � jAj for every Borel A � R. Thus,

J � C.u; v; "; ı; p/

� 1Z
0

� log.e C x�1/
1C x

�2
dx

�1=2

�

� 1Z
0

� log.e C y�1/
1C y

�2
dy

�1=2
<1;

and the proof is complete.

Remark 5.4. Under the assumptions of Proposition 5.3, we haveˇ̌̌̌ 1Z
0

FfC.r Iy/u.y/dy

ˇ̌̌̌
� C.f; u/

log r
r � 1

;

ˇ̌̌̌ 1Z
0

Ff �.r I x/v.x/dx

ˇ̌̌̌
� C.f; v/

log r
r � 1

I

see (5.3), (5.4), and (5.6) (and (2.9)). Combined with Proposition 3.8 (d), these estim-
ates lead to Z

Zf

ˇ̌̌̌ 1Z
0

FfC.r Iy/u.y/dy

ˇ̌̌̌2
j�0f .r/jdr <1

and Z
Zf

ˇ̌̌̌ 1Z
0

Ff �.r I x/v.x/dx

ˇ̌̌̌2
j�0f .r/jdr <1:

The following restatement of Theorem 1.2 seems to be the best possible variant of
Proposition 5.1 that can be proved by using only Proposition 5.3 and Fubini’s theorem.

Corollary 5.5. Suppose that Xt is a Lévy process with completely monotone jumps,
and f .�/ is the corresponding Rogers function. Let " > 0, and assume that

lim sup
r!1

jArg �f .r/j <
�

2
� ":
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Assume, furthermore, that for some ˇ 2 .1; .�=2/=.�=2 � "// we haveZ
Zf

esjIm �f .r/j�t�f .r/j�0f .r/jdr � e
C.f;t/.1Cs/ˇ (5.11)

whenever t; s > 0. Then, pCt .x; dy/ has a continuous density function, given by

pCt .x; y/ D
2

�

Z
Zf

e�t�f .r/FfC.r Iy/Ff �.r I x/j�
0
f .r/jdr (5.12)

for t � 0 and x; y > 0.

Proof. The argument is quite simple. Observe that since ˇ 2 .1; .�=2/=.�=2 � "//,
the functions u.y/D exp.��yˇ / and v.x/D exp.��xˇ / satisfy the condition in Pro-
position 5.3 when �; � > 0. We use this result and Fubini’s theorem to find that

1Z
0

Z
.0;1/

e��y
ˇ��xˇpCt .x; dy/dx

D

1Z
0

1Z
0

�
2

�

Z
Zf

e�t�.r/FC.r Iy/F�.r I x/j�
0.r/jdr

�
e��y

ˇ��xˇdxdyI (5.13)

we will momentarily justify the application of Fubini’s theorem when � and � are large
enough. Now, we exploit uniqueness of the (bivariate) Laplace transform. In variables
Qx D xˇ and Qy D yˇ , formula (5.13) is an equality of Laplace transforms, evaluated at
.�; �/, of two functions of . Qx; Qy/. This gives the desired equality (5.12) almost every
pair . Qx; Qy/, and hence for almost every pair .x; y/. At the end of the proof, we use a
continuity argument to conclude that in fact the equality holds everywhere.

We now prove that the integrand on the right-hand side of (5.13) is absolutely
integrable, thus justifying the use of Fubini’s theorem. Let b.r/ D Im �.r/. Clearly,
jFC.r Iy/j � e

b.r/y C 1� 2ejb.r/jy and similarly jF�.r Ix/j � e�b.r/x C 1� 2ejb.r/jx .
It follows that

je�t�.r/FC.r Iy/F�.r I x/u.y/v.x/�
0.r/j � 4ejb.r/j.xCy/�t�.r/��x

ˇ��yˇ
j�0.r/j:

By assumption, there is a constant A (which depends only on f and t ) such thatZ
Zf

je�t�.r/FC.r Iy/F�.r I x/u.y/v.x/�
0.r/jdr � eA.1CxCy/

ˇ��xˇ��yˇ :
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Observe that .1C x C y/ˇ � 3ˇ .1C xˇ C yˇ /. Thus, if �; � > 1C 3ˇA, we find
that Z

Zf

je�t�.r/FC.r Iy/F�.r I x/u.y/v.x/�
0.r/jdr � e3

ˇ�xˇ�yˇ ;

and the right-hand side is clearly integrable with respect to x; y > 0, as desired.
We thus know that (5.12) holds for almost all x; y > 0. In order to extend this

equality to all x;y > 0, we now show that both sides of (5.12) are continuous functions
of x; y > 0 with values in Œ0;1�. By assumption, jArg �.r/j � �=2 � " for r large
enough, and so, by Proposition 3.5, we have jf .r/j � C."/�.r/ for r large enough. It
follows that with R sufficiently large, we have

1Z
�1

je�tf .�/jd� � 2

1Z
0

e�t jf .r/jdr

� 2RC 2

1Z
R

e�tC."/�.r/dr

� 2RC 2

1Z
R

e�tC."/�.r/j�0.r/jdr <1:

Therefore, for each t > 0 and x 2 R, the distribution of the random variable Xt under
Px has a density function pt .y � x/ such that pt .y � x/ is a jointly continuous
function of t > 0 and x; y 2 R. By the Dynkin–Hunt formula, we have

pCt .x; y/ D pt .y � x/ � Ex.pt��.0;1/.y �X�.0;1// 1¹�.0;1/<tº/;

and a standard argument shows that pCt .x; y/ is a jointly continuous function of
t; x; y > 0; we refer to the proof of [64, Theorem 2.4.3], which is written for the
Brownian motion in Rd , but applies verbatim to the present setting. On the other
hand, the right-hand side of (5.12) is a continuous function of x; y > 0 by the domin-
ated convergence theorem, as we have already proved that

je�t�.r/FC.r Iy/F�.r I x/�
0.r/j � 4ejb.r/j.xCy/�t�.r/j�0.r/j

� 4e2Bjb.r/j�t�.r/j�0.r/j

for x; y 2 Œ0; B�, and the right-hand side is integrable with respect to r 2 Zf by
assumption. This completes the proof.

Corollary 5.5 is not optimal, in the sense that it does not cover all Lévy processes
with completely monotone jumps for which formula (5.12) holds true. For example,
not all stable Lévy processes with index greater than 1 satisfy (5.11), but (5.12) is
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known to hold in this case; see Section 6 for further discussion. Nevertheless, any
essential extension of Corollary 5.5 would require new methods or ideas. We remark
that for the case of stable Lévy processes, the spine �f of f .�/ is a half-line originat-
ing at 0, and �f .r/ is a power function, so that �f .r/ has an appropriate holomorphic
extension. This was exploited in [38], and the same concept was used in the related
problem of finding the distribution of the hitting time of a point in [49]. Further applic-
ations of this technique, however, appear problematic: no general conditions seem to
be known which would assert that �f .r/ extends to a holomorphic function in a suf-
ficiently large sector.

5.2. Infimum functional

Before we state our main results in this section, we prove a variant of Proposition 5.3.

Proposition 5.6. Suppose thatXt is a Lévy process with completely monotone jumps,
and f .�/ is the corresponding Rogers function. Assume that " > 0, and

lim inf
r!1

Arg �f .r/ > �
�

2
C ":

Let v.x/ satisfy the assumptions of Lemma 5.2: v.x/ is a holomorphic function in the
region ¹x 2 C W jArg xj < �=2 � "º, which is real-valued on .0;1/, and such that

jv.x/j � C.v; "/e�C.v;"/jxj log.1Cjxj/

in the region ¹x 2 C W jArgxj < �=2� "º. Finally, suppose that � > 0 and i� 2 DC
f

.
Then,

1Z
0

Z
.0;1/

v.x/e��ypCt .x; dy/dx

D
2

�

Z
Zf

e�t�f .r/LFfC.r I �/

� 1Z
0

Ff �.r I x/v.x/dx

�
j�0f .r/jdr (5.14)

for t > 0.

Proof. We follow closely the proof of Proposition 5.3, and only indicate necessary
changes. Again, we choose ı > 0 and p > 0 such that

Arg.�f .r/C ip/ � �
�

2
C "C 2ı

for every r > 0, and we let ˛ D � � " � ı.
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Step 1. This part is the same as the corresponding part of the proof of Proposition 5.3:
as in (5.4), we find that

1Z
0

F�.r I x/v.x/dx D
1

2�i

Z
z�

LF�.r I ��/Lv.�/d�;

where
z� D .�3p C e�i˛1;�3p� [ Œ�3p;�3p C ei˛1/:

Note that the proof of the above identity only required the one-sided bound

Arg.�f .r/C ip/ � �
�

2
C "C 2ı

(for the contour deformation argument; compare with the derivation of (5.3)), and
it did not depend on the inequality Arg.�f .r/ � ip/ � �=2 � " � 2ı (assumed in
Proposition 5.3, but not here).

It follows that if we denote the right-hand side of (5.14) by I , then

I D
2

�

Z
Zf

e�t�.r/LFC.r I �/

�
1

2�i

Z
z�

LF�.r I ��/Lv.�/d�

�
j�0.r/jdr; (5.15)

and, in particular, I is well defined if the outer integral on the right-hand side of (5.15)
is well defined. As before, we claim that the double integral on the right-hand side is
absolutely convergent, so that both sides of (5.15) are well defined, and additionally
Fubini’s theorem allows us to change the order of integration on the right-hand side.

Step 2. As in Step 2 of the proof of Proposition 5.3 (see (5.7)), we use Lemmas 4.7
and 5.2 to find thatZ

z�

jLF�.r I ��/Lv.�/jjd�j � C.f; v; "; ı; p/
cos#.r/

cos
�
1
2
#.r/C �

4

� log r
r � 1

:

Again, we note that for the proof of the above bound we only needed the inequality
Arg.�f .r/C ip/ � ��=2C "C 2ı.

In addition to the above bound, we apply Lemma 4.7 again to find that

jLFC.r I �/j � C.f; "; ı; p; �/
cos#.r/

cos
�
1
2
#.r/ � �

4

� 1

1C r
:

It follows that

jLFC.r I �/j

�Z
Q�

jLF�.r I ��/Lv.�/jjd�j

�
� C.f; v; "; ı; p; �/

1

1C r

log r
r � 1

cos#.r/:
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As in the proof of Proposition 5.3, we conclude thatZ
Zf

e�t�.r/jLFC.r I �/j

�Z
Q�

jLF�.r I ��/Lv.�/jjd�j

�
j�0.r/j <1:

Step 3. The remaining part of the proof is very similar to Step 3 in the proof of
Proposition 5.3. By (5.15) and Fubini’s theorem,

I D
2

�

1

2�i

Z
z�

� Z
Zf

e�t�.r/LFC.r I �/LF�.r I ��/j�
0.r/jdr

�
Lv.�/d�:

Using Proposition 4.6, we find that

I D
2

�

1

2�i

Z
z�

� 1Z
0

Z
.0;1/

e�x��ypCt .x; dy/dx

�
Lv.�/d�:

The triple integral on the right-hand side is absolutely convergent, by an argument
very similar to the one used in the proof of Proposition 5.3:

1Z
0

Z
.0;1/

Z
z�

je�x��yLv.�/jjd�jpCt .x; dy/dx

� C.v; "; ı; p/

1Z
0

Z
.0;1/

Z
z�

ex Re���y

1C j�j
jd�jpCt .x; dy/dx

� C.v; "; ı; p/

1Z
0

Z
.0;1/

e�3px log.e C x�1/
1C x

e��ypCt .x; dy/dx

� C.v; "; ı; p/

1Z
0

e�3px log.e C x�1/
1C x

dx <1:

Thus, by Fubini’s theorem,

I D
2

�

1Z
0

Z
.0;1/

�
1

2�i

Z
z�

e�xLv.�/d�

�
e��ypCt .x; dy/dx:

As in the proof of Proposition 5.3 (see (5.10)),

1

2�i

Z
z�

e�xLv.�/d� D v.x/

for x > 0, and the proof is complete.
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We provide a corollary analogous to Corollary 5.5.

Corollary 5.7. Suppose that Xt is a Lévy process with completely monotone jumps,
and f .�/ is the corresponding Rogers function. Assume that " > 0 and

lim inf
r!1

Arg �f .r/ > �
�

2
C ":

Assume, furthermore, that for some ˇ 2 .1; .�=2/=.�=2 � "// we haveZ
Zf

esmax¹� Im �f .r/;0º�t�f .r/
1

1C r
j�0f .r/jdr � e

C.f;t/.1Cs/ˇ

whenever t; s > 0. Then,Z
.0;1/

e��ypCt .x; dy/ D
2

�

Z
Zf

e�t�f .r/LFfC.r I �/Ff �.r I x/j�
0
f .r/jdr (5.16)

for t > 0, x > 0 and � > 0 such that Œi�; i1/ � DC
f

.

Proof. The argument is very similar to the proof of Corollary 5.5. We use Proposi-
tion 5.6 for v.x/ D exp.��xˇ / and Fubini’s theorem, to find that

1Z
0

� Z
.0;1/

e��ypCt .x; dy/

�
e��x

ˇ

dx

D

1Z
0

�
2

�

Z
Zf

e�t�.r/LFC.r I �/F�.r I x/j�
0.r/jdr

�
e��x

ˇ

dx: (5.17)

Later, we justify the application of Fubini’s theorem when � is large enough. If we set
Qx D xˇ , then v.x/ D e�� Qx . Thus, both sides of the above equality are Laplace trans-
forms (evaluated at �) of appropriate functions of Qx. By uniqueness of the Laplace
transform, we conclude that these functions are equal for almost all Qx, or, equival-
ently, thatZ

.0;1/

e��ypCt .x; dy/ D
2

�

Z
Zf

e�t�.r/LFC.r I �/F�.r I x/j�
0.r/jdr (5.18)

for almost all x. A continuity argument extends this result to all x > 0, as indicated
at the end of the proof.

We now prove that Fubini’s theorem indeed can be applied to the integral on the
right-hand side of (5.17). Let b.r/ D Im �.r/. Clearly,

jF�.r I x/j � e
�b.r/x

C 1 � 2emax¹�b.r/;0ºx :
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Furthermore, by Lemma 4.7,

jLFC.r I �/j � C.f; �/
1

1C r
:

Therefore,

je�t�.r/LFC.r I �/F�.r I x/v.x/�
0.r/j

� C.f; �/e�t�.r/Cmax¹�b.r/;0ºx��xˇ 1

1C r
j�0.r/j:

By assumption, there is a constant A (which depends only on f and t ) such that

1Z
0

je�t�.r/LFC.r I �/F�.r I x/v.x/�
0.r/jdr � C.f; �/eA.1Cx/

ˇ��xˇ : (5.19)

With � > A, the right-hand side is clearly integrable with respect to x > 0. This com-
pletes the justification of the use of Fubini’s theorem.

It remains to discuss the continuity argument that extends (5.18) to all x > 0.
The left-hand side of (5.18) is continuous in x > 0 by the strong Feller property of
pCt .x; dy/; see [15, corollary on p. 71]. Continuity of the right-hand side follows by
the dominated convergence theorem: we have already seen that

je�t�.r/LFC.r I �/F�.r I x/�
0.r/j � C.f; �/e�t�.r/Cmax¹�b.r/;0ºB 1

1C r
j�0.r/j

for x 2 Œ0;B� (see (5.19)), and the right-hand side is integrable with respect to r 2Zf
by assumption.

In order to set � D 0 and obtain the following restatement of Theorem 1.1 (b), we
need stronger assumptions.

Corollary 5.8. Suppose that Xt is a Lévy process with completely monotone jumps,
and f .�/ is the corresponding Rogers function. Let " > 0, ı 2 Œ0; �=2/, % > 0, and
assume that

lim inf
r!1

Arg �f .r/ > �
�

2
C " (5.20)

and
inf¹Argf .ie�iır/ W r 2 .0; %/º > 0 (5.21)

(if ı D 0, we understand that Argf .ie�iır/D Argf .ir/D '.�r/, where '.s/ is the
function in the exponential representation (3.2) of the Rogers function f .�/). Assume,
furthermore, that for some ˇ 2 .1; .�=2/=.�=2 � "// we haveZ

Zf

esmax¹� Im �f .r/;0º�t�f .r/
1

1C r
j�0f .r/jdr � e

C.f;t/.1Cs/ˇ
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whenever t; s > 0. Then

pCt .x; .0;1// D
2

�

Z
Zf

e�t�f .r/LFfC.r I 0
C/Ff �.r I x/j�

0
f .r/jdr

for t > 0 and x > 0.

Proof. The desired result follows immediately from Corollary 5.7, once we show
that we may apply the dominated convergence theorem to the right-hand side of (5.16)
as � ! 0C. By assumption, we have Arg �f .r/ � �=2 � ı when 0 < r < %,
and hence ı � Arg.i�=�f .r// � � when additionally � > 0. By (2.8), ji� � �f .r/j �
.� C r/ sin.ı=2/ � C.ı/� when 0 < r < % and � > 0. If 0 < � < %=2 and r � %, then
clearly ji� � �f .r/j � r � � � �, and hence dist.i�; �/ � C.ı/� if 0 < � < %=2. By
Lemma 4.7,

jLFC.r I �/j � C.ı/
1

� C r
� C.ı/

1

r

when r 2 Zf and 0 < � < %=2. Furthermore, by Lemma 4.8 and Corollary 3.6,

jF�.r I x/j � Crx
�
1C

Re �.r/
r

f �.r I 1=x/

jf �.r I i�.r//j

�
� Crx C C.ı/rx

f �.r I 1=x/

f �.r I r/

when 0 < r < 1=.2x/, and thus, by Lemma 3.24,

jF�.r I x/j � Crx C C.f; ı; �; %/.rx/
C.f;�;%/

� C.f; ı; �; %; x/rC.f;�;%/

when 0 < r < C.f; �; %; x/. It follows that

je�t�.r/LFfC.r I �/Ff �.r I x/�
0.r/j � C.f; ı; �; %; x/rC.f;�;%/�1j�0.r/j

on some initial interval .0; R/, with R D C.f; �; %; x/. By Proposition 3.8 (d), the
right-hand side is integrable with respect to r over .0; R/. On the other hand,

jF�.r I x/j � 2e
xmax¹� Im �f .r/;0º;

so that

je�t�.r/LFfC.r I �/Ff �.r I x/�
0.r/j � C.ı/

exmax¹� Im �f .r/;0º�t�.r/

r
j�0.r/j;
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and, by assumption, the right-hand side is integrable with respect to r over ŒR;1/.
Consequently, we may apply the dominated convergence theorem to find that

lim
�!0C

1Z
0

e�t�.r/LFfC.r I �/Ff �.r I x/�
0.r/dr

D

1Z
0

e�t�.r/LFfC.r I 0
C/Ff �.r I x/�

0.r/dr;

and the desired result follows.

Corollary 5.8 seems to be the best result of its kind which can be obtained by the
above method. However, just as it was the case with Corollary 5.5, it is not optimal, in
the sense that it does not cover all Lévy processes with completely monotone jumps
for which formulae (5.20) and (5.21) hold true. One way to extend Corollary 5.5
involves contour deformation of the integral with respect to r , as in [38] and, in
a different context, in [49]. Another possible approach is to follow the same argu-
ment for ��.�; �/=��.�; �/ D f �� .�/=f

�
� .�/ rather than �ı.�/�C.�; �/��.�; �/ D

f C� .�/f
�
� .�/, then set � ! 0C, and use the Pecherskii–Rogozin identity (2.6). This,

however, is beyond the scope of the present paper.
We conclude this section by observing that

pCt .x; .0;1// D Px.�.0;1/ > t/ D Px.
x
Xt > 0/ D P0.

x
Xt > �x/:

Therefore, Corollary 5.8 is indeed a restatement of Theorem 1.1 (b). Clearly, The-
orem 1.1 (a) follows from Theorem 1.1 (b) applied to the dual Lévy process yXt D
2X0 �Xt .

6. Examples

Below we discuss several classes of Lévy processes with completely monotone jumps,
and we check whether the assumptions of our main results are satisfied. Needless
to say, closed-form expressions for the generalised eigenfunctions are not available
unless the corresponding Rogers function f .�/ has a particularly simple form – for
example, it is a rational function.

6.1. Processes with Brownian component

We claim that ifXt has a non-zero Gaussian coefficient, that is, if a > 0 in the Stieltjes
representation (3.1) of the characteristic exponent f .�/ of Xt , then Theorem 1.2
applies.
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In this case, it is easy to see that, by Stieltjes representation (3.1) and the dom-
inated convergence theorem, f .�/=�2 converges to a as j�j ! 1, uniformly in the
sector ¹� 2C W jArg �j � �=2� "º for every " > 0. Therefore, limr!1Argf .rei˛/D
2˛ for every ˛ 2 .��=2; �=2/, and, consequently,

lim
r!1
jArg �f .r/j D 0:

Informally speaking, this means that the spine �f of f .�/ is asymptotically hori-
zontal. In particular, assumption (1.9) in Theorem 1.2 holds with an arbitrary " 2
.0; �=2/.

The above observation additionally implies that jIm�f .r/j �C.1C r/ for r 2Zf .
Furthermore, by Proposition 3.5, we have �f .r/�C jf .r/j �Cr2 for r large enough,
and hence �f .r/�Cr2� 1 for all r 2Zf . These estimates imply that condition (1.10)
holds with ˇ D 2: we haveZ
Zf

esjIm �f .r/j�t�f .r/j�0f .r/jdr �

Z
Zf

eCs.1Cr/�Ctr
2Ct
j�0f .r/jdr �

C
p
t
eCs

2=tCCsCt :

By choosing " > �=4 and ˇ D 2, we see that indeed all assumptions of Theorem 1.2
are satisfied when Xt has a non-zero Gaussian coefficient.

Similarly, conditions (1.1) and (1.3) in Theorem 1.1 (a), as well as conditions (1.5)
and (1.7) in Theorem 1.1 (b), are satisfied with " > �=4 and ˇ D 2. The remaining
assumptions (1.2) and (1.6) require certain balance between large jumps and thus
they are essentially independent of the Gaussian coefficients. Therefore, when apply-
ing Theorem 1.1 for Lévy processes with completely monotone jumps and non-zero
Gaussian coefficient, these conditions need to be imposed separately.

6.2. Strictly stable processes

Suppose that Xt is a strictly stable Lévy process with index ˛ 2 .0; 2� and positivity
parameter % D P .Xt > 0/. The admissible range for % is

max
°
0; 1 �

1

˛

±
� % � min

°
1;
1

˛

±
:

If we let
# D .2% � 1/

�

2
;

then there is k > 0 such that for � > 0 the characteristic exponent is given by

f .�/ D k.e�i#�/˛:
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Clearly, the above equality extends to the half-plane Re � > 0. Note that

j#j � min
°�
2
;
2 � ˛

˛

�

2

±
: (6.1)

This example is briefly mentioned as [41, Example 5.2 (b)]; for a general discussion
of stable processes, we refer to [6, 70].

With the above notation, we have �f .r/ D ei#r and Arg �f .r/ D # : the spine �f
of f .�/ is a ray .0; ei#1/. Hence, condition (1.9) in Theorem 1.2 is satisfied unless
% D 0 or % D 1 (and necessarily ˛ � 1), while condition (1.10) takes form

1Z
0

esrjsin#j�ktr˛dr � eC.f;t/.1Cs/
ˇ

; (6.2)

with an arbitrary ˇ 2 .1; �=.2j#j//. If # D 0 (that is, % D 1=2), then the left-hand
side is bounded by C.f; t/, and so the estimate is clearly satisfied. When # ¤ 0 and
˛ � 1, then (6.2) fails to hold with any ˇ. Finally, if # ¤ 0 and ˛ > 1, then a simple
calculation shows that

sr jsin#j �
1

2
ktr˛ � C.˛; #; k; t/s˛=.˛�1/;

so that
1Z
0

esrjsin#j�ktr˛dr �

1Z
0

eC.˛;#;k;t/s
˛=.˛�1/� 12ktr

˛

dr

� C.˛; #; k; t/eC.˛;#;k;t/s
˛=.˛�1/

:

Thus, condition (6.2) holds true if (and only if) ˇ � ˛=.˛ � 1/.
We conclude that in order to apply Theorem 1.2, we need to assume that either

• ˛ 2 .0; 1� and # D 0, that is, % D 1=2;

• ˛ 2 .1; 3=2� and

j#j <
˛ � 1

˛

�

2
or, equivalently,

1

2˛
< % < 1 �

1

2˛
I

• ˛ 2 .3=2; 2�.

Thus, we only partially recover the results of [38], where there are no restrictions on
the parameter # when ˛ 2 .1; 3=2�. As explained at the end of Section 5.1, the method
applied in [38] relied on a deformation of the contour in the integral with respect
to r . This approach can be repeated with the methods developed in the present paper,
but it does not seem applicable in the more general setting of Lévy processes with
completely monotone jumps considered here, and so we do not pursue this direction.
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A very similar analysis shows that Theorem 1.1 (a) applies under the following
assumptions:

• ˛ 2 .0; 1� and ��=2 < # � 0, that is, 0 < % � 1=2;

• ˛ 2 .1; 3=2� and

# <
˛ � 1

˛

�

2

or, equivalently,

% < 1 �
1

2˛
I

• ˛ 2 .3=2; 2�;

we omit the details.
Similarly, the conditions required in order to apply Theorem 1.1 (b) are obtained

from the above ones by replacing # by �# (or, equivalently, % by 1 � %). Again, we
only partially recover the results of [38], where the restrictions on # are not needed if
˛ 2 .1; 3=2�.

6.3. Stable Lévy processes

For Lévy processes which are stable, but not strictly stable, the picture is very similar.
If the index of stability ˛ is not equal to 1, we have

f .�/ D k.e�i#�/˛ � ib�

when � > 0, and the above formula extends holomorphically to all � with Re � > 0.
Here, k > 0, # satisfies (6.1), and b 2 R n ¹0º. When ˛ D 1, then (the holomorphic
extension of) the Rogers function f .�/ is given by

f .�/ D ke�i#� C
2iˇk cos#

�
� log �

when Re � > 0, with k > 0, # 2 .��=2; �=2/, and ˇ 2 Œ�1; 1� n ¹0º.
If ˛ 2 .1; 2�, the spine �f of f .�/ has an asymptote .0; ei#1/ at infinity, and it is

asymptotically vertical near 0. More formally, Arg �f .r/ converges to # as r !1,
and to .�=2/ signb as r! 0C. For ˛ D 1, the spine �f is asymptotically vertical both
at 0 and at infinity. Finally, if ˛ 2 .0; 1/, the spine �f is tangent to .0; ei#1/ at 0, and
it is asymptotically vertical at infinity.

It can be verified that Theorem 1.2 applies only when ˛ > 1, under the same
conditions as in the strictly stable case, namely if

• ˛ 2 .1; 3=2� and j#j < ..˛ � 1/=˛/.�=2/;

• ˛ 2 .3=2; 2�.
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Similarly, Theorem 1.1 (a) applies if

• ˛ 2 .0; 1/, b < 0 and # > ��=2;

• ˛ D 1 and ˇ > 0;

• ˛ 2 .1; 3=2�, b > 0 and # < ..˛ � 1/=˛/.�=2/;

• ˛ 2 .3=2; 2�,

and conditions for applicability of Theorem 1.1 (b) are obtained from the above ones
by replacing # by �# , b by �b, and ˇ by �ˇ. We omit the details.

6.4. Stable-like processes: Power-type growth

The analysis of the strictly stable case partially carries over to more general processes.
Although the conditions of Theorem 1.1 are generally more difficult to verify, it is
relatively easy to extend the discussion of applicability of Theorem 1.2 in Sections 6.2
and 6.3. Indeed, the same argument applies if, for some ˛ 2 .1;2/ and a slowly varying
function `.r/, we have

lim inf
r!1

�f .r/

r˛`.r/
> 0; lim sup

r!1
jArg �f .r/j <

˛ � 1

˛

�

2
I (6.3)

we omit the details. In this section we provide a sufficient condition for the above two
inequalities to hold true.

Note that by Proposition 3.5, the two conditions in (6.3) are equivalent to

lim inf
�!1

jf .�/j

�˛`.�/
> 0; lim sup

r!1
jArg �f .r/j <

˛ � 1

˛

�

2
: (6.4)

We remark that the former inequality in (6.4) is satisfied if the lower Blumenthal–
Getoor index of Xt is greater than ˛; in particular it holds true if the lower Matuszew-
ska index of jf .�/j at infinity is greater than ˛. The latter condition in (6.4) can be
thought of as a quantitative version of the sector condition.

Let us write F � G if the ratio F=G converges to 1. We claim that both parts
of (6.4) are satisfied if Xt has no Gaussian coefficient, and if the density �.z/ of the
Lévy measure of Xt satisfies

�.z/ �
A˙

jzj1C˛`.jzj�1/
as z ! 0˙,

where AC; A� � 0, AC C A� > 0, and, if 1 < ˛ � 3=2, additionallyˇ̌̌AC � A�
AC C A�

tan
˛�

2

ˇ̌̌
< tan

.˛ � 1/�

2
:

Of course, we continue to assume thatXt is a Lévy process with completely monotone
jumps, ˛ 2 .1; 2/ and ` is a slowly varying function.
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The proof of our claim is a standard, although lengthy, application of the theory
of regular variation. Recall that for z > 0,

�.˙z/ D

Z
.0;1/

e�zs�˙.ds/;

where �˙ are measures concentrated on .0;1/ such that

�.ds/ D �C.ds/C ��.�ds/

is the measure in the Stieltjes representation (3.1) of the Rogers function f .�/ (see [41,
Remark 3.4 (c)]). By Karamata’s Tauberian theorem ([8, Theorem 1.7.1]), we have

�˙..0; s// �
A˙s

1C˛`.s/

�.1C ˛/
as s !1.

Hence, by Karamata’s Abelian theorem for Stieltjes transforms ([46, Theorem 2.2]),
we find that for every # 2 .��; �/,

1Z
1

1

.rei# C s/3
�˙..0; s//ds �

��.1 � ˛/A˙

2
.rei#/˛�1`.r/ as r !1;

note that although [46, Theorem 2.2] is stated for # D 0, its proof carries over almost
verbatim to the general case. Now, we use Karamata’s Abelian theorem for the integral
of a regularly varying function over .0; r/ to find that

1Z
1

� 1
s2
�

1

.rei# C s/2

�
�˙..0; s//ds � �.�˛/A˙.re

i#/˛`.r/ as r !1.

By a simple application of Fubini’s theorem (or, informally, integration by parts), we
arrive atZ
.0;1�

ei#

s.ei# C s/
�˙.ds/C

Z
.1;1/

rei#

s.rei# C s/
�˙.ds/ � �.�˛/A˙.re

i#/˛`.r/

as r!1. Adding a constant to the left-hand side does not affect the above asymptotic
equality, and hence we conclude thatZ
.0;1/

� rei#
1C s

�
rei#

rei# C s

��˙.ds/
s

� �.�˛/A˙.re
i#/˛`.r/ as r !1. (6.5)
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This is exactly what is needed in order to verify (6.4). Indeed, by the Stieltjes repres-
entation (3.1) of the Rogers function f .�/, we have

f .�/ D �ib� C c C
1

�

Z
.0;1/

� �

� C is
C

i�

1C s

��C.ds/
s

C
1

�

Z
.0;1/

� �

� � is
�

i�

1C s

���.ds/
s

:

Substituting � D rei# with # 2 .��=2; �=2/, we obtain

f .rei#/ D �ibrei# C c C
1

�

Z
.0;1/

� rei#�i�=2

rei#�i�=2 C s
�
rei#�i�=2

1C s

��C.ds/
s

C
1

�

Z
.0;1/

� rei#Ci�=2

rei#Ci�=2 C s
�
rei#Ci�=2

1C s

���.ds/
s

;

and so (6.5) shows that

f .rei#/ � �.�˛/.�e�i�˛=2AC � e
i�˛=2A�/.re

i#/˛`.r/ as r !1.

In particular, when # D 0, we obtain the first part of (6.4). Furthermore, for a general
# 2 .��=2; �=2/, the above asymptotic equality implies that

lim
r!1

Argf .rei#/ D Arg.�e�i�˛=2AC � ei�˛=2A�/C ˛#

D arctan
�AC � A�
AC C A�

tan
˛�

2

�
C ˛#:

Let us write
ˇ D arctan

�
.AC � A�/.AC C A�/

�1 tan
˛�

2

�
:

The right-hand side of the above equality is positive for # > ˇ=˛ and negative for
# < �ˇ=˛. Consequently,

lim sup
r!1

jArg �f .r/j �
ˇ

˛
:

Recall that we have

jˇj D
ˇ̌̌
arctan

�AC � A�
AC C A�

tan
˛�

2

�ˇ̌̌
<
.˛ � 1/�

2
I

indeed, this is always true when 3=2 < ˛ < 2, and it is our additional assumption
when 1 < ˛ � 3=2. We conclude that

lim sup
r!1

jArg �f .r/j �
ˇ

˛
<
˛ � 1

˛

�

2
;

as desired: this is the latter part of (6.4).
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6.5. Brownian motion with drift

Below we consider the characteristic exponent of one of the simplest Lévy processes
with completely monotone jumps: the standard Brownian motion with non-negative
drift. It has no jumps, and its characteristic exponent is given by

f .�/ D
1

2
�2 � ib� D

1

2
.� � ib/2 C

1

2
b2;

where b � 0. In this case, f .�/ is a real number if and only if Re � D 0 or Im � D b.
Therefore, Zf D .b;1/, and for r 2 Zf we have

�f .r/ D
p

r2 � b2 C bi and �f .r/ D
1

2
r2:

We find that

f .r I �/ D
.� �
p
r2 � b2 � bi/.� C

p
r2 � b2 � bi/

1
2
�2 � ib� � 1

2
r2

D 2:

It follows that f C.r I �/D f �.r I �/D
p
2. In particular, with the notation introduced

in Definition 4.5,

cfC.r/ D �Argf C.r I �i�f .r// D 0; cf �.r/ D Argf �.r I i�f .r// D 0:

Finally,

LGfC.r I �/ D � Im
e�icfC.r/

� C i�f .r/
�

Re �f .r/
jf C.r I �i�f .r//j

f C.r I �/

j�f .r/ � i�j2
;

D � Im
1

� C i
p
r2 � b2 � b

�

p
r2 � b2
p
2

p
2

j
p
r2 � b2 C ib � i�j2

D 0;

so that GfC.r Iy/ D 0, and similarly Gf �.r I x/ D 0. We conclude that

FfC.r Iy/ D e
by sin.

p

r2 � b2 y/; Ff �.r I x/ D e
�bx sin.

p

r2 � b2 x/:

The expression in Theorem 1.2 reduces to a well-known formula:

pCt .x; y/ D
2

�

1Z
b

e�tr
2=2
� eby sin.

p

r2 � b2 y/

� e�bx sin.
p

r2 � b2 x/ �
r

p
r2 � b2

dr

D
2

�
eb.y�x/�tb

2=2

1Z
0

e�ts
2=2 sin.sy/ sin.sx/ds;



M. Kwaśnicki 112

and the right-hand side can be evaluated explicitly to

pCt .x; y/ D e
b.y�x/�tb2=2

�
1
p
2�t

.e�.x�y/
2=.2t/

� e�.xCy/
2=.2t//:

The result of Theorem 1.1 (a) is not new either: using the fact that LFf �.r I 0
C/ D

r�2
p
r2 � b2, we obtain

P0. xXt < y/ D
2

�

1Z
b

e�tr
2=2
� eby sin.

p

r2 � b2 y/ �

p
r2 � b2

r2
�

r
p
r2 � b2

dr

D
2

�
eby�tb

2=2

1Z
0

e�ts
2=2 sin.sy/

s

s2 C b2
dsI

the last integral can be written in terms of the error function. Theorem 1.1 (b) does not
apply in the present situation, and it can be verified that the equality in (1.8) does not
hold.

6.6. Classical risk process: Martingale case

Our next example is the classical risk process, with characteristic exponent

f .�/ D i� C
�

� C i
D

i�2

� C i
:

This process has positive jumps following the standard exponential distribution, and
a unit negative drift. It is easily verified that

Imf .x C iy/ D
x.x2 C y2 C 2y/

x2 C .y C 1/2
;

and therefore �f is the semi-circle j� C i j D 1, Re � > 0. It follows that Zf D .0; 2/,
and

�f .r/ D �i C ie
�i˛

for an appropriate ˛ 2 .0; �/ (depending on r). A simple calculation shows that

r2 D 2 � 2 cos˛ D 4 sin2
˛

2
;

that is, ˛ D 2 arcsin.r=2/. Furthermore,

�f .r/ D sin˛ � .1 � cos˛/i D
1

2
r
p

4 � r2 �
1

2
r2i;
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and

�f .r/ D f .�f .r// D
i.�i C ie�i˛/2

ie�i˛
D 2 � ei˛ � e�i˛ D 2 � 2 cos˛ D r2:

By a direct calculation,
f .r I �/ D 1 � i�;

and therefore
f C.r I �/ D 1C �; f �.r I �/ D 1:

It follows that

cfC.r/ D �Argf C.r I �i�f .r// D �Arg.1 � i�f .r// D �Arg e�i˛ D ˛;

cf �.r/ D Argf �.r I i�f .r// D 0:

Additionally, by a short calculation,

LGfC.r I �/ D � Im
e�icfC.r/

� C i�f .r/
�

Re �f .r/
jf C.r I �i�f .r//j

f C.r I �/

j�f .r/ � i�j2
D 0;

D � Im
e�i˛

� C 1 � e�i˛
�

sin˛
1

1C �

j� C 1 � e�i˛j2
D 0;

and

LGf �.r I �/ D Im
eicf�.r/

� � i�f .r/
�

Re �f .r/
jf �.r I i�f .r//j

f �.r I �/

j�f .r/C i�j2

D Im
1

� � i�f .r/
�

Re �f .r/
1

1

j�f .r/C i�j2
D 0;

so that again GfC.r Iy/ D Gf �.r I x/ D 0. We conclude that

FfC.r Iy/ D e
�.1�cos˛/y sin.y sin˛ C ˛/;

Ff �.r I x/ D e
.1�cos˛/x sin.x sin˛/;

where ˛D 2arcsin.r=2/ and r 2 .0;2/. Finally, we have cos˛D 1� r2=2 and sin˛D
r
p
4 � r2=2, and so we can rewrite the above expressions without using ˛ as

FfC.r Iy/ D e
�yr2=2 sin

�1
2
ry
p

4 � r2 C 2 arcsin
�1
2
r
��
;

Ff �.r I x/ D e
xr2=2 sin

�1
2
rx
p

4 � r2
�
;

with r 2 .0; 2/.
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Theorems 1.1 (b) and 1.2 do not apply in the present case. On the other hand, since
LFf �.r I 0

C/ D
p
4 � r2=.2r/, Theorem 1.1 (a) implies that

P0. xXt < y/ D
2

�

2Z
0

e�r
2t
� e�yr

2=2 sin
�1
2
ry
p

4 � r2 C 2 arcsin
�1
2
r
��

�

p
4 � r2

2r
�

2
p
4 � r2

dr

D
2

�

2Z
0

e�r
2.tCy=2/ sin

�1
2
ry
p

4 � r2 C 2 arcsin
�1
2
r
��1
r
dr:

In terms of variable ˛, we obtain

P0. xXt < y/ D
1

�

�Z
0

e�.1�cos˛/.2tCy/ sin.y sin˛ C ˛/
sin˛

1 � cos˛
d˛:

This formula is due to Asmussen, see [3, Proposition IV.1.3], and it provides an effi-
cient way to evaluate the distribution function of time to ruin in the classical risk
model.

6.7. Classical risk process: Small drift case

The same approach applies to the process with exponentially distributed positive
jumps and small negative drift:

f .�/ D i� CR2
�

� C i
D
i�2 C .R2 � 1/�

� C i
;

where R � 1. We omit all details, and only list the final result and some intermediate
expressions. The curve �f is the semi-circle j� C i j D R, Re � > 0, we have Zf D
.R � 1;RC 1/, and

�f .r/ D �i C iRe
�i˛; �f .r/ D 1CR

2
� 2R cos˛ D r2;

where ˛ D arccos..1CR2 � r2/=.2R// 2 .0; �/. Furthermore,

f .r I �/ D 1 � i�;

and hence once again

f C.r I �/ D 1C �; f �.r I �/ D 1:
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Consequently, as in the previous example,

cfC.r/ D ˛; cf �.r/ D 0;

and
LGfC.r I �/ D LGf �.r I �/ D 0;

so that GfC.r Iy/ D Gf �.r I x/ D 0. It follows that

FfC.r Iy/ D e
�.1�R cos˛/y sin.Ry sin˛ C ˛/;

Ff �.r I x/ D e
.1�R cos˛/x sin.Rx sin˛/:

The assumptions of Theorems 1.1 (b) and 1.2 are not satisfied, and by Theorem 1.1 (a)
we have

P0. xXt < y/ D
2

�

�Z
0

exp
�
�.1CR2 � 2R cos˛/t � .1 �R cos˛/y

�
� sin.Ry sin˛ C ˛/

R2 sin˛
1CR2 � 2R cos˛

d˛:

Noteworthy, the above formula, although virtually the same as Asmussen’s result
given in [3, Proposition IV.1.3], covers the complementary case: here the drift is
assumed to be smaller than in the martingale case (that is, R � 1), while Asmussen’s
formula requires it to be larger (R � 1; our parameter R corresponds to

p
ˇ in the

notation of [3, Chapter IV]).

6.8. Brownian motion with exponentially distributed jumps

Let us now consider the Lévy process with characteristic exponent

f .�/ D
1

2
�2 C i� C

�

� C i
:

This process is the sum of the standard Brownian motion and an independent classical
risk process. By a direct calculation, Zf D .0;1/ and

�f .r/ D

p
1 � ˇ3p
ˇ
� .1 � ˇ/i; �f .r/ D

.1 � ˇ/.1C 2ˇ/2

2ˇ
;

with r2 D .1C ˇ � 2ˇ2/=ˇ and

ˇ D
1 � r2 C

p
.1 � r2/2 C 8

4
2 .0; 1/:



M. Kwaśnicki 116

By another direct calculation,

f .r I �/ D
2.� C i/

� C .1C 2ˇ/i
;

and

f C.r I �/ D
2.� C 1/

� C .1C 2ˇ/
; f �.r I �/ D 1:

It can be further calculated that, with the notation

˛ D Re �f .r/ D

p
1 � ˇ3p
ˇ

;

one has

jf C.r I �i�f .r//j D
ˇ̌̌2.ˇ � i˛/
3ˇ � i˛

ˇ̌̌
D
2
p
ˇ2 C ˛2p
9ˇ2 C ˛2

D
2p

1C 8ˇ3

and

cfC.r/ D �Arg
2.ˇ � i˛/

3ˇ � i˛

D �Arg
2

1C 2ˇ3 C 2iˇ3=2
p
1 � ˇ3

D arctan
2ˇ3=2

p
1 � ˇ3

1C 2ˇ3
:

Since

e�icfC.r/ D
f C.r I �i�f .r//

jf C.r I �i�f .r//j
;

after a short calculation we find that

LGfC.r I �/ D �
p
1C 8ˇ3

�
Im

ˇ � i˛

.3ˇ � i˛/.� C 1 � ˇ C i˛/

C
˛.� C 1/

j� C 1 � ˇ C i˛j2.� C 1C 2ˇ/

�
D
2ˇ3=2

p
1 � ˇ3p

1C 8ˇ3

1

� C 1C 2ˇ
:

Furthermore, cf �.r/ D 0 and LGf �.r I �/ D 0, and therefore

GfC.r Iy/ D
2ˇ3=2

p
1 � ˇ3p

1C 8ˇ3
e�.1C2ˇ/y ; Gf �.r I x/ D 0:
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Finally,

FfC.r Iy/ D e
�.1�ˇ/y sin

�p1 � ˇ3p
ˇ

y C arctan
2ˇ3=2

p
1 � ˇ3

1C 2ˇ3

�
�
2ˇ3=2

p
1 � ˇ3p

1C 8ˇ3
e�.1C2ˇ/y ;

Ff �.r I x/ D e
.1�ˇ/x sin

�p1 � ˇ3p
ˇ

x
�
:

All our main results apply, and so pCt .x; y/, P0. xXt < y/ and P0.
x
Xt > �y/ can be

written as explicit integrals. It seems more convenient to write the integrals in terms
of variable ˇ 2 .0; 1/, using

LFfC.r I 0
C/ D

˛
p
1C 8ˇ3

2

2

.1C 2ˇ/r2
D

p
ˇ
p
1 � ˇ3

p
1C 8ˇ3

.1C 2ˇ/.1C ˇ � 2ˇ2/
;

LFf �.r I 0
C/ D

˛

r2
D

p
ˇ
p
1 � ˇ3

1C ˇ � 2ˇ2
;

j�0f .r/jdr D

p
1C

� d
dˇ

p
1 � ˇ3p
ˇ

�2
dˇ D

p
1C 8ˇ3

2ˇ3=2
p
1 � ˇ3

dˇ:

The formulae are nevertheless complicated. For example, by Theorem 1.1 (b), we have

P0.
x
Xt > �x/

D
2

�

1Z
0

e�t.1�ˇ/.1C2ˇ/
2=.2ˇ/

�

p
ˇ
p
1 � ˇ3

p
1C 8ˇ3

.1C 2ˇ/.1C ˇ � 2ˇ2/

� e.1�ˇ/x sin
�p1 � ˇ3p

ˇ
x
�
�

p
1C 8ˇ3

2ˇ3=2
p
1 � ˇ3

dˇ

D
2

�

1Z
0

e�t.1�ˇ/.1C2ˇ/
2=.2ˇ/e.1�ˇ/x sin

�p1 � ˇ3p
ˇ

x
� 1 � 2ˇ C 4ˇ2

2ˇ.1C ˇ � 2ˇ2/
dˇ:
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M. Kwaśnicki 120

[36] F. Hubalek and A. Kuznetsov, A convergent series representation for the density of the
supremum of a stable process. Electron. Commun. Probab. 16 (2011), 84–95
Zbl 1231.60040 MR 2763530
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