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Stability of Schur’s iterates and fast solution
of the discrete integrable NLS

Roman Bessonov and Pavel Gubkin

Abstract. We prove a sharp stability estimate for Schur iterates of contractive analytic func-
tions in the open unit disk. We then apply this result in the setting of the inverse scattering
approach and obtain a fast algorithm for solving the discrete integrable nonlinear Schrodinger
equation (Ablowitz—Ladik equation) on the integer lattice, Z. We also give a self-contained
introduction to the theory of the nonlinear Fourier transform from the perspective of Schur
functions and orthogonal polynomials on the unit circle.

1. Introduction

1.1. Schur’s algorithm

The Schur class §(ID) in the open unit disk D = {z € C : |z| < 1} of the complex
plane, C, consists of analytic functions F in D such that

sup |[F(z)| < 1.
zeD

For F € §(D), we write F € §,(D) if F is not a finite Blaschke product. Take F €
S«(D), set Fp = F, and define the sequence { F}, },>0 using Schur’s algorithm:

F, — F,(0
2Fyiy = "T”() n>0. (1.1
1 - Fn (O) Fn
By construction and the Schwarz lemma, the resulting functions Fy, Fi, F3, ... will

belong to the class S, (ID) as well. In the case where F € §(ID) \ S«(D) is a Blaschke
product of order N > 0, the same construction gives a finite sequence of Blaschke
products Fy, F1,..., Fy of orders N, N —1,...,0, correspondingly. In particular,
Fy is a constant of unit modulus and the Schur’s algorithm stops.

Note that |F,(0)] < 1 for each F € 8§4(D), n > 0, by the maximum modulus
principle. Therefore, each function F' € §.(ID) generates a sequence { F, (0)},>0 C D.
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These numbers are called the recurrence coefficients of F. It can be shown that the
mapping
F = {Fu(0)}nx0

is a homeomorphism from §.(ID) with the topology of convergence on compact
subsets of D onto the space of sequences g: Z+ — D with the topology of element-
wise convergence, see [18, Section 1.3.6]. Here, Z4+ = Z N [0, +00). In particular,
for every sequence {ot,},>0 C D, there exists a unique function F € §.(ID) such
that o, = F,(0) for every n € Z. In this paper, we study the stability of Schur’s
algorithm. We prove a sharp estimate for |F,(0) — G,(0)| in terms of F — G for
functions F, G € $4(D) from the Szegd class, whose definition we now recall.

Let m denote the Lebesgue measure on the unit circle T ={z € C : |z| = 1} norm-
alised by m(T) = 1. The following theorem can be found, e.g., in [18, Section 2.7.8].

Theorem 1.1 (Szeg theorem). Let F € S, (D), and let { F;,(0)},>0 be its recurrence
coefficients. Then

o
[ 10t = 1F2) dm = 10g [T = 1E 0P,
T n=0
where both sides are finite or infinite simultaneously.

We will refer to the functions F' € S, (ID) such that

o0

n(F) = [ = 1F.0)) >0, (12)

n=0

as the Schur functions of Szegd class. Given any r € (0, 1), and an analytic function
F in D, we set

1/2
[FllL2¢Ty = (/ |F(ré)? dn’t(é)) :
T

Theorem 1.2. Let F, G be Schur functions of Szegd class, and let n(F),n(G) > n
for some n > 0. Then, for everyr € (0,1) and n € Z, the estimate

[ Fn = Gullz2gry = CO0.r)r "I F = Gllz21y. (1.3)
holds with the constant

Cn.r) = exp(logn™" - (24 — \}m)((l _4r)2 +1))

depending only on n, r.
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The order of the exponential factor r =" in Theorem 1.2 is sharp. Indeed, one can
take § € (0,1) and set F = §z", G = 0. Then F,(z) =8, G,(z) = 0forall z € D. So,
we have [|[Fy — Gull 2¢T) = I8lL2¢m) =8 and |F — Gl 21y = 182" |2¢T) =
8r™ in this case. Since n(F) = 1 — §2, n(G) = 1 do not depend on n, a study for large
n’s shows that the order of growth r =" in (1.3) cannot be improved within the Szeg6
class.

Theorem 1.2 can be used to estimate | Fy, (0) — G, (0)| if we know that the Schur
functions F, G are sufficiently close to each other in the disk |z| < r. Indeed, by
Bessel’s inequality, we have

|Fn(0) = Gn(0)] < [[Fn = GullL2¢ 1)

because the system {z¥ }k=o is orthogonal in L2(rT). We want to emphasise that the
constant C(n, ) in Theorem 1.2 is uniform for functions F € 8. (D) with the Szegd
constant 7( F') separated from zero. This is the most important feature of (1.3) when it
is compared with another stability result from inverse spectral theory — the Sylvester—
Winebrenner theorem [21]. In the language of Schur functions, this theorem says that
Schur’s algorithm defines a homeomorphism in appropriate metric spaces.

Theorem 1.3 (Sylvester—Winebrenner theorem). The mapping F +— {F,(0)},>¢ that
takes a Schur function into the sequence of its recurrence coefficients is a homeo-
morphism from the metric space X4 = {F € $+(D) : n(F) > 0} with the metric

F—-G »
< (F, 2:—/1 1— -
ps(F.G) J og(1=|—zgl") dm

onto the metric space €*(Z 1, D) of the square summable sequences q: 7y — D with
the metric |q — 412 = Yyez, la(n) — G2

We prove this version of the Sylvester—Winebrenner theorem in Section 6. It is
very natural to expect that the modulus of continuity of the homeomorphism in The-
orem 1.3 is controlled by 7 on the subset of F € X} with n(F) > n > 0. This is,
however, not the case! See Proposition 6.12 below. On the other hand, the uniform
character of estimate (1.3) will be crucial for the application of (1.3) to the discrete
integrable nonlinear Schrodinger equation (Ablowitz—Ladik equation). Let us discuss
it next.

1.2. AL: statement of the problem
Consider the defocusing Ablowitz—Ladik equation (AL) on the integer lattice, Z,

{a%q(nn) = i(1—lg@.m)P)q(t.n — 1) + q(t.n + 1),

14
q(0.n) = qo(n), neZ. (1.4)
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The variable ¢ € R is considered as time, n € Z is the discrete space variable. The
Ablowitz-Ladik equation is the integrable model introduced in [1, 2] as a spatial
discretization of the cubic nonlinear Schrédinger equation (NLS), see [3] for a gen-
eral context and modern exposition. If we change variables to u = e~2!g, then (1.4)
becomes

i%u(r,n) = — (1= |u(t,n))>)(u@.n—1) +ut,n+ 1)) +2u(t,n)
= —u(t,n—1)+2u(,n)—u(t,n+1)
+ |u(t,n)|2(u(t,n — 1) +u(t,n+1)),

which is indeed a discretization of the continuous defocusing NLS equation,

ad 92
i—u(t,x) = ——=u(t,x) + 2lu(t,x)|?u(t,x), xeR.
ot dx2
We are going to present a new solution method for (1.4) based on Schur’s algorithm.
The rate of its convergence will be estimated using Theorem 1.2. We deal with the
following problem.

Problem 1.4. Given e € (0,1),t € R, ng € Z, and a sequence qg on Z such that

sup gl <1, [T =lgomP) =n>0,
ne

nez
evaluate the solution q of (1.4) at (t,ng) with the absolute error at most e.

The quantity [],cz (1 — ¢z, 7)|?) = [,z (1 — |go(n)|?) is conserved under the
flow of AL equation. So, it is a natural characteristic for results on stability/accuracy
of solutions of AL equation.

We introduce the algorithm which solves Problem 1.4 in O(nlog? n) operations,
where n = ¢ + log 1. Thus, to have accuracy " at the moment of time = 1, one
need to take at most c,n log? n arithmetic operations for some constant ¢y > 0 depend-
ing only on 7. The basic Runge—Kutta scheme RK4 requires n steps (~ n - k opera-
tions) for computing u(l, j), —k < j < k, to guarantee accuracy
O(1/n*) if we additionally assume that the impact of u(z, j), |j| > k, is negligible
for0 <t <1.

1.3. AL: localization

Our solution method is a modification of the classical inverse scattering approach.
From a bird’s eye view, the standard procedure (see [24, Chapter 2]) of solving (1.4)
by means of the inverse scattering theory (IST) is as follows. Given an initial datum
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qo: Z — D, define the so-called reflection coefficient vy, at z € T by

_ b ! mz—k)
rqO(Z)_a(z)’ ( ) kell /—|q0(k)|2 (qo(k)zk 1 , (1.5

and find ¢(¢,-): Z — D such that ry,y = e *@+1/Ir, on T. It turns out that
q(t,-) will solve (1.4) for an initial datum g, provided go decays fast enough (say,
Y kez |go(k)| < 00). A fundamental problem appearing when one tries to solve (1.4)
by IST with merely £?(Z, D) initial datum gy (i.e., for a general go: Z — D such that
[T,ez(1 —1g0(n)|?) > 0) is that we can have rz, = rg, for go # go. This phenomenon
was first observed by Volberg and Yuditskii in [25] on the level of Jacobi matrices, and
then by Tao and Thiele [23] in the setting of the nonlinear Fourier transform, NLFT.
It shows that when we pass to the reflection coefficients rg,, rz,, some information
gets lost and there are no chances to solve (1.4) for £2(Z, D) initial data by using the
IST approach directly. To overcame this difficulty (non-injectivity of NLFT), we first
prove the following localization estimate.

Theorem 1.5. Let go: Z — D be such that ],z (1 — |qo(n)|?) > n for some n > 0
and let q be the solution of (1.4) for the initial datum q¢. Take N € Z, consider the
sequence qo,N defined by

don () = qgo(n), |n| <N,
’ 0, |n| > N,

and let qn be the corresponding solution of (1.4). Then, for N >
r € (0, 1), we have

4et/rC(n,r)rN_|j‘,

—, (1.6)

g, j) —aqn (. )| =

where C(n, r) is the function from Theorem 1.2.

Having in mind a possible future development of a parallel theory for continuous
NLS equation, we use only “spectral” methods in the proof of Theorem 1.5. The
reader interested in short and elementary proof of Theorem 1.5 by means of a direct
approach could find it in Appendix A.

1.4. AL: compactly supported initial data

Having Theorem 1.5, it remains to solve (1.4) for compactly supported initial data
qo: Z. — D. This can be done by a variety of methods, both theoretically and numeric-
ally. In particular, the standard IST approach works in this case, but accuracy estimates
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for numerical schemes based on IST and £2-bounds are missed in the literature. Tak-
ing into account the non-injectivity of NLFT, we see that the problem is, in fact,
fairly nontrivial: some distant compactly supported data gg, go correspond to almost
identical reflection coefficients ry,, rg,. Indeed, it is enough to take different g, go €
(%(Z,D) with the same reflection coefficient and consider restrictions of gg, Go to
a large discrete interval [N, N]. Then the corresponding reflection coefficients will
almost coincide by continuity of NLFT. This phenomenon, when ignored, leads to
instabilities. Below we describe a procedure that can be used to get the solution with
prescribed accuracy.

Consider go: Z — D supported on Z N [0, £] for some ¢ € Z. Note that ¢
solves (1.4) if and only if ¢(¢, - + j) solves (1.4) for the initial datum go(- + j).
Therefore, we do not lose generality when we assume supp go C [0, £]. Moreover, it is
easy to see that ¢ (¢, n) solves (1.4) if and only if ¢(—¢, n) solves (1.4) with the initial
data go. So, we can also assume that f > 0.

Consider the Fourier expansion of the inverse scattering multiplier e +1/2),

Pl +1/2) _ Zikjk(zt)zk, zeT.
keZ

Here, J, are the standard Bessel functions [7] of order k, i.e.,

(_1)mt2m+k

o0
Jo(21) = i—k/eit(z-l-l/z)zk dm=3"
m=0

— m!(m + k)!
g -

Let P, = Zlklsn i* Ji (2t)z* be the Laurent trigonometric polynomial of e?*(?+1/2)
of order n. Define the function G, ; by
t"e'

Gn,t = _Sn,t)ZnPn,h Sn,t = TR 1.7)

We will be interested in the situation when n > ct with some ¢ > e. In this case,
this “§, ;-correction” is very small but important: it places G, into Schur class.
Given a sequence ¢o: Z — D supported on [0, £], define the coefficients a, b of g
by (1.5). Note that the product in (1.5) contains at most £ 4+ 1 nontrivial terms. One
can check that @, b in (1.5) coincide on T with analytic polynomials in z of degree
at most £, and, moreover, |b(z)| < |a(z)| if |z| < 1. Set f,o = b/a. The function
Fu,0 = Gy £y, is rational and belongs to the Schur class S« (D) (see Proposition 3.1
below). Fix j € Z and use Schur’s algorithm (1.1) to find rational functions Fj o,
For, Fup,...s Fungj, ... (Schuriterates of F}, o). Set

an '0, .Z_ s
c?n(t,j)={0 ats O J z = (1.8)

) j < —n.
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The following theorem shows that g, approximates the solution g of (1.4) with very
high accuracy.

Theorem 1.6. Let t > 0, and let qo: Z — D be a sequence compactly supported
on Z 4. Assume that Hn€Z+(1 —1q0(n)|?) > n for some n > 0. Then, the function g,
in (1.8) satisfies

127" <Zet>n
V2mn '

forallneZy, j€Z,t >0suchthatn + j >0,n >t, and 8, < 1, see (1.7). Here
q is the solution of (1.4) and C(n, r) is the function from Theorem 1.2.

lg(t, ) — Gn(t. j)] <27C(n.1/2) (1.9)

n

Note that the right-hand side in (1.9) is very small when n is much larger than
2et and j is fixed. The estimate does not depend on the size of the support of gg.
In fact, Theorem 1.6 remains true if we assume only supp go C [0, +00) and

F1 = |go(n)|?) > 0. In this case, it is known that the product in (1.5) con-
verges in Lebesgue measure on T (see Section 6) and defines coefficients a, b almost
everywhere on T. Moreover, f;, = b /a will coincide with non-tangential values of a
function of Schur class $x(ID). Then the G, (¢, j) are well defined by (1.8), and (1.9)
will hold for them.

1.5. AL: algorithm for Problem 1.4

Let us summarise the algorithm that solves Problem 1.4 based on Theorems 1.5
and 1.6. At first, one need to choose a window A = [ng — N, ng + N] where N
is such that |g(¢,n¢) — gn (¢, n9)| < /2 for the exact solution g with the truncated
initial datum go,y = yaqo. Then, one need to shift go, ;5 by np — N to make it sup-
ported on Z 4 N [0,2N] and use the algorithm described in Section 1.4 to find the
approximate solution g, with accuracy ¢/2 at j = N for the shifted sequence. Taking
N =5+ [4et +1og,(C(n,1/2)/e)],n = 2N, we will get |G, (t, N) — q(t,ng)| <&,
see Section 5. In Section 5 we check that the whole procedure requires O(nlog? n)
operations for n =t + loge™!. In fact, the sequence §, approximates ¢ with accuracy
O(e) on the interval [ng — N/2, ng], not only at the point no. Considering the reflec-
tion of g¢ and applying the algorithm twice, one can construct approximation to g on
[no — N/2,no + N/2] in O(nlog? n) operations.

1.6. AL: historical remarks and motivation

As a classical integrable model, the Ablowitz—Ladik equation has a well-developed
theory in the periodic case [19, Chapter 11], [16, 17], in the finite case [9, 14], in
the half-infinite case [12, 20], and on the whole lattice Z, see [10, 11, 15,24]. The
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paper [11] contains a historical overview and an extensive bibliography, including
works following the original approach of Ablowitz and Ladik, who obtained a Lax
pair for (1.4) by discretizing the Zakharov—Shabat Lax pair for the continuous NLS
equation. Conversely, the references mentioned in this paragraph (and the results used
in this paper) are mostly related to recent works that appeared after Nenciu and Simon
[19, Chapter 11], [17] discovered a new Lax pair for this equation, making a connec-
tion to CMV matrices and orthogonal polynomials on the unit circle. The IST method
as a tool for existence theorems for the Ablowitz—Ladik equation attracted a limited
attention in the literature because the solvability of (1.4) for all initial data go: Z — D
can be easily obtained by means of a fixed point theorem (see Appendix A). How-
ever, the Ablowitz—Ladik equation is a perfect model for developing an accurate fast
IST-based numerical scheme that can be later generalised for the continuous NLS
equation.

1.7. The nonlinear Fourier transform

The last part of the paper can be regarded as the introduction to the theory of the non-
linear Fourier transform, NLFT. The main results in this area are due to Thiele and
Tao, see the paper [23] or its extended version by Thiele, Tao, and Tsai [24], where the
Ablowitz-Ladik equation appears in the setting of NLFT. The papers [23, 24] influ-
enced much of the present work. We decided to give a short introduction to the theory
of NLFT in the language of Schur functions and orthogonal polynomials to make the
paper more self-contained. We hope that our arguments will be of independent interest
for the orthogonal-polynomials community.
For1 < p < oo, let £7(Z, D) be the set of sequences g: Z — D such that

> lgm)]? < oo.

nez

We endow it with the usual distance ||g1 — ¢2ller = (Q_,ez 1q1(n) — ga(n)|P)V/P.
Note that £7(Z, D) is not a linear space. Using formula (1.5), define the nonlinear
Fourier transform (or the scattering map) by

Foeiq = Iy,

on the set £!(Z, D). Here we consider % as the map from £!(Z, D) to L>(T). Later
on, the domain of F. will be extended, while the target space will be changed to a
narrower one. Define the metric space

X ={h e L>(T) : |hllLeocry < 1, log(1 — |h|*) € L'(T)}, (1.10)



Stability of Schur’s iterates and fast solution of the discrete integrable NLS 157

with the Sylvester—Winebrenner metric pg (see [21]) given by

ps(hy, ha) = \/ /log 1—) - hz‘) m. (1.11)

For § € [0, 1), denote B[§] = {h € L°°(T) : ||h]|Loo(T) < §}. We have B[§] C X for
every § € [0, 1). So, let us consider B[§] as the subspace of X with the induced metric

topology. As we will see below Fi uniquely extends to the continuous map from
(2(Z,D) to X. Set §[8] = F 1 (B[8]) where ¥ !(E) is the full preimage of a set £
under the mapping F.: £2 (Z, ID)) - X.

With this definitions at hand, we are ready to summarise the basic properties of
the map
Theorem 1.7. The nonlinear Fourier transform ¥y has the following properties:

(1) the map Fy extends uniquely to the continuous map Fy.: £*(Z,D) — X,

(2) the map Fy: 4*(Z,D) — X is closed;

(3) we have F(q(- —n)) = 27" Fe(q) for every q € (*(Z, D), n € Z;

(4) the map Fy: £*(Z,D) — X is surjective;

(5) the map Fy:4*(Z,D) — X is not injective;

(6) the map F.: §[8] — B[] is a homeomorphism for every § € (0, 1);

(7) if ¢ = q(t,n) is the solution of (1.4) with the initial datum qo € §[5], then

q(t,-) € G[8] for eacht € R, and q(t,-) = F ' (e 7T F(qo)).

Theorem 1.7 (2) is new. It implies, in particular, that F;. is a homeomorphism
on the set of potentials g € £?(Z, D) that are completely determined by the reflection
coefficient ry. Theorem 1.7 (7) is not proved in our paper (we did not find a sufficiently
short argument), see [24] for the proof. Some ideas in the proof of Theorem 1.7 are
due to S. Denisov; the authors would like to thank him for his contribution.

2. Schur’s algorithm. Proof of Theorem 1.2

In this section we prove Theorem 1.2. For an analytic function F in D, it will be
convenient to set
MF(r) = max |F(z)|.
lz|<r

At first, we prove the following lemma.
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Lemma 2.1. Let F € $.(D), and let Fy. be its Schur iterates defined by (1.1). Then
forevery r € [0,1) we have

- 2 < 4 - 2 - 4 -1
;Mpk(r)_(l_—r)z-;m(on < G0y e, @

where 1(F) is defined by (1.2).

Proof. Letus check the second inequality first. For x € (0, 1), we have (1 — x)™! >e~,
therefore

— _ 2 2
n(F) ™ = [0 = 1F@P)™ = [T OF = X0l FOF,
k>0 k>0

which implies the required bound log(n(F)™") > Y~ | Fx(0)|>. Now, we focus on
the first inequality in (2.1). Set a; = Fj(0), j > 0. We will use the estimate in [18,
(1.3.58)], which reads

oo
[F()| <2 leyllzl/, ze€D.
Jj=0

Applying it to Fi in place of F for |z| = r, we get Mg, (r) <2 Z;io oty 177
hence,

o0
i . 2
M]‘%k (r) S 4(2 |ak+]|]”]/2 . r]/z)
Jj=0

o0 [e.°] 4 [e.¢]
<4 agyr/ Y ol = :Z|O¢k+]|2r’,
j=0 j=0 j=0

by the Cauchy inequality. Summing up over k € Z ., we get

2 ME () = 15 2 Dl P
k=0 k=0j=0
4 oo s _ 4 oo
SR 7 D DI g A
s=0 j=0 s=0
This ends the proof. u

Remark 2.2. Lemma 2.1 holds with a better (for small r) estimate with 1/(1 —r)*
in place of 4/(1 — r)2. To prove this, one needs to use the expression for Fy from [13,
Theorem 8.70]. A study of the functions F = §z" for large n’s and small §’s shows
that the constant in Lemma 2.1 cannot be smaller than 1/1 — r2.
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Proof of Theorem 1.2. Let F,G € $«(D). We have

(PG~ PO G-GO P
YT FOF 1-Go)6 0

2.2)

Here, the numerator is
P = (F - F(0))(1-G(0)G) — (G — G(0))(1 — F(0)F)

= [F — F(0) — G + G(0)] + FG(F(0) — G(0)) + [F(0)G(0)G — F(0)G(0)F].
We have

F(0)G(0)G — F(0)G(0)F = F(0)G(0)(G — F) + FF(0)(G(0) — F(0))
+ FF(0)(F(0) — G(0)).

It follows that

IPllL2¢Ty < I1F — F(0) =G + G)| 21y + MF(r)Mg(r)|F(0) — G(0)]

+IFOIIGCOIIF = Gllr2¢Ty + 2MFp (r)|F(0)[|F(0) — G(0)].
For an analytic function H in D, we have
[HO)| < |Hll 2y, 1H = HO)L2¢o1y < 1H |21

by orthogonality of the system {z¥ }k>0. Applying this to H = F — G and using
2xy < x2 + y2, we get

IPllL2¢my < 1F = Gllp2gry (1 + Mp(r) Mg (r) + |F(0)||G(0)| + 2MF (r)| F(0)])
3MF(r)* + Mg(r)*> + 3|F(0)|* + IG(O)IZ)

<IF = Gllaem (1 + .

Since | P| remains the same when we swap F, G, we also have

Mp(r)> +3Mg(r)*> + |[F(0)]* + 3|G(0)|2)

IPll2emy = IF = Glizagm) (1 + :

Taking a half-sum, we get
IPlL2¢T) < IF = Gll2gry(1 + ME(r) + MG(r) + |[F(O)]* + |G(0)?).
Further, for z € r T, we estimate the denominator Q in (2.2) as follows:

10(z)| = |(1 = G(0)G)(1 — F(0)F)| = (1 —|G(0)|Mg (r))(1 — |F(0)|MF(r)),
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where we use the fact that both brackets above are positive. Substituting the bounds
for P, Q into (2.2) gives

1+ MZ(r)+ ME(r) + |F(0)]> + |G(0)]?
(I =1GO)[Mc(r))(1 = |F(0)|MF(r))
The latter inequality applied to Fj and Gy in place of F, G fork =0,...,n —1

rFi = Gille2gry = |F = Glle2¢m)

implies
n—1
Py = Gallr2gry < IF = Gll2em [ ] G 2.3)
k=0
for

L+ ME (1) + M2, (r) + |Fe O + G (O)?

(1 =[Gk (0)| Mg, (r))(1 — [Fr(0)|[ME, (r))
It remains to estimate HZ;}) Ci. For § € (0, 1), denote by ¢(§) the minimal positive
number such that ﬁ <1+ c(8)x for all x € (0, 1) satisfying 1 — x2 > §. It is not
difficult to check that

k =

() = ﬁ c [1, g] (2.4)

Observe that

+00
1= |FeO)PMp, (1) = 1= |Fe(0)? = T (1 = [Fn(O)]») = n(F) > 7.
m=0

by our assumption. Then,

1
T FeOMe ) = T eI OMe () < T+ ﬂ(Mpk(r) + [Fe(0)).

A similar estimate holds for functions Gy. It follows that

Cr < (1 4+ Mg (r) + MG, (r) + | Fe (0)]* + |G (0)[*)

x(1+ (—”)<MFk( )+ IF ) (1+ @WG,J ) +16:OP)

< exp((1+ D)2, (1) + M2, () + 1O + 1GeO)P)).

where we used the elementary inequality 1 4+ x < e* three times. From Lemma 2.1,
we get

Ma - exp((1+ @)(S M3, (r) + M3, (1) + |FcOF + |G O )
k=0 k=0

1

fexp((l—l— ())(T;Ogﬂ) + 2logn~ 1))
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Substituting the latter into (2.3) and the bound (2.4) imply (1.3) with

C(y,r)= exp(logn_1 . (2 + T— h)((l —4r)2 + 1))

This ends the proof. ]

Remark 2.3. The function C(7, r) is very large if 7 is not close to 1 or if r is close
to 1. We have, e.g., 5- 1027 < C(1/2,1/2) < 6-10%7,10% < C(4/5,1/2) <2- 109,
and 9 < C(24/25,1/2) < 10. In [15], Killip, Ouyang, Visan, and Wu proved that the
continuous NLS equation with arbitrary L?(R)-initial data can be approximated by
the solutions of equation (1.4). It is interesting to note that 7 — 1 in their construction
during approximation process.

3. Estimates for the multipliers. Proof of Theorem 1.6

Recall the definition (1.7) of G, ; and P, ; for¢ > 0:

tet

Pn,t = Z ik]k(zt)zkv Gn,t = (1 _Sn,t)ZnPn,tv Sn,t = Py .

|k|<n

In this section, we first prove a bound for G, ; and estimate the rate of convergence
of Gpy1, — zGp  to zero. Then we prove Theorem 1.6. Throughout this section, we
assume that ¢ > 0.

Lemma 3.1. Let z € T and let n > t > 0 be such that 8, < 1 for 8, = t"e' /n!
from (1.7). Then we have |G, +(z)| < 1. In particular, for every qo € €*(Z, D) with
suppgo C Z+, we have Gy, 1£4, € $«(ID) and the construction described in Section 1.4
is correct.

Proof. We have

| Pyy(z) — e CT2| = (Zi"Jk(zr)z"\ <2y @l 2zl =r

|k|>n k>n

The standard estimate (see, e.g.,[7, p. 91]) |, (2¢)| < |¢]*/ T (v + 1) implies

—k .k n,.—n,t/r n,.—n,t/r
. r %t 2t"r e t"r e
P, ,(z) — 'z +1/2) <22 < , 3.1
| n,t( ) |_ =~ k! (n+1)! = n! ( )
. thypnetlr
|Pui(2)] < eGP/ 4 — — (3.2)

n!
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In particular, for z € T this gives |Py;(2)| < 1 + 8u, Where 8,, = t"e’/n! is
from (1.7). Therefore, we have

Gnt (D) = (1 =8p0)|Pus(2) <183, <1, zeT,

where the factor (1 — 8, ) is positive by our assumption. For a compactly supported
go with supp go C [0, £], it is not difficult to check that f,, is a Schur function by
considering the partial products in (1.5) and using induction. For the general case, see
formula (6.18) below. Then, we have G, ;f;, € $«(ID) by construction. m

Lemma 3.2. Let n, t be as in Lemma 3.1. Then max ;= |Gp,¢| < e (r" 4 38,.)
forr € (0, 1), and, moreover,

max |Gpi1.4(2) — 2Gn s (2)| < Sp(t.7),  Sp(t.r) = 68, e

lz|=r

Proof. Take z € D such that |z| = r. By (1.7) and (3.2), we have

|Z_nGn,t(Z) - Pn,t(Z)| = 8n,t

) thyn t/r
Pos(2)] < 8y (jeEFYD) 4 L)
n.

3 tnr—net/r
<6y (et(l/r Ny —a )

= 8n,t(et/r + 5n,tr_net/r) = Sn,tet/r(] + 8n,tr_n)-
Furthermore, we have
|Z—nGn,t(Z) _ eit(z+1/z)| < |Z_nGn’[(Z) _ Pn,t(Z)| + |Pn,t(Z) _eit(Z+1/z)|.

The last two estimates together with (3.1) imply

—n it(z+1/z) t/r —n nr—net/r
27" Gni(z) —e | < 8nee (U4 Sner™) + ——

< 5,,,;6[/’(1 +2r .

This gives
max |G| < e M) 435, etT < et (" + 38,,).
So, we have
g}i’ilZG”’t(z) _gnl,it(+1/2)) < Sn’tet/rrn-i-l(l £
_ Sn’tet/r(rn-l—l +2r),
and

lmlaX|Gn+1,t(Z) _ Zn—i-leit(z—l—l/z)l < 5n+1,tet/rr"+l(l + 2r_("+1))
zl=r

< 8 se!/T (" 1 2),
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where we used the inequality 8,41, < 8, forn > ¢ > 0. It remains to write

|Gnt14(2) = 2Gna ()] < [Gpyr(z) — 2" H e EH)

+ |ZGn Z(Z) . Zn+1eit(z+1/z)|
and use the last two estimates.
Lemma 3.3. Foreveryn > 0,t > 0, r € (0, 1), we have

Z Sk(t,r)r_k < 68,,,,62”’ S,

k>n
Proof. Forn >t > 0 we have 8,41 = 8,.¢¢/(n + 1); hence,
t/r (t/r) 4 )
n+1 m+DHn+2)

< 68n5,e’/’r_”et/' = 68n,t62’/r S

DSkt ryr* < 68, et (14

k>n

This is the required estimate.

The following lemma will be proved in Section 6.
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Lemma 3.4. Suppose that q € £>(Z,D) is such that suppq C Z 4 and let £, be defined
as in Section 1.4. Then the recurrence coefficients of £, coincide with the sequence

{q(k) x>0

Proof of Theorem 1.6. Lett > 0, and let go: Z — D be a sequence compactly sup-

ported on Z. Assume that ]_[nGZ+(1 — |go(n)|?) > n for some n > 0. Define the

functions f,, = b/a, Fyo = Gnfy,, and Fy x as in Section 1.4. Let also Gy (¢, j) =
Fantj0), j = —n,gn(t, j) =0, j < —n, for j € Z. We are going to show that
{Gn (¢, j)}n>0 is a Cauchy sequence for each j € Z. Take two positive integers ny >

ny > —j, fixr € (0, 1) and consider the difference

|qn2(t9 J) _qn1 (t7 J)| = |Fn2,n2+j(0) - Fnl,n1+j(0)|
= ||Fn2,n2+j - Fn1,n1+j ”Lz(r']I‘)
ny—1

<D N Fesiprre) — Frassllzzer)-
k=n,

Since G, is a contraction by Lemma 3.1, we have |G ,f4,| < |f4,| on T’; hence,

min(n(Gg41,:840). 1(2Gr840)) = n(fg5) = 1
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for every k by Szeg6 Theorem 1.1 and our assumption. For a function F € $.(D),
denote by (F )y the k-th Schur iterate of F (see (1.1), where (F) are denoted by Fy).
Note that (F)x = (zF)g+1. By Theorem 1.2, we have

I Fet+1h+1+5 — Fer+illzery = WGr+1. 000 k+1+7 — (Grefgo)k+j lL2¢m)
= 1(Gk+1,e8q0)k+1+; — Grefq)k+1+)lL2¢-1)
< C(.r)r |Gy 18g0 — 2Gkifgoll L2y
< C(n, ryr k1 |Gr+1,0 — 2Gry

lL26-1)-

Using Lemma 3.2 for ny > ¢ > 0 such that §,, ; < 1, we can proceed as follows:

—k—j—1

| Frsik+14 — Frkvjlzery < COpr)r max |Gk+1,t — 2Gk
Z|=r

< C(,r)Se(t, ryr k-1,
From Lemma 3.3, we now see that

o0
Gy (&2 ) = Gy (1 D <777 TICLr) - Y Skt ryr

k=n

< 6C(7,1)8n, 1€/ -

Recall that 8,, ; = e’t"! /n;! decays very rapidly as n; — oo, thus, {G, (¢, j)}n>—;
is a Cauchy sequence for every j € Z. Denote its limit by §(¢, -). Letting ny = n and
taking the limit in as n, — 400, we obtain

4(0.7) = Gnlt. )] = 6C(0. 1) ge®/” -1,

Taking » = 1/2 (any other r € (0, 1) will do) and using n! > /2nn(n/e)", we get

S~ . e’ ; ; 12e> /2et\n
G(.0) = @n(t )] < 6C(. 1/ =2 H =270 1/)——=(==)

2rn N\ N

wheren € Zy, j € Z,t > 0aresuchthatn + j > 0,n > ¢ > 0,and §,; < 1.

It remains to show that g (¢, j) = ¢(z, j), i.e., that § solves the Ablowitz—Ladik
equation (1.4) with the initial datum ¢g¢. By Theorem 1.7 (6) and Theorem 1.7 (7)
(note that go € §[8], because q¢ is compactly supported) it is suffices to check that
r; = ry, or, equivalently, r; = et/ Iy,

The sequence g, (t,- — n) is supported on Z_, moreover, we have g, (¢, j —n) =
F,,;(0) for j € Z . Let us denote the coefficients in (1.5) for qo, g»(t,- — n), by a,
b,and ay g, by o, respectively. We have 1, 1,.—n) = bn,0/an,0 and F, 0 =5, ,.—n) =



Stability of Schur’s iterates and fast solution of the discrete integrable NLS 165

lm) /an .0, where the equality F;, o = f5, (.—n) holds by Lemma 3.4 because the recur-
rence coefficients of F;, ¢ coincide with the sequence {G (¢, j —n)};>0. By (3.1), we
also have

Z_nm}/an,o — Z_nFn,O — Z_nGn’;qu N eit(z+1/z)fq0 — eit(z-i—l/z)l;/a

uniformly on T. We will now use well-known properties of the coefficients a, b
in (1.5). Namely, the functions a, a, o are outer, have positive values at z = 0, and sat-
isfy [a|? — |b|?> =1, |an,0|*> = |bn.o|*> = 1 on T (for the proof, see Section 6). The con-
vergence 2 "b, o/ano — '@/ /q then implies |a, 0> — |a|?, log |an0)*> —
log |a|? uniformly on T; hence, a, ¢ — @ in Lebesgue measure on T by the properties
of outer functions (more precisely, by the weak continuity of the Hilbert transform,
see a discussion next to formula (6.26)). It follows that z"b, ¢ — etz +1/2)p i
Lebesgue measure on T . Therefore,

l'qn(t,.) = anén(t,-—n) = annao/an,() i d €_il(z+l/z)b/a = e_”(”l/z)rq(,,.), (33)

in Lebesgue measure on T (the first equality in (3.3) is Theorem 1.7 (3)). On the other
hand, as n — 400, the quantities

/log(l —[rg,@)?) dm = /log(|an,0|‘2)dm = log |an,0(0)[7
T T

tend to

log |a(0)| 72 = /log(l —|rglHdm = /log(l — |e_”(z+1/z)rq|2) dm.
T T

Then, taking into account (3.3), we see that rg, () — eitzt1/ Z)rq in the metric
space X by Proposition 6.10. Moreover, the quantities

esssup (|l'én(t,-)|2) = | — esssupy |an,0|_2

are uniformly separated from 1 because a, o converge uniformly on T to the bounded
function a. Then continuity of the inverse NLFT map (i.e., Theorem 1.7 (6)) gives us
the convergence of Gy, (z,-) to ¥ ' (e7#*G+1/?r,) in a subspace §(§), § € (0, 1), of
the metric space £2(Z, D). Since the sequence g, (¢,-) converges elementwise to G (z, -)
asn — +oo, we getG(z,-) = 375;1(6_”(2“/2)1'(1) on Z. Then, rz; ) = Fi(4(1,7)) =
e itz+1/z )rq almost everywhere on T, and the proof is completed. ]

Remark 3.5. In the proof of Theorem 1.6, we have used the fact that (1.4) is solvable
for compactly supported initial data. This can be proved by a variety of methods,
see Appendix A for a direct proof in a much more general situation. Theorem 1.7 (6)
and Theorem 1.7 (7) guarantee that the solution will be determined by its reflection
coefficient ry () = e7*G+1/2r, at any moment of time ¢ € R.
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4. Localization. Proof of Theorem 1.5

The following lemma is well known, see, e.g., [18, (1.3.43)].

Lemma 4.1. Let F,G € $(D), and let Fy, G be their Schur iterates (1.1). Assume
that F(0) = G¢(0) for 0 < k < n. Then max;|=, |F(z) — G(z)| < 2r"tL.

Lemma 4.2. Let F,G € §(D) be such that min(n(F), n(G)) > n for some n > 0.
Denote by Fy, Gy their Schur iterates (1.1), and consider the solutions of (1.4) with
the initial value

Fn(0)3 n 2 05 Gn(o), n 2 0,
qdo,F = q
0, n <0,

Denote them by qF and qg, respectively. Then, for everyn >t > 0, r € (0, 1), the
inequality

\gr(t, j) —qa(t, j)| <r~7e'’"C(n,r) sup |F(z) — G(z)|,

|z|=r
holds for all j € 7. Here C(n, r) is the function from Theorem 1.2.

Proof. For a function H € (D), let us denote by (H )i its Schur iterates (1.1). By
Theorem 1.6, we have

qr(t,j) = m (Gn F)a+;0), g6t j) = lim (GuniGnt;(0), j €Z.

Therefore, we can apply Theorem 1.2 and the bound |G, ;| < e'/" (" + 36,,) from
Lemma 3.2 to get
lgr(t,j) —qG(t, j)| < limsup |(GnF)n+j(O) - (GnG)n+j(0)|

n—>oo

< lim sup ||(Gn,tF)n+j - (Gn,tG)n+j ||L2(rT)

n—oo

<limsupC(n,r)r "/ ||Gns F — Gn Gl 2Ty
n—oo

< limsup C(n, r)r et (1 + 38n,r™") sup |F(z) — G(2)]

n—0o0 |z|=r
=r~e"C(n,r) sup |F(z) — G(2)],
|z|=r
where we have the convergence 6, ,r~" — 0 asn — oo. ]

Proof of Theorem 1.5. Recall that go: Z — D is such that

[T =lg0m*) =n>o.

nez
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where the sequence gg v is defined by

qo(n), |n| <N,

N =
qo,N (1) {O, n| > N,

and gy is the corresponding solution of (1.4) (see Remark 3.5). Let C(7, r) be the
function from Theorem 1.2. We want to prove the inequality

t/
4e rC(r],l’)rN_m,

KeZ,. 4.1)
1—r

lan+x (. J) —gn (. j)] =
Then {gn (¢, j)} will be a Cauchy sequence for each ¢, j, and its limit, to be denoted
by ¢, solves (1.4). This is easy to check if one rewrites (1.4) in the integral form,

T
gn(T.j) —qon(j) =1 /(1 —lan @, NI an (@, j = 1) +qn(t, j + 1) dr
0

forT >0, j € Z,fix j € Z, and take the limit using the Lebesgue dominated conver-
gence theorem (with majorant 2). Then the relation go = lim g, » and the uniqueness
of the solution of (1.4) with a given initial datum g¢ give the claim, see Lemma A.2.
Estimate (1.6) will follow from (4.1) by taking the limit as K — +o0. [ ]

For integer numbers A < B, consider the sequences go [4,8]. 9o,[4,B] il *(Z,D)
defined by

q0,04,81(J) = qo(j + Ajo,8—41(j).  Go,14,81(J) = go(—j + B)ljo,8—41(j).

where 1g is the indicator function of a set S. These sequences, both supported on
[0, B — A] and their entries, are symmetric on this segment. Denote the correspond-
ing solutions of (1.4) by g4,p] and g[4,5]. By the properties of (1.4), the symmetry
relation

qia.B)(t,j) = qagt.B—A—j), teR,j€eZ, 4.2)

holds for each ¢ € R. Moreover, comparing this with the definition of gy, we see
that gy (¢, j) = q—n,n1(t, j + N). Inequality (4.1) will follow by summing up a
telescoping series if we check the estimate

lgn (. j) — g1 (@, )] < 4C.r)e ! PNV N = ).
In the new notation, the latter takes the form

gt J + N) =N+, J + N + D] <4C(n,r)e!’ rVNV1 (43)
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where, again, N > |j|. For A < B let f{4,p] and ]?[A,B] be the Schur functions whose
recurrence coefficients are go,( 4,8 |z, and do,[4,B] |z 4 respectively. The Schur func-
tions f_n,nN], f[-~N,~+1] have the same first 2N + 1 Schur coefficients. Hence, by
Lemmas 4.1 and 4.2 we get

9NNt 1) — qn N+t n)| < 7 C(n,r)e' ™ sup [(finn] — fienn+1) ()]

|lz|=r

< ZC(T], r)et/rrZN—n+1,

for all n > 0. Similarly, the functions ]7[_ N,N+1] and ;‘[_N_l, N+1] have coinciding
first 2N + 1 Schur coefficients; therefore,

G- N+11(E 1) — GeN—1 N +11(E, )| < 2C (0, )TNy > 0. (4.4)
Notice that

lgi—n,N1(t. 1) — gi—n—1, N 4111 + 1)]
<=~ 1) —q-n N+ )]+ lg-N N1 1) — g-n—1,N+11(E 1 + 1)
<2C(n, e N 4 gy N (t.n) — qen—1 v+t + D).

By relation (4.2), the last term equals
|g-NN+1( 2N + 1 —=n) = g-N-1.8+11(t, 2N + 1 —n)|
which does not exceed
<20, r)et/rer—(zN—i-l—n)—H =2C(1. r)et/rr",
where we used (4.4) in the first inequality. Therefore, we have
9N N1t 1) — gen—1, v 411t 1 + D] < 2C (1, r)e' /T (PN 4o,
Substituting n = j + N then gives

lgI-N.N1(t, ] + N) —q-N-1,N+11(t. ] + N + 1)
< 2C(r],r)et/r(rN_j+1 + rj-l—N)

< 4C(y,r)e'! TNl

which is (4.3).
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5. Complexity of the algorithm

In the introduction, we claimed that the algorithm in Section 1.5 takes O(nlog? n)
operations for n = ¢ + loge™!. Here we prove this estimate.

Let go € {*(Z,D) be such that [],cz (1 — [go(n)|*) > n > 0, and let # > 0. Take
g€ (0,1),setr =1/2,and choose N € Z such that the right-hand side in (1.6) does
not exceed /2 at j = 0:

Sez’C(n, %)2_1\’ < %8, C(n, %) = exp(17log nt (2 + ﬁ))

Since 8¢2C(n,1/2)27N < 2=N+4+31C(y,1/2)/2, one can take any N > 5 + [3f +
log,(C(n, 1/2)/¢)]. Then, choose the window A = [ng — N,ng + N], truncate go by
setting go = 0 on Z \ A, and shift go by np — N to make it supported in [0, 2N].
Denote the resulting sequence by ¢o,[z,—nN,zo+N]- Choose n > t so that 6, , < 1 and

2/C(n,1/2)

A

12¢% /2et\n )
( ) j =N.

g
2rn \ N 2’

Since we already have 8¢%/C(n,1/2)27" < ¢/2, it suffices to choose 1 so that

22Ne3l 12 (&)n E 1
8v2mn \ n

Forn > 2N > 8et > 5¢, we have

22Ne3t 12 (&)” < 22N+5t(&)n < 25t(&)2N < (ﬂ>2N < 1’
8/27n \ n - n - N “\N -

therefore, one can take n = 2N, N = 5 + [4et + log,(C(n, 1/2)/¢)]. Note that, with

this choice,
"e' ste\n ,  ste*\n _ /Bet\"
=2 ()2 () = () <
’ n! n n 2N

We see that, forn = 2N, N = 5+ [4et + log,(C(n,1/2)/¢)], Theorem 1.6 applied
to the sequence ¢o,[n,—N,no+N] i place of go will give a sequence g, approximating

the corresponding solution g[,,—n,,+n] With accuracy

~ &
|QI1(t’ N) - Q[n()—N,no-i-N](za N)' = 5

Then |G, (¢, N + 1) — q(¢,n¢)| < € and it remains to estimate the number of operations
that are needed to construct G, (¢, N) from go forn = 2N.

Having qo, fo, 1o, &, n, we set N = 5 + [4et + log, C(n, 1/2)/¢] and define array
40,[no—N,no+nN] of 2N + 1 elements. Then we use formula (1.5) to find a, b. This can
be done either by a direct multiplication of 2N + 1 matrices in O (N ?) operations or
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by using a dyadic divide-and-conquer multiplication algorithm together with the fast
Fourier transform (FFT) in O(N log? N) operations. Next, we define the coefficients
of the polynomials P = Gn,tE and Q = a (two arrays of length 2n + 1 + 2N + 1
and 2N + 1, respectively). This takes O(N?) operations in the naive realization of
multiplications of polynomials or O(N log N) operations with FFT. Takingn + N +
1 steps of Schur’s algorithm for P/Q, we find ¢, (¢, j) on [0, N], which solves the
problem. A straightforward realization of Schur’s algorithm based on its definition
requires O(N?) = O(n?) operations (recall that n = log e~! + 7). This could be
improved to O(nlog? n) operations with a refined realization, see [4, Section 2.2].
Notice that the numerical experiments in [4] use arithmetic of real numbers, while
the complexity estimate O(nlog?n) given on [4, p. 192] holds for complex data.
As the reader can see from the algorithm, the same O(nlog? n) operations (with
worse constant) are sufficient to find ¢, (¢, N) on [0,2N] and approximate ¢ (z, -) with
accuracy ¢ on the interval [ng — N/2,no + N/2], not just at the point n¢. It is also
worth mentioning that the question of numerical stability (in our case — estimating
round-off errors and taking into account issues related to arithmetic of long numbers)
deserves a special consideration, it is neither treated in [4] nor in this paper.

Let us present some numerical results comparing our algorithm with the classical
Runge-Kutta RK4 scheme, described, e.g., [6, Section 6.10]. Here is the computa-
tional setup: we consider go on [—100, 100], where go(n) for |n| < 100 is chosen
uniformly randomly in D, and normalise it by constant to have

[10 = lgo@mP?) = 0.96.

|n|<100

Then we find the smallest number of arithmetic operations needed to compute the
approximate solution ¢ of (1.4) on [—5, 5] with the given relative accuracy
2 lji<s la @ j)l

by the Runge—Kutta method and our method in the O (n?) realization (without the fast
Schur algorithm and the FFT polynomial multiplication). Denoting this smallest num-
ber of operations by Nrk4(Z,¢) and Ng,, , (¢, ), correspondingly, we then compute the
ratio 7 (t, &) = Ng,, ,(t,€)/ Nrk4(?, ). When we find Ngka(t, €) and Ng,, , (¢, ¢), the
parameters of the algorithms are optimised: for the RK4 scheme, we optimised the
step size At and the size of the window containing [—5, 5] to perform the numerical
scheme. In our algorithm, we optimise n (the degree of multiplier G, ;) and the size
of the window (i.e., the number N from Section 1.5). Table 1 provides (¢, €) for some
values of ¢ and &. The table shows that the proposed algorithm works faster for larger
values of ¢ and smaller values of ¢.
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x 105 100 1077 1078 10~

1 1.15s 089 063 038 022
2 09 048 032 020 0.11
3 079 046 025 015 0.09
4 061 035 022 011 0.07
5 059 033 019 011 0.06
6 053 031 0.18 0.09 0.06
7 050 029 016 0.09 0.05
8 049 029 016 0.09 0.05
9 048 025 014 0.08 0.05
10 040 024 0.13 0.07 0.04

Table 1. Comparison of the RK4 scheme and the proposed algorithm. The table contains
r(t,e) = Ng,,(t,€)/ Nrxa(t, €), the average values for 30 random initial data go.

6. The nonlinear Fourier transform. Proof of Theorem 1.7

In this section we collect some basic facts about the nonlinear Fourier transform,
NLFT. Some of them were used in the first part of the paper. The reader can find more
information in the preprint [23] or in its extended version [24].

The exposition in this section is independent from the first part of the paper. Let us
recall the definition of the NLFT map for the reader’s convenience. For p > 1, define
£P(Z,D) as a set of sequences ¢: Z — D satisfying |¢g(n)| < 1 for every n € Z and
Y nez lq(m)|? < oo. The set £7(Z 4, D) is defined similarly with Z . = Z N [0, +00).
Take a sequence ¢ € £1(Z, D) and define a, b by

a b ! ! Tk)z—k)
by a) LU oA » T. (6.1
(b “) wez V1 —19(0)|? (‘](k)Zk 1 z€ (6.1)

Here, the product [ [; ¢, Tk of matrices Ty is understood as the limit

lim T_n T_n+1 """ Tn—lTn-
n—+o00
Assumption g € £!(Z, D) guarantees that the product converges uniformly on T. We
will see in Section 6.2 that the product in (6.1) has the form (;’; 2 ) for some a, b. The
authors of [23] define NLFT as the map that sends ¢ to the pair (a b). We will use
an equivalent definition and consider the so-called reflection coefficient x4 = b/a in
place of (a b). So, in our case, NLFT takes ¢ into r,. In the next two subsections we
define the reflection coefficient as an object of the theory of orthogonal polynomials

on the unit circle. We also prove the equivalence of the two definitions of NLFT map.
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6.1. Szegd measures and Szegd functions

Let u be a probability measure supported on an infinite subset of the unit circle T =
{z € C : |z| = 1} of the complex plane, C. For n € Z, denote by &, the monic
orthogonal polynomial of degree n generated by u, and set &) = z”m. These
polynomials satisfy the following relation:

Oy =20, —@,P,, n>0, Og=1, (6.2)

where the recurrence coefficients, oy, n > 0, lie in the open unit disk D = {z € C :
|z| < 1}. Conversely, any sequence {c,},>0 C D gives rise to a unique probability
measure 1 on T whose closed support supp (1 contains infinitely many points. These
two facts can be found in [18, Section 1.7]. The Schur function f of a probability
measure p on T is defined by

14 zf(2) _/1+§z
l—zf(z) ) 1-¢:z

du), zeD. (6.3)

Notice that (6.3) provides a bijective correspondence between Schur functions and
measures on T . Taking the real part on both sides of this equality, we get

1= |2/ )P
T=2/G)P /|1—g g reh zeb ©H

From (6.3), (6.4), and the Schwarz lemma, we see that f indeed belongs to the Schur
class (D), i.e., it is analytic in DD and satisfies sup,p | f(z)| < 1. Recall that the
Schur iterates of f = fy are defined by

Jn = 1n(0)

n = ), _O. 65
EA ey YA (©

Geronimus’s theorem says that the recurrence coefficients «,, in (6.2) coincide with

the recurrence coefficients in Schur’s algorithm: o;, = f;,(0), n > 0. See [18, Chapter
3] for the proof.

Let 4 = wdm + ug be the Radon—Nikodym decomposition of w into the abso-
lutely continuous the and singular parts, where m is the Lebesgue measure on T
normalised by m(T) = 1. Denote by {a;,} the set of recurrence coefficients of the
measure u and let f be its Schur function. An extended version of Szeg6 theorem
(Theorem 1.1) says that the conditions logw € LY(T), log(1 — | f|?) € L' (T), {o,} €
(%(Z 4, D) are equivalent, and, moreover,

[ e w@ ame) = [ 106 - 15 @) am© = 10g [T = laul). 66

T T nz0
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It is not difficult to see that the three quantities in (6.6) are defined for any triple u,
f, {a,}, but could be —oo. In fact, Szeg6 theorem implies that the quantities in (6.6)
are either finite (i.e., > —o0) or not simultaneously. The measures of Szegd class

Sz(T) = {u =wdm + ps : W(T) = 1,logw € L (T)}

and their orthogonal polynomials have many interesting properties that constitute the
rich Szegd theory. We will use the part of this theory related to discrete scattering. For
this, we will need the notion of the dual orthogonality measure, the Szegd function,
and the dual Szegd function.

Consider a probability measure p on T with infinite support. Let, as before, f
denote the Schur function of p. The dual measure |14 is defined as the probability
measure on T corresponding to the Schur function — f:

/1+szd oo e 1=z

g 1—2f1)  1+z/(2)

It is not difficult to check that if {a,},>0 is the sequence of the recurrence coef-
ficients of u, then {—a,},>0 is the sequence of the recurrence coefficients of jg.
Monic orthogonal polynomials for gz will be denoted by W,,. We will also need the
normalised orthogonal polynomials for p and pg:

D, . o
(pﬂ = ’ (pn = % )
”Cbn”Lz(u,) ||q>n||L2(u,)
6.7)
\.Ijn * "IJ:;
Un= g Vi = T
”\ljfl”Lz(Md) ”\Ijn ||L2(;Ld)

In fact,
n—1
”q)n”;}(u) = ”cD:”iz(M) = ”\I/n”]242('ud) = ”\p;”%}(lbd) = l—[(l - |0[k|2), (6.8)
k=0

for all n > 1, see [18, Chapter 3.2]. The Szegd function D, of a measure p =
wdm + ug from Szegd class Sz(T) is the outer function in the open unit disk D
such that D,,(0) > 0 and | D,|*> = w Lebesgue almost everywhere on T in the sense
of nontangential boundary values. It can be defined by the formula

Du(z) = exp(é / i J_FZ logw(® dm(®)). zeD. ©.9)
T

It follows from the Szegd theorem (see (6.6)) that u € Sz(T) if and only if ug €
Sz(T). We will denote the Szegd function of j14 by D, ,. Itis known that ¢; — D;l,
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* -1 .
(/3 —>DM asn — oo inD, and

Lhzf _ o Y@ i) _ Di®)

= = = , eD, 6.10
L—zf  noo ®X(z)  n0o 9*(2) D;1(z) z (6.10)
see [18, Theorem 2.4.1 and Chapter 3.2]. In particular, we have
— D, L= |2/
-1 p7-71y Ua -2 _ -2 _ -2 _
Re(D;! D1) = Re(D;1>|DM| = oo el = elDu = 1 6

almost everywhere on T in the sense of non-tangential boundary values.

6.2. Reflection coefficients

Let us now define a reflection coefficient of a sequence ¢ in £2(Z, D). To simplify the
notation, we set g, = ¢(n), n € Z. Consider the sequences {aty }nez . and {Bn}nez.,
from ¢2(Z,,D) defined by a, = ¢, forn > 0and Bg =0, B, = —G—, forn > 1,

Gop O1 02 O3
9-3 49—2 4-1 4o 41 42 g3 .. (6.12)
—B3 —B» —p1 0.
Define the measures u™, u~ with the recurrence coefficients {@ntns0, {Bn}n>o0,
respectively. Let also uf} be the dual measures corresponding to u*. Define the Wall
analytic functions in D by
-1 -1 -1 _ p-1
. DM?]E—i-DMi DM?;E Dui

=4 - @ pt=_"d - 6.13
“ 2 2z 6.13)

The fact that D;i 0) = D;ﬂlE (0) follows from (6.10). Using (6.11), we obtain
d
a2 —[6*> =Re(D LD 1) =1
Ha

Lebesgue almost everywhere on T in the sense of non-tangential boundary values.
Also, we have
b= D!
1+Za_i_ M‘:}:(Z)_l_i_zfi

l—zi—i D;i(z) 1—zf*’

for the Schur functions f* of u¥; hence, f* = b*/a*. On T, we set
a=ata"—btb™, b=a bt —bat. (6.14)

Below we will use the fact that a is defined by (6.14) not only on T but also on D
and is analytic there. Note that |a|?> — || = (la*|?> = [bT|?)(Ja™|? = |b7|?) = 1
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almost everywhere on T. Next, define the reflection coefficient, ry, of the sequence
g = {qn}nez in EZ(Z,D) by .
g = —. 6.15
=7 (6.15)

It is possible to associate with ¢ an operator on £2(Z) @ £*(Z) in a way that will place
the reflection coefficient r, into the setting of a discrete scattering theory, see [24]. Our
first proposition collects the properties of objects defined in the present section.

Proposition 6.1. For every q € £*(Z,D) the functions a,a™ are outer, a(0) > 0. The

reflection coefficient vy = b /a of q belongs to the unit ball of L°°(T). It is completely
determined by b, and, conversely, it determines the pair a, b uniquely.

Proof. By definition and (6.10), we have

| . l—l—zfi
+ 1
a~=-D" -(1+ —=—
“ + )
2 ( 1 zf) 6.16)
bTbh™

a = a+a_(1 —

a+a_) —ata (1= f+f).
We know that D;'/2 is outer and that both 1 + (1 +zf%)/(1—zf%) and 1 —
f £~ are analytic in D and have positive real part; hence, they are also outer,
see [8, Corollary 4.8]. Therefore, ai, a are outer as the products of outer func-
tions. Next, Duff ©)y=D uE (0) > 0; hence, the a*(0) are real and positive. We have
Bo = 0, therefore f~(0) = 0 (recall Schur’s algorithm (1.1)) and b~ (0) = 0. Thus,
a(0) = a™(0)a~(0) > 0. From (6.15), we have
2 2
1—|rq|2=%=#20 (6.17)
almost everywhere on T. In particular, r, belongs to the unit ball of L>°(T). We
proved that a is outer; hence, it is completely defined by |a|. Therefore, knowing the
coefficient b, one can recover |a| = /1 + |b|? and a. In particular, the numerator
b determines the whole fraction r, = b/a. Conversely, if the function r, is given,
then |a| is defined by (6.17); hence, the pair a, b could be found from the fraction
ry =b/a. L]

The next proposition shows that (6.1) makes sense for all ¢ € ¢>(Z, D), and,
moreover, the definitions of a, b in (6.14), (6.1) are equivalent.

Proposition 6.2. For every q € £?(Z,D), the product in (6.1) converges in Lebesgue
measure on T . Moreover, the functions a, b in (6.1) coincide with those in (6.14).
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Proof. Denote by ®. ,, W, the monic orthogonal polynomials of u* and ,ufjt,

and let ¢4 5, ¥+ , be the corresponding normalised polynomials, see (6.7). For each
n>0,zeT,we have

@Zk) (wi.n+1+wi,n+l ‘/’i.n+1_¢i.n+1)

n n

1= T (g vt Voot
1= |ozk|2 o \XkZ Viaei =0t Y tedag
- - 2z 2

The proof is a routine verification of the identity

(wi,n+l+‘pi.n+l Va1~ P 1 )

2 2z
* * * *
Vint1=%ramt1 ¥Yianteian
2z 2

. (’/’-i- n:‘”-ﬁ- n ]/’-ﬁ- nzz‘p+.n ) 1 ( 1 (len)
Via=in Yiateia V1= |Oln |2 oz 1 ’
2z 2
using relations (6.2) and (6.8). It is known that
%

—1 * —1
$in—>D 1, Yi,—>D 4
© %

in Lebesgue measure on T, see [18, (2.4.34)]. Therefore, we have

k=0
at bt
_ (5+ a_+), (6.18)
where the product converges in Lebesgue measure on T. Recall that 8 = —g—_ for

k> 1, Bo = 0. We have

(M G ™)

n

- H(m( e 1))
N MG )

k=0
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Note that for each & > 0 we have

1 Bez®\. (1 BiEF (01
]O(ﬁkzk 1 )]0_(.3ka 1 ) ]O_(l 0)’

and {Br}r>0 coincides with the sequence of recurrence coefficients of ™. So, we

]O(,ﬂn T— e 1__[(ka ))_ljo_)(g: i_:)

where the convergence is in Lebesgue measure on T. Equating the determinats on
both sides of the above formula, we get |[a~|?> — |b~|?> = 1. Taking the inverses, we
then obtain

H 1—|qk|2 1—[ (qkz qu)zjo(_a:_ _f)jo:(—aﬁ;‘ _ai_)'

k=—00

obtain

Eventually, we get

o0 k
k_l__[oo 1- |qk|2 1__[ (ka )
_{a =b7\[at bt [ a b
“\-b- @ J\bt at)  \ach a)
witha = ata™ —b+tb~, b = a= bt — b~a™, as claimed. n

We can now prove Lemma 3.4 from Section 3.

Proof of Lemma 3.4. Propositions 6.2 and 6.1 imply that the definitions of a, b in (1.5)
and (6.14) are equivalent. Note that, for ¢ € ¢2(Z, D) with suppq C Z, we have
a_ = 1,b~ = 0; hence, ~

b b

f,=—=—F=f%

a a4
In particular, the recurrence coefficients of f; coincide with those of f tout, e,
with the sequence {q(k)}kez., - [

Proposition 6.3. We have
Ty—n) =2 'Tq

for every compactly supported q € £*>(Z,D) and n € Z.
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Proof. The product
1—[ 1 gtk —n)z*
q(k —n)z* 1

keZ

can be written in the form

_ 1 0 1 gtk —n)z—&=m\ (1 0
"",g(o z")(q(k—n)zk-" 1 )(0 z—")

(1 0 1 gtk —n)z—&m\7/1 0

(o ) g )G )

-6 )G D6 )= )

Hence, ry(—n) = bz™"/a = z7"r, by (6.15) and Proposition 6.2. L]
Proposition 6.4. There are g1 # q in {*>(Z, D) such that v4, = rg,.

Proof. Following [23], let us consider an imaginary-valued function b on T of Smir-
nov class in the unit disk. One can take, say, b = (1 + z)/(1 — z). Let a be the outer
function in D such that |a|? — |b|? = 1 almost everywhere on T. The function f =

b/a is a Schur function of Szeg6 class. Indeed, log(1 — | £|?) = log |a|~2 belongs to
L(T). Therefore, we can define the sequences q1, > € {*>(Z,D) by
n: -3 -2 -1 0 1 2 .
a=C.. 0, 0, 0.  fo(0). f1(0). f2(0), ... ),
G2=( ... —f2(0), —f1(0), —fo(0), 0, 0, 0, cee )
For these sequences, we have
a;l:a, B;l:[), a;lzl, B(;l:O, a;zzl, B‘}';:O.

Furthermore, from the proof of Proposition 6.3, we obtain bgz = zb and a;z = qa.
Therefore,

ag, =a-1-b-0=aqa, by =1-b—0-a=>h,
aj,=1-a—0-zb=a, bs, =a-0—zb-1=—zb.
Thenr,, = B/a, r;, =—zb/a, and, since b = —b, we have ry, = Zr;, almost every-

where on T. Note that zrz, = rz,(+1) by Proposition 6.3. Now, set g = g»(- + 1)
and observe that ry, = ry,, while g1, g» are supported on disjoint subsets of Z, so

q1 # qa. u
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Proposition 6.5. For every q € {*>(Z, D), we have

[ 10t = Iey Py dm = ~tog e =0 [T =l ©19)

T nez

Proof. Take a sequence ¢ in £2(Z, D) and define {a,}, {B}, u*, a*, b*, £ a and
b as in the beginning of Section 6.2. From (6.17) and the mean value theorem, we get

/log(l —rglHdm = —/log la|?> dm = —log|a(0)|*.
T T

In the proof of Proposition 6.1 we established a(0) = a™ (0)a™(0) = D;}r (O)Dlzl 0).
Let w* be the densities of the a.c. parts u® with respect to the Lebesgue measure
on T'; then, from formula (6.9) and the Szegd theorem (6.6), it follows that

loga(0)? = / log w™ (§) dm(®) + / log w™(§) dm(€)
T T

= log [ [(1 —len®) +log [ T(1 =184 ") = log [ T (1 = Igul?).

n>0 n>0 nez

as claimed. [

Proposition 6.6. For every q € {*(Z, D), the functions a* /a, bF Ja belong to the
unit ball of the Hardy class H?(D).

Proof. Since a, a™ are outer in D and b* are in the Smirnov class (see (6.13)), we

need to show only that a® /a belong to the unit ball of L2(T). Denote, as before,
f* = b*/a¥, and recall that f* are Schur functions. The function

L—|f7f*P L+ ff
h=—"—"""5= Re(—_+)
1= f=f7 1-f=f
is positive and harmonic in [, therefore, it coincides with the Poisson integral of a
finite positive Borel measure on T. Moreover, % is equal to the density of the abso-
lutely continuous part of that measure almost everywhere on T. Hence, h € L'(T)
(we borrowed this trick from [23]) and

Ve aat 1+ /7(0)/1(0)
Al Ty = /|1 =T m_Re(l—f_(O)f+(0)):

’

because f~(0) = 0. On the other hand, by (6.16) we have

P L PR R B (e Ve (S V)
a® P2 a2 al? -7 e
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almost everywhere on T. This gives us

H O e Vi 0 WS Gt G B Vb GO
TV D T e A T e e R TR A AR

Therefore, ||ai/a||22(m < Al Ty = 1, as claimed. "

The authors are grateful to S. Denisov for the argument based on (6.21) in the
proof of proposition below.

Proposition 6.7. Suppose q1,q> € {*(Z, D) are such that vy, = ¥4,. If we suppose
”rlh,z”Loo(T) < 1, then q1 = q>.

Proof. Let a1, b1 be the coefficients in (6.14) corresponding to ry,, ry,, respect-
ively. By Proposition 6.1, we have a; = az, by = by, so we denote a = a2, b = b1 ».
Then (6.14) gives four identities

a=ata; —b by, b=apbf —brai, k=12,
for the functions ali’z, bfz corresponding to ¢1, ¢>. Some simple algebra yields
(9 )= (A ) ()
S AN A bpaf — a;f)}f |y |2 - IBk ? —b 1
(6.20)
almost everywhere on T for k = 1, 2. In particular, we have

of B\(af b7\ _ (a3 b)(af by
by a7 J\-bf aT by oy J\-bf a7 )

Inverting the matrices in the last equation, we obtain

a2+ B;L -1 af BT _ a2+ —b3 af —b7 -1
by ay by ay b5 a; J\-b} a7 )
1{a; —bI\[(a bt 1(af —b5\(a7 b7
] == 2 2 1 1 I 2 2 1 1 . 6.21
a(—b; ay )(br ar) a(—bz+ ay )(bf ay ) (@21

Equating the (1, 1) matrix elements in this identity, we get

aja; —byby _ (aiar - B;BT)’

a a

Formula (6.17) and our assumption ||ry, ,||zeo(T) < 1 imply that a € H*°(D). We
now see from Proposition 6.6 that the functions
ata; —b7bs atay —bybf

Fp=mT "% o
a a
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belong to the Hardy space H!(ID). Therefore, F; and F, are constant functions and

af (0)a3 (0) — b7 (0)bF (0)  a(0)

a(0) a0y L

F, = F = F1(0) =

In other words, the (1, 1) coefficient of the matrix / in (6.21) is 1. Note that it coin-
cides with the (2, 2) coefficient of /. Similarly, we use Bf 0) = b2jE (0) = 0 and prove
that the (1, 2), (2, 1) coefficients of I are O thus getting

I(ay —b N\ (af B\ (1 0
a\-b; aF J\by a7/ \0 1)
which is equivalent to
af b _(az b
by ay by o)

It follows that = = £;%, which, in turn, is equivalent to ¢; = g2 on Z, because the
recurrence coefficients of flﬂfz determine completely g1 > on Z 4, see the beginning of
Section 6.2. |

6.3. Convergence in the space X

We first prove a version of the Sylvester—Winebrenner theorem [21] for Schur func-
tions. We stated it as Theorem 1.3 in the introduction. Let us repeat it here.

Theorem 6.8 (Sylvester—Winebrenner theorem). The mapping f + { fn(0)}n>0 that
takes a Schur function into the sequence of its recurrence coefficients is a homeo-
morphism from the metric space X+ = {f € $+(D) : n(F) > 0} with the metric given

by
ps(f.8)> =—/10g(1—‘f_g 2) dm
T

1 fg
onto the metric space *>(Z 4, D) of the square summable sequences q: 7., — D with
the metric |q —Gll3, = Y ez, la(n) —qm)|>.

Proof. Assume that f,, f € X4 are such that ps(f,, f) — 0. Let ¢g,, ¢ be the
sequences of recurrence coefficients of f,, f, respectively. By the Szeg6 theorem,
we have g,,,q € £?(Z4,D), and, moreover,

—tog [T = lga(OP) = p5 (. 0) = ps(£.0) = —log [T (1 = lg)P.

k>0 k>0

The convergence ¢, — ¢ in {?(Z, D) will follow if we check that ¢, (k) — q(k)
for each k € Z (indeed, we then have 3 ;- v |gn (k)|> = 0as N — +oo uniformly
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in n € Z4). To this end, note that the assumption ps( f,, /) — 0 implies that the
sequence { f,} converges to f in the Lebesgue measure on T, and, since | f,| < 1,
| f] <1on T, the functions f, converge to f uniformly on compacts in . Now,
the fact that ¢, (k) = (f,)x(0) tends to (f)x(0) = gq(k) as n — +oo for every k €
Z 4+ follows from the Schur’s algorithm (6.5). We see that the mapping f +> ¢ is
continuous from X to £2(Z 4, D).

Turning to the inverse mapping, we introduce the quantities (see [21])

E(f.g) = - / log(1 — fg)dm. E(f) = E(f. f). (6.22)
T
‘We have
MESTTNIE £~ gl
1- fg 11— fg|? ’
hence,
pe(f.8) = E(f) + E(g) — 2Re E(f.g). (6.23)

Suppose that g, q are sequences in £2(Z, D) such that ¢, — ¢ in {>(Z ., D). Denote
by f, f the Schur functions corresponding to these sequences. We have f,, f € X4
by the Szegd theorem, see (6.6). Let us prove that ps( f,, f) — 0 as n — 4-00. Since
E(f,) — E(f) by the Szegb theorem, relation (6.23) shows that we only need to
check that E( fy,, f) — E(f, f). We have

Fok N 7 ok © 7ok
E(fn,f)z_/z(fn{) dm:_/z(fnkf) dm_/ Z(fnkf) J

and

o i o S o 8

k=N+1 T k=N-+1

which tends to zero as N — 400 by the Lebesgue dominated convergence theorem
(the majorant is log(1/(1 — | f])) € L*(T)). Next, let us show that, for each k € Z ,
we have

/(f_nf)kdm—>/|f|2kdm, n — +oo. (6.24)
T T

The first m Taylor coefficients of f are polynomials in ¢(0), ¢(0), ..., q(m — 1),
q(m — 1) and similarly for f;,, see [18, (1.13.48) in Section 1.3]. Hence, the Taylor
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coefficients of fnk tend to those of f* as n — co. Rewrite the quantity in (6.24) as

/ Gorkdm =3 anTBen(F5)
m=0

M
- Z o Ten () 4 amFFem(F5).

m=M+1

The second sum can be estimated using the Cauchy inequality by

1 12wy (2 lem(FOP) = D lem 9P,

m=M+1 m=M+1

because f, ke §(D)and consequently I £ k12 2Dy = 1. Hence, it tends to 0 as M — oo.
The first sum tends to Zm —o lem(f k) |2 as n — oo and (6.24) follows. Relation (6.24)
shows that E( f,,, f) — 0, ps(fn, f) — 0, and thus the mapping ¢ — f is continuous
from ¢2(Z,, D) to the metric space X ;. ]

The following lemma is elementary. It is known as Scheffé’s lemma, see [26, Sec-
tion 5.10].

Lemma 6.9. Let the measurable functions g, g, on T be such that g; — g in Le-
besgue measure on T and ||g;ll 11y — gl 1Ty as j — oo. Then we have that

lg —gjllLicry = 0.

Proof. 1f || g1 () = O, then the lemma is trivial, otherwise we can reduce the state-
ment of the lemma to the case ||g;|lL1(r) = lgllL1() = 1 by changing g and g, to
g/llglliLr(ry and gn/lIgnllL1(T) respectively. Consider any subsequence g, of the
sequence g,. Let g, K be its subsequence converging Lebesgue almost everywhere
on T. The limit of g, K coincides with g Lebesgue almost everywhere on T. To sim-
plify the notation, we denote the new sequence g, k) by g;. Let ¢ > 0. By Egorov’s
theorem and integrability of g, there is Kz C T such that m(K,) < ¢, |gllL1(k,) <&
and g; — g uniformly on T \ K. In particular, we have

/|§j|dm—>/|g|dm >1-—2¢, limsup/|gj|dm§2e.
T\Ke T\Ke /e

Now, we only need to estimate lim sup;_, o, [|g — &j |1 (1) from above by

limsup g — &jllL1(r\&,) + thUP 1gi 1k, + IgllLrx,) =< 3e.
j—o0
Since & > 0 is arbitrary, we see that g; — g in L(T). In other words, we have shown
that any subsequence of g, contains a subsequence converging to g in L!(T). Then
gn — g in L'(T) and the lemma follows. n
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Recall that the space X and the metric p; on X are defined in (1.10) and (1.11).
For r € X, define the function E(r) by (6.22).
Proposition 6.10. Letr,,r € X. The following assertions are equivalent:

(a) 1, convergestorin X;

(b) 7y converges to r in Lebesgue measure on T and limy,— 4o E(ry) = E(7).
Proof. Assume that r, — r in X as n — +o00. The convergence in measure follows

immediately. For all n > 0, we have |1 — 7, 7| > 1 — |r| and log(1/(1 — |r|)) € L'(T).
Hence, by the dominated convergence theorem, we have

E@rp,r) = —/log(l —rprydm — —/log(l —|r®)dm = E(r). (6.25)
T T

Thus, from (6.23) we see that

0= lm pg(ra.r)* = Jm (E(r) + E(ra) —2Re E(r.1a))

n—+oo

= lim (E(r) = E(r).

which gives us the required assertion. On the other hand, if we assume (b), then (6.25)
will follow by the same argument and similarly by (6.23) we will get

lim_pg(rp,r)* = n_ljlfoo(E(r) + E(rn) —2Re E(r,1p)) = 0,

n——+o0o
which is the convergence in X . ]
Proposition 6.11. If g, — q in {*(Z, D), thenry, — rq in X.

Proof. We want to apply the criteria from Proposition 6.10. Convergence in £2(Z, D)
implies the convergence

[T =la.®P) - [T =1, n— oo,

keZ keZ

which yields E(ry,) — E(rg) by Proposition 6.5. Thus, it is suffices to show only
that ry, — ry in Lebesgue measure on T. Recall that, for every ¢ € {%(Z, D), we
have f* = a*/b*, where f* are the Schur functions generated by ¢; hence,

a bt —b-at at ft—f" . fr—r
i iy & i e Ly by
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Here # denotes the Hilbert transform and we used the fact that a™t is an outer func-
tion. Furthermore, we have 1/|a™|?> = 1 — [b%|?/|a™|?> = 1 — | £ T|?; hence,

fr-r
L—frf=
Similar formulae with Schur functions fnjE in place of f* hold for ¢,. Theorem 6.8
implies the convergence f,¥ — f¥ in Lebesgue measure on T. Moreover, by the
Szegd theorem, |1 — | f,7[*[lL1¢ry = 11 — |/ T *llL1(T); hence, Lemma 6.9 can be
applied to the functions

gn =log(1—|fFPP). g =log(1—|f*).

This gives the convergence of log(1 — | f,7|?) to log(1 — | fT|?) in L'(T). Weak
continuity of the Hilbert transform # (see [8, Section II1.2]) then implies that the
function exp(i # (log(1 — | £,F]?))) converges in Lebesgue measure to the function
exp(i # (log(1 — | f*1?))). From here and (6.26) we see that the functions ry, con-
verge to r, in Lebesgue measure on T. |

r, = exp(i # (log(1 — | fT]%))) (6.26)

The following proposition is not used in the proof of Theorem 1.7, but it explains
how instabilities may arise in Schur’s algorithm.

Proposition 6.12. There is n > 0 such that the mapping f + {fn(0)}n>0 taking
a Schur function f into the sequence of its recurrence coefficients is not uniformly
continuous with respect to the metrics in X1, £*>(Z,D) on the subset of functions

f € X5 satisfying n(f) > n.

Proof. Take any ¢ # ¢ in £*(Z, D) such that r, = rg, see Proposition 6.4. Fix & > 0
and use Proposition 6.11 to find a number N(¢) such that we have ps(ry, .ry) < &,
ps(rgy . rz) < & for every N > N(e), where gn (k) = q(k), gn (k) = G(k) for k <
N —1,and gy (k) = gn (k) = 0 for k > N. Next, shift these sequences to make them
supported on (—oo, —1]: define gy (k) = gn(k + N), gns(k) = Gn(k + N) for
keZ.letalsogs = q(-+ N),gs = G(- + N). We have

Ps(Xgy s Tin ) = Ps(Fqn o Fag) + ps(Xgy. Tg.) + ps(rg. Ty ) < 2€,
because
ps(Xgy - Fas) = Ps(Fqy.Tq) < &,

ps(rgs,¥g,) = ps(rqg,rz) =0,

ps(r‘?N.s’rqs) = ps(qu’rQ) e,

by Proposition 6.3 (it was proved for compactly supported ¢, but continuity in Propos-
ition 6.4 extends it to whole space £2(Z, D)). On the other hand, —ry, ; and —rg,



R. Bessonov and P. Gubkin 186

coincide on T with the Schur functions with the recurrence coefficients By (n) =
—qnN,s(—n) and By(n) = —Gns(—n), n > 0, respectively; see (6.12), (6.14), and
(6.15). Since the sequences {Bn(n)}n>0, {BN(7)}n>0 are uniformly separated in
(*(Z 4, D) for large N, and we have Ps(Xgn o ¥Gy ) < 2¢ for all N > N(e), the
mapping in the statement of the proposition cannot be uniformly continuous. |

Proposition 6.13. Let g, € {*(Z, D) be such that vy, — r in X for somer € X.
Then there is a subsequence qn; such that q,; — q in (2(Z,D) andr = ry.

Proof. Since ry, — r in X, we know that ry,, — r in Lebesgue measure on T.
Moreover, E(ry,) — E(r) as n — +oo by Proposition 6.10. Hence, Lemma 6.9 is
applicable and we see that log(1 — |rg, |?) tends to log(1 — |r|?) in L!(T).

Consider the sequences a;F

,bE, fE =af/bE, a, and b, corresponding to gy,
in the sense described at the beginning of Section 6.2. Furthermore, let A be an outer
function in D with A(0) > 0 such that [A|72> = 1 — |r|?> and B = r A. From equa-
tion (6.17) and the definitions of a,, b,, A, B, we see that a,, — A, b, — B in
Lebesgue measure on T. Also we have a, — A locally uniformly in . The func-
tions a,ﬂf /ay are in the unit ball of H?(D) by Proposition 6.6; hence, one can choose
a subsequence 7, some functions a* and Schur functions f + such that

. a,fi — a* locally uniformly in D;

. a,f/, [an; — a* /A locally uniformly in D and weakly in H?(D);

e 1/ aij — 1/a&% locally uniformly in D and weakly in H2(D);

n
- fE- % locally uniformly in D.
With this choice of @*, both functions @* /A4 and A/&* belong to the Smirnov class

in D; hence, the @+ are outer functions. Put b = f +&*. Let ¢ be defined in terms
of recurrence coefficients of f* by

(D), k=0,

q(k) = -
—(f7)-,(0), k <0.

Note that (f_)o(O) = (f_)(O) = 0 because (f, )(0) = 0 for every n. We claim
that gn,; — ¢ in (%(Z,D). To prove this, introduce a®, b*, f* = a*/b*, a, b
as the objects from the beginning of Section 6.2 corresponding to g. It is clear that
f* = fi. Let us show that

a=A, b=B, of=a*, bpr=>0T

We have f* = b*/a* = 6% /a* by construction, and the functions a¥*, a* are
outer (we do not know, however, if 1 — | f*|?> = |a*|~2). Therefore, there are outer
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functions s* such that a* = s*a® and b* = s¥bE. It follows that
A=ata —bth™ = stsT(ata” —=b1b7) =sTsa.

almost everywhere on T because this relation holds in . Now, write formula (6.20)
for gp; in the form

Multiplying both sides by 1/an;, we get

(o b _( Van, buy fan;\ 1 (0, ba; ‘ (6.27)

ap, \b, . a_ —by. Jan, 1)ay. )a,. \b} af

nj \"n; n;j njreng nj nj \"n; nj
By construction, we have a:f /an — at/A, bE /an/ — b* /A weakly in H2. We
also have by, /an, — B/A, b,,J /an;, — B/A, 1/an — 1/A strongly in L?(T) by
the dommated convergence theorem, because by ; /an;, bnj /an;, 1/an; are uniformly

bounded and converge in Lebesgue measure on T to B/A. It follows that both sides
of (6.27) converge weakly in L2(T). Taking the limit in (6.27), we obtain

1 (&t bt _(1/4 B/A\1 (& b~
A\b= a ) \-B/A 1/4)A\b* at)
or, in equivalent form,
stat stbT\ (1 B 1 sTa” s7bT
s5b s7a”) \=B 1)sts—a\stbt stat)’

Equation (6.20) written for ¢, a, b, at, bt

says

at bt\ (1 b 1fa™ b~
b= a ) \=b 1)a\bt at)
It follows that

sT 0 1 Bl a” b7\  (stat stbT
0 s )\=b 1)a\bt at) \sb~ s a"

1 B 1 sTa”  sTb™
—B 1)sts—a\stbt stat

Il
~—



R. Bessonov and P. Gubkin 188

(1 B 1 (s= O0\lfa~ b~
~\=-B 1)sts=\0 st)a\bt at)
From here, we get

D=5 0 D D)
=(1/g+ 1/(;—)(—13 113)(1/(? 1/(;—)

_( 1IsT> B/sts
‘(—B/s_+s— 1/|s—|2)'

It follows that |s*|?> = 1. Recall that the s* are outer and s*(0) > 0, therefore s* =1,
at = a*, bt = b*,a = A, b= B, and ry =a/b = A/B =r. It remains to show
that g,, — ¢q in L?(T). Since the f* are locally uniform limits of the fnj; in D, we
have lim; o0 gn,; (k) = q(k) for each k € Z from Schur’s algorithm (6.5) for fE.
Moreover, (6.19) and a = A imply

—_—

log [ T(1 = lg(k)I*) = log |a(0)| > = log|A(0)| > = ;dimlog lan, (0)] 7

keZ . 2
keZ

The last relation together with the elementwise convergence lim; — 400 gn; (k) = g (k)
gives ¢,; —> ¢ in the norm of £2(Z, D). n

Proposition 6.14. The set § = USE[O,]) (8] is dense in £*(Z, D). In fact, we have
(Y (Z,D) C§.Ifq € G and suppq C Z, then |[f4]|Lo(Ty < 1 for £5 = f7T (see
Lemma 3.4).

Proof. By Baxter’s theorem (see [18, Chapter 5]), every measure pn with recurrence
coefficients in £!(Z 4, D) has its Szeg6 function, D > in the Wiener algebra W(T). It
follows that a*, b* are continuous and uniformly bounded on T if ¢ = {g(n)}nez
isin £1(Z,D); hence, the function a = aTa~ — bT b~ is uniformly bounded on T as
well. Formula (6.17) then implies that r, € B[§], g € §[6], for some 6 € [0, 1). The

rest of the proposition is straightforward. ]

6.4. Proof of Theorem 1.7

Recall that the scattering map (or the nonlinear Fourier transform) is defined by

Feeiq = Iy,



Stability of Schur’s iterates and fast solution of the discrete integrable NLS 189

on the set of sequences £2(Z, D), see Proposition 6.2. Assertions (1) and (2) of the
theorem are Propositions 6.11 and 6.13, respectively. Assertion (3) for compactly sup-
ported g: Z — D is Proposition 6.3. Since ¥ is continuous, assertion (3) then holds
for all ¢ € €2(Z, D). To prove assertion (4), consider potentials ¢ € £2(Z, D) sup-
ported on Z N (—oo, 0) and observe that Theorem 6.8 implies X1 C Fi.(£2(Z,D)).
Then, since the set . (£2(Z, D)) is invariant under multiplication by z”, n € Z, by
assertion (3), the set F.(£2(Z, D)) contains trigonometric polynomials p such that
| pllLoo(T)y < 1 of arbitrary degree. We claim that the set of such polynomials is dense
in X. Indeed, one can approximate an arbitrary element of X by a sequence of con-
tinuous functions in the open unit ball of L°(T) using Lusin’s theorem, and then
uniformly approximate these continuous functions by Fejer means of their Fourier
series. Since F. is a closed map, the fact that ¥ (£?(Z, D)) contains a dense subset
of X implies F.({?(Z,D)) = X, and (4) follows. Assertion (5) is Proposition 6.4.
To prove (6), note that . (§[8]) C B[4] by definition and F.(§[8]) D B[d] because
Fo: 03(Z, D) — X is surjective. Thus, F.: §[8] — B[8] is a continuous surjection.
By Proposition 6.7, this map is injective. Then F.: §[§] — B][§] is a closed continu-
ous bijection between two topological spaces; hence, it is a homeomorphism, which
is (6). Assertion (7) is not proved in our paper, the reader can find its proof at the end
of [24, Chapter 2].

A. Appendix

Denote by £°(Z, D) the set of all sequences ¢ = {¢, }nez such that |g,| < 1 for all
n € Z. In this section we show that for every qo € £°(Z, D), the Ablowitz—Ladik
equation (1.4) has a global unique solution.

Lemma A.1 (Boundedness [12, p. 4]). If g solves (1.4) on [0, to] for the initial data
go € L°(Z,D), then q(t,-) € L°(Z,D) for all t € [0, to].

Proof. Put p,(t)?> =1 — |q(¢,n)|?, and assume that for some 1 > 0 there exists #; €
[0, #o] such that p,(¢;) = 0 and p,(¢) > O for all # € (0, ;). Then for all # < #; we
have

20np;, = (07) = —2Re(gnq,) = —2Re(qn - (ip3(Gn-1 + qn+1)))
= 202 Tm(qnGn—-1 + Gnqn+1),
P;; = pp Im(gngn—1 + qnqn+1),

t

pu() = pu(0) exp [ [ mntn-s + aut) ds}.
0
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If we now send 1 to 77, the left-hand side will tend to 0, while the right-hand side will
not, a contradiction. [ ]

Lemma A.2 (Uniqueness [5, p. 20]). If g, g solve (1.4) on [0, t] for some initial data
go € L°(Z,D), then q = §.

Proof. Let q(t,n) and g (¢, n) be two solutions for the same initial data go. We have
_i(q;/z - 5;;) =(1- |Qn|2)(Qn—l +qn+1) — (1 — |qn|2)@n—l + qn+1)

= (qn-1 _Qn—l) + (Qn-‘rl - Qn—i-l)_
- (|Qn|2%1—1 - |qn|zqn—l) - (|Qn|2qn+1 - |6n|2gln+1)'

By Lemma A.1, both |g,| and |G, | do not exceed 1; hence,
|CI;1 - q;z| <2[qn-1 = Gn—1| + 2|gn+1 — Gn+1| + 4gn — Gnl. (A.1)
Therefore,

(Ign (1) = Gn(D)|*) = 2Re((gn — Gn) (g}, — 3)))-
(Ign(t) — qn(t)|2)/ < 12|g, — qn|2 +2|qn-1 — 51n—1|2 +2|qn+1 — Eln+1|2

Define

2
My =Y an(tl)JrZr;(t)l '

nez

We have M(0) = 0 and

_ = 2/
Wiy = 3 OO gy

nez

Then Gronwall inequality gives M (¢) = 0 for all ¢ > 0; hence, ¢ and § coincide. =

Proposition A.3 (Existence [22, Section 1.1]). For every qo € £°(Z, D), there exists
a unique classical global solution q of (1.4).
Proof. Uniqueness follows from Lemma A.2. Rewrite (1.4) in the integral form

t

q(t.n) = qo(n) + /i(l —lg(s.n)*)(q(s,n—1) +g(s,n + 1)) ds, neZ.
0 (A2)

Equation (1.4) and equation (A.2) are equivalent. Introduce the space of functions
Y = C([0,¢] x Z) where t = 1/12. For u € Y, define the mapping

Fu)(t,n) =i(1—|ut,n)> ), n—1)+u(t,n+1)), nelZ.
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In this notation (A.2), becomes

t

q(t,n) = qo(n) + / F(q)(s,n)ds.

0

Further, consider
t
d(u)(t,n) = go(n) + / Fu)(s,n)ds, nelZ.
0

Then solvability of (A.2) is equivalent to the existence of a fixed point for ®: Y + Y.
Let us show that @ is a contraction acting on the set By = {u € Y: |u||y < 2}. Notice
that

|[Fu)(s,n)| < 6lully, s=t.nel,
t
|PQ@)(t.n)| < |qo(n)| + / |[FQu)(s.n)[ds < 1+ 6t]ully.
0

@)y =14 61lully.

In particular, if v € Y, then ®(u) € Y. Furthermore, from (A.1) we see that for u, v €
Y we have

t

|P)(r.n) — P(v) (. n)| < / |F(u)(s.n) — F(v)(s.n)|ds < 6t |u —vy.
0

We have 61 < 1; hence, ® is a contraction and (1.4) has a solution on [0, f]. By
Lemma A.1, g(t,-) also satisfies g(¢,n) < 1 for all n € Z, hence the fixed point
algorithm can be applied to find the solution on the segment [z, 2¢]. Iterating this
procedure, we obtain the existence of a solution on [0, 00). A similar argument works
for negative ¢, hence the proof is completed. ]

The following proposition gives a proof of the convergence in Theorem 1.5 based
on the idea from Lemma A.2.

Proposition A.4. Take qo € £°(Z,D) and let qo.n, 4, qN be as in Theorem 1.5. Then,
for N > |jl|,t >0andallr € (0,1), we have

10¢/r2
V2re T )

V1 —r2

|q(tv./) _QN(t’])| =
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If we assume (*(Z, D), then

lq(t, ) = an (&, I < re'®™ [ 3 fgo(m)l2 - N7V,
|m|>N

Proof. Set My (t) = 3 ,.cz 1q(t,m) — qn (£, m)|>r2™ At t = 0, we have

2N 42
My @ = Y lgomPrm < 30 A = Ay
Im|>N Im|>N -
The inequalities similar to (A.1) give us My (1) < 20r 2 M (t); hence,
2ezot/r2r2N+2

lg(t, j) —qn (t, )Pr?V! < My (1) < exp(20r—2t) My (0) = —

The first part of the proposition follows. To establish the second inequality, we change
the bound (A.3). We have

My©) = > Igo(m)[Pr2ml < r2NVFED X" g4 (m) 2.

|m|>N |m|>N
Therefore,
la(2, ) —qn (@, HPr?1 < My (1) < exp(20r—21) My (0)
2
— eZOt/r r2N+2 Z |q0(m)|2’
|m|>N
which concludes the proof. |
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