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Stability of Schur’s iterates and fast solution
of the discrete integrable NLS

Roman Bessonov and Pavel Gubkin

Abstract. We prove a sharp stability estimate for Schur iterates of contractive analytic func-
tions in the open unit disk. We then apply this result in the setting of the inverse scattering
approach and obtain a fast algorithm for solving the discrete integrable nonlinear Schrödinger
equation (Ablowitz–Ladik equation) on the integer lattice, Z. We also give a self-contained
introduction to the theory of the nonlinear Fourier transform from the perspective of Schur
functions and orthogonal polynomials on the unit circle.

1. Introduction

1.1. Schur’s algorithm

The Schur class �.D/ in the open unit disk D D ¹z 2 C W jzj < 1º of the complex
plane, C, consists of analytic functions F in D such that

sup
z2D
jF.z/j � 1:

For F 2 �.D/, we write F 2 ��.D/ if F is not a finite Blaschke product. Take F 2
��.D/, set F0 D F , and define the sequence ¹Fnºn�0 using Schur’s algorithm:

zFnC1 D
Fn � Fn.0/

1 � Fn.0/Fn
; n � 0: (1.1)

By construction and the Schwarz lemma, the resulting functions F0; F1; F2; : : : will
belong to the class ��.D/ as well. In the case where F 2 �.D/ n ��.D/ is a Blaschke
product of order N � 0, the same construction gives a finite sequence of Blaschke
products F0; F1; : : : ; FN of orders N; N � 1; : : : ; 0, correspondingly. In particular,
FN is a constant of unit modulus and the Schur’s algorithm stops.

Note that jFn.0/j < 1 for each F 2 ��.D/, n � 0, by the maximum modulus
principle. Therefore, each function F 2 ��.D/ generates a sequence ¹Fn.0/ºn�0 �D.
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These numbers are called the recurrence coefficients of F . It can be shown that the
mapping

F 7! ¹Fn.0/ºn�0

is a homeomorphism from ��.D/ with the topology of convergence on compact
subsets of D onto the space of sequences qWZC ! D with the topology of element-
wise convergence, see [18, Section 1.3.6]. Here, ZC D Z \ Œ0;C1/. In particular,
for every sequence ¹˛nºn�0 � D, there exists a unique function F 2 ��.D/ such
that ˛n D Fn.0/ for every n 2 ZC. In this paper, we study the stability of Schur’s
algorithm. We prove a sharp estimate for jFn.0/ � Gn.0/j in terms of F � G for
functions F;G 2 ��.D/ from the Szegő class, whose definition we now recall.

Letm denote the Lebesgue measure on the unit circle T D ¹z 2C W jzj D 1º norm-
alised bym.T /D 1. The following theorem can be found, e.g., in [18, Section 2.7.8].

Theorem 1.1 (Szegő theorem). Let F 2 ��.D/, and let ¹Fn.0/ºn�0 be its recurrence
coefficients. Then Z

T

log.1 � jF j2/ dm D log
1Y
nD0

.1 � jFn.0/j
2/;

where both sides are finite or infinite simultaneously.

We will refer to the functions F 2 ��.D/ such that

�.F / D

1Y
nD0

.1 � jFn.0/j
2/ > 0; (1.2)

as the Schur functions of Szegő class. Given any r 2 .0; 1/, and an analytic function
F in D, we set

kF kL2.rT/ D

�Z
T

jF.r�/j2 dm.�/

�1=2
:

Theorem 1.2. Let F , G be Schur functions of Szegő class, and let �.F /; �.G/ � �
for some � > 0. Then, for every r 2 .0; 1/ and n 2 ZC, the estimate

kFn �GnkL2.rT/ � C.�; r/r
�n
kF �GkL2.rT/; (1.3)

holds with the constant

C.�; r/ D exp
�

log ��1 �
�
2C

1

1 �
p
1 � �

�� 4

.1 � r/2
C 1

��
depending only on �, r .
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The order of the exponential factor r�n in Theorem 1.2 is sharp. Indeed, one can
take ı 2 .0; 1/ and set F D ızn,G D 0. Then Fn.z/D ı,Gn.z/D 0 for all z 2D. So,
we have kFn � GnkL2.rT/ D kıkL2.rT/ D ı and kF � GkL2.rT/ D kız

nkL2.rT/ D

ırn in this case. Since �.F /D 1� ı2, �.G/D 1 do not depend on n, a study for large
n’s shows that the order of growth r�n in (1.3) cannot be improved within the Szegő
class.

Theorem 1.2 can be used to estimate jFn.0/ � Gn.0/j if we know that the Schur
functions F , G are sufficiently close to each other in the disk jzj � r . Indeed, by
Bessel’s inequality, we have

jFn.0/ �Gn.0/j � kFn �GnkL2.rT/;

because the system ¹zkºk�0 is orthogonal in L2.rT /. We want to emphasise that the
constant C.�; r/ in Theorem 1.2 is uniform for functions F 2 ��.D/ with the Szegő
constant �.F / separated from zero. This is the most important feature of (1.3) when it
is compared with another stability result from inverse spectral theory – the Sylvester–
Winebrenner theorem [21]. In the language of Schur functions, this theorem says that
Schur’s algorithm defines a homeomorphism in appropriate metric spaces.

Theorem 1.3 (Sylvester–Winebrenner theorem). The mapping F 7! ¹Fn.0/ºn�0 that
takes a Schur function into the sequence of its recurrence coefficients is a homeo-
morphism from the metric space XC D ¹F 2 ��.D/ W �.F / > 0º with the metric

�s.F;G/
2
D �

Z
T

log
�
1 �

ˇ̌ F �G
1 � NFG

ˇ̌2�
dm

onto the metric space `2.ZC;D/ of the square summable sequences qWZC! D with
the metric kq � Qqk2

`2 D
P
n2ZC

jq.n/ � Qq.n/j2.

We prove this version of the Sylvester–Winebrenner theorem in Section 6. It is
very natural to expect that the modulus of continuity of the homeomorphism in The-
orem 1.3 is controlled by � on the subset of F 2 XC with �.F / > � > 0. This is,
however, not the case! See Proposition 6.12 below. On the other hand, the uniform
character of estimate (1.3) will be crucial for the application of (1.3) to the discrete
integrable nonlinear Schrödinger equation (Ablowitz–Ladik equation). Let us discuss
it next.

1.2. AL: statement of the problem

Consider the defocusing Ablowitz–Ladik equation (AL) on the integer lattice, Z,´
@
@t
q.t; n/ D i.1 � jq.t; n/j2/.q.t; n � 1/C q.t; nC 1//;

q.0; n/ D q0.n/; n 2 Z:
(1.4)
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The variable t 2 R is considered as time, n 2 Z is the discrete space variable. The
Ablowitz–Ladik equation is the integrable model introduced in [1, 2] as a spatial
discretization of the cubic nonlinear Schrödinger equation (NLS), see [3] for a gen-
eral context and modern exposition. If we change variables to u D e�2itq, then (1.4)
becomes

i
@

@t
u.t; n/ D � .1 � ju.t; n/j2/.u.t; n � 1/C u.t; nC 1//C 2u.t; n/

D � u.t; n � 1/C 2u.t; n/ � u.t; nC 1/

C ju.t; n/j2.u.t; n � 1/C u.t; nC 1//;

which is indeed a discretization of the continuous defocusing NLS equation,

i
@

@t
u.t; x/ D �

@2

@x2
u.t; x/C 2ju.t; x/j2u.t; x/; x 2 R:

We are going to present a new solution method for (1.4) based on Schur’s algorithm.
The rate of its convergence will be estimated using Theorem 1.2. We deal with the
following problem.

Problem 1.4. Given " 2 .0; 1/, t 2 R, n0 2 Z, and a sequence q0 on Z such that

sup
n2Z
jq0.n/j � 1;

Y
n2Z

.1 � jq0.n/j
2/ � � > 0;

evaluate the solution q of (1.4) at .t; n0/ with the absolute error at most ".

The quantity
Q
n2Z.1� jq.t; n/j

2/D
Q
n2Z.1� jq0.n/j

2/ is conserved under the
flow of AL equation. So, it is a natural characteristic for results on stability/accuracy
of solutions of AL equation.

We introduce the algorithm which solves Problem 1.4 in O.n log2 n/ operations,
where n D t C log "�1. Thus, to have accuracy e�n at the moment of time t D 1, one
need to take at most c�n log2n arithmetic operations for some constant c� >0 depend-
ing only on �. The basic Runge–Kutta scheme RK4 requires n steps (� n � k opera-
tions) for computing u.1; j /, �k � j � k, to guarantee accuracy
O.1=n4/ if we additionally assume that the impact of u.t; j /, jj j � k, is negligible
for 0 � t � 1.

1.3. AL: localization

Our solution method is a modification of the classical inverse scattering approach.
From a bird’s eye view, the standard procedure (see [24, Chapter 2]) of solving (1.4)
by means of the inverse scattering theory (IST) is as follows. Given an initial datum
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q0WZ! D, define the so-called reflection coefficient rq0
at z 2 T by

rq0
.z/ D

b.z/

a.z/
;

�
a b
Nb Na

�
D

Y
k2Z

1p
1 � jq0.k/j2

�

�
1 q0.k/z

�k

q0.k/z
k 1

�
; (1.5)

and find q.t; �/W Z ! D such that rq.t;�/ D e�it.zC1=z/rq0
on T . It turns out that

q.t; �/ will solve (1.4) for an initial datum q0, provided q0 decays fast enough (say,P
k2Z jq0.k/j <1). A fundamental problem appearing when one tries to solve (1.4)

by IST with merely `2.Z;D/ initial datum q0 (i.e., for a general q0WZ! D such thatQ
n2Z.1� jq0.n/j

2/ > 0) is that we can have rq0
D r Qq0

for q0¤ Qq0. This phenomenon
was first observed by Volberg and Yuditskii in [25] on the level of Jacobi matrices, and
then by Tao and Thiele [23] in the setting of the nonlinear Fourier transform, NLFT.
It shows that when we pass to the reflection coefficients rq0

, r Qq0
, some information

gets lost and there are no chances to solve (1.4) for `2.Z;D/ initial data by using the
IST approach directly. To overcame this difficulty (non-injectivity of NLFT), we first
prove the following localization estimate.

Theorem 1.5. Let q0WZ! D be such that
Q
n2Z.1 � jq0.n/j

2/ � � for some � > 0
and let q be the solution of (1.4) for the initial datum q0. Take N 2 ZC, consider the
sequence q0;N defined by

q0;N .n/ D

´
q0.n/; jnj � N;

0; jnj > N;

and let qN be the corresponding solution of (1.4). Then, for N � jj j, t > 0 and all
r 2 .0; 1/, we have

jq.t; j / � qN .t; j /j �
4et=rC.�; r/

1 � r
rN�jj j; (1.6)

where C.�; r/ is the function from Theorem 1.2.

Having in mind a possible future development of a parallel theory for continuous
NLS equation, we use only “spectral” methods in the proof of Theorem 1.5. The
reader interested in short and elementary proof of Theorem 1.5 by means of a direct
approach could find it in Appendix A.

1.4. AL: compactly supported initial data

Having Theorem 1.5, it remains to solve (1.4) for compactly supported initial data
q0WZ!D. This can be done by a variety of methods, both theoretically and numeric-
ally. In particular, the standard IST approach works in this case, but accuracy estimates
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for numerical schemes based on IST and `2-bounds are missed in the literature. Tak-
ing into account the non-injectivity of NLFT, we see that the problem is, in fact,
fairly nontrivial: some distant compactly supported data q0, Qq0 correspond to almost
identical reflection coefficients rq0

, r Qq0
. Indeed, it is enough to take different q0; Qq0 2

`2.Z;D/ with the same reflection coefficient and consider restrictions of q0, Qq0 to
a large discrete interval Œ�N;N �. Then the corresponding reflection coefficients will
almost coincide by continuity of NLFT. This phenomenon, when ignored, leads to
instabilities. Below we describe a procedure that can be used to get the solution with
prescribed accuracy.

Consider q0W Z ! D supported on Z \ Œ0; `� for some ` 2 ZC. Note that q
solves (1.4) if and only if q.t; � C j / solves (1.4) for the initial datum q0.� C j /.
Therefore, we do not lose generality when we assume suppq0 � Œ0; `�. Moreover, it is
easy to see that q.t; n/ solves (1.4) if and only if q.�t; n/ solves (1.4) with the initial
data q0. So, we can also assume that t > 0.

Consider the Fourier expansion of the inverse scattering multiplier eit.zC1=z/:

eit.zC1=z/ D
X
k2Z

ikJk.2t/z
k; z 2 T :

Here, Jk are the standard Bessel functions [7] of order k, i.e.,

Jk.2t/ D i
�k

Z
T

eit.zC1=z/ Nzk dm D

1X
mD0

.�1/mt2mCk

mŠ.mC k/Š
:

Let Pn;t D
P
jkj�n i

kJk.2t/z
k be the Laurent trigonometric polynomial of eit.zC1=z/

of order n. Define the function Gn;t by

Gn;t D .1 � ın;t /z
nPn;t ; ın;t D

tnet

nŠ
: (1.7)

We will be interested in the situation when n > ct with some c > e. In this case,
this “ın;t -correction” is very small but important: it places Gn;t into Schur class.
Given a sequence q0WZ! D supported on Œ0; `�, define the coefficients a, b of q0
by (1.5). Note that the product in (1.5) contains at most `C 1 nontrivial terms. One
can check that a, Nb in (1.5) coincide on T with analytic polynomials in z of degree
at most `, and, moreover, j Nb.z/j < ja.z/j if jzj � 1. Set fq0

D Nb=a. The function
Fn;0 D Gn;t fq0

is rational and belongs to the Schur class ��.D/ (see Proposition 3.1
below). Fix j 2 Z and use Schur’s algorithm (1.1) to find rational functions Fn;0,
Fn;1, Fn;2; : : : ; Fn;nCj ; : : : (Schur iterates of Fn;0). Set

Qqn.t; j / D

´
Fn;nCj .0/; j � �n;

0; j < �n:
(1.8)
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The following theorem shows that Qqn approximates the solution q of (1.4) with very
high accuracy.

Theorem 1.6. Let t > 0, and let q0WZ ! D be a sequence compactly supported
on ZC. Assume that

Q
n2ZC

.1� jq0.n/j
2/ � � for some � > 0. Then, the function Qqn

in (1.8) satisfies

jq.t; j / � Qqn.t; j /j � 2
jC.�; 1=2/

12e5t
p
2�n

�2et
n

�n
; (1.9)

for all n 2 ZC, j 2 Z, t > 0 such that nC j � 0, n > t , and ın;t < 1, see (1.7). Here
q is the solution of (1.4) and C.�; r/ is the function from Theorem 1.2.

Note that the right-hand side in (1.9) is very small when n is much larger than
2et and j is fixed. The estimate does not depend on the size of the support of q0.
In fact, Theorem 1.6 remains true if we assume only supp q0 � Œ0; C1/ andQC1
0 .1 � jq0.n/j

2/ > 0. In this case, it is known that the product in (1.5) con-
verges in Lebesgue measure on T (see Section 6) and defines coefficients a, b almost
everywhere on T . Moreover, fq0

D Nb=a will coincide with non-tangential values of a
function of Schur class ��.D/. Then the Qqn.t; j / are well defined by (1.8), and (1.9)
will hold for them.

1.5. AL: algorithm for Problem 1.4

Let us summarise the algorithm that solves Problem 1.4 based on Theorems 1.5
and 1.6. At first, one need to choose a window � D Œn0 � N; n0 C N� where N
is such that jq.t; n0/ � qN .t; n0/j � "=2 for the exact solution qN with the truncated
initial datum q0;N D ��q0. Then, one need to shift q0;N by n0 � N to make it sup-
ported on ZC \ Œ0; 2N � and use the algorithm described in Section 1.4 to find the
approximate solution Qqn with accuracy "=2 at j DN for the shifted sequence. Taking
N D 5C Œ4et C log2.C.�; 1=2/="/�, n D 2N , we will get j Qqn.t;N /� q.t; n0/j � ",
see Section 5. In Section 5 we check that the whole procedure requires O.n log2 n/
operations for nD t C log "�1. In fact, the sequence Qqn approximates q with accuracy
O."/ on the interval Œn0 �N=2; n0�, not only at the point n0. Considering the reflec-
tion of q0 and applying the algorithm twice, one can construct approximation to q on
Œn0 �N=2; n0 CN=2� in O.n log2 n/ operations.

1.6. AL: historical remarks and motivation

As a classical integrable model, the Ablowitz–Ladik equation has a well-developed
theory in the periodic case [19, Chapter 11], [16, 17], in the finite case [9, 14], in
the half-infinite case [12, 20], and on the whole lattice Z, see [10, 11, 15, 24]. The
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paper [11] contains a historical overview and an extensive bibliography, including
works following the original approach of Ablowitz and Ladik, who obtained a Lax
pair for (1.4) by discretizing the Zakharov–Shabat Lax pair for the continuous NLS
equation. Conversely, the references mentioned in this paragraph (and the results used
in this paper) are mostly related to recent works that appeared after Nenciu and Simon
[19, Chapter 11], [17] discovered a new Lax pair for this equation, making a connec-
tion to CMV matrices and orthogonal polynomials on the unit circle. The IST method
as a tool for existence theorems for the Ablowitz–Ladik equation attracted a limited
attention in the literature because the solvability of (1.4) for all initial data q0WZ! D

can be easily obtained by means of a fixed point theorem (see Appendix A). How-
ever, the Ablowitz–Ladik equation is a perfect model for developing an accurate fast
IST-based numerical scheme that can be later generalised for the continuous NLS
equation.

1.7. The nonlinear Fourier transform

The last part of the paper can be regarded as the introduction to the theory of the non-
linear Fourier transform, NLFT. The main results in this area are due to Thiele and
Tao, see the paper [23] or its extended version by Thiele, Tao, and Tsai [24], where the
Ablowitz–Ladik equation appears in the setting of NLFT. The papers [23, 24] influ-
enced much of the present work. We decided to give a short introduction to the theory
of NLFT in the language of Schur functions and orthogonal polynomials to make the
paper more self-contained. We hope that our arguments will be of independent interest
for the orthogonal-polynomials community.

For 1 � p <1, let `p.Z;D/ be the set of sequences qWZ! D such thatX
n2Z

jq.n/jp <1:

We endow it with the usual distance kq1 � q2k`p D .
P
n2Z jq1.n/ � q2.n/j

p/1=p .
Note that `p.Z;D/ is not a linear space. Using formula (1.5), define the nonlinear
Fourier transform (or the scattering map) by

FscW q 7! rq;

on the set `1.Z;D/. Here we consider Fsc as the map from `1.Z;D/ to L1.T /. Later
on, the domain of Fsc will be extended, while the target space will be changed to a
narrower one. Define the metric space

X D ¹h 2 L1.T / W khkL1.T/ � 1; log.1 � jhj2/ 2 L1.T /º; (1.10)
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with the Sylvester–Winebrenner metric �s (see [21]) given by

�s.h1; h2/ D

p
�

Z
T

log
�
1 �

ˇ̌̌ h1 � h2
1 � Nh1h2

ˇ̌̌2�
dm: (1.11)

For ı 2 Œ0; 1/, denote BŒı� D ¹h 2 L1.T / W khkL1.T/ � ıº. We have BŒı� � X for
every ı 2 Œ0; 1/. So, let us consider BŒı� as the subspace of X with the induced metric
topology. As we will see below, Fsc uniquely extends to the continuous map from
`2.Z;D/ to X . Set G Œı� D F �1sc .BŒı�/ where F �1sc .E/ is the full preimage of a set E
under the mapping FscW `

2.Z;D/! X .
With this definitions at hand, we are ready to summarise the basic properties of

the map Fsc.

Theorem 1.7. The nonlinear Fourier transform Fsc has the following properties:

(1) the map Fsc extends uniquely to the continuous map FscW `
2.Z;D/! X ;

(2) the map FscW `
2.Z;D/! X is closed;

(3) we have Fsc.q.� � n// D z
�nFsc.q/ for every q 2 `2.Z;D/, n 2 Z;

(4) the map FscW `
2.Z;D/! X is surjective;

(5) the map FscW `
2.Z;D/! X is not injective;

(6) the map FscWG Œı�! BŒı� is a homeomorphism for every ı 2 .0; 1/;

(7) if q D q.t; n/ is the solution of (1.4) with the initial datum q0 2 G Œı�, then
q.t; �/ 2 G Œı� for each t 2 R, and q.t; �/ D F �1sc .e�it.zC1=z/Fsc.q0//.

Theorem 1.7 (2) is new. It implies, in particular, that Fsc is a homeomorphism
on the set of potentials q 2 `2.Z;D/ that are completely determined by the reflection
coefficient rq . Theorem 1.7 (7) is not proved in our paper (we did not find a sufficiently
short argument), see [24] for the proof. Some ideas in the proof of Theorem 1.7 are
due to S. Denisov; the authors would like to thank him for his contribution.

2. Schur’s algorithm. Proof of Theorem 1.2

In this section we prove Theorem 1.2. For an analytic function F in D, it will be
convenient to set

MF .r/ D max
jzj�r
jF.z/j:

At first, we prove the following lemma.
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Lemma 2.1. Let F 2 ��.D/, and let Fk be its Schur iterates defined by (1.1). Then
for every r 2 Œ0; 1/ we have

1X
kD0

M 2
Fk
.r/ �

4

.1 � r/2
�

1X
kD0

jFk.0/j
2
�

4

.1 � r/2
� log.�.F /�1/; (2.1)

where �.F / is defined by (1.2).

Proof. Let us check the second inequality first. For x2.0; 1/, we have .1� x/�1�ex ,
therefore

�.F /�1 D
Y
k�0

.1 � jFk.0/j
2/�1 �

Y
k�0

ejFk.0/j
2

D e
P

k�0 jFk.0/j
2

;

which implies the required bound log.�.F /�1/ �
P
k�0 jFk.0/j

2. Now, we focus on
the first inequality in (2.1). Set j̨ D Fj .0/, j � 0. We will use the estimate in [18,
(1.3.58)], which reads

jF.z/j � 2

1X
jD0

j j̨ jjzj
j ; z 2 D:

Applying it to Fk in place of F for jzj D r , we get MFk
.r/ � 2

P1
jD0 j˛kCj jr

j ;
hence,

M 2
Fk
.r/ � 4

� 1X
jD0

j˛kCj jr
j=2
� rj=2

�2
� 4

1X
jD0

j˛kCj j
2rj �

1X
jD0

rj D
4

1 � r

1X
jD0

j˛kCj j
2rj ;

by the Cauchy inequality. Summing up over k 2 ZC, we get

1X
kD0

M 2
Fk
.r/ D

4

1 � r

1X
kD0

1X
jD0

j˛kCj j
2rj

D
4

1 � r

1X
sD0

j˛sj
2

sX
jD0

rj �
4

.1 � r/2

1X
sD0

j˛sj
2:

This ends the proof.

Remark 2.2. Lemma 2.1 holds with a better (for small r) estimate with 1=.1 � r/4

in place of 4=.1 � r/2. To prove this, one needs to use the expression for Fk from [13,
Theorem 8.70]. A study of the functions F D ızn for large n’s and small ı’s shows
that the constant in Lemma 2.1 cannot be smaller than 1=1 � r2.
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Proof of Theorem 1.2. Let F;G 2 ��.D/. We have

z.F1 �G1/ D
F � F.0/

1 � F.0/F
�
G �G.0/

1 �G.0/G
D
P

Q
: (2.2)

Here, the numerator is

P D .F � F.0//.1 �G.0/G/ � .G �G.0//.1 � F.0/F /

D ŒF � F.0/ �G CG.0/�C FG.F.0/ �G.0//C ŒF .0/G.0/G � F.0/G.0/F �:

We have

F.0/G.0/G � F.0/G.0/F D F.0/G.0/.G � F /C FF.0/.G.0/ � F.0//

C FF.0/.F.0/ �G.0//:

It follows that

kP kL2.rT/ � kF � F.0/ �G CG.0/kL2.rT/ CMF .r/MG.r/jF.0/ �G.0/j

C jF.0/jjG.0/jkF �GkL2.rT/ C 2MF .r/jF.0/jjF.0/ �G.0/j:

For an analytic function H in D, we have

jH.0/j � kHkL2.rT/; kH �H.0/kL2.rT/ � kHkL2.rT/;

by orthogonality of the system ¹zkºk�0. Applying this to H D F � G and using
2xy � x2 C y2, we get

kP kL2.rT/ � kF �GkL2.rT/.1CMF .r/MG.r/C jF.0/jjG.0/j C 2MF .r/jF.0/j/

� kF �GkL2.rT/

�
1C

3MF .r/
2 CMG.r/

2 C 3jF.0/j2 C jG.0/j2

2

�
:

Since jP j remains the same when we swap F , G, we also have

kP kL2.rT/ � kF �GkL2.rT/

�
1C

MF .r/
2 C 3MG.r/

2 C jF.0/j2 C 3jG.0/j2

2

�
:

Taking a half-sum, we get

kP kL2.rT/ � kF �GkL2.rT/.1CM
2
F .r/CM

2
G.r/C jF.0/j

2
C jG.0/j2/:

Further, for z 2 rT , we estimate the denominator Q in (2.2) as follows:

jQ.z/j D j.1 �G.0/G/.1 � F.0/F /j � .1 � jG.0/jMG.r//.1 � jF.0/jMF .r//;
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where we use the fact that both brackets above are positive. Substituting the bounds
for P , Q into (2.2) gives

rkF1 �G1kL2.rT/ � kF �GkL2.rT/

1CM 2
F .r/CM

2
G.r/C jF.0/j

2 C jG.0/j2

.1 � jG.0/jMG.r//.1 � jF.0/jMF .r//
:

The latter inequality applied to Fk and Gk in place of F , G for k D 0; : : : ; n � 1

implies

rnkFn �GnkL2.rT/ � kF �GkL2.rT/

n�1Y
kD0

Ck; (2.3)

for

Ck D
1CM 2

Fk
.r/CM 2

Gk
.r/C jFk.0/j

2 C jGk.0/j
2

.1 � jGk.0/jMGk
.r//.1 � jFk.0/jMFk

.r//
:

It remains to estimate
Qn�1
kD0 Ck . For ı 2 .0; 1/, denote by c.ı/ the minimal positive

number such that 1
1�x
� 1C c.ı/x for all x 2 .0; 1/ satisfying 1 � x2 > ı. It is not

difficult to check that

c.ı/ D
1

1 �
p
1 � ı

2

h
1;
2

ı

i
: (2.4)

Observe that

1 � jFk.0/j
2MFk

.r/2 � 1 � jFk.0/j
2
�

C1Y
mD0

.1 � jFm.0/j
2/ D �.F / > �;

by our assumption. Then,

1

1 � jFk.0/jMFk
.r/
� 1C c.�/jFk.0/jMFk

.r/ � 1C
c.�/

2
.M 2

Fk
.r/C jFk.0/j

2/:

A similar estimate holds for functions Gk . It follows that

Ck � .1CM
2
Fk
.r/CM 2

Gk
.r/C jFk.0/j

2
C jGk.0/j

2/

�

�
1C

c.�/

2
.M 2

Fk
.r/C jFk.0/j

2/
��
1C

c.�/

2
.M 2

Gk
.r/C jGk.0/j

2/
�

� exp
��
1C

c.�/

2

�
.M 2

Fk
.r/CM 2

Gk
.r/C jFk.0/j

2
C jGk.0/j

2/
�
;

where we used the elementary inequality 1C x � ex three times. From Lemma 2.1,
we get

n�1Y
kD0

Ck � exp
��
1C

c.�/

2

�� n�1X
kD0

M 2
Fk
.r/CM 2

Gk
.r/C jFk.0/j

2
C jGk.0/j

2
��

� exp
��
1C

c.�/

2

��8 log ��1

.1 � r/2
C 2 log ��1

��
:
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Substituting the latter into (2.3) and the bound (2.4) imply (1.3) with

C.�; r/ D exp
�

log ��1 �
�
2C

1

1 �
p
1 � �

�� 4

.1 � r/2
C 1

��
:

This ends the proof.

Remark 2.3. The function C.�; r/ is very large if � is not close to 1 or if r is close
to 1. We have, e.g., 5 � 1027 � C.1=2; 1=2/ � 6 � 1027, 106 � C.4=5; 1=2/ � 2 � 106,
and 9 � C.24=25; 1=2/ � 10. In [15], Killip, Ouyang, Visan, and Wu proved that the
continuous NLS equation with arbitrary L2.R/-initial data can be approximated by
the solutions of equation (1.4). It is interesting to note that �! 1 in their construction
during approximation process.

3. Estimates for the multipliers. Proof of Theorem 1.6

Recall the definition (1.7) of Gn;t and Pn;t for t > 0:

Pn;t D
X
jkj�n

ikJk.2t/z
k; Gn;t D .1 � ın;t /z

nPn;t ; ın;t D
tnet

nŠ
:

In this section, we first prove a bound for Gn;t and estimate the rate of convergence
of GnC1;t � zGn;t to zero. Then we prove Theorem 1.6. Throughout this section, we
assume that t > 0.

Lemma 3.1. Let z 2 T and let n > t > 0 be such that ın;t < 1 for ın;t D tnet=nŠ
from (1.7). Then we have jGn;t .z/j < 1. In particular, for every q0 2 `2.Z;D/ with
suppq0 �ZC, we haveGn;t fq0

2 ��.D/ and the construction described in Section 1.4
is correct.

Proof. We have

jPn;t .z/ � e
it.zC1=z/

j D

ˇ̌̌X
jkj>n

ikJk.2t/z
k
ˇ̌̌
� 2

X
k>n

r�kjJk.2t/j; jzj D r:

The standard estimate (see, e.g.,[7, p. 91]) jJ�.2t/j � jt j�=�.� C 1/ implies

jPn;t .z/ � e
it.zC1=z/

j � 2
X
k>n

r�ktk

kŠ
�
2tnr�net=r

.nC 1/Š
�
tnr�net=r

nŠ
; (3.1)

jPn;t .z/j � je
it.zC1=z/

j C
tnr�net=r

nŠ
: (3.2)
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In particular, for z 2 T this gives jPn;t .z/j � 1 C ın;t , where ın;t D tnet=nŠ is
from (1.7). Therefore, we have

jGn;t .z/j D .1 � ın;t /jPn;t .z/j � 1 � ı
2
n;t < 1; z 2 T ;

where the factor .1 � ın;t / is positive by our assumption. For a compactly supported
q0 with supp q0 � Œ0; `�, it is not difficult to check that fq0

is a Schur function by
considering the partial products in (1.5) and using induction. For the general case, see
formula (6.18) below. Then, we have Gn;t fq0

2 ��.D/ by construction.

Lemma 3.2. Let n, t be as in Lemma 3.1. Then maxjzjDr jGn;t j � et=r.rn C 3ın;t /
for r 2 .0; 1/, and, moreover,

max
jzjDr
jGnC1;t .z/ � zGn;t .z/j � Sn.t; r/; Sn.t; r/ D 6ın;te

t=r :

Proof. Take z 2 D such that jzj D r . By (1.7) and (3.2), we have

jz�nGn;t .z/ � Pn;t .z/j D ın;t jPn;t .z/j � ın;t

�
jeit.zC1=z/j C

tnr�net=r

nŠ

�
� ın;t

�
et.1=r�r/ C

tnr�net=r

nŠ

�
� ın;t .e

t=r
C ın;tr

�net=r/ D ın;te
t=r.1C ın;tr

�n/:

Furthermore, we have

jz�nGn;t .z/ � e
it.zC1=z/

j � jz�nGn;t .z/ � Pn;t .z/j C jPn;t .z/ � e
it.zC1=z/

j:

The last two estimates together with (3.1) imply

jz�nGn;t .z/ � e
it.zC1=z/

j � ın;te
t=r.1C ın;tr

�n/C
tnr�net=r

nŠ

� ın;te
t=r.1C 2r�n/:

This gives

max
jzjDr
jGn;t j � r

net.1=r�r/ C 3ın;te
t=r
� et=r.rn C 3ın;t /:

So, we have

max
jzjDr
jzGn;t .z/ � z

nC1eit.zC1=z/j � ın;te
t=rrnC1.1C 2r�n/

D ın;te
t=r.rnC1 C 2r/;

and

max
jzjDr
jGnC1;t .z/ � z

nC1eit.zC1=z/j � ınC1;te
t=rrnC1.1C 2r�.nC1//

� ın;te
t=r.rnC1 C 2/;



Stability of Schur’s iterates and fast solution of the discrete integrable NLS 163

where we used the inequality ınC1;t � ın;t for n > t > 0. It remains to write

jGnC1;t .z/ � zGn;t .z/j � jGnC1;t .z/ � z
nC1eit.zC1=z/j

C jzGn;t .z/ � z
nC1eit.zC1=z/j

and use the last two estimates.

Lemma 3.3. For every n > 0, t > 0, r 2 .0; 1/, we haveX
k�n

Sk.t; r/r
�k
� 6ın;te

2t=r
� r�n:

Proof. For n > t > 0 we have ınC1;t D ın;t t=.nC 1/; hence,X
k�n

Sk.t; r/r
�k
� 6ın;te

t=rr�n
�
1C

t=r

nC 1
C

.t=r/2

.nC 1/.nC 2/
C � � �

�
� 6ın;te

t=rr�net=r D 6ın;te
2t=r
� r�n:

This is the required estimate.

The following lemma will be proved in Section 6.

Lemma 3.4. Suppose that q 2 `2.Z;D/ is such that suppq�ZC and let fq be defined
as in Section 1.4. Then the recurrence coefficients of fq coincide with the sequence
¹q.k/ºk�0.

Proof of Theorem 1.6. Let t > 0, and let q0WZ! D be a sequence compactly sup-
ported on ZC. Assume that

Q
n2ZC

.1 � jq0.n/j
2/ � � for some � > 0. Define the

functions fq0
D Nb=a, Fn;0 D Gn;t fq0

, and Fn;k as in Section 1.4. Let also Qqn.t; j / D
Fn;nCj .0/, j � �n, Qqn.t; j / D 0, j < �n, for j 2 Z. We are going to show that
¹ Qqn.t; j /ºn�0 is a Cauchy sequence for each j 2 Z. Take two positive integers n2 >
n1 � �j , fix r 2 .0; 1/ and consider the difference

j Qqn2
.t; j / � Qqn1

.t; j /j D jFn2;n2Cj .0/ � Fn1;n1Cj .0/j

� kFn2;n2Cj � Fn1;n1Cj kL2.rT/

�

n2�1X
kDn1

kFkC1;kC1Cj � Fk;kCj kL2.rT/:

Since Gn;t is a contraction by Lemma 3.1, we have jGk;t fq0
j � jfq0

j on T ; hence,

min.�.GkC1;t fq0
/; �.zGk;t fq0

// � �.fq0
/ � �
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for every k by Szegő Theorem 1.1 and our assumption. For a function F 2 ��.D/,
denote by .F /k the k-th Schur iterate of F (see (1.1), where .F /k are denoted by Fk).
Note that .F /k D .zF /kC1. By Theorem 1.2, we have

kFkC1;kC1Cj � Fk;kCj kL2.rT/ D k.GkC1;t fq0
/kC1Cj � .Gk;t fq0

/kCj kL2.rT/

D k.GkC1;t fq0
/kC1Cj � .zGk;t fq0

/kC1Cj kL2.rT/

� C.�; r/r�k�1�j kGkC1;t fq0
� zGk;t fq0

kL2.rT/

� C.�; r/r�k�1�j kGkC1;t � zGk;tkL2.rT/:

Using Lemma 3.2 for n1 > t > 0 such that ın1;t < 1, we can proceed as follows:

kFkC1;kC1Cj � Fk;kCj kL2.rT/ � C.�; r/r
�k�j�1 max

jzjDr
jGkC1;t � zGk;t j

� C.�; r/Sk.t; r/r
�k�j�1:

From Lemma 3.3, we now see that

j Qqn2
.t; j / � Qqn1

.t; j /j � r�j�1C.�; r/ �

1X
kDn1

Sk.t; r/r
�k

� 6C.�; r/ın1;te
2t=r
� r�n1�j�1:

Recall that ın1;t D e
t tn1=n1Š decays very rapidly as n1 !1, thus, ¹ Qqn.t; j /ºn��j

is a Cauchy sequence for every j 2 Z. Denote its limit by Qq.t; �/. Letting n1 D n and
taking the limit in as n2 !C1, we obtain

j Qq.t; j / � Qqn.t; j /j � 6C.�; r/ın;te
2t=r
� r�n�j�1:

Taking r D 1=2 (any other r 2 .0; 1/ will do) and using nŠ �
p
2�n.n=e/n, we get

j Qq.t; j / � Qqn.t; j /j � 6C.�; 1=2/
et tn

nŠ
e4t2nCjC1 D 2jC.�; 1=2/

12e5t
p
2�n

�2et
n

�n
;

where n 2 ZC, j 2 Z, t > 0 are such that nC j � 0, n > t > 0, and ın;t < 1.
It remains to show that Qq.t; j / D q.t; j /, i.e., that Qq solves the Ablowitz–Ladik

equation (1.4) with the initial datum q0. By Theorem 1.7 (6) and Theorem 1.7 (7)
(note that q0 2 G Œı�, because q0 is compactly supported) it is suffices to check that
r Qq D rq , or, equivalently, r Qq D e

it.zC1=z/rq0
.

The sequence Qqn.t; � � n/ is supported on ZC, moreover, we have Qqn.t; j � n/ D
Fn;j .0/ for j 2 ZC. Let us denote the coefficients in (1.5) for q0, Qqn.t; � � n/, by a,
b, and an;0, bn;0, respectively. We have r Qqn.t;��n/ D bn;0=an;0 and Fn;0 D f Qqn.t;��n/ D
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bn;0=an;0, where the equality Fn;0D f Qqn.t;��n/ holds by Lemma 3.4 because the recur-
rence coefficients of Fn;0 coincide with the sequence ¹ Qq.t; j � n/ºj�0. By (3.1), we
also have

z�nbn;0=an;0 D z
�nFn;0 D z

�nGn;t fq0
! eit.zC1=z/fq0

D eit.zC1=z/ Nb=a

uniformly on T . We will now use well-known properties of the coefficients a, b
in (1.5). Namely, the functions a, an;0 are outer, have positive values at z D 0, and sat-
isfy jaj2 � jbj2D 1, jan;0j2 � jbn;0j2D 1 on T (for the proof, see Section 6). The con-
vergence z�nbn;0=an;0 ! eit.zC1=z/ Nb=a then implies jan;0j2 ! jaj2, log jan;0j2 !
log jaj2 uniformly on T ; hence, an;0! a in Lebesgue measure on T by the properties
of outer functions (more precisely, by the weak continuity of the Hilbert transform,
see a discussion next to formula (6.26)). It follows that znbn;0 ! e�it.zC1=z/b in
Lebesgue measure on T . Therefore,

r Qqn.t;�/ D z
nr Qqn.t;��n/ D z

nbn;0=an;0 ! e�it.zC1=z/b=a D e�it.zC1=z/rq.t;�/; (3.3)

in Lebesgue measure on T (the first equality in (3.3) is Theorem 1.7 (3)). On the other
hand, as n!C1, the quantitiesZ

T

log.1 � jr Qqn.t;�/j
2/ dm D

Z
T

log.jan;0j�2/ dm D log jan;0.0/j�2

tend to

log ja.0/j�2 D
Z
T

log.1 � jrqj2/ dm D
Z
T

log.1 � je�it.zC1=z/rqj2/ dm:

Then, taking into account (3.3), we see that r Qqn.t;�/ ! e�it.zC1=z/rq in the metric
space X by Proposition 6.10. Moreover, the quantities

esssupT .jr Qqn.t;�/j
2/ D 1 � esssupT jan;0j

�2

are uniformly separated from 1 because an;0 converge uniformly on T to the bounded
function a. Then continuity of the inverse NLFT map (i.e., Theorem 1.7 (6)) gives us
the convergence of Qqn.t; �/ to F �1sc .e�it.zC1=z/rq/ in a subspace G .ı/, ı 2 .0; 1/, of
the metric space `2.Z;D/. Since the sequence Qqn.t; �/ converges elementwise to Qq.t; �/
as n!C1, we get Qq.t; �/D F �1sc .e�it.zC1=z/rq/ on Z. Then, r Qq.t;�/ D Fsc. Qq.t; �//D

e�it.zC1=z/rq almost everywhere on T , and the proof is completed.

Remark 3.5. In the proof of Theorem 1.6, we have used the fact that (1.4) is solvable
for compactly supported initial data. This can be proved by a variety of methods,
see Appendix A for a direct proof in a much more general situation. Theorem 1.7 (6)
and Theorem 1.7 (7) guarantee that the solution will be determined by its reflection
coefficient rq.t;�/ D e

�it.zC1=z/rq0
at any moment of time t 2 R.
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4. Localization. Proof of Theorem 1.5

The following lemma is well known, see, e.g., [18, (1.3.43)].

Lemma 4.1. Let F;G 2 ��.D/, and let Fk , Gk be their Schur iterates (1.1). Assume
that Fk.0/ D Gk.0/ for 0 � k � n. Then maxjzjDr jF.z/ �G.z/j � 2rnC1.

Lemma 4.2. Let F; G 2 �.D/ be such that min.�.F /; �.G// � � for some � > 0.
Denote by Fk , Gk their Schur iterates (1.1), and consider the solutions of (1.4) with
the initial value

q0;F D

´
Fn.0/; n � 0;

0; n < 0;
q0;G D

´
Gn.0/; n � 0;

0; n < 0:

Denote them by qF and qG , respectively. Then, for every n > t > 0, r 2 .0; 1/, the
inequality

jqF .t; j / � qG.t; j /j � r
�j et=rC.�; r/ sup

jzjDr

jF.z/ �G.z/j;

holds for all j 2 Z. Here C.�; r/ is the function from Theorem 1.2.

Proof. For a function H 2 ��.D/, let us denote by .H/k its Schur iterates (1.1). By
Theorem 1.6, we have

qF .t; j / D lim
n!1

.Gn;tF /nCj .0/; qG.t; j / D lim
n!1

.Gn;tG/nCj .0/; j 2 Z:

Therefore, we can apply Theorem 1.2 and the bound jGn;t j < et=r.rn C 3ın;t / from
Lemma 3.2 to get

jqF .t; j / � qG.t; j /j � lim sup
n!1

j.GnF /nCj .0/ � .GnG/nCj .0/j

� lim sup
n!1

k.Gn;tF /nCj � .Gn;tG/nCj kL2.rT/

� lim sup
n!1

C.�; r/r�n�j kGn;tF �Gn;tGkL2.rT/

� lim sup
n!1

C.�; r/r�j et=r.1C 3ın;tr
�n/ sup
jzjDr

jF.z/ �G.z/j

D r�j et=rC.�; r/ sup
jzjDr

jF.z/ �G.z/j;

where we have the convergence ın;tr�n ! 0 as n!1.

Proof of Theorem 1.5. Recall that q0WZ! D is such thatY
n2Z

.1 � jq0.n/j
2/ � � > 0;
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where the sequence q0;N is defined by

q0;N .n/ D

´
q0.n/; jnj � N;

0; jnj > N;

and qN is the corresponding solution of (1.4) (see Remark 3.5). Let C.�; r/ be the
function from Theorem 1.2. We want to prove the inequality

jqNCK.t; j / � qN .t; j /j �
4et=rC.�; r/

1 � r
rN�jj j; K 2 ZC: (4.1)

Then ¹qN .t; j /º will be a Cauchy sequence for each t; j , and its limit, to be denoted
by q, solves (1.4). This is easy to check if one rewrites (1.4) in the integral form,

qN .T; j / � q0;N .j / D i

TZ
0

.1 � jqN .t; j /j
2/.qN .t; j � 1/C qN .t; j C 1// dt

for T � 0; j 2 Z, fix j 2 Z, and take the limit using the Lebesgue dominated conver-
gence theorem (with majorant 2). Then the relation q0 D limq0;N and the uniqueness
of the solution of (1.4) with a given initial datum q0 give the claim, see Lemma A.2.
Estimate (1.6) will follow from (4.1) by taking the limit as K !C1.

For integer numbers A � B , consider the sequences q0;ŒA;B�, Eq0;ŒA;B� in `2.Z;D/
defined by

q0;ŒA;B�.j / D q0.j C A/1Œ0;B�A�.j /; Eq0;ŒA;B�.j / D q0.�j C B/1Œ0;B�A�.j /;

where 1S is the indicator function of a set S . These sequences, both supported on
Œ0; B � A� and their entries, are symmetric on this segment. Denote the correspond-
ing solutions of (1.4) by qŒA;B� and EqŒA;B�. By the properties of (1.4), the symmetry
relation

qŒA;B�.t; j / D EqŒA;B�.t; B � A � j /; t 2 R; j 2 Z; (4.2)

holds for each t 2 R. Moreover, comparing this with the definition of qN , we see
that qN .t; j / D qŒ�N;N�.t; j C N/. Inequality (4.1) will follow by summing up a
telescoping series if we check the estimate

jqN .t; j / � qNC1.t; j /j � 4C.�; r/e
t=rrN�jj j; N � jj j:

In the new notation, the latter takes the form

jqŒ�N;N�.t; j CN/ � qŒ�N�1;NC1�.t; j CN C 1/j � 4C.�; r/e
t=rrN�jj j; (4.3)
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where, again,N � jj j. ForA� B let fŒA;B� and Ef ŒA;B� be the Schur functions whose
recurrence coefficients are q0;ŒA;B� jZC and Eq0;ŒA;B� jZC respectively. The Schur func-
tions fŒ�N;N�, fŒ�N;NC1� have the same first 2N C 1 Schur coefficients. Hence, by
Lemmas 4.1 and 4.2 we get

jqŒ�N;N�.t; n/ � qŒ�N;NC1�.t; n/j � r
�nC.�; r/et=r sup

jzjDr

j.fŒ�N;N� � fŒ�N;NC1�/.z/j

� 2C.�; r/et=rr2N�nC1;

for all n � 0. Similarly, the functions Ef Œ�N;NC1� and Ef Œ�N�1;NC1� have coinciding
first 2N C 1 Schur coefficients; therefore,

j EqŒ�N;NC1�.t; n/ � EqŒ�N�1;NC1�.t; n/j � 2C.�; r/e
t=rr2N�nC1; n � 0: (4.4)

Notice that

jqŒ�N;N�.t; n/ � qŒ�N�1;NC1�.t; nC 1/j

� jqŒ�N;N�.t; n/ � qŒ�N;NC1�.t; n/j C jqŒ�N;NC1�.t; n/ � qŒ�N�1;NC1�.t; nC 1/j

� 2C.�; r/et=rr2N�nC1 C jqŒ�N;NC1�.t; n/ � qŒ�N�1;NC1�.t; nC 1/j:

By relation (4.2), the last term equals

j EqŒ�N;NC1�.t; 2N C 1 � n/ � EqŒ�N�1;NC1�.t; 2N C 1 � n/j

which does not exceed

� � � � 2C.�; r/et=rr2N�.2NC1�n/C1 D 2C.�; r/et=rrn;

where we used (4.4) in the first inequality. Therefore, we have

jqŒ�N;N�.t; n/ � qŒ�N�1;NC1�.t; nC 1/j � 2C.�; r/e
t=r.r2N�nC1 C rn/:

Substituting n D j CN then gives

jqŒ�N;N�.t; j CN/ � qŒ�N�1;NC1�.t; j CN C 1/j

� 2C.�; r/et=r.rN�jC1 C rjCN /

� 4C.�; r/et=rrN�jj j;

which is (4.3).
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5. Complexity of the algorithm

In the introduction, we claimed that the algorithm in Section 1.5 takes O.n log2 n/
operations for n D t C log "�1. Here we prove this estimate.

Let q0 2 `2.Z;D/ be such that
Q
n2Z.1 � jq0.n/j

2/ � � > 0, and let t > 0. Take
" 2 .0; 1/, set r D 1=2, and chooseN 2 ZC such that the right-hand side in (1.6) does
not exceed "=2 at j D 0:

8e2tC
�
�;
1

2

�
2�N �

1

2
"; C

�
�;
1

2

�
D exp

�
17 log ��1 �

�
2C

1

1 �
p
1 � �

��
:

Since 8e2tC.�; 1=2/2�N � 2�NC4C3tC.�; 1=2/=2, one can take any N � 5C Œ3t C
log2.C.�; 1=2/="/�. Then, choose the window�D Œn0 �N;n0 CN�, truncate q0 by
setting q0 D 0 on Z n �, and shift q0 by n0 � N to make it supported in Œ0; 2N �.
Denote the resulting sequence by q0;Œn0�N;n0CN�. Choose n > t so that ın;t < 1 and

2jC.�; 1=2/
12e5t
p
2�n

�2et
n

�n
�
"

2
; j D N:

Since we already have 8e2tC.�; 1=2/2�N � "=2, it suffices to choose n so that

22N e3t
12

8
p
2�n

�2et
n

�n
� 1:

For n � 2N � 8et � 5t , we have

22N e3t
12

8
p
2�n

�2et
n

�n
� 22NC5t

�2et
n

�n
� 25t

�2et
N

�2N
�

�4et
N

�2N
� 1;

therefore, one can take nD 2N ,N D 5C Œ4et C log2.C.�; 1=2/="/�. Note that, with
this choice,

ın;t D
tnet

nŠ
�

� te
n

�n
et �

� te2
n

�n
�

�8et
2N

�n
< 1:

We see that, for n D 2N , N D 5C Œ4et C log2.C.�; 1=2/="/�, Theorem 1.6 applied
to the sequence q0;Œn0�N;n0CN� in place of q0 will give a sequence Qqn approximating
the corresponding solution qŒn0�N;n0CN� with accuracy

j Qqn.t; N / � qŒn0�N;n0CN�.t; N /j �
"

2
:

Then j Qqn.t;N C 1/� q.t;n0/j< " and it remains to estimate the number of operations
that are needed to construct Qqn.t; N / from q0 for n D 2N .

Having q0, t0, n0, ", �, we setN D 5C Œ4et C log2C.�; 1=2/="� and define array
q0;Œn0�N;n0CN� of 2N C 1 elements. Then we use formula (1.5) to find a, b. This can
be done either by a direct multiplication of 2N C 1 matrices in O.N 2/ operations or
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by using a dyadic divide-and-conquer multiplication algorithm together with the fast
Fourier transform (FFT) in O.N log2N/ operations. Next, we define the coefficients
of the polynomials P D Gn;t Nb and Q D a (two arrays of length 2nC 1C 2N C 1
and 2N C 1, respectively). This takes O.N 2/ operations in the naive realization of
multiplications of polynomials orO.N logN/ operations with FFT. Taking nCN C
1 steps of Schur’s algorithm for P=Q, we find Qqn.t; j / on Œ0; N �, which solves the
problem. A straightforward realization of Schur’s algorithm based on its definition
requires O.N 2/ D O.n2/ operations (recall that n D log "�1 C t ). This could be
improved to O.n log2 n/ operations with a refined realization, see [4, Section 2.2].
Notice that the numerical experiments in [4] use arithmetic of real numbers, while
the complexity estimate O.n log2 n/ given on [4, p. 192] holds for complex data.
As the reader can see from the algorithm, the same O.n log2 n/ operations (with
worse constant) are sufficient to find Qqn.t;N / on Œ0; 2N � and approximate q.t; �/ with
accuracy " on the interval Œn0 � N=2; n0 C N=2�, not just at the point n0. It is also
worth mentioning that the question of numerical stability (in our case – estimating
round-off errors and taking into account issues related to arithmetic of long numbers)
deserves a special consideration, it is neither treated in [4] nor in this paper.

Let us present some numerical results comparing our algorithm with the classical
Runge–Kutta RK4 scheme, described, e.g., [6, Section 6.10]. Here is the computa-
tional setup: we consider q0 on Œ�100; 100�, where q0.n/ for jnj � 100 is chosen
uniformly randomly in D, and normalise it by constant to haveY

jnj�100

.1 � jq0.n/j
2/ D 0:96:

Then we find the smallest number of arithmetic operations needed to compute the
approximate solution Qq of (1.4) on Œ�5; 5� with the given relative accuracy

" D

P
jj j�5 j Qq.t; j / � q.t; j /jP

jj j�5 jq.t; j /j

by the Runge–Kutta method and our method in theO.n2/ realization (without the fast
Schur algorithm and the FFT polynomial multiplication). Denoting this smallest num-
ber of operations byNRK4.t; "/ andNGn;t

.t; "/, correspondingly, we then compute the
ratio r.t; "/ D NGn;t

.t; "/=NRK4.t; "/. When we find NRK4.t; "/ and NGn;t
.t; "/, the

parameters of the algorithms are optimised: for the RK4 scheme, we optimised the
step size �t and the size of the window containing Œ�5; 5� to perform the numerical
scheme. In our algorithm, we optimise n (the degree of multiplier Gn;t ) and the size
of the window (i.e., the numberN from Section 1.5). Table 1 provides r.t; "/ for some
values of t and ". The table shows that the proposed algorithm works faster for larger
values of t and smaller values of ".
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t

"
10�5 10�6 10�7 10�8 10�9

1 1.15 0.89 0.63 0.38 0.22
2 0.90 0.48 0.32 0.20 0.11
3 0.79 0.46 0.25 0.15 0.09
4 0.61 0.35 0.22 0.11 0.07
5 0.59 0.33 0.19 0.11 0.06
6 0.53 0.31 0.18 0.09 0.06
7 0.50 0.29 0.16 0.09 0.05
8 0.49 0.29 0.16 0.09 0.05
9 0.48 0.25 0.14 0.08 0.05

10 0.40 0.24 0.13 0.07 0.04

Table 1. Comparison of the RK4 scheme and the proposed algorithm. The table contains
r.t; "/ D NGn;t

.t; "/=NRK4.t; "/, the average values for 30 random initial data q0.

6. The nonlinear Fourier transform. Proof of Theorem 1.7

In this section we collect some basic facts about the nonlinear Fourier transform,
NLFT. Some of them were used in the first part of the paper. The reader can find more
information in the preprint [23] or in its extended version [24].

The exposition in this section is independent from the first part of the paper. Let us
recall the definition of the NLFT map for the reader’s convenience. For p � 1, define
`p.Z;D/ as a set of sequences qWZ! D satisfying jq.n/j < 1 for every n 2 Z andP
n2Z jq.n/j

p <1. The set `p.ZC;D/ is defined similarly with ZC DZ\ Œ0;C1/.
Take a sequence q 2 `1.Z;D/ and define a, b by�

a b
Nb Na

�
D

Y
k2Z

1p
1 � jq.k/j2

�

�
1 q.k/z�k

q.k/zk 1

�
; z 2 T : (6.1)

Here, the product
Q
k2Z Tk of matrices Tk is understood as the limit

lim
n!C1

T�nT�nC1 � � � � � Tn�1Tn:

Assumption q 2 `1.Z;D/ guarantees that the product converges uniformly on T . We
will see in Section 6.2 that the product in (6.1) has the form

�
a b
Nb Na

�
for some a, b. The

authors of [23] define NLFT as the map that sends q to the pair .a b/. We will use
an equivalent definition and consider the so-called reflection coefficient rq D b=a in
place of .a b/. So, in our case, NLFT takes q into rq . In the next two subsections we
define the reflection coefficient as an object of the theory of orthogonal polynomials
on the unit circle. We also prove the equivalence of the two definitions of NLFT map.
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6.1. Szegő measures and Szegő functions

Let � be a probability measure supported on an infinite subset of the unit circle T D

¹z 2 C W jzj D 1º of the complex plane, C. For n 2 ZC, denote by ˆn the monic
orthogonal polynomial of degree n generated by �, and set ˆ�n D z

nˆn.1= Nz/. These
polynomials satisfy the following relation:

ˆnC1 D zˆn � N̨nˆ
�
n; n � 0; ˆ0 D 1; (6.2)

where the recurrence coefficients, ˛n, n � 0, lie in the open unit disk D D ¹z 2 C W

jzj < 1º. Conversely, any sequence ¹˛nºn�0 � D gives rise to a unique probability
measure � on T whose closed support supp� contains infinitely many points. These
two facts can be found in [18, Section 1.7]. The Schur function f of a probability
measure � on T is defined by

1C zf .z/

1 � zf .z/
D

Z
T

1C N�z

1 � N�z
d�.�/; z 2 D: (6.3)

Notice that (6.3) provides a bijective correspondence between Schur functions and
measures on T . Taking the real part on both sides of this equality, we get

1 � jzf .z/j2

j1 � zf .z/j2
D

Z
T

1 � jzj2

j1 � N�zj2
d�.�/; z 2 D: (6.4)

From (6.3), (6.4), and the Schwarz lemma, we see that f indeed belongs to the Schur
class �.D/, i.e., it is analytic in D and satisfies supz2D jf .z/j � 1. Recall that the
Schur iterates of f D f0 are defined by

zfnC1 D
fn � fn.0/

1 � fn.0/fn
; n � 0: (6.5)

Geronimus’s theorem says that the recurrence coefficients ˛n in (6.2) coincide with
the recurrence coefficients in Schur’s algorithm: ˛n D fn.0/, n � 0. See [18, Chapter
3] for the proof.

Let � D w dmC �s be the Radon–Nikodym decomposition of � into the abso-
lutely continuous the and singular parts, where m is the Lebesgue measure on T

normalised by m.T / D 1. Denote by ¹˛nº the set of recurrence coefficients of the
measure � and let f be its Schur function. An extended version of Szegő theorem
(Theorem 1.1) says that the conditions logw 2L1.T /, log.1� jf j2/2L1.T /, ¹˛nº 2
`2.ZC;D/ are equivalent, and, moreover,Z

T

logw.�/ dm.�/ D
Z
T

log.1 � jf .�/j2/ dm.�/ D log
Y
n�0

.1 � j˛nj
2/: (6.6)
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It is not difficult to see that the three quantities in (6.6) are defined for any triple �,
f , ¹˛nº, but could be �1. In fact, Szegő theorem implies that the quantities in (6.6)
are either finite (i.e., > �1) or not simultaneously. The measures of Szegő class

Sz.T / D ¹� D w dmC �s W �.T / D 1; logw 2 L1.T /º

and their orthogonal polynomials have many interesting properties that constitute the
rich Szegő theory. We will use the part of this theory related to discrete scattering. For
this, we will need the notion of the dual orthogonality measure, the Szegő function,
and the dual Szegő function.

Consider a probability measure � on T with infinite support. Let, as before, f
denote the Schur function of �. The dual measure �d is defined as the probability
measure on T corresponding to the Schur function �f :Z

T

1C N�z

1 � N�z
d�d .�/ D

1C zfd .z/

1 � zfd .z/
D
1 � zf .z/

1C zf .z/
; z 2 D:

It is not difficult to check that if ¹˛nºn�0 is the sequence of the recurrence coef-
ficients of �, then ¹�˛nºn�0 is the sequence of the recurrence coefficients of �d .
Monic orthogonal polynomials for �d will be denoted by ‰n. We will also need the
normalised orthogonal polynomials for � and �d :

'n D
ˆn

kˆnkL2.�/

; '�n D
ˆ�n

kˆ�nkL2.�/

;

 n D
‰n

k‰nkL2.�d /

;  �n D
‰�n

k‰�nkL2.�d /

:

(6.7)

In fact,

kˆnk
2
L2.�/

D kˆ�nk
2
L2.�/

D k‰nk
2
L2.�d /

D k‰�nk
2
L2.�d /

D

n�1Y
kD0

.1 � j˛kj
2/; (6.8)

for all n � 1, see [18, Chapter 3.2]. The Szegő function D� of a measure � D
w dm C �s from Szegő class Sz.T / is the outer function in the open unit disk D

such that D�.0/ > 0 and jD�j2 D w Lebesgue almost everywhere on T in the sense
of nontangential boundary values. It can be defined by the formula

D�.z/ D exp
�1
2

Z
T

1C N�z

1 � N�z
logw.�/ dm.�/

�
; z 2 D: (6.9)

It follows from the Szegő theorem (see (6.6)) that � 2 Sz.T / if and only if �d 2
Sz.T /. We will denote the Szegő function of �d byD�d

. It is known that '�n !D�1� ,
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 �n ! D�1�d
as n!1 in D, and

1C zf

1 � zf
D lim
n!1

‰�n.z/

ˆ�n.z/
D lim
n!1

 �n .z/

'�n.z/
D
D�1�d

.z/

D�1� .z/
; z 2 D; (6.10)

see [18, Theorem 2.4.1 and Chapter 3.2]. In particular, we have

Re.D�1�d
D�1� / D Re

�D�1�d

D�1�

�
jD�j

�2
D
1 � jzf j2

j1 � zf j2
jD�j

�2
D wjD�j

�2
D 1 (6.11)

almost everywhere on T in the sense of non-tangential boundary values.

6.2. Reflection coefficients

Let us now define a reflection coefficient of a sequence q in `2.Z;D/. To simplify the
notation, we set qn D q.n/, n 2 Z. Consider the sequences ¹˛nºn2ZC and ¹ˇnºn2ZC

from `2.ZC;D/ defined by ˛n D qn, for n � 0 and ˇ0 D 0, ˇn D �q�n for n � 1,

˛0 ˛1 ˛2 ˛3 : : :

: : : q�3 q�2 q�1 q0 q1 q2 q3 : : :

: : : �ˇ3 �ˇ2 �ˇ1 0:

(6.12)

Define the measures �C, �� with the recurrence coefficients ¹˛nºn�0, ¹ˇnºn�0,
respectively. Let also �˙

d
be the dual measures corresponding to �˙. Define the Wall

analytic functions in D by

a˙ D

D�1
�˙

d

CD�1
�˙

2
; b˙ D

D�1
�˙

d

�D�1
�˙

2z
: (6.13)

The fact that D�1
�˙

d

.0/ D D�1
�˙
.0/ follows from (6.10). Using (6.11), we obtain

ja˙j2 � jb˙j2 D Re.D�1
�˙

d

D�1
�˙
/ D 1

Lebesgue almost everywhere on T in the sense of non-tangential boundary values.
Also, we have

1C z b˙

a˙

1 � z b˙

a˙

D

D�1
�˙

d

.z/

D�1
�˙
.z/
D
1C zf ˙

1 � zf ˙
;

for the Schur functions f ˙ of �˙; hence, f ˙ D b˙=a˙. On T , we set

a D aCa� � bCb�; b D a�bC � b�aC: (6.14)

Below we will use the fact that a is defined by (6.14) not only on T but also on D

and is analytic there. Note that jaj2 � jbj2 D .jaCj2 � jbCj2/.ja�j2 � jb�j2/ D 1
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almost everywhere on T . Next, define the reflection coefficient, rq , of the sequence
q D ¹qnºn2Z in `2.Z;D/ by

rq D
b

a
: (6.15)

It is possible to associate with q an operator on `2.Z/˚ `2.Z/ in a way that will place
the reflection coefficient rq into the setting of a discrete scattering theory, see [24]. Our
first proposition collects the properties of objects defined in the present section.

Proposition 6.1. For every q 2 `2.Z;D/ the functions a;a˙ are outer, a.0/ > 0. The
reflection coefficient rq D b=a of q belongs to the unit ball of L1.T /. It is completely
determined by b, and, conversely, it determines the pair a, b uniquely.

Proof. By definition and (6.10), we have

a˙ D
1

2
D�1� �

�
1C

1C zf ˙

1 � zf ˙

�
;

a D aCa�
�
1 �

bCb�

aCa�

�
D aCa�.1 � f Cf �/:

(6.16)

We know that D�1� =2 is outer and that both 1 C .1C zf ˙/=.1 � zf ˙/ and 1 �
f Cf � are analytic in D and have positive real part; hence, they are also outer,
see [8, Corollary 4.8]. Therefore, a˙, a are outer as the products of outer func-
tions. Next,D

�˙
d

.0/ D D�˙.0/ > 0; hence, the a˙.0/ are real and positive. We have
ˇ0 D 0, therefore f �.0/ D 0 (recall Schur’s algorithm (1.1)) and b�.0/ D 0. Thus,
a.0/ D aC.0/a�.0/ > 0. From (6.15), we have

1 � jrqj
2
D
jaj2 � jbj2

jaj2
D

1

jaj2
� 0 (6.17)

almost everywhere on T . In particular, rq belongs to the unit ball of L1.T /. We
proved that a is outer; hence, it is completely defined by jaj. Therefore, knowing the
coefficient b, one can recover jaj D

p
1C jbj2 and a. In particular, the numerator

b determines the whole fraction rq D b=a. Conversely, if the function rq is given,
then jaj is defined by (6.17); hence, the pair a, b could be found from the fraction
rq D b=a.

The next proposition shows that (6.1) makes sense for all q 2 `2.Z;D/, and,
moreover, the definitions of a, b in (6.14), (6.1) are equivalent.

Proposition 6.2. For every q 2 `2.Z;D/, the product in (6.1) converges in Lebesgue
measure on T . Moreover, the functions a, b in (6.1) coincide with those in (6.14).
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Proof. Denote by ˆ˙;n, ‰˙;n the monic orthogonal polynomials of �˙ and �˙
d

,
and let '˙;n,  ˙;n be the corresponding normalised polynomials, see (6.7). For each
n � 0, z 2 T , we have

nY
kD0

1p
1 � j˛kj2

�

nY
kD0

�
1 ˛k Nz

k

˛kz
k 1

�
D

� �
C;nC1

C'�
C;nC1

2

 �
C;nC1

�'�
C;nC1

2z

 �
C;nC1

�'�
C;nC1

2z

 �
C;nC1

C'�
C;nC1

2

�
:

The proof is a routine verification of the identity� �
C;nC1

C'�
C;nC1

2

 �
C;nC1

�'�
C;nC1

2z

 �
C;nC1

�'�
C;nC1

2z

 �
C;nC1

C'�
C;nC1

2

�

D

� �
C;n
C'�
C;n

2

 �
C;n
�'�
C;n

2z

 �
C;n
�'�
C;n

2z

 �
C;n
C'�
C;n

2

�
1p

1 � j˛nj2
�

�
1 ˛n Nz

n

˛nz
n 1

�
;

using relations (6.2) and (6.8). It is known that

'�˙;n ! D�1
�˙
;  �˙;n ! D�1

�˙
d

in Lebesgue measure on T , see [18, (2.4.34)]. Therefore, we have

1Y
kD0

1p
1 � jqkj2

�

1Y
kD0

�
1 qk Nz

k

qkz
k 1

�
D

1Y
kD0

1p
1 � j˛kj2

�

1Y
kD0

�
1 ˛k Nz

k

˛kz
k 1

�
D

�
aC bC

bC aC

�
; (6.18)

where the product converges in Lebesgue measure on T . Recall that ˇk D �q�k for
k � 1, ˇ0 D 0. We have� �1Y

kD�n

1p
1 � jqkj2

�

�1Y
kD�n

�
1 qk Nz

k

qkz
k 1

���1
D

nY
kD0

�
1p

1 � jˇkj2

�
1 �ˇkz

k

�ˇk Nz
k 1

���1
D

nY
kD0

1p
1 � jˇkj2

�

nY
kD0

�
1 ˇkz

k

ˇk Nz
k 1

�
:
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Note that for each k � 0 we have

j0

�
1 ˇkz

k

ˇk Nz
k 1

�
j0 D

�
1 ˇk Nz

k

ˇkz
k 1

�
; j0 D

�
0 1

1 0

�
;

and ¹ˇkºk�0 coincides with the sequence of recurrence coefficients of ��. So, we
obtain

j0

� �1Y
kD�n

1p
1 � jqkj2

�

�1Y
kD�n

�
1 qk Nz

k

qkz
k 1

���1
j0 !

�
a� b�

b� a�

�
;

where the convergence is in Lebesgue measure on T . Equating the determinats on
both sides of the above formula, we get ja�j2 � jb�j2 D 1. Taking the inverses, we
then obtain

�1Y
kD�1

1p
1 � jqkj2

�

�1Y
kD�1

�
1 qk Nz

k

qkz
k 1

�
D j0

�
a� �b�

�b� a�

�
j0 D

�
a� �b�

�b� a�

�
:

Eventually, we get

1Y
kD�1

1p
1 � jqkj2

�

1Y
kD�1

�
1 qk Nz

k

qkz
k 1

�
D

�
a� �b�

�b� a�

��
aC bC

bC aC

�
D

�
a b

acb Na

�
;

with a D aCa� � bCb�, b D a�bC � b�aC, as claimed.

We can now prove Lemma 3.4 from Section 3.

Proof of Lemma 3.4. Propositions 6.2 and 6.1 imply that the definitions of a, b in (1.5)
and (6.14) are equivalent. Note that, for q 2 `2.Z;D/ with supp q � ZC, we have
a� D 1;b� D 0; hence,

fq D
Nb

a
D

bC

aC
D f C:

In particular, the recurrence coefficients of fq coincide with those of f C, �C, i.e.,
with the sequence ¹q.k/ºk2ZC .

Proposition 6.3. We have
rq.��n/ D z

�nrq

for every compactly supported q 2 `2.Z;D/ and n 2 Z.
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Proof. The product Y
k2Z

�
1 q.k � n/z�k

q.k � n/zk 1

�
can be written in the form

� � � D

Y
k2Z

�
1 0

0 zn

��
1 q.k � n/z�.k�n/

q.k � n/zk�n 1

��
1 0

0 z�n

�
D

�
1 0

0 zn

�� Y
k2Z

�
1 q.k � n/z�.k�n/

q.k � n/zk�n 1

���
1 0

0 z�n

�
D

�
1 0

0 zn

��
a b
Nb Na

��
1 0

0 z�n

�
D

�
a bz�n

Nbzn Na

�
:

Hence, rq.��n/ D bz
�n=a D z�nrq by (6.15) and Proposition 6.2.

Proposition 6.4. There are q1 ¤ q2 in `2.Z;D/ such that rq1
D rq2

.

Proof. Following [23], let us consider an imaginary-valued function b on T of Smir-
nov class in the unit disk. One can take, say, b D .1C z/=.1 � z/. Let a be the outer
function in D such that jaj2 � jbj2 D 1 almost everywhere on T . The function f D
b=a is a Schur function of Szegő class. Indeed, log.1 � jf j2/ D log jaj�2 belongs to
L1.T /. Therefore, we can define the sequences q1; Qq2 2 `2.Z;D/ by

n W : : : �3 �2 �1 0 1 2 : : :

q1 D . : : : 0; 0; 0; f0.0/; f1.0/; f2.0/; : : : /;

Qq2 D . : : : �f2.0/; �f1.0/; �f0.0/; 0; 0; 0; : : : /:

For these sequences, we have

aCq1
D a; bCq1

D b; a�q1
D 1; b�q1

D 0; aC
Qq2
D 1; bC

Qq2
D 0:

Furthermore, from the proof of Proposition 6.3, we obtain b�
Qq2
D zb and a�

Qq2
D a.

Therefore,

aq1
D a � 1 � b � 0 D a; bq1

D 1 � Nb � 0 � Na D Nb;

a Qq2
D 1 � a � 0 � zb D a; b Qq2

D a � N0 � zb � N1 D �zb:

Then rq1
D Nb=a, r Qq2

D�zb=a, and, since bD�Nb, we have rq1
D zr Qq2

almost every-
where on T . Note that zr Qq2

D r Qq2.�C1/ by Proposition 6.3. Now, set q2 D Qq2.� C 1/
and observe that rq1

D rq2
, while q1, q2 are supported on disjoint subsets of Z, so

q1 ¤ q2.
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Proposition 6.5. For every q 2 `2.Z;D/, we haveZ
T

log.1 � jrqj2/ dm D � log ja.0/j2 D log
Y
n2Z

.1 � jq.n/j2/: (6.19)

Proof. Take a sequence q in `2.Z;D/ and define ¹˛nº, ¹ˇnº, �˙, a˙, b˙, f ˙, a and
b as in the beginning of Section 6.2. From (6.17) and the mean value theorem, we getZ

T

log.1 � jrqj2/ dm D �
Z
T

log jaj2 dm D � log ja.0/j2:

In the proof of Proposition 6.1 we established a.0/D aC.0/a�.0/DD�1
�C
.0/D�1��.0/.

Let w˙ be the densities of the a.c. parts �˙ with respect to the Lebesgue measure
on T ; then, from formula (6.9) and the Szegő theorem (6.6), it follows that

� log a.0/2 D
Z
T

logwC.�/ dm.�/C
Z
T

logw�.�/ dm.�/

D log
Y
n�0

.1 � j˛nj
2/C log

Y
n�0

.1 � jˇnj
2/ D log

Y
n2Z

.1 � jqnj
2/;

as claimed.

Proposition 6.6. For every q 2 `2.Z;D/, the functions a˙=a, b˙=a belong to the
unit ball of the Hardy class H 2.D/.

Proof. Since a, a˙ are outer in D and b˙ are in the Smirnov class (see (6.13)), we
need to show only that a˙=a belong to the unit ball of L2.T /. Denote, as before,
f ˙ D b˙=a˙, and recall that f ˙ are Schur functions. The function

h D
1 � jf �f Cj2

j1 � f �f Cj2
D Re

�1C f �f C
1 � f �f C

�
is positive and harmonic in D, therefore, it coincides with the Poisson integral of a
finite positive Borel measure on T . Moreover, h is equal to the density of the abso-
lutely continuous part of that measure almost everywhere on T . Hence, h 2 L1.T /
(we borrowed this trick from [23]) and

khkL1.T/ D

Z
T

1 � jf �f Cj2

j1 � f �f Cj2
dm D Re

�1C f �.0/f C.0/
1 � f �.0/f C.0/

�
D 1;

because f �.0/ D 0. On the other hand, by (6.16) we have

1

ja˙j2
D 1 �

jb˙j2

ja˙j2
D 1 � jf ˙j2;

1

jaj2
D
.1 � jf Cj2/.1 � jf �j2/

j1 � f Cf �j2
:
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almost everywhere on T . This gives usˇ̌̌a˙
a

ˇ̌̌2
D

.1 � jf Cj2/.1 � jf �j2/

.1 � jf ˙j2/j1 � f Cf �j2
D

1 � jf �j2

j1 � f Cf �j2
�
1 � jf �f Cj2

j1 � f �f Cj2
D h:

Therefore, ka˙=ak2
L2.T/

� khkL1.T/ D 1, as claimed.

The authors are grateful to S. Denisov for the argument based on (6.21) in the
proof of proposition below.

Proposition 6.7. Suppose q1; q2 2 `2.Z;D/ are such that rq1
D rq2

. If we suppose
krq1;2

kL1.T/ < 1, then q1 D q2.

Proof. Let a1;2, b1;2 be the coefficients in (6.14) corresponding to rq1
, rq2

, respect-
ively. By Proposition 6.1, we have a1 D a2, b1 D b2, so we denote aD a1;2, b D b1;2.
Then (6.14) gives four identities

a D aC
k

a�k � bC
k

b�k ; b D a�k bC
k
� b�k aC

k
; k D 1; 2;

for the functions a˙1;2, b˙1;2 corresponding to q1, q2. Some simple algebra yields�
aC
k

bC
k

b�
k

a�
k

��
aC
k
�b�

k

�bC
k

a�
k

�
D

�
jaC
k
j2 � jbC

k
j2 �aC

k
b�
k
C bC

k
a�
k

b�
k

aC
k
� a�

k
bC
k

ja�
k
j2 � jb�

k
j2

�
D

�
1 Nb

�b 1

�
;

(6.20)
almost everywhere on T for k D 1; 2. In particular, we have�

aC1 bC1
b�1 a�1

��
aC1 �b�1
�bC1 a�1

�
D

�
aC2 bC2
b�2 a�2

��
aC2 �b�2
�bC2 a�2

�
:

Inverting the matrices in the last equation, we obtain�
aC2 bC2
b�2 a�2

��1�
aC1 bC1
b�1 a�1

�
D

�
aC2 �b�2
�bC2 a�2

��
aC1 �b�1
�bC1 a�1

��1
;

I ´
1

a

�
a�2 �bC2
�b�2 aC2

��
aC1 bC1
b�1 a�1

�
D
1

a

�
aC2 �b�2
�bC2 a�2

��
a�1 b�1
bC1 aC1

�
: (6.21)

Equating the .1; 1/ matrix elements in this identity, we get

aC1 a�2 � b�1 bC2
a

D

�aC2 a�1 � b�2 bC1
a

�
:

Formula (6.17) and our assumption krq1;2
kL1.T/ < 1 imply that a 2 H1.D/. We

now see from Proposition 6.6 that the functions

F1 D
aC1 a�2 � b�1 bC2

a
; F2 D

aC2 a�1 � b�2 bC1
a
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belong to the Hardy space H 1.D/. Therefore, F1 and F2 are constant functions and

F2 D F1 D F1.0/ D
aC1 .0/a

�
2 .0/ � b�1 .0/b

C
2 .0/

a.0/
D
a.0/

a.0/
D 1:

In other words, the .1; 1/ coefficient of the matrix I in (6.21) is 1. Note that it coin-
cides with the .2; 2/ coefficient of I . Similarly, we use b˙1 .0/D b˙2 .0/D 0 and prove
that the .1; 2/, .2; 1/ coefficients of I are 0 thus getting

1

a

�
a�2 �bC2
�b�2 aC2

��
aC1 bC1
b�1 a�1

�
D

�
1 0

0 1

�
;

which is equivalent to �
aC1 bC1
b�1 a�1

�
D

�
aC2 bC2
b�2 a�2

�
:

It follows that f ˙1 D f
˙
2 , which, in turn, is equivalent to q1 D q2 on Z, because the

recurrence coefficients of f ˙1;2 determine completely q1;2 on Z˙, see the beginning of
Section 6.2.

6.3. Convergence in the space X

We first prove a version of the Sylvester–Winebrenner theorem [21] for Schur func-
tions. We stated it as Theorem 1.3 in the introduction. Let us repeat it here.

Theorem 6.8 (Sylvester–Winebrenner theorem). The mapping f 7! ¹fn.0/ºn�0 that
takes a Schur function into the sequence of its recurrence coefficients is a homeo-
morphism from the metric spaceXC D ¹f 2 ��.D/ W �.F / > 0º with the metric given
by

�s.f; g/
2
D �

Z
T

log
�
1 �

ˇ̌̌ f � g
1 � Nfg

ˇ̌̌2�
dm

onto the metric space `2.ZC;D/ of the square summable sequences qWZC! D with
the metric kq � Qqk2

`2 D
P
n2ZC

jq.n/ � Qq.n/j2.

Proof. Assume that fn; f 2 XC are such that �s.fn; f / ! 0. Let qn, q be the
sequences of recurrence coefficients of fn, f , respectively. By the Szegő theorem,
we have qn; q 2 `2.ZC;D/, and, moreover,

� log
Y
k�0

.1 � jqn.k/j
2/ D �s.fn; 0/! �s.f; 0/ D � log

Y
k�0

.1 � jq.k/j2/:

The convergence qn ! q in `2.ZC;D/ will follow if we check that qn.k/! q.k/

for each k 2 ZC (indeed, we then have
P
k�N jqn.k/j

2! 0 as N !C1 uniformly
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in n 2 ZC). To this end, note that the assumption �s.fn; f / ! 0 implies that the
sequence ¹fnº converges to f in the Lebesgue measure on T , and, since jfnj � 1,
jf j � 1 on T , the functions fn converge to f uniformly on compacts in D. Now,
the fact that qn.k/ D .fn/k.0/ tends to .f /k.0/ D q.k/ as n! C1 for every k 2
ZC follows from the Schur’s algorithm (6.5). We see that the mapping f 7! q is
continuous from XC to `2.ZC;D/.

Turning to the inverse mapping, we introduce the quantities (see [21])

E.f; g/ D �

Z
T

log.1 � Nfg/ dm; E.f / D E.f; f /: (6.22)

We have

1 �
ˇ̌̌ f � g
1 � Nfg

ˇ̌̌2
D
.1 � jf j2/ � .1 � jgj2/

j1 � Nfgj2
I

hence,

�s.f; g/
2
D E.f /CE.g/ � 2ReE.f; g/: (6.23)

Suppose that qn;q are sequences in `2.ZC;D/ such that qn! q in `2.ZC;D/. Denote
by fn, f the Schur functions corresponding to these sequences. We have fn; f 2 XC
by the Szegő theorem, see (6.6). Let us prove that �s.fn; f /! 0 as n!C1. Since
E.fn/ ! E.f / by the Szegő theorem, relation (6.23) shows that we only need to
check that E.fn; f /! E.f; f /. We have

E.fn; f / D �

Z
T

X
k�0

. Nfnf /
k

k
dm D �

Z
T

NX
kD1

. Nfnf /
k

k
dm �

Z
T

1X
kDNC1

. Nfnf /
k

k
dm;

and ˇ̌̌̌ Z
T

1X
kDNC1

. Nfnf /
k

k
dm

ˇ̌̌̌
�

Z
T

1X
kDNC1

j Nfnf j
k

k
dm �

Z
T

1X
kDNC1

jf jk

k
dm;

which tends to zero as N ! C1 by the Lebesgue dominated convergence theorem
(the majorant is log.1=.1 � jf j// 2 L1.T /). Next, let us show that, for each k 2 ZC,
we have Z

T

. Nfnf /
k dm!

Z
T

jf j2k dm; n!C1: (6.24)

The first m Taylor coefficients of f are polynomials in q.0/; q.0/; : : : ; q.m � 1/;
q.m � 1/ and similarly for fn, see [18, (1.13.48) in Section 1.3]. Hence, the Taylor
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coefficients of f kn tend to those of f k as n!1. Rewrite the quantity in (6.24) asZ
T

. Nfnf /
k dm D

1X
mD0

cm.f kn /cm.f
k/

D

MX
mD0

cm.f kn /cm.f
k/C

1X
mDMC1

cm.f kn /cm.f
k/:

The second sum can be estimated using the Cauchy inequality by

kf kn k
2
H2.D/ �

� 1X
mDMC1

jcm.f
k/j2

�
�

1X
mDMC1

jcm.f
k/j2;

because f kn 2�.D/ and consequently kf kn k
2
H2.D/

� 1. Hence, it tends to 0 asM!1.
The first sum tends to

PM
mD0 jcm.f

k/j2 as n!1 and (6.24) follows. Relation (6.24)
shows thatE.fn; f /! 0, �s.fn; f /! 0, and thus the mapping q 7! f is continuous
from `2.ZC;D/ to the metric space XC.

The following lemma is elementary. It is known as Scheffé’s lemma, see [26, Sec-
tion 5.10].

Lemma 6.9. Let the measurable functions g, gn on T be such that gj ! g in Le-
besgue measure on T and kgj kL1.T/ ! kgkL1.T/ as j ! 1. Then we have that
kg � gj kL1.T/ ! 0.

Proof. If kgkL1.T/ D 0, then the lemma is trivial, otherwise we can reduce the state-
ment of the lemma to the case kgj kL1.T/ D kgkL1.T/ D 1 by changing g and gn to
g=kgkL1.T/ and gn=kgnkL1.T/ respectively. Consider any subsequence gnk

of the
sequence gn. Let gnkj

be its subsequence converging Lebesgue almost everywhere
on T . The limit of gnkj

coincides with g Lebesgue almost everywhere on T . To sim-
plify the notation, we denote the new sequence gnkj

by Qgj . Let " > 0. By Egorov’s
theorem and integrability of g, there is K" � T such that m.K"/ < "; kgkL1.K"/

< "

and Qgj ! g uniformly on T nK". In particular, we haveZ
TnK"

j Qgj j dm!

Z
TnK"

jgj dm � 1 � 2"; lim sup
j!1

Z
K"

j Qgj j dm � 2":

Now, we only need to estimate lim supj!1 kg � Qgj kL1.T/ from above by

lim sup
j!1

kg � Qgj kL1.TnK"/
C lim sup

j!1

k Qgj kL1.K"/
C kgkL1.K"/

� 3":

Since " > 0 is arbitrary, we see that Qgj ! g in L1.T /. In other words, we have shown
that any subsequence of gn contains a subsequence converging to g in L1.T /. Then
gn ! g in L1.T / and the lemma follows.
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Recall that the space X and the metric �s on X are defined in (1.10) and (1.11).
For r 2 X , define the function E.r/ by (6.22).

Proposition 6.10. Let rn; r 2 X . The following assertions are equivalent:

(a) rn converges to r in X ;

(b) rn converges to r in Lebesgue measure on T and limn!C1E.rn/ D E.r/.

Proof. Assume that rn ! r in X as n! C1. The convergence in measure follows
immediately. For all n� 0, we have j1� rnr j � 1� jr j and log.1=.1 � jr j// 2L1.T /.
Hence, by the dominated convergence theorem, we have

E.rn; r/ D �

Z
T

log.1 � rnr/ dm! �
Z
T

log.1 � jr j2/ dm D E.r/: (6.25)

Thus, from (6.23) we see that

0 D lim
n!C1

�s.rn; r/
2
D lim
n!C1

.E.r/CE.rn/ � 2ReE.r; rn//

D lim
n!C1

.E.rn/ �E.r//;

which gives us the required assertion. On the other hand, if we assume (b), then (6.25)
will follow by the same argument and similarly by (6.23) we will get

lim
n!C1

�s.rn; r/
2
D lim
n!C1

.E.r/CE.rn/ � 2ReE.r; rn// D 0;

which is the convergence in X .

Proposition 6.11. If qn ! q in `2.Z;D/, then rqn
! rq in X .

Proof. We want to apply the criteria from Proposition 6.10. Convergence in `2.Z;D/
implies the convergenceY

k2Z

.1 � jqn.k/j
2/!

Y
k2Z

.1 � jq.k/j2/; n!1;

which yields E.rqn
/! E.rq/ by Proposition 6.5. Thus, it is suffices to show only

that rqn
! rq in Lebesgue measure on T . Recall that, for every q 2 `2.Z;D/, we

have f ˙ D a˙=b˙, where f ˙ are the Schur functions generated by q; hence,

rq D
a�bC � b�aC

aCa� � bCb�
D

aC

aC
f C � f �

1 � f Cf �
D exp.�2iH .log jaCj//

f C � f �

1 � f Cf �
:
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Here H denotes the Hilbert transform and we used the fact that aC is an outer func-
tion. Furthermore, we have 1=jaCj2 D 1 � jbCj2=jaCj2 D 1 � jf Cj2; hence,

rq D exp.iH .log.1 � jf Cj2///
f C � f �

1 � f Cf �
: (6.26)

Similar formulae with Schur functions f ˙n in place of f ˙ hold for qn. Theorem 6.8
implies the convergence f ˙n ! f ˙ in Lebesgue measure on T . Moreover, by the
Szegő theorem, k1 � jf Cn j

2kL1.T/ ! k1 � jf
Cj2kL1.T/; hence, Lemma 6.9 can be

applied to the functions

gn D log.1 � jf Cn j
2/; g D log.1 � jf Cj2/:

This gives the convergence of log.1 � jf Cn j
2/ to log.1 � jf Cj2/ in L1.T /. Weak

continuity of the Hilbert transform H (see [8, Section III.2]) then implies that the
function exp.iH .log.1 � jf Cn j

2/// converges in Lebesgue measure to the function
exp.iH .log.1 � jf Cj2///. From here and (6.26) we see that the functions rqn

con-
verge to rq in Lebesgue measure on T .

The following proposition is not used in the proof of Theorem 1.7, but it explains
how instabilities may arise in Schur’s algorithm.

Proposition 6.12. There is � > 0 such that the mapping f 7! ¹fn.0/ºn�0 taking
a Schur function f into the sequence of its recurrence coefficients is not uniformly
continuous with respect to the metrics in XC, `2.Z;D/ on the subset of functions
f 2 XC satisfying �.f / > �.

Proof. Take any q ¤ Qq in `2.Z;D/ such that rq D r Qq , see Proposition 6.4. Fix " > 0
and use Proposition 6.11 to find a number N."/ such that we have �s.rqN

; rq/ � ",
�s.r QqN

; r Qq/ � " for every N � N."/, where qN .k/ D q.k/, QqN .k/ D Qq.k/ for k �
N � 1, and qN .k/D QqN .k/D 0 for k �N . Next, shift these sequences to make them
supported on .�1;�1�: define qN;s.k/ D qN .k C N/, QqN;s.k/ D QqN .k C N/ for
k 2 Z. Let also qs D q.� CN/, Qqs D Qq.� CN/. We have

�s.rqN;s
; r QqN;s

/ � �s.rqN;s
; rqs

/C �s.rqs
; r Qqs

/C �s.r Qqs
; r QqN;s

/ � 2";

because

�s.rqN;s
; rqs

/ D �s.rqN
; rq/ � ";

�s.rqs
; r Qqs

/ D �s.rq; r Qq/ D 0;

�s.r QqN;s
; r Qqs

/ D �s.r QqN
; r Qq/ � ";

by Proposition 6.3 (it was proved for compactly supported q, but continuity in Propos-
ition 6.4 extends it to whole space `2.Z;D/). On the other hand, �rqN;s

and �r QqN;s
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coincide on T with the Schur functions with the recurrence coefficients ˇN .n/ D
�qN;s.�n/ and Q̌N .n/ D �QqN;s.�n/, n � 0, respectively; see (6.12), (6.14), and
(6.15). Since the sequences ¹ˇN .n/ºn�0, ¹ Q̌N .n/ºn�0 are uniformly separated in
`2.ZC;D/ for large N , and we have �s.rqN;s

; r QqN;s
/ � 2" for all N � N."/, the

mapping in the statement of the proposition cannot be uniformly continuous.

Proposition 6.13. Let qn 2 `2.Z;D/ be such that rqn
! r in X for some r 2 X .

Then there is a subsequence qnj
such that qnj

! q in `2.Z;D/ and r D rq .

Proof. Since rqn
! r in X , we know that rqn

! r in Lebesgue measure on T .
Moreover, E.rqn

/! E.r/ as n! C1 by Proposition 6.10. Hence, Lemma 6.9 is
applicable and we see that log.1 � jrqn

j2/ tends to log.1 � jrj2/ in L1.T /.
Consider the sequences a˙n , b˙n , f ˙n D a˙n =b

˙
n , an and bn corresponding to qn

in the sense described at the beginning of Section 6.2. Furthermore, let A be an outer
function in D with A.0/ > 0 such that jAj�2 D 1 � jrj2 and B D rA. From equa-
tion (6.17) and the definitions of an, bn, A, B , we see that an ! A, bn ! B in
Lebesgue measure on T . Also we have an ! A locally uniformly in D. The func-
tions a˙n =an are in the unit ball of H 2.D/ by Proposition 6.6; hence, one can choose
a subsequence nj , some functions Qa˙ and Schur functions Qf ˙ such that

• a˙nj
! Qa˙ locally uniformly in D;

• a˙nj
=anj

! Qa˙=A locally uniformly in D and weakly in H 2.D/;

• 1=a˙nj
! 1= Qa˙ locally uniformly in D and weakly in H 2.D/;

• f ˙nj
! Qf ˙ locally uniformly in D.

With this choice of Qa˙, both functions Qa˙=A and A= Qa˙ belong to the Smirnov class
in D; hence, the Qa˙ are outer functions. Put Qb˙ D Qf ˙ Qa˙. Let q be defined in terms
of recurrence coefficients of Qf ˙ by

q.k/ D

8<: . Qf C/k.0/; k � 0;

�. Qf �/�k.0/; k < 0:

Note that . Qf �/0.0/ D . Qf �/.0/ D 0 because .f �n /.0/ D 0 for every n. We claim
that qnj

! q in `2.Z;D/. To prove this, introduce a˙, b˙, f ˙ D a˙=b˙, a, b
as the objects from the beginning of Section 6.2 corresponding to q. It is clear that
f ˙ D Qf ˙. Let us show that

a D A; b D B; a˙ D Qa˙; b˙ D Qb˙:

We have f ˙ D b˙=a˙ D Qb˙= Qa˙ by construction, and the functions a˙, Qa˙ are
outer (we do not know, however, if 1 � jf ˙j2 D jQa˙j�2). Therefore, there are outer
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functions s˙ such that Qa˙ D s˙a˙ and Qb˙ D s˙b˙. It follows that

A D QaC Qa� � QbC Qb� D sCs�.aCa� � bCb�/ D sCs�a:

almost everywhere on T because this relation holds in D. Now, write formula (6.20)
for qnj

in the form�
aCnj

bCnj

b�nj
a�nj

�
D

�
1 bnj

�bnj
1

��
aCnj

�b�nj

�bCnj
a�nj

��1
D

�
1 bnj

�bnj
1

�
1

anj

�
a�nj

b�nj

bCnj
aCnj

�
:

Multiplying both sides by 1=anj
, we get

1

anj

�
aCnj

bCnj

b�nj
a�nj

�
D

�
1=anj

bnj
=anj

�bnj
=anj

1=anj

�
1

anj

�
a�nj

b�nj

bCnj
aCnj

�
: (6.27)

By construction, we have a˙nj
=anj

! Qa˙=A, b˙nj
=anj

! Qb˙=A weakly in H 2. We
also have bnj

=anj
! xB=A, bnj

=anj
! B=A, 1=anj

! 1=A strongly in L2.T / by
the dominated convergence theorem, because bnj

=anj
, bnj

=anj
, 1=anj

are uniformly
bounded and converge in Lebesgue measure on T to B=A. It follows that both sides
of (6.27) converge weakly in L2.T /. Taking the limit in (6.27), we obtain

1

A

�
QaC QbC

Qb� Qa�

�
D

�
1=A xB=A

�B=A 1=A

�
1

A

�
Qa� Qb�

QbC QaC

�
;

or, in equivalent form,�
sCaC sCbC

s�b� s�a�

�
D

�
1 xB

�B 1

�
1

sCs�a

�
s�a� s�b�

sCbC sCaC

�
:

Equation (6.20) written for q, a, b, a˙, b˙ says�
aC bC

b� a�

�
D

�
1 Nb

�b 1

�
1

a

�
a� b�

bC aC

�
:

It follows that�
sC 0

0 s�

��
1 Nb

�b 1

�
1

a

�
a� b�

bC aC

�
D

�
sCaC sCbC

s�b� s�a�

�
D

�
1 xB

�B 1

�
1

sCs�a

�
s�a� s�b�

sCbC sCaC

�
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D

�
1 xB

�B 1

�
1

sCs�

�
s� 0

0 sC

�
1

a

�
a� b�

bC aC

�
:

From here, we get�
1 Nb

�b 1

�
D

�
1=sC 0

0 1=s�

��
1 xB

�B 1

�
1

sCs�

�
s� 0

0 sC

�
D

�
1=sC 0

0 1=s�

��
1 xB

�B 1

��
1=sC 0

0 1=s�

�
D

�
1=jsCj2 xB=sCs�

�B=sCs� 1=js�j2

�
:

It follows that js˙j2 D 1. Recall that the s˙ are outer and s˙.0/ > 0, therefore s˙D1,
Qa˙ D a˙, Qb˙ D b˙, a D A, b D B , and rq D a=b D A=B D r . It remains to show
that qnj

! q in L2.T /. Since the f ˙ are locally uniform limits of the f ˙nj
in D, we

have limj!C1 qnj
.k/ D q.k/ for each k 2 Z from Schur’s algorithm (6.5) for f ˙.

Moreover, (6.19) and a D A imply

log
Y
k2Z

.1 � jq.k/j2/ D log ja.0/j�2 D log jA.0/j�2 D lim
j!C1

log janj
.0/j�2

D lim
j!1

log
Y
k2Z

.1 � jqnj
.k/j2/:

The last relation together with the elementwise convergence limj!C1 qnj
.k/D q.k/

gives qnj
! q in the norm of `2.Z;D/.

Proposition 6.14. The set G D
S
ı2Œ0;1/ G Œı� is dense in `2.Z;D/. In fact, we have

`1.Z;D/ � G . If q 2 G and supp q � ZC, then kfqkL1.T/ < 1 for fq D f C (see
Lemma 3.4).

Proof. By Baxter’s theorem (see [18, Chapter 5]), every measure � with recurrence
coefficients in `1.ZC;D/ has its Szegő function, D�, in the Wiener algebra W.T /. It
follows that a˙, b˙ are continuous and uniformly bounded on T if q D ¹q.n/ºn2Z

is in `1.Z;D/; hence, the function a D aCa� � bCb� is uniformly bounded on T as
well. Formula (6.17) then implies that rq 2 BŒı�, q 2 G Œı�, for some ı 2 Œ0; 1/. The
rest of the proposition is straightforward.

6.4. Proof of Theorem 1.7

Recall that the scattering map (or the nonlinear Fourier transform) is defined by

FscW q 7! rq;
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on the set of sequences `2.Z;D/, see Proposition 6.2. Assertions (1) and (2) of the
theorem are Propositions 6.11 and 6.13, respectively. Assertion (3) for compactly sup-
ported qWZ! D is Proposition 6.3. Since Fsc is continuous, assertion (3) then holds
for all q 2 `2.Z;D/. To prove assertion (4), consider potentials q 2 `2.Z;D/ sup-
ported on Z \ .�1; 0/ and observe that Theorem 6.8 implies XC � Fsc.`

2.Z;D//.
Then, since the set Fsc.`

2.Z;D// is invariant under multiplication by zn, n 2 Z, by
assertion (3), the set Fsc.`

2.Z;D// contains trigonometric polynomials p such that
kpkL1.T/ < 1 of arbitrary degree. We claim that the set of such polynomials is dense
in X . Indeed, one can approximate an arbitrary element of X by a sequence of con-
tinuous functions in the open unit ball of L1.T / using Lusin’s theorem, and then
uniformly approximate these continuous functions by Fejer means of their Fourier
series. Since Fsc is a closed map, the fact that Fsc.`

2.Z;D// contains a dense subset
of X implies Fsc.`

2.Z;D// D X , and (4) follows. Assertion (5) is Proposition 6.4.
To prove (6), note that Fsc.G Œı�/ � BŒı� by definition and Fsc.G Œı�/ � BŒı� because
FscW `

2.Z;D/! X is surjective. Thus, FscW G Œı�! BŒı� is a continuous surjection.
By Proposition 6.7, this map is injective. Then FscWG Œı�! BŒı� is a closed continu-
ous bijection between two topological spaces; hence, it is a homeomorphism, which
is (6). Assertion (7) is not proved in our paper, the reader can find its proof at the end
of [24, Chapter 2].

A. Appendix

Denote by `0.Z;D/ the set of all sequences q D ¹qnºn2Z such that jqnj < 1 for all
n 2 Z. In this section we show that for every q0 2 `0.Z;D/, the Ablowitz–Ladik
equation (1.4) has a global unique solution.

Lemma A.1 (Boundedness [12, p. 4]). If q solves (1.4) on Œ0; t0� for the initial data
q0 2 `

0.Z;D/, then q.t; �/ 2 `0.Z;D/ for all t 2 Œ0; t0�.

Proof. Put �n.t/2 D 1 � jq.t; n/j2, and assume that for some n � 0 there exists t1 2
Œ0; t0� such that �n.t1/ D 0 and �n.t/ > 0 for all t 2 .0; t1/. Then for all t < t1 we
have

2�n�
0
n D .�

2
n/
0
D �2Re.qnq0n/ D �2Re.qn � .i�2n.qn�1 C qnC1///

D 2�2n Im.qnqn�1 C qnqnC1/;

�0n D �n Im.qnqn�1 C qnqnC1/;

�n.t/ D �n.0/ exp
� tZ
0

Im.qnqn�1 C qnqnC1/ ds
�
:
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If we now send t to t1, the left-hand side will tend to 0, while the right-hand side will
not, a contradiction.

Lemma A.2 (Uniqueness [5, p. 20]). If q, Qq solve (1.4) on Œ0; t � for some initial data
q0 2 `

0.Z;D/, then q D Qq.

Proof. Let q.t; n/ and Qq.t; n/ be two solutions for the same initial data q0. We have

�i.q0n � Qq
0
n/ D .1 � jqnj

2/.qn�1 C qnC1/ � .1 � j Qqnj
2/. Qqn�1 C QqnC1/

D .qn�1 � Qqn�1/C .qnC1 � QqnC1/�

� .jqnj
2qn�1 � j Qqnj

2
Qqn�1/ � .jqnj

2qnC1 � j Qqnj
2
QqnC1/:

By Lemma A.1, both jqnj and j Qqnj do not exceed 1; hence,

jq0n � Qq
0
nj � 2jqn�1 � Qqn�1j C 2jqnC1 � QqnC1j C 4jqn � Qqnj: (A.1)

Therefore,

.jqn.t/ � Qqn.t/j
2/0 D 2Re..qn � Qqn/.q0n � Qq0n//;

.jqn.t/ � Qqn.t/j
2/0 � 12jqn � Qqnj

2
C 2jqn�1 � Qqn�1j

2
C 2jqnC1 � QqnC1j

2

Define

M.t/ D
X
n2Z

jqn.t/ � Qqn.t/j
2

1C n2
:

We have M.0/ D 0 and

M 0.t/ D
X
n2Z

.jqn.t/ � Qqn.t/j
2/0

1C n2
� 20M.t/:

Then Grönwall inequality gives M.t/ D 0 for all t � 0; hence, q and Qq coincide.

Proposition A.3 (Existence [22, Section 1.1]). For every q0 2 `0.Z;D/, there exists
a unique classical global solution q of (1.4).

Proof. Uniqueness follows from Lemma A.2. Rewrite (1.4) in the integral form

q.t; n/ D q0.n/C

tZ
0

i.1 � jq.s; n/j2/.q.s; n � 1/C q.s; nC 1// ds; n 2 Z:

(A.2)

Equation (1.4) and equation (A.2) are equivalent. Introduce the space of functions
Y D C.Œ0; t � � Z/ where t D 1=12. For u 2 Y , define the mapping

F.u/.t; n/ D i.1 � ju.t; n/j2/.u.t; n � 1/C u.t; nC 1//; n 2 Z:



Stability of Schur’s iterates and fast solution of the discrete integrable NLS 191

In this notation (A.2), becomes

q.t; n/ D q0.n/C

tZ
0

F.q/.s; n/ ds:

Further, consider

ˆ.u/.t; n/ D q0.n/C

tZ
0

F.u/.s; n/ ds; n 2 Z:

Then solvability of (A.2) is equivalent to the existence of a fixed point for ˆWY 7! Y .
Let us show thatˆ is a contraction acting on the set BY D ¹u 2 Y W kukY � 2º. Notice
that

jF.u/.s; n/j � 6kukY ; s � t; n 2 Z;

jˆ.u/.t; n/j � jq0.n/j C

tZ
0

jF.u/.s; n/j ds � 1C 6tkukY ;

kˆ.u/kY � 1C 6tkukY :

In particular, if u 2 Y , thenˆ.u/ 2 Y . Furthermore, from (A.1) we see that for u; v 2
Y we have

jˆ.u/.t; n/ �ˆ.v/.t; n/j �

tZ
0

jF.u/.s; n/ � F.v/.s; n/j ds � 6tku � vkY :

We have 6t < 1; hence, ˆ is a contraction and (1.4) has a solution on Œ0; t �. By
Lemma A.1, q.t; �/ also satisfies q.t; n/ < 1 for all n 2 Z, hence the fixed point
algorithm can be applied to find the solution on the segment Œt; 2t �. Iterating this
procedure, we obtain the existence of a solution on Œ0;1/. A similar argument works
for negative t , hence the proof is completed.

The following proposition gives a proof of the convergence in Theorem 1.5 based
on the idea from Lemma A.2.

Proposition A.4. Take q0 2 `0.Z;D/ and let q0;N , q, qN be as in Theorem 1.5. Then,
for N � jj j, t > 0 and all r 2 .0; 1/, we have

jq.t; j / � qN .t; j /j �

p
2re10t=r

2

p
1 � r2

rN�jj j:
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If we assume `2.Z;D/, then

jq.t; j / � qN .t; j /j � re
10t=r2

s X
jmj>N

jq0.m/j2 � r
N�jj j:

Proof. Set MN .t/ D
P
m2Z jq.t;m/ � qN .t; m/j

2r2jmj. At t D 0, we have

MN .0/ D
X
jmj>N

jq0.m/j
2r2jmj �

X
jmj>N

r2jmj D
2r2NC2

1 � r2
: (A.3)

The inequalities similar to (A.1) give us M 0N .t/ � 20r
�2MN .t/; hence,

jq.t; j / � qN .t; j /j
2r2jj j �MN .t/ � exp.20r�2t /MN .0/ D

2e20t=r
2
r2NC2

1 � r2
:

The first part of the proposition follows. To establish the second inequality, we change
the bound (A.3). We have

MN .0/ D
X
jmj>N

jq0.m/j
2r2jmj � r2.NC1/

X
jmj>N

jq0.m/j
2:

Therefore,

jq.t; j / � qN .t; j /j
2r2jj j �MN .t/ � exp.20r�2t /MN .0/

D e20t=r
2

r2NC2
X
jmj>N

jq0.m/j
2;

which concludes the proof.
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