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Higher order �p-differentiability: The unitary case

Arup Chattopadhyay, Clément Coine, Saikat Giri, and Chandan Pradhan

Abstract. Consider the set of unitary operators on a complex separable Hilbert space H ,
denoted as U.H /. Consider 1 < p < 1. We establish that a function f defined on the unit
circle T is n times continuously Fréchet �p-differentiable at every point in U.H / if and only if
f 2 Cn.T /. Take a function U WR!U.H / such that the function t 2 R 7! U.t/�U.0/ takes
values in �p and is n times continuously �p-differentiable on R. Consequently, for f 2Cn.T /,
we prove that f is n times continuously Gâteaux �p-differentiable at U.t/. We provide explicit
expressions for both types of derivatives of f in terms of multiple operator integrals. In the
domain of unitary operators, these results closely follow the n-th order successes for self-adjoint
operators achieved by the second author, Le Merdy, Skripka, and Sukochev. Furthermore, as
for application, we derive a formula and �p-estimates for operator Taylor remainders for a
broader class of functions. Our results extend those of Peller, Potapov, Skripka, Sukochev, and
Tomskova.

1. Introduction

Beginning the journey into function theory, especially when delving into operator
functions, the concept of differentiability takes on crucial significance. Early break-
throughs in comprehending the differentiability of operator functions were achieved
in [12], subject to rigorous conditions imposed on both functions and operators. These
initial insights underwent significant refinement and expansion in subsequent works,
such as [3,5,7,13–15,18,20,22,26], responding to advancements in perturbation the-
ory. Despite these advancements, certain challenges persisted. This paper addresses
one of the open problems.

Throughout the article, we consider H to be a complex separable Hilbert space
and let B.H / and U.H / denote respectively the space of bounded linear operators,
and the space of unitary operators on H . For p 2 Œ1;1/, the p-th Schatten–von Neu-
mann class is

�p.H / D ¹A 2 B.H / W kAkp ´ Tr.jAjp/1=p <1º;
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�
p
sa.H / is the subset of self-adjoint elements of �p.H /, and Tr is the canonical trace

on the trace class ideal �1.H /. The unsuffixed norm k � k will always mean the oper-
ator norm.

For self-adjoint operators, Le Merdy and Skripka [16] established the n-th order
Fréchet and Gâteaux �p-differentiability (1 < p <1) of the operator function t 2
R 7! f .AC tB/� f .A/ for an n times continuously differentiable function f . Sub-
sequently, in [8], the second author extended this class from n times continuously dif-
ferentiable to n times differentiable functions concerning n-th order Gâteaux �p-dif-
ferentiability. The analogous problem of studying the differentiability of an operator
function for unitary operators has also been investigated by various experts in this
field.

LetU be a unitary operator, andA be a bounded self-adjoint operator acting on H .
Define

U.s/ D eisAU; s 2 R:

In [22], for any function f belonging to the Besov class Bn11.T / on the unit circle T ,
where n � 2 is a natural number, Potapov, Skripka, and Sukochev gave the existence
of the n-th order Gâteaux derivative of f at U , d

n

dsn

ˇ̌
sDt
f .U.s//, in the operator norm.

Moreover, they expressed the value as a linear combination of multiple operator inte-
grals with respect to divided differences f Œ1�; f Œ2�; : : : ; f Œn� of the function f (see
[22, Theorem 3.1]), correcting the formula earlier obtained in [20]. The case n D 1
was addressed in [7, 19]. A recent proof in [23, Theorem 3.6] established that for a
function f 2 C n.T / and a finite-dimensional Hilbert space H D `2

d
, the function is

n � 1 times Gâteaux �p-differentiable at U .

New results, novelty, and methodology. In this article, we answer several questions
on higher order differentiability of operator functions in k � kp , 1 < p <1. The expo-
nent p in this paper is reserved for a number in the interval p 2 .1;1/.

We prove (see Theorem 3.3) that f is n times continuously Fréchet �p-differen-
tiable at every unitary operator U 2 U.H / if and only if f 2 C n.T /. Consequently,
we prove (see Theorem 3.5) f is n times continuously Gâteaux �p-differentiable
under the assumption f 2 C n.T / by extending the relative results of [20, 22], which
specifically addressed the Gâteaux differentiability of f 2 Bn11.T /. Let U WR !
U.H / be a function such that

zU W t 2 R 7! U.t/ � U.0/ 2 �p.H /

is an n times �p-differentiable function on R. Then, for f 2 C n.T /, we establish the
n times �p-differentiability of

'W t 2 R 7! f .U.t// � f .U.0// 2 �p.H /:
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In addition, if zU .n/ is continuous then '.n/ is also continuous in �p.H / (see Theo-
rem 3.5 (i)). It is crucially noted in the literature (see, e.g., [22–24]) that the higher
order Gâteaux derivatives of an operator function play a fundamental role in examin-
ing the behavior of the higher order Taylor remainder of the operator function.

Consider the n-th order Taylor remainder

Rn;f;U .t/´ f .U.t// � f .U.0// �

n�1X
mD1

1

mŠ
'.m/.0/: (1)

In particular, the following estimate of the above Taylor remainder (1) is already
obtained in [23] for 1 < n < p <1, U.t/ D eitAU with A 2 �

p
sa.H /:

kRn;f;U .1/kp
n
� Qcp;n

nX
mD1

kf .m/k1kAk
n
p (2)

for every f 2 C n.T /, where Qcp;n is a positive constant depending on p and n.
It should be noted that for f 2 Gn.T / ¨ C n.T /, an explicit formula for (1)

with U.t/ D eitAU is known in terms of the integration of certain multiple operator
integrals (see [22, Theorem 4.1]). In [27] (detailed proof can be found in [23, The-
orem 3.7]), the author established a simple formula for the aforementioned Taylor
remainder that corresponds to f 2 C n.T / as a linear combination of multiple oper-
ator integrals (without involving the integration of multiple operator integrals), with
respect to divided differences f Œ1�; f Œ2�; : : : ; f Œn�, constrained to a finite-dimensional
Hilbert space H D `2

d
. Here, for a complex separable Hilbert space (not necessarily

finite-dimensional), we establish the same formula for (1) for any f 2 C n.T / (see,
e.g., Theorem 3.5 (ii) and Corollary 3.6). Consequently, our results lead to a direct
proof of (2) (see Corollary 3.6).

In conclusion, let us discuss the methodology employed in this paper. To achieve
the results mentioned earlier, we will delve into establishing crucial properties of
multiple operator integrals throughout the article. Our approach leans towards the
construction of operator integrals outlined in [10], differing from those presented
in [20,22,24]. Specifically, for 1 < p <1, n 2 N, and unitary operators U1; : : : ; Un
acting on the Hilbert space H , we heavily use the �p-boundedness of operator inte-
grals

k�U1;:::;UnC1.f Œn�/kBn.�p/ � cp;nkf
.n/
k1;

for f 2 C n.T /, extending the bound of operator integrals considered in [24, The-
orem 3.3]. The importance of this construction compared to other constructions of
multiple operator integrals [5, 6, 12, 20–22] are discussed in the next Section 2.

The article is organized as follows. Apart from the introduction, it consists of
two sections. In Section 2, we will mainly concern ourselves with the properties
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of operator integrals. First, in Section 2.1, we recall as well as establish the impor-
tant properties of multiple operator integrals, and, in Section 2.2, we establish the
higher-order perturbation formula for differences of multiple operator integrals. Sec-
tion 3 addresses the differentiability of functions of unitary operators in �p.H / for
1 < p < 1 by listing the statements of the main results in Section 3.1, then some
auxiliary lemmas in Section 3.2, and finally providing the proof of the main results in
Section 3.3.

2. Multiple operator integration

In this section, we recall the definition of multiple operator integrals introduced in [17]
and developed in [10], as well as derive its important properties that underline our
main results.

2.1. Multiple operator integrals associated to unitary operators

Progress in investigating the operator smoothness and differentiability relies on
methodologies known as “multiple operator integration,” evolving since [12]. There
exist two primary approaches to multiple operator integration on Schatten classes, as
detailed in [25]. For our purposes, we adopt the definition of multiple operator integra-
tion developed in [10]. While alternative constructions of multiple operator integrals
exist [1,2,5,6,12,20–22], they are tailored to smaller sets of symbols and thus do not
align with the breadth of this paper’s scope.

We fix the following notations and conventions to be used throughout the paper.
Let Bn.X1 � � � � �Xn;Y / denote the space of bounded n-linear operators mapping the
Cartesian product X1 � � � � �Xn of Banach spaces X1; : : : ; Xn to a Banach space Y ,
that is, the space of n-linear mappings T WX1 � � � � �Xn ! Y such that

kT kBn.X1�����Xn;Y /´ sup
keik�1; 1�i�n

kT .e1; : : : ; en/k <1:

In the case when X1 D � � � D Xn D Y , we will simply denote Bn.X1 � � � � �Xn; Y /

by Bn.Y /. If T 2 B.H /, then for any k 2 N, we use the notation

.T /k D T; : : : ; T„ ƒ‚ …
k

:

We denote the unit circle of C by T and the class of continuous functions on T by
C.T /. For f 2 C.T /, by its derivative at z0 2 T , we understand the limit

f 0.z0/´ lim
T3z!z0

f .z/ � f .z0/

z � z0
; (3)
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provided it exists. For any n 2 N, denote by C n.T / the space of n times continu-
ously differentiable functions on T in the sense of (3). Lip.T / .� C.T // denotes the
space of all Lipschitz functions f WT ! C. Finally, we let Dn.R; �p.H // (respec-
tively C n.R; �p.H //) be the space of n times differentiable (respectively continu-
ously differentiable) functions 'WR! �p.H / with derivatives denoted by '.j /WR!
�p.H /; j D 1; : : : ; n.

Let U be a unitary operator on H . Denote its spectrum by �.U / and its spectral
measure byEU , defined on Borel subsets of �.U /. Let �U be a scalar-valued spectral
measure for U , which is a positive finite measure on the Borel subsets of �.U / such
that EU and �U have the same sets of measure zero. Such a measure exists, due
to the separability assumption on H . The reader is directed to [11, Section 15] and
te [10, Section 2.1] for more details. The Borel functional calculus for U takes any
bounded Borel function f W �.U /! C to the bounded operator

f .U /´

Z
�.U /

f .z/ dEU .z/:

This operator only depends on the class of f in L1.�U /. Moreover, according to
[11, Theorem 15.10], it induces a w�-continuous �-representation

f 2 L1.�U / 7! f .U / 2 B.H /:

Let n 2 N; n � 2, and let U1; : : : ; Un be unitary operators on H with scalar-valued
spectral measures �U1

; : : : ; �Un
.

Definition 2.1. Let

� W L1.�U1
/˝ � � � ˝ L1.�Un

/! Bn�1.�
2.H //

be the unique linear map such that for any fi 2 L1.�Ui
/; 1 � i � n, and for any

K1; : : : ; Kn�1 2 �2.H /,

Œ�.f1 ˝ � � � ˝ fn/�.K1; : : : ; Kn�1/

D f1.U1/K1f2.U2/K2 � � � fn�1.Un�1/Kn�1fn.Un/:

According to [10, Proposition 3.4], � extends to a uniquew�-continuous and contrac-
tive map

�U1;:::;Un W L1
� nY
iD1

�Ui

�
! Bn�1.�

2.H //:

For ' 2 L1
�Qn

iD1 �Ui

�
, the transformation �U1;:::;Un.'/ is called multiple operator

integral associated to U1; : : : ; Un and '.
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Let 'WTn!C be a bounded Borel function, we let Q' be the class of its restriction
'j�.U1/������.Un/ in L1

�Qn
iD1 �Ui

�
. Then the .n � 1/-linear map �U1;:::;Un. Q'/ will

be simply denoted by

�U1;:::;Un.'/ W �2.H / � � � � � �2.H /! �2.H /

in the sequel.

The w�-continuity of �U1;:::;Un means that if a net .'i /i2I in L1
�Qn

iD1 �Ui

�
converges to ' 2 L1

�Qn
iD1 �Ui

�
in the w�-topology, then, for any K1; : : : ; Kn�1 2

�2.H /, the net

.Œ�U1;:::;Un.'i /�.K1; : : : ; Kn�1//i2I

converges to Œ�U1;:::;Un.'/�.K1; : : : ; Kn�1/ weakly in �2.H /.
Let p1; : : : ; pn�1; p 2 Œ1;1/ and ' 2 L1

�Qn
iD1 �Ui

�
. We will write

�U1;:::;Un.'/ 2 Bn�1.�
p1.H / � � � � � �pn�1.H /; �p.H //

if the multiple operator integral �U1;:::;Un.'/ defines a bounded .n � 1/-linear map-
ping

�U1;:::;Un.'/W .�2.H / \ �p1.H // � � � � � .�2.H / \ �pn�1.H //! �p.H /;

where �2.H /\ �pi .H / is equipped with the k � kpi
-norm. By the density of �2.H /\

�pi .H / into �pi .H /, this mapping has an (necessarily unique) extension

�U1;:::;Un.'/ W �p1.H / � � � � � �pn�1.H /! �p.H /: (4)

In the case when p1 D � � � D pn�1 D p, we will simply write

�U1;:::;Un.'/ 2 Bn�1.�
p.H //:

The crucial point in the construction leading to Definition 2.1 is the w�-continu-
ity of �U1;:::;Un , which allows to reduce various computations to elementary tensor
product manipulations, for which certain equations are straightforward to establish.
See [8, 9] for illustrations.

The following result is instrumental in demonstrating the �p-boundedness of
certain multiple operator integrals. It can be proven by following similar lines of argu-
ment as presented in the proof of [8, Lemma 2.3].
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Lemma 2.2. Let p1; : : : ; pn�1; p 2 .1;1/, and n � 2 be an integer. Let U1; : : : ; Un
be unitary operators on H and .'k/k�1; ' 2 L1.�U1

� � � � � �Un
/. Assume that

.'k/k is w�-convergent to ' and that .�U1;:::;Un.'k//k�1 � Bn�1.�
p1.H / � � � � �

�pn�1.H /; �p.H // is bounded. Then

�U1;:::;Un.'/ 2 Bn�1.�
p1.H / � � � � � �pn�1.H /; �p.H //

with

k�U1;:::;Un.'/kBn�1.�
p1������pn�1 ;�p/

� lim inf
k
k�U1;:::;Un.'k/kBn�1.�

p1������pn�1 ;�p/

and, for any Ki 2 �pi .H /; 1 � i � n � 1,

Œ�U1;:::;Un.'k/�.K1; : : : ; Kn�1/ ����!
k!1

Œ�U1;:::;Un.'/�.K1; : : : ; Kn�1/

weakly in �p.H /.

2.2. Higher order perturbation formula

This section is devoted to obtaining an important result on boundedness of multiple
operator integrals associated to divided differences f Œn� in the case when f 2 C n.T /,
which will justify that all the operators appearing in the sequel are well defined. We
also prove a higher order perturbation formula for differences of multiple operator
integrals.

We first recall the definition of the divided difference. The zeroth order divided
difference of f is the function itself, that is, f Œ0�´ f . Let f 2 C 1.T /. The divided
difference of the first order f Œ1�WT2 ! C is defined by

f Œ1�.�1; �2/´

8<:
f .�1/ � f .�2/

�1 � �2
if �1 ¤ �2;

f 0.�1/ if �1 D �2;
�1; �2 2 T :

The function f Œ1� belongs to C.T2/. If n � 2 and f 2 C n.T /, the divided difference
of n-th order f Œn�WTnC1 ! C is defined recursively by

f Œn�.�1; �2; : : : ; �nC1/

´

8̂<̂
:
f Œn�1�.�1; �3; : : : ; �nC1/ � f

Œn�1�.�2; �3; : : : ; �nC1/

�1 � �2
if �1 ¤ �2;

@1f .�1; �3; : : : ; �nC1/ if �1 D �2;

for all �1; : : : ; �nC1 2 T , where @i stands for the partial derivative with respect to the
i -th variable. Moreover, f Œn� 2 C.TnC1/.
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We are now ready to establish the bound of the multiple operator integral (4)
associated with the symbol 'Df Œn� for 1<p;pj <1, jD1; : : : ; n, and f 2C n.T /.
This class extends earlier known function classes used to give bounds to the multi-
ple operator integral considered in [24]. We also refer to [1, 2] for a different kind
of �p-estimates in the case when the symbol is in the Haagerup tensor product of
L1-spaces. The result of Theorem 2.3 below is outlined in [25, Remark 4.3.20] with-
out proof. For our purposes, we will state the theorem here and give a simple proof.

Theorem 2.3. Let n 2 N and f 2 C n.T /. Let 1 < p;pj <1, j D 1; : : : ; n be such
that 1

p
D

1
p1
C � � � C

1
pn

. Let U1; : : : ; UnC1 be unitary operators on H . Then

�U1;:::;UnC1.f Œn�/ 2 Bn.�
p1.H / � � � � � �pn.H /; �p.H //

and there exists cp;n > 0 depending only on p and n such that for any Ki 2 �pi .H /,
1 � i � n,

kŒ�U1;:::;UnC1.f Œn�/�.K1; : : : ; Kn/kp � cp;nkf
.n/
k1kK1kp1

� � � kKnkpn
: (5)

In particular, �U1;:::;UnC1.f Œn�/ 2 Bn.�
p.H //, with

k�U1;:::;UnC1.f Œn�/kBn.�p/ � cp;nkf
.n/
k1: (6)

Proof. Let f 2 C n.T /. Define, for any k � 1, 'k ´ f � Fk , where Fk is the Fejér
kernel. By the definition of the Fejér kernel, the function 'k a trigonometric polyno-
mial. Then we have that

k'
.m/

k
� f .m/k1 ! 0; k !1;

for 0 � m � n, which, according to [24, Lemma 3.2], further implies

k'
Œm�

k
� f Œm�kL1.TmC1/ ! 0; k !1 (7)

for all 0 � m � n. By [24, Theorem 3.6], there exists a constant cp;n > 0 such that,
for every k � 1,

k�U1;:::;UnC1.'
Œn�

k
/kBn.�

p1������pn ;�p/ � cp;nk'
.n/

k
k1: (8)

Since '.n/
k
D Fk � f

.n/ and kFkk1 � 1 for all k 2 N, from Young’s inequality it
follows that

k'
.n/

k
k1 � kFkk1kf

.n/
k1 � kf

.n/
k1: (9)

Therefore, by Lemma 2.2, (7), (8) and (9) we deduce that

�U1;:::;UnC1.f Œn�/ 2 Bn.�
p1.H / � � � � � �pn.H /; �p.H //
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with

k�U1;:::;UnC1.f Œn�/kBn.�
p1������pn ;�p/ � cp;nkf

.n/
k1;

from which we deduce (5). Inequality (6) follows from the fact that k � kpi
� k � kp ,

for 1 � i � n. This completes the proof of the theorem.

Let 1 < p <1. LetU and V be two unitary operators on H andU � V 2 �p.H /.
Then by [4, Theorem 2] for every f 2 C 1.T /, f .U / � f .V / 2 �p.H /. Moreover,
we have the following formula

f .U / � f .V / D Œ�U;V .f Œ1�/�.U � V /: (10)

We will prove a higher order counterpart of this result, which will allow us to
express differences of multiple operator integrals of the form

Œ�U1;:::;Ui�1;U;Ui ;:::;Un�1.f Œn�1�/�.K1; : : : ; Kn�1/

� Œ�U1;:::;Ui�1;V;Ui ;:::;Un�1.f Œn�1�/�.K1; : : : ; Kn�1/

as a multiple operator integral associated with the function f Œn�, when f 2 C n.T /
and U � V 2 �p.H /.

To that aim we need the following result, which establishes an approximation
property of multiple operator integrals.

Proposition 2.4. Let n 2 N, n � 2, let U1; : : : ; Un be unitary operators on H and
for all 1 � i � n, let .U ji /j2N be a sequence of unitary operators on H converging
to Ui in the strong operator topology (SOT). Then for any ' 2 C.Tn/ and for any
K1; : : : ; Kn�1 2 �2.H /,

lim
j!1

kŒ�U
j
1
;:::;U

j
n .'/�.K1; : : : ; Kn�1/ � Œ�

U1;:::;Un.'/�.K1; : : : ; Kn�1/k2 D 0:

Proof. Let g 2 C.T /. Notice that, for every 1 � i � n, g.U ji /
SOT
��! g.Ui /. Indeed,

by approximation and by linearity, it is enough to prove it when g is a monomial, in

which case it simply follows from the fact that U ji
SOT
��! Ui .

It is worth noting that proving the proposition suffices when K1; : : : ; Kn�1 are
rank one operators, and since for any ' 2 C.Tn/, there is a sequence of trigonometric
polynomials (in n variables) uniformly converging to ', it is enough to assume that
' 2 C.T /˝ � � � ˝ C.T /. The rest of the proof follows from the same computations
done in [9, Proposition 3.1].

In the next proposition we establish a standard perturbation formula for multi-
ple operator integrals with respect to auxiliary unitary operators when f 2 C n.T /.
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It extends the function class of [22, Lemma 2.4], where such representation was
obtained for f 2 Bn11.T / and generalizes [23, Lemma 3.3 (ii)] from H D `2

d
to an

arbitrary complex separable Hilbert space H .

Proposition 2.5. Let 1 < p <1 and n � 2 be an integer. Let U1; : : : ; Un�1; U; V
be unitary operators on H and assume that U � V 2 �p.H /. Let f 2 C n.T /. Then,
for all K1; : : : ; Kn�1 2 �p.H / and for any 1 � i � n, we have

Œ�U1;:::;Ui�1;U;Ui ;:::;Un�1.f Œn�1�/ � �U1;:::;Ui�1;V;Ui ;:::;Un�1.f Œn�1�/�.K1; : : : ; Kn�1/

D Œ�U1;:::;Ui�1;U;V;Ui ;:::;Un�1.f Œn�/�.K1; : : : ; Ki�1; U � V;Ki ; : : : ; Kn�1/:

Proof. Let us start with the case p D 2. As in the proof of Theorem 2.3, we define
'k ´ f � Fk where Fk is the Fejér kernel. Since

.'k/
Œn�1�

����!
k!1

f Œn�1� and .'k/
Œn�
����!
k!1

f Œn�

uniformly on Tn and TnC1 respectively, it is enough to prove the formula for 'k
instead of f . Hence, we can assume that f is a trigonometric polynomial and, by
linearity, we only have to treat the case when f .z/ D zm for some m 2 Z. From now
on, the proof simply consists in algebraic identities.

If m 2 N, it is straightforward to check that f Œn�1� can be written as a finite sum
f Œn�1� D

P
ak Qk , where  Qk ´  k1;:::;kn

W .u1; : : : ; un/ 7! u
k1

1 u
k2

2 � � �u
kn
n , kj � 0,

see for instance [24, Lemma 2.1]. In such case, we have, for 1 � i � n,

f Œn�.u1; : : : ; unC1/ D
X

aku
k1

1 � � �u
ki�1

i�1

u
ki

i � u
ki

iC1

ui � uiC1
u
kiC1

iC2 � � �u
kn

nC1

D

X
ak

ki�1X
pD0

u
k1

1 � � �u
ki�1

i�1 u
p
i u

ki�1�p
iC1 u

kiC1

iC2 � � �u
kn

nC1:

Hence, by definition of multiple operator integrals, we have

Œ�U1;:::;Ui�1;U;V;Ui ;:::;Un�1.f Œn�/�.K1; : : : ; Ki�1; U � V;Ki ; : : : ; Kn�1/

D

X
akU

k1

1 K1 � � �Ki�2U
ki�1

i�1 Ki�1

� ki�1X
pD0

U p.U � V /V ki�1�p
�

�KiU
kiC1

i � � �Kn�1U
kn

n�1

D

X
akU

k1

1 K1 � � �Ki�2U
ki�1

i�1 Ki�1.U
ki � V ki /KiU

kiC1

i KiC1 � � �Kn�1U
kn

n�1;

which in turn is equal to

Œ�U1;:::;Ui�1;U;Ui ;:::;Un�1.f Œn�1�/�.K1; : : : ; Kn�1/

� Œ�U1;:::;Ui�1;V;Ui ;:::;Un�1.f Œn�1�/�.K1; : : : ; Kn�1/:
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If m � 0, then f Œn�1� can be written as a linear combination of functions of the form
.u1; : : : ; un/ 7! u

�k1

1 u
�k2

2 � � �u
�kn
n , where kj � 0, so that f Œn� can be written as the

linear combination of the functions

.u1; : : : ; unC1/ 7! �u
�k1

1 � � �u
�ki�1

i�1

� ki�1X
pD0

u
�1�p
i u

�kiCp
iC1

�
u
�kiC1

iC2 � � �u
�kn

nC1

(see [24, Lemma 2.1]). We conclude the result with similar computations as in the
previous case. Hence, we proved the formula when p D 2.

Assume now that 1 < p < 2. Since �p.H / � �2.H /, the formula holds true as
well.

Finally, assume that 2 < p <1. Recall that �2.H / is a dense subspace of �p.H /

and that k � kp � k � k2. Since U � V 2 �p.H /, there exists an operator A 2 �
p
sa.H /

such that V D eiAU . Let .Aj /j � �2sa.H / be a sequence of self-adjoint elements
converging to A in k � kp and denote Vj D eiAjU . For every j , Vj � U 2 �2.H / so
that, by the case p D 2, for every K1; : : : ; Kn�1 2 �2.H /,

Œ�U1;:::;Ui�1;U;Ui ;:::;Un�1.f Œn�1�/

� �U1;:::;Ui�1;Vj ;Ui ;:::;Un�1.f Œn�1�/�.K1; : : : ; Kn�1/

D Œ�U1;:::;Ui�1;U;Vj ;Ui ;:::;Un�1.f Œn�/�.K1; : : : ; Ki�1; U � Vj ; Ki ; : : : ; Kn�1/:

(11)

Note that Vj � V D .eiAj � eiA/U so that Vj � V 2 �p.H / and by Duhamel’s for-
mula (see, e.g., [5, Lemma 5.2]) we have

kVj � V kp � kAj � Akp;

which goes to 0 as j !1. Let " > 0. Let N be large enough so that

kVj � V kp < "; for all j � N; (12)

and let B 2 �2.H / be such that

kU � V � Bkp < ": (13)

By Proposition 2.4, the term

Œ�U1;:::;Ui�1;Vj ;Ui ;:::;Un�1.f Œn�1�/�.K1; : : : ; Kn�1/

converges in �2.H / to

Œ�U1;:::;Ui�1;V;Ui ;:::;Un�1.f Œn�1�/�.K1; : : : ; Kn�1/:
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To deal with the convergence of the right-hand side of (11), let us denote, for j 2 N,

�j WX 2 �p.H /

7! Œ�U1;:::;Ui�1;U;Vj ;Ui ;:::;Un�1.f Œn�/�.K1; : : : ; Ki�1; X;Ki ; : : : ; Kn�1/

and

�WX 2 �p.H /

7! Œ�U1;:::;Ui�1;U;V;Ui ;:::;Un�1.f Œn�/�.K1; : : : ; Ki�1; X;Ki ; : : : ; Kn�1/:

We have the following identity in �p.H /: for every j � N ,

�j .U � Vj / � �.U � V /

D �j .V � Vj /C �j .U � V � B/C .�j .B/ � �.B//C �.B � .U � V //:

By Proposition 2.4, there exists N 0 2 N such that

k�j .B/ � �.B/kp � k�j .B/ � �.B/k2 < " for all j � N 0:

Next, by Theorem 2.3, ¹�j j j 2 Nº [ ¹�º � B.�p.H // is uniformly bounded.
Hence, there exists a constant C such that, using (12) and (13),

k�j .V � Vj /kp � CkV � Vj kp < C"; k�j .U � V � B/kp < C"

and

k�.B � .U � V //kp < C":

Hence, for every j � max¹N;N 0º,

k�j .U � Vj / � �.U � V /kp � .3C C 1/":

This concludes the proof whenK1; : : : ;Kn�1 2 �2.H / and U � V 2 �p.H /; p > 2.
By approximation and boundedness of operator integrals on �p.H / given by Theo-
rem 2.3, we obtain the general case. This completes the proof in full generality.

This section concludes with the following lemma, which is a straightforward con-
sequence of Proposition 2.5.

Lemma 2.6. Let 1 < p <1 and n � 2 be an integer. Let f 2 C n.T /. Let U; V be
two unitary operators with U � V 2 �p.H /, and let K1; : : : ; Kn�1 2 �p.H /. Then,
for 1 � k � n,

Œ�.U /
k ;.V /n�k

.f Œn�1�/ � �.V /
n

.f Œn�1�/�.K1; : : : ; Kn�1/

D

kX
iD1

Œ�.U /
i ;.V /n�iC1

.f Œn�/�.K1; : : : ; Ki�1; U � V;Ki ; : : : ; Kn�1/:
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Proof. We have

Œ�.U /
k ;.V /n�k

.f Œn�1�/ � �.V /
n

.f Œn�1�/�.K1; : : : ; Kn�1/

D

kX
iD1

Œ�.U /
i ;.V /n�i

.f Œn�1�/ � �.U /
i�1;.V /n�iC1

.f Œn�1�/�.K1; : : : ; Kn�1/: (14)

Now, applying Proposition 2.5 to (14) we complete the proof.

3. Differentiability in �p.H /, 1 < p < 1

3.1. Statements of the main results

In this section, we state our main results on differentiability of functions of unitary
operators in �p-norms, for 1 < p <1.

We start by defining the Gâteaux and Fréchet differentiability of operator func-
tions. In this paper, we explore the concept of higher order Fréchet and Gâteaux
differentiability of f 2 Lip.T / at U.t/ 2 U.H / as discussed below.

Let U WR!U.H / be such that the function zU W t 2 R 7! U.t/� U.0/ 2 �p.H /.
Let f 2 Lip.T /, 1 < p <1. By [4, Theorem 2], the function

'U;f;p W t 2 R 7! f .U.t// � f .U.0// 2 �p.H /

is well defined.

Definition 3.1 (Gâteaux derivative). Let n 2 N and zU 2 Dn.R;�p.H //. A function
f 2 Lip.T / is said to be n times Gâteaux �p-differentiable at U.t/ if the function
'U;f;p is n � 1 times �p-differentiable in a neighborhood of t and

'
.n�1/

U;f;p
WR! �p.H /

is �p-differentiable at t . The expression '.n/
U;f;p

.t/ denotes the n-th Gâteaux �p-deriva-
tive of f at U.t/.

Let U; V 2 U.H /. By“V in the �p-neighborhood of U ,” we mean that

V 2 ¹X 2 U.H / W X � U 2 Wº;

where W is a �p-neighborhood of 0. A function f 2 Lip.T / is said to be Fréchet
�p-differentiable at U 2 U.H / if there exists a bounded operator

D1
F;pf .U / 2 B.�p.H //
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satisfying

kf .V / � f .U / �D1
F;pf .U /.V � U/kp D o.kV � U kp/;

for V in a �p-neighborhood of U . Note that V being in such neighborhood means
that V D eiAU , where A 2 �

p
sa.H / and keiA � Ikp is small enough.

Definition 3.2 (Fréchet derivative). Let n 2 N. We say that f 2 Lip.T / is n times
Fréchet �p-differentiable at U 2 U.H / if it is n � 1 times Fréchet �p-differentiable
in a �p-neighborhood of U and there is a n-linear bounded operator

Dn
F;pf .U / 2 Bn.�

p.H //

satisfying, for every X1; : : : ; Xn�1 2 �p.H /,

k.Dn�1
F;p f .V / �D

n�1
F;p f .U //.X1; : : : ; Xn�1/

�Dn
F;pf .U /.X1; : : : ; Xn�1; V � U/kp

D o.kV � U kp/kX1kp � � � kXn�1kp;

as kV � U kp ! 0, for V in a �p-neighborhood of U .

Next, we say that f is n times continuously Fréchet �p-differentiable at U 2
U.H / if it is n times Fréchet �p-differentiable in a �p-neighborhood of U and for
every X1; : : : ; Xn 2 �p.H / and V in a �p-neighborhood of U ,

kDn
F;pf .V /.X1; : : : ; Xn/ �D

n
F;pf .U /.X1; : : : ; Xn/k D o.1/kX1kp � � � kXnkp;

as kV � U kp ! 0.
We are now ready to state our first main result. Prior to that, we denote by Symk

the group of permutations of the set ¹1; : : : ; kº.

Theorem 3.3. Let 1 < p <1 and n 2 N. Let f 2 C n.T /. Then f is n times con-
tinuously Fréchet �p-differentiable at every U 2 U.H / and for every 1 � k � n,
X1; : : : ; Xk 2 �p.H /,

Dk
F;pf .U /.X1; : : : ; Xk/ D

X
�2Symk

Œ�.U /
kC1

.f Œk�/�.X�.1/; : : : ; X�.k//: (15)

Remark 3.4. The converse of the above Theorem 3.3 holds true, namely, if f is n
times continuously Fréchet �p-differentiable at every U 2 U.H /, then f 2 C n.T /.
This follows from similar computations as in [16, Proposition 3.9 (ii)].

We now establish the n-th order Gâteaux derivative of f WT ! C. The subse-
quent result shows that, for f 2 C n.T /, the operator function R 3 t 7! f .U.t// �

f .U.0// 2 �p.H / is n times differentiable (resp. continuously differentiable) in
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�p.H / if U.t/ � U.0/ 2 �p.H / belongs to Dn.R; �p.H // (resp. C n.R; �p.H //).
Since we are working on the path t 7! U.t/ (which may not always be linear), the
expression of the n-th order Gâteaux derivative of f will be bizarre to obtain from
the definition of the Fréchet derivative directly unlike in the linear path. Here, we
provide an easy-to-get expression of the Gâteaux derivative using Lemma 3.9. Fur-
thermore, we express the n-th order operator Taylor remainder corresponding to the
unitary operator U.t/ as multiple operator integrals when f 2 C n.T /.

Theorem 3.5. Let 1<p <1 and n2N. LetU WR!U.H / be such that the function
zU W t 2 R 7! U.t/ � U.0/ 2 �p.H / belongs to Dn.R; �p.H //. Let f 2 C n.T /. We
consider the function

'W t 2 R 7! f .U.t// � f .U.0// 2 �p.H /:

Then the following assertions hold.

(i) ' 2 Dn.R; �p.H // and, for every integer 1 � k � n and t 2 R,

'.k/.t/

D

kX
mD1

X
l1;:::;lm�1
l1C���ClmDk

kŠ

l1Š � � � lmŠ
Œ�.U.t//

mC1

.f Œm�/�. zU .l1/.t/; : : : ; zU .lm/.t//:

(16)

In addition, if zU 2 C n.R; �p.H //, then ' 2 C n.R; �p.H //.

(ii) The operator Taylor remainder defined by

Rn;f;U .t/´ f .U.t// � f .U.0// �

n�1X
kD1

1

kŠ
'.k/.0/ (17)

satisfies, for any t 2 R,

Rn;f;U .t/

D

nX
mD1

X
l1;:::;lm�1
l1C���ClmDn

Œ�U.t/;.U.0//
m

.f Œm�/�
�
Rl1;U .t/;

zU .l2/.0/

l2Š
; : : : ;

zU .lm/.0/

lmŠ

�
;

(18)

where
R1;U .t/´ zU.t/

and, for any l1 � 1,

Rl1;U .t/´
zU.t/ �

l1�1X
kD1

1

kŠ
zU .k/.0/:
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Finally, the differentiability result stated below is the �p-analogue of [22, The-
orem 3.1]. Note that [22, Theorem 3.1] establishes the existence of the n-th order
Gâteaux derivative (in operator norm) of f under the assumption of f 2Bn11.T /. We
prove here that f is actually n times continuously Gâteaux differentiable (in Schat-
ten p-norm) under the assumption that f 2 C n.T /. In addition, we also express the
n-th order Taylor remainder as a sum of multiple operator integrals and deduce an
�p=n-estimate in the case when f 2 C n.T / for 1 < n < p <1. As discussed in the
introduction, this result is already established in [23, Theorem 4.2] under the same
assumption, here we give a simple proof of it without using the approximation of f
or the integral representation for the remainder of the Taylor approximation, as found
in the aforementioned paper.

Corollary 3.6. Let 1 < p <1 and n 2N. Assume that A 2 �
p
sa.H / and U 2U.H /.

Let f 2 C n.T /. Let U.t/ D eitAU; t 2 R and consider the function

'W t 2 R 7! f .eitAU/ � f .U / 2 �p.H /:

(i) The function ' 2C n.R;�p.H // and for every integer 1� k � n and t 2R,

'.k/.t/

D ik
kX

mD1

X
l1;:::;lm�1
l1C���ClmDk

kŠ

l1Š � � � lmŠ
Œ�.U.t//

mC1

.f Œm�/�.Al1U.t/; : : : ; AlmU.t//:

(19)

Moreover, there exists a constant Qcp;n > 0 such that

k'.n/.t/kp � Qcp;n

nX
mD1

kf .m/k1kAk
n
p:

(ii) The operator Taylor remainder defined by

Rn;f .A; U /´ f .eiAU/ � f .U / �

n�1X
kD1

1

kŠ
'.k/.0/ (20)

satisfies

Rn;f .A; U /

D

nX
mD1

X
l1;:::;lm�1
l1C���ClmDn

Œ�e
iAU;.U /m.f Œm�/�

� 1X
kDl1

.iA/k

kŠ
U;

.iA/l2

l2Š
U; : : : ;

.iA/lm

lmŠ
U
�
: (21)
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Moreover, if 1 < n < p <1, then there exists a constant Qcp;n > 0 such that

kRn;f .A; U /kp
n
� Qcp;n

nX
mD1

kf .m/k1kAk
n
p:

3.2. Some auxiliary lemmas

In this section, we will provide some technical results that will be used to prove our
main results in the next section.

Lemma 3.7. Let 1 < p <1 and n 2 N. Let U1; : : : ; UnC1; V1; : : : ; VnC1 2 U.H /

and X1; : : : ; Xn 2 �np.H /. Let f 2 C n.T /. Then, for every " > 0, there exists a
constant ı > 0 such that, if kVi � Uik � ı for every 1 � i � nC 1, then

kŒ�V1;:::;VnC1.f Œn�/ � �U1;:::;UnC1.f Œn�/�.X1; : : : ; Xn/kp � "kX1knp � � � kXnknp:

Proof. Fix " > 0. We first prove the lemma when f Œn� D Q is a trigonometric poly-
nomial. By linearity, it suffices to consider the caseQ.z1; : : : ; znC1/D z

m1

1 � � �z
mnC1

nC1 ,
where mi 2 Z; 1 � i � nC 1. Since

Œ�V1;:::;VnC1.Q/ � �U1;:::;UnC1.Q/�.X1; : : : ; Xn/

D V
m1

1 X1V
m2

2 � � �V mn
n XnV

mnC1

nC1 � U
m1

1 X1U
m2

2 � � �U
mn
n XnU

mnC1

nC1

D

nC1X
kD1

.V
m1

1 � � �V
mk�1

k�1
Xk�1V

mk

k
XkU

mkC1

kC1
� � �U

mnC1

nC1

� V
m1

1 � � �V
mk�1

k�1
Xk�1U

mk

k
� � �U

mnC1

nC1 /

D

nC1X
kD1

V
m1

1 � � �V
mk�1

k�1
Xk�1.V

mk

k
� U

mk

k
/XkU

mkC1

kC1
� � �U

mnC1

nC1

and Ui ; Vi are unitaries, by Theorem 2.3 we get

kŒ�V1;:::;VnC1.f Œn�/ � �U1;:::;UnC1.f Œn�/�.X1; : : : ; Xn/kp

� .nC 1/ max
1�k�nC1

kV
mk

k
� U

mk

k
k kX1knp � � � kXnknp:

By simple algebraic manipulations, we obtain that, for every r 2 Z,

kV r � U rk � jr j � kV � U k:

It follows that there exists a constant K > 0 (depending on n and m1; : : : ; mnC1, that
is, only on Q) such that

kŒ�V1;:::;VnC1.f Œn�/ � �U1;:::;UnC1.f Œn�/�.X1; : : : ; Xn/k

� K max
1�k�nC1

kVk � UkkkX1knp � � � kXnknp:
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Choosing ı D "
K

, we conclude the proof for the particular case of a trigonometric
polynomial.

In the general case, note that, as in the proof of Theorem 2.3, one can find a
trigonometric polynomial P such that

kf .n/ � P .n/k1 � C";

where C > 0 is a constant that will be defined later. By Theorem 2.3, there exists a
constant cp;n such that

kŒ�V1;:::;VnC1.f Œn� � P Œn�/�.X1; : : : ; Xn/kp � cp;n C"kX1knp � � � kXnknp (22)

and

kŒ�U1;:::;UnC1.P Œn� � f Œn�/�.X1; : : : ; Xn/kp � cp;n C"kX1knp � � � kXnknp: (23)

Next, the first part of the proof yields the existence of a constant ı > 0 such that, if
kVi � Uik � ı for every 1 � i � nC 1, then

kŒ�V1;:::;VnC1.P Œn�/ � �U1;:::;UnC1.P Œn�/�.X1; : : : ; Xn/kp �
"

3
kX1knp � � � kXnknp:

(24)
Finally, the equality

�V1;:::;VnC1.f Œn�/ � �U1;:::;UnC1.f Œn�/

D �V1;:::;VnC1.f Œn� � P Œn�/C .�V1;:::;VnC1.P Œn�/ � �U1;:::;UnC1.P Œn�//

C �U1;:::;UnC1.P Œn� � f Œn�/;

together with (22)–(24) yield

kŒ�V1;:::;VnC1.f Œn�/ � �U1;:::;UnC1.f Œn�/�.X1; : : : ; Xn/kp

�

°
2cp;nC"C

"

3

±
kX1knp � � � kXnknp;

and setting C ´ 1
3cp;n

concludes the proof of the lemma.

The following corollary is a simple consequence of the above Lemma 3.7.

Corollary 3.8. Let 1 < p <1, n 2 N, n � 2 and 1 � j � n. Let U WR!U.H / be
such that the function zU W t 2 R 7! U.t/ � U.0/ 2 �p.H / belongs to C.R; �p.H //,
and let K1; : : : ; Kn�1 2 �p.H /. Let f 2 C n�1.T /. Define

 W s 2 R 7! �p.H /

by

 .s/ D Œ�.U.s//
j ;.U.t//n�j

.f Œn�1�/�.K1; : : : ; Kn�1/:
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Then  is continuous at t 2 R. In addition, if f 2 C n.T / we have for any s; t 2 R,

 .s/ �  .t/

D

jX
iD1

Œ�.U.s//
i ;.U.t//n�iC1

.f Œn�/�.K1; : : : ; Ki�1; U.s/ � U.t/;Ki ; : : : ; Kn�1/:

To proceed further we need the following lemma, which will help us to prove the
differentiability result in Theorem 3.5.

Lemma 3.9. Let 1 < p <1 and U WR! U.H / be such that the function zU W t 2
R 7! U.t/�U.0/ 2 �p.H / is differentiable. Letm 2N, let V1; : : : ; VmWR! �p.H /

be differentiable functions and let f 2 CmC1.T /. We consider the function

 W t 2 R 7! �p.H /

defined by
 .t/ D Œ�.U.t//

mC1

.f Œm�/�.V1.t/; : : : ; Vm.t//:

Then  belongs to D1.R; �p.H // and its derivative is given, for any t 2 R, by

 0.t/ D

mX
kD1

Œ�.U.t//
mC1

.f Œm�/�.V1.t/; : : : ; Vk�1.t/; V
0
k.t/; VkC1.t/; : : : ; Vm.t//

C

mC1X
kD1

Œ�.U.t//
mC2

.f ŒmC1�/�.V1.t/; : : : ; Vk�1.t/; zU
0.t/; Vk.t/; : : : ; Vm.t//:

If we further assume that zU; V1; : : : ; Vm are continuously differentiable, then so is  .

Proof. For any s; t 2 R, write

 .t/ �  .s/ D  1.s; t/C  2.s; t/;

where

 1.s; t/

D Œ�.U.t//
mC1

.f Œm�/�.V1.t/; : : : ; Vm.t//

� Œ�.U.t//
mC1

.f Œm�/�.V1.s/; : : : ; Vm.s//

and

 2.s; t/

D Œ�.U.t//
mC1

.f Œm�/�.V1.s/; : : : ; Vm.s//

� Œ�.U.s//
mC1

.f Œm�/�.V1.s/; : : : ; Vm.s//:
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We have

 1.s; t/

D

mX
kD1

.Œ�.U.t//
mC1

.f Œm�/�.V1.s/; : : : ; Vk�1.s/; Vk.t/; : : : ; Vm.t//

� Œ�.U.t//
mC1

.f Œm�/�.V1.s/; : : : ; Vk.s/; VkC1.t/; : : : ; Vm.t///

D

mX
kD1

Œ�.U.t//
mC1

.f Œm�/�.V1.s/; : : : ; Vk�1.s/; Vk.t/ � Vk.s/; VkC1.t/; : : : ; Vm.t//:

By differentiability (and hence continuity) of Vk; k D 1; : : : ; m, we have

lim
s!t

Vk.s/ D Vk.t/ and lim
s!t

Vk.t/ � Vk.s/

t � s
D V 0k.t/

in �p.H /. Since �.U.t//
mC1

.f Œm�/ 2 Bm.�
p.H //, this implies that

 1.s; t/

t � s
D

mX
kD1

Œ�.U.t//
mC1

.f Œm�/�
�
V1.s/; : : : ; Vk�1.s/;

Vk.t/ � Vk.s/

t � s
;

VkC1.t/; : : : ; Vm.t/
�

���!
s!t

mX
kD1

Œ�.U.t//
mC1

.f Œm�/�.V1.t/; : : : ; Vk�1.t/; V
0
k.t/; VkC1.t/; : : : ; Vm.t//

in �p.H /. For  2, by Lemma 2.6 we have

 2.s; t/

t � s
D

mC1X
kD1

Œ�.U.t//
k ;.U.s//mC2�k

.f ŒmC1�/�
�
V1.s/; : : : ; Vk�1.s/;

zU.t/ � zU.s/

t � s
;

Vk.t/; : : : ; Vm.t/
�
:

For 1 � k � mC 1 and any s ¤ t , let

�k.s/ D Œ�
.U.t//k ;.U.s//mC2�k

.f ŒmC1�/�
�
V1.s/; : : : ; Vk�1.s/;

zU.t/ � zU.s/

t � s
;

Vk.t/; : : : ; Vm.t/
�
:

Since . zU.t/ � zU.s//=.t � s/ goes to zU 0.t/ in �p.H / as s goes to t , by the uniform
boundedness of Œ�.U.t//

k ;.U.s//mC2�k
.f ŒmC1�/� 2 BmC1.�

p.H //, we deduce that

lim
s!t

�k.s/

exists if and only if

lim
s!t

Œ�.U.t//
k ;.U.s//mC2�k

.f ŒmC1�/�.V1.t/; : : : ; Vk�1.t/; zU
0.t/; Vk.t/; : : : ; Vm.t//;
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exists, and, in that case, both limits are equal. By Corollary 3.8, the latter limit exists
and it further reduces to

lim
s!t

�k.s/ D Œ�
.U.t//mC2

.f ŒmC1�/�.V1.t/; : : : ; Vk�1.t/; zU
0.t/; Vk.t/; : : : ; Vm.t//

in �p.H /. This proves the first claim.
In the case when zU; V1; : : : ; Vm are continuously differentiable, a similar line of

argument as in the proof of differentiability of  and an application of Corollary 3.8
to  0 shows that  0 is continuous. The details are left to the reader. This completes
the proof.

3.3. Proofs of the main results

We now turn to the proofs of the main results of this article, which were outlined in
Section 3.1.

Proof of Theorem 3.3. In the proof, we fix U 2 U.H /, V will be an element of a
�p-neighborhood of U , and X1; : : : ; Xn�1 will denote elements of �p.H /.

We prove the result by induction on n. The argument for the base case n D 1 is
the same as for a general integer n, hence we assume that this case has been proven.

Assume now that the result holds true for functions in C n�1.T /, n � 2, and let
f 2 C n.T /. In particular, f 2 C n�1.T / so f is n � 1 times continuously Fréchet
�p-differentiable at U and formula (15) holds true for every k D 1; : : : ; n � 1. We
now show that f is n times continuously Fréchet �p-differentiable at U and that (15)
holds true for k D n. First, let us denote

T1 D .D
n�1
F;p f .V / �D

n�1
F;p f .U //.X1; : : : ; Xn�1/:

Note that, by assumption and by Lemma 2.6,

T1 D
X

�2Symn�1

Œ�.V /
n

.f Œn�1�/ � �.U /
n

.f Œn�1�/�.X�.1/; : : : ; X�.n�1//

D

X
�2Symn�1

nX
iD1

Œ�.V /
i ;.U /n�iC1

.f Œn�/�.X�.1/; : : : ; X�.i�1/; V � U;

X�.i/; : : : ; X�.n�1//:

Next, we let Xn´ V � U 2 �p.H /. Notice that

T2´
X

�2Symn

Œ�.U /
nC1

.f Œn�/�.X�.1/; : : : ; X�.n//

D

nX
iD1

X
�2Symn�1

Œ�.U /
nC1

.f Œn�/�.X�.1/; : : : ; X�.i�1/; V � U;

X�.i/; : : : ; X�.n�1//;
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so that

kT1 � T2kp

�

nX
iD1

X
�2Symn�1

kŒ.�.V /
i ;.U /n�iC1

� �.U /
nC1

/.f Œn�/�.X�.1/; : : : ; X�.i�1/; V � U;

X�.i/; : : : ; X�.n�1//kp:

Let " > 0, 1 � i � n and � 2 Symn�1. By Lemma 3.7, there exists ı > 0 such that, if

.kV � U k �/ kV � U kp � ı;

then

kŒ.�.V /
i ;.U /n�iC1

� �.U /
nC1

/.f Œn�/�.X�.1/; : : : ; X�.i�1/; V � U;

X�.i/; : : : ; X�.n�1//kp

� " kV � U knpkX1knp � � � kXn�1knp

� " kV � U kpkX1kp � � � kXn�1kp:

By linearity, this concludes the proof of the Fréchet �p-differentiability. The fact that
f is continuously Fréchet �p-differentiable now follows easily from (15), linearity,
and Lemma 3.7.

Proof of Theorem 3.5. The assumption on f ensures that f is n times continuously
Fréchet �p-differentiable at everyU.t/2U.H /. (i) We prove the first claim by induc-
tion on k, 1 � k � n. Let s; t 2 R. The n-th order Fréchet �p-differentiability of f
at U.t/ implies that it is n � 1 times Fréchet �p-differentiable in a �p-neighborhood
of U.t/ and there is a n-linear bounded operator

Dn
F;pf .U.t// 2 Bn.�

p.H //

such that, for every X1; : : : ; Xn�1 2 �p.H /,

k.Dn�1
F;p f .U.s// �D

n�1
F;p f .U.t///.X1; : : : ; Xn�1/

�Dn
F;pf .U.t//.X1; : : : ; Xn�1; U.s/ � U.t//kp

D o.kU.s/ � U.t/kp/ kX1kp � � � kXn�1kp;

as kU.s/ � U.t/kp ! 0. For n D 1, there exists a bounded linear operator

D1
F;pf .U.t// 2 B.�p.H //

such that

kf .U.s// � f .U.t// �D1
F;pf .U.t//.U.s/ � U.t//kp D o.kU.s/ � U.t/kp/

as kU.s/ � U.t/kp ! 0.
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Again, note that

kf .U.s// � f .U.t// � .s � t /D1
F;pf .U.t//.

zU 0.t//kp

� kf .U.s// � f .U.t// �D1
F;pf .U.t//.U.s/ � U.t//kp

C




.s � t /hD1
F;pf .U.t//

�U.s/ � U.t/
s � t

�
�D1

F;pf .U.t//.
zU 0.t//

i



p
: (25)

Now, the fact that zU 2 Dn.R; �p.H // together with inequality (25) imply that f is
Gâteaux �p-differentiable at U.t/ along with its Gâteaux derivative

'0.t/ D
d

ds

ˇ̌̌
sDt
f .U.s// D D1

F;pf .U.t//.
zU 0.t//;

where

D1
F;pf .U.t//.

zU 0.t// D Œ�.U.t//
2

.f Œ1�/�. zU 0.t//:

This proves the base of the induction.
Now, assume that for 1 � k � n� 1, f is k times Gâteaux �p-differentiable, that

is ' 2 Dk.R; �p.H //, and

'.k/.t/ D

kX
mD1

X
l1;:::;lm�1
l1C���ClmDk

kŠ

l1Š � � � lmŠ
Œ�.U.t//

mC1

.f Œm�/�. zU .l1/.t/; : : : ; zU .lm/.t//

D

k�1X
mD1

X
l1;:::;lm�1
l1C���ClmDk

kŠ

l1Š � � � lmŠ
Œ�.U.t//

mC1

.f Œm�/�. zU .l1/.t/; : : : ; zU .lm/.t//

CDk
F;pf .U.t//..

zU 0.t//k/

´ ŒA�C ŒB�:

To check the .k C 1/-th order Gâteaux differentiability of f it is enough to check the
Gâteaux differentiability of ŒA� and ŒB�. Note that, the n-th order Fréchet �p-differen-
tiability of f and zU 2 Dn.R; �p.H // ensures that ŒB� is Gâteaux �p-differentiable,
and

d

ds

ˇ̌̌
sDt
Dk
F;pf .U.s//..

zU 0.s//k/

D

kX
iD1

Dk
F;pf .U.t//.

zU 0.t/; : : : ; zU 0.t/; zU 00.t/„ƒ‚…
i

; zU 0.t/; : : : ; zU 0.t//

CDkC1
F;p f .U.t//..

zU 0.t//kC1/: (26)
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On the other hand, the Gâteaux �p-differentiability of ŒA� is justified by Lemma 3.9.
Moreover, applying Lemma 3.9 in ŒA�, together with (26) give '.k/ 2D1.R;�p.H //,
that is, f is .k C 1/ times Gâteaux �p-differentiable, and

'.kC1/.t/

D kŠ

kX
mD1

X
l1;:::;lm�1
l1C���ClmDk

1

l1Š � � � lmŠ

mX
pD1

Œ�.U.t//
mC1

.f Œm�/�. zU
.l1/
t ; : : : ; zU

.lp�1/
t ; zU

.lpC1/
t ;

zU
.lpC1/
t ; : : : ; zU

.lm/
t /

C kŠ

kX
mD1

X
l1;:::;lm�1
l1C���ClmDk

1

l1Š � � � lmŠ

mC1X
pD1

Œ�.U.t//
mC2

.f ŒmC1�/�. zU
.l1/
t ; : : : ; zU

.lp�1/
t ; zU 0t ;

zU
.lp/
t ; : : : ; zU

.lm/
t /

D kŠ .'1.t/C '2.t//;

where zU .l/t stands for zU .l/.t/. Now, by employing a similar combinatorial reasoning
as demonstrated in the proof of [25, Theorem 5.3.4], we conclude the induction on k.

This proves formula (16) and ' 2Dn.R;�p.H //. Furthermore, if we assume that
zU 2 C n.R; �p.H //, then an application of Corollary 3.8 shows that '.n/ 2 C.R;
�p.H //.

(ii) We obtain the representation (18) for the Taylor reminder Rk;f;U .t/ by induc-
tion on k. The base case k D 1 follows from (10). Notice that the assumption on f
ensures, by Theorem 3.5 (i), that ' 2 Dn.R; �p.H //. Further, the inductive step is
proved along the lines of the one in [25, Theorem 5.4.1 (ii)]. Details are left to the
reader. This completes the proof of the theorem.

Finally, we now turn to the proof of Corollary 3.6.

Proof of Corollary 3.6. Let U.t/ D eitAU , t 2 R, where A 2 �
p
sa.H / and define

zU.t/´ eitAU � U; t 2 R:

(i) A routine calculation provides that for every n2N we have zU 2C n.R;�p.H //,
and

zU .n/.t/ D .iA/nU.t/; t 2 R: (27)

Now, using Theorem 3.5 (i), we prove (19) along with ' 2 C n.R; �p.H //.
By Theorem 2.3, there exists cp;m > 0 such that

kŒ�.U.t//
mC1

.f Œm�/�.Al1U.t/; : : : ; AlmU.t//kp � cp;mkf
.m/
k1kAk

n
p (28)
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for every 1 � m � n. Hence, in view of (19) and (28), we have the existence of a
constant Qcp;n > 0 such that, for 1 < p <1,

k'.n/.t/kp � Qcp;n

nX
mD1

kf .m/k1kAk
n
p:

(ii) Note thatRn;f .A;U /DRn;f;U .1/ (see for instance (17) and (20)). Therefore,
(18) along with (27) yield (21).

Now, assume that 1 < n < p <1 and f 2 C n.T /. By [22, (4.2)], we have an
integral representation for the remainder of the Taylor approximation

zU.1/ �

l1�1X
kD1

1

kŠ
zU .k/.0/ D

1

.l1 � 1/Š

1Z
0

.1 � t /l1�1 zU .l1/.t/dt;

which along with (27) further implies the following estimate:


 1X
kDl1

.iA/k

kŠ
U





p
l1

D




 zU.1/ � l1�1X
kD1

1

kŠ
zU .k/.0/





p
l1

�
1

l1Š
kAkl1p : (29)

Therefore, using (29) and Theorem 2.3 in (21), we have the existence of a constant
Qcp;n > 0 such that

kRn;f .A; U /kp
n
� Qcp;n

nX
mD1

kf .m/k1kAk
n
p:

This completes the proof of the corollary.

Acknowledgments. The authors would like to heartily thank the anonymous referee
for a careful reading of the manuscript and helpful suggestions.

Funding. A. Chattopadhyay is supported by the Core Research Grant (CRG), File
No. CRG/2023/004826, of SERB. S. Giri acknowledges the support by the Prime
Minister’s Research Fellowship (PMRF), Government of India. C. Pradhan acknowl-
edges support from the IoE post-doctoral fellowship at IISc Bangalore.

References

[1] A. B. Aleksandrov, F. L. Nazarov, and V. V. Peller, Functions of noncommuting self-
adjoint operators under perturbation and estimates of triple operator integrals. Adv. Math.
295 (2016), 1–52 Zbl 1359.47012 MR 3488031

https://doi.org/10.1016/j.aim.2016.02.030
https://doi.org/10.1016/j.aim.2016.02.030
https://zbmath.org/?q=an:1359.47012
https://mathscinet.ams.org/mathscinet-getitem?mr=3488031


A. Chattopadhyay, C. Coine, S. Giri, and C. Pradhan 220

[2] A. B. Aleksandrov and V. V. Peller, Multiple operator integrals, Haagerup and Haagerup-
like tensor products, and operator ideals. Bull. Lond. Math. Soc. 49 (2017), no. 3, 463–479
Zbl 1441.47022 MR 3723631

[3] J. Arazy, T. J. Barton, and Y. Friedman, Operator differentiable functions. Integral Equa-
tions Operator Theory 13 (1990), no. 4, 462–487 Zbl 0731.46033 MR 1058083

[4] P. J. Ayre, M. G. Cowling, and F. A. Sukochev, Operator Lipschitz estimates in the unitary
setting. Proc. Amer. Math. Soc. 144 (2016), no. 3, 1053–1057 Zbl 1337.47017
MR 3447659

[5] N. A. Azamov, A. L. Carey, P. G. Dodds, and F. A. Sukochev, Operator integrals, spectral
shift, and spectral flow. Canad. J. Math. 61 (2009), no. 2, 241–263 Zbl 1163.47008
MR 2504014

[6] M. Š. Birman and M. Z. Solomjak, Double Stieltjes operator integrals (in Russian). In
Problems of mathematical physics, No. I: Spectral theory and wave processes, pp. 33–67,
Izdat. Leningrad. Univ., Leningrad, 1966 Zbl 0161.34602 MR 0209872. English trans-
lation: Problems of mathematical physics, No. I: Spectral theory and wave processes,
pp. 25–54, Consultants Bureau, New York, NY, 1967

[7] M. Š. Birman and M. Z. Solomjak, Double Stieltjes operator integrals. III (in Russian).
Probl. Mat. Fiz. 6 (1973), 27–53 Zbl 0281.47013 MR 0348494

[8] C. Coine, Perturbation theory and higher order �p-differentiability of operator functions.
Rev. Mat. Iberoam. 38 (2022), no. 1, 189–221 Zbl 1530.47051 MR 4382469

[9] C. Coine, C. Le Merdy, A. Skripka, and F. Sukochev, Higher order �2-differentiability and
application to Koplienko trace formula. J. Funct. Anal. 276 (2019), no. 10, 3170–3204
Zbl 07040991 MR 3944290

[10] C. Coine, C. Le Merdy, and F. Sukochev, When do triple operator integrals take value in
the trace class? Ann. Inst. Fourier (Grenoble) 71 (2021), no. 4, 1393–1448
Zbl 07492542 MR 4398239

[11] J. B. Conway, A course in operator theory. Grad. Stud. Math. 21, American Mathematical
Society, Providence, RI, 2000 Zbl 0936.47001 MR 1721402

[12] Y. L. Daleckiı̆ and S. G. Kreı̆n, Integration and differentiation of functions of Hermitian
operators and applications to the theory of perturbations (in Russian). Voronež. Gos. Univ.
Trudy Sem. Funkcional. Anal. English translation: 1956 (1956), no. 1, 81–105.
MR 0084745 Amer. Math. Soc. Transl. (2) 47 (1965), 1–30 Zbl 0158.14603

[13] B. de Pagter and F. A. Sukochev, Differentiation of operator functions in non-commutative
Lp-spaces. J. Funct. Anal. 212 (2004), no. 1, 28–75 Zbl 1075.46054 MR 2065237

[14] E. Kissin, D. Potapov, V. Shulman, and F. Sukochev, Operator smoothness in Schat-
ten norms for functions of several variables: Lipschitz conditions, differentiability and
unbounded derivations. Proc. Lond. Math. Soc. (3) 105 (2012), no. 4, 661–702
Zbl 1258.47022 MR 2989800

[15] E. Kissin and V. S. Shulman, Classes of operator-smooth functions. II. Operator-differen-
tiable functions. Integral Equations Operator Theory 49 (2004), no. 2, 165–210
Zbl 1061.47013 MR 2060371

https://doi.org/10.1112/blms.12034
https://doi.org/10.1112/blms.12034
https://zbmath.org/?q=an:1441.47022
https://mathscinet.ams.org/mathscinet-getitem?mr=3723631
https://doi.org/10.1007/BF01210398
https://zbmath.org/?q=an:0731.46033
https://mathscinet.ams.org/mathscinet-getitem?mr=1058083
https://doi.org/10.1090/proc/12833
https://doi.org/10.1090/proc/12833
https://zbmath.org/?q=an:1337.47017
https://mathscinet.ams.org/mathscinet-getitem?mr=3447659
https://doi.org/10.4153/CJM-2009-012-0
https://doi.org/10.4153/CJM-2009-012-0
https://zbmath.org/?q=an:1163.47008
https://mathscinet.ams.org/mathscinet-getitem?mr=2504014
https://zbmath.org/?q=an:0161.34602
https://mathscinet.ams.org/mathscinet-getitem?mr=0209872
https://doi.org/10.1007/978-1-4684-7595-1_2
https://doi.org/10.1007/978-1-4684-7595-1_2
https://zbmath.org/?q=an:0281.47013
https://mathscinet.ams.org/mathscinet-getitem?mr=0348494
https://doi.org/10.4171/rmi/1276
https://zbmath.org/?q=an:1530.47051
https://mathscinet.ams.org/mathscinet-getitem?mr=4382469
https://doi.org/10.1016/j.jfa.2018.09.005
https://doi.org/10.1016/j.jfa.2018.09.005
https://zbmath.org/?q=an:07040991
https://mathscinet.ams.org/mathscinet-getitem?mr=3944290
https://doi.org/10.5802/aif.3422
https://doi.org/10.5802/aif.3422
https://zbmath.org/?q=an:07492542
https://mathscinet.ams.org/mathscinet-getitem?mr=4398239
https://doi.org/10.1090/gsm/021
https://zbmath.org/?q=an:0936.47001
https://mathscinet.ams.org/mathscinet-getitem?mr=1721402
https://doi.org/10.1090/trans2/047/01
https://mathscinet.ams.org/mathscinet-getitem?mr=0084745
https://zbmath.org/?q=an:0158.14603
https://doi.org/10.1016/j.jfa.2003.10.009
https://doi.org/10.1016/j.jfa.2003.10.009
https://zbmath.org/?q=an:1075.46054
https://mathscinet.ams.org/mathscinet-getitem?mr=2065237
https://doi.org/10.1112/plms/pds014
https://doi.org/10.1112/plms/pds014
https://doi.org/10.1112/plms/pds014
https://zbmath.org/?q=an:1258.47022
https://mathscinet.ams.org/mathscinet-getitem?mr=2989800
https://doi.org/10.1007/s00020-002-1201-0
https://doi.org/10.1007/s00020-002-1201-0
https://zbmath.org/?q=an:1061.47013
https://mathscinet.ams.org/mathscinet-getitem?mr=2060371


Higher order �p-differentiability: The unitary case 221

[16] C. Le Merdy and A. Skripka, Higher order differentiability of operator functions in Schat-
ten norms. J. Inst. Math. Jussieu 19 (2020), no. 6, 1993–2016 Zbl 07286300
MR 4167000

[17] B. S. Pavlov, Multidimensional operator integrals (in Russian). In Probl. Mat. Anal 2
(1969), 99–122 Zbl 0211.17201 MR 0415371

[18] G. K. Pedersen, Operator differentiable functions. Publ. Res. Inst. Math. Sci. 36 (2000),
no. 1, 139–157 Zbl 0969.47010 MR 1749015

[19] V. V. Peller, Hankel operators in the theory of perturbations of unitary and selfadjoint
operators (in Russian). Funktsional. Anal. i Prilozhen. 19 (1985), no. 2, 37–51, 96
MR 0800919. English translation: Funct. Anal. Appl. (1985) 19 (1985), 111–123
Zbl 0587.47016

[20] V. V. Peller, Multiple operator integrals and higher operator derivatives. J. Funct. Anal.
233 (2006), no. 2, 515–544 Zbl 1102.46024 MR 2214586

[21] D. Potapov, A. Skripka, and F. Sukochev, Spectral shift function of higher order. Invent.
Math. 193 (2013), no. 3, 501–538 Zbl 1282.47012 MR 3091975

[22] D. Potapov, A. Skripka, and F. Sukochev, Functions of unitary operators: derivatives and
trace formulas. J. Funct. Anal. 270 (2016), no. 6, 2048–2072 Zbl 1336.47014
MR 3460234

[23] D. Potapov, A. Skripka, F. Sukochev, and A. Tomskova, Multilinear Schur multipliers and
Schatten properties of operator Taylor remainders. Adv. Math. 320 (2017), 1063–1098
Zbl 06794787 MR 3709129

[24] A. Skripka, Estimates and trace formulas for unitary and resolvent comparable perturba-
tions. Adv. Math. 311 (2017), 481–509 Zbl 06766547 MR 3628221

[25] A. Skripka and A. Tomskova, Multilinear operator integrals. Lecture Notes in Math. 2250,
Springer, Cham, 2019 Zbl 1458.47003 MR 3971571

[26] V. V. Sten’kin, Multiple operator integrals. Izv. Vysš (in Russian). Učebn. Zaved. Matem-
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