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Corrigendum to
“Pauli Hamiltonians with an Aharonov-Bohm flux”’

William Borrelli, Michele Correggi, and Davide Fermi

Abstract. We correct a mistake in [J. Spectr. Theory 14 (2024), 1147-1193] in the computation
of the square of a generic self-adjoint realization of the Dirac operator with an Aharonov—Bohm
flux. We prove that only two self-adjoint realizations of the Dirac operator square to self-adjoint
realizations of the Pauli operator with Aharonov—Bohm potential.

In [1, Proposittion 2.24], it is incorrectly stated that all self-adjoint realizations of
the Dirac operator Hp square to the Friedrichs realization Hp ) of the Pauli operator,
namely, (H})? = Hp ® for all y € [0,2m). As a matter of fact, only for specific val-
ues of the parameter y and for specific choices of f = (ﬂgfZ )) € My perm (C), there

actually holds (Hp )2 = Hp ®) The amended version of [1, Proposition 2.24] is as
follows.

Proposition 1. The identity
(H? = Y

holds if and only if one of the following two alternatives is realised:
(@ y=0 ,B(OO) ,B(OO) ,6( D = o0, and ,B( D= (ﬂs(i,é/) arbitrarily

chosen otherwise), i.e., H]gﬁ ) coincides with the Krein extension in the (1, —1)
channel and with the Friedrichs extension in all the other channels;

b) y=m, ,3(00) ,3( -0 ﬂ( D = oo, and ,3(00) =0 (,3( arbitrarily
chosen otherwise), i.e., Hp 8 comczdes with the Krein extension in the (|, 0)
channel and with the Friedrichs extension in all the other channels.

Remark 1. The Dirac extensions corresponding to y = 0 and y = & are two distin-
guished ones. They are indeeed the only scale covariant realizations, i.e., homogen-
eous of degree —1 under scaling. This facts has implications at the dynamical level.
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Indeed, some dispersive estimates have been recently proved in [2], where it is also
mentioned that for other extensions such estimates seem to fail.

Proof of Proposition 1. The proof of the thesis will be achieved in various steps.
Without loss of generality, in what follows we fix A = 1, omitting the dependence on
the spectral parameter for simplicity of notation. We will repeatedly use the expan-
sion as r — 07 given in [1, equation (3.2)], alongside with the basic identities (see
[1, equations (2.6), (2.7), and (2.33)])

GV = Nt S (-1 (©
to Ve 2 |ee= a6y '+6). 0
G = L il £ =GV -G").
2r 2

Step 1. We show that D(ngﬂ )) C D(HJY) if and only if one of the following altern-
atives holds:

(a.l) y=0, ,8(00) ,B (00) _ ﬁ( =D — o and ﬂs(i,m arbitrary otherwise;
(b.1) y=m, ,8(00) ,B( =D - ,B( D = 50 and ,B(M) arbitrary otherwise;
(c.l) y €]0,2n) arbitrary, ,3(00) ,3( -0 _ ﬂ(oo) ,B( =D — 5 and ,B(M)

ss’
arbitrary otherwise.

Let us firstly notice that [1, equation (2.4)] entails ¢, (r, 0) = o(1) as r — 0T, for
all ¢, € @(HISF)). From here and from [1, equations (2.6), (2.7), and (3.2)] it follows
that, for any ¢ € D(HISB )), there holds

b=t D06

0) F(a) 1 tgq 1)r(1 o) e”? 1

94 21— mr“ 20 Jom rie@ +

= +o0(l), asr—>0".
0TI 1 DT0-a) e 1

4, 31—« mrof t4q, T Jam i
On the other hand, assuming that ¥ € D(H}), by similar arguments and (1), we infer

F(l —a) e~ 1

. p(l 4 ) =mP ety
V=0 +uEy +evE) = V2RO L), asr — O
(1— ly)l"(“) 1 1
p( —e") 1% =k

© =, (u =0, CM V= u(1 + ')
and q¢ = (1 — €'?). In particular, (1 — ”’)q( D= =u(l+ e”’)q(o) Given that

q% 1), qio) € C are independent parameters, it appears that the only admissible altern-

Matchlng the above asymptotics, we get 44

atives are the following:
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@) y=0¢"=q{"=¢{" =0and g}

(b.1) y=m, q%o) —qi 2 —q% D =0Oandg

Ve arbitrary;

(0) € C arbitrary;

(c.l) pn= Oandq(o) qi = q% D= qio) =0.
It is easy to check that these are indeed equivalent to the conditions (a.1), (b.1), and
(c.1), respectively.

Step 2. Let us now prove that Hg(D(ngF))) = HD(®(H1§F))) ¢ D(Hl’;/) for all
v,y € [0, 2m). We first remark that D(ngF)) consists of functions which are indeed
regular at the origin. So, any self-ajoint realization Hg of the Dirac operator acts on
D(HISF)) as the basic differential operator Hp, which accounts for the first identity in
the claim. Taking this into account, we now proceed to show that Hp¢ ¢ D(H g/) for
any given ¢ € D(Hp (F)) and for any y e [0, 277), ultimately proving the thesis.

Recalling that Hp (F) H EB H Where H S(F) is the Friedrichs extension of
the Schrodinger operator Hg = (—iV + A)2 (see [1, Remark 2.2]), we deduce that
any ¢ € D(HISF)) can be represented as

¢ =RP (1) ® RP(=1)f. forsome f = (?) e LX(R%:C?). (2
!

Here RéF) (—1) is the resolvent of H, (F), acting by convolution with the integral kernel
[1, equation (2.13)]

® RUCED!
Ry’ (—1:x,X) = Zl|g+a|(r/\r)K|g+a\(r\/r)—n. (3)
LeZ

Keeping in mind that, in polar coordinates, we have

0 e710(—id, — detie)
Hp = ( 0, - do+ia " r ),
e'(=id, + ) 0

in view of (2) and (3), we get

(Hp$)1
= Z[<_la - (k - a)>K‘k+Ol|(r):| /rdr/rll|k+a(r’)fk(r/) ei(k_l)e
keZ r J i m

+o00

(k+ ) o / /
+I§[( iy —i o )I\k+a|(r)] / drrK‘k+a|(r)f¢k(r)eﬁ’

i(k—1)6

r



W. Borrelli, M. Correggi, and D. Fermi 482

and
(Hp¢),
(k—i—ot) r N / | eilerno
- Bl 1 0] ot o
Vi i(k+1)0
+k€ZZ|:( 18 +l k+a ))I|k+a|(r)]r/dr/r/K|k+a|(r/)f1!€(r/) eﬁ’

where the fsk are the Fourier coefficients in the angular wave expansion of f;.

Now, recall that the boundary conditions encoded in D(H}) entail the evalu-
ation of the trace maps ¢*,, ¢S_,: D(H}) — C, see [1, Proposition 2.23 and equa-
tions (2.34) and (2.35)]. Using the known identities (—Br + %)KV (r) = Ky+1(r) and
(—8, + %)Iv(r) = —1I,+1(r) [3, equation 10.29.2] and K_,(z) = K, (z) [3, equa-
tion 10.27.3], we infer

(Hod)1)(r) = J%(Ka(r) [ o tsat st
0
10 | dr/r/KHa(r’)f;(r/)),
(e ) = —=( Kia(r 0[ ar'r 1) £
o) | dr’r'Ka(r’)ff(r’>),
i r
(Ho$))(r) = —(Ka(r) A Ty o) £ 0)
(]
—I_4(r) / dr'r' Ky—g(r') fT_l(r’)),
(o)) (r) = J%(Kl_am 0/ 4 Ly-or) 1720

—I1o(r) / dr/r/Kz—a(r/)fT_z(r/))-
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Exploiting the asymptotics of the Bessel functions I, K, [3, equations 10.30.1 and
10.30.2], it can be checked that

A 1/2
‘ / ' o) £ < 12 dr/r/|11+a(r’)|2) < crte,
0

/N

e 1/2
' [ @ Ksat 10| < 1A dr/r/|1<1+a(r/>|2) cre.
r

1/2
dr’r’|1a(r’)|2) < Crite,
A 1/2
[arrnean o] < s [orinaenr) <o

0

/N

Ccr3,

, 1/2
‘/dr/l"/lz—a(r/)fT_z(r/) < [ f+l2 dr/”/|12—tx(r/)|2)
0

(/
(/
' / ar'r 1) 190 < ||f¢||2( /
0 0
(/
(/

e 1/2
[ Koot 17260 < Uil [ o iKanaR) < oo,
r

v
On the other hand, keeping in mind that f = (Hp + 1)¢, see (2), recalling the defin-

ition of the trace maps rs(é): ‘D(H[SF)) — C, see [1, equation (2.14)], integrating by
parts and using the asymitptotics [1, equation (3.2)], we obtain

oo
[ Ka) 126 = (601 Pigors o
)

Z /dEr [(Gi()))s’ar(ps’ - ar(GiO))s/d’s/]
s'e{t, 4} 3B, (0)
27

= [ ra0 10,9, ~ 8,50
0
2r
I'x)

1 1
4

21—(! r—o0t r¢
0

rio)(b +o0(1), asr—0" .
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A similar computation yields

oo

[ Kia 1716 = 0 + o)

r

Combining the above results, we find

'21—0!
Cima (Hop) = lim, r'™((Hog)re'®) = == o9,
0
cfa(HD¢) = rir& r*((Hpo),) = \/_;(1 — % 1)¢
which imply, in turn,
it 1) 81
Hp¢ = +o(1). 4)

2(X

. -1
“IT{—a) oc)[ ¢]mro¢

On the other hand, if Hp¢ were to belong to D(H g/), there should exist some u' € C

such that
F(l —a) e 0 1

W+ ) HZR o L
ot = M(l—ely)”“) Lo e
zl—ar ro

Matching the coefficients in the above expansions, we would obtain sin(y’/ 2)T(0)¢ =
i cos(y’/ 2)1'( l)q) which is absurd, given that the traces r(O)q) r( l)q) € C are inde-
pendent for a generic ¢ € D(Hp (F))

Step 3. We now prove that D(ngﬂ )) C D((HY)?) if and only if one of the following
alternatives holds:

(a.3) condition (a.1) in Step 1 holds and ﬂ( -0 _ =0

(b.3) condition (b.1) in Step 1 holds and ﬂ(oo) =0.

Let us firstly remark that, considering the basic definition D((H})?) = {¢ €
D(HY) | Hy¥ € D(HP)}, the claim proved in Step 2 ensures that ZD(HIEF)) is not a
subset of D((H})?) for any y € [0, 27r). This rules out the alternative (c.1) in Step 1.
So, we only have to examine alternatives (a.1) and (b.1) therein. As an example, here-
after we discuss case (a.1).

Assume D(ngﬂ )y D((HPY)?), for some suitable B € My perm(C) fulfilling con-
dition (a.1) in Step 1. On the one hand, for any ¢ € @(HISB )), we have

1)§++§—

1) ~(=1)
+ G, +q
v=¢+4 =9 22
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where ¢ € D(HéF)) - D[Q](,F)]. Recalling the definition of HJ, see [1, Proposi-
tion 2.23], and using the asymptotic expansion (4), we obtain

HSY = Hop + 345 "6+ — §-)
pl—a

“ITm (T
= * +o(1), asr— 0.

(=1 @ (D7_1 1
[ lF(l a)(T ¢)+lzlixaq1~ ]rrot

On the other hand, since H3y € D(HJY), there must exist some ¢ € D[O’] and
it € C such that

—if

- mnl—a e
R R R

0 )+0(1) asr — 07,

Matching the |-component in the above asymptotics, we get

(-1) T (-1)
1t 2sin(ra) 7@

At the same time, the boundary condition in [1, equation (2.10)] entails

o = (L) + Bl = + B a0,

[2 sin(r o)
The above identities yield 8 %}1’_1) = 0, which ultimately proves claim (b.3).

Step 4. To infer the thesis, we need to show that the inclusion @(ngﬂ )) C D((HY)?),
proved in the preceding Step 3 for suitable choices of y and B, is indeed an equality.
As a matter of fact, the operators Héﬂ ) and (H})?, with y and B fixed as in Step 3,
have to coincide because they are self-adjoint extensions of the same closable sym-
metric operator, namely, (o - (=i V + A))? on C2°(R? \ {0}). [
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