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The Friedrichs extension of a class
of discrete symplectic systems

Petr Zemanek

Abstract. The Friedrichs extension of minimal linear relation being bounded below and associ-
ated with the discrete symplectic system with a special linear dependence on the spectral param-
eter is characterized by using recessive solutions. This generalizes a similar result obtained by
Dosly and Hasil for linear operators defined by infinite banded matrices corresponding to even-
order Sturm-Liouville difference equations and, in a certain sense, also results of Marletta and
Zettl or Simon Hilscher and Zemének for singular differential operators.

1. Introduction

Qualitative properties of operators or (more generally) linear relations can be inves-
tigated in various ways, including a structure of their spectrum, boundary triplets, or
a description of their self-adjoint extensions with a focus on some particular cases.
Especially the Friedrichs extension belongs to the very traditional topics, and it has
attracted more attention again in recent years, see e.g. [2—4,30,40-42,44,45,51-53].
Therefore, in the present paper, we aim to characterize the (domain of the) Friedrichs
extension of the minimal linear relation determined by the linear mapping

L)k = F(zx — Sk Zk+1)

acting on a weighted space 6\21, consisting of 2n-vector valued square summable se-
quences with respect to the weight matrices W, on the unbounded discrete interval
[0, 00)z := [0, 00) N Z, where the coefficients are 2n x 2n complex-valued matrices
satisfying

$;3Sk=9¢ and VgV =W W =0 forallk €[0,00), (1.1
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with the superscript * denoting the conjugate transpose and § standing for the 21 x 2n
orthogonal and skew-symmetric matrix

(0 I
&’=4zn.—(_ln 0). (1.2)

The first equality in (1.1) means that §; is symplectic for all k and the mapping £
is closely related to the (nonhomogeneous) time-reversed discrete symplectic system
on the half-line, because the relation £(z) = AWz + W[ with arbitrary A € C is
equivalent to

k() = (Sk + AV ze1 (V) — F Wi fi, k €[0,00)z, s)
where Vi, = —4 Wy Sg is such that
Vi Sk is Hermitian and Vg Vi, =0 forallk € [0, 00)5.
The associated minimal linear relation can be written as

Toin = {z]. [f]} € Tax [ 20 =0 = khm Z]té”wk for all [w] € dom Thnax},  (1.3)
—00

which is a restriction of the maximal linear relation given by

Tmax := {{[z]. [f]} | there exists u € [z] such that
L) = Yy fr forall k € [0,00)z}, (1.4)

where [z], [ f] stand for equivalence classes in £Z,. Actually, the proper definition of
the minimal linear relation guarantees that its adjoint relation is Tp,y, i.e., it holds
T*

i = Tmax as shown in [10, Theorem 5.10]. These relations and square summa-
bility of solutions of discrete symplectic systems were thoroughly studied by the
author and his collaborators in [9, 10, 35-38, 48, 49]. Now, we turn our attention to
the Friedrichs extension Tr of Tp,, which is defined as a self-adjoint extension of
Tmin being bounded below by the same lower bound as T,,;,. However, even though
we speak of an extension, this linear relation TF will be expressed as a restriction
of Thax, Which consists of pairs satisfying a zero boundary condition at k = 0 and
a specific limit condition at oo determined by recessive solutions of (S{ )with f =0,

i.e., of the (homogeneous) system
zk(A) = (Sk + AVi) k41 (A),  k € [0,00)z, (S2)

see Theorem 3.4 for a precise formulation. Our main result relies on several facts
from the theory of discrete symplectic systems. The first is a connection between the
boundedness from below of T,,,;, and the existence of recessive solutions of (S, ). The
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second crucial ingredient is the recessive solution of (S, ) per se, because its properties
imply the square integrability and, roughly speaking, presence in the domain of TF.
Here we should emphasize that recessive solutions are defined through the behavior
of their first n components of the 2n-vector-valued solutions, which naturally leads to
the restriction that we consider only the case when the weight matrices W have for
all k € [0, 00)z the very special block structure
‘I’k = (Wk 0)
0 0

with ‘W, = W,:‘ > 0 being n x n matrices. Finally, we utilize the characterization of
all self-adjoint extensions of T, established in [48, Theorem 3.3 and Remark 3.4]
and give precisely d boundary conditions determining the Friedrichs extension, see
also Theorem 2.10 and Remark 3.5 (i).

The origin of the study of the concept nowadays known as the Friedrichs exten-
sion can be traced back to von Neumann. He showed that for any Hermitian linear
operator with a lower bound C there exists its self-adjoint extension, which is also
semibounded with a lower bound C’ for an arbitrary C’ < C, see [43, Satz 43]. In
addition, as a footnote, von Neumann conjectured that it is even possible to take
C = C/, ie., to get a self-adjoint extension with the same lower bound. Subse-
quently, Friedrichs proved the existence of such an extension in [15, Satz 9], and
he was even able to specify, under certain specific assumptions on the coefficients, the
domain of this extension for the second-order Sturm-Liouville differential operator,
see [16]. This made the extension to be somehow exceptional, and Friedrichs called
it as ausgezeichnete Fortzetzung (an excellent extension). His approach was based on
an associated quadratic form and “boundary terms,” which is not, in principle, too far
from our treatment. The notion of Friedrichs extension appears probably for the first
time in Freudenthal’s work [17], where a limit characterization of this extension was
derived for any lower semibounded Hermitian linear operator. Actually, this technique
turns out to be crucial for many subsequent results (including ours). Rellich in [29]
provided two alternative characterizations of the Friedrichs extension for the second-
order Sturm—Liouville differential operator without the conditions imposed on the
coefficients by Friedrichs instead of which he assumed explicitly that the operator
is bounded from below. In particular, he showed that the elements of the domain of
the Friedrichs extensions behave like a principal solution near the boundary. A simi-
lar result can also be found in Kalf’s paper [22] but this time utilizing Freudenthal’s
characterization.

Simultaneously, from the Glazman—Krein—Naimark theorem we know that the
domain of any self-adjoint extension of an operator can be described by suitable d
“boundary” conditions, where d is equal to positive and negative deficiency indices
of the operator, see, e.g., [25, Theorem 4 in Section 18]. Zettl and his co-authors
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showed that these are the Dirichlet boundary conditions in the case of the Friedrichs
extension of regular ordinary differential operators with locally integrable coefficients
or in a more general setting, see [3, 26]. On the other hand, in the singular case
the Dirichlet boundary condition at one endpoint (or eventually at both endpoints)
is not well defined, so another condition is needed in this situation, which was treated
in[1,2,4,5,23,27] including the description of the Friedrichs extension as a true exten-
sion of the minimal operator in [45]. Since, in almost all these cases, a connection
between the differential expressions and linear Hamiltonian differential systems is
used, it is not very surprising that later the Friedrichs extension was solely investigated
for operators or linear relations associated with these systems itself, see [24,33,44,52].

The literature on a discrete analogue of this problem is, however, humbler. The
Friedrichs extension of the Jacobi operator or the second order Sturm—Liouville differ-
ence expression was studied in [7, 8, 18] and for higher order expressions through the
banded symmetric matrices in [ 14]. Furthermore, very recently, Friedrichs extension
in the setting of a linear Hamiltonian difference system was investigated in [28,51].
As it is well known that this system can be written as a discrete symplectic system, but
not vice versa in general, we provide a generalization of the latter results. For com-
pleteness, we mention that the first attempts of a unification of these results for any
even order Sturm—Liouville differential and difference expressions through the calcu-
lus on time scales were presented in [46,50]. Our main result (given in Theorem 3.4)
should not be anyhow surprising as it yields the same conclusion as in the continu-
ous case or for Jacobi operators, the latter of which is, in fact, a special case of (S{ ).
Nonetheless, it completes this direction by a nontrivial generalization of the above-
mentioned results, including the linear Hamiltonian difference system. We also note
that principal or recessive solutions still remain the main tool in the characterization
of the Friedrichs extension; although we can find various approaches to this character-
ization in the general theory of linear relations, their application to the specific cases
mentioned above still seems to be somehow restricted.

The paper is organized as follows. In the next section we introduce the notation
used and the basic setting of system (S'/{ ), recall a general characterization of the
Friedrichs extension in the theory of linear relations and the notion of the recessive
solution of discrete symplectic systems, and derive several preliminary results. The
main result is established in Section 3.

2. Preliminaries
Throughout the paper, all matrices are considered over the field of complex num-

bers C. For r,s € N we denote by C™* the space of all complex-valued r x s
matrices and C”*! will be abbreviated as C”. In particular, the r x r identity and
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zero matrices are written as [, and 0,, where the subscript is omitted whenever it
is not misleading (for simplicity, the zero vector is also written as 0). By e; for
ie{l,....,n}orie{l,...,2n} we mean the elements of the canonical basis of
R” or R?", i.e., the columns of I, or I,,. For a given matrix M € C™S we indi-
cate by M*, ker M, rank M, M T, M > 0, and M > O respectively, its conjugate
transpose, kernel, rank, the Moore—Penrose generalized inverse, positive semidefi-
niteness, and positive definiteness. Furthermore, we denote by C([0, 00)z)"** the
space of sequences defined on [0, 0c0), of complex r x s matrices, where typically
r €{n,2n} and 1 <s < 2n. In particular, we write only C ([0, 00)z)" in the case
s =11 M e C(0,00)z) ™, then M(k) := My for k € [0,00)7 and if M(A) €
C([0,00)z)"*, then M(A, k) := My (L) for k € [0, 00)z with MF(A) := [My(D)]*.
If M € C([0,00)z) and N € C(]0, 00)z)**?, then MN € C([0,00)z)"*?, where
(MN)y := My N for k € [0,00)z. We put [z¢]}_, = zn — zm. We also adopt a
common notation that 2n-vector-valued sequences or solutions of (S/{r ) are denoted
by small letters, typically z = (;) with n-vector valued components, while 2n x m
matrix-valued solutions are denoted by capital letters, typically Z = () withn x m
matrix-valued components. For completeness, we note that any solution of (S{ ) can
be easily seen as a solution of (S({ ).
Finally, the square summability is defined via the semi-inner product

[e.e]
(zouhg 1= )z Wrug
k=0
and the induced semi-norm
Izllw == v{z.2)y
with respect to the weight matrices Wy specified in (1.1), i.e., we restrict our attention
to the space

g = £3(10,00)z) = {z € C([0,00)2)*" | |Iz]lw < o0}
and, subsequently, to the corresponding Hilbert space
05 = 03,((0.00)2) := £3/{z € C([0.0)2)>" | ||z]|w = 0}

consisting of equivalence classes, which are denoted by [z].

In the most general setting, a linear relation T is defined as a linear subspace of
the Cartesian product of two vector spaces X and ¥. We focus only on the case when
X = ¥ and it is a Hilbert space J¢, which provides suitable tools to study nondensely
defined operators via their graphs. For a deeper insight in this theory, we refer to [6]
and in a connection with discrete symplectic systems to [10,48,49]. We recall that the
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domain of a linear relation 7~ C J¢ x # is defined as
dom T := {z € J | there exists £ € J¢ such that {z,f} € T}

and the adjoint relation of T as

T ={y. 9y € H* | (3.9) — ({.y) = Oforall {3.{} €T}

The linear relation 7 is said to be (semi)bounded from below by ¢ € R, i.e., T > c, if

(£,3) = c(3,3) forall{z,{} €T (2.1)

and, in particular, nonnegative, i.e., T > 0, if
(£,3) >0 forall{z,f}eT.

The largest ¢ satisfying (2.1) is said to be the lower bound of T . In that case, the
linear relation is necessarily symmetric and it has equal defect numbers, which guar-
antees the existence of its self-adjoint extension(s). In particular, in the case of equal
deficiency indices there exists the Friedrichs extension Tr of 7 as defined in [6, Sec-
tion 5.3], which can be characterized as follows, see [0, Corollary 5.3.4]

Theorem 2.1. Let T be a semibounded linear relation in #?. Then {3, {} € Tr if
and only if {3, {} € T and there exists a sequence {{3,, {n}}5ey € T such that

n— 3% and (3n,fn) —> (3.f) asn — oo.

Similarly to Freudenthal’s characterization in the operator case, it can be shown
that {3, £} € TF if and only if {z, £} € T* and there exist a sequence

n  bnliner1 €T
such that
3n—>3% and (3n —Fm.fn —fm) —> 0 asn,m — oo, 2.2)

see also [11,19-21].

The following hypothesis summarizes the basic assumptions concerning the coef-
ficients of system (S;) or (S{ ) with the special linear dependence on the spectral
parameter. These systems can be determined either by the pair of coefficient matrices
{8, V} or by the pair {$, W} and there is no difference between these two approaches
as the matrices Wy and 'V are mutually connected via the equalities W = ¢Sk IV/' ¢
and Vi = —¢ Wi Si. Furthermore, Hypothesis 2.2 yields that system (S{) can be
written by using the matrices S (A) := Sg + A Vi, which satisfy the symplectic-type
equality S; (A)gSk (L) = 4. This guarantees the existence of a unique solution of any
initial value problem associated with (S7).
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Hypothesis 2.2. A number 7 € N and matrix-valued sequences § € C ([0, 00);)?"*2"
and W € C(]0, 00)z)"*" are given such that

$;3Sk=9¢ and W] =W, >0 forallk €[0,00)z.

The matrices Sy admit the n x n block decomposition
Ar Bk
Sk =
Cr Dk

for all k € [0, 00) and the matrix-valued sequences W, V € C([0, 00)7)?>"*?" are
defined as

W O
Wy = ( 0" O) and Vi = -4 W S forallk €[0,00)y.

Our main result combines tools from the spectral theory of linear relations and
from the oscillation theory of (S;) with A € R, where an important role is played by
a “special” type of matrix-valued solutions, for which we need the following notions.

Definition 2.3. Let v € R be fixed and Hypothesis 2.2 be satisfied. A 2n x n matrix-
valued solution Z(v) € C ([0, 00)z)*"*" of (S,) is said to be a conjoined basis if it
satisfies rank Z (v) = n and Z;(v)§ Zy(v) = 0 for some (and hence for any) k €
[0, 00)z. Two conjoined bases Z(v), Z(v) € C ([0, 0)7)?"™ of (S,) are said to be
normalized if Z;;(v)gzk (v) = I for some (and hence for any) k € [0, 00)z.

A comprehensive treatise on the qualitative theory of discrete symplectic systems
can be found in the recent book [13]. Our notion of recessive solutions in Defini-
tion 2.4 follows the traditional concept introduced in [12] and its generalization was
studied in [31, 32].

Definition 2.4. Let v € R be fixed and Hypothesis 2.2 be satisfied. A conjoined
basis Z(v) = (g%) of system (S,) is said to be a recessive solution if, for large
k €[0,00), the matrix Xg(v) is nonsingular, it holds —)?k_l (V)ka;;} (v) > 0and
simultaneously limg s o0 Xk_1 (v) X% (v) = 0 for any conjoined basis Z(v) normalized

with Z(v), i.e., such that Z} ()¢ Zx (v) = I.

Note that the recessive solution is determined uniquely up to a right multiple by
a constant nonsingular n x n matrix. However, not every system (S;) possesses a
recessive solution. Its existence can by guaranteed by two additional assumptions as
we show in Theorem 2.5. Let v € R be fixed. System (S,) is said to be nonoscillatory
if there exists M € [0, 00); such that it is disconjugate on [M, N + 1], for every
N € [M, ), i.e., the matrix-valued solution Z(v) € C ([0, 00);)*"*" determined
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by the initial condition Zy 11(v) = (%) satisfies
ker X;(v) C ker Xg41(v) and — Xk+1(v)Xz(v)£k >0 2.3)

for all k € [M, N]z, see [13, Theorem 2.41]. In the opposite case, system (S,) is
called oscillatory. The nonoscillatory behavior implies that every conjoined basis
Z(v) of (S,) satisfies condition (2.3) for all k € [0, 00), large enough and, con-
sequently, the kernel of X (v) is eventually constant. In addition, we say that sys-
tem (S,) is disconjugate on [0, 00) if it is nonoscillatory with M = 0.

System (S,) is (completely) controllable on a discrete interval [N, 0o0) if for any
nontrivial finite discrete subinterval [K, M|z C [N, c0)z the trivial solution z(1) = 0
is the only solution of (S, ) with x; (A1) = 0 for all k € [K, M]z, i.e., the subsystem

0= Bruryr and ug = Ogugs1, k € [K, M — 1]z, (2.4)

has only the trivial solution, see also equations (2.5)—(2.6) below. This happens, e.g.,
when By is invertible for all k € [N, 00);. Note that the subsystem in (2.4) does
not involve A, so the controllability can be seen as a global property of system (S )
independent of A. System (S)) is eventually controllable if there exists N € [0, 00)
such that it is completely controllable on [N, 00);. This property together with the
eventually constant kernel X (v) mentioned above implies the invertibility of Xy (v)
for all k € [0, 00) large enough, i.e., if system (S,) is nonoscillatory and eventually
controllable, then for every conjoined basis Z(v), there exists N € [0, o0)z such that
X (v) is invertible and —Xk+1(U)Xk_1(v)£k >0 forall k € [N, 00)z.

The following result is a time-reversed analogue of [12, Theorem 3.1] and [13,
Theorem 2.66]. We omit its proof because it can be done in the same way as in the
mentioned references.

Theorem 2.5. Let Hypothesis 2.2 hold and v € R be such that system (S,) is nonoscil-
latory and eventually controllable. Then (S,) possesses a recessive solution Z =

(§ ) € C([0, 00)z)*"™", which can be equivalently characterized by the condition

Jlim Amm( ZX L(1) B, Xj*Hl(v)) _

j=ko

where Ay Stands for the smallest eigenvalue of the matrix indicated and kg € [0,00) 2
is large enough.

The maximal linear relation is defined as in (1.4), while the minimal linear rela-
tion displayed in (1.3) is defined as the closure of the pre-minimal linear relation Ty,
which consists of {[z], [ f]} € Tmax such that Zo = 0 and Z; = 0 for all k € [0, 00)
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large enough and a suitable representative Z € [z]. The following hypothesis guar-
antees that the minimal linear relation can be written as in (1.3). It is called the
strong Atkinson condition or definiteness condition and it is a classical assumption
in the Weyl-Titchmarsh theory for differential or difference equations. In addition, it
is equivalent to the fact that for any {[z], [ f]} € Tax there is a unique Z € [z] such that
L) = Yy fr forall k € [0, 00)z, see [10, Theorem 5.2]. Since the latter equality
is also independent of the choice of a representative of f € [ f], we may write only
{z, f} € Tmax whenever the hypothesis is satisfied.

Hypothesis 2.6 (Strong Atkinson condition). Hypothesis 2.2 is satisfied, and a num-
ber v € C and a finite interval I} := [a,b]z C [0, 00) exist such that every nontrivial
solution z (v) € C ([0, 00)7)?" of system (S,) satisfies Zkel’% ZE (M) ¥z (A) > 0.

Note that the strong Atkinson condition is independent of the choice of A € C,
i.e., Hypothesis 2.6 means that ) ; n 2 (M) Wi zi (L) > Ois satisfied for all nontrivial
solutions of (S) forany A € C, see e.g., [47, Lemma 2.1]. Alternatively, this condition
is equivalent to the fact that the trivial solution is the only solution of (S)) such that
Y ke » Z¢ (M)W zg (A) = 0. Such systems are also said to be definite on the discrete
interval [0, 00) .

In the next part we aim to connect the disconjugacy of (S;) on [0, 00), and the
boundedness from below of Tp;,. Due to the special block structure of S and Wy
described in Hypothesis 2.2, system (S ) can be written as the pair of equations

Xk (A) = Apxpy1(A) + Brugy1(1), (2.5)
ur(A) = Cexp41(A) + Drrtg1(A) + AWexp(A). (2.6)

Then, a sequence z € C ([0, 00);)?" is said to be admissible if it satisfies equa-
tion (2.5), which does not involve the parameter A explicitly, i.e., the space of all
admissible sequences of (S;) is independent of A. In the next lemma, we introduce
an quadratic functional associated with (S /{ ) and describe its connection to the inner
product (-, -}y, from which we will derive the dependence of the disconjugacy on A.

Lemma 2.7. Let A € C be arbitrary, Hypothesis 2.2 be satisfied, and for any z =
(2) € C([0,00)2)*" define the quadratic functional

Fa2) ==Y Axf Cr () Arxicqr + 2Re(xp €F (M) Brttrs1)
kel0.00)z + up 1 Df (A)Brugy1}s

where
Cr(A) ;=€ + AW Ay and Dr(A) := O + AW By
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If z € C([0,00)2)?" is an admissible sequence of (S)), it reduces to

Fa(z) =Y (g — Ce(Mxps1 — DeMug1)* xx + g xe]i,
ke[0,00)7

- Z(uk — CrXi1 — Drui1) Xk + [ugxlgey — Az, 2) g 2.7)
ke€[0,00)7

and, furthermore, if z solves (S,{ ) for some v € C then
Fi(z) = (0 =A)(z.2)g + (2, )y + [ugxelgZo-
Especially, when {[z], [ f]} € To, we obtain
Fr2) ={z. flg —Mz.2)y = (z. [ —Az)y

forany z € [z]and [ € [f].

It was shown in [34, Theorem 3.1] and [13, Theorem 2.41] that the disconjugate
property of system (S,) on [M, N + 1] is equivalent with the positivity of the asso-
ciated quadratic functional

N
- Z{x;+1€:(‘})9‘\3kxk+l +2Re (XZ+1€: (V) Bruk+1) + u]t.;_] @]: (V) Bruk+1}
k=M
(2.8)

for any admissible z = (&) € C([M, N + 1];)?" with xpy = 0 = xy4; and x # 0.
Recall that the space of all admissible sequences for (S,) is independent on A, so
from (2.7) we get that for any admissible z € C ([0, 00)2)?" it holds

Frlz) = Fu(2) + (v = A)(z, 2) . 2.9)

Therefore, the nonnegativity (or positivity) of %, (z) for some v € R implies the same
property for all A < v. Subsequently, upon combining with Hypothesis 2.6, we get the
following corollary, whose second part is a simple consequence of Theorem 2.5.

Corollary 2.8. Let Hypothesis 2.6 be satisfied and v € R be such that system (S,) is
disconjugate on [0, 00)z and eventually controllable. Then system (S)) is disconju-
gate on [0, 00)z and possess a recessive solution for any A < v.

The last part of Lemma 2.7 shows that the boundedness from below of Ty, is
closely connected to the nonnegativity of ¥, (-) or, in fact, with the disconjugacy
of (Sy) on [0, 00) as stated in the next theorem.
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Theorem 2.9. Let Hypothesis 2.6 be satisfied and v € R be such that system (S,)
is disconjugate on [0, 00)z. Then, Ty, is bounded from below by a lower bound
¢ > v or equivalently Ty, — Al is bounded from below by ¢ — A > 0 for all A < v.
Consequently, the deficiency indices of Tmin satisfy d 4 (Tmin) = d—(Tmin) = du(Tinin)
Sorall u € C\|[v, 00) and any self-adjoint extension of Ty, is bounded from below.

Proof. Since Ty, = To, it suffices to show that Ty is bounded from below. From the
definition of T and the positivity of (2.8) on any subinterval [M, N + 1]z C [0,00)~
with M = 0 we get (z, f —vz)y = F,(z) > 0 for all z € dom Ty. This shows that
To is bounded from below by ¢ > v or equivalently the boundedness of T, — A
from below by ¢ — A > 0 for all A < v. The second part of the statement follows
immediately from [6, Proposition 1.4.6] and [6, Proposition 5.5.8]. [ ]

The second part of Theorem 2.9 shows that the disconjugacy of (S,) on [0, 00)z
guarantees the existence of a self-adjoint extension of Ty, which is possible if and
only if the positive and negative deficiency indices dy (Tn) and d—(T ), respec-
tively, are equal, see [11, Corollary, p. 34]. This equality d+ (Tiin) = d—(Tmin) =: d
can be alternatively interpreted under Hypothesis 2.6 so that systems (S;) and (S3)
possess the same number d of linearly independent square summable solutions for any
A € C\R, see [10, Corollary 5.12]. If, in addition, there is a number v € R such that
system (S,,) has the same number d of linearly independent square summable solu-
tions, then all self-adjoint extensions of 7}, admit the following characterization, see
[48, Theorem 3.3 and Remark 3.4]. This statement turns out to be yet another crucial
ingredients in the proof of our main result, see Lemma 3.3.

Theorem 2.10. Let Hypothesis 2.6 be satisfied and assume that

(i)  both (S;) and (S—;) possess d linearly independent square summable solu-
tions;

(ii) there exists v € R such that also system (S,) possess d linearly indepen-
dent square summable solutions, which are denoted as (suppressing the
argument v) O 0Ol and arranged so that the 2(d — n) x 2(d — n)
leading principal submatrix of the d x d matrix Y := ©F § O¢ has a full
rank, where © 1= (@)][CI], L, ®][cd])f0rk € [0, 00)z.

Then, a linear relation T C 57\%, X E&, is a self-adjoint extension of the minimal linear
relation Tyin if and only if there exist matrices M € C4*2" gnd L € C4*2@=1) gych
that

rank(M,L) =d, MgM™* — L Yrg—nyx2(d—n) L* =0, (2.10)
and

(9[”92)00
T =134z, f} € Thax|Mzo— L : =0;, (2.11)
(@[Z(d—'n)],z)<>o
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where Yo (g—nyx2(d—n) s the 2(d — n) x 2(d — n) principal leading submatrix of T
and (O] 2) o := limg_, o0 @,[Cj]*;lzkforj =1,...,2(d — n) exist due to the square
summability of both sequences.

3. Main result

At this moment, we have presented all preliminary results needed to establish our
main result. Its proof is based on the following three lemmas. In the first lemma,
we show that xo = O for every {z, f} € Tr. In the second lemma, we prove that
the columns of a recessive solution of (S;) with A < v belong to the domain of the
Friedrichs extension of T.,;,, which is denoted as Tr. Thereafter, in the third lemma,
we show that a certain linear relation determined by a (part of a) recessive solution is
self-adjoint.

Lemma 3.1. Let Hypothesis 2.6 be satisfied and v € R be such that system (S,) is
disconjugate on [0, 00)z and eventually controllable. Then xo = 0 for any {z, f} €
TF.

Proof. The assumptions guarantee that the Friedrichs extension of the minimal linear
relation Tp, exists by Theorem 2.9. Condition (2.2) together with Hypothesis 2.2
means that {z, f} € Tr if and only if {z, f} € Th. and there exists a sequence of
pairs {{z["], fI1I}1% e T, such that

oo
; (n] _ — 1 [n] _ | y* [n] _ _
Tim [z — 2|y = lim_ };)(xk X)Wl = xx) = 0

and, by using Lemma 2.7,

<Z[n] _ lml f["] _ f[m]>\11
= Fo (e — 2 — [ — ™) (" = ™R, - 0
asn,m — oo. Since Wy > 0 for all k € [0, 00), by Hypothesis 2.2, the first condition

yields that lim,, _, o, W (x([,"] —xo) =0. Since x([,"] =0foralln € N by (1.3), it follows
that also xo = O for every {z, f} € TF. ]

Lemma 3.2. Let Hypothesis 2.6 be satisfied and v € R be such that system (S,) is
disconjugate on [0, 00)z and eventually controllable. Then, for any A < v, all the
columns of the recessive solution Z(A) belong to E&, and their trivializations at 0

()_ O kE[O,a]Z,
11A), kelb+1,00)z

given by
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belong to dom Tf forall j = 1,...,n, where a, b are the endpoints of the discrete
interval I’ from Hypothesis 2.6.

Proof. For better clarity, the proof is divided into three steps, which concerns with the
behavior of the columns of Z (A) in a neighborhood of co. More precisely, by using a
recessive solution of (S;) we construct a sequence of 2n X n matrix-valued solutions
of this system, which converges to Z (A) (the first step). These solutions give rise to
pairs {771 f mIv e Ty — AT (the second step), which satisfy both limit conditions
in (2.2) from the characterization of T (the third step).

Step 1. Since A < v, the system (S, is disconjugate on [0, 00)z and eventually con-
trollable as well by Corollary 2.8. Thus, it possesses a recessive solution Z(\) €
C ([0, 0)2)?"*" by Theorem 2.5 and we denote its columns as 2, ... 2l ().
The disconjugacy of (S;) implies, in addition, that — 1()L)i)’kX a H(A) > 0,

and so for the matrix-valued sequence Ay := Zk : —X 1()L)£8 X ]* _l_ll()t) we have

limyg s o A_ = 0 by Theorem 2.5. Let us define the SO- called associated dominant
solution of (S 2) as

Xi(V) = XxMAr and  Up(A) := Uy (M Ag + X770

Then Z(A) and Z (1) form normalized conjoined bases of (S;), the matrices Xe(A)
are eventually nonsingular by the controllability of (S,), and X~ L(A) Xk (1) is Hermi-
tian. For a fixed m € [0, 00) large enough we define (suppressing the “dependence”
on )

XM= X - X X X and U = O — Ou X, Kws k€00, 00).

Then Z™! is a solution of (S ;) as a linear combination of two solutions of this system

with
zml — | _ AO .~ = P )
m U — O X' X, —X*1

Furthermore, it holds
[m] _ ¢ v -1v-1v _ v -1 *d
X = Xp — X A Ay, Xy Xom = Xi[I — AkA, ] = Xk,
UM = G — [T Ak + X0 B K = Gill — AeA = XA — T
as m — 00.

Step 2. Let
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and . '
slim] _ ()?IEJ,m]) _ Zl[cj’m]’ k e[0,m]z,
k ﬁggsm] 0, kelm+1,00)z,
and

0, k # m,
(—Wrzlé?;ff]ej ) k =m,

with ‘W,, being the n x n left upper block of W,,. Then obviously ZL/-", f Lml e
(3, the sequence zLiml is admissible, and by a direct calculation we can verify that
LEUmY =0 aEP™ 4 UM forall k € [0,00)7, ie., (20, FUmY € Ty —
Al for any m € [0, 00). In addition, according to the Patching lemma established in
[48, Lemma 3.1], we have also {E[j””], f[-f’m]} € Tmax — Al with

zlim] _ 0. k €[0,a]z, and f:[j,m] _Jo. k €0,a]z,
¢ M kelb+1,00z , fU™M ke b+ 1,00,
which yields that (Zlim], f:[j’m]} € To— Al forallm > b + 1.

Step 3. Now, we show that {Z[j’m], f[f””]} € To — Al C Tpax — AT is such that, for
all j € {1,...,n}, it satisfies ZU""] — U/l ag m — 00 and simultaneously

(f[j’m] - f:[j’e],g[j’m] —ZUYy 50 asm, l — . 3.1

So, without loss of generality, let £ > m > b + 1. Then, by a direct calculation, we
get

(]F[J'Jn] _ f[j,lf]’ zlim] _ g[jl])\p

00
21, 274 ~[/. 2[4
— Z(fk[J m] fk[] ])*\I,k(zl[cl m] Z]E/ ])
k=0

oo
= i [, = il z[jL = i =[/.L il [/,
_ Z(f]l:jm]*\pkzl[cjm]_{_fk[j ]*qjkzl[cj ]_fk[jm]*\ljkzl[c] ]_fk[/ ]*‘I’kzllcjm])
k=b+1

o s 7 Lk o Y 2.k U,
— fn[qj’m]*\pmzr[,{’m] +f£[J ]*‘IJ(ZEJ ]_f"[l],m]*qjmzr[r{,e] _fe[j ]*\IJKZ(EJ m]

P _WIZIX’:—IeJ, * W O )’{m_{m{g:ll{f -0
0 0 0)\U,-0

= ) X, W WK — X X KD

= ¢} (X' X — X7 ' X0)ej.
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where we used the special block structure of Wy and the facts that Z[J M — 0 and
X,[,,m] =0=X g]. Thus, (3.1) holds due to the definition of the recessive solution.
Furthermore, from Theorem 2.9 we know that Ty, — A/ is bounded from below by a
lower bound ¢ — A > 0, so

(f:[jm f[] A1 Zlm] _ 214 Yy = (c—A)(E zliml _ ZLJ, f] zlim] _ g[jl])‘y

which together with the previous conclusion implies that also

(EUom] _ 2.0 ZUm) _E08y

asm,{ — o0, i.e., the sequence {E[f m] Jov_o is a Cauchy sequence in 6\21,. The definite-
ness condition guarantees that each zliml gives rise to a unique equivalence class, so
each column ZU/] of the recessive solution belongs to (2. Consequently, ZU1 belongs
to the domain of the Friedrichs extension of T, — Al, which is equal to Tr — AT as
shown in [6, identity (5.3.4)]. Therefore, Zl/] € dom T forall j € 1,...,n and the
proof is complete. |

In the last lemma, we prove that the linear relation

U:={{z, f} € Thx | Xo =0 and 11m zk3~[l =0forall j =1,...,d —n}

(3.2)
is a self-adjoint extension of Ty,;,, where 2[if I = 2l7](1) is the i;-th column of the
recessive solution Z (1) being such that Z,[,l,'/ - e;; for a suitable m € [0, 00), arbi-
trary A < v, and certain indices i jowith j =1,..., d — n specified in the proof of
Lemma 3.3, see equality (3.3). This is done by a construction of the matrix " men-
tioned in Theorem 2.10. Note that we do not emphasize the dependence of U on A
in (3.2), because we will show in Theorem 3.4 that it is only formal in the present
context and U represents a Friedrichs extension of Ty, for all suitable A.

Lemma 3.3. Let assumptions of Lemma 3.2 hold and A < v be arbitrary. The linear
relation U defined in (3.2) is a self-adjoint extension of Tp;n.

Proof. Since A < v, it follows from Theorem 2.9 that system (S ) possesses n < d <
2n linearly independent square summable solutions, so the first assumption of Theo-
rem 2.10 is satisfied and a self-adjoint extension of T}, exists. The proof is therefore
completed by, at first, constructing a matrix-valued solution ®(1) € C ([0, o0)7)>"*?
of system (S, ) consisting of d linearly independent square summable solutions sat-
isfying the second assumption of Theorem 2.10, and thereafter constructing matrices
M and L satisfying the conditions in (2.10) such that the corresponding self-adjoint
extension displayed in (2.11) is equal to U.

From Lemma 3.2, we know that all n columns of a recessive solution 4 (A) are
square summable and, without loss of generality, we may assume that Xom (A) = I for
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some m € [0, 00)z. We complete these solutions with the remaining d — n linearly
independent square summable solutions of (S, ), which can be taken as the columns
of some Z(1) € C ([0, 00)7)?"*@=") For simplicity, we suppress the dependence on
A in the rest of the proof. If we put

N

i=Z — Z Xy € C([0,00)7)?@m),

. S 0 . PN . A
then it solves (Sy) and Z,, = (5 ) Since X,, = 0, it follows that rank U,, = d —n,
m N
and one can easily deduce that, after an appropriate constant multiple of Z, there are
indices iy, ..., I4—, such that

Up = 14_p. (3.3)
id—n

Then we can build the 27 x d matrix-valued solution ® = (@1 @F1 EBI)
mentioned above from O] := Z and the blocks

*

e’ *
i
el:=Z| : | eC(0.00),)>™

*

ld—n
and

e; *

obl:=Z| € C([0.00))>" "),
e§2n—d

where the indices iy, ...,ig—, € {1,...,n} correspond to the choice of rows of ﬁm
described in (3.3) and 51, ...,52,—q € {1,...,n}\{i1,...,ig—y} are all the remaining

indices. To justify this choice, we need to show that the 2(d — n) x 2(d — n) leading
principal submatrix of the d x d matrix Y := ©g ¢ © has a full rank. Since A € R,
it holds T = ®}, 4 ©,, by the Wronskian-type identity, see [49, identity (3.4)], and
the submatrix can be decomposed as

[L1,1] [1,2]
T Tz(d—n)x2(d—n) T2(d—n)x2(d—n)
2(d—n)x2(d—n) —
2.1 r22]

2(d—n)x2(d—n) 2(d—n)x2(d—n)
T (CT NG {7
ST NG i
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Then Tz[l(dl] nyx2(d-n) = = 0 as it is a submatrix of Z* 5(Zm, which is zero by the def-
1n1t10n of the recesswe solutlon (it has to be a conjoined basis), while X m = I and

Xm = 0yield nglZm = m,so

[1,2] [2,1] . ) .
Tz(al —n)x2(d—n) — TZ(d—n)xZ(d—n) = : Un = Ia—n

id—n

by (3.3) and (1.2). In addition, X,,, = 0 implies also YLo7) s = Z5dZm = 0.
Therefore,

0 1;_
rank Y5 (g—n)x2(d—n) = rank d=n) = 2(d —n), (3.4)
-1y, 0

i.e., the matrix-valued solution ® satisfies the assumption (ii) of Theorem 2.10.
It remains to express the linear relation U from (3.2) as in (2.11). If we put

I, O 0 0
M = L =
(0 0) and (Id—n O)’

then we can verify by a simple calculation that these matrices satisfy the conditions
in (2.10). Simultaneously, the equality

0y X0
(@)el’Z)oo _)CO (®el’z)00 (®el9z)00

O == MZ() - L N = 0 — . — )

(®e2(4—n)>2) oo d—n : :

(®ed—n7Z)OO (®ed—n’2)oo

utilized in (2.11) is equivalent to the pair of condmons X0 = 0and limg o 2 g sl
0, because Oe; = =zl forall j € {1,...,d — n}. Therefore, the linear relatlon U is
a self-adjoint extension of Tiy;;. n

Now, upon combining the preceding lemmas and the self-adjointness of the Fried-
richs extension of Ty, and of the linear relation U, we obtain the main result showing
that Trp = U.

Theorem 3.4. Let Hypothesis 2.6 be satisfied and v € R be such that system (S,) is
disconjugate on [0, 00) z and eventually controllable. Then, for any A < v, the linear
relation U defined in (3.2) is the Friedrichs extension of Ty, i.e.,

Tr ={{z, f} € Tax | Xxo = 0 and 11m zkg~[lj (A)=0forall j =1,...,d —n}.

In particular, if system (S)) is in the limit point case (i.e., d = n), then

Tr :{{va} € Tmax|x0 :0}»
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while in the limit circle case (i.e., d = 2n), we have

Tr = {{z.f} € T | xo = Oand_lim gz ) = oforall j = 1,...,n).
—00

Proof. We recall that the given assumptions guarantee the existence of the Friedrichs
extension of T, by Theorem 2.9. We already know that the linear relation U is a
self-adjoint extension of Ty, by Lemma 3.3. Now, let {z, f} € Tr be arbitrary. Then
also{z, f'} € Ty and xo = 0 by Lemma 3.1. Let 2011 . Zlia—nl pe as in Lemma 3.2,
in particular, E[il], - Zlia-nl € dom Tr and they coincide with s zlia—n] for
all k large enough. The self-adjointness of T yields

0= (U 2)y = (EW, £y = (V) 20elfey = Jim z; gl

forall j € {1,...,d —n}, where fI, ..., fld=n1 are such that {Z00), FOY
{Zlia—nl fld=n]\ ¢ T This shows that {z, f} € U, which means T C U. However,
the self-adjointness of U implies also the opposite inclusion U = U* C Ty = TF
and, therefore, Tr = U. The rest of the statement is a simple consequence of this
result in the case when d = n and d = 2n, respectively. ]

Remark 3.5. (i) Besides the more general setting in our treatise, which could be eas-
ily applied also in the continuous case, Theorem 3.4 is a discrete analogue of [52,
Theorem 4.2], [33, Theorem 3.1], and [24, Theorem 13] concerning the Friedrichs
extension of operators associated with the linear Hamiltonian differential system.
It is worth noting that, in contrast to the mentioned results, we neither require any
particular number of linearly independent square summable solutions (e.g., the limit
circle case as in [33, Theorem 3.1]) nor formally overdetermine TF as in [24, Theo-
rem 13], because we explicitly deal only with d “boundary” conditions in accordance
with Theorem 2.10; n of them come from xo = O by the first part of the proof of
Lemma 3.2, while the remaining d — n specify the behavior at infinity and they are
derived from (3.3) so that (3.4) holds, compare with [24, Remark after Theorem 12].

(i) The square summability of the columns of a recessive solution Z (A) estab-
lished in Lemma 3.2 will be an object of our further research because it seems to be
an essential property rooted in the definition of this solution similarly to the continu-
ous case, see [39].
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