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Recovery of a time-dependent potential in hyperbolic equations
on conformally transversally anisotropic manifolds

Boya Liu, Teemu Saksala, and Lili Yan

Abstract. We study an inverse problem of determining a time-dependent potential appearing
in the wave equation on conformally transversally anisotropic manifolds of dimension three or
higher. These are compact Riemannian manifolds with boundary that are conformally embedded
in a product of the real line and a transversal manifold. Under the assumption of the attenuated
geodesic ray transform being injective on the transversal manifold, we prove the unique deter-
mination of time-dependent potentials from the knowledge of a certain partial Cauchy data set.

1. Introduction and statement of results

Let .M; g/ be a smooth, compact, oriented Riemannian manifold of dimension n � 3
with smooth boundary @M . Throughout this paper, we denoteQD .0;T /�M int with
0 < T <1, xQ the closure ofQ, and†D .0;T /� @M the lateral boundary ofQ. We
introduce the Laplace–Beltrami operator �g of the metric g, and, for a given smooth
and strictly positive function c.x/ on M , we consider the wave operator

�c;g D c.x/
�1@2t ��g (1.1)

with time-independent coefficients.
In this paper, we study an inverse problem for the linear hyperbolic partial differ-

ential operator
Lc;g;q D �c;g C q.t; x/; .t; x/ 2 Q; (1.2)

with a time-dependent coefficient q 2 C. xQ/, called the potential.
We shall make two geometric assumptions, of which the first one is the following.

Definition 1.1. A Riemannian manifold .M; g/ of dimension n � 3 with boundary
@M is called conformally transversally anisotropic (CTA) if M is a compact subset
of a manifold R �M int

0 and g D c.e ˚ g0/. Here, .R; e/ is the real line, .M0; g0/ is
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a smooth compact .n� 1/-dimensional Riemannian manifold with smooth boundary,
called the transversal manifold, and c 2 C1.R �M0/ is a strictly positive function.

Remark 1.2. The conformal factor c in Definition 1.1 is the same as the coefficient
c.x/ appearing in the wave operator (1.1).

Examples of CTA manifolds include precompact smooth proper subsets of
Euclidean, spherical, and hyperbolic spaces, see [10] for some more examples of CTA
manifolds. The global product structure of M allows us to write every point x 2 M
as x D .x1; x0/, where x1 2 R and x0 2 M0. In particular, the projection '.x/ D x1
is a limiting Carleman weight. The existence of a limiting Carleman weight implies
that a conformal multiple of the metric g admits a parallel unit vector field, and the
converse holds for simply connected manifolds, see [9, Theorem 1.2]. The latter con-
dition holds if and only if the manifold .M; g/ is locally isometric to the product of
an interval and some .n � 1/-dimensional Riemannian manifold .M0; g0/.

In addition to the product structure of the ambient space R �M0 of the manifold
.M; g/, we need to also assume the injectivity of certain geodesic ray transforms on
the transversal manifold .M0; g0/. This type of assumption has been implemented to
solve many important inverse problems on CTA manifolds, see for instance [7,10,20,
23, 34] and the references therein.

Let us now recall some definitions related to geodesic ray transforms on Rie-
mannian manifolds with boundary. Geodesics of .M0; g0/ can be parametrized (non-
uniquely) by points on the unit sphere bundle SM0 D ¹.x; �/ 2 TM0 W j�j D 1º. We
denote

@˙SM0 D ¹.x; �/ 2 SM0 W x 2 @M0; ˙h�; �.x/i > 0º

the incoming (–) and outgoing (+) boundaries of SM0 corresponding to the geodesics
touching the boundary. Here, h�; �i is the Riemannian inner product of .M0; g0/, and
� is the outward unit normal vector to @M0 with respect to the metric g0.

For any .x; �/ 2 @�SM0, we let  D x;� be a geodesic of M0 with initial condi-
tions ..0/; P.0//D .x; �/. Then, �exit.x; �/ > 0 stands for the first time when  meets
@M0, with the convention that �exit.x; �/ D C1 if .�/ 2M int

0 for all � > 0. We say
that a unit speed geodesic segment  W Œ0; �exit.x; �/�!M0, 0< �exit.x; �/ <1, is non-
tangential if P.0/ and P.�exit.x;�// are non-tangential vectors to @M0, and .�/2M int

0

for all 0 < � < �exit.x; �/.
Given a continuous function ˛ on M0, the attenuated geodesic ray transform of a

function f WM0 ! R is given by

I ˛.f /.x; �/ D

�exit.x;�/Z
0

exp
� tZ
0

˛.x;�.s//ds

�
f .x;�.t//dt; .x; �/ 2 @�SM0 n ��;
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where �� D ¹.x; �/ 2 @�SM0 W �exit.x; �/DC1º. The attenuated geodesic ray trans-
form is the mathematical basis for the medical imaging method SPECT (single-photon
emission computed tomography), which is commonly used to diagnose and moni-
tor heart problems as well as bone and brain disorders. Inversion of an attenuated
geodesic ray transform is a crucial part of solving the Calderón problem on CTA
manifolds [9].

The second geometric assumption we make in this paper is as follows.

Assumption 1. There exists " > 0 such that for any smooth attenuation ˛ on M0

with k˛kL1.M0/ < ", the respective attenuated geodesic ray transform I ˛ on the
transversal manifold .M0; g0/ is injective over continuous functions f in the sense
that if I ˛.f /.x; �/D 0 for all .x; �/ 2 @�SM0 n �� such that x;� is a non-tangential
geodesic, then f D 0 in M0.

Injectivity of the attenuated geodesic ray transform on simple manifolds for small
attenuations ˛ was established in [9, Theorem 7.1]. A compact, simply connected
Riemannian manifold with smooth boundary is said to be simple if its boundary is
strictly convex, and no geodesic is trapped or has conjugate points. When ˛ D 0,
injectivity of the geodesic ray transform on simple manifolds is well known, see [24,
31].

The attenuated geodesic ray transform I ˛ is also known to be injective when
some other geometric conditions are imposed. For instance, it was established in [8,
Theorem 29] that I ˛ is injective on spherically symmetric manifolds satisfying the
Herglotz condition when the attenuation ˛ is radially symmetric and Lipschitz con-
tinuous. The attenuation is a constant in this paper. The Herglotz condition is a special
case of a manifold satisfying a convex foliation condition, and in [25] the injectivity
of I ˛ is verified on this type of manifolds of dimension n � 3. Some examples of
manifolds satisfying the global foliation condition are the punctured Euclidean space
Rn n ¹0º and the torus Tn. We refer readers to [25, Section 2] for more examples.
The convex foliation condition does not forbid the existence of conjugate points in
general.

Finally, we discuss the “measurements” considered in this paper before present-
ing our main result. We observe that the limiting Carleman weight '.x/ gives us a
canonical way to define the front and back faces of @M and @Q. Let � be the outward
unit normal vector to @M with respect to the metric g. We denote @M˙ D ¹x 2 @M W
˙@�'.x/ � 0º and †˙ D .0; T / � @M int

˙
. Then, we define U D .0; T / � U 0 and

V D .0;T /� V 0, where U 0; V 0 � @M are open neighborhoods of @MC, @M�, respec-
tively.
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The goal of this paper is to prove the unique determination of the time-dependent
potential q.t; x/, which appears in (1.2), from the following set of partial Cauchy data

Cg;q D ¹.ujU ; ujtDT ; @tujtD0; @�ujV / W

u 2 L2.Q/; Lc;g;qu D 0; ujtD0 D 0; supp uj† � U º: (1.3)

The wellposedness of this set has been established in [18, Section 3]. From a
physical perspective, as introduced in [17], the inverse problem considered in this
paper can be interpreted as the determination of physical properties such as the time-
evolving density of an inhomogeneous medium by probing it with disturbances gener-
ated on some parts of the boundary and at initial time, and by measuring the response
on some parts of the boundary and at the end of the experiment.

We highlight that in Cg;q the Dirichlet value is measured and supported only on
roughly half of the lateral boundary U , and the Neumann data is measured on approx-
imately the other half of the lateral boundary V . Measurements are also made at the
initial time t D 0 and the end time t D T . It follows from the domain of dependence
arguments given in [17, Section 1.1] that we can only hope to recover general time-
dependent coefficients in the optimal set

D ´ ¹.t; x/ 2 Q W dist.x; @M/ < t < T � dist.x; @M/º

when only the lateral boundary data

C lat
g;q D ¹.uj†; @�uj†/ W u 2 L

2.Q/; Lg;qu D 0; ujtD0 D @tujtD0 D 0º (1.4)

is given. Hence, even for a large measurement time T > 0, global unique recovery of
general time-dependent coefficients of the hyperbolic operator (1.2) requires informa-
tion at the beginning ¹t D 0º and at the end ¹t D T º of the measurement.

The main result of this paper is as follows.

Theorem 1.3. Suppose that .M; g/ is a CTA manifold of dimension n � 3 and that
Assumption 1 holds for the transversal manifold .M0; g0/. Let T > 0 and qi 2 C. xQ/,
i D 1; 2. If q1 D q2 on @Q, then Cg;q1 D Cg;q2 implies that q1 D q2 in Q.

Remark 1.4. Theorem 1.3 can be viewed as an extension of [17] from the Euclidean
space, as well as [18] from CTA manifolds with a simple transversal manifold M0, to
general CTA manifolds. Also, Theorem 1.3 does not follow from our recent work [23],
in which the Dirichlet data was measured on the full lateral boundary†. The Dirichlet
data in (1.3) is only measured on a subset U of †, thus the set of Cauchy data in this
paper contains fewer data than [23].

In the presence of a damping term, one needs a remainder term decaying in its
semiclassicalH 1-norm. Our construction of such a remainder term in [23] is based on
interior Carleman estimates for extended manifolds. Thus, it does not give us control
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over the support of the trace of solution of the wave equation on the boundary @Q,
which is required in this paper due to the condition that supp uj† � U in the set
of partial Cauchy data (1.3). In this paper, it is sufficient to construct a CGO solution
whose remainder term decays in itsL2-norm and satisfies the aforementioned support
condition. The construction of such a remainder term differs from the one presented
in [23], hence Theorem 1.3 does not fall within the scope of [23].

Remark 1.5. Theorem 1.3 states the unique determination of continuous potentials
from the set of partial Cauchy data Cg;q . This is attributed to the technique presented
in this paper since the concentration property of Gaussian beam quasimodes (Propo-
sition 2.2) requires continuity.

Remark 1.6. Assumption 1 of this paper is different from the literature concerning
inverse problems for elliptic operators on CTA manifolds, see for instance [10, 20].
These works assume the invertibility of the geodesic ray transform. In the case of
elliptic operators, where there is only one Euclidean direction x1, the authors reduced
the inverse problem to the geodesic ray transform and recovered the Taylor expansion
of the unknown function by differentiating an expression similar to (4.5) with respect
to the variable � at zero. However, this approach is not applicable in our case, as the
mapping .�; ˇ/ 7! ��.ˇ; 1/, appearing in (4.5), is a diffeomorphism only if � ¤ 0.
Thus, computing � and ˇ-derivatives of (4.5) at � D 0 will not give us the Taylor
expansion of the unknown potential at the origin.

1.1. Previous literature

We only review some literature concerning the recovery of time-dependent coeffi-
cients appearing in hyperbolic equations from boundary measurements. There is also
a vast amount of literature about the time-independent case, which has been discussed
for instance in [23].

Most of the time-dependent results rely on the use of geometric optics (GO)
solutions to the hyperbolic equation. This approach was first implemented in [32] to
determine time-dependent coefficients of hyperbolic equations from the knowledge of
scattering data by using properties of the light-ray transform. In the Euclidean setting,
recovery of a time-dependent potential q from the full lateral boundary data C lat

q on
the infinite cylinder R��, where� is a bounded Euclidean domain, was established
in [29]. On a finite cylinder .0; T / �� with T > diam.�/, it was proved in [28] that
C lat
q determines q uniquely in the optimal subset D of .0;T /��. A uniqueness result

for determining a general time-dependent potential q from the set of partial Cauchy
data Cg;q was established in [17].

Turning attention to results in the Riemannian manifolds setting, global unique
determination of a time-dependent potential q from both full and partial boundary
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measurements was proved in [18] on a CTA manifold .M; g/ with a simple transver-
sal manifold M0. In other classes of manifolds, it was recently established in [1] that
a set of full Cauchy data determines the potential q uniquely in Lorentzian manifolds
that satisfy certain two-sided curvature bounds and some other geometric assump-
tions. This curvature bound was weakened in [2] near Minkowski geometry. The
proof of [1] is based on a new optimal unique continuation theorem and a general-
ization of the boundary control method, originally developed in [5], to the cases when
the dependence of coefficients on time is not analytic. Indeed, the boundary control
method, which is a powerful tool to prove uniqueness results for time-independent
coefficients appearing in hyperbolic equations [5, 6, 13, 14, 21], is not applicable to
recover time-dependent coefficients in general since it relies on an application of the
unique continuation theorem analogous to [33], which may fail without the aforemen-
tioned real analyticity assumption, see [3, 4].

Aside from uniqueness results concerning only the potential, there is also some
literature about determining time-dependent first order perturbations appearing in
hyperbolic equations from boundary measurements as well. It was established in [16]
that boundary data Cg;q , with U D †, determines time-dependent damping coef-
ficients and potentials uniquely in the Euclidean setting. Very recently the authors
extended this result to the setting of CTA manifolds in [23].

If a full time-dependent vector field perturbation appears in the hyperbolic equa-
tion, similar to the magnetic Schrödinger operator, it is only possible to recover the
vector field up to a space-time differential of a test function inQ. A global uniqueness
result was proved in [11] when the dependence of coefficients on the time variable
is real-analytic. This analyticity assumption was removed in [30], which proved a
uniqueness result on an infinite cylinder R � �, where � is a bounded domain in
Rn. We refer readers to [19] for a global uniqueness result from partial Dirichlet-to-
Neumann map on a finite cylinder Œ0; T � �� with T > diam .�/. In the Riemannian
setting, it was established in [12] that the lateral boundary data C lat

g;q determines the
first and zeroth order perturbations up to the described gauge invariance on a cer-
tain non-optimal subset of Q. This result was obtained by reducing the problem to
the inversion of the light-ray transform of the Lorentzian metric �dt2 C g.x/. The
authors of [12] also showed that the light-ray transform is invertible whenever the
respective geodesic ray transform on the spatial manifold is invertible. To the best of
our knowledge, the global (optimal) recovery of a one-form and a potential function,
appearing in a hyperbolic operator, from a set of partial Cauchy data Cg;q (1.3) (lateral
boundary data C lat

g;q (1.4)) is still an open problem.
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1.2. Outline for the proof of Theorem 1.3

The two main ingredients of the proof are the integral identity (4.1), which was
derived in [17, 18] from the set of partial Cauchy data Cg;q , and the construction of
complex geometric optics (CGO) solutions. Specifically, we shall construct a family
of exponentially decaying solutions u1 to the equation L�c;g;qu1 D 0 of the form

u1.t; x/ D e
�s.ˇ tC'.x//.vs.t; x/C r1.t; x//; .t; x/ 2 Q:

On the other hand, due to the restrictions supp uj† � U and ujtD0 D 0 in Cg;q ,
we need to construct a family of exponentially growing solutions u2 to the equation
Lc;g;qu2 D 0, which look like

u2.t; x/ D e
s.ˇ tC'.x//.ws.t; x/C r2.t; x//; .t; x/ 2 Q;

and satisfy these two boundary conditions. Here s D 1
h
C i� is a complex number,

h2 .0;1/ is a semiclassical parameter, �2R and ˇ 2
�
1p
3
; 1
�

are some fixed numbers,
vs and ws are Gaussian beam quasimodes, r1 and r2 are correction terms that vanish
in the limit h! 0, and the function '.x/ D x1 is a limiting Carleman weight on M .
We choose the values of ˇ as above because the construction of r1 relies on an appli-
cation of an interior Carleman estimate [23, Proposition 3.6]. This is derived from a
boundary Carleman estimate [23, Proposition 3.1], which is valid for ˇ 2

�
1p
3
; 1
�
. For

the construction of r2, we may take ˇ 2
�
1
2
; 1
�
, see [18, Theorem 4.1].

Since the transversal manifold .M0; g0/ is not necessarily simple, the approach
based on global CGO solutions, which was constructed in geodesic polar coordi-
nates in [18], is not applicable under the geometric assumptions of this paper. In
particular, it is not known whether one can solve the necessary eikonal and transport
equations appearing in (2.9) globally without the simplicity assumption. In Proposi-
tion 2.1, we construct Gaussian beam quasimodes for every non-tangential geodesic
in the transversal manifold M0 by using techniques originally developed in solving
inverse problems for elliptic operators, see for instance [7, 10, 20, 34], as well as [23]
for hyperbolic operators. These quasimodes concentrate on the geodesic in the semi-
classical limit h! 0, as we shall explain in Proposition 2.2. The construction of the
remainder terms r1 and r2 are given in Section 3. Here, r1 needs to have a stronger
decay property, namely, being O.h

1
2 / with respect to the semiclassical H 1-norm.

This is achieved with an interior Carleman estimate [23, Proposition 3.6]. In order to
find a remainder r2 such that u2 satisfies the required boundary conditions in the set
of partial Cauchy data (1.3), we follow a different approach, which was developed
in [17, 18].

To complete the proof of Theorem 1.3, we shall substitute the CGO solutions (3.1)
and (3.4) into the integral identity (4.1) and pass to the limit h ! 0. Lemma 4.1
implies that the right-hand side of (4.1) vanishes in the limit h ! 0. The proof of
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this lemma requires a decay in the semiclassical H 1-norm for r1, which is given in
estimate (3.2). Meanwhile, estimates (2.4), (3.2), and (3.5), in conjunction with the
concentration property of Gaussian beam quasimodes Proposition (2.2), yield that the
left-hand side of (4.1) converges to the attenuated geodesic ray transform involving
the function q1 � q2 in the limit h! 0. This is the reason why we need Assumption 1
to complete the proof.

The paper is organized as follows. We begin with the construction of Gaussian
beam quasimodes in Section 2. In Section 3 we construct both exponentially decay-
ing and growing CGO solutions. Finally, we present the proof of Theorem 1.3 in
Section 4.

2. Construction of Gaussian beam quasimodes

Let .M; g/ be a CTA manifold given by Definition 1.1 and T > 0. The goal of this
section is to construct Gaussian beam quasimodes with desirable concentration prop-
erties. Gaussian beam quasimodes have been utilized extensively to solve inverse
problems in Riemannian manifolds. We refer readers to [7, 9, 10, 20, 34] for some
applications in elliptic operators and [12, 14, 23] in hyperbolic operators.

To streamline the construction, we first note that due to the conformal properties
of the Laplace–Beltrami operator explained in [10], we have

c
nC2
4 .��g/.c

�n�24 u/ D �.� QguC .c
nC2
4 �g.c

�n�24 //u/: (2.1)

Also, since the conformal factor c is independent of the time variable t , we get

c
nC2
4 @2t .c

�n�24 u/ D c@2t u: (2.2)

Thus, equations (2.1) and (2.2) yield the following identity for the operator Lc;g;q:

c
nC2
4 ıLc;g;q ı c

�n�24 D L Qg; Qq;

where
Qg D e ˚ g0 and Qq D c.q � c

n�2
4 �g.c

�n�24 //: (2.3)

Hence, by replacing the metric g and the potential q with Qg and Qq, respectively,
we may assume that the conformal factor c D 1. In this section, we shall use this
assumption and consider the leading order wave operator �e˚g0 D @

2
t ��e˚g0 . For

simplicity, let us write Lg;q for Lc;g;q with c D 1. Also, throughout the rest of this
paper, we shall denote L�g;q D Lg; Nq the formal L2-adjoint of the operator Lg;q .

We are now ready to state and prove the main result of this section.
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Proposition 2.1. Let .M; g/ be a smooth CTA manifold with boundary. Let T > 0,
and let s D 1

h
C i�, 0 < h� 1, � 2 R, and ˇ 2 .0; 1/ fixed. Let q 2 C. xQ/. Then,

for every unit speed non-tangential geodesic  of the transversal manifold .M0; g0/,
there exist a one-parameter family of Gaussian beam quasimodes vs 2 C1.M0/ such
that the estimates

kvskL2.M0/ D O.1/; (2.4a)

kes.ˇ tCx1/h2L�g;qe
�s.ˇ tCx1/vskL2.Q/ D O.h

3
2 /; (2.4b)

ke�s.ˇ tCx1/h2Lg;qe
s.ˇ tCx1/vskL2.Q/ D O.h

3
2 / (2.4c)

hold as h! 0.

Proof. Let L > 0 be the length of the geodesic  D .�/. By [22, Example 9.32], we
may embed .M0; g0/ into a larger closed manifold . yM0; g0/ of the same dimension.
Also, we extend  as a unit speed geodesic in yM0. Since  is non-tangential, we can
choose " > 0 such that .�/ 2 yM0 nM0 and does not self-intersect for � 2 Œ�2"; 0/[
.L;LC 2"�.

Our goal is to construct Gaussian beam quasimodes near .Œ�";LC "�/. We start
by fixing a point z0 D .�0/ on .Œ�"; LC "�/ and construct the quasimode locally
near z0. Let .�; y/ 2 �´ ¹.�; y/ 2 R �Rn�2 W j� � �0j < ı; jyj < ı0º, ı; ı0 > 0, be
Fermi coordinates near z0, see [15, Lemma 7.4]. We may assume that the coordinates
.�; y/ extend smoothly to a neighborhood of x�.

We observe that near z0 D .�0/ the trace of the geodesic  is given by the set
� D ¹.�; 0/ W j� � �0j < ıº, and in these Fermi coordinates we have

g
jk
0 .�; 0/ D ı

jk and @ylg
jk
0 .�; 0/ D 0:

Hence, it follows from Taylor’s theorem that for small jyj we can write

g
jk
0 .�; y/ D ı

jk
CO.jyj2/: (2.5)

We first construct quasimodes vs for the conjugated operator

es.ˇ tCx1/L�g;qe
�s.ˇ tCx1/:

To that end, let us consider a Gaussian beam ansatz

vs.�; yI h/ D e
is‚.�;y/b.�; yI h/:

Compared to [23], the quasimode vs constructed in this paper is independent of the
Euclidean variables .t; x1/.
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To obtain the quasimode vs , we need to find a phase function ‚ 2 C1.�;C/
such that

=‚ � 0; =‚j� D 0; =‚.�; y/ � jyj
2; (2.6)

as well as an amplitude b 2 C1.�;C/ such that supp .b.�; �//�
®
jyj< ı0

2

¯
. We shall

achieve this by following the ideas originally presented in [14, 26].
Since‚ is independent of the Euclidean variables .t; x1/ and gD e˚ g0, we have

e�is‚@2t .e
is‚b/ D 0 (2.7)

and

e�is‚.��g/e
is‚b D ��g0b � isŒ2hrg0‚;rg0big0

C .�g0‚/b�C s
2
hrg0‚;rg0‚ig0b: (2.8)

Therefore, we obtain from (2.7) and (2.8) that

es.ˇ tCx1/h2L�g;qe
�s.ˇ tCx1/vs D h

2eis‚
�
s2.hrg0‚;rg0‚ig0 � .1 � ˇ

2//b

C s.�2ihrg0‚;rg0big0 � i.�g0‚/b/

C .��g0 C Nq/b
�
:

(2.9)

From the computation above, we see that in order to verify the estimates in (2.4), we
need to find a phase function‚ and an amplitude b such that they approximately solve
the eikonal and transport equations appearing on right-hand side of (2.9) as multipliers
of the terms s2 and s, respectively.

Following arguments similar to those in [10,14,20,26,27], we aim to find‚.�;y/2
C1.�;C/ such that

hrg0‚;rg0‚ig0 � .1 � ˇ
2/ D O.jyj3/; y ! 0; (2.10)

and
=‚ � d jyj2 (2.11)

for some constant d > 0 that depends on ˇ. By following the arguments in [23, Sec-
tion 4.1.3], see also [10, 26, 27], we choose

‚.�; y/ D
p
1 � ˇ2

�
� C

1

2
H.�/y � y

�
; (2.12)

where the smooth complex-valued symmetric matrix H.�/ is the unique solution of
the initial value problem for the matrix Riccati equation

PH.�/CH.�/2 D F.�/; H.�0/ D H0; for � 2 R: (2.13)
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Here, =H.�/ is positive definite, H0 is a complex symmetric matrix such that =.H0/
is positive definite, and F.�/ is a suitable symmetric matrix. We refer readers to [14,
Lemma 2.56] for details.

We next look for an amplitude b of the form

b.�; yI h/ D h�
n�2
4 b0.�/�

� y
ı0

�
;

where b0 2 C1.Œ�0 � ı; �0 C ı�/ depends on only the travel time � and satisfies the
approximate transport equation

�2ihrg0‚;rg0b0ig0 � i.�g0‚/b0 D O.jyj/; (2.14)

and the cut-off function � 2 C10 .R
n�2/ is such that � D 1 for jyj � 1

4
and � D 0 for

jyj � 1
2

.
In order to find the function b0 that satisfies (2.14), we first compute the quantity

hrg0‚;rg0b0ig0 . To this end, we deduce from (2.12) that

@�‚.�; y/ D
p
1 � ˇ2 CO.jyj2/: (2.15)

Therefore, we get from (2.5) that

hrg0‚;rg0b0ig0 D
p
1 � ˇ2@�b0 CO.jyj2/@�b0:

We next compute �g0‚ near the geodesic  . To that end, it follows from (2.5)
and (2.12) that

.�g0‚/.�; 0/ D
p
1 � ˇ2ıjkHjk D

p
1 � ˇ2trH.�/:

This implies that

.�g0‚/.�; y/ D
p
1 � ˇ2trH.�/CO.jyj/:

To achieve (2.14), we require that b0.�/ satisfies

@�b0 D �
1

2
trH.�/b0: (2.16)

Hence, we have

b0.�/ D e
f1.�/; where @�f1.�/ D �

1

2
trH.�/:

Finally, we get (2.14) from (2.15)–(2.16) due to the y-independence of b0.
We next prove the estimates in (2.4) for the quasimode

vs.�; yI h/ D e
is‚.�;y/b.�; yI h/ D eis‚.�;y/h�

n�2
4 b0.�/�

� y
ı0

�
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locally in �, where � �M0 is the domain of Fermi coordinates near the point z0 D
.�0/. To proceed, we shall need the following estimate for any k 2 R:

kh�
n�2
4 jyjke�

=‚
h k

L2.jyj� ı
0

2 /

� kh�
n�2
4 jyjke�

d
h
jyj2
k
L2.jyj� ı

0

2 /

�

� Z
Rn�2

hkjzj2ke�2d jzj
2

dz

� 1
2

D O.h
k
2 /; h! 0; (2.17)

where we have applied estimate (2.11) and the change of variable z D h�
1
2y. Then it

follows from (2.11) and (2.17) with k D 0 that

kvskL2.�/ � kb0kL1.Œ�0�ı;�0Cı�/

eis‚h�n�24 �� y
ı0

�
L2.�/

� O.1/kh�
n�2
4 e�

d
h
jyj2
k
L2.jyj� ı

0

2 /
D O.1/; h! 0: (2.18)

We proceed to estimate kes.ˇ tCx1/Lg; Nqe
�s.ˇ tCx1/vskL2.�/, which requires esti-

mating each term on the right-hand side of (2.9). For the first term, by utilizing (2.10),
(2.11), and (2.17) with k D 3, we obtain

h2keis‚s2.hrg0‚;rg0‚ig0 � .1 � ˇ
2//bkL2.�/

D h2
eis‚s2h�n�24 .hrg0‚;rg0‚ig0 � .1 � ˇ2//b0�� yı0�L2.�/

� O.1/kh�
n�2
4 jyj3e�

d
h
jyj2
k
L2.jyj� ı

0

2 /
D O.h

3
2 /; h! 0: (2.19)

We next estimate the second term on the right-hand side of (2.9). From a direct
computation, we get

jeis‚j D e�
1
h
=‚e��<‚ D e�

p
1�ˇ2

2h
=H.�/y�ye��

p
1�ˇ2�e��O.jyj2/:

We observe that e�
1
h DO.h1/. Here we say that f DO.h1/ if f DO.hn/ for every

n 2 N. Therefore, it follows from (2.11) that on the support of rg0�.
y
ı0
/ we have

jeis‚j � e�
Qd
h for some Qd > 0:

Thus, by using equation (2.14), estimate (2.17) with k D 1, along with the triangle
inequality, we have

h2keis‚s.�2ihrg0‚;rg0big0 � i.�g0‚/b/kL2.�/

� O.h/
eis‚h�n�24 hjyj�� y

ı0

�
� 2i

D
rg0‚;rg0�

� y
ı0

�E
g0

i
L2.�/

� O.h/kh�
n�2
4 jyje�

d
h
jyj2
k
L2.jyj� ı

0

2 /
CO.e�

Qd
h /

D O.h
3
2 /; h! 0:
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Lastly, we estimate the third term on the right-hand side of (2.9). Since the ampli-
tude b is independent of t , it suffices to estimate the term involving �g and the lower
order term. To that end, we apply estimate (2.17) with k D 0 to get

h2keis‚.��gb/kL2.�/ � O.h2/kh�
n�2
4 e�

d
h
jyj2
k
L2.jyj� ı

0

2 /
D O.h2/; h! 0:

For the lower order term, it follows from (2.17) with k D 0 that

h2keis‚ NqbkL2.�/ D O.h2/; h! 0: (2.20)

Therefore, by combining estimates (2.19)–(2.20), we conclude from (2.9) that

kes.ˇ tCx1/h2L�g;qe
�s.ˇ tCx1/vskL2.�/ D O.h

3
2 /; h! 0: (2.21)

This completes the verification of (2.4) locally in the set �.
To complete the construction of the quasimode vs on the transversal manifoldM0,

we glue together the quasimodes defined along small pieces of the geodesic  . Since
yM0 is compact and .�/W .�2";LC 2"/! yM0 is a unit speed non-tangential geodesic

that is not a loop, we get from [15, Lemma 7.2] that  j.�2";LC2"/ self-intersects at
times �j , where j 2 ¹1; : : : ; N º, and

�" D �0 < �1 < � � � < �N < �NC1 D LC ":

By [15, Lemma 7.4], there exists an open cover ¹.�j ; �j /NC1jD0 º of .Œ�"; L C "�/
consisting of coordinate neighborhoods that have the following properties.

(1) �j .�j / D Ij � B , where Ij are open intervals and B D B.0; ı0/ is an open
ball in Rn�2. Here, ı0 > 0 can be taken arbitrarily small and the same for
each �j .

(2) �j ..�// D .�; 0/ for r 2 Ij .

(3) �j only belongs to Ij and Ij \ Ik D ; unless jj � kj � 1.

(4) �j D �k on ��1j ..Ij \ Ik/ � B/.

As explained in [15, Lemma 7.4], the intervals Ij can be chosen as

I0 D .�2"; �1 � Qı/;

Ij D .�j � 2 Qı; �jC1 � Qı/; j D 1; : : : ; N;

INC1 D .�NC1 � 2 Qı; LC 2"/

for some Qı > 0 small enough. When  does not self-intersect, there is a single coor-
dinate neighborhood of  jŒ�";LC"� such that (1) and (2) are satisfied.
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We proceed as follows to construct the quasimode vs . Suppose first that  does
not self-intersect at � D 0. By following the arguments from the earlier part of this
proof, we find a quasimode

v.0/s .�; yI h/ D h�
n�2
4 eis‚

.0/.�;y/ef1.�/�
� y
ı0

�
in �0 with some fixed initial conditions at � D �" for the Riccati equation (2.13)
determining ‚.0/. We next choose some � 00 such that .� 00/ 2 �0 \�1 and let

v.1/s .�; yI h/ D h�
n�2
4 eis‚

.1/.�;y/ef1.�/�
� y
ı0

�
be a quasimode in�1 by choosing the initial conditions for (2.13) such that‚.1/.� 00/D
‚.0/.� 00/. Here, we have used the same function f1 in both v.0/s and v.1/s since f1 is
globally defined for all � 2 .�2"; LC 2"/ and does not depend on y. On the other
hand, since the equations determining the phase functions ‚.0/ and ‚.1/ have the
same initial data in �0 and in �1, and the local coordinates �0 and �1 coincide on
��10 ..I0 \ I1/ � B/, we get ‚.1/ D ‚.0/ in I0 \ I1. Therefore, we conclude that
v
.0/
s D v

.1/
s in the overlapped region �0 \ �1. Continuing in this way, we obtain

quasimodes v.2/s ; : : : ; v
.NC1/
s such that

v.j /s D v
.jC1/
s in �j \�jC1:

If  self-intersects at � D 0, we start the construction from v.1/ by fixing initial con-
ditions for (2.13) at � D � 00 2 I1 and find v.0/ by going backwards.

Let �j .�/ be a partition of unity subordinate to ¹Ij ºNC1jD1 . We denote Q�j .�; y/ D
�j .�/ and define

vs D

NC1X
jD0

Q�j v
.j /
s :

Then, we get vs 2 C1.M0/.
Let z1; : : : ; zR 2 M0 be distinct self-intersection points of  , and let 0 � �1 <

� � � < �N , R � N , be the times of self-intersections. Let Vj be a small neighborhood
in yM0 centered at zj ; j D 1; : : : ; R. Following the steps in [15], for ı0 sufficiently
small we can pick a finite coverW1; : : : ;WS of remaining points on the geodesic such
that Wk � �l.k/ for some index l.k/ and

supp vs \M0 �

� R[
jD1

Vj

�
[

� S[
kD1

Wk

�
:

Moreover, the quasimode restricted on Vj and Wk is of the form

vsjVj D
X

lW.�l /Dzj

v.l/s
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and
vsjWk D v

l.k/
s ;

respectively. Since vs is a finite sum of v.l/s in each case, the first and second estimates
in (2.4) follow from corresponding local considerations (2.18) and (2.21) for each
of v.l/s , respectively.

We next construct a quasimode ws for the conjugated operator

e�s.ˇ tCx1/Lg;qe
s.ˇ tCx1/

of the form
ws.�; yI h/ D e

is‚.�;y/B.�; yI h/

with the same phase function ‚ 2 C1.�;C/ that satisfies (2.6), and the amplitude
B.�; y/ 2 C1.�/ is supported near � .

By similar computations as in (2.9), we have

e�s.ˇ tCx1/Lg;qe
s.ˇ tCx1/ws D e

is‚Œs2.hrg0‚;rg0‚ig0 � .1 � ˇ
2//B

C s.�2ihrg0‚;rg0Big0 � i.�g0‚/B/

C .��g0 C q/B�:

Notice that the eikonal equation and transport equation forB coincide with the respec-
tive corresponding equation for b in (2.9). Therefore, we get B.�; yI h/ D b.�; yI h/.
Furthermore, since the phase function ‚ is the same for both vs and ws , we have
wsD vs . Finally, we obtain the third estimate in (2.4) by arguing similarly to the verifi-
cation of the second estimate in (2.4). This completes the proof of Proposition 2.1.

We want the Gaussian beam quasimodes to concentrate along the geodesic as
h! 0. By following the same arguments as in the proof of [10, Proposition 3.1], we
have the following result.

Proposition 2.2. Let s D 1
h
C i�, 0 < h � 1, � 2 R fixed, and ˇ 2

�
1p
3
; 1
�
. Let

 W Œ0; L�! M0 be a non-tangential geodesic in .M0; g0/ as in Proposition 2.1. Let
vs be the quasimode from Proposition 2.1. Then, for each function  2 C.M0/ and
.t 0; x01/ 2 Œ0; T � �R, we have

lim
h!0

Z
¹t 0º�¹x0

1
º�M0

jvsj
2 dVg0 D

LZ
0

e�2
p
1�ˇ2�� ..�//d�: (2.22)



B. Liu, T. Saksala, and L. Yan 138

3. Construction of complex geometric optics solutions

In this section we construct a family of exponentially decaying solutions u1 2H 1.Q/

of the form

u1.t; x/ D e
�s.ˇ tC'.x//.vs.x

0/C r1.t; x//; .t; x/ 2 Q;

as well as a family of exponentially growing solutions

u2 2 H�c;g .Q/´ ¹u 2 L
2.Q/ W �c;gu 2 L

2.Q/º

given by
u2.t; x/ D e

s.ˇ tC'.x//.vs.x
0/C r2.t; x//; .t; x/ 2 Q;

satisfying supp u2j† � U and u2jtD0 D 0. Here s D 1
h
C i� with � 2 R fixed,

'.x/ D x1 is a limiting Carleman weight, vs is the Gaussian beam quasimodes given
in Proposition 2.1, and rj , j D 1; 2, are correction terms that vanish as h ! 0.
These two types of solutions will play different roles in the proof of Theorem 1.3,
and the proofs for their existence are also somewhat different. The construction of
the exponentially decaying solution u1 follows from an interior Carleman estimate
[23, Proposition 3.6]. For the exponentially growing solution u2, we shall follow the
approach introduced in [17, 18].

In the following proposition, which shows the existence of exponentially decaying
solutions u1, we equip Q with a semiclassical Sobolev norm

kuk2
H1scl.Q/

D kuk2
L2.Q/

C kh@tuk
2
L2.Q/

C khrguk
2
L2.Q/

:

Proposition 3.1. Let q 2 C. xQ/, ˇ 2
�
1p
3
; 1
�
, and let s D 1

h
C i� with � 2 R fixed.

For all h > 0 sufficiently small, there exists a solution u1 2 H 1.Q/ to the equation
L�c;g;qu1 D 0 of the form

u1 D e
�s.ˇ tCx1/c�

n�2
4 .vs C r1/; (3.1)

where vs 2 C1.M0/ is the Gaussian beam quasimode given in Proposition 2.1, and
r1 2 H

1
scl.Q

int/ satisfies the estimate

kr1kH1scl.Q
int/ D O.h

1
2 /; h! 0: (3.2)

Proof. Since .M; g/ is a CTA manifold, the computations in Section 2 yield

c
nC2
4 ıLc;g;q ı c

�n�24 D L Qg; Qq;

where Qg D e˚ g0 and Qq D c.q � c
n�2
4 �g.c

�n�24 //. Hence, we see that if Qu is a solu-
tion to the equation L�

Qg; Qq
Qu D 0, then the function u D c�

n�2
4 Qu satisfies L�c;g;qu D 0.
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Thus, it suffices to look for solutions to the equation L�
Qg; Qq
Qu D 0 of the form Qu D

e�s.ˇ tCx1/.vs C r1/: This is equivalent to finding a function r1 that solves the equa-
tion

es.ˇ tCx1/h2L�
Qg; Qqe
�s.ˇ tCx1/r1 D �e

s.ˇ tCx1/h2L�
Qg; Qqe
�s.ˇ tCx1/vs: (3.3)

From here, we use estimate (2.4) and apply an interior Carleman estimate [23,
Proposition 3.6] to deduce that there exists a function r1 2H 1

scl.Q
int/ that solves (3.3)

and satisfies estimate (3.2). Lastly, we would like to recall that the interior Carleman
estimate we utilized in this proof needs the required assumption for the parameter ˇ.
This completes the proof of Proposition 3.1.

We now turn to the construction of exponentially growing solutions u2 vanishing
on part of @Q. We emphasize that the earlier construction of u1 requires an extension
of the domain due to the interior Carleman estimate. Therefore, we have no control
over the traces of the solutions to the wave equation on @Q if we consider solutions
on the extended domain. Thus, we need to utilize a different approach.

For every " > 0 we set

@M";� D ¹x 2 @M W @�'.x/ < �"º; @M";C D ¹x 2 @M W @�'.x/ � �"º;

and†";˙ D .0; T /� @M";˙. To find u2, we use the following result, which was origi-
nally proved in [18, Theorem 5.4]. For the convenience of the reader, we re-prove this
result.

Proposition 3.2. Let q 2 C. xQ/, ˇ 2
�
1
2
; 1
�
, and let s D 1

h
C i� with � 2 R fixed. For

all h > 0 small enough, the initial boundary value problem8̂̂<̂
:̂

Lc;g;qu2 D 0 in Q;

u2.0; x/ D 0 in M;

u2 D 0 on †";�;

admits a solution u2 2 H�c;g .Q/ of the form

u2 D e
s.ˇ tCx1/c�

n�2
4 .vs C r2/: (3.4)

Here, vs 2 C1.M0/ is the Gaussian beam quasimode given in Proposition 2.1, and
r2 2 L

2.Q/ satisfies the estimate

kr2kL2.Q/ D O.h
1
2 /; h! 0: (3.5)

Since U 0 � @M is an open neighborhood of @MC D ¹x 2 @M W @�'.x/ � 0º,
we can choose " > 0 sufficiently small such that †";C � U D .0; T / � U 0. Thus, the
claims supp u2j† � U and u2jtD0 D 0 follow from Proposition 3.2.
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Proof of Propostion 3.2. Arguing similarly to the proof of Proposition 3.1, we may
assume that the conformal factor cD 1 and look for solutions to the equation L Qg; Qq QuD

0 of the form QuD es.ˇ tCx1/.vs C r2/ such that Qu.0; x/D 0 inM and QuD 0 on †";�.
Here, Qg and Qq are given by (2.3). It is equivalent to finding a function r2 that satisfies8̂̂<̂
:̂
e�s.ˇ tCx1/h2L Qg; Qqe

s.ˇ tCx1/r2 D �e
�s.ˇ tCx1/h2L Qg; Qqe

s.ˇ tCx1/vs DWf in Q;

r2.0; x/ D �vs.x
0/ DW r0 in M;

r2.t; x/ D �vs.x
0/ DW r� on †";�:

This can be achieved by solving the initial boundary value problem8̂̂̂̂
<̂
ˆ̂̂:
e�

1
h
.ˇ tCx1/L Qg; Qqe

1
h
.ˇ tCx1/ Qr

D �ei�.ˇ tCx1/e�s.ˇ tCx1/L Qg; Qqe
s.ˇ tCx1/vs DW Qf in Q, (3.6a)

Qr.0; x/ D �ei�x1vs.x
0/ DW Qr0 in M , (3.6b)

Qr.t; x/ D �ei�.ˇ tCx1/vs.x
0/ .x/ DW Qr� on †�, (3.6c)

and setting r2 ´ e�i�.ˇ tCx1/ Qr . Here,  2 C10 .M/ is a cut-off function such that
0 �  � 1, supp  \ @M � @M "

2 ;�
, and  D 1 on @M";�.

In order to verify the existence of Qr , we need to derive a boundary Carleman
estimate for the operator L Qg; Qq . To that end, let us introduce the space

D ´ ¹v 2 C1. xQ/ W vj† D vjtDT D @tvjtDT D vjtD0 D 0º:

By replacing t by T � t and x1 by �x1 in the boundary Carleman estimate [18,
Lemma 4.2], we see that the estimate for the wave operator � Qg

h
1
2 k@tu.0; �/kL2.M/ C h

1
2 k
p
j@�'j@�ukL2.†�/ C kukL2.Q/

� O.h/ke�
1
h
.ˇ tCx1/� Qge

1
h
.ˇ tCx1/ukL2.Q/ CO.h

1
2 /k

p
@�'@�ukL2.†C/ (3.7)

is valid for any u 2 D .
To establish a boundary Carleman estimate for the operator L Qg; Qq , we first apply

the triangle inequality to obtain

ke�
1
h
.ˇ tCx1/� Qge

1
h
.ˇ tCx1/ukL2.Q/

� ke�
1
h
.ˇ tCx1/L Qg; Qqe

1
h
.ˇ tCx1/ukL2.Q/ C kQqukL2.Q/:

In particular, we have

k QqukL2.Q/ � kQqkL1.Q/kukL2.Q/:
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Therefore, by absorbing the term hk QqkL1.Q/kukL2.Q/ into the left-hand side of (3.7),
we obtain the following boundary Carleman estimate for the conjugated operator L Qg; Qq

h
1
2 k@tu.0; �/kL2.M/ C h

1
2 k
p
j@�'j@�ukL2.†�/ C kukL2.Q/

� O.h/ke�
1
h
.ˇ tCx1/L Qg; Qqe

1
h
.ˇ tCx1/ukL2.Q/ CO.h

1
2 /k

p
@�'@�ukL2.†C/; (3.8)

which holds for any functions u 2 D .
Let us recall the following estimates, which follow immediately from Proposi-

tion 2.1:
k Qf kL2.Q/ D O.h�

1
2 /; kQr0kL2.M/ D O.1/: (3.9)

Also, by utilizing the same arguments as in the proof of [23, Lemma 5.1], we obtain
the estimate kvskL2.† "

2
;�/
DO.1/. Furthermore, since @�' < � "2 in the set† "

2 ;�
, the

estimate j@�'j�
1
2 D O."�

1
2 / holds in † "

2 ;�
. Thus,

kj@�'j
� 12 Qr�kL2.†�/ � kj@�'j

� 12 ei�.ˇ tCx1/vskL2.† "
2
;�/
D O."�

1
2 /: (3.10)

We next follow the proof of [17, Lemma 5.1] closely to verify the existence of
Qr 2 H� Qg

.Q/ satisfying (3.6a)–(3.6c). To that end, we introduce the space

M´ ¹.e
1
h
.ˇ tCx1/L�

Qg; Qqe
� 1
h
.ˇ tCx1/u; @�uj†C/ W u 2 Dº

and equip it with the norm

k.g1; g2/kM D kg1kL2.Q/ C kh
� 12 j@�'j

1
2g2kL2.†C/:

Then M can be viewed as a subspace of L2.Q/ � L2
';h;C

.†C/, where

L2';h;C.†C/ WD ¹u W kh
� 12 j@�'j

1
2ukL2.†C/ D O.1/º:

We shall construct a bounded linear functional on M and use a standard Hahn–Banach
argument to prove the existence of Qr , and the conditions (3.6b) and (3.6c) will follow
from integration by parts and density argument.

If u 2 D , by the boundary Carleman estimate (3.8) and the Cauchy–Schwarz
inequality, we have

jhu; Qf iL2.Q/ � h@tu.0; �/; Qr0iL2.M/ � h@�u; Qr�iL2.†�/j

� kukL2.Q/k
Qf kL2.Q/ C k@tu.0; �/kL2.M/kQr0kL2.M/

C kj@�'j
1
2 @�ukL2.†�/kj@�'j

� 12 Qr�kL2.†�/

� O.1/k.e
1
h
.ˇ tCx1/L�

Qg; Qqe
� 1
h
.ˇ tCx1/u; @�uj†C/kM

� .hk Qf kL2.Q/ C h
1
2 kQr0kL2.M/ C h

1
2 kj@�'j

� 12 Qr�kL2.†�//:
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Hence, we may define a linear functional � on M by setting

�.e
1
h
.ˇ tCx1/L�

Qg; Qqe
� 1
h
.ˇ tCx1/u; @�uj†C/

WD hu; Qf iL2.Q/ � h@tu.0; �/; Qr0iL2.M/ � h@�u; Qr�iL2.†�/; u 2 D :

By the Hahn–Banach theorem, we can extend the operator � to a continuous linear
form Q� on L2.Q/ � L2

';h
.†C/ without increasing the norm. Hence, it follows from

estimates (3.9) and (3.10) that

k Q�k D k�k � O.1/.hk Qf kL2.Q/ C h
1
2 kQr0kL2.M/ C h

1
2 kj@�'j

� 12 Qr�kL2.†�//

D O.h
1
2 /:

Thus, by the Riesz representation theorem, there exists . Qr; QrC/2L2.Q/�L2';h;�.†C/
such that

kQrkL2.Q/ C kh
1
2 j@�'j

� 12 QrCkL2.†C/ D k�k D O.h
1
2 /;

and

Q�.g1; g2/ D hg1; QriL2.Q/ C hg2; QrCiL2.†C/; .g1; g2/ 2 L
2.Q/ � L2';h;C.†C/:

Here, the space L2
';h;�

.†C/ is given by

L2';h;�.†C/ WD ¹u W kh
1
2 j@�'j

� 12ukL2.†C/ D O.1/º:

Therefore, for all functions u 2 D , we get

he
1
h
.ˇ tCx1/L�

Qg; Qqe
� 1
h
.ˇ tCx1/u; QriL2.Q/ C h@�uj†C ; QrCiL2.†C/

D hu; Qf iL2.Q/ � h@tu.0; �/; Qr0iL2.M/ � h@�uj†� ; Qr�iL2.†�/: (3.11)

We now verify that Qr satisfies equations (3.6a)–(3.6c). By taking u 2 C10 .Q/
in (3.11) and using the fact thatC10 .Q/ is dense inL2.Q/, we see that equation (3.6a)
holds. Furthermore, (3.6a) implies Qr 2 H� Qg

.Q/. Thus, by [17, Proposition A.1], we

can define the trace Qr j† 2H�3.0;T IH�
1
2 .@M// and Qr jtD0 2H�2.M/. Furthermore,

the density result [17, Theorem A.1], in conjunction with integration by parts, implies
that, for all u 2 D , we have

he
1
h
.ˇ tCx1/L�

Qg; Qqe
� 1
h
.ˇ tCx1/u; QriL2.Q/

C h@�uj†C ; Qr j†Ci
H3.0;T IH

1
2 .†C//;H�3.0;T IH

� 1
2 .†C//

D hu; Qf iL2.Q/ � h@tu.0; �/; Qr jtD0iH2.M/;H�2.M/

� h@�u; Qr j†�i
H3.0;T IH

1
2 .†�//;H�3.0;T IH

� 1
2 .†�//

:

Finally, we compare the equality above with (3.11) and take arbitrary u 2 D to
conclude that Qr D Qr0 and Qr j†� D Qr�. Therefore, we have verified (3.6b) and (3.6c).
This completes the proof of Proposition 3.2.
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4. Proof of Theorem 1.3

Let u1 2 H 1.Q/ be an exponentially decaying CGO solution of the form (3.1) satis-
fying the equation L�c;g;q1u1 D 0 in Q, and let u2 2 H�c;g .Q/ be an exponentially
growing CGO solution of the equation Lc;g;q2u2 D 0 in Q given by (3.4) such
that u2jtD0 D 0 and supp u2j† � U . Due to the assumption Cg;q1 D Cg;q2 , by [18,
Proposition 3.1], there exists a function v 2 H�c;g .Q/ that satisfies the equations
Lc;g;q1v D 0 and

.u2 � v/jU D .u2 � v/jtD0 D .u2 � v/jtDT D @t .u2 � v/jtD0 D @�.u2 � v/jV D 0:

Then, the function u WD u2 � v 2 H�c;g .Q/ is a solution to the equation

Lc;g;q1u D qu2 in Q; uj† D ujtD0 D ujtDT D @tujtD0 D @�ujV D 0:

Here and in what follows, we used the notation q´ q1 � q2.
After arguing similarly to [18, Section 6], we obtain the following integral iden-

tity: Z
Q

qu2u1dVgdt D

Z
M

c�1@tu.T; x/u1.T; x/dVg �

Z
†nV

@�uu1dSgdt: (4.1)

We next substitute the CGO solutions (3.1) and (3.4) into (4.1) and pass to the limit
h! 0.

To analyze the limit of the terms on right-hand side of (4.1), we have the following
lemma, which states that both terms on the right-hand side of (4.1) vanish as h! 0.
Its proof is same as the proof of [23, Lemma 5.1], which mainly relies on an appli-
cation of a boundary Carleman estimate [18, Theorem 4.1], as well as estimates (2.4)
and (3.2). This lemma is the reason why we need the H 1-norm decay (3.2) for r1.

Lemma 4.1. Let u1 and u be the functions described above. Then, the following
estimates hold as h! 0:Z

M

c�1@tu.T; x/u1.T; x/dVg D O.h
1
2 /

and Z
†nV

@�uu1dSgdt D O.h
1
2 /:

To investigate the left-hand side of the integral identity (4.1), we compute from
the respective CGO solution (3.1) and (3.4) for u1 and u2 that

u2u1 D e
2i�.ˇ tCx1/c�

n�2
2 .jvsj

2
C vsr2 C r1vs C r1r2/:
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By estimates (2.4), (3.2), (3.5), and the Cauchy–Schwarz inequality, we obtain the
estimateˇ̌̌̌ Z

Q

e2i�.ˇ tCx1/c�
n�2
2 .vsr2 C r1vs C r1r2/dVgdt

ˇ̌̌̌
D O.h

1
2 /; h! 0: (4.2)

On the other hand, since q1; q2 2 C. xQ/ and q1 D q2 on the boundary @Q, we
may continuously extend q by zero on .R2 �M0/ nQ and denote the extension by
the same letter. Then, from the equality dVg D c

n
2 dVg0dx1, Fubini’s theorem, the

dominated convergence theorem, and the concentration property (2.22), we obtain the
following limit as h! 0:Z

Q

e2i�.ˇ tCx1/c�
n�2
2 qjvsj

2dVgdt

D

Z
R

Z
R

Z
M0

e2i�.ˇ tCx1/cqjvsj
2dVg0dx1dt

!

LZ
0

Z
R

Z
R

e2i�.ˇ tCx1/�2
p
1�ˇ2�� .cq/.t; x1; .�//dx1dtd�: (4.3)

Hence, by replacing 2� with �, we deduce from (4.1), (4.2), (4.3), and Lemma 4.1
that the identity

LZ
0

Z
R

Z
R

ei�.ˇ tCx1/�
p
1�ˇ2�� .cq/.t; x1; .�//dx1dtd� D 0 (4.4)

holds for every non-tangential geodesic  in the transversal manifold .M0; g0/.
We are ready to utilize Assumption 1, the invertibility of the attenuated geodesic

ray transform on .M0; g0/. To that end, we denote F.t;x1/!.�1;�2/ the Fourier trans-
form in the two Euclidean variables .t; x1/ and define

f .x0; ˇ; �/´

Z
R

Z
R

ei�.ˇ tCx1/.cq/.t; x1; x
0/dx1dt

D F.t;x1/!.�1;�2/.cq/j.�1;�2/D��.ˇ;1/;

where x0 2 M0, ˇ 2
�
1p
3
; 1
�
, and � 2 R. Since q 2 C. xQ/, the function f .�; ˇ; �/ is

continuous on M0. As  is an arbitrary non-tangential geodesic, it follows from (4.4)
that the following attenuated geodesic ray transform

I�
p
1�ˇ2�.f .�; ˇ; �//.x; �/ D

�exit.x;�/Z
0

e�
p
1�ˇ2��f .x;�.�/; ˇ; �/d� (4.5)

vanishes for any .x; �/ 2 @�SM0 n ��.



Inverse problem for hyperbolic equation on manifolds 145

By Assumption 1, there exists " > 0 such that one has f ..�/; ˇ; �/ D 0 whenp
1 � ˇ2j�j < ". Hence, there exist constants ˇ0 2 . 1p

3
; 1/, �0 > 0, and ı > 0 such

that for every .�; ˇ/ 2 R2 satisfying jˇ � ˇ0j, j� � �0j < ı, and � ¤ 0, we havep
1 � ˇ2j�j < ". Thus, we see that F.t;x1/!.�1;�2/.cq/D 0 in an open set of R2. Fur-

thermore, since q is compactly supported, we get from the Paley–Wiener theorem that
F .cq/ is real analytic. Therefore, we conclude that cq D 0 in Q. Finally, since c is a
positive function, we have qD q1 � q2D 0. This completes the proof of Theorem 1.3.
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