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Scattering theory for C 2 long-range potentials

Kenichi Ito and Erik Skibsted

Abstract. We develop a complete stationary scattering theory for Schrödinger operators on Rd ,
d � 2, with C 2 long-range potentials. This extends former results in the literature, in particular
Isozaki (1980) and (1982), Ikebe and Isozaki (1982), and Gâtal and Yafaev (1999), which all
require a higher degree of smoothness. In this sense, the spirit of our paper is similar to Hör-
mander [The Analysis of Linear Partial Differential Operators IV (1985), Chapter XXX] and
J. Dereziński and C. Gérard [Scattering Theory of Classical and Quantum N -Particle Systems
(1997), Section 4.7], which also develop a scattering theory under the C 2 condition, however
being very different from ours. While the Agmon–Hörmander theory is based on the Fourier
transform and a momentum-space representation, our theory is entirely position-space based
and may be seen as more related to our previous approach to scattering theory on manifolds, Ito
and Skibsted (2013), (2019), and (2021). TheC 2 regularity is natural in the Agmon–Hörmander
theory as well as in our theory, in fact probably being “optimal” in the Euclidean setting. We
prove equivalence of the stationary scattering theory and a developed position-space based time-
dependent scattering theory. Furthermore, we develop a related stationary scattering theory at
fixed energy in terms of asymptotics of generalized eigenfunctions of minimal growth. A basic
ingredient of our approach is a solution to the eikonal equation constructed from the geo-
metric variational scheme of Cruz-Sampedro and Skibsted (2013). Another key ingredient is
strong radiation condition bounds for the limiting resolvents originating in Herbst and Skibsted
(1991). They improve formerly known ones by Isozaki (1980) and Saitō (1979) and consid-
erably simplify the stationary approach. We obtain the bounds by a new commutator scheme
whose elementary form allows a small degree of smoothness.
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1. Introduction

1.1. Setting

In the present paper we construct a stationary long-range scattering theory for the
Schrödinger operator

H D �
1

2
�C V C q (1.1)

on H D L2.Rd / with d � 2. Here � is the ordinary Laplacian on Rd , and we shall
often write

�� D p � p D pipi ; pi D �i@i ; i D 1; : : : ; d;

with the Einstein convention being adopted without tensorial superscripts.
We shall address the problem of constructing such theory under a minimal regu-

larity condition on the long-range part V of the potential V C q. The second term q is
a standard short-range potential. This corresponds to taking l D 2 in the following C l

long-range-type condition. For technical reasons we consider below, and throughout
the paper, the following more general condition in which l � 2 is arbitrary (how-
ever typically given as l D 2). It is a trivial consequence of the condition that H is
self-adjoint.

Let N0 D N [ ¹0º, RC D .0;1/ and hxi D .1C jxj2/1=2 for x 2 Rd . For given
Banach spaces X and Y , we denote by L.X; Y / and C.X; Y / the set of bounded and
compact operators T WX ! Y , respectively, and for Y D X we abbreviate L.X/ D

L.X; Y / and C.X/ D C.X; Y /.

Condition 1.1. Let V 2 C l.Rd IR/ for some l 2 ¹2; 3; : : : º, and assume there exist
� 2 .0; 1/, � 2 .0; 1�, and C > 0 such that for any ˛ 2 Nd

0 with j˛j � l and x 2 Rd

j@˛V.x/j � C hxi�m.j˛j/I m.k/ D

´
� C k for k D 0; 1; 2;

� C 2C �C1
2
.k � 2/ for k D 2; : : : ; l:

(1.2a)
In addition, let qWRd !R be measurable, and assume there exists � 2 .0; 1/ such that

hxi1C�q.x/.��C 1/�1 2 C.H /: (1.2b)

Finally, assume the operator H D �.1=2/�C V C q does not have positive eigen-
values.

Remarks 1.2. (1) For l D 2, the above V C q is called a 2-admissible potential,
here adapting the terminology of [11, Definition 30.1.3]. Several of our main theor-
ems require only l D 2. However, for an intermediate key estimate of independent
interest we need l D 4 (or with a modification possibly only l D 3), see Theorem 1.24
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(and Remark 1.25 (2)). This estimate will be used for a certain regularized 4-admiss-
ible potential constructed from a given 2-admissible potential, see Remark 1.25 (5).
(For the regularized potential the parameter � is the same and � < � , arbitrarily.) In
this sense, indeed the key estimate serves as an intermediate result for our study of
2-admissible potentials.

(2) We will call V a classical C l long-range potential if there exists � 2 .0; 1/
and C > 0 such that for any ˛ 2 Nd

0 with j˛j � l and x 2 Rd

j@˛V.x/j � C hxi���j˛j:

In addition, V is a classical C1 long-range potential if it is a classical C l long-
range potential for any l � 2. Obviously, in these cases, the order of decay function
mWN0! RC is of the simplest form. Nevertheless, its general form is well suited for
an induction argument to be used in the proof of Theorem 1.3 (stated below).

(3) The local singularities allowed in (1.2b) is not an important issue/difficulty
in this paper. The last assumption on absence of positive eigenvalues is very weak
and can be omitted for example if (1.2b) is replaced by assuming boundedness of the
function hxi1C�q.x/.

Under Condition 1.1, for l D 2 we succeed in fully developing a stationary scat-
tering theory: we characterize the generalized eigenfunctions of minimal growth by
their asymptotics and construct the stationary scattering matrix as well as the general-
ized Fourier transforms, which unitarily diagonalize the (absolutely) continuous part
ofH . Such results were formerly obtained by Isozaki [14,15], Ikebe and Isozaki [12],
and Gâtel and Yafaev [8] for classical C 4 or C 3 long-range potentials. In this paper,
we extend them to the category of 2-admissible potentials. Note that a similar C 2

condition very naturally appears in the classical long-range scattering theory, see for
example [6, Theorem 2.7.1]. In fact, we believe that our condition should be con-
sidered as “optimal,” although this terminology will not be justified in the paper.
Finally, we shall prove that the adjoints of the generalized Fourier transforms coincide
with some constructed time-dependent wave operators, verifying that the stationary
and the time-dependent approaches are equivalent to each other.

The long-range scattering theory requires a non-trivial comparison dynamics due
to non-negligible effects from V at infinity. To virtually eliminate such effects, we
solve the stationary eikonal equation, or simply the eikonal equation,

1

2
jrxS.�; x/j

2
C V.x/ D �; � > 0; (1.3a)

in the stationary theory, and the time-dependent eikonal equation, which is more com-
monly called the Hamilton–Jacobi equation,

@tK.t; x/C
1

2
jrxK.t; x/j

2
C V.x/ D 0; t > 0; (1.3b)
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in the time-dependent theory. In this paper, we solve the former equation (1.3a) by the
geometric method of [4] and derive global estimates of the solution. For comparison,
we mention that Isozaki [14, 15] in his construction of a solution used a classical
PDE-method solving a Cauchy problem, and the cited papers [8,12] rely on Isozaki’s
solution. Once a proper solution to (1.3a) is obtained, one can solve (1.3b) by using
the Legendre transform, cf. [17].

Another important technical tool is a strong version of the radiation condition
bounds for the limiting resolvents, which in fact considerably simplifies the stationary
scattering theory. Such “strong radiation condition bounds” were first established by
Herbst and Skibsted [9] for classical C1 long-range potentials. For a more restrictive
class of classical C1 long-range potentials (defined by a virial condition), the bounds
were derived uniformly in non-negative energies [22], yielding a stationary scatter-
ing theory at fixed energy including the threshold zero. In this paper, we present
a procedure of proof that works within a low regularity framework (in particular
being independent of pseudodifferential operator theory). A similar procedure was
invented and applied earlier to the short-range Stark Hamiltonian [2]; however, our
setup is different and we need to proceed rather independently. Since the proof still
requires fourth (or possibly only third) derivatives of the potential, we shall regular-
ize it up to an error of short-range-type using a regularization scheme of Hörmander
[11, Lemma 30.1.1]. This leads to the study of radiation condition bounds of a new
classical C 2 long-range potential which conforms with (1.2a) for an l � 3 but pos-
sibly fails to be a classical C 3 long-range potential. The short-range error from the
Hörmander decomposition (see Lemma 4.1 for the version to be used in our paper)
along with the potential q will be treated by the second resolvent identity. Note that
the Hörmander decomposition was also employed in [12], however Ikebe and Isozaki
considered only classical C 4 long-range potentials.

These two ingredients occupy a considerable part of the paper, and in addition to
the entailing stationary and time-dependent scattering theories we consider them as
main results of independent interest.

With these preliminaries done, we derive a complete stationary scattering theory.
The strong radiation condition bounds yield a very fast construction of generalized
Fourier transforms using the “spherical eikonal coordinates.” These coordinates were
first used in the context of stationary scattering theory in [3] for a different setting
and with different proofs. Then we “pull the results back” to assertions in the ordin-
ary spherical coordinates. After a complete stationary theory is obtained, a position-
space based time-dependent theory follows naturally, although still being non-trivial.
Finally, we mention that our low regularity theory has an application to the 3-body
problem. We shall briefly discuss this aspect in Section 1.2.5. Finally, we discuss
potential applications to scattering theory on manifolds in Section 1.2.6.

The paper is an improvement and an extension of the unpublished preprint [19].
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1.2. Main results

Now, we present a series of main results of the paper.

1.2.1. Stationary eikonal equation. Let us first solve the stationary eikonal equa-
tion (1.3a) outside a large ball. Take any � 2 C1.RIR/ such that

�.t/ D

´
0 for t � 4

3
;

1 for t � 5
3
;

�0 � 0; (1.4)

and set for any R > 0 and x 2 Rd

�R.x/ D �.jxj=R/: (1.5)

Theorem 1.3. Suppose Condition 1.1 for some l � 2. Fix any closed interval I �RC.
Then, it follows that, for all R � R0 for some R0 > 0, there exist a real S 2 C l.I �
.Rd n ¹0º// and s 2 C l.I �Rd / such that the following holds.

(1) The function S solves

1

2
jrxS j

2
C �RV D � on I � .Rd n ¹0º/: (1.6)

(2) For any � 2 I , S.�; �/ coincides with the geodesic distance from the origin
with respect to the Riemannian metric g D 2.� � �RV / dx2.

(3) The functions S and s are related as

S D
p
2�jxj.1C s/ on I � .Rd n ¹0º/;

and s vanishes on I � ¹jxj � Rº.

(4) There exists C D C.I;R0/ > 0 (being independent of R � R0) such that, for
any k C j˛j � l and .�; x/ 2 I �Rd ,

j@k�@
˛
xs.�; x/j � C�

�1�k
hxi�m.kCj˛j/Ck : (1.7)

Remarks 1.4. (1) For a variation of (1.7), see also Corollary 2.14.
(2) We can extend S and s to be smoothly defined for all � > 0, however, allowing

RDR.�/ to be �-dependent possibly withR.�/!1 as �! 0C. On the other hand,
a bound corresponding to (1.7) can be kept uniform in � > 0. This can be seen from
the proof, but we shall not elaborate on it.

(3) Our bound (1.7) is stronger than [14, Theorem 4.1], where Isozaki obtained
(1.7), except for .k; ˛/ D .3; 0/, for a classical C 3 long-range potential. Gâtal and
Yafaev asserted (1.7) for a classical C 3 long-range potential in [8, Lemma 3.1]; how-
ever, it was not proved there, and in fact it was indicated in a paragraph subsequent to
it that the assertion requires a classical C 4 long-range potential.
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1.2.2. Stationary scattering theory at fixed energy. Next, we construct a station-
ary scattering theory at fixed energy through the WKB approximation of the limiting
resolvent.

Let us briefly review the limiting absorption principle for the resolvent

R.z/ D .H � z/�1; z 2 C n �.H/:

It is a basic and well-studied topic, for details see, e.g., [1] and the references there.
Recall the Besov spaces, or the Agmon–Hörmander spaces, defined as

B D ¹ 2 L2loc j k kB <1º; k kB D

1X
mD0

2m=2k1m kH ;

B� D ¹ 2 L2loc j k kB� <1º; k kB� D sup
m�0

2�m=2k1m kH ;

B�0 D ¹ 2 B� j lim
m!1

2�m=2k1m kH D 0º:

Here, we let

10 D 1.¹jxj < 1º/ and 1m D 1.¹2
m�1
� jxj < 2mº/ for m 2 N; (1.8)

with 1.A/ being the sharp characteristic function of a subset A�Rd . It is worthwhile
recalling that if we define the standard weighted L2 spaces as

L2s D hxi
�sH for s 2 R;

then, for any s > 1=2,

L2s � B � L21=2 � H � L2
�1=2 � B�0 � B� � L2�s:

It is proved in [1] that locally uniformly in � > 0 there exist the limiting resolvents

R.�˙ i0/ D s–w?–lim
z!�˙i0C

R.z/ in L.B;B�/I

here the right-hand side operators act on any  2 B as the (positive) "-limits of
R.�˙ i"/ in the weak-star topology of B�, or, equivalently stated, for any ;� 2B,

h�;R.�˙ i0/ i D lim
"&0
h�;R.�˙ i"/ i;

(see Theorem 3.17 for more general assertions). In particular, the singular continuous
spectrum of H is empty, �sc.H/ D ;.

For these limiting resolvents, we discuss the WKB approximations as follows,
using here and throughout the paper the notation G D L2.Sd�1/.
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Theorem 1.5. Suppose Condition 1.1 for l D 2. Let I � RC be a closed interval,
and let R > 0. Assume there exists real S D

p
2�jxj.1C s/ 2 C.I IC 2.¹jxj > Rº//

satisfying the following.

(i) For each � 2 I , S.�; �/ solves (1.3a) on ¹jxj > Rº.

(ii) For any compact subset I 0 � I , there exist ";C > 0 such that, for any j˛j �
2, � 2 I 0 and jxj > R,

j@˛xs.�; x/j � C hxi
�"�j˛j:

In addition, for any � 2 G and .�; x/ 2 I �Rd , set

�S˙Œ��.�; x/ D
.2�/1=2

.2�/1=4
�R.x/jxj

�.d�1/=2e˙iS.�;x/�. Ox/; Ox D jxj�1x; (1.9)

where �R 2 C1.Rd / is from (1.5). Then, the following assertions hold.

(1) For any � 2 I , there exist unique F˙.�/ 2L.B;G / such that, for any 2B,

R.�˙ i0/ � �S˙ŒF
˙.�/ �.�; �/ 2 B�0 : (1.10)

(2) The mappings F˙W I �B ! G are continuous.

(3) For any � 2 I , one has the identities

.H � �/F˙.�/� D 0 and F˙.�/�F˙.�/ D ı.H � �/;

where ı.H � �/ D ��1 ImR.�C i0/ 2 L.B;B�/.

(4) For any � 2 I , the ranges F˙.�/B � G are dense.

Remarks 1.6. (1) For R large enough, the existence of such S is guaranteed by
Theorem 1.3, but here it can be slightly more general (thanks to Theorem 1.3, condi-
tion (ii) is fulfilled with "D � for I 0D I ). Note also that, according to Remark 1.4 (2),
we may let I D RC if we allow a �-dependent R.

(2) Clearly, for any � 2 G and � 2 I , one has �S
˙
Œ��.�; �/ 2 B�. We may think

of these quasi-modes as purely outgoing/incoming distorted spherical waves, respect-
ively.

(3) In Theorem 1.10 below, we will see the “completeness property” F˙.�/B D
G for any � 2 I .

Now, we have stationary versions of scattering quantities.

Definitions 1.7. In the setting of Theorem 1.5, let � 2 I .

(1) The operators F˙.�/WB ! G are the restricted stationary wave operators at
energy �.
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(2) The adjoints F˙.�/�WG ! B� are the stationary wave matrices.

(3) The stationary scattering matrix at energy � 2 I is the unitary operator S.�/
on G obeying

FC.�/ D S.�/F �.�/: (1.11)

Indeed, the scattering matrix is well defined, stated as follows.

Corollary 1.8. In the setting of Theorem 1.5, at any energy � 2 I the stationary
scattering matrix S.�/ uniquely exist. Moreover, the mapping I 3 � 7! S.�/ 2 L.G /

is strongly continuous.

Remarks 1.9. (1) The stationary scattering matrix S.�/ is defined pointwise for all
� 2 I , not only for a.e. � 2 I , unlike in the abstract construction commonly adopted
in the time-dependent approach.

(2) Alhough the usual well-known short-range scattering theory (defined for
V C qD q) is a different subject, let us remark that in this case it is more conventional
to define the quasi-modes (1.9) in a slightly different way; more precisely, with (1.9)
modified by the factor e�i�.d�3/=4. In particular, if also the short-range potential q
vanishes, it then follows that in fact S.�/ � I .

(3) The dependence of the restricted stationary wave operators on the given func-
tion S.�; x/ is almost canonically given by (1.9) and (1.10). It is given by an explicit
multiplication operator of modulus one, see Remark 4.13 and its appearance in The-
orem 1.12 (3).

The stationary scattering theory is intimately related to the asymptotics of the
minimal generalized eigenfunctions � 2 E�, where

E� D ¹� 2 B� j .H � �/� D 0 in the distributional senseº; � > 0;

is a non-trivial subspace of B� by Theorem 1.5, and it is minimal in the sense that
E� \B�0 D ¹0º (see Remark 4.17 (2)).

Theorem 1.10. In the setting of Theorem 1.5, let � 2 I .

(1) For any � 2 E� or �˙ 2 G , the two other quantities in ¹�; �C; ��º uniquely
exist such that

� � �SCŒ�C�.�; �/C �
S
� Œ���.�; �/ 2 B�0 : (1.12a)

(2) The above correspondences �˙ ! � and �� ! �˙ are given by the formulas

� D 2� iF˙.�/��˙ and �C D S.�/��: (1.12b)
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(3) The wave matrices F˙.�/� are topological linear isomorphisms as G !

E� � B�. In addition, for any � 2 E� and �˙ 2 G satisfying (1.12a), one
has

k�˙kG D
.2�/1=4

.2�/1=2
lim
m!1

2�m=2k1m�kH ; (1.12c)

where 1m is from (1.8).

(4) The operators F˙.�/WB ! G and ı.H � �/WB ! E� are surjective.

Remarks 1.11. (1) We can also express �˙ 2 G as simple oscillatory weak limits of
� 2 E� at infinity, see Step III of the proof.

(2) The above result extends in the Euclidean setting [8,18] to 2-admissible poten-
tials. See also [12].

1.2.3. Generalized Fourier transforms. The stationary scattering theory at fixed
energy applies to the construction of the generalized (or distorted) Fourier trans-
forms, also referred to as the stationary wave operators, which unitarily transform the
continuous part of the Schrödinger operator H into a simple multiplication operator.

As in Theorem 1.5, the subset I �RC denotes a closed interval, and we letPH .I /
denote the corresponding spectral projection for H . We introduce the notation

HI D HjHI ; HI D PH .I /H ; zHI D L
2.I; d�IG /:

Thanks to Theorem 1.5, we can also introduce the operators

F ˙0 D

Z̊
I

F˙.�/ d�WB ! C.I IG / \ zHI :

These operators can be extended as to be acting from PH .I /B, and then in turn to
operators acting from HI . These assertions are part of the following main theorem
(see also Step II in the proof).

Theorem 1.12. In the setting of Theorem 1.5, the following assertions hold.

(1) The operators F ˙0 induce unitary operators F ˙WHI !
zHI , respectively.

(2) The induced unitary operators F ˙ satisfy

F ˙HI .F
˙/� DM�;

respectively, where M� denotes the operator of multiplication by � on zHI .

(3) Suppose also S1 satisfies the assumptions of Theorem 1.5, and let F ˙1 be the
associated unitary operators as above. Then, there exists the limit

‚.�; !/´ lim
r!1

.S1.�; r!/ � S.�; r!//
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taken locally uniformly in .�; !/ 2 I � Sd�1, and it follows that

F ˙1 D e�i‚F ˙:

Remarks 1.13. (1) Under the conditions of Theorem 1.3, one can easily extend the
assertion to I DRC, so that the whole absolutely continuous partHacDHjHac ; HacD

PH .RC/H , is diagonalized. One has only to cover RC with disjoint intervals and take
a direct sum of the associated generalized Fourier transforms, or to adopt a function S
defined for all � > 0 in Theorem 1.5, see Remarks 1.4 (2) and 1.6 (1). This is straight-
forward.

(2) In [8, 12] the diagonalization was carried out successfully for classical C 4

or C 3 long-range potentials. Our result extends these previous results to the C 2

case. For related work, we refer the reader to [18, 21], still the present C 2 case is
not covered in these works. On the other hand, [10], the Agmon–Hörmander the-
ory [11, Chapter XXX], and [6, Section 4.7] cover 2-admissible potentials treated
by a momentum-space representation (see [6, Proposition 4.7.4] for an interesting
comparison within this theory). These works are fundamentally different from ours
(since they are momentum-space based). Moreover, the stationary scattering theory
of [11, Chapter XXX] is only developed up to the point of showing asymptotic com-
pleteness, while [6, Section 4.7] is entirely time-dependent.

1.2.4. Time-dependent scattering theory. We present our results on time-dependent
theory, which relate to the time-dependent eikonal equation (1.3b). For that purpose,
we introduce the space-time regions

�� D ¹.t; x/ 2 RC �Rd j jxj � �tº; � > 0;

��;T D ¹.t; x/ 2 �� j t > T > 0º; T > 0:

Theorem 1.14. Suppose Condition 1.1 for some l � 2. Fix any � > �0 > 0 and let S
be given as in Theorem 1.3 with I D I�0 D Œ�02=2;1/ (assuming here and for other
purposes that R > 0 is sufficiently large). Then, for each .t; x/ 2 ��, there exists a
unique critical point �c D �c.t; x/ 2 I of

zK.�; t; x/ D S.�; x/ � �t (1.14)

considered as a function of � 2 I . In addition, if one sets K D zK.�c; �; �/, then the
following hold.

(1) K 2 C l.��/, and it solves

@tK C
1

2
jrxKj

2
C �RV D 0 on ��: (1.15)
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(2) There exists C > 0 (being independent of all large R) such that, for any k C
j˛j � 2 and .t; x/ 2 ��,ˇ̌̌

@kt @
˛
x

�
K.t; x/ �

x2

2t

�ˇ̌̌
� Ct1�khxi���j˛j: (1.16)

Remark 1.15. For l � 3, it is possible to extend (1.16) to higher order derivatives
(given by 3 � k C j˛j � l) with appropriate exponents on the right-hand side. Since
such estimates are not needed in the present paper, they will not be presented.

Definition 1.16. In the setting of Theorem 1.14, in particular under the fixed con-
dition � > �0 > 0, the function K 2 C l.��/ is called the Legendre transform of
S 2 C l.I�0 � .Rd n ¹0º//.

Theorem 1.17. Suppose Condition 1.1 with l D 2. Let �; T > 0, and assume K 2
C 2.��;T IR/ satisfies the following.

(i) K solves the Hamilton–Jacobi equation (1.3b) on ��;T .

(ii) There exist "; C > 0 such tha,t for any j˛j � 2 and .t; x/ 2 ��;T ,ˇ̌̌
@˛x

�
K.t; x/ �

x2

2t

�ˇ̌̌
� Cthxi�"�j˛j:

In addition, let J D J� D Œ�2=2;1/ and define isometries U˙.t/W zHJ ! H as
follows: for any .t; h/ 2 .T;1/ � zHJ ,

.U˙.t/h/.x/ D e�3� i=4t�1jxj1�d=2e˙iK.t;x/h.x2=.2t2/; Ox/; Ox D jxj�1x:

Then, the following two assertions hold.

(1) There exist the strong limits

W ˙´ s–lim
t!1

e˙itHU˙.t/W zHJ ! H : (1.17)

They are isometries, mapping zHJ 0 �
zHJ into HJ 0 �H for any closed subin-

terval J 0 � J .

(2) LetK1 also satisfy the same assumptions asK, and letW ˙1 be the associated
isometries as above. Then, there exists the limit

ˆ.�; !/´ lim
t!1

.K1.t; .2�/
1=2t!/ �K.t; .2�/1=2t!// (1.18a)

taken locally uniformly in .�; !/ 2 J � Sd�1, and it follows that

W ˙1 D W
˙e˙iˆ: (1.18b)
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Remarks 1.18. (1) Thanks to Theorem 1.14, such K always exists for large T .
(2) Our choice of free comparison dynamics U˙.t/ is motivated in Remark 5.4.
(3) Under the conditions of Theorem 1.14, we can extendU˙.t/ andW ˙ to act on

zH RC by covering RC with disjoint intervals (as in Remark 1.13 (1)) and then taking
direct sums of the corresponding restricted evolutions and restricted wave operators,
respectively. Note that the summands agree with (1.17), although J and K change
from interval to interval, and sum up due to the orthogonality induced by the disjoint-
ness of the intervals.

Definition 1.19. The limits W ˙ from (1.17) are called the time-dependent wave
operators. They are asymptotically complete on J 0 (for a closed subinterval J 0 � J )
if they are unitary operators mapping zHJ 0 onto HJ 0 .

The following result shows that stationary and time-dependent wave operators are
essentially mutually inverses. First, we state a general result for classes of solutions
to the stationary and the time-dependent eikonal equations, then we specialize to the
concrete ones constructed geometrically and by the Legendre transform, in which case
they are indeed mutually inverses.

Theorem 1.20. Suppose Condition 1.1 with l D 2.

(1) Let F ˙, along with a closed interval I � RC, R > 0, and a stationary
solution S of the eikonal equation, be given as in Theorem 1.12. Let W ˙,
along with �; T > 0, J D Œ�2=2;1/, and a time-dependent solution K of
the eikonal equation, be given as in Theorem 1.17. Then, there exists ‰ 2
C..I \ J / � Sd�1IR/ such that

.W ˙/� D e�i‰F ˙WHI\J !
zHI\J : (1.19)

In particular, W ˙ are asymptotically complete on I \ J .

(2) Under the conditions of Theorems 1.3 and 1.14, let K 2 C 2.��/ denote
the Legendre transform of S 2 C 2.I�0 � .Rd n ¹0º//; I�0 D Œ�02=2;1/,
� > �0 > 0. Then, (1.19) holds with I D I�0 D Œ�02=2;1/, J D Œ�2=2;1/,
and with ‰ taken identically zero, i.e.,

.W ˙/� D F ˙WHJ !
zHJ :

In particular, W ˙ are asymptotically complete on J .

Remark 1.21. The above completeness results resemble asymptotic completeness
for 2-admissible potentials as stated in [11, Theorem 30.5.10], however there given
with a different free dynamics. Our approach is more related to our previous study
in a geometric setting [17, 18], though more regularity of V is imposed there. In the
geometric short-range setting [16], we employed only time-dependent methods, but
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the third order derivative was required for the analogous K, see [16, Condition 1.3
and (1.8b)].

1.2.5. Application to the 3-body problem. Our results apply to a recent develop-
ment in the stationary scattering theory for 3-body long-range Hamiltonians [23]. Let
us see how the application comes about in a slightly simplified form. Below, we only
present a brief outline, and refer the reader to [23] for precise definitions, terminolo-
gies, and procedure. See also Remark 4.13.

Let X be a finite-dimensional real inner product space, and ¹Xaºa2A a family of
subspaces of X closed under addition. Consider the 3-body problem, i.e., assume that
#amin D 3. Let V a 2 C1.Xa/, a 2 A n ¹amin; amaxº, be pair potentials, and assume
there exists � 2 .

p
3 � 1; 1/ such that, for any ˛ 2 Ndim Xa

0 ,

@˛V a.xa/ D O.hxai���j˛j/:

Note that
p
3 � 1 � 0; 732. We then define cut-off pair potentials W a 2 C1.X/ as

W a.x/ D �.jxaj=jxj�/V a.xa/;

where � 2 C1.R/ is chosen in agreement with (1.4).

Lemma 1.22. The cut-off pair potentials W a, a 2 A n ¹amin; amaxº, satisfy Condi-
tion 1.1 with l D 2.

Proof. For any ˛ 2 Ndim X
0 , we have @˛W a.x/ D O.hxi��.j˛jC�//. The condition

�.2C �/ > 2 (required for j˛j D 2) is fulfilled exactly for � >
p
3 � 1.

Remark 1.23. As a consequence of Lemma 1.22, our results apply to the 3-body
Hamiltonian using cut-off pair potentials of long-range-type. In particular, one can
derive, in a stationary manner, the asymptotic completeness for the 3-body long-range
Hamiltonian along with formulas for scattering quantities, cf. [23] and Remark 4.13.
Note that the previous methods in the literature do not apply at this point, since the
third derivatives of W a may not be of the form O.hxi���3/ for some � 2 .0; 1�.

1.2.6. A further perspective: Generalization to manifolds. Our arguments are not
really dependent on a specific structure of the Euclidean space, but rather on solutions
to the eikonal equations (1.3a) and (1.3b), and the estimates of their derivatives. In
fact, we do not even use the (ordinary) Fourier transform, and neither pseudodifferen-
tial operators nor advanced functional calculus. In our previous related works [17,18],
we studied in the same spirit long-range scattering theory on a manifold with ends,
employing approximate solutions to the eikonal equations. We did not develop a
C 2 regularity theory using exact solutions as done in the present paper in the Euc-
lidean setting. Moreover, we used weaker radiation condition bounds entailing a more
complicated construction of the stationary scattering theory than presented here. For
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completeness of presentation, let us note that our older work [16] may be seen as a C 3

scattering theory on a manifold in that it involves an exact C 3 solution to the (“free”)
time-dependent eikonal equation, however this theory is entirely time-dependent and
allows only short-range potentials.

If one could construct a “good solution” on a more general manifold, say for a suit-
able C 2 perturbation (by the variational method of this paper or by any other means),
then the elementary techniques of the present paper would conceivably work there.
Hence, the methods of this paper potentially could also contribute to stationary scat-
tering theory on manifolds, in particular to developing a more refined low regularity
theory.

1.3. Key bounds

In our stationary scattering theory, it is a major challenge to verify the WKB approx-
imation (1.10). The following strong radiation condition bounds constitute a powerful
tool for that verification, and are themselves (along with Theorem 1.3) the most
important technical novelty of the paper.

Let S 2 C l.I � .Rd n ¹0º// be given in agreement with Theorem 1.3, and define
the gamma observables (or alternatively referred to as radiation observables)


 D .
1; : : : ; 
d / D p � .rx�1S/;


k D Re..rx�1S/ � 
/ D .rx�1S/ � 
 �
i
2
.�x�1S/;

(1.20)

where we have included �1 from (1.5) just to cut-off the singularity at the origin. We
also set

ˇc D min¹2; 1C � C �º:

Theorem 1.24. Suppose Condition 1.1 with l D 4 and q � 0. Let I �RC be a closed
interval and let S 2 C 4.I � .Rd n ¹0º/ be the function from Theorem 1.3 given for
each R � R0 (for some R0 > 0), and define correspondingly 
j and 
k as above.
Then, the following bounds hold for any compact subset I 0 � I � RC.

(1) For any ˇ 2 .0; ˇc/ and R � R0, there exists C > 0, such that, for all � 2 I 0

and  2 L2
ˇC1=2

,

k
kR.�˙ i0/ kL2
ˇ�1=2

� Ck kL2
ˇC1=2

; (1.21a)

k
i
jR.�˙ i0/ kL2
ˇ�1=2

� Ck kL2
ˇC1=2

I i; j D 1; : : : ; d: (1.21b)

(2) For any ˇ0 2 .0; ˇc=2/, t > 1=2, and R � R0, there exists C 0 > 0, such that,
for all � 2 I 0 and  2 L2

ˇ 0Ct
,

k
iR.�˙ i0/ kL2
ˇ0�t

� C 0k kL2
ˇ0Ct

I i D 1; : : : ; d: (1.21c)
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Remarks 1.25. (1) These are “strong” in the sense that ˇc > 1, while Isozaki [14]
obtained similar bounds for classical C 3 long-range potentials with ˇc < 1. Such
strong versions first appeared in [9] for classical C1 potentials.

(2) Our proof is elementary, relying only on the Cauchy–Schwarz inequality and
the product rule for differentiation, and it admits considerably weaker assumptions
than in [9, 14]. In fact, it applies even to C 3 potentials by redefining appropriately 
k
and ˇc > 1, see Remark 3.16.

(3) See Section 3.2 for a motivation from classical mechanics. The third or higher
order derivatives of V appear as purely “quantum effects,” and there is no classical
interpretation of their appearances. Note also that in our setting these derivatives might
not have classical decay.

(4) We may let I D RC by letting C;C 0 > 0 from (1.21a)–(1.21c) be dependent
on � 2 I , cf. Remark 1.4 (2).

(5) The potential here is more smooth than in the Section 1.2. We will apply
Theorem 1.24 to a regularized potential appearing as a technical tool, see Lemma 4.1.

The rest of the paper is organized as follows. In Section 2, we prove Theorem 1.3
following the scheme of [4]. Section 3 is devoted to the proof of Theorem 1.24, for
which a commutator-type argument plays a central role. After these preliminaries, we
prove Theorems 1.5, 1.10, and 1.12 and Corollary 1.8 in Section 4, where we see that
the strong radiation condition bounds provide simple and intuitive proofs. Finally, in
Section 5, we prove Theorems 1.14, 1.17 and 1.20.

2. Eikonal equation

In this section we prove Theorem 1.3. We will follow the framework of Cruz-Sampe-
dro and Skibsted [4], and solve (1.6) in a somewhat abstract manner. The equation we
investigate here is of the form

.rˆ/ �G�1.rˆ/ D 1; (2.1)

with G being a given (d � d )-matrix-valued function on Rd , which is assumed to
be sufficiently close to the identity matrix Id . Note that the potential eikonal equa-
tion (1.6) is always translated into the geometric eikonal equation (2.1) through the
change of variables

ˆ D .2�/�1=2S; G D .1 � ��1�RV /Id : (2.2)

Thus, the arguments of this section on (2.1) will readily apply to an S solving (1.6).
The paper [4] adopts a variational method, and we recall the precise setting in Sec-

tion 2.1, quoting some results from there. The existence and smoothness of a solution
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to (2.1) obtained in [4] yield the corresponding assertions (1)–(3) of Theorem 1.3.
Then, in Section 2.2 we discuss the remaining problems, i.e., the smoothness and the
uniform bounds (1.7), under our more restrictive assumption of our paper. This com-
pletes the proof of Theorem 1.3. At the end of the section, we present Corollary 2.14,
a modification of (1.7), which will be used in Sections 4 and 5.

2.1. Terminologies and results from [4]

2.1.1. Class of Riemannian metrics. In this section, we discuss the following class
Ml
d

of functions with values in square matrices of order d , or of Riemannian metrics
on Rd . Denote the set of all the real symmetric matrices of order d by �d .R/.

Definition 2.1. For any l 2 N0, we set

zMl
d D ¹G D .gij /i;j WR

d
! �d .R/ j G is of class C l ; kGkl <1º

along with

kGkl D sup¹hxij˛jj@˛gij .x/j j x 2 Rd ; j˛j D 0; : : : ; l; i; j D 1; : : : ; dº:

In addition, we set

Ml
d D ¹G 2

zMl
d j there exist a; b > 0 such that aId � G.x/ � bId for all x 2 Rd º:

(2.3)

Remark 2.2. Obviously, Ml
d
� zMl

d is open with respect to k � kl . Let I be any closed
interval in RC (as in Theorem 1.3). If we then letR> 0 be large enough,G from (2.2)
can be arbitrarily close to Id in the class M2

d
uniformly in � 2 I . This is due to the

extra order of decay � 2 .0; 1/ in (1.2a). This uniformity will be vital for our proof of
Theorem 1.3.

2.1.2. Energy functional and geodesics. Next, we define a geodesic for G 2M1
d

in
a variational manner. For any p 2 .1;1/, we introduce the Banach space

Xp D .W
1;p
0 ..0; 1/IR//d ; k�kp D

� dX
iD1

1Z
0

j P�i .t/j
p dt

�1=p
for � 2 Xp; (2.4)

where W 1;p
0 ..0; 1// is the standard Sobolev space with the Dirichlet boundary condi-

tion, i.e., the completion of C1c ..0; 1// with respect to the norm kukW 1;p ´ kPukLp .
Note that kukW 1;p is equivalent to kukLp C k PukLp due to the Poincaré inequality.
For the moment, we shall particularly use the space X ´ X2, which is a Hilbert
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space equipped with the inner product

h�; �iX D h�; �i D hId I�; �i D

1Z
0

P�.t/ � P�.t/ dt I �; � 2 X:

Here, the d � d identity matrix Id is used symbolically to indicate that this inner
product on X generates the norm k � k2 defined in (2.4). We shall below consider
other quadratic forms on X than the inner product.

For any � 2 X and x 2 Rd , define a path �x 2 .H 1.0; 1//d from 0 to x as

�x.t/ D tx C �.t/ for t 2 Œ0; 1�:

Now, given G 2M1
d

, we consider the energy functional

EWRd �X ! R; E.x; �/ D

1Z
0

P�x.t/ �G.�x.t// P�x.t/ dt: (2.5)

Definition 2.3. Let x 2 Rd , and denote the space of the paths �x by

Xx D ¹�x 2 .H
1.0; 1//d j � 2 Xº:

We call 
x 2 Xx a geodesic for G 2 M1
d

from 0 to x in unit time if the associated

 2 X satisfies

.@�E/.x; 
/ D 0 2 X
0; (2.6)

where X 0 is the dual space of X .

Remarks 2.4. (1) The duality pairing of @�E.x; �/ 2 X 0 and � 2 X is directly com-
puted as

h@�E.x; �/; �i D

1Z
0

¹2 P� �G.�x/ P�x C P�x � .�i@iG/.�x/ P�xº dt: (2.7)

(2) Classically, a geodesic for G D .gij /i;j is defined as a smooth curve y D y.t/
in Rd solving

Ryi C
1

2
gij .@kgjl C @lgjk � @jgkl/ Pyk Pyl D 0 for i D 1; : : : ; d; (2.8)

where G�1 D .gij /i;j , or equivalently

G Ry D �.. Py � r/G/ Py C
1

2
Py � .r�G/ Py: (2.9)
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Clearly, (2.6) is a weak form of (2.9) according to the expression (2.7). A geodesic
in the sense of Definition 2.3 is equivalent to an H 1 curve solving the H�1 equa-
tion (2.9). Note that, due to the Sobolev embedding theorem for y 2 .H 1.0; 1//d , the
right-hand side of (2.9) belongs to .L1.0; 1//d � .H�1.0; 1//d .

(3) We shall use the notation 
; 
x exclusively when discussing geodesics, and
�; �x or �;�x for general paths. There would be no confusion since, as long as G is
close to Id , a geodesic is unique, see Theorem 2.6.

For any G 2 M2
d

and x 2 Rd , there always exists at least one geodesic from 0

to x, given as follows.

Lemma 2.5. LetG 2M2
d

with a; b > 0 as in (2.3), and let x 2 Rd . Then, there exists
a minimizer 
 2 X of E.x; �/, i.e.,

E.x; 
/ D inf¹E.x; �/ j � 2 Xº;

and hence the associated 
x is a geodesic for G. Moreover, for any t 2 Œ0; 1�,

E.x; 
/ D P
x.t/ �G.
x.t// P
x.t/ (2.10a)

and
a

b
jxj2 � j P
x.t/j

2
�
b

a
jxj2;

a

b
jtxj2 � j
x.t/j

2
�
b

a
jtxj2: (2.10b)

Proof. It is a part of [4, Lemma 1]. We omit the proof.

In general, a geodesic is not necessarily associated with the minimizer of E.x; �/.
However, it is the case when G is sufficiently close to Id .

Theorem 2.6. There exists a neighborhood U �M2
d

of Id such that the following
holds.

(1) For any G 2 U and x 2 Rd , there exists a unique geodesic 
x 2 Xx .

(2) There exists c > 0 such that, for any G 2 U , x 2 Rd and � 2 X ,

h.@2�E/.x; 
/I �; �i � ck�k
2
2:

Moreover, for any G 2 U \Ml
d

with l � 2, the map Rd 3 x 7! 
 2 X from (1) is of
class C l�1.

Remark 2.7. The second derivative of E.x; �/ reads for any �; �; � 2 X as

h@2�E.x; �/I�; �i D

1Z
0

.2 P� �G.�x/ P� C 2 P� � .�i@iG/.�x/ P�x

C 2 P� � .�i@iG/.�x/ P�x C P�x � .�i�j @i@jG/.�x/ P�x/ dt:
(2.11)
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Proof. Assertions (1) and (2) follows from [4, Theorem 1 (a)], if we allow c > 0 to
be dependent on G 2 U . However, if we let U be small enough, we can choose c
uniformly in G 2 U due to [4, Lemma 6]. The last assertion follows from [4, Propos-
ition 2 1)]. Hence, we are done.

2.1.3. Solution to the eikonal equation. We are ready to construct and study a spe-
cific solution to the eikonal equation (2.1).

Theorem 2.8. Let U �M2
d

be given as in Theorem 2.6, l � 2, and define, for each
G 2 U \Ml

d
,

ˆWRd ! Œ0;1/; ˆ.x/ D E.x; 
/1=2 D .inf¹E.x; �/ j � 2 Xº/1=2 (2.12)

Then, for any x 2 Rd , the identity

r.ˆ.x/2/ D 2G.x/ P
x.1/ (2.13)

holds. Moreover, ˆ is a C l solution to (2.1) on Rd n ¹0º.

Proof. The assertion is due to [4, (36)] and [4, Proposition 2.2)], and we omit the
proof.

Using the above results, we can prove a part of Theorem 1.3. The proofs of the
.�; x/-smoothness and (4) will given in Section 2.2.

Proof of a part of Theorem 1.3. Suppose Condition 1.1 for some l � 2 and let I be
any given closed interval in RC (as in the theorem).

(1) Here we let
G.�; x/ D .1 � ��1�R.x/V .x//Id

as in (2.2). Let U �M2
d

be given as in Theorem 2.6, and take large R > 0, so that
G.�; �/2U \Ml

d
for all �2 I . Then, for suchG.�; �/, we can find a solutionˆ.�; �/2

C l.Rd n ¹0º/ to (2.1) by Theorem 2.8. Thus, if we set

S.�; �/ D .2�/1=2ˆ.�; �/ 2 C l.Rd n ¹0º/ (2.14)

as in (2.2), it obviously solves (1.6). We actually have joint smoothness S 2 C l.I �
.Rd n ¹0º//, but we will verify it later.

(2) By the definition (2.12) and (2.10a), it follows that

ˆ.�; x/ D

1Z
0

E.x; 
/1=2 dt D

1Z
0

p
P
x.t/ �G.
x.t// P
x.t/ dt:
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Hence, ˆ.�; x/ is the distance with respect to the Riemannian metric .2�/�1g from
the origin to x along 
x . Using again (2.10a) and the fact thatˆ solves (2.1), it follows
that indeed ˆ.�; x/ is the geodesic distance from the origin to x. Obviously, then
S.�; �/ is the geodesic distance from the origin with respect to g.

(3) Set, for any x 2 Rd n ¹0º,

s.�; x/ D jxj�1ˆ.�; x/ � 1 D .2�/�1=2jxj�1S.�; x/ � 1:

Then s.�; �/ 2 C l.Rd n ¹0º/, and it satisfies the asserted identity. Furthermore, it
extends smoothly to the origin by letting s.�; 0/ D 0. In fact, we have G.�; x/ D I
for jxj �R, and this impliesˆ.�;x/D jxj or s.�;x/D 0 there. The joint smoothness
of s follows from that of S (in turn to be given in Section 2.2).

2.2. Improved bounds

In this section, we prove the remaining assertions of Theorem 1.3. As for (1.7), note
that the similar bounds from [4, Theorem 1 (b)] do not suffice, so we have to argue
properly with the more restrictive assumptions of the present paper. The following
proposition is a key for our proof. See (2.4) for the definitions of Xp and k � kp . The
appearing curve 
 2 X comes from using Theorem 2.8 with the considered G.

Proposition 2.9. Suppose Condition 1.1 for some l � 2 and let I be any given closed
interval in RC (as in Theorem 1.3). Consider the matrix G D .1 � ��1�RV /Id with
� 2 I and R > 0.

For any ı 2 .0; 1/, there exists C > 0 such that, uniformly in all sufficiently large
R > 0, k C j˛j D 1; : : : ; l � 1, p 2 Œ1C ı; 1C ı�1�, � 0 2 .0; �� with � 0p � 1 � ı
and .�; x/ 2 I �Rd , the corresponding 
 2 X obeys

k@k�@
˛
x
kp � C�

�1�k
jxj2�m

0.kCj˛jC1/Ck; (2.15)

where m0.k/ D m.k/ � � C � 0.

Remarks 2.10. (1) Note that 
 D 0 for jxj � R. Thus, jxj on the right-hand side
of (2.15) can be replaced by hxi.

(2) Obviously, the strongest x-decay is achived choosing � 0 D � in (2.15). This
will be used in the proof of (1.7) simply by using the estimate for any p 2 .1;1/ with
�p < 1. The (local) uniformity in p and � 0 in the assertion is technically necessary
for the proof of Proposition 2.9 itself, which relies on induction in l . However, our
proof does not extend to the assertion of having uniformity in p 2 .1;1/ rather than
the stated condition p 2 Œ1C ı; 1C ı�1�.

In the proof of Proposition 2.9, we will repeatedly use the following Hardy and
generalized Hölder inequalities.
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Lemma 2.11. For any p 2 .1;1/ and � 2 Xp , one has� dX
iD1

1Z
0

jt�1�i .t/j
p dt

�1=p
�

p

p � 1
k�kp: (2.16)

Proof. The assertion follows from the one for d D 1, which is the well-known Hardy
inequality. We omit the details.

Lemma 2.12. Let p1; : : : ; pn 2 Œ1;1�, n 2 N, satisfy p�11 C � � � C p
�1
n D 1. Then,

for any fi 2 Lpi .0; 1/, i D 1; : : : ; n, one has

1Z
0

jf1.t/j � � � jfn.t/j dt � kf1kLp1 � � � kfnkLpn : (2.17)

Proof. The assertion follows easily by repeated application of the familiar Hölder’s
inequality. We omit the details.

The below lemma will be useful in a reduction procedure in the proof of Proposi-
tion 2.9, see Steps I, III, and IV there.

Lemma 2.13. For any ı 2 .0; 1/, take a sufficiently small neighborhood U �M2
d

of
Id . Then, it follows that, uniformly in p; q 2 Œ1C ı; 1C ı�1�, with p�1 C q�1 D 1,
G 2 U , x 2 Rd , � 2 X \ Xp , and � 2 X \ Xq , the corresponding 
 2 X from
Theorem 2.6 obeys

jh.@2�E/.x; 
/ � 2Id I�; �ij �
1

2
k�kpk�kq:

Proof. Take any ı 2 .0; 1/. We first let U �M2
d

be small enough that not only The-
orem 2.6 is available, but also we can find a; b > 0 as in (2.3) uniformly in G 2 U .
Then, by (2.11), (2.10b), Hölder’s inequality, and Lemma 2.11, we can bound

jh.@2�E/.x; 
/ � 2Id I�; �ij

�

1Z
0

j2 P� � .G � Id / P� C 2 P� � .�i@iG/ P
x

C 2 P� � .�i@iG/ P
x C P
x � .�i�j @i@jG/ P
xj dt

� C1kG � Idk2

1Z
0

.j P�jj P�j C j P�jj�jhtxi�1jxj

C jP�jj�jhtxi�1jxj C j�jj�jhtxi�2jxj2/ dt

� C2kG � Idk2k�kpk�kq;

where C1; C2 > 0 only depend on the constants ı; a; b. Thus, possibly by letting U
be smaller, the assertion follows.
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With these preparations, we can now prove Proposition 2.9.

Proof of Proposition 2.9. The proof proceeds by induction in l with the interval I �
RC being fixed. Note that the assertion of the proposition amounts to the statement
that for each l � 2 the bounds (2.15) hold uniformly in various parameters. This is a
statement amenable to induction.

Fix any l � 2 and I � RC as in the proposition. Fix also any ı 2 .0; 1/. Then, the
conclusion of Lemma 2.13 is available for G D .1 � ��1�RV /I uniformly in � 2 I
and all sufficiently large R > 0. In particular, it follows from the classical implicit
function theorem (see e.g. [5, Theorem 15.1] or [13, Theorem C.7]) applied to the
equation (2.6) with parameter .�; x/, that the mapping

I �Rd ! X; .�; x/ 7! 
; (2.18)

is of class C l�1, cf. Theorem 2.6.

Step I. We first let l D 2, and we start with the case k D 0 and j˛j D 1. It suffices to
show that we have, uniformly in i D 1; : : : ; d , p; q 2 Œ1C ı; 1C ı�1�, with p�1 C
q�1 D 1, � 0 2 .0; ��, with � 0p � 1 � ı, .�; x/ 2 I �Rd , and � 2 X \Xq ,

jh.@2�E/.�; x; 
/I @i
; �ij � C1�
�1
jxj��

0

k�kq: (2.19)

In fact, if (2.19) holds true, we obtain in combination with Lemma 2.13 that

jh@i
; �ij �
1

2
jh2Id � .@

2
�E/.�; x; 
/I @i
; �ij C

1

2
jh.@2�E/.�; x; 
/I @i
; �ij

�
1

4
k@i
kpk�kq C

C1

2
��1jxj��

0

k�kq: (2.20)

Note that any � 2 X \Xq takes the form �.t/ D
R t
0
.g.s/ �

R 1
0
g.�/d�/ds with g 2

L2..0; 1/IR/d \ Lq..0; 1/IR/d , and vice versa. Using arbitrary g in this class, the
standard Lp-Lq duality argument and density of L2 \ Lq in Lq allow us to compute

k@i P
kLp D sup
kgkLq�1

jh@i P
; giL2 j D sup
kgkLq�1

jh@i
; �gijI

�g.t/ D

tZ
0

�
g.s/ �

1Z
0

g.�/d�
�

ds; t 2 .0; 1/:

Noting that
k�gkq D k P�gkLq � 2kgkLq ;

it now follows from (2.20) that

k@i
kp �
1

2
k@i
kp C C1�

�1
jxj��

0

;

yielding the assertion (2.15) for k D 0 and j˛j D 1 with C D C2 D 2C1.
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Step II. Here, we prove (2.19). For that, we first claim that, for any � 2 X ,

h.@2�E/.�; x; 
/I @i
; �i D

1Z
0

.2 P� � .Id �G.�; 
x//ei � 2t P� � .@iG/.�; 
x/ P
x

� 2 P
x � .�j @jG/.�; 
x/ei

� t P
x � .�j @i@jG/.�; 
x/ P
x/ dt:
(2.21)

In fact, if we differentiate (2.6) in xi , it follows that, for any � 2 X ,

h.@i@�E/.�; x; 
/; �i C h.@
2
�E/.�; x; 
/I @i
; �i D 0:

On the other hand, also differentiating (2.7) in xi , we have for, any �; � 2 X ,

h@i@�E.�; x; �/; �i D

1Z
0

�
2 P� �G.�; �x/ei C 2t P� � .@iG/.�; �x/ P�x

C 2 P�x � .�j @jG/.�; �x/ei

C t P�x � .�j @i@jG/.�; �x/ P�x
�

dt:

We obtain (2.21) by combining the above identities and using that �.0/ D �.1/ D 0.
Next, we estimate the right-hand side of (2.21). By using (2.10b), Hölder’s

inequality, and the Hardy inequality (2.16), we have uniformly in the relevant para-
meters

jh.@2�E/.�; x; 
/I @i
; �ij � C3�
�1

1Z
0

�
j P�jjtxj��

0

C t j P�jjtxj�1��
0

jxj

C j�jjtxj�1��
0

jxj C t j�jjtxj�2��
0

jxj2
�

dt

� C4�
�1
jxj��

0

1Z
0

.j P�jt��
0

C j�jt�1��
0

/ dt

� C5�
�1
jxj��

0

k�kq:

We have shown (2.19) and hence indeed (2.15) for k D 0 and j˛j D 1.

Step III. Next, we prove the assertion for k D 1 and j˛j D 0 along the lines of Steps I
and II. In fact, we can first reduce it to proving

jh.@2�E/.�; x; 
/I @�
; �ij � C6�
�2
jxj1��

0

k�kq (2.22)

uniformly in the relevant parameters. The reasoning is the same as in Step I with
Lemma 2.13, and we omit it. Then, in order to prove (2.22), we deduce the following
expression valid for any � 2 X :

h.@2�E/.�; x; 
/I @�
; �i D

1Z
0

�
� 2 P� � .@�G/.�; 
x/ P
x

� P
x � .�j @j @�G/.�; 
x/ P
x
�

dt: (2.23)
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Again, this formula follows in a manner similar to the first part of Step II (similar, but
actually slightly simpler), and we omit the proof. Then, we bound the right-hand side
of (2.23) by using (2.10b), Hölder’s inequality, and the Hardy inequality (2.16),

jh.@2�E/.�; x; 
/I @�
; �ij � C7�
�2

1Z
0

.j P�jjtxj��
0

jxj C j�jjtxj�1��
0

jxj2/ dt

� C8�
�2
jxj1��

0

1Z
0

.j P�jt��
0

C j�jt�1��
0

/ dt

� C9�
�2
jxj1��

0

k�kq:

This amounts to (2.22), and we have shown (2.15) for k D 1 and j˛j D 0.

Step IV. From here to the end of the proof, we let l � 3. It suffices to discuss only the
case k C j˛j D l � 1 since the cases k C j˛j D 1; : : : ; l � 2 follow by the induction
hypothesis. In the following, let for short

ˇ D .k; ˛/ 2 NdC1
0 ;

jˇj D k C j˛j D l � 1;

@ˇ D @
ˇ

�;x
D @k�@

˛
x :

Here, we only note that the proof is reduced to verifying

jh.@2�E/.�; x; 
/I @
ˇ
; �ij � C1�

�1�k
jxj2�m

0.l/Ck
k�kq (2.24)

uniformly in�2X \Xq and the relevant parameters. This is indeed a valid reduction,
which may be seen by mimicking Step I. Again, we omit the details.

Step V. To show (2.24), we proceed in parallel to Steps II and III, differentiating (2.6).
Indeed, repeated differentiation of (2.6) in .�; x/ yields the Faà di Bruno formula

h.@2�E/.�; x; 
/I @
ˇ
; �i D

X
n;ˇ0;:::;ˇn

C�h.@
ˇ0@nC1� E/.�; x; 
/I @ˇ

1


; : : : ; @ˇ
n


; �i;

(2.25)
where the indices n 2 N0, ˇi D .ki ; ˛i / 2 N0 �Nd

0 , i D 0; : : : ; n, run over

nD 0; : : : ; l � 1; ˇ0C � � � C ˇnD ˇ; 1� jˇi j � l � 2 for i D 1; : : : ; n: (2.26)

Here and below, combinatorial constants are denoted simply by C� 2 N without dis-
tinction.
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Let us further write down a detailed expression of the summand of (2.25). Directly
differentiating the definition (2.5), we can compute @nC1� E.�; x; �/ as

h@nC1� E.�; x; �/I�1; : : : ; �nC1iD
X
j�jDnC1

C�

1Z
0

.@�xgab/. P�x/a. P�x/b�
1
c1
� � ��nC1cnC1

dt

C

X
j�jDn

C�

1Z
0

.@�xgab/. P�x/b�
1
c1
� � � P�ia � � ��

nC1
cnC1

dt

C

X
j�jDn�1

C�

1Z
0

.@�xgab/�
1
c1
� � � P�ia � � � P�

j

b
� � ��nC1cnC1

dt:

Here and henceforth, P�ia and P�j
b

replace the corresponding factors, and for short we
omit appropriate summations in a; b; c1; : : : ; cnC1; i; j as well as a specification of
the combinatorial constants C� 2 N. Also, we abbreviate .@�xgab/.�x/ D .@

�
xgab/.

Let below ¹e1; : : : ; ed º denote the standard basis in Rd . We then proceed, applying
@ˇ
0
D @k

0

�
@˛
0

x (as defined above), as

h@ˇ
0

@nC1� E.�; x; �/I�1; : : : ; �nC1i

D

X
j�jDnC1;

eaCeb�˛
0

C�

1Z
0

t j˛
0j�2.@.k

0;˛0�ea�ebC�/gab/�
1
c1
� � ��nC1cnC1

dt

C

X
j�jDnC1;

eb�˛
0

C�

1Z
0

t j˛
0j�1.@.k

0;˛0�ebC�/gab/. P�x/a�
1
c1
� � ��nC1cnC1

dt

C

X
j�jDnC1

C�

1Z
0

t j˛
0j.@.k

0;˛0C�/gab/. P�x/a. P�x/b�
1
c1
� � ��nC1cnC1

dt

C

X
j�jDn;

eb�˛
0

C�

1Z
0

t j˛
0j�1.@.k

0;˛0�ebC�/gab/�
1
c1
� � � P�ia � � ��

nC1
cnC1

dt

C

X
j�jDn

C�

1Z
0

t j˛
0j.@.k

0;˛0C�/gab/. P�x/b�
1
c1
� � � P�ia � � ��

nC1
cnC1

dt

C

X
j�jDn�1

C�

1Z
0

t j˛
0j.@.k

0;˛0C�/gab/�
1
c1
� � � P�ia � � � P�

j

b
� � ��nC1cnC1

dt:
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We substitute � D 
;�1 D @ˇ
1

; : : : ;�n D @ˇ

n

 and �nC1 D � in the above formula,

and denote the corresponding six types of integrals on the right-hand side simply as
I1; : : : ; I6, respectively. Then it suffices to estimate each such integral in agreement
with (2.24).

Step IV. Finally, we bound the above I1; : : : ; I6. They are treated similarly by using
(1.2a), (2.10b), the generalized Hölder inequality (2.17), the Hardy inequality (2.16),
and the induction hypothesis. We may let jxj � R below, see Remark 2.10 (1).

We carefully bound I1, while we record only key steps for I2; : : : ; I6 (they are
treated similarly). Use (1.2a), (2.10b), and j�j D nC 1, to bound it for jxj � R as

jI1j � C2�
�1�k0

1Z
0

t j˛
0j�2
jtxj�m

0.j˛0jCj�j�2/
j@ˇ

1


c1 j � � � j@
ˇn
cn jj�cnC1 j dt

� C3�
�1�k0

jxj�m
0.j˛0jCn�1/

1Z
0

t��
0

jt�1@ˇ
1


c1 j � � � jt
�1@ˇ

n


cn jjt
�1�cnC1 j dt:

(2.27)
We take large p0; : : : ; pn 2 .1;1/ and small � 01; : : : ; �

0
n 2 .0; �� such that

p�10 C � � � C p
�1
nC1 D 1� q

�1
D p�1; � 0p0 < 1; � 01p1 < 1; : : : ; �

0
nC1pnC1 < 1;

and apply the generalized Hölder inequality (2.17) and the Hardy inequality (2.16)
to (2.27). Note that here and henceforth ı 2 .0; 1/, p 2 Œ1 C ı; 1 C ı�1� and � 0 2
.0; �� with � 0p � 1 � ı are given parameters as in Proposition 2.9. Then, we use the
induction hypothesis with a sufficiently smaller ı 2 .0; 1/ (to make sure that pi 2
Œ1C ı; 1C ı�1� and � 0pi � 1 � ı) and with m0i .k/ D m.k/ � � C �

0
i .

Noting also (2.26) and jˇ0j � k0 C nC 1 D j˛0j C nC 1 � 2 by ea C eb � ˛0,
it follows that, for jxj � R,

jI1j � C4�
�1�k0

jxj2�m
0.j˛0jCnC1/

k@ˇ
1


kp1 � � � k@
ˇn
kpnk�kq

� C5�
�1�k
jxj2�m

0.jˇ0j�k0CnC1/C.2�m0
1
.jˇ1jC1/Ck1/C���C.2�m0n.jˇ

njC1/Ckn/
k�kq

� C6�
�1�k
jxj2�m

0.jˇ j�k0C1/Ck�k0
k�kq

� C7�
�1�k
jxj2�m

0.l/Ck
k�kq : (2.28)

This agrees with (2.24), as wanted.
As for I2; : : : ; I6, we aim at deducing a bound similar to the first line of (2.28),

since then the remaining arguments are essentially the same. More precisely, for the
cases where jˇ0j � k0 C nC 1 � 2 is valid, this condition and the induction hypo-
thesis suffice for the final conclusion of (2.28). If jˇ0j � k0 C n C 1 D 1, we can
proceed similarly to reach from the first line of (2.28) to the final line of the estima-
tion.
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We can bound I2 similarly to

jI2j � C8�
�1�k0

1Z
0

t j˛
0j�1
jtxj�m

0.j˛0jCj�j�1/
jxjj@ˇ

1


c1 j � � � j@
ˇn
cn jj�cnC1 j dt

� C9�
�1�k0

jxj1�m
0.j˛0jCn/

1Z
0

t��
0

jt�1@ˇ
1


c1 j � � � jt
�1@ˇ

n


cn jjt
�1�cnC1 j dt

� C10�
�1�k0

jxj2�m
0.j˛0jCnC1/

k@ˇ
1


kp1 � � � k@
ˇn
kpnk�kq;

and from there we proceed as in (2.28) (as explained above). As for I3, we bound it
as

jI3j � C11�
�1�k0

1Z
0

t j˛
0j
jtxj�m

0.j˛0jCj�j/
jxj2j@ˇ

1


c1 j � � � j@
ˇn
cn jj�cnC1 j dt

� C12�
�1�k0

jxj2�m
0.j˛0jCnC1/

1Z
0

jt j��
0

jt�1@ˇ
1


c1 j � � � jt
�1@ˇ

n


cn jjt
�1�cnC1 j dt

� C13�
�1�k0

jxj2�m
0.j˛0jCnC1/

k@ˇ
1


kp1 � � � k@
ˇn
kpnk�kq:

From I4, there appears a factor which is either directly bounded by k@ˇ
�


kp� without
the Hardy bound, or alternatively a factor bounded by the Lq-norm of P�. Hence,
typically I4 and I5 are bounded as

jI4j � C14�
�1�k0

1Z
0

t j˛
0j�1
jtxj�m

0.j˛0jCj�j�1/

� j@ˇ
1


c1 j � � � j@
ˇ i
P
aj � � � j@

ˇn
cn jj�cnC1 j dt

� C15�
�1�k0

jxj�m
0.j˛0jCn�1/

�

1Z
0

t��
0

jt�1@ˇ
1


c1 j � � � j@
ˇ i
P
aj � � � jt

�1@ˇ
n


cn jjt
�1�cnC1 j dt

� C16�
�1�k0

jxj2�m
0.j˛0jCnC1/

k@ˇ
1


kp1 � � � k@
ˇn
kpnk�kq;

and

jI5j � C17�
�1�k0

1Z
0

t j˛
0j
jtxj�m

0.j˛0jCj�j/
jxjj@ˇ

1


c1 j � � � j@
ˇ i
P
aj � � � j@

ˇn
cn jj�cnC1 j dt

� C18�
�1�k0 jxj1�m

0.j˛0jCn/

1Z
0

t��
0

jt�1@ˇ
1


c1 j � � � j@
ˇ i
P
aj � � �

� jt�1@ˇ
n


cn jjt
�1�cnC1 j dt

� C19�
�1�k0

jxj2�m
0.j˛0jCnC1/

k@ˇ
1


kp1 � � � k@
ˇn
kpnk�kq:
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Finally, we can typically bound I6 as

jI6j � C20�
�1�k0

�

1Z
0

t j˛
0j
jtxj�m

0.j˛0jCj�j/
j@ˇ

1


c1 j � � � j@
ˇ i
P
aj � � � j@

ˇj
P
bj � � � j@

ˇn
c1 jj�cnC1 j dt

� C21�
�1�k0 jxj�m

0.j˛0jCn�1/

�

1Z
0

t��
0

jt�1@ˇ
1


c1 j � � � j@
ˇ i
P
aj � � � j@

ˇj
P
bj � � � jt

�1@ˇ
n


cn jjt
�1�cnC1 j dt

� C22�
�1�k0

jxj2�m
0.j˛0jCnC1/

k@ˇ
1


kp1 � � � k@
ˇn
kpnk�kq:

Therefore, we are done.

We complete the proof of Theorem 1.3 as follows.

Completion of the proof of Theorem 1.3. Fix a closed interval I �RC and p 2 .1;1/
with �p < 1, and let R > 0 be large as in Proposition 2.9. For any k C j˛j � l , it
suffices to argue for jxj > R since s vanishes for jxj � R. All the estimates below are
tacitly understood to be uniform in � 2 I .

Step I. We first show that, for any k C j˛j � l � 1 and jxj > R,

j@k�@
˛
x P
.1/j � C1�

�1�k
jxj2�m.kCj˛jC1/Ck : (2.29)

We may let k C j˛j � 1 since the case k C j˛j D 0 follows from (2.29) with k D 0
and j˛j D 1 and integration. Now, let us use a representation

.@k�@
˛
x P
/.1/ D 2

1Z
1=2

�
.@k�@

˛
x P
/.t/C

1Z
t

.@k�@
˛
x R
/.�/ d�

�
dt: (2.30)

This is due to the fundamental theorem of calculus, but in fact we have to check
integrability of the integrands.

By Proposition 2.9 and Hölder’s inequality, it follows that

k@k�@
˛
x P
kL1.1=2;1/d � C2�

�1�k
jxj2�m.kCj˛jC1/Ck; (2.31)

where the norm on the left-hand side denotes theL1-norm of a function on the interval
.1=2; 1/ with values in Rd .

On the other hand, as for @k
�
@˛x R
 , we compute it using the expression

R
n D �
1

2
gnl.@igjl C @jgil � @lgij /. P
x/i . P
x/j µ ��

n
ij . P
x/i . P
x/j (2.32)
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following from (2.8). By (2.32), the product rule and the chain rule of differentiation
we can write

@k�@
˛
x R
n D

X
C�.@

k0

� @
�
x�

n
ij /

� dY
aD1

�aY
bD1

.@k
ab

� @˛
ab

x 
x/a

�
.@k

1

� @
˛1

x P
x/i .@
k2

� @
˛2

x P
x/j ;

(2.33)
where the indices k0; kab; k1; k2 2 N0 and �; ˛ab; ˛1; ˛2 2 Nd

0 run over

kab C j˛abj � 1; k0 C

dX
aD1

�aX
bD1

kab C k1 C k2 D k;

j�j D 0; : : : ; k C j˛j;

dX
aD1

�aX
bD1

˛ab C ˛1 C ˛2 D ˛:

(2.34)

Note we read
Q�a
bD1

.@k
ab

�
@˛
ab

x 
x/a D 1 if �a D 0.
We recall that 
x.�/ D �x C 
.�/, and since � 2 Œ1=2; 1�, we do not have to

worry about inverse powers of � when estimating @k
0

�
@
�
x�

n
ij by Lemma 2.5 (as we did

in the proof of Proposition 2.9). On the other hand, when taking x-derivatives of 
x ,
there are still contributions from differentiating the first term �x, that in addition to
the derivatives of 
 need consideration. The latter are treated by Proposition 2.9. We
prefer the following uniform treatment:

k.@k
ab

� @˛
ab

x 
x/akLp.1=2;1/ � Cp�
�kab
jxj�

�C1
2 .kabCj˛ab j�1/Ckab ; (2.35a)

k.@k
1

� @
˛1

x P
x/ikLp.1=2;1/ � Cp�
�k1
jxj1�

�C1
2 .k1Cj˛1j/Ck1 ; (2.35b)

k.@k
2

� @
˛2

x P
x/j kLp.1=2;1/ � Cp�
�k2
jxj1�

�C1
2 .k2Cj˛2j/Ck2 : (2.35c)

For any term with � ¤ 0 in the expansion (2.33), say denoted by T , we can show
an estimate agreeing with (2.31). In fact, by using (2.10b), (2.34), (2.35) with p D
j�j C 2, the generalized Hölder inequality (2.17) (with this p applied to each of the p
factors), the Hardy inequality (2.16), and Proposition 2.9, we can estimate

kT kL1.1=2;1/ � C3
X

��1�k
0

jxj�m.j�jC1/

�

� dY
aD1

�aY
bD1

��k
ab

jxj�
�C1
2 .kabCj˛ab j�1/Ckab

�
� ��k

1

jxj1�
�C1
2 .k1Cj˛1j/Ck1 ��k

2

jxj1�
�C1
2 .k2Cj˛2j/Ck2

� C4�
�1�k
jxj2�m.kCj˛jC1/Ck :

For any term with � D 0 in the expansion (2.33), we use the following estimates. For
k1C j˛1j � 1, the second bound of (2.35) can be replaced by a sharper bound (similar
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to the first bound of (2.35)),

k.@k
1

� @
˛1

x P
x/ikLp.1=2;1/ � C
0
p�
�k1
jxj�

�C1
2 .k1Cj˛1j�1/Ck1 ; k1 C j˛1j � 1;

and similarly for the third bound for k2 C j˛2j � 1. Thanks to these sharper bounds,
we can then argue similarly for the case �D 0, obtaining an estimate for any such term
also agreeing with (2.31). This is straightforward, and we omit the details. Hence, we
conclude that

k@k�@
˛
x R
kL1.1=2;1/d � C5�

�1�k
jxj2�m.kCj˛jC1/Ck : (2.36)

Clearly, (2.30) and the bounds (2.31) and (2.36) yield (2.29).

Step II. Now, to check the smoothness of S and s in .�; x/ up to order l , it suf-
fices for partial derivatives with ˛ ¤ 0 to prove the continuity of derivatives of P
x.1/
(or of P
.1/) up to order l � 1. Here, we use (2.14) and (2.13). However, this is
already implicitly done in our treatment of (2.30) in Step I, which is based on the
C l�1-smoothness of (2.18) from Proposition 2.9. For derivatives with ˛ D 0, i.e.,
containing only �-derivatives, we differentiate (2.12) in �, leading (thanks to the sta-
tionarity condition .@�E/.�; x; 
/ D 0) to

2jxjˆ.@�s/ D .@�E/.�; x; 
/ D ��2
1Z
0

�RV j P
xj
2 dt;

from which we deduce the formula

@�s D 2
�1
jxj�2.1C s/�1��2

1Z
0

�RV j P
xj
2 dt: (2.37a)

Inductively, we can differentiate (2.37b) up to l � 1 times in �, manifestly yielding
continuous expressions for @k

�
s, k D 1; : : : ; l .

Step III. We are left with (1.7). Integrating the expression (2.13) using (2.2) and (2.29)
for k C j˛j D 0, we obtain

S.�; x/2 D .2�/.x2 CO.��1jxj2�� //;

and hence (1.7) for k C j˛j D 0. Next, by (2.13), (2.2) and Theorem 1.3 (3), we can
write

rxs D jxj
�2.1C s/�1Œ P
.1/ � ��1x�RV � �

�1�RV P
.1/ � xs.2C s/�: (2.37b)
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Using this representation and (2.29), we can inductively obtain (1.7) for k D 0 and
all j˛j � l . The straightforward details are omitted. Along the same line, any gen-
eral mixed derivative can be computed and estimated from (2.37b). Hence, we con-
clude (1.7) for all k C j˛j � l , assuming ˛ ¤ 0.

To treat pure �-derivatives, we use (2.37a), leading to

j@�sj � C6�
�2
jxj�2

1Z
0

jtxj�� jxj2 dt D C7��2jxj�� ;

showing (1.7) for k D 1 and ˛ D 0. We can inductively show (1.7) for j˛j D 0 and all
k � l by repeated �-differentiation of (2.37a) and check of the resulting expressions.
This is more complicated than for mixed derivatives, so let us give some details of
the proof. We compute @k

�

R 1
0
�RV j P
xj

2 dt by differentiating inside the integral using
the product rule. Since .�RV /.
x.t// is a composition, we need the chain rule to
compute �-derivatives of this factor, more or less as we did in Step I. This leads to
multiple factors of @k

�

x.t/=t for which we have good Lp-bounds. So, the main thing

is to bound the derivatives .@�x.�RV //.
x.t// of the external factor, and for that we
mimic Step VI of the proof of Proposition 2.9 by estimating

j@�x.�RV /j � C8jtxj
�m.j�j/:

In parallel to the estimation of @�s, this yields the factor jxj�m.j�j/ as well as the
factor t�m.j�j/ D t�� t��m.j�j/. Choosing a small enough p > 1, the familiar gener-
alized Hölder inequality yields a bound in terms for the L1-norm of t��p and (after
a redistribution of powers of t�1 as in Step VI) products of various Xpj -norms for
which Proposition 2.9 applies. We omit the book-keeping details.

Hence, we have proven (1.7) for all k C j˛j � l .

In Sections 4 and 5 we will actually use the following modification of (1.7).

Corollary 2.14. For any closed interval I � RC let sR 2 C l.I �Rd / be given as in
Theorem 1.3 for R � R0, where R0 > 0 is taken sufficiently large. Then, there exists
C > 0 such that for any R � R0, � 0 2 .0; ��, k C j˛j � l , and .�; x/ 2 I �Rd

j@k�@
˛
xs.�; x/j � CR

��C� 0��1�khxi�m
0.kCj˛j/Ck;

where m0.k/ is given in Proposition 2.9.

Proof. The assertion follows from the arguments of the subsection with all the estim-
ates involving

j@˛�RV j � C1hxi
�m.j˛j/
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replaced by
j@˛�RV j � C2R

��C� 0
hxi�m

0.j˛j/:

It is straightforward, and we omit repeating the arguments.

3. Strong radiation condition bounds

In this section, we prove Theorem 1.24. Our main tool is a commutator-type argument.
We adopt a second order differential operator as our conjugate operator, whereas the
standard Mourre theory employs a first order one. This might appear rather peculiar,
since the resulting operator would be of third order, which usually cannot have a sign.
However, we repeatedly use a certain increment or decrement identity to make it of
even order with a definite sign.

We first introduce the needed notation in Section 3.1, and then discuss classical
mechanics interpretations in Section 3.2. Motivated by the classical picture, the main
propositions of the section will be presented in Section 3.3. After some preliminaries
in Section 3.4, these propositions will be proved in Section 3.5. Finally, in Section 3.6
we will complete the proof of Theorem 1.24.

3.1. Notation

Throughout the section, we assume Condition 1.1 with l D 4 and q � 0. Let I � RC
be a closed interval, and let S 2C 4.I � .Rd n ¹0º// be the function from Theorem 1.3
given for R � R0 > 0.

According to Theorem 1.3, S.�; �/ is a geodesic distance from the origin. It is
convenient to normalize this function and considerˆ.�; �/D S.�; �/=

p
2�, exactly as

done in Section 2, but even then the singularity at the origin might cause problems.
Consequently, we regularize ˆ.�; �/ as follows.

Lemma 3.1. For allR�R0, there exists f 2C 4.I �Rd / such that (with the depend-
ence on � 2 I and R � R0 being suppressed)

f .x/ D .2�/�1=2S.�; x/ for any � 2 I and jxj > R: (3.1)

Moreover (with all constants below being independent of � and R),

(1) there exist c; C > 0 such that, for any .�; x/ 2 I �Rd ,

chxi � f .x/ � C hxiI (3.2a)

(2) there exists C 0 > 0 such that for, any j˛j � 4, .�; x/ 2 I �Rd ,

j@˛f .x/j � C 0f .x/1�min¹j˛j;m.j˛j/º
I (3.2b)
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(3) there exists C 00 > 0 such that, for any .�; x/ 2 I �Rd ,

.1 � C 00f �� /Id � .rf /˝ .rf /C f .r
2f / � .1C C 00f �� /Id : (3.2c)

Proof. Such modification is clearly possible due to Theorem 1.3. We omit the details.

Remark 3.2. In Section 4, we will use the slight modification of (3.2c) given with
C 00f �� replaced by C 000R��

0C�f ��
0

, � 0 2 .0; �/.

3.2. Classical mechanics

Here we present a stationary bound holding along a classical scattering orbit in the
phase space T �Rd Š R2d . The arguments of this section are not necessary for our
purpose, but they serve as important motivation for our proof of Theorem 1.24.
Moreover, the proof here will be directly “lifted” to quantum mechanics, apart from
the fact that quantum observables of course do not generally commute.

3.2.1. Free Hamiltonian. Let us start with the trivial case with V � 0, for simplicity.
Hence, we consider the free classical Hamiltonian

H cl
0 .x; �/ D

1

2
�2 for .x; �/ 2 R2d ;

and the associated Hamilton equations

Px D �; P� D 0:

Then, for any initial data .y; �/ 2 R2d , we have an explicit classical orbit

x.t/ D �t C y; �.t/ D �:

Assuming the orbit has a positive energy

� D H cl
0 .x.t/; �.t// D

1

2
�2 > 0;

which is fixed, we discuss the asymptotic relation between observables along the orbit.
Obviously, it follows that (forward in time)

� D
p
2�jxj�1x CO.t�1/ as t !1; (3.3)

and hence the momentum � is comparable to
p
2�jxj�1x. However, we would like to

express it in a stationary manner without time parameter. For that purpose, note

jxj D
p
2�t CO.1/ as t !1:
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This implies that the quantity jxj is an “effective time” up to a constant factor, allow-
ing us to replace the time parameter. Now, let us introduce the “classical gamma
observables” as


 cl
D � � .rS0/; 
 cl

k
D .rS0/ � 


cl
I S0 D

p
2�jxj; (3.4)

cf. (1.20). Then we obtain a stationary expression of (3.3) as


 cl
D O.jxj�1/: (3.5)

Furthermore, it follows that


 cl
k
D H cl

0 � � �
1

2
.
 cl/2 D �

1

2
.
 cl/2 D O.jxj�2/:

Note that the bound 
 cl
k
D O.jxj�2/ is sharper than the bound resulting from substi-

tuting (3.5) into the middle expression of (3.4) . This is our starting point.

3.2.2. Perturbed Hamiltonian. Next, we turn to the general case of a classical C 2

long-range potential V . We discuss the perturbed classical Hamiltonian

H cl.x; �/ D
1

2
�2 C �R.x/V .x/ for .x; �/ 2 R2d ; (3.6)

cf. (1.6). The associated Hamilton equations are given as

Px D �; P� D �r.�RV /: (3.7)

We are interested in the asymptotic stationary estimates along a forward scattering
orbit .x.t/; �.t// (meaning beyond (3.7) that jx.t/j ! 1 for t !1) with a fixed
positive energy

� D H cl.x.t/; �.t// > 0:

Parallel to the free, case we can study details of propagation along this orbit in terms
of the classical gamma observables given as


 D 
 cl
D � � .rS/ and 
k D 


cl
k
D .rS/ � 
 cl; (3.8)

where as in (1.20) the function S comes from Theorem 1.3. Until the end of Sec-
tion 3.2, we drop the superscript cl for short.

Proposition 3.3. Fix any � > 0, and define 
 and 
k as above. Let .x.t/; �.t//, t 2R,
be a classical orbit for the Hamiltonian (3.6) with energy � such that

jx.t/j ! 1 as t !C1:

Then, for any ˇ 2 .0; 2/, there exists C > 0 such that for t � 0 and along the orbit
.x.t/; �.t//,


2 � Cf �ˇ and j
kj � Cf
�ˇ :
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Remarks 3.4. (1) This is the classical counterpart of Theorem 1.24 intuitively
explaining why the operator 
k accepts a doubled weight compared to the operat-
ors 
i . See also [9].

(2) Proposition 3.3 holds true for V satisfying Condition 1.1 with l D 2, but we
need to let l D 4 in Theorem 1.24 since higher order derivatives of S are involved in
the quantum mechanical case. Note that, due to this, the range of ˇ gets narrower in
Theorem 1.24 than in Proposition 3.3.

Proof. All the below classical quantities are considered along the forward scattering
orbit .x.t/; �.t//, and the dependence on t � 0 is suppressed. It suffices to argue
only for large t � 0, so that we may consider x to stay away from the origin, in fact
quantitatively as jx.t/j > 2R. Hence, by (1.6), we have the identity for large t

0 D H cl
� � D

1

2

2 C 
k: (3.9)

This identity is important (it will be used repeatedly) and deserves to be named the
classical increment or decrement identity. By (3.9), it suffices to show the bound

P cl
´ .f ˇ
k/

2
� C1; (3.10)

and for that we compute the time-derivative of P cl. However, the time-derivative coin-
cides with the Poisson bracket, hence D ´ d=dt D ¹H cl; �º. In any case, we easily
compute

DP cl
D 2 f̌ 2ˇ�1
2

k
.Df /C 2f 2ˇ
k.D
k/; (3.11)

motivating us to show that the right-hand side eventually is negative along the orbit.
We compute and bound the first term on the right-hand side by using (3.8), (3.9),

and (1.6) as

2 f̌ 2ˇ�1
2
k
.Df /

D 2 f̌ 2ˇ�1
2
k
.rf / � �

D 2ˇ.2�/�1=2f 2ˇ�1
2
k
.
k C jrS j

2/

D 2ˇ.2�/�1=2f 2ˇ�1
2
k
.�
1

2

2 C 2� � 2�RV /

� �ˇ.2�/�1=2f 2ˇ�1
2
k

2 C 2ˇ.2�/1=2f 2ˇ�1
2

k
C C2f

2ˇ�1��
2
k
:

To compute the second term of (3.11), we note the identity obtained by differentiating
the equation (1.6)

.r2S/rS D
1

2
rjrS j2 D �r.�RV /: (3.12)
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Then, by (3.8), (3.12), and (3.9), this second term is computed as

2f 2ˇ
k.D
k/ D 2f
2ˇ
k.� � .r

2S/
 C .rS/ � .�.r�RV / � .r
2S/�//

D 2f 2ˇ
k.
 � .r
2S/
 � .rS/ � .r2S/.rS/ � .rS/ � .r�RV //

D �.2�/1=2f 2ˇ
2
 � .r2f /
:

Combining the above computations and using (3.2c) and (3.9), we bound (3.11) as

DP cl
� � .2�/1=2f 2ˇ�1
2
 � .ˇ.rf /˝ .rf /C .f r2f //


C 2ˇ.2�/1=2f 2ˇ�1
2
k
C C2f

2ˇ�1��
2
k

� � .min¹1; ˇº/.2�/1=2f 2ˇ�1
4.1 � C3f �� /

C 2ˇ.2�/1=2f 2ˇ�1
2
k
C C2f

2ˇ�1��
2
k

� � .min¹4 � 2ˇ; 2ˇº/.2�/1=2f 2ˇ�1
2
k
C C4f

2ˇ�1��
2
k
;

so that, for any sufficiently large t ,

DP cl
� �c1f

�1P cl
� 0: (3.13)

Hence, indeed P cl is bounded as t !1, verifying (3.10), and we are done.

Remark 3.5. We have presented a stationary proof without explicit time parameter,
so that the scheme extends to the quantum setup, see Proposition 3.6 and its proof.
We could have given a simpler proof computingD.f ˇ
k/, however we are not aware
of any analogous procedure in quantum mechanics. Note that, in the literature on
scattering theory of Schrödinger operators, conjugate operators are usually of first
order, and consequently our scheme of proof (not being of this sort) is rather non-
conventional.

3.3. Main propositions of the section

Clearly, we can assume that the arbitrary compact subset I 0 � I in Theorem 1.24 is
taken as I 0 D I , and hence that also I is compact. We make these assumption in the
remaining part of the section.

To prove Theorem 1.24, we are going to compute and bound a quantum observable
corresponding to the expression D..f ˇ
 cl

k
/2/ appearing in the proof of Proposi-

tion 3.3. As a quantum observable corresponding to (3.10), we consider

P D 
k�
2ˇ
k; ˇ 2 .0; 2/: (3.14)

where 
k is the radiation observable from (1.20). Here the weight function

� D �.f / D �.f .x//



Scattering theory for C 2 long-range potentials 389

is defined as

� D �ı;�.f / D

fZ
0

�
1C

t

�

��1�ı
dt I � � 1; ı > 0:

It is a refinement of the so-called Yosida approximation of f . Note that � is bounded
for each � � 1, but that

� 0 " 1 and � " f pointwise as � !1;

where � 0 denotes the derivative of � as a function of f .
The main propositions of the section present upper and lower bounds of a “distor-

ted commutator”
2 Im.P.H � z//

with
z D �˙ i� 2 I˙´ ¹z D �˙ i� 2 C j � 2 I; � 2 .0; 1/º:

Note that it is comparable with DP cl D ¹H cl; P clº considered before in classical
mechanics. In fact, if z D � 2 I , it is nothing but the commutator iŒH; P �.

Proposition 3.6. Define P and � as above with ˇ 2 .0; 2/ and ı > 0 arbitrarily fixed.
Then, there exist c > 0 and �0 � 1 such that, for all z D �˙ i� 2 I˙, R � R0, and
� � �0 (with the constant C > 0 being independent of � 2 I but possibly depending
on R � R0),

˙2 Im.P.H � z// � � c
k� 0�2ˇ�1
k C C�f �2�2ˇ

C Cf �1�2ˇcC3ı�2ˇ C C.H � z/�f 1Cı�2ˇ�ı.H � z/

as quadratic forms on D.H/.

Proposition 3.7. Suppose the same setting of Proposition 3.6, and let " 2 .0;1�. Then,
there exists �0 � 1 such that, for all z D �˙ i� 2 I˙, R � R0 and � � �0 (with the
constant C > 0 being independent of � 2 I but possibly depending on R � R0),

˙2 Im.P.H � z// � � "
k� 0�2ˇ�1
k � C�f �2�2ˇ

� Cf �1�2ˇcC3ı�2ˇ � C.H � z/�f 1Cı�2ˇ�ı.H � z/

as quadratic forms on D.H/.

Remark 3.8. Proposition 3.6 is obviously a quantum analogue of (3.13) with some
negligible errors coming from commutation of observables, while Proposition 3.7
only says that the left-hand side of Proposition 3.6 is negligible too. In the proof of
Theorem 1.24, we shall take expectation of these bounds in the state � D R.z/ , and
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take the limits � ! 0C and � !1. Then, the second, third, and fourth terms on the
right-hand sides of Propositions 3.6 and 3.7 are in fact negligible for ˇ < ˇc and ı
taken small. This is due to the factor � , the limiting absorption principle bounds and
cancellation of H � z and R.z/, respectively. We will give the details in Section 3.6.

The propositions will be proved in Section 3.5, after some preliminaries in Sec-
tion 3.4.

3.4. Preliminaries

Here, we gather some identities and estimates that will be frequently cited in the
remaining of Section 3. Throughout Section 3.4, we adapt the setting of Proposi-
tion 3.6. In particular, ˇ 2 .0; 2/ and ı > 0 are fixed along with I , R, S , and f from
Section 3.1.

We first record several bounds for the weight � . We denote the derivatives of � in
f by primes or similar superscripts such as � 0; � 00; : : : ; � .k/.

Lemma 3.9. There exist c0; C0 > 0 such that, uniformly in � 2 I and � � 1,

c0 min¹�; f º � � � min¹C0�; f º; � 0 � f �1�:

Furthermore, for any k 2 N there exist ck; Ck > 0 such that, uniformly in � 2 I and
� � 1,

ck�
1�kf �k�ı�kCı � .�1/k�1� .k/ � Ck�

1�kf �k�ı�kCı :

Remark 3.10. In the rest of the section, we will mostly use the simplified bounds

c1f
�1�ı�1Cı � � 0 � f �1�; j� .k/j � C 0kf

�k�:

Proof. According to whether f � � or f � �, we have

� �

fZ
0

2�1�ı ds D 2�1�ıf or � �

�Z
0

2�1�ı ds D 2�1�ı�;

respectively. On the other hand,

� D ı�1�
�
1 �

�1C f
�

��ı�
� ı�1� and � �

fZ
0

ds D f:

Hence, we obtain the asserted bounds for � .
We also have

� 0 D .1C f=�/�1�ı D f �1

fZ
0

�1C f
�

��1�ı
ds � f �1�:
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In addition, for any k 2 N, we can find a constant Ck > 0 such that

� .k/ D .�1/k�1Ck�
1�k.1C f=�/�k�ı

D .�1/k�1Ck�
1�kf �k�ı.f �1 C ��1/�k�ı :

Here, the last factor satisfies

1

2
min¹�; f º � .f �1 C ��1/�1 � min¹�; f º:

Hence, we are done.

We next present a simple key identity corresponding to (3.9). It involves gamma
observables of different orders, and hence it can be used either to increment or decre-
ment the order of a differential operator (it will be used both ways many times).

Lemma 3.11. For any z D �˙ i� 2 I˙ on the subset ¹jxj > 2Rº, the identities

H � z D
1

2

2 ˙ 
k � i� (3.15)

hold.

Proof. The assertion is straightforward by (1.6) and (1.20). (Recall that throughout
the section, q � 0 in (1.1).)

The following commutator relations of the gamma observables are also important.

Lemma 3.12. For any � 2 I and i; j D 1; : : : ; d , one has on ¹jxj � 2º

Œ
i ; 
j � D 0; (3.16a)

Œ
k; 
i � D i Re..r@iS/ � 
/; (3.16b)

Œ
k; 

2� D 2i
 � .r2S/
 �

i
2
.�2S/: (3.16c)

Proof. By conjugation by e�iS , relation (3.16a) reduces to that for p, which is trivial.
We can verify (3.16b) immediately by (1.20) and (3.16a). As for (3.16c), we use
(3.16b) to compute

Œ
k; 

2� D

�
i
 � .r@iS/ �

1

2
.@i�S/

�

i C 
i

�
i.r@iS/ � 
 C

1

2
.@i�S/

�
D 2i
 � .r2S/
 �

i
2
.�2S/:

Thus, we obtain the assertion.
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Lastly, we present several handy “ellipticity estimates.” We will often use the fol-
lowing identities holding, for any a 2 C1.Rd IR/,

p � ap D Re.ap2/C
1

2
.�a/; (3.17a)

p � .p � ap/p D p2ap2 � p � .r2a/p C p � .�a/p: (3.17b)

The lemma below implies that any compactly supported differential operator of order
at most four is bounded by the last two terms of Propositions 3.6 and 3.7. For short,
we shall denote their sum as

Q D f �1�2ˇcC3ı�2ˇ C .H � z/�f 1Cı�2ˇ�ı.H � z/: (3.18)

Lemma 3.13. For any � 2 C1c .Rd IR/, there exists C > 0 such that, uniformly in
z D �˙ i� 2 I˙, R � R0, and � � 1,

� � CQ; 
 � �
 � CQ; 
 � .
 � �
/
 � CQ: (3.19)

Proof. The first bound from (3.19) is trivial. For the second and third bounds, it suf-
fices to show the bounds with 
 replaced by p. As for the second, we use (3.17a) and
the Cauchy–Schwarz inequality to bound it for any N � 0 as

p � �p D 2Re.�.H � z// � 2�.V � z/C
1

2
.��/

� C1f
�N
C C1.H � z/

�f .H � z/:

The second bound follows by choosing N D 5, which suffices since 5 � 1 C 2ˇc .
Lastly, we rewrite the left-hand side of the third bound of (3.19) by using (3.17b) as

p � .p � �p/p D 4.H � z/��.H � z/ � 8Re.�.V � z�/.H � z//

C 4�jV � zj2 � p � .r2�/p C p � .��/p:

The third bound then follows by the Cauchy–Schwarz inequality and the first and
second bounds.

The next lemma implies various forms of negligible terms can be absorbed into
the leading term 
k�

0�2ˇ�1
k, or 
 � .
 � � 0�2ˇ�1
/
 , cf. Lemma 3.15.

Lemma 3.14. For any " > 0 and R � R0, there exist C D C.ı/ > 0 and �0 D
�0.ı/ � 1, such that, for all z D �˙ i� 2 I˙ and � � �0,


kf
�1�ı�2ˇ
k � "
k�

0�2ˇ�1
k C CQ; (3.20a)


 � f �1�ˇcCı�2ˇ
 � "
k�
0�2ˇ�1
k C CQ: (3.20b)


 � .
 � f �1�ı�2ˇ
/
 � "
 � .
 � � 0�2ˇ�1
/
 C CQ; (3.20c)
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Proof. Let " > 0. By Lemma 3.9, we can find � 2 C1c .Rd IR/, such that, uniformly
in � � �0 for some �0 � 1 chosen sufficiently large,

f �1�ı�2ˇ � "� 0�2ˇ�1 C �:

Then, we conclude (3.20a) and (3.20c) by Lemma 3.13. To prove (3.20b), note that,
by conjugation by e˙i�1S , we can rewrite (3.17a) as


 � a
 D Re.a
2/C
1

2
.�a/: (3.21)

In addition, set
t D 1C ˇc � ı:

Then, by (3.21), (1.5), Lemmas 3.11 and 3.9, the Cauchy–Schwarz inequality, and
Lemma 3.13, we can estimate (using the cut-off function �2R from (1.5))


 � f �t�2ˇ
 � � 2Re.�2Rf �t�2ˇ
k/C 2Re.�2Rf �t�2ˇ .H � z//

C C1f
�t�2�2ˇ C Re..1 � �2R/f �t�2ˇ
2/

� 
kf
�1�ı�2ˇ
k C C1f

�t�2�2ˇ C C2f
�2tC1Cı�2ˇ

C C2.H � z/
�f �1�ı�2ˇ .H � z/C C2Q:

Applying in turn (3.20a), this yields (3.20b).

The final lemma says 4
k� 0�2ˇ�1
k and 
 � .
 � � 0�2ˇ�1
/
 are interchangeable
up to small errors.

Lemma 3.15. For any " > 0 and R � R0, there exist C > 0 and �0 � 1 such that,
for all z D �C i� 2 IC and � � �0,

˙¹4
k�
0�2ˇ�1
k � 
 � .
 � �

0�2ˇ�1
/
º � "
k�
0�2ˇ�1
k C C�f

�2�2ˇ C CQ:

The same bounds also hold uniformly in z D � � i� 2 I� and � � �0.

Proof. We discuss only zD �C i� 2 IC since the other is proved in the same manner.
Similarly to (3.21), by conjugation by e�i�1S , we have (3.17b) rewritten as


 � .
 � a
/
 D 
2a
2 � 
 � .r2a/
 C 
 � .�a/
:

Then, it follows by Lemma 3.9 that

˙
 � .
 � � 0�2ˇ�1
/
 � ˙
2� 0�2ˇ�1
2 C C1
 � f
�3�2ˇ
: (3.22)

The second term on the right-hand side of (3.22) can be bounded by (3.20b), and
hence it suffices to discuss the first term of (3.22). With the localization factor �2R
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inserted in this term, we are allowed to isolate 
2 in (3.15) and substitute into the two
appearing factors of 
2. After expansion, we then use the Cauchy–Schwarz inequality
to absorb cross terms into the diagonal ones. Hence, it follows that

˙
2� 0�2ˇ�1
2 D ˙ 4.�
k C i� C .H � z//��2R� 0�2ˇ�1.�
k C i� C .H � z//

˙ 
2.1 � �2R/�
0�2ˇ�1
2

� .˙4C "/
k�2R�
0�2ˇ�1
k C C2�

2f �1�2ˇ C C2Q:

We can remove �2R from the first term on the right-hand side above by retaking
C2 > 0 larger, and hence it suffices to discuss the second term. By the expression
(1.20), the Cauchy–Schwarz inequality, and Lemma 3.9, we can proceed as

�2f �1�2ˇ D
1

2
� Re..rf �1�2ˇ / � 
/C

1

2
�.rf �1�2ˇ / � .rS/

� � Im.f �1�2ˇ .H � z//

le C3
kf
�2�2ˇ
k C C3�f

�2�2ˇ C C3Q: (3.23)

The first term on the right-hand side of (3.23) can be bounded as asserted by using
(3.20a). Hence, we obtain the assertion.

3.5. Upper and lower bounds for the distorted commutator

Here, we prove Propositions 3.6 and 3.7. We start with Proposition 3.6.

Proof of Proposition 3.6. We proceed in four steps.

Step I. Let us prove the assertion only for the upper sign, since the lower one follows
in the same manner. With reference to the constants 0 < c � C of (3.2a) and the
function � of (1.4), we introduce the smooth cut-off function Q� D �.f=4CR/. Then,

supp Q� � ¹jxj > 2Rº; Q� D 1; on ¹jxj � 8RC=cº:

In particular, (3.15) applies on the support of Q�. Hence, by (3.14) and Lemma 3.11 we
can split the distorted commutator on the left-hand side of the assertion as

2 Im.P.H � z// D Im.
k Q��2ˇ
k
2/C 2 Im.
k Q��2ˇ
2k /

C 2 Im.
k.1 � Q�/�2ˇ
k.H � �// � 2�
k�2ˇ
k:
(3.24)

In the following steps, we will further compute and bound each term of (3.24).
First, we comment on our notation. Throughout the proof, we fix " > 0 such that,

for some c1 > 0, it follows that, uniformly in � 2 I ,

.2�/1=2 min¹4 � 2ˇ; 2ˇº � 19" > c1 > 0: (3.25)
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We shall consider only � � �0 with appropriate �0 � 1 tacitly retaken each time we
apply Lemmas 3.14 or 3.15. In addition, we shall adopt the notation Q from (3.18).
We particularly note that, when computing (3.24), once a derivative hits Q�, the corres-
ponding term is immediately bounded by C1Q for some C1 > 0 due to Lemma 3.13.
We shall also tacitly implement such estimates.

Step II. Now, we start with the first term on the right-hand side of (3.24). By (1.20)
and (3.16c), we can compute it as

Im.
k Q��2ˇ
k
2/ D Im.
kŒ Q��2ˇ ; 
� � 

k/C Im.
k Q��2ˇ Œ
k; 
2�/

D .2�/�1=2 Re.
k. Q��2ˇ /0
2k /C 2Re.
k Q��2ˇ
 � .r2S/
/

�
1

2
Re.
k Q��2ˇ .�2S//:

By the Cauchy–Schwarz inequality, (3.12), (3.2b), and Lemmas 3.13 and 3.14, we
can bound it as

Im.
k Q��2ˇ
k
2/ � 2ˇ.2�/�1=2 Re.
2
k
Q�� 0�2ˇ�1
k/

C 2Re.
k
 � Q��2ˇ .r2S/
/C "
k� 0�2ˇ�1
k C C2Q:
(3.26a)

The second term of (3.24) can be computed by (1.20), (1.6), and Lemma 3.14 as

2 Im.
k Q��2ˇ
2k / D 
k.rS/ � .r Q��
2ˇ /
k

� .2ˇ.2�/1=2 C "/
k�
0�2ˇ�1
k C C3Q:

(3.26b)

The third and fourth terms of (3.24) is bounded trivially as

2 Im.
k.1 � Q�/�2ˇ
k.H � �// � 2�
k Q��2ˇ
k � C4Q: (3.26c)

Hence, by (3.24) and (3.26a)–(3.26c), we obtain

2 Im.P.H � z// � 2ˇ.2�/�1=2 Re.
2
k
Q�� 0�2ˇ�1
k/C 2Re.
k
 � Q��2ˇ .r2S/
/

C .2ˇ.2�/1=2 C 2"/
k�
0�2ˇ�1
k C C5Q: (3.27)

Step III. We continue to compute (3.27). We next increment the order of the first and
second terms of (3.27) by substituting the following version of (3.15):


k D �
1

2

2 � i� C .H � z/�; (3.28)

In fact, using (3.28), we can rewrite the first and second terms of (3.27) as

2ˇ.2�/�1=2 Re.
2
k
Q�� 0�2ˇ�1
k/C 2Re.
k
 � Q��2ˇ .r2S/
/

D �ˇ.2�/�1=2 Re.
2
k Q�� 0�2ˇ�1
k/ � Re.
2
 � Q��2ˇ .r2S/
/

C 2ˇ.2�/�1=2 Re..H � z/�
k Q�� 0�2ˇ�1
k/

C 2Re..H � z/�
 � Q��2ˇ .r2S/
/: (3.29)
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Let us discuss each term on the right-hand side. The first term of (3.29) can be
bounded, by using (3.16b), the Cauchy–Schwarz inequality, and Lemma 3.14, as

� ˇ.2�/�1=2 Re.
2
k Q�� 0�2ˇ�1
k/

D �ˇ.2�/�1=2¹
 � 
k Q��
0�2ˇ�1
k
 C Re.
 � Œ
; 
k� Q�� 0�2ˇ�1
k/

C Re.
 � 
kŒ
; Q�� 0�2ˇ�1�
k/C Re.
 � 
k Q�� 0�2ˇ�1Œ
; 
k�/º

� �ˇ.2�/�1=2
 � 
k Q��
0�2ˇ�1
k
 C "
k�

0�2ˇ�1
k

C "
 � .
 � � 0�2ˇ�1
/
 C C6Q: (3.30a)

The second term of (3.29) can be bounded, by using (3.2b) and Lemma 3.14, as

�Re.
2
 � Q��2ˇ .r2S/
/ D �
 � .
 � Q��2ˇ .r2S/
/
 C
1

2

 � .� Q��2ˇ .r2S//


� �
 � .
 � Q��2ˇ .r2S/
/
 C "
k�
0�2ˇ�1
k C C7Q:

(3.30b)
As for the third and fourth terms of (3.29), by the Cauchy–Schwarz inequality, (3.2b),
and Lemma 3.14, we have

2ˇ.2�/�1=2 Re..H � z/�
k Q�� 0�2ˇ�1
k/C 2Re..H � z/�
 � Q��2ˇ .r2S/
/

� C8.
k�
0�2ˇ�1
k/f

1�ı��2ˇ .
k�
0�2ˇ�1
k/

C C8.
 � �
2ˇ .r2S/
/f 1�ı��2ˇ .
 � �2ˇ .r2S/
/C C8Q

� "
k�
0�2ˇ�1
k C "
 � .
 � �

0�2ˇ�1
/
 C C9Q: (3.30c)

Hence, by (3.27), (3.29), and (3.30a)–(3.30c), we conclude that

2 Im.P.H � z// � � ˇ.2�/�1=2
 � 
k Q�� 0�2ˇ�1
k
 � 
 � .
 � Q��2ˇ .r2S/
/


C 2"
 � .
 � � 0�2ˇ�1
/
 C .2ˇ.2�/1=2 C 5"/
k�
0�2ˇ�1
k

C C10Q: (3.31)

Step IV. Now, we use (3.2c) to the right-hand side of (3.31). Also using Lemmas 3.9
and 3.14, we obtain

2 Im.P.H � z// � � ..2�/1=2 min¹1; ˇº � 3"/
 � .
 � � 0�2ˇ�1
/


C .2ˇ.2�/1=2 C 6"/
k�
0�2ˇ�1
k C C11Q: (3.32)

Next, we rewrite the first term of (3.32) by using Lemma 3.15, so that

2 Im.P.H � z// � � ..2�/1=2 min¹4 � 2ˇ; 2ˇº � 19"/
k� 0�2ˇ�1
k

C C12�f
�2�2ˇ C C12Q:

Hence, by (3.25) we obtain the assertion.
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Next we prove Proposition 3.7. Compared to Proposition 3.6, it is much simpler.

Proof of Proposition 3.7. Let us discuss only the upper sign. Similarly to the proof
of Proposition 3.6, we adopt Q from (3.18). By the definition (3.14), the Cauchy–
Schwarz inequality, Lemma 3.9, (1.20), and Lemma 3.14, we can bound, for any
" 2 .0; 1�,

Im.P.H � z// � �"
k�2ˇ
k� 0��2ˇ�1
k�2ˇ
k � C1"�1Q

� �C2"
 � .
 � �
0�2ˇ�1
/
 � C2"
k�

0�2ˇ�1
k � C2"
�1Q;

where C� > 0 are independent of " 2 .0; 1�. Then, by Lemma 3.15,

Im.P.H � z// � �C3"
k � � 0�2ˇ�1
k � C3�f �2�2ˇ � C3"�1Q;

and we are done.

Remark 3.16. We can modify the arguments of Section 3.5 to be applicable to the
case l D 3, avoiding fourth derivatives of S . For that, we should employ

Q
k D .rS/ � 
 �
i.d � 1/

2
.2�/1=2f �1; Q̌

c D 1C �

instead of 
k, ˇc , respectively. Note that, although Q
k is not symmetric, it well approx-
imates 
k, thanks to Theorem 1.3, and we can avoid �2S coming from (3.16c). The
fourth order derivatives of S appear also from other parts of the above arguments, but
we can manage them by the Cauchy–Schwarz inequality. We omit the details. Note
also that, although Q̌c is worse than ˇc , it is still greater than 1, and the associated
radiation condition bounds are stronger than the ordinary ones.

3.6. Proof of strong radiation condition bounds

Finally, in this section we prove Theorem 1.24. We will use the standard limiting
absorption principle bounds on the following form.

Theorem 3.17. There exists C > 0 such that, uniformly in z 2 I˙ and  2 B,

kR.z/ kB� � Ck kB ; k�R.z/ kB� � Ck kB :

Moreover, for any t > 1=2, there exist uniform limits in � 2 I ,

R.�˙ i0/ D lim
I˙3z!�

R.z/; �R.�˙ i0/ D lim
I˙3z!�

�R.z/;

in the norm topology of L.L2t ; L
2
�t /.

Remark 3.18. We do not need to assume q � 0 for this result.
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Proof. This is the standard result in the theory of the Schrödinger operators, and we
omit a proof. We refer the reader to [1].

Proof of Theorem 1.24. We note that, by the density argument, it suffices to prove the
asserted bounds (1.21a)–(1.21c) for  2 C1c .Rd /.

(1) Let ˇ 2 .0; ˇc/, and choose ı > 0 such that

2ˇ C 3ı < 2ˇc ; ı � 2ˇ: (3.33)

By Propositions 3.6 and 3.7, we can find C1 > 0 and �0 � 1 such that, uniformly in
z D �˙ i� 2 I˙ and � � �0,


k�
0�2ˇ�1
k � C1�f

�2�2ˇ C C1f
�1�2ˇcC3ı�2ˇ

C C1.H � z/
�f 1Cı�2ˇ�ı.H � z/: (3.34)

Take the expectation of the above inequality in the state � D R.z/ for any z D
�˙ i� 2 I˙ and  2 C1c .Rd /, and we obtain, by (3.33) and, Theorem 3.17

k� 01=2�ˇ�1=2
k�k
2
H � C1�kf

�1�ˇ�k2H C C1kf
�1=2�ˇcC3ı=2�ˇ�k2H

C C1kf
.1Cı/=2�ˇ�ı=2 k2H

� C1�kf
�1�ˇ�k2H C C2kf

ˇ k2
L2
1=2

:

Next, we take the limit � ! 0C, and obtain, by Theorem 3.17,

k� 01=2�ˇ�1=2
kR.�˙ i0/ kH � C2kf ˇ kL2
1=2
:

Finally, we let � !1, and then, by the monotone convergence theorem, the bound
(1.21a) follows.

Combining Lemma 3.15 and (3.34), we also have


 � .
 � � 0�2ˇ�1
/
 � C3�f
�2�2ˇ C C3f

�1�2ˇcC3ı�2ˇ

C C3.H � z/
�f 1Cı�2ˇ�ı.H � z/:

Hence, we can verify (1.21b) similarly to (1.21a).

(2) Let  ; 0 2 C1c .Rd /, and consider a quantity

F.�/ D h 0; .
 � f 2ˇ
0


/�f �tR.�˙ i0/f �tf �2ˇ
0� i:

It is obviously analytic in 0 < Re � < 1. For Re � D 0, we have, by Theorem 3.17,

jF.�/j � C4k 
0
kHk kH ;



Scattering theory for C 2 long-range potentials 399

and, for Re � D 1, by (1.21b), (1.21a), and Theorem 3.17,

jF.�/j � C5k 
0
kHk kH :

Hence, we obtain by the Hadamard three-lines theorem

jh 0; .
 � f 2ˇ
0


/1=2f �tR.�˙ i0/f �tf �ˇ
0

 ij D
ˇ̌̌
F
�1
2

�ˇ̌̌
� C6k 

0
kHk kH ;

or, for any  00 2 C1c .Rd /,

k.
 � f 2ˇ
0


/1=2f �tR.�˙ i0/ 00kH � C6kf ˇ
0

 00kL2t
:

However, we can rewrite the square of the left-hand side by using the inner product
and Theorem 3.17 as

k.
 � f 2ˇ
0


/1=2f �tR.�˙ i0/ 00k2H D
dX
iD1

kf ˇ
0


if
�tR.�˙ i0/ 00k2H

�

dX
iD1

kf ˇ
0


iR.�˙ i0/ 00k2
L2�t
� C7k 

00
k
2
B :

Therefore, we obtain (1.21c).

4. Stationary scattering theory

In this section, we discuss the stationary scattering theory for H , proving Theor-
ems 1.5, 1.10, and 1.12 and Corollary 1.8. In order to use the strong radiation condi-
tion bounds of Theorem 1.24, we need more regularity for the potential than required
in these assertions. Section 4.1 reviews a decomposition V D VS C VL due to Hör-
mander [11, Lemma 30.1.1], so that the strong radiation condition bounds are avail-
able forHLD�.1=2/�C VL. Then, in Section 4.2 we introduce the spherical eikonal
coordinates associated with VL, and study its geometry. In these coordinates, we can
quickly construct the stationary wave operators for HL, mimicking the procedure
of [22]. They are then fused to those forH by a change of coordinates and the second
resolvent identity. This is implemented in Section 4.3, and the proofs of Theorem 1.5
and Corollary 1.8 are done. The proofs of Theorems 1.10 and 1.12 are rather routine,
and they are presented in Sections 4.4 and 4.5, respectively. Then, our stationary scat-
tering theory is completed.
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4.1. Hörmander’s regularization

The asserted Theorem 1.24 requires four derivatives on the potential V , which clearly
is not at disposal for a 2-admissible potential. Consequently, to implement the radi-
ation condition bounds of the theorem we need first to regularize V . This is done by
using the scheme of Hörmander [11, Lemma 30.1.1].

Lemma 4.1. Suppose Condition 1.1 with l D 2.

(1) For any � 2 .0; �/, there exists a splitting

V D VS C VLI VS 2 C
2.Rd IR/; VL 2 C

1.Rd IR/;

satisfying the following: there exists C > 0 such that, for any j˛j � 2 and
x 2 Rd ,

j@˛VS.x/j � C hxi
�1��C��j˛j.�C1/=2; (4.1a)

and, for any ˛ 2 Nd
0 , there exists C˛ > 0 such that, for any x 2 Rd ,

j@˛VL.x/j � C˛hxi
�m.j˛j/; (4.1b)

wherem is defined by (1.2a) with the parameters � and � (and for any l � 2).

(2) For any � 2 .0; �/ and "; ı > 0, there exists a splitting

V D V 0S C V
0

LI V 0S 2 C
2.Rd IR/; V 0L 2 C

1.Rd IR/;

satisfying the following: for any j˛j � 2 and x 2 Rd ,

j@˛V 0S.x/j � "hxi
�1��C�Cı�j˛j.�C1/=2;

and, for any ˛ 2 Nd
0 , there exists C˛ > 0 such that, for any x 2 Rd ,

j@˛V 0L.x/j � C˛hxi
�m.j˛j/;

where m is given as in (4.1b). The constants C˛ can, for j˛j � 2, be chosen
independently of "; ı > 0.

Remarks 4.2. (1) Ikebe and Isozaki [12] adopted a decomposition similar to (1) for
classicalC 4 long-range potentials. Note that our @˛VL has worse decay rate than theirs
for j˛j � 3.

(2) Assertion (2) will only be employed in Section 5.2.2, the last part of the paper,
for the proof of Theorem 1.20 (2).

Proof. (1) Although the bounds for VS are slightly better than in [11, Lemma 30.1.1],
the same proof works well. Let us review it since we will use its modification below
for assertion (2). Fix any real � 2 C1.¹jxj < 2º/ with � D 1 for jxj � 1, and set

V0.x/ D �.x/V .x/; Vn.x/ D .�.2
�nx/ � �.21�nx//V .x/ for n 2 N:
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We also take a real � 2 C1c .Rd / such thatZ
Rd

� dx D 1;
Z

Rd

xj�.x/ dx D 0 for j D 1; : : : ; d;

and set
�n.x/ D 2

�dn.1C�/=2�.2�n.1C�/=2x/:

Then, we define
VL D

X
n2N0

�n � Vn; VS D V � VL;

and they satisfy the asserted bounds. We omit further details.

(2) For N1; N2 2 N, we consider

V 0L D
X
n�N1

�n � Vn C
X
n<N1

�N2 � Vn; V 0S D V � V
0

L:

With a proper adjustment of the parameters (fix first N1 large and then suitably
large N2), indeed V 0S and V 0L satisfy the asserted bounds. We are done.

The main part of the section is devoted to the analysis of VL from Lemma 4.1 (1),
while the effects from VS C q are taken into account only in the last steps. Note that
the bound (4.1b) clearly agrees with Condition 1.1 for any l � 2, and thus the results
from the previous sections are available for VL. We denote

HL D �
1

2
�C VL; RL.z/ D .HL � z/

�1 for z 2 C n �.HL/;

and
RL.�˙ i0/ D s–w?–lim

z!�˙i0C
RL.z/ in L.B;B�/ for � > 0:

Throughout the section, we fix any closed interval I � RC, and let SL 2 C
l 0.I �

.Rd n ¹0º// and sL 2 C
l 0.I � Rd / be given as in Theorem 1.3 for VL and any fixed

l 0 > 1C 2=�. We will actually possibly need to takeR> 0 larger than needed for The-
orem 1.3 in Sections 4.2.3 and 5.1, implementing Corollary 2.14, but the R-depend-
ence is suppressed.

Remark 4.3. This specific requirement l 0 > 1 C 2=� will be needed only in the
proof of Lemma 5.3. Otherwise, it suffices to take l 0 D 4, so that Theorem 1.24 is
available. Although Theorem 1.3 does not provide bounds for k C j˛j > l 0, neverthe-
less sL 2 C

1.I � Rd /, and similarly for SL. This is a consequence of the fact that
VL 2 C

1.Rd / and the implicit function theorem, see the proof of Theorem 1.3 (1).
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4.2. Spherical eikonal coordinates

4.2.1. Eikonal flow at fixed energy. In order to define so-called spherical eikonal
coordinates, in which the function SL.�; �/, � 2 I , introduced in Section 4.1, plays
the role of eikonal distance from the origin, consider the eikonal flow y satisfying, for
any given .�; �/ 2 I � Sd�1,

@

@t
y.�; t; �/ D .jrSLj

�2
rSL/.�; y.�; t; �// (4.3a)

with

lim
t!0C

y.�; t; �/ D 0 and lim
t!0C

@

@t
y.�; t; �/ D .2�/�1=2�: (4.3b)

Lemma 4.4. The solution y to (4.3a) with (4.3b) is smooth in .�; t; �/ 2 I � RC �

Sd�1, and for any � 2 I it induces a (smooth) diffeomorphism

y.�; �; �/WRC � Sd�1 ! Rd n ¹0º: (4.4)

In addition, for any .�; t; �/ 2 I �RC � Sd�1 one has

SL.�; y.�; t; �// D t: (4.5)

Remarks 4.5. (1) From a geometric point of view, the flow y.�; �; �/ is nothing but the
exponential map from the unit-sphere in the tangent space at the origin in the space
Rd equipped with the metric gL D 2.� � �RVL/ dx2.

(2) The flow y.�; �; �/ constitutes a family of reparametrized classical orbits of
energy � for the classical Hamiltonian

H cl
L .x; �/ D

1

2
�2 C �R.x/VL.x/:

In fact, if we set

z.�/ D y.�; t; �/; � D

tZ
0

jrSL.�; y.�; s; �//j
�2 ds;

then, by using (1.6),

d
d�
z D rSL;

d2

d�2
z D .r2SL/.rSL/ D �r.�RVL/;

cf. (3.7). The reparametrizing factor jrSLj
�2 in (4.3a) is the proper normalization

guaranteeing (4.5). This point of view was taken in the proof of an analogous state-
ment [3, Proposition 2.2].
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Proof of Lemma 4.4. By Theorem 1.3 (2), we conclude that y is defined at least on
I � .0; .2�/1=2R� � Sd�1, and

y.�; t; �/ D .2�/�1=2t� for .�; t; �/ 2 I � .0; .2�/1=2R� � Sd�1: (4.6)

On the other hand, by (4.3a), (4.3b), and (4.6)

@

@t
SL.�; y.�; t; �// D 1 and lim

t!0C
SL.�; y.�; t; �// D 0:

This implies y.�; t; �/ never hits the origin for t > .2�/1=2R, and neither it can reach
infinity in finite time. Hence, the vector field jrSLj

�2rSL is forward complete, and
y is globally defined on I �RC � Sd�1, satisfying (4.5).

Next, we note that y.�; �; �/ is bijective. In fact, by the uniqueness for the initial-
value problem of ODEs, the injectivity follows. To see the surjectivity, starting at any
given point in x 2 Rd n ¹0º, we solve the ODE (4.3a) in the backward time-direction.
Then, we obtain a “crossing” initial angle � from where indeed the forward flow for
a proper time t satisfies y.�; t; �/ D x. (Alternatively, y.�; �; �/ is bijective, since any
x 2Rd n ¹0º can be connected to the origin by a unique geodesic, cf. Theorems 1.3 (2)
and 2.6 (1).)

Finally, we show that y.�; �; �/ is a diffeomorphism. Note that the maps y.�; �; �/
and y.�; �; �/ are smooth, viewed as a solution to an initial-value problem with data
specified on the sphere .2�/�1=2Sd�1 ' Sd�1 at time t D 1. Thus, it suffices to
check the non-degeneracy of the map. Take any local coordinates � 0 D .� 02; : : : ; �

0
d
/

of Sd�1, and let J 0 be the Jacobian of (4.4) in these local coordinates. Now, we claim
that, for any .�; t; � 0/,

@tJ
0.�; t; � 0/ D .r � jrSLj

�2
rSL/.�; y.�; t; �

0//J 0.�; t; � 0/: (4.7)

In fact, differentiating the defining expression of the Jacobian, we can write

@tJ
0
D

dX
iD1

det J.i/;

where J.i/ are matrix-valued functions whose components are given by

J
.i/

jk
D

´
@kyj for j ¤ i;

@t@kyi for j D i;
j D 1; : : : ; d; k D t; � 02; : : : ; �

0
d :

However, thanks to the flow equation (4.3a), we can compute

@t@kyi D @k.jrSLj
�2.rSL/i / D .@l jrSLj

�2.rSL/i /@kyl :
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Thus, we obtain the claimed identity (4.7), noting that the determinant is alternat-
ing and multilinear. By (4.6), J 0 is non-vanishing for t 2 .0; .2�/1=2R�, and hence
with (4.7) we can conclude that so it is for all t > 0. We are done.

Now, the spherical eikonal coordinates are defined as follows.

Definition 4.6. The spherical eikonal coordinates on Rd n ¹0º at energy � 2 I are
the entries of the inverse of (4.4). We denote them by .t; �/, or by .�; t; �/ to clarify
the �-dependence. They are also denoted by .t; � 0/ or .�; t; � 0/ if local coordinates
� 0D .� 02; : : : ; �

0
d
/ of Sd�1 are specified. We call t D SL.�;y.�; t; �// and � (or � 0) the

radial and spherical components of the spherical eikonal coordinates, respectively.

The Euclidean metric splits into the radial and spherical components in the spher-
ical eikonal coordinates. Let us present it as a corollary, although we will not use it in
the present paper. The entries of � 0 are distinguished by Greek indices always running
over 2; : : : ; d , while the entries of y canonically are distinguished by Roman ones
always running over 1; : : : ; d .

Corollary 4.7. Let .t; � 0/ be spherical eikonal coordinates at any � 2 I . Then,

.@tyi .�; t; �
0//.@tyi .�; t; �

0// D j.rSL/.�; y.�; t; �
0//j�2;

.@tyi .�; t; �
0//.@˛yi .�; t; �

0// D 0 for ˛ D 2; : : : ; d:

In addition, the Euclidean metric takes the form

dx2 D jrSLj
�2 dt2 C g˛ˇ d� 0˛d� 0ˇ :

Proof. The former formulas follow from (4.3a) and (4.5), and the last formula is an
immediate consequence of the former ones.

4.2.2. Volume and surface measures. Let J W I �RC � Sd�1 ! Œ0;1/ be a func-
tion such that the Euclidean volume measure can be expressed in .�; t; �/ as

dx.�; t; �/ D dx1 � � � dxd .�; t; �/ D J.�; t; �/ dtdA.�/; (4.8)

where dA denotes the standard surface measure on Sd�1. In fact, if we take any local
coordinates � 0 D .� 02; : : : ; �

0
d
/ of Sd�1, and let J 0 be the Jacobian from the proof of

Lemma 4.4, then J can be computed through the relation

dA�;t .�.� 0//´ J.�; t; �.� 0// dA.�.� 0// D J 0.�; t; � 0/ d� 02 � � � d�
0
d : (4.9)

Note that, for any � 2 L1.Rd /,Z
Rd

�.x/ dx D

1Z
0

dt
Z

Sd�1

�.y.�; t; �// dA�;t .�/: (4.10)
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By the co-area formula [7, Theorem C.5], the element jrSLj.�; y.�; t; �// dA�;t .�/
is the Euclidean surface element on the distorted sphere ¹SL D tº.

Lemma 4.8. The following statements hold.

(1) One has an explicit formula

J.�; t; �/ D
p
2�Rd�1j.rSL/.�; y.�; t; �//j

�2

� exp
� tZ
.2�/1=2R

.jrSLj
�2�SL/.�; y.�; �; �// d�

�
:

(2) There exist the following limits uniformly in .�; �/ 2 I � Sd�1:

lim
t!0C

t�.d�1/J.�; t; �/ D .2�/�d=2;

lim
t!1

t�.d�1/J.�; t; �/µ JC.�; �/ > 0:

Remark 4.9. For similar assertions in a wider geometric setting, see [18].

Proof. (1) Note that, for any .�; t; �/ 2 I �RC � Sd�1,

@tJ.�; t; �/ D .r � jrSLj
�2
rSL/.�; y.�; t; �//J.�; t; �/: (4.11)

In fact, (4.11) follows from (4.7) since in any local coordinates of Sd�1, J 0=J is a
function independent of t , cf. (4.9). Then, since

r � .jrSLj
�2
rSL/ D jrSLj

�2�SL � @t ln.jrSLj
2/;

it follows from (4.11) that, for some C.�; �/ � 0,

J.�; t; �/ D C.�; �/j.rSL/.�; y.�; t; �//j
�2

� exp
� tZ
.2�/1=2R

.jrSLj
�2�SL/.�; y.�; �; �// d�

�
:

We can determineC.�;�/D
p
2�Rd�1 by (1.6) and (4.6), which shows the assertion.

(2) The assertion is clear for t ! 0C thanks to the explicit expression (4.6). Let
t � .2�/1=2R. Then, by (1.6), Theorem 1.3, and (4.5), it follows that

jj.rSL/.�; y.�; t; �//j
�2
� .2�/�1j � C1t

�� ;

j.jrSLj
�2�SL/.�; y.�; �; �// � .d � 1/�

�1
j � C1�

�1�� :

This verifies the asymptotics for t !1.
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4.2.3. Change of coordinates at infinity. Here we investigate relation between the
spherical eikonal coordinates and the ordinary spherical coordinates. For each � 2 I ,
we can change from .t; �/ 2 RC � Sd�1 to .r; !/ 2 RC � Sd�1 through

r.�; t; �/D jy.�; t; �/j; !.�; t; �/D Oy.�; t; �/D jy.�; t; �/j�1y.�; t; �/: (4.12)

We claim that (4.12) induces a C 1-diffeomorphism of Sd�1 at infinity provided
“sL is small” (which thanks to Corollary 2.14 can be assumed by takingR sufficiently
big). More precisely, we claim the following assertion.

Lemma 4.10. Uniformly in � 2 I , there exists the limit

!C.�; �/´ lim
t!1

!.�; t; �/WSd�1 ! Sd�1 (4.13)

in the C 1-topology. Moreover, possibly for enlarged R > 0 only, the map !C.�; �/
is a C 1-diffeomorphism on Sd�1 depending continuously on � 2 I , and, for any
.�; �/ 2 I � Sd�1,

dA.!C.�; �// D .2�/d=2JC.�; �/ dA.�/; (4.14)

where JC is from Lemma 4.8.

Remark 4.11. For fixed � 2 I , the map !C.�; �/ on Sd�1 is called the asymptotic
direction map and its inverse �C.�; �/D !�1C .�; �/D .!C.�; �//

�1 the inverse asymp-
totic direction map.

Proof. Take R0 > 0 as in Corollary 2.14, and let � 0 2 .0; �/. For the moment, all
the estimates below are uniform in R � R0. We will possibly need R to be larger in
Step IV.

Step I. For any fixed .�; �/ 2 I � Sd�1, we prove the existence of the limit (4.13)
in the pointwise sense. For each i D 1; : : : ; d , we compute and bound, omitting the
arguments, as

@

@t
!i D jyj

�1
jrSLj

�2.rSL/i � jyj
�3yiyj jrSLj

�2.rSL/j

D jyj�1jrSLj
�2.ıij � jyj

�2yiyj /..rSL/j � .2�/
1=2
jyj�1yj /

D O.R��C�
0

t�1��
0

/; (4.15)

where we have used Theorem 1.3 and Lemma 4.4. The integrability of (4.15) in t 2
.1;1/ implies that there exists the limit (4.13) in the pointwise sense. In addition,
!CW I � Sd�1 ! Sd�1 is continuous since (4.15) is uniform in .�; �/ 2 I � Sd�1.
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Step II. Take any local coordinates � 0 D .� 02; : : : ; �
0
d
/ of Sd�1, and set, for any ˛ D

2; : : : ; d ,

�.�; t; � 0/ D .@˛!1.�; t; �
0//2 C � � � C .@˛!d .�; t; �

0//2:

We claim that, for any compact subset K of the associated (open) coordinate region,
there exist c1; C1 > 0 such that, for any .�; t; � 0/ 2 I �RC �K,

c1 � �.�; t; �
0/ � C1: (4.16)

For that, we compute and bound the t -derivative of � as in Step I. Since we have

.@˛!i / D jyj
�1.@˛yi / � jyj

�3yiyj .@˛yj /; (4.17)

we can write, by using (4.3a),

@

@t
.@˛!i / D � jyj

�3yj jrSLj
�2.rSL/j .@˛yi /C jyj

�1.rjrSLj
�2/j .rSL/i .@˛yj /

C jyj�1jrSLj
�2.r2SL/ij .@˛yj /

C 3jyj�5jrSLj
�2.rSL/kyiyjyk.@˛yj /

� jyj�3jrSLj
�2.rSL/iyj .@˛yj / � jyj

�3yi jrSLj
�2.rSL/j .@˛yj /

� jyj�3yiyj .rjrSLj
�2/k.rSL/j .@˛yk/

� jyj�3yiyj jrSLj
�2.r2SL/jk.@˛yk/

µ B1 C � � � C B8: (4.18)

To bound the terms on the right-hand side of (4.18), we will first prove that

jyj�1.@˛yi / D .@˛!i /CO.R��C�
0

hti��
0

/�1=2: (4.19)

To keep the notation simple, we prefer henceforth to state errors like O.R��C�
0

hti��
0

/

as O.R��C�
0

t��
0

/. Now, with this convention, it follows by (4.5) and Theorem 1.3
that

jyj D .2�/�1=2t CO.R��C�
0

t1��
0

/; .@˛yi /.rSL/i D 0; (4.20)

so that (again thanks to Theorem 1.3) we can rewrite (4.17) as

jyj�1.@˛yi / D .@˛!i / � jyj
�2yi ..2�/

�1=2.rSL/j � jyj
�1yj /.@˛yj /

D .@˛!i /CO.R��C�
0

t��
0

/

dX
jD1

jyj�1j@˛yj j;

Hence, by a summation and subtraction,

dX
jD1

jyj�1j@˛yj j � C

dX
iD1

j@˛!i j � C
p
d �1=2;

which verifies (4.19).
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Now, we bound term by term

B1 C � � � C B8 D .B2 C B7/C .B4 C B5 C B6/C B8 C .B1 C B3/:

By (1.6) and (4.19),

B2 C B7 D O.R��C�
0

t�1��
0

/�1=2

By (4.20), (4.19), and Theorem 1.3,

B4 C B5 C B6 D 3jyj
�4
jrSLj

�2.rSL/kyiyk..2�/
�1=2.rSL/j � jyj

�1yj /.@˛yj /

C jyj�2jrSLj
�2.rSL/i ..2�/

�1=2.rSL/j � jyj
�1yj /.@˛yj /

DO.R��C�
0

t�1��
0

/�1=2:

By (3.12), (4.20), (4.19), and Theorem 1.3,

B8 D jyj
�2yi ..2�/

�1=2.rSL/j � jyj
�1yj /jrSLj

�2.r2SL/jk.@˛yk/

�
1

2
.2�/�1=2jyj�2yi jrSLj

�2.rjrSLj
2/k.@˛yk/

DO.R��C�
0

t�1��
0

/�1=2:

Finally, by (4.20), (4.19), Theorem 1.3, and (3.2c) (see also Remark 3.2),

B1 C B3 D � .2�/
�1=2
jyj�2.@˛yi /

C jyj�2..2�/�1=2.rSL/j � jyj
�1yj /jrSLj

�2.rSL/j .@˛yi /

C .2�/1=2f �1jyj�1jrSLj
�2..@if /.@jf /C f .r

2f /ij /.@˛yj /

DO.R��C�
0

t�1��
0

/�1=2:

Therefore, combining the above estimates, we obtain

@

@t
.@˛!i / D O.R��C�

0

t�1��
0

/�1=2; or
@

@t
� D O.R��C�

0

t�1��
0

/�: (4.21)

This implies ln� is bounded, and thus the claim (4.16) is verified.

Step III. Next, we show !C.�; �/WSd�1 ! Sd�1 is continuously differentiable. This
is straightforward due to Step II. By (4.21) and (4.16), it follows that

@

@t
.@˛!i / D O.R��C�

0

t�1��
0

/ (4.22)

uniformly in � 2 I and locally uniformly in � 0 in the coordinate region. It is integrable
in t 2 .1;1/, and this implies there exists the limit

lim
t!1

@˛!i .�; t; �
0/
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uniformly in � 2 I and locally uniformly in � 0 in this region. Hence, the conver-
gence (4.13) is in the C 1-topology, and !C.�; �/ is continuously differentiable as
wanted. Note that @˛!C is continuous also in � 2 I since these estimates are uniform
in � 2 I .

Step IV. We prove that !C.�; �/ is a C 1-diffeomorphism, provided R � R0 is large.
By (4.15), (4.22), and the fact that !.�; t; �/D � for any t 2 .0; .2�/1=2R�, see (4.6),
it follows that for, any sufficiently large R � R0 and any .�; �/ 2 I � Sd�1,

j!C.�; �/ � � j �
1

2
and jr� .!C.�; �/ � �/j �

1

2
: (4.23)

Due to the second bound of (4.23), we can apply the inverse function theorem to
!C.�; �/, and hence the image !C.�;Sd�1/� Sd�1 is open. On the other hand, since
Sd�1 is compact and !C is continuous, !C.�;Sd�1/ is also closed. Thus, !C.�; �/
is surjective due to the connectedness of Sd�1.

Now, it suffices to show the injectivity of !C.�; �/. Suppose that, for some � 2 I
and �1; �2 2 Sd�1,

!C.�; �1/ D !C.�; �2/:

Then, if we let 
 be a grand circle segment, or a geodesic of minimal length, on Sd�1

connecting �1 and �2, we can estimate, by using (4.23),

distRd .�1; �2/ D distRd .�1 � !C.�; �1/; �2 � !C.�; �2//

�

1Z
0

jr� .� � !C.�; �//j�D
.t/j j P
.t/j dt

�
1

2
distSd�1.�1; �2/ �

�

4
distRd .�1; �2/;

where distRd and distSd�1 are the standard metrics there. This implies �1 D �2, since
� < 4. Thus, we conclude that !C.�; �/WSd�1 ! Sd�1 is a C 1–diffeomorphism.

Step V. Finally, we show identity (4.14) by rewriting the Euclidean volume measure
as follows. In the standard spherical coordinates .r; !0/, we can write

dx.r; !0/ D rd�1 drdA.!.!0// D rd�1a.!0/ drd!02 � � � d!
0
d :

Let us further change the variables to .�; t; � 0/ by using (4.12). We compute the
Jacobian by the cofactor expansion. Some of the first order derivatives of (4.12) are
bounded by (4.15) and (4.16), and we only have to note that by Theorem 1.3, (4.19),
and (4.16),

@

@t
r D jyj�1y � .rSL/=jrSLj

2
D .2�/�1=2 CO.t��

0

/;

@˛r D jyj
�1y � @˛y D .jyj

�1y � .2�/�1=2rSL/ � @˛y D O.t1��
0

/:
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Then, the cofactor expansion yields

dx.r.�; t; � 0/; !0.�; t; � 0//

D td�1..2�/�d=2K 0.�; t; � 0/CO.t��
0

//a.!0.�; t; � 0// dtd� 02 � � � d�
0
d ;

where K 0.�; t; �/ is the Jacobian of !.�; t; �/WSd�1 ! Sd�1 in the local coordinates
� 0 and !0. The above expression has to coincide with (4.8), so that

td�1..2�/�d=2K 0.�; t; � 0/CO.t��
0

//a.!0.�; t; � 0// d� 02 � � � d�
0
d

D J.�; t; �.� 0// dA.�.� 0//;

or

dA.!.!0.�; t; � 0/// D K 0.�; t; � 0/a.!0.�; t; � 0// d� 02 � � � d�
0
d

D ..2�/d=2t�.d�1/J.�; t; �.� 0//CO.t�� // dA.�.� 0//:

Hence, by letting t !1, we obtain (4.14). We are done.

4.2.4. Comparison of eikonal distances. Here we compare SL (solving the eikonal
equation for VL) with the function S from Theorem 1.5 (solving the eikonal equation
for V , with � in the same interval I ). We show that their difference has a radial limit
at infinity (as a step of the proof we first establish the eikonal radial limit). We present
a slightly generalized assertion localized to a conic subset of Rd . For any R0 > 0 and
any open subset U � Sd�1 we set

�R0;U D ¹x 2 Rd
ˇ̌
jxj > R0 and Ox 2 U º; Ox D jxj�1x:

Lemma 4.12. Let R > 0 be large enough as in Lemma 4.10. Let R0 > 0, and U �
Sd�1 be open, and assume S D

p
2�jxj.1 C s/ 2 C.I I C 2.�R0;U // satisfies thte

followivng conditions.

(i) For each � 2 I , S.�; �/ solves (1.3a) on �R0;U .

(ii) For any compact subset I 0� I , there exist ";C > 0 such that, for any j˛j � 2
and .�; x/ 2 I 0 � �R0;U ,

j@˛xs.�; x/j � C hxi
�"�j˛j:

Then the following assertions hold.

(1) There exists the limit

†L.�; �/´ lim
t!1

.S.�; y.�; t; �// � SL.�; y.�; t; �///
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taken locally uniformly in .�; �/, with � 2 I and � 2 !�1C .�;U /D �C.�;U /.
In particular, if S1 2 C.I IC 2.�R0;U // also satisfies the above conditions (i)
and (ii), then there exists the limit

†.�; �/´ lim
t!1

.S1.�; y.�; t; �// � S.�; y.�; t; �///

taken locally uniformly in .�; �/ with � 2 I and � 2 �C.�; U /.

(2) The quantities in (1) can also be computed as the limits

‚L.�; !/´ †L.�; �C.�; !// D lim
r!1

.S.�; r!/ � SL.�; r!//;

‚.�; !/´ †.�; �C.�; !// D lim
r!1

.S1.�; r!/ � S.�; r!//;

both taken locally uniformly in .�; !/ 2 I � U .

Proof. We proceed in two steps.

Step I. To prove the assertions of (1), we only show the first one. The second assertion
is obvious from the first one. The following bounds are locally uniform in .�; �/ with
� 2 I and � 2 �C.�; U /, however we shall not elaborate on that feature. By (4.3a),
(1.3a), and (1.6), we compute for large t > 0

d
dt
.S � SL/ D jrSLj

�2.rS � rSL/ � .rSL/

D �
1

2
jrSLj

�2.rS � rSL/
2
� jrSLj

�2VS: (4.24)

We are going to show the integrability of (4.24) at infinity. The second term on the
right-hand side of (4.24) is clearly integrable due to Theorem 1.3 and (4.5), and we
discuss only the first term. It suffices to show that, for some small ı > 0,

u´ .rS � rSL/
2
D O.t�1�ı/; (4.25)

see also [9, Theorem 2.3 and its proof]. Similarly to (4.24), we can compute the deriv-
ative of u as

1

2
jrSLj

2 d
dt
u D .rS � rSL/ � .r

2S � r2SL/.rSL/

D �.rS � rSL/ � .r
2S/.rS � rSL/ � .rVS/ � .rS � rSL/:

(4.26)
From the assumptions on S , we deduce that

r
2S � 2�S�1I � C2S

�1�"I � S�1.rS/˝ .rS/:
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We apply this bound to (4.26), use (1.3a) and (1.6) (as in (4.24)), and conclude that

1

2
jrSLj

2 d
dt
u � � 2�S�1uC C2S

�1�"u

C S�1..rS � rSL/ � .rS//
2
C jrVSju

1=2

D � 2�S�1uC C2S
�1�"uC 4�1S�1.u � 2VS/

2
C jrVSju

1=2:

(4.27)

By Theorem 1.3, (4.5), and the assumptions on S , we observe, letting ı 2 .0; "/ be
small enough, that

jrSLj
2
D 2�CO.t�ı/; S D t CO.t1�ı/; u D .rS � rSL/

2
D O.t�ı/:

Substituting these estimates into (4.27), we obtain, for large t > 0,

d
dt
u � �2t�1uC C3t

�1�ıuC C3t
�2�ı

� �.2 � ı/t�1uC C3t
�2�ı :

This differential inequality implies (4.25). Hence, we are done with (1).

Step II. We prove the first assertion of (2) (the other one in (2) follows from that).
Fixing any compact subset K � I � U , we are going to prove

lim
r!1

sup
.�;!/2K

j†L.�; �C.�; !// � S.�; r!/C SL.�; r!/j D 0:

Using (4.12) and Lemma 4.10, let us first note that

lim
r!1

sup
.�;!/2K

j�C.�; !/ � �.�; r!/j D 0: (4.28)

In fact, changing variables from .r; !/ to .t; �/ and using t D SL.�; r!/, it follows
that, uniformly in .�;!/ 2 K, one has dt=dr D rSL � ! >

p
� for large r , and hence

taking r !1 corresponds to taking t !1. Thus, for some compact subset K 0 �
¹.�; �/I � 2 I; � 2 �C.�; U /º, we can compute (thanks to Lemma 4.10)

lim
r!1

sup
.�;!/2K

j�C.�; !/ � �.�; r!/j

� lim
t!1

sup
.�;�/2K0

j�C.�; !.�; t; �// � �.�; y.�; t; �//j

D sup
.�;�/2K0

j�C.�; !C.�; �// � � j D 0:

Now, by (4.28), the above change of variables, and assertion (1), it follows that

lim
r!1

sup
.�;!/2K

j†L.�; �C.�; !// � S.�; r!/C SL.�; r!/j

D lim
r!1

sup
.�;!/2K

j†L.�; �.�; r!// � S.�; r!/C SL.�; r!/j
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D lim
t!1

sup
.�;�/2K0

j†L.�; �.�; y.�; t; �/// � S.�; y.�; t; �//C SL.�; y.�; t; �//j

D lim
t!1

sup
.�;�/2K0

j†L.�; �/ � S.�; y.�; t; �//C SL.�; y.�; t; �//j D 0:

We are done.

Remark 4.13. Such a localized version has an application in 3-body long-range sta-
tionary scattering theory [23], for which we should take U � Sd�1 such that the
closure xU does not intersect the “collision planes.” For such U , the function

ei‚.�;!/
D ei†.�;�C.�;!//I �C.�; �/ D !

�1
C .�; �/; (4.29)

induces a well-defined family of unitary multiplication operators on L2.U /.� G /

being strongly continuous in �. Upon varying U under the above constraint, the
function (4.29) is defined almost everywhere on Sd�1 and constitutes a strongly
continuous L.G /–valued function of �. The transformation factor ei‚.�;!/ (exhib-
iting “covariance”) and (1.10) are applicable to the 3-body problem [23], cf. Sec-
tion 1.2.5. In particular, it is not possible to take U D Sd�1 in that application.
However, in the present paper we only use Lemma 4.12 with U D Sd�1, see for
example Remark 1.9 (3) and Theorem 1.12 (3).

4.3. Stationary wave operators

4.3.1. Construction for the regularized potential. Here, we discuss an analogue
of Theorem 1.5 for HL in the spherical eikonal coordinates. Once the strong radi-
ation condition bounds from Theorem 1.24 are established and the spherical eikonal
coordinates are fixed, the construction is rather straightforward, following the schemes
of [9, 22]. Set, for any � 2 G ,

�
SL
˙
Œ��.�; x/ D

.2�/1=2

.2�/1=4
�.r/r�.d�1/=2e˙iSL.�;x/�. Ox/; r D jxj; Ox D jxj�1x;

(4.30)
where � is from (1.4) (see also (1.9)).

Proposition 4.14. The following statements hold.

(1) For any � 2 I , there exist uniqueE˙.�/ 2L.B;G / such that, for any 2B,

RL.�˙ i0/ � �SL
˙
ŒE˙.�/ �.�; �/ 2 B�0 : (4.31)

(2) The mappings E˙W I �B ! G are continuous.

(3) For any � 2 I ,
E˙.�/�E˙.�/ D ı.HL � �/;
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Before proving Proposition 4.14, we present a trace-type theorem in a form appro-
priate for our application. Note that, by Fubini’s theorem, we can identify

L2loc.RC � Sd�1/ ' L2loc.RCIG /:

To be precise, we denote the above identification operator for the moment by �, i.e.,
for any  2 L2loc.RC � Sd�1/, we let

�. /.t/ D  .t; �/ 2 G for a.e. t 2 RC:

Lemma 4.15. Let k 2 N0 and  2 H s
loc.RC � Sd�1/ with s > k C 1=2. Then,

�. / 2 C k.RCIG /; and
dl

dt l
�. / D �

� @l
@t l
 
�

for l D 0; : : : ; k:

Proof of Lemma 4.15. By a partition-of-unity argument, we can reduce the claims to
similar ones in a coordinate region. Then, we can mimic the proof of the familiar
Sobolev embedding theorem. We omit the details.

Proof of Proposition 4.14. We proceed in four steps.

Step I. Let � 2 I and  2 C1c .Rd / be given, and then let

‰.t/ D J.�; t; �/1=2e�iSL.�;y.�;t;�//.RL.�˙ i0/ /.y.�; t; �// 2 G I t 2 RC:

Since RL.�˙ i0/ 2 H 2
loc.R

d /, it follows from Lemma 4.15 that ‰ 2 C 1.RCI G /.
We first show the existence of the limits

D˙.�/ D G –lim
t!1

‰.t/: (4.32)

By the fundamental theorem of calculus, we have

‰.t/ D ‰.1/C

tZ
1

d
dt
‰.�/ d�;

and it suffices to show that the last integrand is integrable as a G -valued function. We
can compute it, by Lemma 4.15, (4.11), (4.5), (4.3a), and (1.20), as

d
dt
‰ D J 1=2e�iSL.ijrSLj

�2.rSL/ � 
 C
1

2
.r � jrSLj

�2
rSL//RL.�˙ i0/ 

D J 1=2e�iSL.ijrSLj
�2
k C

1

2
.rjrSLj

�2/ � .rSL//RL.�˙ i0/ :

By (1.21a) and (3.12), we can find ı > 0 and ˆ 2 L2
.1Cı/=2

such that

d
dt
‰.t/ D J.�; t; �/1=2ˆ.�; y.�; t; �//:
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Then, by the Cauchy–Schwarz inequality and (4.10),
1Z
1

k
d
dt
‰.t/kG dt

D

1Z
1

dt
� Z

Sd�1

jˆ.�; y.�; t; �//j2 dA�;t .�/
�1=2

� C1

� 1Z
1

t�1�ı dt
�1=2� 1Z

1

dt
Z

Sd�1

j.j � j.1Cı/=2ˆ/.�; y.�; t; �//j2 dA�;t .�/
�1=2

� C2kˆkL2
.1Cı/=2

:

Hence, there exist the limits (4.32). We note that D˙.�/ are continuous in � 2 I ,
since ‰.t/ is continuous in � 2 I , and the above estimates are locally uniform in this
variable.

Step II. Next, we set, for any � 2 I and  2 C1c .Rd /,

E˙.�/ D c.�/.2�/�d=4JC.�; �C.�; �//
�1=2.D˙.�/ /.�C.�; �//;

c.�/ D .2�/�1=2.2�/1=2;
(4.33a)

and verify that they satisfy (4.31). For completeness of presentation, note that

kE˙.�/ kG D c.�/kD
˙.�/ kG ;

cf. Lemma 4.10. By (4.32), it follows that

lim
t!1

t�1
tZ
0

kD˙.�/ � J.�; �; �/1=2e�iSL.�;y.�;�;�//.RL.�˙ i0/ /.y.�; �; �//k2G d�

D 0;

and, along with (4.10), Lemma 4.8, and the asymptotics jy.�; �; �/j=� ! .2�/�1=2,
this implies

lim
t!1

t�1
Z

¹SL�tº

j.2�/�.d�1/=4jxj�.d�1/=2e˙iSL.�;x/JC.�; �.�; x//
�1=2

� .D˙.�/ /.�.�; x// � .RL.�˙ i0/ /.x/j2 dx D 0:

Hence, it suffices to prove

lim
t!1

t�1
Z

¹SL�tº

jxj�.d�1/=2jJC.�; �.�; x//
�1=2.D˙.�/ /.�.�; x//

� JC.�; �C.�; Ox//
�1=2.D˙.�/ /.�C.�; Ox//j

2 dx D 0:
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In turn, if we let u.�; �/ D JC.�; �/�1=2.D˙.�/ /.�/ and again use eikonal spher-
ical coordinates, it suffices to prove that

lim
t!1

t�1
tZ
0

ku.�; �/ � u.�; �C.�; !.�; �; �///k
2
G d� D 0: (4.34)

To prove (4.34), first note that, for any v;w 2 G ,

kv.�C.�;!.�;�; �///�w.�C.�;!.�;�; �///kG �C3kv�wkG I � 2 Œ1;1/: (4.35)

Here, we used that the coordinate change � ! �C.�;!.�; �; �// converges to the iden-
tity map in the C 1-topology as � !1. Next, we estimate, for any v 2 C1.Sd�1/,

ku.�; �/ � u.�; �C.�; !.�; �; �///kG

� ku.�; �/ � vkG C kv � v.�C.�; !.�; �; �///kG

C kv.�C.�; !.�; �; �/// � u.�; �C.�; !.�; �; �///kG : (4.36)

The first term on the right-hand side of (4.36) can be arbitrarily small by choosing
appropriate v 2C1.Sd�1/. Due to (4.35), then also the third term is small (uniformly
in � ). For any such v fixed, clearly the second term converges to 0 as � !1. This
verifies (4.34).

Step III. We next show that, for any � 2 I and  2 C1c .Rd /,

kE˙.�/ k2G D h ; ı.HL � �/ i: (4.37)

Using for T > 0 the function �T from (1.5), we set

�T D 1 � �T ; �0T D �T
�1�0.j � j=T /: (4.38)

Introducing also the notation � D RL.�˙ i0/ , we then write

2�h ; ı.HL � �/ i D ˙2 Imh.HL � �/�; �i D ˙2 lim
T!1

Imh.HL � �/�; �T �i:

By an integration by parts, this leads to

2�h ; ı.HL � �/ i D � lim
T!1

Reh Ox � p�; �0T �i

D � lim
T!1

Reh Ox � 
�; �0T �i � lim
T!1

hjr�1SLj�; �
0
T �i:

(4.39)

The contribution from the first term on the right-hand side of (4.39) vanishes due
to (1.21c). As for the second term we rewrite the integral in the standard spherical
coordinates, substitute (4.31) and conclude that

� lim
T!1

hjr�1SLj�; �
0
T �i D 2�kE

˙.�/ k2G ;

hence the claim (4.37) for  2 C1c .Rd /.
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Step IV. Now, we prove assertions (1)–(3). Identity (4.37) immediately implies that
E˙.�/ extend continuously as B ! G , and the extensions obviously satisfy (4.31)
and (4.37). This verifies assertions (1) and (3). To see the joint continuity of the
morphism E˙W I � B ! G , we let �; � 2 I and  ; ' 2 B. We take another � 2
C1c .Rd /, and split

kE˙.�/ �E˙.�/'kG

� kE˙.�/ �E˙.�/�kG C kE
˙.�/� �E˙.�/�kG

C kE˙.�/� �E˙.�/'kG

� h � �; ı.HL � �/. � �/i
1=2
C kE˙.�/� �E˙.�/�kG

C h� � '; ı.HL � �/.� � '/i
1=2:

By the locally uniform boundedness of RL.�˙ i0/ 2 L.B;B�/, the first and third
terms on the right-hand side above can be arbitrarily small (uniformly in the spectral
parameter) if we choose  ;', and � close to each other. For such a fixed �, the second
term can be arbitrarily small if � and � are close. This is easily seen using formula
(4.33a) and the continuity of D˙.�/� recorded in Step I. Hence, (2) is verified.

4.3.2. Construction in general. Now, we prove Theorem 1.5 and Corollary 1.8. We
implement the effects from VS C q by the second resolvent identities

R.�˙ i0/ D RL.�˙ i0/.1 � .VS C q/R.�˙ i0// 2 L.B;B�/: (4.40)

Proof of Theorem 1.5 (1) and (2). Take the function †L from Lemma 4.12 with U D
Sd�1, and we define F˙.�/ 2 G for any .�;  / 2 I �B as

F˙.�/ D e�i‚L.�;�/E˙.�/.1 � .VS C q/R.�˙ i0// ; (4.41)

where
‚L.�; !/ D †L.�; �C.�; !//I �C.�; �/ D !C.�; �/

�1:

Then, we can deduce (1.10) by (4.40), (4.41), and (4.31), verifying assertion (1). As
for (2), note that the mappings

I �B ! B; .�;  / 7! .1 � .VS C q/R.�˙ i0// 

are continuous thanks to Theorem 3.17. Then, assertion (2) is clear from Lemmas 4.10
and 4.12 and Proposition 4.14.

To prove assertions (3) and (4) in Theorem 1.5 we will use the Sommerfeld unique-
ness for H , or a characterization of the limiting resolvents R.�˙ i0/. The following
version of the property is almost a direct consequence from Theorem 1.24 and (4.40),
cf. [1, 14]; however, let us present it for completeness of the paper.
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Proposition 4.16. Let � 2 I ,  2 B, and � 2 B�. Then, � D R.�˙ i0/ holds if
and only if both of the following assertions hold:

(1) � solves the Helmholtz equation .H � �/� D  in the distributional sense;

(2) � satisfies the outgoing/incoming radiation condition 
k� 2 B�0 .

Remarks 4.17. (1) Here, 
k is defined by (1.20) with respect to S D SL. In the pro-
position we can equally well use the more natural 
k defined by (1.20) with respect to
the general S , or in fact 
k given in terms of the expression S D S0 D

p
2�jxj.

(2) For  D 0, the above result implies the (sharp) version of a Rellich theorem:
if � 2 B�0 solves .H � �/� D 0, then � D 0.

Proof. The necessity is clear from (4.40), (4.1a), and (1.21a). Thus, it remains to
prove the sufficiency. Assume 4.16 (1) and (2), and set

�0 D � �R.�˙ i0/ 2 B�:

Then by (4.40), (4.1a), and (1.21a), �0 satisfies

.H � �/�0 D 0; 
k�
0
2 B�0 :

We can further verify �0 2 B�0 . Using a notation similar to (4.38),

�T D 1 � �.�1SL=T /; �0T D �T
�1�0.�1SL=T /;

we have
2 Im.�T .H � �// D ˙jr�1SLj

2�0T C Re.�0T 
k/:

Hence,
0 � �h�0; jr�1S j

2�0T �
0
i � ˙Reh�0; �0T 
k�

0
i:

By letting T !1, it follows that indeed �0 2 B�0 .
Since H does not have positive eigenvalues, it neither has generalized eigenfunc-

tions with positive eigenvalues in B�0 , see [1, Theorem 1.4], and we certainly obtain
that �0 D 0. Hence, � D R.�˙ i0/ .

The Sommerfeld uniqueness provides the following useful representations. We
recall (4.30), and we define, for any � 2 C1.Sd�1/,

 
SL
˙
Œ��.x/ D  

SL
˙
Œ��.�; x/ D .H � �/�

SL
˙
Œ��.�; x/ D .H � �/�

SL
˙
Œ��.x/:

Proposition 4.18. Let .�; �/ 2 I � C1.Sd�1/. Then

�
SL
˙
Œ�� 2 B�; 
k�

SL
˙
Œ�� 2 B�0 ;  

SL
˙
Œ�� 2 B: (4.42a)
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Moreover,
�
SL
˙
Œ�� D R.�˙ i0/ SL

˙
Œ�� (4.42b)

and
F˙.�/�.e�i‚L.�;�/�/ D ˙

1

2� i
.�
SL
˙
Œ�� �R.�� i0/ SL

˙
Œ��/: (4.42c)

Proof. The first inclusion from (4.42a) is obvious. To prove the last one, we use (1.6)
to rewrite it for jxj � 2R as

 
SL
˙
Œ�� D

.2�/1=2

2.2�/1=4
r�.d�1/=2e˙iSL

�
p2 ˙ 2.rSL/ � p

C i.d � 1/r�1.rr/ � p � i.�SL/

˙ i.d � 1/r�1.rr/ � .rSL/

C
.d � 1/.d � 3/

4
r�2 C 2.VS C q/

�
�:

Noting that

.rSL/ � p D ..rSL/ � .rr//.rr/ � p C .r.SL �
p
2�r// � .1 � .rr/˝ .rr//p;

.rr/ � p� D 0; p� D O.r�1/

and using Theorem 1.3, we obtain the last inclusion of (4.42a). The second one can
be verified similarly.

Now, (4.42b) follows from (4.42a) and Proposition 4.16, and it remains to verify
(4.42c). We can write, for any  2 C1c .Rd /,

h ;F˙.�/�.e�i‚L.�;�/�/i D hF˙.�/ ; e�i‚L.�;�/�iG

D
.2�/1=2

2�
lim
T!1

hR.�˙ i0/ ; �0T �
SL
˙
Œ��i;

where

�0T D T
�1�0

�
jxj

T

�
;

cf. (4.38). We use Theorem 1.3 to proceed as

h ;F˙.�/�.e�i‚L.�;�/�/i D ˙
1

2�
lim
T!1

hR.�˙ i0/ ;Re..r�T / � p/�
SL
˙
Œ��i

D ˙
1

2� i
lim
T!1

hR.�˙ i0/ ; ŒH � �; 1 � �T ��
SL
˙
Œ��i

D ˙
1

2� i
h ; �

SL
˙
Œ�� �R.�� i0/ SL

˙
Œ��i:

This implies (4.42c).
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Proof of Theorem 1.5 (3) and (4). To prove the first identity of (3), it suffices to show
that, for any � 2 I , � 2 G and  2 C1c .Rd /,

h.H � �/F˙.�/��;  i D 0: (4.43)

However, by Proposition 4.16, we have

R.�˙ i0/.H � �/ D  2 C1c .Rd /;

so that
F˙.�/.H � �/ D 0:

Thus, (4.43) follows. On the other hand, by (4.41), Proposition 4.14, and (4.40), we
have, for any  2 B,

kF˙.�/ k2G D h.1 � .VS C q/R.�˙ i0// ;

ı.HL � �/.1 � .VS C q/R.�˙ i0// i

D h ; ı.H � �/ i:

This implies the second identity of (3).
To prove (4), we use (4.42b). In fact, along with (1.10) and Lemma 4.12, it says,

for any .�; �/ 2 I � C1.Sd�1/,

F˙.�/ 
SL
˙
Œ�� D e�i‚L.�;�/� (4.44)

or e�i‚L.�;�/C1.Sd�1/ � F˙.�/B � G . Hence, we obtain assertion (4).

Proof of Corollary 1.8. The existence of the wave operators F˙.�/ is already shown
in Theorem 1.5. Next, by Theorem 1.5 (3) and (4), the scattering matrix S.�/ is defined
at least on a dense subspace of G , and in fact it preserves the norm and maps onto a
dense set. Therefore, S.�/ extends uniquely to a unitary operator on G .

Finally, we are left with the strong continuity. By (1.11) and (4.44), it follows that,
for any � 2 C1.Sd�1/,

FC.�/ SL
� Œ�� D S.�/F �.�/ SL

� Œ�� D S.�/ei‚L.�;�/�: (4.45)

Note that the above left-hand side is continuous in � 2 I , and so is the right-hand
side. Now, we fix any � 2 G and � 2 I , and, for any " > 0, choose � 2 C1.Sd�1/
and ı > 0 such that, for any � 2 .� � ı; �C ı/,

k� � ei‚L.�;�/�kG < ":

Then, by the unitarity of the scattering matrix, for any � 2 .� � ı; �C ı/,

kS.�/� � S.�/�kG � kS.�/.� � ei‚L.�;�/�/kG C kS.�/ei‚L.�;�/� � S.�/ei‚L.�;�/�kG

C kS.�/.ei‚L.�;�/� � �/kG

< 2"C kS.�/ei‚L.�;�/� � S.�/ei‚L.�;�/�kG :
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By letting ı > 0 be smaller if necessary, the above right-hand side is bounded by 3".
Thus, we obtain the desired strong continuity.

4.4. Generalized eigenfunctions

We next prove Theorem 1.10.

Proof of Theorem 1.10. We proceed in five steps.

Step I. We first show that, if � 2 E� and �˙ 2 G satisfy (1.12a), then (1.12c) holds.
For that, we first compute

lim
m!1

2�mk1m�k
2

D lim
m!1

2�mk1m.�
S
CŒ�C� � �

S
� Œ���/k

2

D
�

.2�/1=2

�
k�Ck

2
G C k��k

2
G

� lim
m!1

22�m Re
Z

Œ2m�1;2m/�Sd�1

e2iS.�;r!/��.!/�C.!/ drdA.!/
�
:

Here, the last limit vanishes. In fact, we can integrate by parts as

2mZ
2m�1

e2iS.�;r!/ dr D
1

2i
.@rS.�; r!//

�1e2iS.�;r!/
ˇ̌̌2m
2m�1

C
1

2i

2mZ
2m�1

.@rS.�; r!//
�2.@2rS.�; r!//e

2iS.�;r!/ dr;

and it does not contribute to the limit by the conditions of Theorem 1.5. Thus, we
obtain

k�Ck
2
G C k��k

2
G D

.2�/1=2

�
lim
m!1

2�mk1m�k
2: (4.46)

On the other hand, proceeding as in the proof of Proposition 4.18 and using in the last
step the integration by parts from above, we compute

0 D lim
T!1

h�; iŒH � �; 1 � �T ��i

D � lim
T!1

h�;Re..rr/ � p/�0T �i

D � lim
T!1

h�SCŒ�C� � �
S
� Œ���;Re..rr/ � p/�0T �i

D �.2�/1=2 lim
T!1

h�SCŒ�C�C �
S
� Œ���; �

0
T �i

D 2�.k��k
2
G � k�Ck

2
G /:

In combination with (4.46), this verifies (1.12c).
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Step II. Here we prove the uniqueness asserted in (1). Suppose �0 2 E� and � 0
˙
2 G

also satisfy (1.12a). Then we have

.� � �0/ � �SCŒ�C � �
0
C�C �

S
� Œ�� � �

0
�� 2 B�0 : (4.47)

If � D �0, it follows that �˙ D � 0˙ by the result of Step I. On the other hand, if either
of �˙ D � 0˙ hold, then we have �� D � 0�, respectively, again by the result of Step I.
This and (4.47) imply � � �0 2 B0, but then it follows that � � �0 D 0 thanks to
Remark 4.17 (2). Thus, we obtain the uniqueness.

Step III. Here we complete assertions (1) and (2). Note that, for any � 2 G ,

F˙.�/�� �
1

2� i
.�S˙Œ�� � �

S
�ŒS.�/

�1��/ 2 B�0 : (4.48)

In fact, by (4.42c), (1.10), (1.11), and (4.44) (the latter applied as in (4.45)), we have,
for any � 2 C1.Sd�1/,

F˙.�/�.e�i‚L.�;�/�/�
1

2� i
.�S˙Œe

�i‚L.�;�/�� � �S�ŒS.�/
�1e�i‚L.�;�/��/ 2 B�0 ;

and then – by density of e�i‚L.�;�/C1c .Rd / � G and the continuity of F˙.�/�, �S
˙

,
and S.�/˙1 – we obtain (4.48). Now, if either of �˙ 2 G is given, then the vectors
� 2 E� and �� 2 G are given by (1.12b), respectively, and obviously satisfy (1.12a),
thanks to (4.48). By the uniqueness, from Step II we are done with the case where
either of �˙ 2 G is given first.

Next, let � 2 E� be given first. By the above arguments and Step II, it suffices to
show there exist �˙ 2 G satisfying � D 2� iF˙.�/��˙. For each T � 1, we can find
�˙;T 2 G such that, for any � 2 G ,

h�; �˙;T iG D ˙
.2�/1=2

2�
h�S˙Œ��; �

0
T �i:

Obviously, such �˙;T 2 G are uniformly bounded for T � 1, and we can choose
weakly convergent subsequences .�˙;Tn/n2N , cf. [25, Theorem 1, p. 126]. Denote the
weak limits by �˙ 2 G . Then, for any  2 C1c .Rd /, we compute

h ;F˙.�/��˙i D hF
˙.�/ ; �˙iG

D ˙
.2�/1=2

2�
lim
n!1
h�S˙ŒF

˙.�/ �; �0Tn�i

D ˙
.2�/1=2

2�
lim
n!1
hR.�˙ i0/ ; �0Tn�i:
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Then, as in the proof of Proposition 4.18, we use Proposition 4.16, Theorem 1.3, and
the assumption � 2 E� to proceed as

h ;F˙.�/��˙i D
1

2�
lim
n!1
hRe..rr/ � p/R.�˙ i0/ ; �0Tn�i

D
1

2� i
lim
n!1
hR.�˙ i0/ ; ŒH � �; 1 � �Tn ��i

D
1

2� i
h ; �i:

Thus, we obtain that � D 2� iF˙.�/��˙. The assertions (1) and (2) are done.

Step IV. Here we prove (3). Note that the identities (1.12c) are already established in
Step I. Then, in combination with (1) and (2), we see that F˙.�/�W G ! E� � B�

are indeed bi-continuous. Hence, we obtain (3).

Step V. Finally, we prove (4). Since F˙.�/� are injective with closed ranges in B�

by (3), Theorem 1.5 (4) and Banach’s closed range theorem [25, Theorem p. 205]
imply that the ranges of F˙.�/ coincide with G . This, along with (3) and The-
orem 1.5 (3), in turn implies that the range of ı.H � �/ coincides with E�. Hence,
we are done.

4.5. Generalized Fourier transforms

We close this section with the proof of Theorem 1.12, which is rather routine thanks
to Theorem 1.5, see also [18, 22].

Proof of Theorem 1.12. We proceed in five steps.

Step I. We may let I be compact. In fact, if I is unbounded, decompose

I D
[
n2N

Œ�n; �nC1�I �1 < �2 < � � � < �n !1 as n!1;

and, supposing that the assertion holds true for compact intervals, we define

FI D
M
n2N

FŒ�n;�nC1�WHI !
zHI :

Then the assertion for I follows due to absence of positive eigenvalues for HI and
M� and closedness of HI and M�. Thus, we let I be compact in the following.

Step II. Let us construct the isometries F ˙WHI !
zHI . By Theorem 1.5 and Stone’s

formula [20, Theorem VII.13], it follows that, for any  2 B,

kF ˙0  k
2
zHI
D

Z
I

kF˙.�/ k2G d�D
Z
I

h ;ı.H � �/ id�DkPH .I / k2HI : (4.49)



K. Ito and E. Skibsted 424

Since B � H is dense, also PH .I /B � HI is dense. Thus, for any  2 HI we can
choose a sequence . n/n2N on B such that PH .I / n !  in HI , and then we can
define

F ˙ D lim
n!1

F ˙0  n:

By (4.49), these limits are well defined and certainly define isometries as wanted.
To be used below, we note that, by construction, for any  2 B,

F ˙PH .I / D F ˙0  2 C.I IG /:

Step III. Next, we show F ˙HI D M�F ˙. Note all the involved operators are
bounded. Take any 2C1c .Rd / and � 2 I . If we then set 0 D .H � �/ , it follows
from Proposition 4.16 that  D R.�˙ i0/ 0. Consequently,

R.�˙ i0/H D �R.�˙ i0/ C  :

This implies that, for any  2 C1c .Rd /,

F ˙0 H DM�F ˙0  :

Similarly to Step I, for any  2 HI , we can choose a sequence . n/n2N in C1c .Rd /

such that PH .I / n !  , hence PH .I /H n ! HI , in HI . Then, it follows that

F ˙HI D lim
n!1

F ˙0 H n D lim
n!1

M�F ˙0  n DM�F ˙ :

The claim is verified.

Step IV. In order to complete (1) and (2), it remains to show that the morphisms
F ˙WHI !

zHI are surjective. It suffices to show that the ranges F ˙HI �
zHI are

dense. Take any „ 2 C.I I G / � zHI , and fix any " > 0. By the compactness, the
result from Step II and Theorem 1.10 (4) we can find a finite open covering I �
U1 [ � � � [ Un and  1; : : : ;  n 2 PH .I /B � HI such that for any i D 1; : : : ; n and
� 2 I \ Ui

k„.�/ � .F ˙ i /.�/kG < ":

If we let ¹�iºi be a partition of unity subordinate to ¹Uiºi , then, for any � 2 I ,


„.�/ � nX
iD1

�i .�/.F
˙ i /.�/





G
< ":

Since F ˙ i 2 C.I I G /, we can replace the above �i by some polynomials Q�i due
the Weierstrass approximation theorem with an additional " error. Then set

 D

nX
iD1

Q�i .H/ i 2 HI ;
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and we obtain, by the result from Step III, that, for any � 2 I ,

k„.�/ � .F ˙ /.�/kG < 2":

Hence, (1) and (2) are done.

Step V. Assertion (3) is clear from the definition of the generalized Fourier trans-
forms, see e.g. (4.41), and Lemma 4.12 with U D Sd�1. We are done.

5. Time-dependent scattering theory

We discuss the time-dependent scattering theory, proving Theorems 1.14, 1.17,
and 1.20. Our arguments are heavily dependent on the stationary theory from the pre-
vious sections in parallel to [17], however for 2-admissible potentials the low degree
of smoothness entails some complication. In Section 5.1, we prove Theorem 1.14 by
rigorously justifying the Legendre transform, and then we compare the asymptotics
of solutions to the time-dependent eikonal equation. With these results in place, we
show Theorem 1.17 in Section 5.2, hence obtaining the existence and covariance of
the time-dependent wave operators. Finally, Theorem 1.20, in particular including
asymptotic completeness, is shown by comparing the time-dependent wave operators
with the generalized Fourier transforms.

5.1. Time-dependent eikonal equation

Here, we prove Theorem 1.14. We justify the Legendre transform, investigating its
properties.

Proof of Theorem 1.14. Fix�;�0; I;R, and S D .2�/1=2jxj.1C s/ as in the assertion.
We first claim, letting R > 0 be larger if necessary, that for each .t; x/ 2 �� we can
find a unique critical point of the function (1.14) in the variable � 2 I . In fact, we can
compute

@� zK D .2�/
�1=2
jxj.1C s C 2�.@�s// � t;

@2�
zK D �.2�/�3=2jxj.1C s � 4�.@�s/ � 4�

2.@2�s//;
(5.1)

and thus, by Corollary 2.14, for sufficiently large R > 0,

.@� zK/.�
02=2; t; x/ �

��C �0
2

��1
jxj � t > 0; lim

�!1
.@� zK/.�; t; x/ D �t < 0;

and, for any � 2 I ,

.@2�
zK/.�; t; x/ � �

1

2
.2�/�3=2jxj < 0:
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This implies that there uniquely exists �c D �c.t; x/ 2 I such that

.@� zK/.�c; t; x/ D .2�c/
�1=2
jxj.1C s.�c; x/C 2�c.@�s/.�c; x// � t D 0: (5.2)

By the implicit function theorem, �c 2 C
l�1.��/. Now, we set

K D zK.�c; �; �/; (5.3)

and then we can easily see by (5.2) that

@tK D ��c; rxK D .rxS/.�c; �/; (5.4)

which verifies K 2 C l.��/ and (1.15). We have proven Theorem 1.14 (1).
Next, we prove assertion (2). For that, we claim for any k C j˛j � 1ˇ̌̌

@kt @
˛
x

�
�c �

x2

2t2

�ˇ̌̌
� C1t

�k
hxi���j˛j: (5.5)

In fact, note that (5.2) and Corollary 2.14 imply (uniformly in large R > 0)

c2t
�2x2 � �c � C2t

�2x2: (5.6)

Note also that �c D x2=2t2 for jxj � R; so, to show the bounds (5.5) and (1.16),
we can indeed assume that jxj > R. Then, by combining (5.2), Theorem 1.3, Corol-
lary 2.14, and (5.6), we obtainˇ̌̌

�c �
x2

2t2

ˇ̌̌
D
x2

2t2
js C 2�c.@�s/jj2C s C 2�c.@�s/j � C3hxi

�� : (5.7)

This shows the claim for k C j˛j D 0. For k C j˛j D 1, we compute the derivatives
of �c by the Leibniz rule applied to (5.2), equivalently written as

1 D
x2

2t2
��1c .1C s C 2�c@�s/

2:

In fact, we have, for k D 1 and j˛j D 0,

0 D �
x2

t3
��1c .1C s C 2�c@�s/

2

�
x2

2t2
.@t�c/�

�2
c .1C s � 4�c@�s � 4�

2
c@
2
�s/.1C s C 2�c@�s/;

and, for k D 0 and j˛j D 1,

0 D
�
@˛x
x2

2t2

�
��1c .1C s C 2�c@�s/

2

�
x2

2t2
.@˛x�c/�

�2
c .1C s � 4�c@�s � 4�

2
c@
2
�s/.1C s C 2�c@�s/

C
x2

t2
��1c .@˛xs C 2�c@�@

˛
xs/.1C s C 2�c@�s/:
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Possibly by takingR > 0 larger from the beginning (if necessary) and by using Corol-
lary 2.14, we can write, for k D 1 and j˛j D 0,

@t�c D �
2

t
�c.1C s C 2�c@�s/.1C s � 4�c@�s � 4�

2
c@
2
�s/
�1;

and, for k D 0 and j˛j D 1,

@˛x�c D
2t2

x2

�
@˛x
x2

2t2

�
�c.1C s C 2�c@�s/.1C s � 4�c@�s � 4�

2
c@
2
�s/
�1

C 2�c.@
˛
xs C 2�c@�@

˛
xs/.1C s � 4�c@�s � 4�

2
c@
2
�s/
�1:

The claim (5.5) follows from the above expressions, (5.7), and Theorem 1.3.
One can verify assertion (2) by (1.14), (5.3), (5.5), (5.4), and Theorem 1.3. While

the bounds (1.16) follow immediately unless kD 0 and j˛j D 2, the latter case requires
some other computations. We omit the details of proof for that case.

We next investigate the asymptotics of general solutions to (1.3b).

Lemma 5.1. Let �; T; ��;T , and K satisfy the assumption of Theorem 1.17, and
let KL be the Legendre transform of the function SL taken from Section 4.1 with
I D I�0 D Œ�

02=2;1/, �0 2 .0; �/, and l 0 > 1C 2=�. In addition, let y be the flow
associated with SL as in Section 4.2, and set

�.�; t; �/ D

tZ
0

jrSL.�; y.�; s; �//j
�2 ds:

Then, the following assertions hold.

(1) There exists the limit

„L.�; �/´ lim
t!1

.K.�.�; t; �/; y.�; t; �// �KL.�.�; t; �/; y.�; t; �///

taken locally uniformly in .�; �/ 2 J � Sd�1, where J D Œ�2=2;1/. In par-
ticular, if K1 also satisfies the assumption of Theorem 1.17, there exists the
limit

„.�; �/´ lim
t!1

.K1.�.�; t; �/; y.�; t; �// �K.�.�; t; �/; y.�; t; �///

taken locally uniformly in .�; �/ 2 J � Sd�1.

(2) The quantities in (1) can also be computed as the limits

ˆL.�; !/´ „L.�; �C.�; !//

D lim
�!1

.K.�; .2�/1=2�!/ �KL.�; .2�/
1=2�!//;
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ˆ.�; !/´ „.�; �C.�; !//

D lim
�!1

.K1.�; .2�/
1=2�!/ �K.�; .2�/1=2�!//;

both taken locally uniformly in .�; !/ 2 J � Sd�1.

Remark 5.2. The requirement l 0 > 1C 2=� (not used in the proof) will be needed in
the proof of Lemma 5.3, cf. Remark 4.3. The above function � should be considered
as the “physical time,” cf. Remark 4.5 (2).

Proof. We proceed in three steps.

Step I. The second assertion of (1) is clear from the first one, hence we only prove
the first assertion of (1). It suffices to show existence of the limits

‰.�; �/´ lim
t!1

.K.�.�; t; �/; y.�; t; �// � SL.�; y.�; t; �//C ��.�; t; �// (5.8a)

and

‰L.�; �/´ lim
t!1

.KL.�.�; t; �/; y.�; t; �// � SL.�; y.�; t; �//C ��.�; t; �//

(5.8b)
taken locally uniformly in .�;!/ 2 J �Sd�1. We can prove them in the same manner,
but it follows easily from the proof of (5.8a) that in fact

KL.�.�; t; �/; y.�; t; �// � SL.�; y.�; t; �//C ��.�; t; �/ D 0; (5.8c)

hence we discuss only (5.8a).
Note that all the arguments below are locally uniform in .�; �/ 2 J �Sd�1. Omit-

ting the arguments, and using (1.15), (4.3a), and (1.6), we can compute the t -derivative
for large t > 0 as

d
dt
.K � SL C ��/ D �

1

2
jrSLj

�2.rK � rSL/
2
� jrSLj

�2VS: (5.9)

The second term on the right-hand side of (5.9) is obviously integrable at infinity, and
thus it suffices to show that, for some ı > 0,

u´ .rK � rSL/
2
D O.t�1�ı/: (5.10)

For that, similarly to (5.9), we further differentiate it for large t > 0 as

1

2
jrSLj

2 d
dt
uD�.rK �rSL/.r

2K/.rK �rSL/� .rVS/ � .rK �rSL/: (5.11)

By (1.7), (1.16), and (4.1a), it follows that, for some (small) ı > 0 and (big) C1 > 0
and any large t > 0,

d
dt
u � �.2 � ı/t�1uC C1t

�2�ı :

This certainly implies (5.10). Thus, we are done with (1).
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Step II. To prove assertion (2), we discuss the following change of variables. We
claim that, for all large � > 0 and any .�; !/ 2 J � Sd�1, there exist N� and N� such
that

.�; .2�/1=2�!/ D .�. N�; t; N�/; y. N�; t; N�// with t D SL. N�; .2�/1=2�!/; (5.12a)

and that
lim
�!1

N�.�/ D � and lim
�!1

N�.�/ D �C.�; !/: (5.12b)

First, we solve, for fixed N� and N� , the equation

� D

tZ
0

jrSL. N�; y. N�; s; N�//j
�2 ds;

for t D t .�; N�; N�/ (with a C 1-dependence by the implicit function theorem). For fixed
large � , we then need to solve the equation

.2�/1=2! D
y. N�; t; N�/

�
µ F� . N�; N�/ (5.13)

for N� and N� . This can be done by using the inverse function theorem in a version
applicable to parameter-dependent problems (note that � is the relevant parameter),
for example the version stated as [15, Theorem D.1]. We need to verify that the deriv-
ative of F� at z0´ .�; �C.�; !// is non-degenerate near infinity.

First, note that

F1. N�; N�/´ lim
�!1

F� . N�; N�/ D .2 N�/
1=2!C. N�; N�/ in a neighborhood of z0;

in particular that
F1.z0/ D .2�/

1=2!:

Next, note that

!C. N�; N�/ D

1Z
0

@

@s
!. N�; s; N�/ ds C N� and @ N�!C.

N�; N�/ D

1Z
0

@ N�@s!.
N�; s; N�/ ds:

By the latter formula, the representation (4.15), and Corollary 2.14, it follows that
@ N�!C.

N�; N�/ is small when the parameter R is sufficiently big. When combined with
(4.23), this leads to the conclusion that the map . N�; N�/!F1. N�; N�/D .2 N�/

1=2!C. N�; N�/

is non-degenerate C 1 near z0 (uniformly in large R).
Now, to solve (5.13), by applying [15, Theorem D.1], all that remains to be seen

is that the limits
lim
�!1

@ N�; N�F� .
N�; N�/
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exist, uniformly in a neighborhood of z0. We skip the details of the verification of this
uniform convergence, and conclude the solvability of (5.13). This justifies (5.12a)
and (5.12b).

Step III. Now, we prove the first assertion of (2) (this implies the second one). We
proceed partly in parallel to the proof of Lemma 4.12 (2). It suffices to show that, with
notation from Step I,

‰.�; �C.�; !// �‰L.�; �C.�; !// D lim
�!1

.K.�; .2�/1=2�!/ �KL.�; .2�/
1=2�!//;

locally uniformly in .�;!/ 2 J � Sd�1. Take any compact subset L� J � Sd�1. Let
. N�; N�/ D . N�.�/; N�.�// be the change of variables from Step II. Using the locally uni-
form limit (4.28) along with (5.12a) and (5.12b), and noting that � !1 corresponds
to t !1, it follows that, for some compact subset L0 � J � Sd�1,

lim
�!1

sup
.�;!/2L

ˇ̌
‰.�; �C.�; !// �‰L.�; �C.�; !//

�K.�; .2�/1=2�!/CKL.�; .2�/
1=2�!/

ˇ̌
D lim
�!1

sup
.�;!/2L

ˇ̌
‰. N�; �. N�; .2�/1=2�!// �‰L. N�; �. N�; .2�/

1=2�!//

�K.�; .2�/1=2�!/CKL.�; .2�/
1=2�!/

ˇ̌
D lim
t!1

sup
. N�; N�/2L0

ˇ̌
‰. N�; �. N�; y. N�; t; N�/// �‰L. N�; �. N�; y. N�; t; N�///

�K.�. N�; t; N�/; y. N�; t; N�//CKL.�. N�; t; N�/; y. N�; t; N�//j

D lim
t!1

sup
. N�; N�/2L0

j‰. N�; N�/ �‰L. N�; N�/

�K.�. N�; t; N�/; y. N�; t; N�//CKL.�. N�; t; N�/; y. N�; t; N�//j

D 0:

Thus, we are done.

5.2. Time-dependent wave operators

Here we prove Theorems 1.17 and 1.20.

5.2.1. Existence

Proof of Theorem 1.17. We first prove the existence of the strong limits (1.17) by
the familiar Cook–Kuroda method. Thanks to a density argument based on uniform
boundedness of U˙.t/ and e˙itH in t > T , it suffices to show that, for any h 2
C1c .RC � Sd�1/ with supp h � J � Sd�1, there exist the limits

lim
t!1

e˙itHU˙.t/h: (5.14)
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For that, we show integrability of


 @
@t

e˙itHU˙.t/h





H
D




� @
@t
˙ iH

�
U˙.t/h





H

at infinity. Using the Hamilton–Jacobi equation (1.3b) and letting !0 D .!02; : : : ; !
0
d
/

be any local coordinates of Sd�1, we compute� @
@t
˙ iH

�
U˙.t/h D e�3� i=4t�1jxj1�d=2e˙iK

�

h
�

i
2
x2t�4.@2�h/�

i
2
jxj�2.�Sd�1h/C .@i!

0
˛/.@iK/.@˛h/

C .�t�3x2 � it�2 C t�2x � .rxK//.@�h/

C

�
�t�1 ˙ i

d

4

�
1 �

d

2

�
jxj�2 ˙ iq

C

�
1 �

d

2

�
jxj�2x � .rxK/C

1

2
.�xK/

�
h
i
:

By the assumption on K and the support property of h, the last expression is of order
t�1�min¹";�º with values in H . Hence, the limits (5.14) exist. Since U˙.t/ and e˙itH

are isometries, it is clear that so are W ˙. By the above computation, we easily see
that W ˙M� � HW

˙. In particular, the mapping property stated in the last part of
Theorem 1.17 (1) follows.

Assertion (2) follows readily from (1) and Lemma 5.1 (2).

We present alternative representations of W ˙, which will be useful in the proof
of their completeness. See also [17, Lemma 3.3].

Lemma 5.3. In the setting of Lemma 5.1, define, for any h 2 C1c .RC � Sd�1/, with
supp h � J � Sd�1 the evolutions

. zU˙L .t/h/.x/ D .˙2� i/�1
1Z
0

e�i�t�
SL
˙
Œh.�; �/�.�; x/ d�; .t; x/ 2 RC �Rd ;

where �SL
˙
Œ�� is from (4.30). Then, for each t > 0, it follows that zU˙L .t/h 2 H .

Moreover,
W ˙e�iˆLh D lim

t!1
e˙itH zU˙L .t/h:

Remark 5.4. The above evolution map zU˙L .t/motivates our free comparison dynam-
icsU˙.t/. In fact, due to the stationary phase theorem, the leading term is very similar
to that of U˙.t/, see the proof below. Note, however, that we need higher order deriv-
atives of the phase function. This is why we substitute SL for S in zU˙L .t/. The error
is compensated by the factor e�iˆL .

Proof. We proceed in six steps.
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Step I. To show that zU˙L .t/h 2 H , we introduce

zKL.�; t; x/ D SL.�; x/ � �t;

cf. (1.14). First, fix any t > 0, and letR0 > 0 be sufficiently large. Then, by the expres-
sions (5.1) corresponding to zKL, we have, for any .�; Ox/ 2 supp h with jxj > R0,

@� zKL.�; t; x/ � c1hxi; j@
2
�
zKL.�; t; x/j � C1hxi: (5.15)

Thus, we can integrate by parts as

zU˙L .t/h D .2�/
�1=2�jxj�.d�1/=2

1Z
0

e˙i zKL@�Œ.@� zKL/
�1.2�/�1=4h� d�; (5.16)

which implies, due to (5.15) again, that, for any jxj > R0,

j. zU˙L .t/h/.x/j � C2hxi
�.dC1/=2:

Since zU˙L .t/h is uniformly bounded for jxj � R0, we conclude that zU˙L .t/h 2 H .

We prove the second assertion in the remaining steps.

Step II. By the uniform boundedness of e˙itH and Lemma 5.1, it suffices to show that
as t !1

.U˙L .t/h/.x/ D e�3� i=4t�1jxj1�d=2e˙iKL.t;x/h.x2=.2t2/; Ox/C o.t0/ in H :

Recall that SL is defined for I D Œ�02=2;1/ as in Lemma 5.1. Let �00 D .�0 C�/=2,
and decompose RC �Rd D ��00 [�c�00 and, correspondingly,

. zU˙L .t/h/.x/ D 1��00 .t; x/.
zU˙L .t/h/.x/C 1�c�00

.t; x/. zU˙L .t/h/.x/: (5.17)

Here, let us prove that the second term of (5.17) is negligible. In fact, using (5.1)
for zKL, we can estimate, for any � � �2=2 and .t; x/ … ��00 with sufficiently large t ,

@� zKL.�; t; x/ � �c2t; j@
2
�
zKL.�; t; x/j � C3hxi:

This allows us to integrate by parts in the same way as for (5.16) and deduce the
pointwise bound

j1�c
�00
.t; x/. zU˙L .t/h/.x/j � C4t

�1
hxi�.d�1/=2:

By integration, we then conclude the norm-bound

1�c
�00
zU˙L .t/h D O.t�1=2/ in H :
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Step III. As for the first term of (5.17), we decompose it as follows. Using that
�00 > �0, we can for any .t; x/ 2 ��00 find a unique critical point �L;c D �L;c.t; x/

of zKL. Then, take any �0 2 C1c .R/ such that �0.s/D 1 for jsj � 1=2 while �0.s/D 0
for jsj � 1, and set

�.�; t; x/ D �0.hxi
ı.� � �L;c//;

1

2
�
�

6
< ı <

1

2
�

1

4.l 0 � 1/
:

We recall that l 0 is the fixed integer obeying the condition l 0 > 1C 2=�. Obviously,
we can find ı fulfilling these constraints, henceforth taken fixed. We now decompose

1��00
zU˙L .t/h D �i.2�/�1=21��00�jxj

�.d�1/=2

1Z
0

.�C .1 � �//e˙i zKL.2�/�1=4h d�

µ  1.t; x/C  2.t; x/:

Step IV. The second term  2 is negligible. In fact, for any k D 2; : : : ; l 0, sufficiently
large t , and .�; t; x/ 2 supp.1� �/ with .�; Ox/ 2 supph, .t; x/ 2 ��00 , we can bound

j@� zKL.�; t; x/j � c2hxi
1�ı ; j@k�

zKL.�; t; x/j � C3hxi
1C��m.k/Ck :

This and the lower bound ı > 1=2� �=6 > 1=2� �=2 imply that each time we integ-
rate  2 by parts as in (5.16) we at least gain a decay of order hxi�1C2ı . Hence, by
doing the integration by parts in total .l 0 � 1/ times, we can conclude that

 2 D o.t
0/ in H :

Step V. It remains to investigate  1. Let us expand the phase function as

zKL.�; t; x/ D KL.t; x/C
1

2
A.t; x/.� � �L;c/

2
C B.�; t; x/.� � �L;c/

3

with

A.t; x/ D .@2�SL/.�L;c ; x/;

B.�; t; x/ D
1

2

1Z
0

.1 � �/2.@3�SL/.�L;c C �.� � �L;c/; x/ d�:

We substitute the expression into  1, and split the integral as

 1 D �i.2�/�1=21��00�jxj
�.d�1/=2e˙iKL

�

�
.2�L;c/

�1=4h.�L;c ; �/

1Z
0

e˙iA.���L;c/
2=2� d�

C

1Z
0

e˙iA.���L;c/
2=2�Œe˙iB.���L;c/

3

.2�/�1=4h � .2�L;c/
�1=4h.�L;c ; �/� d�

�
:
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Let us denote the last integral by T , and show that its contribution is negligible. By
an integration by parts, we can rewrite it as

T D �

Z
j���L;c j�hxi�ı

� �Z
�L;c

e˙iA.�0��L;c/
2=2 d�0

�

�
@

@�
�Œe˙iB.���L;c/

3

.2�/�1=4h � .2�L;c/
�1=4h.�L;c ; �/� d�:

Then, by the van der Corput lemma, cf. [24, p. 332], and the assumed support property
of h, it follows that on supp.1��00�/

T D O.hxi�1=2�ı
0

/; ı0 D ı �
1

2
C
�

6
;

so that indeed

 1 ˙ i.2�/�1=21��00 jxj
�.d�1/=2e˙iKL.2�L;c/

�1=4h.�L;c ; �/

1Z
0

e˙iA.���L;c/
2=2� d�

D o.t0/

as a vector in H .

Step VI. Finally, we remove � from the last integral with another admissible error,
and then implement the Gaussian integral to obtain

 1 D e�i3�=4
jxj�.d�1/=2e˙iKL jAj�1=2.2�L;c/

�1=4h.�L;c ; �/C o.t
0/ in H :

Thus, using Lemma 5.1 and

A D �.2�L;c/
�3=2
jxj CO.hxi1�� /; �L;c D x

2=.2t2/CO.hxi�� /;

we obtain the second assertion of the lemma.

5.2.2. Asymptotic completeness. Now, we are ready to prove the first part of The-
orem 1.20.

Proof of Theorem 1.20 (1). It suffices to show the identity (1.19) since then the
asymptotic completeness is obvious by the unitarity of F ˙. Let SL be defined for
an interval I�0 D Œ�02=2;1/, 0 < �0 < �, sufficiently big to include the given closed
interval I . Then, for any h 2 C1c .RC � Sd�1/ with supp h � .I \ J / � Sd�1 and
for any  2 C1c .Rd /, we can compute, by Lemma 5.3,

h ;W ˙e�iˆLhiH D lim
"!0C

1Z
0

"e�"t h ; e˙itH zU˙L .t/hiH dt

D lim
"!0C

.˙2� i/�1
1Z
0

� 1Z
0

h"e�it.H���i"/ ; �
SL
˙
Œh.�; �/�iH d�

�
dt:
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By Fubini’s theorem and (4.42c), we can further proceed as

h ;W ˙e�iˆLhiH

D lim
"!0C

.˙2� i/�1
1Z
0

h�i"R.�˙ i"/ ; �SL
˙
Œh.�; �/�iH d�

D lim
"!0C

.˙2� i/�1
1Z
0

h � .H � �/R.�˙ i"/ ; �SL
˙
Œh.�; �/�iH d�

D lim
"!0C

.˙2� i/�1
1Z
0

h ; �
SL
˙
Œh.�; �/� �R.�� i"/ SL

˙
Œh.�; �/�iH d�

D

1Z
0

h ;F˙.�/�.e�i‚L.�;�/h.�; �//iH d�

D

1Z
0

he�i‚L.�;�/F˙.�/ ; h.�; �/iG d� D he˙i‚LF ˙ ; hi zH :

This implies, as operators HI\J !
zHI\J ,

.W ˙/� D e˙i.‚L�ˆL/F ˙:

We have proven (1.19) with ‰ D ˆL �‚L, and we are done with (1).

To prove the remaining assertion (2), we use an approximation argument to be
studied in the following. Fix any � 2 .0; �/ and ı 2 .0; � � �/, and let " D 1=j for
any j 2 N. For these parameters �; ", and ı used as inputs in Lemma 4.1 (2) we
decompose V , accordingly and the denote the decomposition as

V D VS;j C VL;j :

Lemma 5.5. Let � > �0 > 0, I D Œ�02=2;1/, and J D Œ�2=2;1/, and fix a suffi-
ciently large R > 0. Let S; SL;j be determined as in Theorem 1.3 for V; VL;j , and let
K;KL;j be their Legendre transforms as in Theorem 1.14, respectively. Then,

lim
j!1

‚L;j D 0 locally uniformly on I � Sd�1 (5.18)

with ‚L;j being the limit from Lemma 4.12 for S and SL;j , and

lim
j!1

ˆL;j D 0 locally uniformly on J � Sd�1 (5.19)

with ˆL;j being the limit from Lemma 5.1 for K and KL;j .
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Remark 5.6. In the construction of S; SL;j ; K;KL;j we can use the same R, since it
depends only on sizes of zeroth to second derivatives of V; VL;j , which are uniformly
estimated due to Lemma 4.1 (2). See the proofs of Theorems 1.3 and 1.14.

Proof. We proceed in two steps.

Step I. To prove (5.18), we can partially mimic the proof of Lemma 4.12. For details
of the following computations, see the proof there, though one should note that S and
SL;j now are more specific than before.

Let yj be the flow from Section 4.2 associated with SL;j ; we discuss the limit

†L;j .�; �/´ lim
t!1

.S.�; yj .�; t; �// � SL;j .�; yj .�; t; �///:

Omitting the argument, we can compute its derivative in t as

d
dt
.S � SL;j / D �

1

2
jrSL;j j

�2.rS � rSL;j /
2
� jrSL;j j

�2�RVS;j : (5.20)

Hence, we are led to consider

u D .rS � rSL;j /
2:

Its t -derivative is computed as

1

2
jrSL;j j

2 d
dt
u

D �.rS � rSL;j / � .r
2S/.rS � rSL;j / � .r�RVS;j / � .rS � rSL;j /;

and thus we can deduce that for any (small) ı > 0 there exist C1; T > 0, independent
of j 2 N, such that

d
dt
u � �.2 � ı/t�1uC C1j

�1t�2�ı I t � T:

By integration, we then deduce that

u.t/ � tı�2T 2�ıu.T /C C1j
�1t�1�ı I t � T: (5.21)

By another integration, (5.20) and (5.21) imply a uniform bound

jS � SL;j j � j.S � SL;j /.T /j C C2T u.T /C C3j
�1:

On the other hand, by integrating a version of (4.26) from t D 0 (where u vanishes)
to t D T (for fixed T ), we deduce that

j.S � SL;j /.T /j C C2T u.T / � C4j
�1=2:
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(In fact, the bound holds with j�1=2 replaced by j�1, if we invoke the variational
principle of Lemma 2.5 to bound the first term.)

We conclude that, for large t ,

jS � SL;j j � C5j
�1=2:

In particular, j†L;j j; j‚L;j j � C3j
�1=2, and (5.18) follows.

Step II. The proof of (5.19) is similar. We consider versions of (5.8a) and (5.8b) using
versions of (5.8c) and (5.11), omitting here the details.

Proof of Theorem 1.20 (2). LetK be the Legendre transform of S from Theorem 1.3,
as given in (2). Note that the phase corrections e�i‰ D e˙i.‚L�ˆL/ are independent of
choice of VL since so are F ˙ and W ˙. Thus, it suffices to choose VL;j such that the
associated difference‚L;j �ˆL;j converges to 0 as j !1. However, this obviously
follows from Lemma 5.5.
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