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Abstract. It is well-known that under suitable hypotheses, for a sequence of solutions of the
(simplified) Ginzburg–Landau equations ��u" C "�2.ju"j2 � 1/u" D 0, the energy and vorticity
concentrate as "! 0 around a codimension 2 stationary varifold – a (measure-theoretic) minimal
surface. Much less is known about the question of whether, given a codimension 2minimal surface,
there exists a sequence of solutions for which the given minimal surface is the limiting concen-
tration set. The corresponding question is very well-understood for minimal hypersurfaces and the
scalar Allen–Cahn equation, and for the Ginzburg–Landau equations when the minimal surface is
locally area-minimizing, but otherwise quite open.

We consider this question on a 3-dimensional closed Riemannian manifold .M; g/, and we
prove that any embedded nondegenerate closed geodesic can be realized as the asymptotic energy/
vorticity concentration set of a sequence of solutions of the Ginzburg–Landau equations.

Keywords. 3d Ginzburg–Landau, geodesics, unstable critical points

1. Introduction

In this paper we construct certain geometrically meaningful solutions of the Ginzburg–
Landau equations

��u" C
1

"2
.ju"j

2
� 1/u" D 0 (1.1)

for u" W M ! C, where .M; g/ is a closed n-dimensional Riemannian manifold, with
n D 3 in our main results. Such solutions are critical points of the Ginzburg–Landau
functional
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If M is simply connected, then given a sequence .u"/ of solutions of (1.1) satisfying the
energy bound

E".u"/ � C; (1.2)

the rescaled energy density jlog "j�1e".u"/ is known to concentrate as "! 0, after pos-
sibly passing to a subsequence, around an .n � 2/-dimensional stationary varifold – a
weak, measure-theoretic minimal surface. This is proved in an appendix in [33], follow-
ing earlier results in simply connected Euclidean domains, such as those in [5, 20, 22].
Similar but more complicated results hold when M is not simply connected; in this case,
the limiting energy measure may have a diffuse part, but any concentrated part must again
be an .n � 2/-dimensional stationary varifold.

In this paper we address a sort of converse question:

When can a given codimension 2 minimal surface be realized as the energy con-
centration set of a sequence of solutions of (1.1)?

A first answer is provided by Gamma-convergence results [1,15] that relate the Ginzburg–
Landau functional and, roughly speaking, the .n� 2/-dimensional area (with multiplicity)
of a limiting vorticity concentration set, where the vorticity associated to a wave func-
tion u, denoted Ju, is the 2-form defined by

Ju WD du1 ^ du2; where u D u1 C iu2 and u1; u2 are real-valued. (1.3)

(We will also sometimes refer to Ju as the Jacobian of u.) These results imply as a general
principle that one should be able to find solutions u" of (1.1) whose energy and vorticity
concentrate around a locally area-minimizing minimal surface of codimension 2. In the
Euclidean setting, specific instances of this general principle, for particular compatible
choices of boundary conditions on the minimal surface and the solutions u" of (1.1), have
been established in [1, 27, 31]. However, arguments based on Gamma-convergence are of
limited use for capturing the behaviour of nonminimizing critical points.

The corresponding question is also very well-understood for minimal hypersurfaces
and the Allen–Cahn equation, i.e. the scalar counterpart of (1.1); see for example [9, 18,
19, 28] among many others. Many of these results are based on gluing techniques and
elliptic PDE arguments, which can be used to construct a great variety of solutions and
establish detailed descriptions of them. These techniques seem to be hard to implement
for the Ginzburg–Landau equations in three or more dimensions.

A particularly basic case in which our question remains open concerns the Ginzburg–
Landau equations (1.1) on a smooth bounded domain � � R3 containing an unstable
geodesic with respect to natural boundary conditions, i.e. a line segment in�meeting @�
orthogonally at both ends, admitting perturbations that decrease the arclength quadratic-
ally, and satisfying a natural nondegeneracy condition.

In this situation one would like to prove the existence of a sequence .u"/ of solutions
of the Ginzburg–Landau equations, also with natural (Neumann) boundary conditions,
whose energy and vorticity concentrate around the given line segment. Such solutions
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would satisfy
lim
"!0

E".u"/ D L DW the length of the geodesic: (1.4)

Partial progress toward this goal was achieved in [16], which develops a general frame-
work for using Gamma-convergence to study convergence, not of critical points, but of
critical values, then uses this framework to prove the existence of solutions of (1.1), in the
situation described above, that satisfy (1.4), but without control over the limiting concen-
tration set. An example in the same paper (Remark 4.5) shows that the general framework
is too weak to characterize asymptotic behaviour of critical points – in this context, to
determine where the energy and vorticity concentrate. For this, more detailed information
about the sequence of solutions is needed.

The results of [16] were extended to the Riemannian setting in the Ph.D. thesis of
Jeffrey Mesaric [25] which, starting with a nondegenerate unstable closed geodesic on a
closed, oriented 3-dimensional Riemannian manifold .M;g/, uses machinery from [16] to
construct solutions to (1.1) satisfying (1.4). Again, this result does not establish whether
the energy of the solutions concentrates along the geodesic.

In the main result of this paper, we fill in this gap in the Riemannian case. Our main
result is the following theorem.

Theorem 1.1. Let .M; g/ be a closed oriented 3-dimensional Riemannian manifold, and
let 
 be a closed, embedded, nondegenerate geodesic of length L. Assume in addition that

 D @S for some 2-dimensional orientable submanifold S of M .

Then there exists "1 > 0 such that for every 0 < " < "1, there is a solution u" of the
Ginzburg–Landau equations (1.1) such that

1

�

Z
M

' ^ Ju" !

Z



' for every smooth 1-form ' on M

and
1

�jlog "j

Z
M

� e".u"/!

Z



� dH1 for every � 2 C1.M/

as "! 0, where Hk denotes k-dimensional Hausdorff measure.

In fact, we will prove a slightly stronger result; see Theorem 5.1 for the full statement.
We briefly sketch the main ideas, not in the order in which they appear in the body

of the paper. Terminology such as ‘nondegenerate’ and ‘stationary varifold’ is defined in
Section 2 below.

� In Section 4 we show that for any ı > 0, there exists "0 > 0 such that for 0 < " < "0
and any � > 0, one can find a solution u" of the Ginzburg–Landau heat flow whose
vorticity is initially concentrated near the geodesic � WD 
.Œ0; L//, and such that

L � ı � E".u".�; t // � LC ı for all t 2 Œ0; ��:

See Proposition 4.1. This relies heavily on tools developed in the earlier papers [16,25].
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The main point of the proof of Theorem 1.1 is to strengthen this by showing that for
such solutions, if " and ı are small enough, the vorticity 1

�
Ju".�; t / does not stray very

far from � for any t 2 Œ0; ��.

� We carry this out in Section 5, using an argument by contradiction and passing to limits
to obtain a stationary 1-varifold that is close, but not equal, to the varifold associated
to � . This argument requires, among other ingredients, an extension to the Rieman-
nian setting of an important theorem of Bethuel, Orlandi, and Smets [6]. The extension
we need is stated in Theorem 2.3 and is proved in a companion paper [8]. The sta-
tionary varifold satisfies additional good properties, notably including lower density
bounds.

� To obtain a contradiction, we prove that this stationary varifold cannot exist. This
is the content of Proposition 3.1, which is a measure-theoretic strengthening of the
classical fact that a nondegenerate closed geodesic is isolated; it is the only closed
geodesic in a tubular neighborhood of itself. The proof relies, among other ingredi-
ents, on results from [3] about the structure of stationary 1-varifolds on Riemannian
manifolds.

We believe that something like Theorem 1.1 should be valid in much greater gener-
ality, including on higher-dimensional manifolds and on smooth, bounded subsets of Rn,
n � 3, with natural boundary conditions both for the geodesic � (or codimension 2 min-
imal surface, for n � 4) and the Ginzburg–Landau equation. Our proof does not adapt in
a straightforward way to either of these settings.

� Our strategy requires a sufficiently good version of Theorem 2.3. On a bounded set
� � Rn, even for n D 3, such a result is not known. If � is convex, a result of this
type for the scalar parabolic Allen–Cahn equation was proved several years ago in [26].
A similar strategy could probably be pursued for the Ginzburg–Landau heat flow, but
convexity is not a natural assumption for any analog of Theorem 1.1.

� Our reliance on results from [3] about stationary 1-varifolds would seriously complic-
ate any effort to adapt our argument to dimensions n � 4, where one would confront
stationary varifolds of dimension n � 2 � 2.

Remark added December 2022. This paper was posted on the arXiv in January 2021
and submitted in July 2021, after the completion of the companion paper [8]. In May
2022, we received a beautiful preprint of De Philippis and Pigati [11] that establishes a
generalization of Theorem 1.1 to manifolds of arbitrary dimension and that also treats
the Allen–Cahn equation and the Abelian Higgs model. The basic strategy follows that
developed here and in [16, 25], with new ingredients that include an extension of Pro-
position 3.1 valid in arbitrary dimension and codimension, and requiring significant new
ideas. The problem of establishing a counterpart of Theorem 1.1 on bounded subsets of
Rn, n � 3, or more generally on Riemannian manifolds with boundary, remains open, to
the best of our knowledge.
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2. Background and notation

2.1. Geometric notions regarding a nondegenerate geodesic

Throughout this document we useM or .M;g/ to denote a closed oriented 3-dimensional
Riemannian manifold where ‘closed’ means compact and without boundary. We let TM
be the bundle overM whose fibre TpM at p 2M is the tangent space toM at p. We use
the notation .�; �/g to denote the inner product on TM given by g. We also use j � jg to
denote the corresponding norm; we will omit mention of g when no confusion can arise.
We write volg to denote the Riemannian volume form associated to the metric g.

Throughout this paper, r0 denotes a positive number, to be fixed in Proposition 3.1,
which among other properties will be required to satisfy

r0 <
1
2
.injectivity radius of M/: (2.1)

Throughout, a central role will be played by a geodesic 
 that we take to be para-
metrized by arclength. That is, we will assume the existence of an injective map 
 W
R=LZ ! M whose range consists of a simple closed curve � WD ¹
.t/ W t 2 R=LZº
of length L such that

j
 0j D 1; r
 0

0
D 0 everywhere in R=LZ: (2.2)

We will insist that this curve � bounds an orientable smooth surface S� �M , i.e.

� D @S� : (2.3)

We introduce here the notation

d�.x/ WD dist.x; �/ WD inf
²Z 1

0

j�0.t/j dt W � 2 Lip.Œ0; 1�IM/; �.0/ D x; �.1/ 2 �

³
as well as

Kr WD
®
x 2M W d�.x/ < r

¯
(2.4)

for a neighbourhood of � .
For t 2 R=LZ, we then let

N
.t/� WD ¹u 2 T
.t/M W .u; 

0.t//g D 0º:

A normal vector field along 
 is a map � W R=LZ! TM such that �.t/ 2 N
.t/� for
every t . We also introduce the coordinates  W Br .0/ � .R=LZ/! Kr defined by

 .y; t/ WD exp
.t/
� 2X
iD1

yi„i .t/
�
; (2.5)

where „1; „2 are fixed normal vector fields which are orthogonal for each t 2 R=LZ.
We note that for r < r0, this map is smoothly invertible [12, Chapter 7]. For future use,
we will use the notation  �1.x/ D .y.x/; �.x// 2 Br .0/ � .R=LZ/, so that for x 2 Kr ,

 .y; t/ D x ” y.x/ D y and �.x/ D t: (2.6)
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We observe that the mapping � simply assigns to an x 2 Kr the parameter value t corres-
ponding to the closest point on � to x.

Given two normal vector fields along 
 , denoted by �; Q� , we can define their L2 inner
product in the natural way:

.�; Q�/L2 WD

Z
R=LZ

.�.t/; Q�.t//g dt:

We will write L2.N�/ to denote the space of square integrable normal vector fields,
a Hilbert space with the above inner product.

For � 2 L2.N�/, we will use the notation


�.t/ WD exp
.t/ �.t/; (2.7)

where exp denotes the exponential map.
We next recall the Jacobi operator LJ which acts on smooth normal vector fields �

along 
 , and is defined by

LJ � WD ��
00
CR.�; 
 0/
 0; (2.8)

where R denotes the curvature tensor. We say that a geodesic is nondegenerate if 0 is not
an eigenvalue of LJ .

With this notion in hand, we add another crucial hypothesis on the geodesic by assum-
ing henceforth that


 W R=LZ!M is a simple, closed, nondegenerate geodesic with j
 0j � 1. (2.9)

One says that 
 has finite index if the total number (algebraic multiplicity) of negative
eigenvalues of LJ is finite. Since M is closed, this is always true, as a consequence of
standard Sturm–Liouville theory. Our standing assumption (2.9) that 
 is nondegenerate
then implies there exists some ` � 0 and a nondecreasing sequence of eigenvalues

�1 � � � � � �` < 0 < �`C1 � � � � (2.10)

of LJ , together with an associated orthonormal basis of L2.N�/ consisting of (smooth)
eigensections ¹�j º1jD1. We will always assume that ` > 0, since otherwise the results
presented here admit much simpler proofs. We define

H� WD span ¹�1; : : : ; �`º; HC WD H
?
� : (2.11)

We will say that � is Lipschitz, and we will write � 2 Lip, if 
� is Lipschitz continuous. It
is clear that

H�.r0/ WD ¹� 2 H� W k�kL1 � r0º � Lip

for r0 and H� from (2.1) and (2.11) respectively.
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The standard fact that the Jacobi operator (2.8) is the second variation of arclength,
together with the definition (2.11) of H�, implies that there exist c0; r0 > 0 such thatZ

R=LZ
j
 0�.t/j dt � L � c0k�k

2
L2

if � 2 H�.r0/;Z
R=LZ

j
 0�.t/j dt � LC c0k�k
2
L2

if � 2 HC and k�kW 1;1 � r0:

(2.12)

2.2. Forms and currents

We denote, for k 2 N [ ¹0º, the space of smooth k-forms on M by

Dk.M/ WD ¹� 2 C1.M I
Vk

M/º

where
Vk

M is an abbreviated notation for
Vk

T �M . We denote the dual space of
Dk.M/, for k 2 N [ ¹0º, by

Dk.M/ WD ¹k-currents on M º:

We refer to the elements of Dk.M/ as k-currents. For a k-current T , we define the mass
of T to be

M.T / WD sup ¹T .�/ W k�k1 � 1º 2 Œ0;1�:

We will be mostly interested in 1-currents. A basic class of examples consists of 1-currents
we shall write as T� whose action on � 2 D1.M/ takes the form

T�.�/ WD

Z
�

�; where � W .a; b/!M is a Lipschitz curve: (2.13)

We will say a 1-current is integer multiplicity rectifiable if it can be written as a countable
sum of currents ¹T�i º

1
iD1 of the form (2.13) such that

1X
iD1

M.T�i / <1:

We will write

R1.M/ WD ¹T 2 D1.M/ WM.T / <1; T is integer multiplicity rectifiableº:

For a 1-current J , we write kJ k to denote the associated total variation measure, defined
through its action on continuous, nonnegative functions f WM ! R viaZ

f dkJ k WD sup ¹J.�/ W � 2 D1.M/; j�jg � f º: (2.14)

For a k-current S , the boundary of S is the .k � 1/-current @S defined by

@S.�/ WD S.d�/ for all � 2 Dk�1.M/:
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We define

F 01.M/ WD ¹T 2 D1.M/ W T D @S for some S 2 D2.M/; M.S/ <1º

and for T 2 F 01.M/, we will write

kT kF WD inf ¹M.S/ W T D @Sº:

We also define
R01.M/ WD R1.M/ \ F 01.M/:

We note that the 1-current T
 associated with the geodesic 
 via (2.13), in particular,
bounds a finite mass 2-current; that is,

T
 2 R01.M/; (2.15)

in light of the assumption (2.3).
Lastly, we will at times wish to identify the Jacobian (i.e. vorticity) of a map u 2

H 1.M IC/ with an element of D1.M/, which we denote ?J.u/, and which is defined
through its action on 1-forms � by

?J.u/.�/ D

Z
� ^ J.u/; (2.16)

where J.u/ D du.1/ ^ du.2/ for u D u.1/ C iu.2/ where u.1/; u.2/ are real-valued.

2.3. Gamma-limit of the Ginzburg–Landau functional

Below we state the version we will need of standard Gamma-convergence results for the
Ginzburg–Landau functional.

We first fix the notation V D F 01.M/, with the flat norm kvkV WD kvkF . We also
define the functional

EV .T / WD

´
M.T / if T 2 R01.M/;

C1 if not:
(2.17)

Thus EV is an extension to V of the ‘arclength functional’ in the sense that if � W
.a; b/! M is an injective Lipschitz continuous curve and T� is the corresponding cur-
rent, then EV .T�/ D arclength of im.�/.

The following result is deduced in [25, Theorem 5.1] from corresponding Euclidean
results [1, 15].

Theorem 2.1. Let .M; g/ be a closed 3-dimensional Riemannian manifold.

(1) Let .u"/0<"<"0 be a sequence in H 1.M I C/. If there exists C > 0 such that
E".u"/ � C for all " 2 .0; "0/, then . 1

�
? Ju"/0<"<"0 is precompact in V, and any

limit as "! 0 belongs to R01.M/.
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(2) Let .u"/0<"<"0 be a sequence inH 1.M IC/. If T 2 V and k 1
�
? Ju" � T kF ! 0 as

"! 0, then lim inf"!0E".u"/ � EV .T /.

The above theorem does not include a Gamma-limit upper bound, that is, the con-
struction, for an arbitrary T 2 V , of a sequence .u"/0<"<"0 in H 1.M I C/ such that
k
1
�
? Ju" � T kF ! 0 and lim sup"!0E".u"/ � EV .T /. Although this is not established

in full generality in [25], it is proved there for particular currents T needed for our argu-
ments, as we discuss in Lemma 4.3 and Appendix A below.

The geodesic 
 is a saddle point of the arclength with respect to smooth perturbations,
as reflected in (2.12). For use in combination with Theorem 2.1, one needs to identify a
sense in which the corresponding current T
 is a saddle point ofEV . We defer a discussion
of this and related issues to Section 4.

2.4. Varifolds

We briefly recall the definition of a rectifiable 1-varifold and introduce some notation that
will be used later. After doing this we will introduce the definition of a general 1-varifold.
We note that the general definition will only be used in the proof of Proposition 3.1. For
general varifolds we will follow [3] with some terminology from [32].

For any 1-dimensional rectifiable set †, basic theory (see for example [32,
Lemma 11.1]) shows that there exists a countable family .ƒj /j2N of C 1 curves in M
such that

† � N0 [
[
j2N

ƒj and H1.N0/ D 0;

and every point in† nN0 is contained in exactly oneƒj . We then define, for x 2† nN0,

apTx† D Txƒj for the unique j such that x 2 ƒj :

We will write �†.x/ to denote a unit vector in apTx†.
First, we recall that if � is a countably 1-rectifiable, H1-measurable subset of M and

‚ W � ! .0;1/ is a locally H1-integrable function on � then we can use the pair .� ;‚/
to form the measure H1 ‚, where we have extended ‚ to be zero outside of � . We
refer to such a measure as a rectifiable 1-varifold. We also refer to the function ‚ as
the multiplicity function of this rectifiable 1-varifold and, at times, we will write ‚� to
emphasize the association. We will also sometimes use the alternative notation‚H1 �

for H1 ‚� . If ‚ happens to be integer-valued H1-almost everywhere then we will
say this rectifiable varifold is of integer multiplicity. Finally, if there is a � > 0 such
that ‚ � � at H1-almost every point then we say that the rectifiable varifold has density
bounded below. A particular example of an integer multiplicity rectifiable 1-varifold that
we will be interested in will be integration over a countable collection of geodesics.

Next, for a smooth Riemannian manifold, M , we let PM be the bundle whose fibre
PaM at a 2M consists of the lines through the origin in TaM . If x 2M and � is a unit
vector in TxM , we will sometimes abuse notation slightly and write .x; �/ to denote the
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element of PM
.x; �/ � ¹s� W s 2 Rº � TxM: (2.18)

Thus .x; �/ and .x;��/ correspond to the same element of PM . Suppose that � is a
smooth function on M . When representing points in PM as described above, a mapping
such as .x; �/ 2 PM 7! jr��.x/j2 is well-defined as a function PM ! R, since it is
independent of the choice of sign for the unit vector �.

We let � W PM ! M be the bundle projection. We refer to a measure V 2M.PM/

as a 1-varifold. Observe that to a rectifiable 1-varifold V D H1 ‚� , we may associate
a 1-varifold V defined by

V.A/ WD V.¹a 2M W apTa� 2 Aº/ D
Z
¹a2� W apTa�2Aº

‚� .a/ dH
1: (2.19)

Roughly speaking, the difference between a rectifiable 1-varifold and the associated gen-
eral 1-varifold is that the latter explicitly records information about the approximate
tangent spaces to the set � on which the former lives.

2.5. Definitions: First variation, stationarity, Brakke flow

For a rectifiable 1-varifold � given by � D H1 ‚†, where † is a 1-rectifiable set, the
first variation of � is a distribution, denoted ı�, whose action on smooth vector fields X
is defined by

ı�.X/ WD

Z
†

.�†.x/;r�†.x/X.x//g ‚.x/ dH
1: (2.20)

(Note that since �† appears quadratically, the choice of unit vector in apTx† does not
matter.) A 1-varifold � of the given form is stationary if

ı� D 0: (2.21)

We remark that in light of (2.2), of course it follows from an integration by parts that
one can associate a multiplicity-one stationary varifold with the geodesic 
 . Properties of
stationary varifolds will be recalled later as needed.

For simplicity, we discuss Brakke flows and related notions from geometric measure
theory only in the case of 1-varifolds in the 3-dimensional manifold .M; g/.

Let
�t� D ‚�.x; t/H

1 †t� ; t � 0; (2.22)

be a family of rectifiable 1-varifolds inM . To say that .�t�/t>0 is a Brakke flow means that
for a.e. t > 0 there exists a �t�-integrable vector field H.�; t / along †t� (that is, H.x; t/ 2
TxM for �t�-almost every x 2 †t�) such that the following hold. First,

ı�t�.X/ D

Z
M

.X;H/g d�
t
� D

Z
†t�

.X;H/g ‚�.x; t/ dH
1

for all C 1 vector fields X . Second, for every t > 0 and every nonnegative � 2 C 2.M/,

lim sup
s!t

�t�.�/ � �
s
�.�/

t � s
� B.�t ; �/; (2.23)
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where, if �jH j2 2 L1.�t�/, we have set

B.�t ; �/ D �

Z
M

�jH j2 d�t� C

Z
M

.r�;P?.H//g d�
t
�;

where at a point x 2 †t� at which Tx†t� exists, we write P?.�/ to denote orthogonal
projection onto .Tx†t�/

? � TxM , and we have set B.�t ; �/ D �1 otherwise.
For .�t�/t>0 a Brakke flow in M of the form (2.22), it is an immediate consequence

of (2.23) that
t 7! �t�.M/ is nonincreasing: (2.24)

Another simple fact we will need is the following.

Lemma 2.2. If there exist numbers 0 � a < b such that

t 7! �t�.M/ is constant for a < t < b (2.25)

then

9 a stationary varifold V� in M such that �t� D V� for all a < t < b. (2.26)

Proof. Clearly, if (2.25) holds, then by taking � D 1 in (2.23), we find that H D 0 a.e. in
†t� for every t 2 .a; b/. It follows that �t� is stationary for such t . It is also easy to see that
t 7! �t� is constant for t 2 .a; b/. Indeed, given any nonnegative �1 2 C 2.M/, choose
�2 2 C

2.M/ such that �1 C �2 is constant on M . Then it follows from (2.25) thatZ
M

.�1 C �2/ d�
t
� D

Z
M

�1 d�
t
� C

Z
M

�2 d�
t
� D c�

t
�.M/ is constant for t 2 .a; b/:

On the other hand, since H D 0, it follows from (2.23) thatZ
M

�j d�
t
� is nonincreasing for j D 1; 2, for t 2 .a; b/.

These together imply that t 7!
R
M
�j d�

t
� is constant for j D 1; 2. Since this holds for

all nonnegative �1 2 C 2.M/, it easily follows that �t� does not depend on t 2 .a; b/,
proving (2.26).

We will make heavy use of results from a paper of Allard and Almgren [3] on sta-
tionary 1-varifolds with positive density in a Riemannian manifold. Among other results,
they prove that a stationary 1-varifold with density bounded away from 0 is supported on a
finite or countable union of geodesic segments terminating at singular points. From these
singular points multiple segments emanate, with a balance condition on the weighted
sum, at each singular point, of the tangent vectors generating the geodesics that meet
there. Other results from [3] will be cited as the need arises.

2.6. Asymptotic analysis of the Ginzburg–Landau heat flow

As a last preliminary, we state a recently established extension to the Riemannian setting
of a theorem of Bethuel, Orlandi, and Smets [6], who built on prior work of a number of
authors, including [4, 5, 14, 21].
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The theorem quoted below is proved in [8].

Theorem 2.3. Assume that .N; h/ is a closed Riemannian manifold of dimension n � 3.
Suppose we consider a sequence .u"/"2.0;1� where u" W N � Œ0;1/ ! C solves the
Ginzburg–Landau heat flow

@tu" ��u" C
1

"2
.ju"j

2
� 1/u" D 0 on N � .0;1/

with initial data u".x; 0/ D u0".x/. Assume that there exists M0 > 0 such that

E".u
0
"/ �M0:

For every t � 0, let �t" be the measure on N defined by

�t".A/ D

Z
A

e".u".�; t //

jlog "j
vol for every Borel A � N:

Then after passing to a subsequence .still denoted simply by "/, there exist measures
�t� 2M.N / for every t > 0 such that

�t" * �t� weakly as measures for every t > 0:

Moreover, there exists a smooth function �� W N � .0;1/! R solving the heat equa-
tion, a harmonic 1-form 
� independent of t , and a family .�t�/t>0 of measures on N ,
such that for every t > 0,

�t� D
1
2
jd��.x; t/C 
�j2 volC�t�

with �t� taking the form

�t� D ‚�.x; t/H
n�2 †t� for a.e. t > 0 (2.27)

where †t� is an .n � 2/-dimensional rectifiable subset of N and ‚� is a bounded meas-
urable function. In addition, there exists a function � W .0;1/! .0;1/ such that

‚�.x; t/ D lim
r!0

�t�.Br .x//

!nrn�2
� �.t/ (2.28)

for Hn�2-a.e. x 2 †t� , for a.e. t > 0. Finally, the family .�t�/t>0 is a Brakke flow.

3. A nonexistence result for stationary 1-varifolds near a nondegenerate geodesic

The proof of our main result hinges crucially on showing there is no stationary varifold
sitting over a 1-current that is near T
 , the 1-current associated with the nondegenerate
geodesic 
 . While the nondegeneracy assumption (2.9) easily precludes the existence of
another nearby smooth geodesic, it is the need to rule out proximity in the weaker sense
of (3.2), (3.3) below and within the larger class of varifolds that makes the result below
much more challenging to establish.
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Proposition 3.1. Let T
 be the 1-current in M corresponding to integration over the
nondegenerate geodesic 
 , and let � > 0 be given. Then there exists r0 > 0 depending
on M , 
 , and � such that for 0 < r < r0 there is no stationary rectifiable 1-varifold V�
and 1-current J1 2 R1.M/ \ F 01.M/ satisfying the conditions

V� D ‚�.x/H
1 †� (3.1)

for †� 1-rectifiable and ‚� � � > 0 H1-a.e. in †�,

kJ1 � T
kF D r; (3.2)

and
V� � kJ1k; V�.M/ � L: (3.3)

Remark. If we knew that ‚�.x/ � 1 for H1-a.e. x 2 †�, the proof of the proposition
could be simplified significantly. Indeed, the main point of the proof is to show that †�
is smooth. If ‚�.x/ � 1 a.e. in †�, the Regularity Theorem of Allard [2, Section 8],
adapted to the Riemannian setting and specialized to the 1-dimensional case, implies that
there exist R; �1 > 0 such that if x \†� and

V�.BR.x// � .1C �1/2R (3.4)

then BR=2.x/ \ †� is a C 1;˛ graph and hence (since V� is stationary) smooth. Using
Lemma 3.2 below and for example an argument by contradiction, one can verify that
(3.4) is satisfied at every x 2 †� when r is sufficiently small. The same conclusion can
be justified, with some more work, without invoking Lemma 3.2, allowing an extension
to higher dimensions.

In our later arguments, we would be able to assume that ‚� � 1 a.e. if we knew that
the constant �.t/ from Theorem 2.3 satisfies �.t/ D � . This is expected to hold, and the
corresponding estimate in the elliptic case has been established very recently in [30].

The starting point of the proof of Proposition 3.1 is provided by the following lemma,
established by Mesaric [25].

Lemma 3.2. For T
 as above, let J1 2 R1.M/ \ F 01.M/ be a current satisfying (3.2),
and such that

@J1 D 0 and M.J1/ � L:

Then provided r is taken sufficiently small, there is a 1-current J �1 2 R1.M/ such that
the support of J �1 , denoted by ��, consists of a single Lipschitz curve with no boundary
satisfying

�� � K2 3
p
r \ spt.J1/; (3.5)

and
�� \ ��1.t/ ¤ ¿ for all t 2 R=LZ (3.6)

.see (2.6) for the definition of �/.
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In addition,
M.J1 � J

�
1 / DM.J1/ �M.J �1 /; (3.7)

there exists a constant C1 > 0 such that

M.J �1 / � L � C1
3
p
r; (3.8)

and
J �1 � T
 D @S

� for some 2-current S� with

spt.S�/ � K5 3pr and M.S�/ <1:
(3.9)

This is demonstrated in [25, Lemma 4:4 and comments following Lemma 4:6]. The
proof is an adaptation to the Riemannian setting of arguments from [16, Lemma 5.5]. The
idea is to use (3.2) and the definition of the flat norm to find a tubular neighbourhood Ks
of � D im.
/ of radius 3

p
r < s < 2 3

p
r and a 2-current S1 which satisfies @S1 D J1 � T


and for which the slice hS1;d� ; si is small in mass, where d� denotes the distance function
to � . Thus this slice is a 1-current supported in Ks D d�1� .s/. It is then shown that the 1-
current zJ1 WD J1 Ks C hS1; d� ; si has mass at most slightly larger than L, is supported
in the tubular neighbourhood xKs , and satisfies k zJ1 � T
k � r . The advantage in replacing
J1 by zJ1 is that it is now possible to slice normal to 
 .

Next, it is shown by a slicing argument that most normal slices of zJ1 can only inter-
sect zJ1 once and the intersection occurs within the smaller tubular neighbourhoodK 3

p
r=4.

Finally, appealing to Federer’s decomposition of integral 1-currents [13, Theorem 4.2.25],
we are able to find the desired current J �1 and to prove that it is confined within K2 3pr .
The idea of this last point is that its failure would entail a long excursion from K 3

p
r=4,

which one can show would violate the mass bound M.J1/ � L.
We remark that the lemma is not valid as stated for higher-dimensional currents.

Proof of Proposition 3.1

Step 1: First we show that the rectifiable varifold V� does not have any mass outside
of K 4

p
r . The idea is that if this fails, then the monotonicity formula and (3.8) would

contradict the assumption M.V�/ � L. This argument relies crucially on the uniform
lower density bound for V�.

We recall that the Hessian Comparison Theorem [17, Theorem 6:6:1] gives us that
if � > 0 is an upper bound on the absolute value of the sectional curvature over M and
r > 0 is chosen so that

r <
1

2
min

²
r0;

�

2
p
�

³
;

then for each p 2M and all x 2 Br .p/ and v 2 TxM we have

p
� �.x/ cot.

p
� �.x//jvj2 � Hessg

�
�2.x/

2

�
.v; v/ �

p
� �.x/ coth.

p
� �.x//jvj2

(3.10)

where �.x/ D d.x; p/. In view of the lower density bound ‚� � �, V�-almost every-
where, it follows from a Riemannian version of the Monotonicity Formula (established
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with different notation in [3, Theorem, (5), p. 87]) that there exists rcon.M/ > 0 such that
for every 0 < s < rcon,

� �
1

2s

Z
Bs.p/

Hessg

�
�2.x/

2

�
.v; v/ dV� (3.11)

for V�-almost every p 2 M , where v is a unit vector in apTx†�. (Clearly the value of
Hessg.�2.x/=2/.v; v/ does not depend on which unit tangent is chosen.)

It follows from (3.10) that

2s� � .1C �s2/V�.Bs.p//

for all 0 < s < 1
2

min¹r0; rcon;
�
2
p
�
º and V�-almost every p 2 M . We conclude that for

all 0 < s < 1
2

min¹r0; rcon;
�
2
p
�
; 1º we have

V�.Bs.p// �
2s�

1C �
for V�-a.e. p 2M: (3.12)

We now use this to prove that if r is chosen sufficiently small, then

V�.M nK 4
p
r / D 0: (3.13)

To verify (3.13), suppose to the contrary that V�.M nK 4
p
r / > 0 and so there is a point p

of spt.V�/ in M nK 4
p
r for which (3.12) holds. By (3.12) we have

V�.B 1
2
4
p
r .p// �

�

1C �
4
p
r if r < min

²
rcon; r0;

�

2
p
�
; 1

³4
:

By shrinking r0 if necessary, we may assume thatB 1
2
4
p
r .p/\K2 3

p
r D¿. Hence, appeal-

ing to (3.8), we find that

L � V�.M/ � V�.K2 3
p
r /C V�.B 1

2
4
p
r .p// > L � C1

3
p
r C

�

1C �
4
p
r:

Choosing r smaller if necessary, depending on C1; �; �, yields a contradiction. We con-
clude that (3.13) holds. Since kJ1k � V�, we remark that J1 is also supported in K 4

p
r .

Step 2: Next we demonstrate that

jr�.x/j D 1CO. 4
p
r/; ŒHessg.�/.x/�.v; v/ D O. 4

p
r/; (3.14)

where v 2 TxM is a unit vector, x 2 K 4
p
r , and � is the mapping defined in (2.6).

We prove only the statement about the Hessian, as the gradient estimate follows by
similar arguments. In coordinates introduced by  W B 4

p
r .0/ � .0;L/! K 4

p
r as defined

in (2.5), we can write � as
Q�.y; t/ D t

where Q� D � ı  . These are what are called Fermi coordinates, and a basic fact, proved
for example in [23, Section V], is that the vectors „1; „2 in (2.5) can be chosen so that
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all Christoffel symbols vanish along the central geodesic, that is, when y D 0,

�kij .0; t/ D 0 for i; j; k D 1; 2; 3;

where xk D yk for k D 1; 2, and x3 D t . In general, the expression for the Hessian in
coordinates is

Hessg.�/. .0; t// D
3X
iD1

3X
jD1

�
@2 Q�

@xi@xj
.0; t/ �

3X
kD1

�kij .0; t/
@ Q�

@xk
.0; t/

�
dxi ˝ dxj

(see for example [17, Definition 4.3.5]). By combining these, we readily deduce that

Hessg.�/. .0; t// D 0

and thus Hessg.�/. .y; t//ij D O.jyj/ for 1 � i; j � 3. The Hessian estimate in (3.14)
follows directly.

Step 3: Let V� be the 1-varifold associated as in (2.19) to the rectifiable 1-varifold V�.
We next demonstrate that for each ı > 0 there is r1 > 0 such that if 0 < r < r1 in (3.2)
and hence in (3.13), then

V�
�
¹.x; �/ 2 PM W jr��.x/j

2
� .1 � ı/2º

�
< ı; (3.15)

where we recall our convention that a generic element of PM – that is, a line in TxM for
some x 2 M – is represented by a pair .x; �/, where � is a unit vector in TxM spanning
the given line (see (2.18)). This will establish that most tangent vectors to the support
of V� are, according to the measure V�, nearly parallel to r� .

We suppose toward a contradiction that there is a ı > 0, a sequence .rk/k2N tending
to 0 from the right, and a sequence .Vk/k2N of stationary rectifiable varifolds on M
satisfying the hypotheses of Proposition 3.1 with r replaced by rk in (3.2), and such that
the associated 1-varifolds Vk satisfy

Vk
�
¹.x; �/ 2 PM W jr��.x/j

2
� .1 � ı/2º

�
� ı (3.16)

for all k 2 N. In particular, we have

Vk.M/ � L; spt.Vk/ � K 4
p
rk
; ‚Vk .x/ � � for x 2 spt.Vk/: (3.17)

Since .Vk/k2N is a sequence of stationary rectifiable varifolds, we may combine (3.17)
with the compactness result of [32, Theorem 42:7, p. 247] to conclude that there is a
subsequence .Vkj /j2N and a rectifiable varifold V with associated multiplicity ‚V such
that

(1) Vkj * V weakly as measures,

(2) ‚V .x/ � � on spt.V /,

(3) kıV k.W / � lim infj!1kıVkj k.W / for all W ��M .
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It follows from (3) and the fact that each Vkj is stationary that V is also stationary. Then
from (1) and the fact that spt.Vkj / � K 4

p
rkj

we conclude that spt.V / � � . Next, we
observe that, due to (3.6), each Vkj has support that contains a closed curve that meets
every level set of � . Hence, spt.V / D � as a result of (1). Observe that since V is a
stationary varifold with density bounded below and spt.V / D � , by [3, Theorem, p. 89]
we know that V is simply a constant multiplicity multiple of the stationary varifold V�
associated with the geodesic 
 . Applying the weak convergence (1) to (3.16), however,
we see that

V
�
¹.x; �/ 2 PM W jr��.x/j

2
� .1 � ı/2º

�
� ı;

an impossibility given that all tangent vectors � along � coincide with˙r� .

Step 4: Next we introduce three sets corresponding to slices normal to the central
geodesic that are in some sense bad. We will argue that two of them correspond to sets of
t -values of measure zero while the third is of small measure.

We introduce the first such set, B1, through the function h W .0; L/! R given by

h.t/ D

Z
��1.¹0���tº\K 4pr

/

jr��.x/j
2 dV�.x; �/;

with B1 defined by

B1 WD ¹a 2 .0; L/ W h is not differentiable at aº: (3.18)

Since h is nondecreasing, it is differentiable L1-almost everywhere and consequently
L1.B1/ D 0.

Now we recall that the singular set SV� , as defined in [3], is the set of points of M
near which ‚V� , restricted to spt.V�/, is not constant. Then we introduce the set B2 as
the set of slices meeting the singular set:

B2 WD
®
t 2 .0; L/ W ¹� D tº \ SV� ¤ ¿

¯
D ¹�.x/ W x 2 SV� \K 4

p
rº:

We claim that L1.B2/ D 0 as well.
To see this, we note that in [3, Remark, p. 89], it is stated that

V�.SV�/ D 0; (3.19)

and so by (2.28) and (3.19) we have

0 D

Z
SV�

‚.x/ dH1.x/ � �H1.SV�/:

We conclude that
H1.SV�/ D 0: (3.20)

Since B2 is the image of a subset of SV� by the Lipschitz map � W K 4
p
r ! .0; L/, it

follows that L1.B2/ D 0 as claimed.
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The final ‘bad’ set of slices is B3 defined by

B3 WD ¹t 2 .0; L/ W 9.x; �/ 2 spt.V�/ s.t. jr��.x/j2 < .1 � ı/2; �.x/ D tº:

Replacing the role of the equality (3.19) by the inequality (3.15) in the argument above,
the same line of reasoning shows that there is a constant C2 > 0 such that

L1.B3/ < C2ı=�;

where r is chosen sufficiently small.

Step 5: We now use the results obtained in Steps 1 and 2 to show that, for r and ı chosen
sufficiently small, and a; b 2 .0; L/ nB1, we have

h0.b/ D h0.a/CO. 4
p
r/;

where h is as defined in Step 4.
For s small and positive, we define the function

Ha;bIs.t/ D

8̂̂̂̂
<̂
ˆ̂̂:
1 if aC s < t < b � s;

0 if 0 < t < a or b < t < L;
t�a
s

if a � t � aC s;
b�t
s

if b � s � t � b;

and we let X be a smooth vector field on M such that X.x/ D Ha;bIs.�.x//r�.x/ for
x 2 Kr0=2. The fact that V� is stationary implies that ıV�.X/ D 0 (see (2.20)), and this
means thatZ

��1.K 4pr
/

H 0a;bIs.�/jr�� j
2 dV�.x; �/

C

Z
��1.K 4pr

/

Ha;bIs.�/Hessg.�/.�; �/ dV�.x; �/ D 0: (3.21)

We have used Step 1 to find that V� is concentrated on K 4
p
r . Next, we use Step 2,

V�.M/ � L, and the fact that kHa;bIskL1.R/ D 1 to conclude thatZ
��1.K 4pr

/

Ha;bIs.�/Hess.�/.�; �/ dV�.x; �/ D O.
4
p
r/: (3.22)

Then we observe that, by the definition of Ha;bIs , we haveZ
��1.K 4pr

/

H 0a;bIsjr�� j
2 dV�.x; �/ D

1

s

Z
��1.¹a���aCsº\K 4pr

/

jr�� j
2 dV�.x; �/

�
1

s

Z
��1.¹b�s���bº\K 4pr

/

jr�� j
2 dV�.x; �/:
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Combining this with (3.21) and (3.22) yields

h.b/ � h.b � s/

s
D
h.aC s/ � h.a/

s
CO. 4

p
r/:

Letting s tend to zero, we find that

h0.b/ D h0.a/CO. 4
p
r/: (3.23)

Step 6: We next introduce a set of ‘good’ slices via

G WD
®
a 2 .0; L/ W H0

�
¹� D aº \ spt.V�/

�
D 1

¯
;

and in this step we will demonstrate that

.0; L/ n .B1 [B2 [B3/ � G : (3.24)

From this and Step 4 it will follow that

L1.G / � L � C2ı=� (3.25)

provided that r and ı are chosen sufficiently small.
Suppose by way of contradiction that there exists a value a such that

a 2 .0; L/ n .B1 [B2 [B3 [ G /: (3.26)

Then in light of (3.6) we have

H0.¹� D aº \ spt.V�// � 2

for some a 2 .0;L/ n .B1 [B2 [B3/. We first argue that for such an a and all c;ı 2 .0;1/
we necessarily have

h0.a/ � .1 � c/.1 � ı/2.1C �/ (3.27)

provided r is chosen sufficiently small, depending on c and ı. Fix 0 < c; ı < 1. Note that
since a 62 B2, by [3, Theorem, (3), p. 89] we see that ¹� D aº \ spt.V�/ consists only
of interior points of the constituent geodesics (or ‘intervals’ as they are referred to in [3])
making up V�. Moreover, the endpoints of these geodesics cannot accumulate at a. We
conclude by compactness of spt.V�/ that ¹� D aº \ spt.V�/ can intersect only finitely
many of these constituents of spt.V�/. Also since a 62 B3, it follows that this slice must
intersect spt.V�/ transversally, so that ¹� D aº \ spt.V�/ consists of finitely many points,
say x1; : : : ; xK , where K � 2 by the choice of a.

It follows from the gradient estimate jr� j D 1 C O. 4
p
r/ in K 4

p
r , established in

(3.14), that for 0 < t1 < t2 < L, the geodesic distance between the sets ¹� D t1º \K 4
p
r

and ¹� D t2º \ K 4
p
r is at least .t2 � t1/=.1C O. 4

p
r// if t2 � t1 < L=2. Hence if r is

small enough, then

B.1�c/s.xi / \K 4
p
r � ¹x 2 K 4

p
r W a � s < �.x/ < aC sº:

(Here and below, we tacitly assume that 0 < a � s < aC s < L and s < L=4.)
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Next we again use the fact that a … B3 to choose s0 > 0 small enough so that

jr��.y/j
2
� .1 � ˛ı/2 (3.28)

if y 2
SK
iD1 Bs0.xi / and .y; �/ 2 spt.V�/. Combining these facts, for each 0 < s � s0

we estimate

h.aC s/ � h.a � s/

2s
� .1 � ˛ı/2

KX
iD1

V�.B.1�c/s.xi //

2s
:

We now fix 1 < ˛ < 1=ı, apply [3, Theorem 1 (5), p. 87] and let s ! 0C, using the
differentiability of h at a guaranteed by the assumption a … B1, to find

h0.a/ � .1 � c/.1 � ˛ı/2
KX
iD1

‚�.xi / � .1 � c/.1 � ˛ı/
2.1C �/:

Here we have used Lemma 3.2 to assert that �� intersects each level set of � with
‚�.x/ � 1 for x 2 �� by (3.3), and that ‚� � � in general by (5.12). Since ˛ > 1 was
arbitrary we may let ˛ ! 1C to obtain (3.27).

In light of (3.23), it then follows from (3.27) that for any b … B1 we obtain

h0.b/ � .1 � c/.1 � ı/2.1C �/CO. 4
p
r/:

Thus, choosing c, ı, and then r sufficiently small and recalling that L1.B1/ D 0, we
deduce that

h0.b/ � 1C �=2 for a.e. b 2 .0; L/: (3.29)

Thus, if there were a value a 2 .0; L/ satisfying (3.26), then�
1C C3

4
p
r
�
L �

�
1C C3

4
p
r
�
V�.�

�1
¹0 � � � Lº/

� h.L/ � h.0/ D

Z L

0

h0.s/ ds � .1C �=2/L:

Here we use (3.14) in the second inequality, and the constant C3 depends only on M
and � . If we choose r sufficiently small, the contradiction is reached, establishing (3.24)
and (3.25).

Step 7: In this step we show that
SV� D ¿: (3.30)

According to [3], this asserts that V� can be identified with a disjoint union of closed
geodesics, each with constant weight, and hence that the Lipschitz curve �� guaranteed
by Lemma 3.2 is in fact a closed geodesic.

Crucial use in this step will be made of the following general property of stationary
1-varifolds (cf. [3, p. 88]):

Every point p 2 M is contained in an open set Up such that if V is any stationary
varifold onM with support in Up , and if the support of ıV consists of exactly two points,
then V is the varifold corresponding to a constant multiple of the geodesic joining these
two points.
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This result is proved in [3] for possibly noncompact manifolds. Since M is compact,
we may invoke the Lebesgue Number Lemma to conclude that there exists � > 0 such
that for any p 2M , the geodesic ball B�.p/ has the stated property.

For any A � .0; L/, we will write

K 4
p
r .A/ WD ¹x 2 K 4

p
r W �.x/ 2 Aº D ¹ .y; t/ W jyj<

4
p
r; t 2 Aº:

By extending  to be periodic with respect to the t variable in the natural way, we can
define K 4

p
r .A/ for any A � R.

By shrinking r and ı, we may arrange that if I is any interval of length at most
2C2ı=�, where C2 is the constant appearing in (3.25), thenK 4

p
r .I / is contained in a ball

of radius �.
We will prove the claim by showing that

for any t 2 Œ0; L/, K 4
p
r .¹tº/ \ SV� D ¿:

Indeed, for any t we can appeal to (3.25) to find some s1; s2 2 G such that

s1 < t < s2; s2 � s1 < 2C2ı=�:

We now apply the result stated at the outset of this step to the varifold

QV D V� K 4
p
r .Œs1; s1�/

in an open ball B�.p/ that contains K 4
p
r .Œs1; s1�/. The definition of G implies that V�

intersects ¹� D sj º in exactly one point, say xj , and that ı QV is supported in ¹x1; x2º.
Hence, this restriction of V� consists of a multiple of the geodesic joining these two points.
This immediately implies (3.30).

As noted above, it follows that �� is a closed geodesic. By perhaps shrinking r one
more time and applying the Morse–Palais Lemma [29, p. 307] we may conclude that the
central geodesic � , being a nondegenerate critical point of length, is isolated and so neces-
sarily �� D � . Then the 1-current J �1 from Lemma 3.2 satisfies M.J �1 / � H1.��/ D

H1.�/ D L. Then (3.3) and (3.7) imply that J1 D J �1 D T
 . However, this contradicts
(5.13) since r > 0, and the proof of Proposition 3.1 complete.

4. Finding good trajectories

The critical points of Ginzburg–Landau that we seek will be obtained as limits of certain
carefully chosen trajectories of the Ginzburg–Landau heat flow. In this section we identify
these trajectories.

Proposition 4.1. Given ı > 0, there exists "0.ı/ > 0 such that for every " 2 .0; "0/ and
every � > 0, there is a solution u" D u".x; t I ı; �/ of the Ginzburg–Landau heat flow

@tu" D �u" �
1

"2
.ju"j

2
� 1/u" in M � .0;1/; (4.1)

u".x; 0/ D u
0
".x/ for x 2M;
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such that ju".x; t/j � 1 for every .x; t/ 2M � Œ0;1/, and



 1� ? Ju0" � T







F

< ı; E".u
0
"/ � LC ı; E".u".�;t // � L � ı for all t 2 Œ0; ��:

(4.2)

The proposition follows from small modifications of the asymptotic minmax theory
developed in [16, 25]. Indeed, in the end the proof amounts to this:

Short proof of Proposition 4.1. This follows from arguments in [16, 25].

In the remainder of this section we expand on this, aiming to provide enough detail to
convey the main ideas, to explain where we depart from [16, 25], and to make it possible,
in principle, to check the terse proof given above.

The main difference between [16, 25] and our present treatment is that those earlier
works use a pseudo-gradient flow for the energy E", whereas we employ a small modi-
fication of the Ginzburg–Landau heat flow (4.1) for similar purposes. The use of (4.1) is
necessary for our approach, due to our reliance in Section 5 below on Theorem 2.3.

4.1. Saddle point property of EV

Our assumptions about 
 imply, roughly speaking, that the ‘arclength functional’ has a
local minmax geometry near 
 , as reflected in (2.12), with respect to smooth perturba-
tions. In particular, there is an `-parameter family of arclength-decreasing perturbations
of 
 , and arclength increases for sufficiently transverse smooth perturbations. Here and
below, ` is the index of 
 (see (2.10)).

The result below states that the ‘generalized arclength functional’EV defined in (2.17)
has a saddle point, in a suitable weak sense, at the current T
 2 V corresponding to 
 ,
where V D F 01.M/ is the space of integer multiplicity rectifiable currents with finite mass
and which are the boundary of another current of finite mass. The relevant notion of saddle
point was first introduced in [16].

Lemma 4.2 (cf. [25, Theorem 4.1]). For the geodesic 
 satisfying (2.9) and (2.15), the
associated current T
 is a saddle point of EV in the sense that there exist R; ı0 > 0 and
continuous functions

PWV W V ! R`; QVW W W ! V

for
W D B`R D ¹w 2 R` W jwj < Rº (4.3)

such that PWV .T
 / D 0, and the following conditions are satisfied:

EV .T
 / < EV .T / for T 2 V with 0 < kT � T
kF � ı0; PWV .T / D 0; (4.4)

QVW .0/ D T
 ; (4.5)

PWV ıQVW .w/ D w for all w 2 W; (4.6)

sup
¹w2W W jwj�rº

EV .QVW .w// < EV .T
 / for every r > 0: (4.7)
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We sketch the proof from [25], although we note that this will not play any role in
what follows, except that the notation 
w for the curve defined in (4.9) and T
w for the
associated 1-current (see (2.13)) will be used below.

To start, for w 2 W we define

�.w/ D w1�1 C � � � C w`�`; (4.8)

where �j denote eigenfunctions of the Jacobi operator (see in particular (2.10)). We then
define the curve 
w via


w.t/ WD exp
.t/ �.w/.t/ (4.9)

(see (2.7)). We will always assume that R is small enough that

k�.w/kW 1;1 � r0; and hence �.w/ 2 H�.r0/; for w 2 W:

With this in hand, we define QVW W B`R ! R01 via

QVW .w/ WD T
w for w 2 W:

Then (4.5) is immediate, and (4.7) follows directly from (2.12).
The construction of PWV is carried out in [25, Lemma 4.3] by designing an R`-valued

1-form ˆ such that
T
� .ˆ/ D ..�; �1/L2 ; : : : ; .�; �`/L2/ (4.10)

for � 2 L2.N�/ \ Lip as long as k�kL1 � r0, a condition that can be guaranteed by
a suitable choice of R. Here we recall that 
� is the curve given by (2.7) and T
� is its
associated 1-current. We then simply define PWV .T / D T .ˆ/. With this choice, (4.6)
follows directly from (4.8)–(4.10).

The hard part of the proof of Lemma 4.2 is the verification of (4.4). This is carried out
in [25, Proposition 4.1] via a ‘selection principle’ argument inspired by a 1994 paper [34]
of White. One might hope to show show that T
 minimizes

T 7! E�V .T / WD EV .T /C C jPWV .T /j
2;

for a suitable C , among all currents T such that kT � T
kF � ı0. This is formally clear
from (2.12) and (4.10) when T D T
� for some � with small C 1 norm. To reduce to this
situation, Mesaric first uses a result [25, Lemma 4.4] we have stated above as Lemma 3.2.
This enables him to minimize E�V among currents T that are homologous to T
 and
with support constrained to lie in a small tubular neighbourhood of � , rather than among
currents close to T
 in the flat norm. One then uses the fact that the constrained minimizer
is an almost-minimizer of mass, to which standard regularity theory applies, to obtain the
needed C 1;
 estimates.

Many points in the proof, including the construction ofˆ with the property (4.10), are
similar to elements in the proof of [34, Theorem 5]. Many more sophisticated versions of
arguments in the same spirit have been developed in recent years by various authors; see
for example [7, 10].

Note that we may shrink at will the parameter R in the definition (4.3) of W , and the
conclusions of the lemma remain valid.
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4.2. An `-parameter family of solutions of .4.1/

To prove Proposition 4.1, we will define an `-parameter family of solutions of (4.1) for
every sufficiently small " > 0. In the final step, given " and � (where ultimately we will
take " < "0.ı/), we will choose from this family one solution u" such that E".u".�;t // �
L � o.1/ for all times t 2 Œ0; ��.

The initial data for this family of solutions is provided by the following result.

Lemma 4.3. There existR;"1 > 0 such that for every " 2 .0; "1/ andw 2B`R, there exists
a function U ";0w 2 H 2.M/ satisfying the conditions:

(1) w 7! U
";0
w is Lipschitz continuous from B`R into H 2.M/,

(2) kU ";0w kL1 � 1 and kU ";0w kH2 � C" for all " 2 .0; "1/ and w 2 B`R,

(3) E".U
";0
w / � L � c0jwj

2 C o.1/ as "! 0,

(4) k 1
�
? JU

";0
w � T
wkV ! 0

uniformly for w 2 B`R.

For fixed w, in view of (2.12) and the construction of 
w , conclusions (3) and (4)
hold if U ";0w is a recovery sequence for the current T
w , the Gamma-limit in Theorem 2.1.
Such constructions are rather standard. It is easy to arrange that kU ";0w kL1 � 1. The only
points requiring attention are that the construction has to be carried out so that it depends
continuously onw, in theH 1 norm, and with some control over theH 2 norm. The former
point is carried out in [25], and the latter can be achieved by a small modification of the
construction of [25]. We defer a more detailed discussion to Appendix A.

The H 2 estimate facilitates the proof of Lemma 4.4 below, whose need arises
because we require the Ginzburg–Landau heat flow rather than the pseudo-gradient flows
employed in [16, 25].

Having constructed appropriate initial data for the Ginzburg–Landau flow, we are now
ready to define the flow that we will use in our arguments below.

Lemma 4.4. For " 2 .0; "1/ and w 2 W , let U ";1w .x; t/ solve the Ginzburg–Landau heat
flow with initial data U ";0w . Then

Œ0;1/ �W 3 .t; w/ 7! U ";1w .�; t / 2 H 1.M IC/ is continuous:

See Appendix A for the proof, which involves rather standard parabolic estimates.

Finally, we define U" W Œ0;1/ �W ! H 1.M IC/ by

U".t; w/ WD U
";1
w .�; �.w/t/ (4.11)

for a smooth, compactly supported � W B`R ! Œ0; 1� such that � D 1 in B`
R=2

. We point
out that

if jwj D R; then U".t; w/ D U
";0
w for all t � 0: (4.12)

For c" as in Lemma 4.5 below we can guarantee thatE"U .U".0;w// < c" � � whenever
jwj > R=2 and " is small enough, for suitable � > 0.
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4.3. Choosing a good trajectory

We finally make use of the asymptotic saddle point geometry of E", inherited from EV
via the Gamma-convergence Theorem 2.1, to complete the proof of Proposition 4.1.

We will use the notation

PWU .u/ D PWV

�
1

�
? Ju

�
for u 2 H 1.M IC/:

Lemma 4.5. If ı0 > 0 is as in Lemma 4.2 then there exists R0 > 0 such that for every
R 2 .0; R0/, there is some � D �.R/ > 0 such that if we define

a" WD max ¹E".U ";0w / W jwj D Rº;

c" WD min
²
E".u/ W PWU .u/ D 0;





 1� ? Ju � T






V

� ı0

³
;

d" WD max ¹E".U ";0w / W jwj � Rº;

then
a" ! L � 2�; c" ! L; d" ! L (4.13)

as "! 0, where L is the length of the geodesic 
 .

The assertions about a" and d" follow directly from (2.12) and Lemma 4.3, and Step 3
of the proof of [16, Theorem 4.4] shows exactly that c"!L. The proof uses only ingredi-
ents that we have collected in Theorem 2.1 and Lemma 4.2.

Below we will not refer explicitly to the assertion about lim"!0 a", but it plays a role
in the proof of Lemma 4.6, and together with the lower bound for lim inf c", it reflects the
asymptotic minmax geometry of E".

Proposition 4.1 will essentially follow from the next fact.

Lemma 4.6. For each r > 0 there exist "0 > 0 and R > 0 such that for every 0 < " < "0
and every � > 0, there exists w D w."; �/ such that

PWU .U".�; w// D 0;





 1� ? JU".�; w/ � J






V

� r: (4.14)

As a result, w D w."; �/ satisfies

d" � E".U".t; w// � E".U".�; w// � c" for all t 2 Œ0; �� and " 2 .0; "0/: (4.15)

Finally, w."; �/! 0 as "! 0.

Proof. One may prove (4.14) by simply repeating the arguments from Steps 5–8 of the
proof of [16, Theorem 4:4], for r > 0 such that 0 < r < ı0, where ı0 is the constant from
(4.4) of Lemma 4.2. Some comments are in order:

First, the argument in [16] is stated for a pseudo-gradient flow (see [16, Lemma 4.8])
with certain properties that our flow .t;w/ 7! U".t;w/ does not possess. These are in fact
not needed for the proof of (4.14), and some of them may appear in [16] only because
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there Lemma 4.8 is quoted directly from a standard text, which provides more than is
actually needed. These are the only properties of the flow that are required for the proof
of (4.14):

� t 7! E".U".t; w// is nonincreasing,

� t 7! U".t; w/ is constant for w 2 @W (see (4.12)),

� continuity properties of the flow, as summarized in Lemma 4.4.

All of these are available here.
Without going into detail, we remark that the basic strategy of the proof is to apply

degree theory arguments to the maps w 7! PWU .U".t; w// W W ! R` as t varies from 0

to � (where � D 1 in [16], a harmless normalization).
Next, (4.15) follows directly from (4.14) and Lemma 4.5. Finally, we deduce from

(4.15) and Lemma 4.5 that

E".U".0; w// D E".U
";0
w /! L as "! 0:

Then conclusion (3) of Lemma 4.3 implies that w D w."; �/! 0 as "! 0.

We are now in a position to present:

Proof of Proposition 4.1. Let 0 < ı < ı0 be given where ı0 is as in (4.4) of Lemma 4.2.
We take "0.ı/ andR.ı/ as defined in Lemma 4.6 and set u".x; t Iı; �/DU".t;w."; �//. By
shrinking "0 if necessary, we may ensure that jw.";�/j<R.ı/=2, as shown in Lemma 4.6.
Thus, u".x; t I ı; �/ solves (4.1) since

U".t; w."; �// D U
";1
w .x; t/

for such " > 0.
Since kU ";0w kL1 � 1, it is clear that ju".x; t/j � 1 everywhere, and all other conclu-

sions of the proposition follow directly from Lemmas 4.5 and 4.6.

5. Proof of the main result

The main result of this paper, stated more informally in the introduction as Theorem 1.1,
can now be phrased precisely as

Theorem 5.1. Let .M; g/ be a closed oriented 3-dimensional Riemannian manifold, and
let 
 be a closed, embedded, nondegenerate geodesic of length L. Assume in addition that

 D @S for some 2-dimensional orientable submanifold S of M .

Then for every r > 0, there exists "2.r/ > 0 such that if 0 < " < "2.r/, then there is
a solution u" of the Ginzburg–Landau equation

��u" C
1

"2
.ju"j

2
� 1/u" D 0 on M (5.1)
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such that 



 1� ? Ju" � T







F

� r; jE".u"/ � Lj < r:

As a result, there exists a sequence .u"/">0 � H 1.M IC/ of solutions of the Ginzburg–
Landau equations such that



 1� ? Ju" � T







F

! 0; E".u"/! L as "! 0. (5.2)

We remark that standard Gamma-convergence results (see Theorem 2.1) imply that
the sequence of solutions in (5.2) satisfies

e".u"/

�jlog "j
* kT
k D H1 � weakly as measures; (5.3)

which is the last conclusion of Theorem 1.1. Indeed, since E".u"/ is uniformly bounded,
there exists some measure � such that

e".u"/

�jlog "j
* � weakly as measures;

after perhaps passing to a subsequence, and �.M/ D lim"!0 E".u"/ D L. Standard
Gamma-convergence results and (5.2) imply

� � kT
k;

and since kT
k.M/ D L D �.M/, it follows that � D kT
k, proving (5.3).

Proof of Theorem 5.1. The proof relies on an improvement on the properties of the flow
defined in the previous section. The assertion is that the trajectory solving the Ginzburg–
Landau flow identified in Proposition 4.1 remains close to T
 in the flat norm. More
precisely, we will show:

Claim. For every r > 0, there exist positive constants ı1.r/ and "2.r/ < "0.ı1.r//,
depending on r , such that for every " 2 .0; "2.r// and ı 2 .0; ı1.r//, and for every � > 0,
if u" D u".x; t I ı; �/ is the solution of (4.1) found in Proposition 4.1, then



 1� ? Ju".�;t / � T







F

< r for all t 2 Œ0; ��: (5.4)

To establish this, we assume toward a contradiction that there exists r > 0 and
sequences ık ; "k ! 0 and 0 < tk � �k such that uk.x; t/ WD u"k .x; t I ık ; �k/ satisfies



 1� ? Juk.�; tk/ � T







F

D r: (5.5)

We will assume that r < r0, where r0 is the constant found in Proposition 3.1. This clearly
does not entail any loss of generality.
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Step 1: Under the assumption (5.5), we will argue that necessarily tk !1 as k !1.
(In fact, below we only need to know that tk is bounded away from 0.)

Assume toward a contradiction that lim infk tk < K for some K > 0. By passing to
subsequences, relabelling, and invoking standard compactness, continuity, and Gamma-
convergence results (i.e. Theorem 2.1), we may assume that the following hold.

First, tk � K for all k.
Second, there exists a 1-current J1 2 R1 \ F 01.M/ such that



 1� ? Juk.�; tk/ � J1






F

! 0:

Hence, by (5.5),
kJ1 � T
kF D r: (5.6)

Third, there exists a Radon measure �1 such that

e"k .uk.�; tk//

�jlog "kj
* �1 weakly as measures,

and in addition
�1 � kJ1k (5.7)

(see (2.14)).
Finally, since ık ! 0 and M is compact, it follows from Proposition 4.1 that

�1.M/ D L D kT
k.M/: (5.8)

We next claim that

e"k .u
0
k
.�//

�jlog "kj
* �0 D kT
k weakly as measures,

where we have set u0
k
.�/ WD uk.�; 0/. Indeed, we may assume that

e"k .u
0
k
.�//

�jlog "k j
converges

weakly as measures to a limit �0 as k !1. Then recalling that k 1
�
? Ju0

k
� T
kF �

ık ! 0, standard Gamma-convergence results as in (5.7) imply that �0 � kT
k. On the
other hand, as in (5.8),

�0.M/ D L D length.
/ D kT
k.M/;

so it follows that in fact �0 D kT
k as claimed. It then follows from (5.6) and (5.7) that
�1 ¤ �0 D kT
k.

We will obtain a contradiction, completing Step 1, by showing that under our assump-
tions �0 and �1 must be equal. Indeed, after taking the inner product of (4.1) with @tuk ,
standard computations show that

@te"k .uk/ D �j@tukj
2
C div.@tuk � ruk/:
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Multiplying by a function � 2 C 1.M/ and integrating by parts on the right-hand side, we
get Z

M

�e"k .uk/ vol
ˇ̌̌̌tk
0

D �

Z tk

0

Z
M

Œ�j@tukj
2
C.r�; @tuk � ruk/g � vol dt: (5.9)

Clearly

1

�jlog "kj

Z
M

�e"k .uk/ vol
ˇ̌̌̌tk
0

!

Z
M

�.�1 � �0/:

On the other hand, it is not hard to see that after dividing by �jlog "kj, the right-hand side
of (5.9) tends to 0 as k !1. First, taking � D 1 in (5.9), we see that

1

�jlog "kj

Z tk

0

Z
M

j@tukj
2 vol dt D E"k .u

0
k/ �E"k .uk.�; tk// � 2ık ! 0

as k !1. It immediately follows thatˇ̌̌̌Z tk

0

Z
M

�
j@tukj

2

�jlog "kj
vol dt

ˇ̌̌̌
! 0 as k !1:

Similarly, from Cauchy–Schwarz, the fact thatZ
M

jruk.�; t /j
2

�jlog "kj
vol dt � E"k .uk.�; t // � LC ık for all t � 0

and the assumption that tk � K, we easily see that

1

�jlog "kj

ˇ̌̌̌Z tk

0

Z
M

.r�; @tuk � ruk/g vol dt
ˇ̌̌̌
! 0 as k !1:

Combining these, we conclude that
R
M
�.�1 � �0/ D 0 for all � 2 C 1.M/, and hence

that �0 D �1. This contradiction yields the conclusion that if (5.5) holds, then tk !1,
completing Step 1.

Step 2: We will now reach a contradiction to (5.5), and so obtain the Claim.
To this end, we apply Theorem 2.3 to the sequence of functions

Quk.x; t/ D uk.x; t C tk � 1/;

which, in particular, satisfies (4.1) onM � Œ0;1/with "D "k! 0. This yields a function
��WM � .0; 1� ! R that solves the heat equation, a harmonic 1-form 
� that is not a
function of t , as well as measures .�t�/0<t�1 and .�t�/0<t�1 such that

e"k . Quk.�; t //

�jlog "kj
vol * �t� D

1
2
jd��.�; t /C 
�j2 volC�t�

weakly as measures and .�t�/0<t�2 is a 1-dimensional Brakke flow satisfying (2.27) and
(2.28) (with n D 2).
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As with (5.8), and using Step 1, it follows that

�t�.M/ D L for all t 2 .0; 2/: (5.10)

We recall the standard estimate

d

dt

Z
M

jd��.�; t /C 
�j2

2
vol D �

Z
M

j@t��j
2 vol � 0 (5.11)

(the counterpart for the linear heat equation of (5.9)). Since t 7! �t�.M/ is also nonin-
creasing, as noted in (2.24), we conclude from (5.10) that both

�t�.M/ and
Z
M

jd��.�; t /C 
�j2

2
vol are independent of t 2 .0; 2/:

It then follows from (5.11) that @t�� D 0 and hence �� D ��.x/ is independent of t
and harmonic. Similarly, it follows from (2.25) and (2.26) that there exists a stationary
1-varifold V� such that

�t� D V� for all t 2 .0; 2/;

and so, in particular, at t D 1. Also, (2.27) and (2.28) imply that there exists a 1-rectifiable
set †� �M and a function ‚� such that

V� D ‚�.x/H
1 †�; ‚� � � > 0 H1-a.e. in †�: (5.12)

Moreover, as in the proof of Step 1, there exists a 1-current J1 2 R1.M/ \ F 01.M/ such
that 



 1� ? J Qu.�; 1/ � J1






F

D





 1� ? Ju.�; tk/ � J1






F

! 0

and thus
kJ1 � T
kF D r: (5.13)

We claim that in addition
V� � kJ1k; V�.M/ � L: (5.14)

The second assertion follows from (5.10), and the first assertion is a consequence of stand-
ard Gamma-convergence results, which imply that

�1� D
1
2
jd��.x/C 
�j2 volCV� � kJ1k:

Since 1
2
jd��.x/C 
�j2 vol is absolutely continuous with respect to vol and kJ1k is con-

centrated on a 1-rectifiable set, this implies that V� � kJ1k, as claimed.
However, recalling that 0 < r < r0, we may appeal to Proposition 3.1 to find that no

such varifold can exist. The Claim is established.

Step 3: Fix r 2 .0; r0/, where r0 is fixed to ensure the previous steps hold, and let ı1.r/
and "2.r/ be as provided in the Claim. We may assume that ı1.r/ � r . For " 2 .0; "2.r//,
let

uk D u"
�
�; �I 1

2
ı1.r/; 2

k
�
:
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It follows from Proposition 4.1 that

ı1.r/ � E
"
U .uk.�; 0// �E

"
U .uk.�; 2

k// D
1

�jlog "j

Z 2k

0

Z
M

j@tukj
2 vol dt;

so there exists �k 2 .0; 2k/ such that wk WD uk.�; �k/ satisfiesZ
M

ˇ̌̌̌
�wk �

1

"2
.jwkj

2
� 1/wk

ˇ̌̌̌2
vol D

Z
M

j@tukj
2 vol

ˇ̌̌̌
tD�k

� ı1.r/�jlog "j2�k :

Also, it follows from the Claim that



 1� ? Jwk � T







F

D





 1� ? Juk.�; �k/ � T







F

< r:

Since jukj � 1 everywhere, we have k�wkkL2.M/ � C", and hence by elliptic regularity,
kwkkH2 � C". One may thus extract a subsequence and a function u" 2 H 2.M IC/ such
that wk * u" weakly in H 2, and it easily follows from the above that

��u" C
1

"2
.ju"j

2
� 1/u" D 0 and





 1� ? Ju" � T







F

� r:

Finally, since we require ı < ı1.r/ � r , Proposition 4.1 yields jE".u"/ � Lj < r .

Appendix A. Proofs of Lemmas 4.3 and 4.4

A.1. On the proof of Lemma 4.3

As remarked above, this lemma is essentially proved in [25]. We describe the proof given
there and the extremely small modifications that we need.

The idea of the proof is first to construct U ";00 , with its vorticity concentrating around
the central geodesic � , then for w 2 W , to define

U ";0w WD U
";0
0 ıO

�1
w ; (A.1)

where Ow W M ! M is a suitable family of diffeomorphisms indexed by w 2 W such
that .w; x/ 7! Ow.x/ is smooth, described below.

Construction of U ";00 . Recall that in (2.6) we defined a map y W Kr0 ! R2, smooth and
nonvanishing away from � . Let y0 WM nKr0=2 ! S1 be any smooth function such that
y0.x/ D y.x/=jy.x/j in Kr0 nKr0=2. The existence of such a function is a consequence
of the topological assumption (2.3).

Then we set Qv" WR2!R2 by Qv".p/D f . jpj
"
/ p
jpj

where f W Œ0;1/! Œ0;1� is a smooth
nondecreasing function such that f .s/D s for s 2 Œ0; 1=2� and f .s/D 1 for s � 1. Finally,
we define

U
";0
0 .x/ WD

´
Qv".y.x// for x 2 Kr0 ;

y0.x/ for x 2M nKr0 :
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The only way in which this construction differs from that in [25] is that there, f is chosen
to be f .s/ D min.s; 1/, which is Lipschitz continuous but not smooth. With this change,
U
";0
0 is smooth.

Construction of Ow . We take Ow in (A.1) to be exactly the same map as in [25,
p. 62]. The construction easily implies that .w; x/ 7! U

";0
w .x/ is smooth and hence

kU
";0
w kH2 � C" for all w 2 W . All other conclusions are proved in [25], and some are

obvious anyway, such as kU ";0w kL1 � 1. In particular, .3/, which follows from a Gamma-
limsup type estimate together with (2.12), is verified in [25, Lemma 5:5]. Finally, .4/
follows from [25, Lemma 5:4].

A.2. Proof of Lemma 4.4

The maximum principle and standard energy estimates imply that for every t > 0,

kU ";1w .�; t /kL1.M/ � 1;

E".U
";1
w .�; t //C

1

�jlog "j

Z t

0

Z
M

j@tU
";1
w j

2 vol dt 0 � E".U ";1w .�; 0// � LC 1

for all jwj � R, provided " and R are small enough. We next claim that for every t > 0,
there exists C D C";� such that

kU ";1w .�; t /kH2 � C";� for all t 2 Œ0; �� and jwj � R: (A.2)

To specify the norm, we fix an open cover ¹Uj ºj2J of M , with local coordinates 'j W
Uj ! Vj � R3 on each patch, and a finite partition of unity ¹�j º subordinate to ¹Uj º. We
then define

kuk2
H2
D kuk2

L2
C kjrujgk

2
L2
C

X
j2J

3X
kD1

k
p
�j jr@k.u ı '

�1
j /jgk

2
L2.Vj /

;

where @k denotes differentiation with respect to local coordinates on Vj . To prove (A.2),
we write (4.1) in local coordinates on each patch, and apply @k to derive an equation for
Vk WD @kU

";1
w of the form

@tVk ��gVk D terms involving U ";1w ;rU
";1
w :

Multiplying by �j @tVk , using the fact from Lemma 4.3 (2) that krVk.�; 0/k � C", integ-
rating by parts, and carrying out rather standard estimates leads to (A.2).

It follows from the above estimates and the equation that k@tU
";1
w .�; t /kL2 � C";� for

0 < s � � . Thus, for 0 � t1 < t2 � � and any w 2 W , we have

kU ";1w .�; t2/ � U
";1
w .�; t2/k

2
L2
� .t2 � t1/

Z
M�Œt1;t2�

j@tU
";1
w .x; t/j2 vol dt

� C";� .t2 � t1/:
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Then the interpolation estimate kukH1 � Ckuk
1=2

L2
kuk

1=2

H2
and (A.2) imply that

kU ";1w .�; t2/ � U
";1
w .�; t1/kH1 � C";�

p
t2 � t1 for w 2 W; 0 � t1 < t2 � �:

Now consider w1; w2 2 W . Writing f".u/ D 1
"2
.1 � juj2/u and using the identity

f".b/ � f".a/ D

Z 1

0

d

d�
f".�b C .1 � �/a/ d� D

Z 1

0

f 0" .�b C .1 � �/a/ d� .b � a/;

we find that V WD U ";1w2 � U
";1
w1 satisfies the equation

@tV ��V D gV;

where kg.�; t /kL1 � C" for every t . In addition, it follows from Lemma 4.3 that
kV.�; 0/kH1 � C"jw2 �w1j. Thus carrying out further standard parabolic estimates (mul-
tiplying by V or @tV , integrating by parts etc.) leads to

kU ";1w2 .�; t / � U
";1
w1
.�; t /kH1 � C";� jw2 � w1j for 0 � t � �:

We conclude that the map Œ0; �� �W 3 .t; w/ 7! U
";1
w .�; t / 2 H 1.M IC/ is continuous,

since it is separately uniformly continuous in t and w. A more detailed reference for such
parabolic estimates on manifolds can be found, e.g., in [24, Appendix A].
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