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Abstract. Inspired by Fröhlich–Spencer and subsequent authors who introduced the notion of con-
tour for long-range systems, we provide a definition of contour and a direct proof for the phase
transition for ferromagnetic long-range Ising models on Zd , d � 2. The argument, which is based
on a multiscale analysis, works for the sharp region ˛ > d and improves previous results obtained
by Park for ˛ > 3d C 1, and by Ginibre, Grossmann and Ruelle for ˛ > d C 1, where ˛ is the
power of the coupling constant. The key idea is to avoid a large number of small contours. As an
application, we prove the persistence of the phase transition when we add a polynomially decay-
ing magnetic field with power ı > 0 as h�jxj�ı , where h� > 0. For d < ˛ < d C 1, the phase
transition occurs when ı > ˛ � d , and when h� is small enough over the critical line ı D ˛ � d .
For ˛ � d C 1, ı > 1 is enough to prove the phase transition, and for ı D 1 we have to ask h�

small. The natural conjecture is that this region is also sharp for the phase transition problem when
we have a decaying field.

Keywords: long-range Ising model, phase transitions, multiscale analysis, decaying fields.

1. Introduction

Most of our knowledge about statistical mechanics of lattice systems comes from short-
range interactions, and one of the main problems in the area is deciding whether a model
presents a phase transition or not. The standard strategy to prove the phase transition is
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to define a notion of contour for the model to apply the Peierls argument [38]. However,
many important examples have long-range interactions. In this paper, we consider the
ferromagnetic long-range Ising model with an external field in dimension d � 2. The
Hamiltonian of the model is given formally by

H D �
X

x;y2Zd

Jxy�x�y �
X
x2Zd

hx�x ; (1.1)

where Jxy D zJ .jx � yj/ D J jx � yj�˛ , J > 0, ˛ > d and hx 2 R. The case considered
originally was the zero magnetic field, that is, hx D 0 for every x 2 Zd .

Part of the results for ferromagnetic long-range Ising models in dimension one (d D 1)
can be summarized as follows: Kac and Thompson conjectured in [31] that the model
exhibits a phase transition at low temperatures when ˛ 2 .1;2�. The conjecture was proved
in 1969 by Dyson in [20] for ˛ 2 .1; 2/. Dyson’s approach applies correlation inequalities
between a model that is known nowadays as hierarchical model. In a private communi-
cation with Dyson, Thompson told that there was no phase transition for ˛ D 2 (see the
references in [20]). Still, in 1982, Fröhlich and Spencer [23] introduced a notion of one-
dimensional contour and proved the phase transition based on a Peierls-type argument.

The contours presented in [23] were inspired by techniques introduced by the same
authors in [22] to study two-dimensional systems with continuous symmetries, where
breakthroughs were made in the study of the Berezin–Kosterlitz–Thouless transition. The
idea consists in organizing the spin flips in (not necessarily connected) contours that
satisfy a condition related to their distance between each other (in [24], it is called Con-
dition D).

Cassandro, Ferrari, Merola and Presutti [12] attempted to extend the contour argu-
ment to different exponents for the interactions introducing a more geometric approach
in terms of triangle configurations to the problem of the phase transition. Their modifi-
cation comes with an additional condition on the coupling for nearest neighbors, namely,
zJ .1/� 1. The authors showed the phase transition assuming that ˛ 2 .2� ˛C; 2�, where
˛C D log.3/= log.2/ � 1. Many results were obtained following either the contour ap-
proach of Fröhlich and Spencer or Cassandro, Ferrari, Merola and Presutti, such as cluster
expansion [14, 28, 29], phase separation [13], phase transition for the one-dimensional
long-range model with a random field [15] and condensation for the corresponding lattice
gas model [30].

Recently, Bissacot, Endo, van Enter, Kimura and Ruszel [9], based on the contour
argument of [12], considered the model with a presence of the decaying magnetic field
.hx/x2Z. Moreover, restricting the region of ˛ to .2 � ˛�; 2�, where ˛C < ˛� satis-
fies

P
n�1 n

�˛� D 2, they removed the condition of the nearest neighbor’s coupling
zJ .1/� 1.

For multidimensional models (d � 2), one of the only notions of contour available
beyond the short-range case was proposed by Park [36, 37], on an extension of Pirogov–
Sinai theory. Park’s arguments work for pair interactions and finite state space, but the
interaction’s exponent has to be assumed ˛ > 3d C 1. Before this, in [26], Ginibre,
Grossmann and Ruelle extended the usual Peierls argument for a class of interactions
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more general than nearest-neighbor. Their result implies that, if we add a long-range per-
turbation to the nearest-neighbor model of the form Kx;y D Kjx � yj�˛ , with a real
constant K, the cost of erasing a contour 
 from a family of contours � containing 

is bounded below by 2.J � jKjc˛/j
 j, where c˛ D

P
k2Zd n¹0º jkj

1�˛ � 2d . Notice that
this lower bound is positive forK small enough and ˛ > d C 1. Indeed, their result holds
in more generality: the constant K may be replaced by a family of real constants Kx;y
with sup¹x;yº2Zd jKx;y j small enough. Notice that the sign of Kx;y may change, mak-
ing their result applicable for antiferromagnetic long-range perturbations, for instance.
Since the methods of Ginibre–Grossmann–Ruelle hold for antiferromagnetic perturba-
tions, the results by van Enter [43] and Biskup, Chayes and Kivelson [5] show that their
enhanced Peierls argument is not generalizable for d < ˛ � d C 1, since an arbitrarily
small antiferromagnetic long-range interaction with this decay forces the magnetization
to be zero.

One of our main contributions in this paper is to present a proof for the phase tran-
sition at low temperature for the ferromagnetic long-range Ising model on the lattice Zd

with d � 2. Our proof combines ideas from [12, 22, 24, 36, 37, 41], and we are able to
obtain the Peierls argument in the case of zero magnetic field for the sharp region ˛ > d .
Notice that the positivity of the magnetization follows from the GKS inequalities and the
Peierls argument for the nearest neighbor Ising model. The novelty in our results resides
in the fact that we have a contour argument applicable to models where the correlation
inequalities do not imply the phase transition or even do not hold, such as the model with
a decaying field in the former case and to random magnetic fields [2], in the later.

It is well known that ferromagnetic Ising models do not present phase transition in
the presence of a uniform magnetic field; see Lee and Yang [34, 44]. When the field is
not constant, the situation drastically changes. There is some literature about models with
fields, including the famous case of the random field. See, for instance, [3, 4, 8, 10, 11, 16,
27, 40].

The problem of studying the phase diagram with a decaying field was introduced
in [7]. Since the pressure of the Ising model with a decaying magnetic field .hx/x2Zd is
equal to the pressure of the Ising model with zero magnetic field, it may induce the belief
that these two models should present the same phase diagram. In [6], the authors studied
the phase diagram of the ferromagnetic nearest-neighbor Ising model on the lattice Zd in
the presence of the spatially dependent magnetic field .hx/x2Zd given by hx D h�jxj�ı ,
when x ¤ 0, and h0 D h�, where h� and ı are positive constants. They studied the behav-
ior of the model at low temperatures according to the exponent of the decaying field: the
model undergoes a phase transition at low temperature for ı > 1, and we have uniqueness
for 0 < ı < 1. Afterward, Cioletti and Vila [17] closed the gap, concluding the unique-
ness of the Gibbs measure when 0 < ı < 1 for all temperatures, the argument uses the
Fortuin–Kasteleyn representation.

When we add a decaying magnetic field, it is not possible to obtain the phase transition
for the long-range Ising model from the short-range case, so the natural strategy is to use
the Peierls argument, as we see in [6, 7, 9]. In fact, these models show that arguments
using contours are sharp with respect to the decaying of the magnetic field.



L. Affonso, R. Bissacot, Eric O. Endo, S. Handa 1682

In the present paper, we extended the analysis in [6] from the short-range to the
long-range case considering decaying external fields in Hamiltonian (1.1). By a similar
approach of Fröhlich and Spencer, we define a notion of contour on this model to show
the phase transition at low temperature when d < ˛ < d C 1 and ı > ˛ � d , and when
˛ � d C 1 and ı > 1.

To understand the heuristics of our result on phase transitions, let us consider the
configurations

�x D

´
C1 if x 2 BR.z/;

�1 otherwise;

where BR.z/ � Zd is the closed ball in the `1-norm centered in z with radius R � 0.
Let �c be the collection of all such configurations together with the configuration that
is �1 in all Zd and, for fixed ƒ b Zd , let �c;ƒ be the subset of configurations where
BR.z/ � ƒ together with the configuration that is �1 in all Zd . Then, we have

��ˇ;ƒ.�0 D C1j�c;ƒ/ �
X
R�1

Rd exp
�
�ˇ
�
cRd�1 C FBR �

X
x2BR.0/

hx

��
; (1.2)

where the quantity FBR is defined as

FBR WD
X

x2BR.0/
y2BR.0/

c

Jxy :

One can understand this quantity as a surface energy term, and it has different asymptotics
depending on the parameters ˛ and d . Denoting by f � g the fact that given two functions
f; gWRC ! RC, there exist positive constants A0 WD A0.˛; d/, A WD A.˛; d/ such that
A0f .x/ � g.x/ � Af .x/ for every x > 0 large enough, we have

FBR �

8̂̂<̂
:̂
R2d�˛ if d < ˛ < d C 1;

Rd�1 log.R/ if ˛ D d C 1;

Rd�1 if ˛ > d C 1:

For the proof, see [4, Propositions 3.1 and 3.4]. For our purposes, we will need estimates
for more general subsets than balls, see Lemma 4.4. Now, inequality (1.2) shows us that
the phase transition occurs when ı > ˛ � d . To see this, observe that the surface energy
term should be larger than the contribution of field, which is given byX

x2BR.0/

hx D O.R
d�ı/:

Our main result can be summarized by the Figure 1.
This paper is divided as follows. In Section 2, we give some basic definitions and

define the model. In Section 3, we introduce the notion of contour for the long-range
Ising model and estimates for the entropy of the contours. In Section 4, we present the
proof of the phase transition for the region indicated in Figure 1.

This paper is contained in the Ph.D. thesis of Lucas Affonso [1].



Long-range Ising models: Contours, phase transitions and decaying fields 1683

0 ˛ � d

ı

1

1

Phase transition

Uniqueness?

Phase transition
for small h�

Fig. 1. The phase diagram for the long-range Ising model depending on ˛ and ı.

2. Definitions and notations

2.1. The model

Although most of the definitions and results cited in this section are available in greater
generality, we choose to consider only the case where the lattice is Zd for d � 2 and the
state space is E D ¹�1;C1º. Our configuration space will be � D ¹�1;C1ºZ

d
. We will

denote by �C (resp. by ��) the configuration which assume the same value equal to C1
(resp.�1) in all vertices, i.e., �˙x D˙1 for all x 2Zd . We writeƒb Zd for finite subsets
of the lattice. Fixing such ƒ, we define the local configuration space �ƒ D ¹�1;C1ºƒ

and, given ! 2�, we define�!ƒ�� as the subset of configurations such that �ƒc D!ƒc ,
i.e., �x D !x for all x 2 ƒc . We say that � hasC-boundary condition (resp. �-boundary
condition) when � 2 �Cƒ (resp. � 2 ��ƒ).

For eachƒb Zd , ! 2�, and hD .hx/x2Zd a collection of real numbers, the Hamil-
tonian function of the long-range Ising model H!

ƒ;hW�
!
ƒ ! R is given by

H!
ƒ;h.�/ D �

X
¹x;yº�ƒ

Jxy�x�y �
X
x2ƒ
y2ƒc

Jxy�x!y �
X
x2ƒ

hx�x ; (2.1)

where, for ˛ > d , J > 0 and x;y 2 Zd with x ¤ y, the coupling constant Jxy is given by

Jxy D

8<:
J

jx � yj˛
if x ¤ y;

0 otherwise;
(2.2)

where jzj is the `1-norm of z 2Zd . For ı;h� > 0, the magnetic field .hx/x2Zd is given by

hx D

8<: h
� if x D 0;
h�

jxjı
if x ¤ 0:

(2.3)
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For a subset ƒ � Zd , consider the � -algebra Fƒ generated by the cylinder sets
supported on ƒ. The basic object of the study in the classical statistical mechanics is
the collection of probability measures in .�;FZd / called finite volume Gibbs measures
defined by

�!ˇ;h;ƒ.�/ WD
e�ˇH

!
ƒ;h.�/

Z!
ˇ;h;ƒ

if �ƒc D !ƒc ;

and �!
ˇ;h;ƒ.�/ D 0 otherwise. Here ˇ > 0 is the inverse temperature, and the normaliza-

tion factor Z!
ˇ;h;ƒ, called partition function, is defined by

Z!ˇ;h;ƒ WD
X
�2�ƒ

e�ˇH
!
ƒ;h.�/:

The Gibbs measure withC-boundary (resp. �-boundary) condition is when !x DC1
(resp.�1) for every x 2Zd . We say that a sequence of finite subsets .ƒn/n2N invades Zd ,
denoted byƒn%Zd , if for every finite subsetƒ there existsN > 0 such thatƒ�ƒn for
all n � N . Since the configuration space� is compact, the space of probability measures
is a weak* compact set. Therefore, the net defined by the collection of finite volume Gibbs
measures has a convergent subsequence. We define the set Gˇ as the closed convex hull
of all the limits obtained by this procedure, i.e.,

Gˇ WD conv
®
�ˇ W �ˇ D w

�- lim
ƒ0%Zd

�!ˇ;ƒ0 ; ƒ
0 b Zd invades the lattice

¯
:

The set Gˇ is always nonempty in our case by a simple application of the Banach–
Alaoglu theorem. We say that the model has uniqueness at ˇ if jGˇ j D 1 and it undergoes
to a phase transition at ˇ if jGˇ j > 1.

3. Contours

Contours are geometric objects first introduced in a seminal paper of Peierls [38]. The
technique is known nowadays as Peierls’ argument. Many attempts were made to extend
the ideas of the Peierls argument to the other systems [18, 19, 36, 39, 45]. The most suc-
cessful generalization was made by Pirogov and Sinai in [39], and later improved by
Zahradník [45]. Their work is known as Pirogov–Sinai theory, and it is applied to models
with short-range interactions that may not have symmetries.

Park, in [36,37], extended the theory of Pirogov–Sinai to systems with two-body long-
range interactions that satisfy a condition equivalent to (2.2) having decay ˛ > 3d C 1.
Inspired by [23], in this section we will introduce new contours more suitable to study
long-range two-body interactions.

Definition 3.1. Given � 2 �, a point x 2 Zd is called C (resp. �) correct if �y D C1,
(resp. �1) for all points y in B1.x/. The boundary of � , denoted by @� , is the set of all
points in Zd that are neitherC nor � correct.
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We recall the reader thatB1.x/ is the ball of radius 1with respect to the `1-norm. Note
that the boundary can be an infinite subset of Zd . Indeed, if we take � 2 � defined by

�x D

´
C1 if jxj is even;

�1 otherwise;

it is easy to see that every point in Zd is incorrect with respect to the configuration � , and
thus @� D Zd . This situation can be avoided by restricting our attention only to config-
urations with finite boundary set. By definition of incorrectness, for a configuration � to
have a finite boundary set, it must satisfy � 2 �Cƒ or ��ƒ for some subset ƒ b Zd .

For each subset ƒ b Zd , we call ƒ.0/ the unique unbounded connected component
of ƒc . Then, we define the volume by V.ƒ/ D .ƒ.0//c . Note that this set is a union of
simply connected sets that contains ƒ and is the smallest one in the subset order. The
interior is defined by I.ƒ/ D ƒc nƒ.0/.

In Pirogov–Sinai theory, the construction of the contours starts by considering first
the connected subsets of the boundary @� . This procedure is troublesome for long-range
models since each point of the lattice interacts with all the other points. Thus, the con-
tours always have a nonvanishing interaction between themselves. To avoid this problem,
we will divide the boundary of a configuration in a way where the interaction between
them will be negligible in a sense to be specified later. Inspired by Fröhlich and Spen-
cer [23], we introduce the following definition.

Definition 3.2. Fix real numbers M; a; r > 0. For each configuration � 2 � with finite
boundary @� , a set �.�/ WD ¹x
 W x
 � @�º is called an .M; a; r/-partition when the fol-
lowing conditions are satisfied:

(A) They form a partition of @� , i.e.,
S
x
2�.�/ x
 D @� and x
 \ x
 0 D ; for distinct ele-

ments of �.�/.

(B) For all x
 2 �.�/, there exist 1 � n � 2r � 1 and a family of subsets .x
k/1�k�n
satisfying

(B1) x
 D
S
1�k�n x
k ,

(B2) for all distinct x
; x
 0 2 �.�/,

dist.x
; x
 0/ > M min
®

max
1�k�n

diam.x
k/; max
1�j�n0

diam.x
 0j /
¯a
; (3.1)

where .x
 0j /1�j�n0 is the family given by item (B1) for x
 0.

Note that the sets x
 2 �.�/may be disconnected. We also stress that in condition (B1)
the sets .x
k/1�k�n may not be disjoint. Some of the next results are true for any M; a;
r > 0, as the existence of .M; a; r/-partition for any configuration � with finite bound-
ary @� , see Proposition 3.7.

Remark 3.3. For the main purposes of this paper, which is the proof of the phase transi-
tion, the constant a is chosen as a WD a.˛; d/ D max¹.d C 1C "/=.˛ � d/; d C 1C "º,
for some " > 0 fixed and r given by r D dlog2.aC 1/eC d C 1, where dxe is the smallest
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x


x
 0

dist.x
; x
 0/ D
na

2

na�1

na�1

x


x
 0

dist.x
; x
 0/ D 2na

na
n2

n2

n2

Fig. 2. ConsiderM D 1, r D 2, and a > 2. For the image on the left, consider that all the connected
components (grey regions) of x
 0 have diameters equal to n and diam.x
/ D 3n. In this case, there
is no family of subsets of x
 0 satisfying condition (B). A possible .M; a; r/-partition for this case
is �.�/ D ¹x
 [ x
 0º. For the figure on the right, consider that all the connected components of x
 0

have diameter n and diam.x
/ D 3n2. Notice that, in this case, the family of subsets of x
 0 satisfying
inequality (3.1) must have n0 > 2r � 1.

integer greater than or equal to x. The motivation for these choices will be clear in the
proofs. The specific value of M WDM.˛; d/ will be chosen later, but we will assume for
now that M � 1. In Figure 2, we have examples of .M; a; r/-partitions and a discussion
about conditions that forbid the subsets to be a .M; a; r/-partition.

In general, there are many possible .M; a; r/-partitions for a given � 2 � with finite
boundary and fixed M; a; r > 0. If we have two .M; a; r/-partitions � and � 0, we say
that � is finer than � 0 if for every x
 2 � , there is x
 0 2 � 0 with x
 � x
 0. The finest .M;a; r/-
partition also satisfies stronger separation properties than what is stated in condition (A).
It will actually satisfy the following condition (see also Figure 3):

(A1) For any x
; x
 0 2 �.�/, x
 0 is contained in only one connected component of .x
/c .

The proposition below is important in the proof that there is a finest .M; a; r/-partition.

Proposition 3.4. Let � be a configuration with finite @� , and let � , � 0 be two .M; a; r/-
partitions. Then the set defined as

� \ � 0 WD ¹
 \ 
 0 W 
 2 �; 
 0 2 � 0; 
 \ 
 0 ¤ ;º

is also an .M; a; r/-partition. Moreover, if one of them satisfies condition (A1), then
� \ � 0 also satisfies condition (A1).

Proof. The existence of nontrivial .M; a; r/-partitions will be given in the next section.
Consider two .M; a; r/-partitions � and � 0. We will show that we can build an .M; a; r/-
partition that is finer than � and � 0. We will prove that � \ � 0 is an .M; a; r/-partition.
It is easy to see that � \ � 0 forms a partition of @� . For condition (B), consider x
i \ x
 0i 2
� \ � 0 and choose as a family of subsets

.x
i \ x

0
i /k WD x
i \ x


0
i;k
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x
 0

x
 0
x
 0

x


x


Fig. 3. To illustrate how condition (A1) works, consider the figure above. In this case, the connected
components of x
 0 are dotted and the connected components of x
 are grey. One can readily see that
there is a connected component of .x
/c that has a nonempty intersection with V.x
 0/ but does not
fully contain it. In order to fix such a problem, one should separate x
 0 in three different sets.

for all k 2 ¹1; : : : ; n0º where the intersection is not empty. Here .x
 0
i;k
/1�k�n0 is the family

of subsets for x
 0 given by condition (B). We have

dist.x
1 \ x
 01; x
2 \ x

0
2/ � dist.x
 01; x


0
2/ > M min

®
max
1�k�n0

diam.x
 01;k/; max
1�j�m0

diam.x
 02;j /
¯a

�M min
®

max
1�k�n0

diam..x
1 \ x
 01/k/; max
1�j�m0

diam..x
2 \ x
 02/j /
¯a
:

Let x
i 2 � and x
 0i 2 �
0 be such that x
i \ x
 0i 2 � \ �

0 for i D 1; 2. Suppose that � satisfies
condition (A1). Then, there is a connected component A of .x
2/c that contains x
1. Hence,

x
1 \ x

0
1 � A � .x
2 \ x


0
2/
c :

Remark 3.5. Since there are a finite number of .M; a; r/-partitions for a finite boundary
set @� , we can construct the finest one by intersecting all of them, following the above
construction. If we had two .M; a; r/-partitions that have the property of being the finest,
we could produce another .M; a; r/-partition finer than both, yielding a contradiction.

Remark 3.6. In their one-dimensional paper [23], Fröhlich and Spencer assumed that
they would choose the finest partition of spin flips satisfying their Condition D, but the
uniqueness of this partition would not be a problem, since you just need to fix a partition
for the phase transition argument to hold. It was in [28] where Imbrie settled this question
and our proof is inspired by his argument.

3.1. The definition and a discussion about contours on long-range Ising models

For a fixed configuration � with finite boundary @� , the .M; a; r/-partitions will be the
support of the contours, subsets of Zd where every point is incorrect. The starting point
for contour-based phase transition arguments for d � 2 long-range models was Park’s
extension of Pirogov–Sinai theory, developed in [36, 37]. His methods applied to the
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problem in consideration in this work only allowed us to study long-range interactions
with ˛ > 3d C 1. At this point, although we are strongly inspired by the papers of Fröh-
lich and Spencer [22–24] (see also [28, 29]) and the previous authors, we implemented
slight modifications that allow us to cover all the region ˛ > d .

The first point is that, differently from the original papers of Fröhlich and Spencer,
we have no arithmetic condition over the .M;a; r/-partitions, which means we do not ask
the sum of the spins should be zero over the support of the contours. In particular, there
are no constraints over the size of the contours, they could have an even or odd number of
points of Zd . The definition is stated only in terms of the distances among subsets of Zd .

In order to control the entropy (the quantity) of contours, we needed to introduce
a parameter r . It is worthwhile to stress that in the original works of Fröhlich and Spencer
[22–24] the parameter r D 1.

The exponent a plays an important role in our arguments. When ˛ is close to d , the
interaction is stronger, and the contours should be far from each other. In the original
papers of Fröhlich and Spencer, a is chosen as a fixed number or it belongs to a finite
interval as follows. In the first paper [22], for two-dimensional models, we have 3=2 <
a < 2. In the paper about the Dyson model when d D 1 and ˛D 2, we have aD 3=2. In the
paper about multidimensional random Schrödinger operators, they assumed 1 � a < 2,
in [24, Section 4]. These papers use the idea of multiscale analysis to study different
problems, which strongly inspired us in the definition and construction of our contours.
A brief summary mentioning the multiscale methods and its power is in [42] and at the
references therein.

After this, Cassandro, Ferrari, Merola, Presutti [12] defined the contours with a more
geometrical approach, using triangles. Their energy bounds for erasing a contour depend
on these triangles. They choose a D 3 for one-dimensional long-range Ising models with
˛ 2 .2 � ˛C; 2�, where ˛C D log.3/= log.2/ � 1. This is an important point; while our
arguments work for any 2 � d < ˛, Littin and Picco proved that in the one-dimensional
case, it is impossible to produce a direct proof of the phase transition using the Peierls
argument and the definition of contour in [12], although they prove the phase transition
for the entire region with ˛ 2 .1; 2�. The papers [12,35] also assume the extra assumption
J.1/ � 1, which means that first neighbor interaction should be big enough, and the
model simulates a short-range behavior. Recently, it was proved that this extra assumption
could be removed [9, 33].

The following proposition guarantees the existence of an .M; a; r/-partition for each
configuration � with finite boundary.

Proposition 3.7. Fix real numbers M; a; r > 0. For every � 2 � with finite boundary,
there is an .M; a; r/-partition �.�/. Moreover, it satisfies condition (A1).

Proof. For each x 2 Zd and n > 0, we define an n-cube Cn.x/ � Zd as

Cn.x/ WD

� dY
iD1

Œ2n�1xi � 2
n�1; 2n�1xi C 2

n�1�

�
\ Zd : (3.2)
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These cubes have side length 2n and center at the point 2n�1x. For n D 0, we establish
the convention that C0.x/ D x, for any point x 2 Zd . For each ƒ b Zd and n � 0,
we define Cn.ƒ/ as a minimal cover of ƒ by n-cubes.

For each cover n � 0, we define the graphGn.ƒ/D .v.Gn.ƒ//; e.Gn.ƒ/// with ver-
tices v.Gn.ƒ// WDCn.ƒ/ and edges e.Gn.ƒ//WD ¹.Cn.x/;Cn.y// W dist.Cn.x/;Cn.y//�
Mda2anº. Note that d2n is the diameter in the `1-norm of an n-cube. Let Gn.ƒ/ be the
set of all connected components of the graph Gn.ƒ/ and, for each G 2 Gn.ƒ/, define


G WD
[

Cn.x/2v.G/

.ƒ \ Cn.x//:

We are ready to establish the existence of an .M; a; r/-partition for the boundary @� of
a configuration � . Set @�0 WD @� and

P0 WD ¹G 2 G0.@�0/ W jv.G/j � 2
r
� 1º:

Notice that this set separates all points that are distant by at leastMda. Define inductively,
for n � 1,

Pn WD ¹G 2 Gn.@�n/ W jv.G/j � 2
r
� 1º;

where @�n WD @�n�1 n
S
G2Pn�1


G , for n � 1. Since the n-cubes invade the lattice,
when we continue increasing n, there exists N � 0 such that @�n D ; for every n � N .
In this case, we define Pn D ;. Let P WD

S
n�0 Pn. We are going to show that the family

�.�/ WD ¹
G W G 2 Pº is an .M; a; r/-partition.
In order to show that condition (B) is satisfied, we will construct families of sub-

sets, with at most 2r � 1 elements, where inequality (3.1) is verified. We will write
Gn WDGn.@�n/ to simplify our notation. Take distinct 
G ; 
G0 2 �.�/. There are positive
integers n,m, with n � m, such that G 2 Pn and G0 2 Pm. Let G00 be the subgraph of Gn
such that v.G00/ covers 
G0 and it is minimal in the sense that all other subgraphs G000

ofGn satisfying this property have jv.G000/j � jv.G00/j. Thus, defining 
k D 
G \Cn.xk/,
for each Cn.xk/ 2 v.G/, we have

dist.
G ; Cn.z// D min
1�k�jv.G/j

dist.
k ; Cn.z// � min
1�k�jv.G/j

dist.Cn.xk/; Cn.z// (3.3)

for each Cn.z/ 2 v.G00/. There is no edge between the subgraph G00 and the connected
component G, by construction. Thus,

dist.Cn.xk/; Cn.z// > Mda2an:

Consider, also, the sets 
 0j D 
G0 \ Cm.yj /, where Cm.yj / 2 v.G0/. Then

dist.
G ; 
G0/ D min
1�j�jv.G0/j

min
Cn.z/2v.G

00/
Cn.z/\


0
j
¤;

dist.
G ; 
 0j \ Cn.z//

� min
Cn.z/2v.G00/

dist.
G ; Cn.z//:
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Using inequality (3.3), we arrive at the inequality dist.
G ; 
G0/ > Mda2an. Note that, by
construction, both ¹
kº1�k�jv.G/j and ¹
 0j º1�j�jv.G0/j satisfy

max
1�k�jv.G/j

diam.
k/ � d2n and max
1�j�jv.G0/j

diam.
 0j / � d2
m;

respectively. Since we assumed that n � m, we get

min
®

max
1�k�jv.G/j

diam.
k/; max
1�j�jv.G0/j

diam.
 0j /
¯a
� da2an;

and we proved that the family �.�/ satisfies condition (B).
In order to establish condition (A), we first note that the equality @� D

S
G2P 
G

follows by construction. The elements of �.�/ are pairwise disjoint since inequality (3.1)
is satisfied.

Eventually, let us present the proof of condition (A1) for our constructed partition. Let

G ; 
G0 2 �.�/, with V.
G/ \ V.
G0/ ¤ ;. There are positive integers n, m satisfying
n � m such that G 2 Pn and G0 2 Pm. Consider G00, as before, the minimal subgraph
of Gn that covers 
G0 . Since 
G \ 
G0 D ;, it holds that 
G � .
G0/c . We will show
that 
G must be contained in only one connected component of .
G0/c . Every n-cube
Cn.x/ 2 v.G/ cannot have a nonempty intersection with 
G0 , since the last one is covered
by the n-cubes in v.G00/ and there is no edge between G and G00. This is sufficient to
conclude that each n-cube in v.G/ is in only one connected component of .
G0/c .

If .
G0/c has only one connected component or jv.G/j D 1, there is nothing to prove.
Suppose, by contradiction, that there exist two n-cubes Cn.x/;Cn.x0/ 2 v.G/ in different
connected components of .
G0/c . We claim

dist.Cn.x/; Cn.x0// � 2Mda2an: (3.4)

Indeed, take two points z 2 Cn.x/ and z0 2 Cn.x0/ such that dist.Cn.x/; Cn.x0// D
jz � z0j. Let �z;z0 be a minimal path in Zd starting at z and ending at z0. Note that
j�z;z0 j D jz � z

0j. Since Cn.x/ and Cn.x0/ are in different connected components of
.
G0/

c , there must exist y 2 �z;z0 \ 
G0 . We can break �z;z0 as the union of minimal
paths �z;y and �y;z0 . This fact implies

dist.Cn.x/; Cn.x0// D jz � yj C jy � z0j � min
y02
G0

Œjz � y0j C jy0 � z0j�

� min
y02
G0

Œdist.Cn.x/; y0/C dist.Cn.x0/; y0/�

� min
Cn.z/2v.G00/

Œdist.Cn.x/; Cn.z//C dist.Cn.x0/; Cn.z//�

� 2Mda2an;

where the last inequality is due to the fact that the subgraphs G and G00 have no edge
between them. Inequality (3.4) is valid for any pair of n-cubes in different connected
components of .
G0/c , thus our discussion implies that Cn.x/ and Cn.x0/ are vertices of
two different connected components. This cannot happen since G is connected, we arrive
at a contradiction.
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Definition 3.8. For ƒ � Zd , we define the inner boundary

@inƒ WD ¹x 2 ƒ W inf
y2ƒc

jx � yj D 1º;

and the edge boundary as

@ƒ WD ¹¹x; yº � Zd W jx � yj D 1; x 2 ƒ; y 2 ƒcº:

Remark 3.9. The usual isoperimetric inequality says 2d jƒj1�1=d � j@ƒj. The inner
boundary and the edge boundary are related by j@inƒj � j@ƒj � 2d j@inƒj, yielding us
the inequality jƒj1�1=d � j@inƒj, which we will use in the rest of the paper.

In order to define the label of a contour, we must be careful since the inner boundary
of a set x
 may have different signs; see Figure 4.

x
1

x
2

x
3

Fig. 4. An example of �.�/ D ¹x
1; x
2; x
3º, with x
1 having regions in the inner boundary with
different signs. In the figure, the grey region are for incorrect points, the thin and thick border
corresponds to, respectively,C1 and �1 labels.

For a set x
 2 �.�/, let x
 .1/; : : : ; x
 .n/ be its connected components. To define the
label of x
 , we must introduce the following concept. A connected component x
 .k/ of x
 is
called external if for any other connected component x
 .k

0/ with V.x
 .k
0// \ V.x
 .k// ¤ ;,

we have V.x
 .k
0// � V.x
 .k//.

Lemma 3.10. Any configuration � with finite boundary is constant on @inV.x
/ for each
x
 2 �.�/.

Proof. Note that V.x
/ is the union of V.x
 .k// for all its external connected compo-
nents x
 .k/. Suppose there are x
 .k/, x
 .j / external connected components of x
 such that the
sign of � on @inV.x


.k// is different from the sign on @inV.x

.j //. Then, the configuration �

must change sign inside V.x
 .k//c \ V.x
 .j //c . Since � is constant outside some finite
set ƒ, either x
 .k/ or x
 .j / must be surrounded by a different region of incorrect points, let
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us call it x
 .l/. We can assume that the connected component surrounded by x
 .l/ is x
 .k/.
The set x
 .l/ cannot be a connected component of x
 , otherwise the set x
 .k/ would not be
external. If x
 .l/ is a connected component of another element x
 0 2 �.�/, then x
 have
a nonempty intersection with at least two connected components of .x
 0/c , contradiction
to condition (A).

The label of x
 is defined as the function labx
 W ¹I.x
/.0/; I.x
/.1/; : : : ; I.x
/.n/º !
¹�1;C1º, where labx
 .I.x
/.k// is the sign of the configuration � in @inV.I.x
/.k//, for
k � 1, and labx
 ..x
/.0// is the sign of � in @inV.x
/.

Definition 3.11. Given a configuration � with finite boundary, its contours 
 are pairs
.x
; labx
 /, where x
 2 �.�/ and labx
 is the label function defined previously. The support
of the contour 
 is defined as sp.
/ WD x
 and its size is given by j
 j WD jsp.
/j.

Another important concept for our analysis of phase transition is the interior of a con-
tour. The following sets will be useful:

I˙.
/ D
[
k�1;

labx
 .I.sp.
//.k//D˙1

I.sp.
//.k/;

I.
/ D IC.
/ [ I�.
/; V .
/ D sp.
/ [ I.
/;

where I.sp.
//.k/ are the connected components of I.sp.
//. Notice that the interior of
contours in Pirogov–Sinai theory are at most unions of simple connected sets. In our case,
they are only connected, i.e., they may have holes. One feature that our contours share
with Pirogov–Sinai theory is the absence of a bijective correspondence between contours
and configurations (see [21, Section 7.2.6] and [36]). Usually, there is more than one
configuration giving the same boundary set. Also, it is not true that for all families of
contours � WD ¹
1; 
2; : : : ; 
nº there is a configuration � whose contours are exactly � .
This happens because they may not form an .M; a; r/-partition and, even if this is the
case, their labels may not be compatible, see Figure 5 below. When such a configuration
exists, we say that the family of contours � is compatible.

3.2. Entropy bounds

The proofs in this section are highly inspired by Fröhlich–Spencer [24, Section 4], the
one-dimensional case studied in Fröhlich–Spencer [23] and by Cassandro, Ferrari, Merola
and Presutti [12]. We say that a contour 
 in a family � is external if its external connected
components are not contained in any other V.
 0/, for 
 0 2� n ¹
º. For eachƒ�Zd , let us
define the set of all external compatible families of contours � with labels ˙ contained
in ƒ by

E˙ƒ WD ¹� D ¹
1; : : : ; 
nº W � is compatible, 
i is external; lab.
i / D ˙1; V .�/ � ƒº;

where V.�/ D
S
1�i�n V.
i / and lab.
i / is the value of the corresponding configura-

tion compatible configuration at a point x 2 @inV.
i /. When we write 
 2 E˙ƒ , we mean
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1


2


3

4


5


6

Fig. 5. Above we have two situations where incompatibility happens. In the first case, we have 
1
and 
2, two contours that are close, thus they should not be separated. In the case 
4, 
5, 
6, we have
the usual problem of not matching labels.

¹
º 2 E˙ƒ . We also write E˙
Zd
WD E˙. To hold a Peierls-type argument, it is important to

control the number of contours with a given fixed size. Hence, we need to find an upper
bound of the number of contours with fixed size j
 j containing a given point, meaning
0 2 V.
/. To do so, we will need some auxiliary results.

Since a contour does not need to be connected, the counting argument is different from
the short-range case. Let us denote by Cn an arbitrary collection of n-cubes. For n;m � 0
with n�m, we say that Cn is subordinated to Cm, denoted by Cn � Cm, if Cm is a minimal
cover of

S
Cn.x/2Cn

Cn.x/. For each n;m � 1, with n � m, define

N.Cm; Vn/ WD j¹Cn W Cn � Cm; jCnj D Vnºj

as the number of collections of n-cubes Cn subordinated to a given Cm such that jCnjDVn.
The following two propositions are straightforward generalizations of [24, Theorem 4.2
and Proposition 4.3]. The original proofs correspond to our case when r D 1, and are
included here for the benefit of the reader.

Proposition 3.12. Let r; n � 1 be integers, and let Crn be a fixed collection of rn-cubes.
Then there exists a constant c WD c.d; r/ > 0 such that

N.Crn; Vr.n�1// � e
cVr.n�1/ : (3.5)

Proof. For each rn-cube Crn.x/ 2 Crn, let NCrn.x/ be the number of cubes in a collec-
tion of r.n � 1/-cubes Cr.n�1/ that are covered by Crn.x/. Fix .nCrn.x//Crn.x/2Crn , with
nCrn.x/ � 1, an integer solution to the inequality

Vr.n�1/ �
X

Crn.x/2Crn

nCrn.x/ � 2dVr.n�1/; (3.6)
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and define N.Crn; Vr.n�1/; .nCrn.x//Crn.x/2Crn/ to be the number of collections Cr.n�1/
of r.n � 1/-cubes subordinated to Crn such that jCr.n�1/j D Vr.n�1/ and NCrn.x/ D
nCrn.x/ for each Crn.x/ 2 Crn. We get

N.Crn; Vr.n�1// D
X

.nCrn.x//Crn.x/2Crn

N.Crn; Vr.n�1/; .nCrn.x//Crn.x/2Crn/:

The number of positions that an r.n � 1/-cube can be arranged inside an rn-cube is at
most .2rC1 � 1/d . Since the number of combinations that nCrn.x/r.n � 1/-cubes can be
arranged in the cube Crn.x/ is at most

�
.2rC1�1/d

nCrn.x/

�
, we get

N.Crn; Vr.n�1/; .nCrn.x//Crn.x/2Crn/ �
Y

Crn.x/2Crn

�
.2rC1 � 1/d

nCrn.x/

�
:

The number of solutions to (3.6) is bounded by 22dVr.n�1/C1, concluding that inequal-
ity (3.5) holds for

c D .2d C 1/ log.2/C d log.2rC1 � 1/:

Given a subset ƒ b Zd and integers r � 1 and n � 0, define the total volume by

Vr .ƒ/ WD

nr .ƒ/X
nD0

jCrn.ƒ/j;

where nr .ƒ/ D dlog2r .diam.ƒ//e and Crn.ƒ/ is a minimal cover of ƒ with rn-cubes
Crn.x/ defined in (3.2). Observe that jC0.ƒ/j D jƒj. Let V � 1 be a positive integer
and FV be the set defined by

FV WD ¹ƒ b Zd W Vr .ƒ/ D V; 0 2 ƒº:

By using Proposition 3.12, let us show that the number of elements in FV is exponentially
bounded by V .

Proposition 3.13. There exists b WD b.d; r/ > 0 such that

jFV j � e
bV : (3.7)

Proof. For each ƒ 2 FV , there is a family of minimal covers .Crn.ƒ//0�n�nr .ƒ/ char-
acterizes uniquely the subset ƒ 2 FV since the minimal cover C0.ƒ/ is a cover by
points in Zd . Moreover, the minimal covers Crn.ƒ/ can always be chosen in a way
that Crn1 is subordinated to Crn2 whenever n1 � n2, since, in order to compute the
total volume Vr .ƒ/, we only need to know the size of each minimal cover Crn.ƒ/. Fix
.Vrn/0�n�nr .ƒ/�1, a solution to the equation

nr .ƒ/�1X
nD0

Vrn D V � 1: (3.8)



Long-range Ising models: Contours, phase transitions and decaying fields 1695

We can estimate jFV j by counting the number of families .Crn.ƒ//0�n�nr .ƒ/, where
the last cover Crnr .ƒ/ consists of a unique cube Crnr .ƒ/.x/ containing 0. Let FV;m D
¹ƒ 2 FV W nr .ƒ/ D mº. Then,

jFV j �

VX
mD1

jFV;mj

since nr .ƒ/ � Vr .ƒ/ D V . Now,

jFV;mj �
X

.Vrn/0�n�m�1

ˇ̌®
.Crn/0�n�m W Crn � Cr.nC1/; jCrnj D Vrn;

Crm D ¹Crm.x/º; 0 2 Crm.x/
¯ˇ̌

D

X
.Vrn/0�n�m�1

X
Crm.x/30

X
Cr.m�1/

jCr.m�1/jDVr.m�1/
Cr.m�1/�Crm

� � �

X
Cr

jCr jDVr
Cr�C2r

N.Cr ; V0/:

Iterating inequality (3.5), we get

jFV;mj � j¹Crm.x/ W 0 2 Crm.x/ºj
X

.Vrn/0�n�m�1

m�1Y
nD0

ecVrn : (3.9)

We have at most 2V solutions for equation (3.8), thus inequality (3.9) together with the
fact that the number of rm-cubes containing 0 is bounded by 3d yield us that

jFV j � 3
dV 2V ecV :

Therefore, inequality (3.7) holds for b D d log.3/C log.2/C c C 1.

We are able to prove Proposition 3.16 once we show that a fixed configuration �
with �.�/ D ¹
º and a fixed volume j
 j D m imply that the total volume Vr .sp.
// is
finite. We need the following auxiliary result about graphs, which is a generalization of
[32, Claim 4.2].

Proposition 3.14. Let k � 1 and let G be a finite nonempty connected simple graph.
Then, G can be covered by djv.G/j=ke connected subgraphs of size at most 2k.

Proof. Since we can always consider a spanning tree from a connected graph G, it is
sufficient to prove the proposition when G is a tree. If either k D 1 or jv.G/j � 2k, our
statement is trivially true, so we suppose k � 2 and jv.G/j � 2k C 1, and proceed by
induction on djv.G/j=ke.

Choose a vertex r 2 v.G/ to be our root. For every vertex u of G, let dep.u/ be
the depth of the vertex u, i.e., the distance in the graph between r and u. We say that
a vertex w is a descendant of u if there is a path u1 D w; u2; : : : ; un�1; un D u in G
with dep.ui / > dep.u/, for all 1 � i � n � 1, and let desc.u/ be the number of descen-
dants of u. Take a vertex u� from ¹u 2 v.G/ W desc.u/ � kº that is not empty since
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desc.r/ � 2k, with highest depth, i.e., such that for any other u 2 v.G/ with desc.u/ � k
we have dep.u�/ � dep.u/. Let u1; : : : ; ut be the children of the vertex u�, and define
ai D desc.ui /C 1. By definition of u�, we have that ai � k, for 1� i � t , and a1C � � � C
at � k. Hence, there must be s 2 Œ1; t � for which k � a1 C � � � C as < 2k. Therefore, we
can consider the subtree T whose vertex set is composed by u�; u1; : : : ; us and their
descendants. By construction, it holds that k C 1 � jv.T /j � 2k. The induced subgraph
H WD GŒ.v.G/ n v.T // [ ¹u�º� is connected and satisfies jv.H/j � jv.G/j � k. Using
the induction hypothesis,H can be covered by djv.H/j=ke � djv.G/j=ke � 1 connected
subgraphs. Adding T to this cover completes the proof.

The importance of the choice r D dlog2.a C 1/e C d C 1 in the .M; a; r/-partition
will be seen in the next proposition, where we will show that the total volume can be
bounded by the size of the contour.

Proposition 3.15. There exists a constant � WD �.d;M; r/ > 0 such that, for any contour

 2 E˙ƒ ,

Vr .sp.
// � �j
 j:

Proof. Define gWN ! Z by

g.n/ D
jn � 2 � log2r .2Md

a/

a

k
:

We are going to prove that

jCrn.sp.
//j �
1

2r�d�1
jCrg.n/.sp.
//j; (3.10)

whenever g.n/ > 0, and either the graph Grg.n/.sp.
// defined in Proposition 3.7 has at
least two connected components or it has only one connected component with at least 2r

vertices. Remember that Grg.n/.sp.
// is the set of all connected components of the graph
Grg.n/.sp.
//. Note that

jCrg.n/.sp.
//j D 2r
X

G2Grg.n/.sp.
//

jv.G/j

2r
: (3.11)

Proposition 3.14 states that we can cover the vertex set v.G/ with a family of con-
nected graphs Gi with 1 � i � djv.G/j=2re and jv.Gi /j � 2rC1. Using the inequality

diam.ƒ [ƒ0/ � diam.ƒ/C diam.ƒ0/C dist.ƒ;ƒ0/; for all ƒ;ƒ0 b Zd ;

and the fact that we can always extract a vertex of a finite connected graph in a way that
the induced subgraph is still connected, by removing a leaf of a spanning tree, we can
bound the diameter of BGi D

S
Crg.n/.x/2v.Gi /

Crg.n/.x/ by

diam.BGi / �
X

Crg.n/.x/2v.Gi /

diam.Crg.n/.x//C jv.Gi /jMda2arg.n/

� d2r.g.n/C1/C1 CMda2r.ag.n/C1/C1 � 2rn: (3.12)
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The third inequality holds sinceM;a; r � 1. Therefore, each graph Gi can be covered by
one cube of side length 2rn with center in Zd . We claim that every cube of side length 2rn

with an arbitrary center in Zd can be covered by at most 2d rn-cubes Crn.x/. Note that
it is enough to consider the case where the cube has the form

dY
iD1

Œqi � 2
rn�1; qi C 2

rn�1� \ Zd ;

where
qi 2 ¹0; 1; : : : ; 2

rn�1
� 1º for 1 � i � d:

It is easy to see that

Œqi � 2
rn�1; qi C 2

rn�1� � Œ�2rn�1; 2rn�1� [ Œ0; 2rn�:

Taking products for all 1 � i � d , it concludes our claim. This reasoning allows us to
conclude that the maximum number of rn-cubes required to cover each connected com-
ponent G of Grg.n/.sp.
// is at most 2d djv.G/j=2re, yielding us that

jCrn.sp.
//j �
X

G2Grg.n/.sp.
//

ˇ̌̌
Crn

� [
1�i�djv.G/j=2re

BGi

�ˇ̌̌
�

X
G2Grg.n/.sp.
//

2d
l
jv.G/j

2r

m
: (3.13)

If jGrg.n/.sp.
//j � 2, since 
 2 E˙ƒ , each connected component G 2 Grg.n/.sp.
//
satisfies jv.G/j � 2r . Indeed, if jv.G/j � 2r � 1, by our construction in Proposition 3.7 the
set v.G/ would be separated into another element of the .M; a; r/-partition. By hypothe-
sis, if jGrg.n/.sp.
//j D 1, it already satisfies jv.Grg.n//j � 2r . Together with

1

2

l
jv.G/j

2r

m
�
jv.G/j

2r
;

equality (3.11) and inequality (3.13) yield that

jCrn.sp.
//j � 2dC1
X

G2Grg.n/.sp.
//

jv.G/j

2r
D
2dC1

2r
jCrg.n/.sp.
//j:

So, inequality (3.10) is proved. Let us define two auxiliary quantities

l1.n/ WD max¹m � 0 W gm.n/ � 0º;

l2.n/ WD max¹m � 0 W jGrgm.n/.sp.
//j D 1; jv.Grgm.n//j � 2r � 1º:

For the set Grgm.n/.sp.
// to be well defined, we must have gm.n/� 0, thus l2.n/� l1.n/.
Moreover, knowing that jCn.ƒ/j � jƒj for any n � 0,

jCrn.sp.
//j � jCrgl2.n/.n/.sp.
//j �
1

2.r�d�1/.l1.n/�l2.n//
j
 j: (3.14)
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We claim

l1.n/ �

8<: 0 if 0 � n � n0;j log2.n/ � log2.n0/
log2.a/

k
if n > n0;

(3.15)

where n0 D .aC 2C log2r .2Md
a//.a � 1/�1. The first bound is trivial. Let n > n0 and

consider the function

zg.n/ D
n � a � 2 � log2r .2Md

a/

a
:

From the fact that g.n/ � zg.n/ and both functions are increasing, we have

gm.n/ � zgm.n/ for all m � 1;

which implies that maxzgm.n/�0m � l1.n/. Thus, we need to compute a lower bound for
maxzgm.n/�0m. Since

zgm.n/ D
n

am
� b

� am � 1

am�1.a � 1/

�
;

is sufficient to have
n

am
>

ab

a � 1
; (3.16)

where b D .aC 2C log2r .2Md
a//a�1. We get the desired bound after taking the loga-

rithm with respect to base two in both sides of inequality (3.16). To finish our calculation,
we will analyze two cases depending if l2.n/ is zero or not. First, let us consider the case
where l2.n/ D 0. Using inequality (3.14), we get

Vr .sp.
// � j
 j
1X
nD0

1

2.r�d�1/l1.n/
:

To finish, notice that equation above can be bounded in the following way:

1X
nD0

1

2.r�d�1/l1.n/
� n0 C 1C 2

r�d�1n
.r�d�1/=.log2.a//
0 �

�r � d � 1
log2.a/

�
:

Now consider the case l2.n/ ¤ 0. A similar bound as (3.12), the fact that Crgm.n/.sp.
//
is a cover for the set sp.
/ and assuming that

m 2 ¹k � 0 W jGrgk.n/j D 1; jv.Grgk.n//j � 2
r
� 1º

gives that

diam.sp.
// � diam.BGrgm.n/.sp.
///

� .d2rg
m.n/
CMda2arg

m.n//jv.Grgm.n/.sp.
///j

� 2Mda2arg
m.n/Cr :

The inequality above yields

log2r .diam.sp.
/// � log2r .2Md
a/C agm.n/C 1 � log2r .2Md

a/C
n

am�1
C 1:
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Let us assume that diam.sp.
// > 22rC1Mda. Isolating the term depending onm and tak-
ing the logarithm with respect to base two in both sides of the inequality above, it gives us

m � 1C
log2.n/ � log2.log2r .diam.sp.
/// � log2r .2Md

a/ � 1/

log2.a/
:

The inequality above is valid for all m 2 ¹k � 0 W jGrgk.n/j D 1; jv.Grgk.n//j � 2
r � 1º.

Thus, together with the lower bound (3.15), we get for n > n0 that

l1.n/ � l2.n/ �
log2.log2r .diam.sp.
/// � log2r .2Md

a/ � 1/ � log2.n0/
log2.a/

� 2:

Inequality (3.14) together with the inequality above yields

Vr .sp.
// � .n0C1/j
 jC j
 j
22.r�d�1/n

.r�d�1/=.log2.a//
0 .nr .sp.
// � n0/

.log2r .diam.sp.
///� log2r .2Mda/ � 1/.r�d�1/=.log2.a//

� .n0 C 1C 2
2.r�d�1/n

.r�d�1/=.log2.a//
0 .2C log2r .2Md

a///j
 j;

where the last inequality is due to the fact that x=.x � w/ � 1 C w for any constant
x � w C 1 and the fact that M � 1 implies that n0 � 1. If diam.sp.
// � 22rC1Mda,
we have

Vr .sp.
// � .nr .sp.
//C 1/j
 j � .4C log2r .2Md
a//j
 j:

Taking

� D max
°
4C log2r .2Md

a/; n0 C 1C 2
2.r�d�1/n

.r�d�1/=.log2.a//
0 .2C log2r .2Md

a//;

n0 C 1C 2
r�d�1n

.r�d�1/=.log2.a//
0 �

�r � d � 1
log2.a/

�±
concludes the desired result.

We are ready to show Proposition 3.14 that bounds exponentially the number of con-
tours containing the origin with a fixed size.

Proposition 3.16. Let m � 1, d � 2, and let the set C0.m/ be defined as

C0.m/ WD ¹sp.
/ b Zd W 
 2 E�; 0 2 V.
/; j
 j D mº:

There exists c1 WD c1.d;M; r/ > 0 such that

jC0.m/j � e
c1m:

Proof. For a given contour 
 2 E�, define the set C
 by

C
 WD ¹sp.
 0/ 2 C0.m/ W 9 x 2 Zd s.t. sp.
 0/ D sp.
/C xº:

Thus, we can partition the set C0.m/ into

C0.m/ D
[

02sp.
/
j
 jDm

C
 :
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Given a contour 
 2 E�, there are at most jV.
/j possibilities for the position of the
point 0. Then,

jC0.m/j �
X

02sp.
/;
2E�

j
 jDm

jC
 j �
X

02sp.
/;
2E�

j
 jDm

jV.
/j: (3.17)

Using the isoperimetric inequality and the fact @inV.
/ � sp.
/, we obtainX
02sp.
/;
2E�

j
 jDm

jV.
/j � m1C1=.d�1/j¹sp.
/ b Zd W 
 2 E�; 0 2 sp.
/; j
 j D mºj: (3.18)

By Proposition 3.15, and since not all the finite sets with bounded total volume are con-
tours, we have

¹sp.
/ b Zd W 
 2 E�; 0 2 sp.
/; j
 j D mº � ¹ƒ b Zd W 0 2 ƒ;Vr .ƒ/ � �mº: (3.19)

Proposition 3.13 yields

j¹ƒ b Zd W 0 2 ƒ;Vr .ƒ/ � �mºj D
b�mcX
VD1

jFV j �
eb.�mC1/

eb � 1
: (3.20)

Substituting inequalities (3.18), (3.19) and (3.20) into inequality (3.17), we conclude

jC0.m/j � m
1C 1

d�1
e2b�mC1

eb � 1
� ec1m;

for c1 D 2b� C 1C .d � 1/�1.

4. Phase transition

In this section, we prove that the long-range Ising model with decaying field undergoes
a phase transition at low temperature when min¹˛ � d; 1º < ı < d . When the magnetic
field decays with power ı� d , the result is straightforward. In fact, for ı > d , the magnetic
field is summable and, by a general result of Georgii (see [25, Example 7.32 and Theo-
rem 7.33]), there is an affine bijection between the Gibbs measures of the Ising model
with hD 0. Then, the phase transition is already known in the summable case. For ı D d ,
the sum

P
x2ƒ hx can be bounded by log jƒj. This implies that

P
x2ƒ hx D o.jƒj

"/ for
any " > 0. Thus, if we prove the phase transition for ı < d , it is easy to extend to this case.

Theorem 4.1. For a fixed d � 2, suppose that ˛ > d and ı > 0. There exists ˇc WD
ˇc.˛; d/ > 0 such that, for every ˇ > ˇc , the long-range Ising model with coupling
constant (2.2) and magnetic field (2.3) undergoes a phase transition at inverse of tem-
perature ˇ when

� d < ˛ < d C 1 and ı > ˛ � d ;

� d < ˛ < d C 1 and ı D ˛ � d if h� is small enough;
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� ˛ � d C 1 and ı > 1;

� ˛ � d C 1 and ı D 1 if h� is small enough.

For a fixed x 2 Zd , define the function ‚x W�! R by

‚x.�/ D
Y
y2Zd

jx�yj�1

1¹�yDC1º �

Y
y2Zd

jx�yj�1

1¹�yD�1º:

The function ‚x assumes the value C1 if the point x is C-correct, �1 if the point
is �-correct, and 0 otherwise. By the definition of contours, given a finite ƒ b Zd and
a configuration � 2 ��ƒ, it may happen that a contour 
 associated to it have volume
outside ƒ. To avoid this problem, consider the probability measure defined as

��ˇ;h;ƒ.A/ WD �
�
ˇ;h;ƒ.Aj‚x D �1; x 2 @inƒ/

for every measurable set A. The Markov property implies that the probability measures
��
ˇ;h;ƒ are the finite volume Gibbs measure in a subset of ƒ, and working with them is

advantageous since we can study important quantities in terms of contours. Fixedƒb Zd ,
for each ƒ0 � ƒ, let the restricted partition functions be

Z�ˇ;h.ƒ
0/ WD

X
�2E�

ƒ

V.�/�ƒ0

X
�2�.�/

e�ˇH
�
ƒ;h.�/;

where, given � 2 E�ƒ, the space of configurations is �.�/ WD ¹� 2 ��ƒ W � � �.�/º.
Note that we will abuse the notation and denote �.�/ as the set of contours associated to
a configuration � instead of the .M; a; r/-partition. Define the map �� W�.�/! ��ƒ as

��.�/x D

8̂̂<̂
:̂

�x if x 2 I�.�/ [ V.�/c ;

��x if x 2 IC.�/;

�1 if x 2 sp.�/:

The map �� erases a family of compatible contours, since the spin flip preserves incorrect
points but transformsC-correct points into �-correct points. Given � 2 E�ƒ and a config-
uration � 2�.�/, we will calculate the energy cost to extract one of its elements. We can
start with bounding the number of integer points in the `1-sphere and continue with giving
a lower bound for the diameter of a finite subset of Zd .

Lemma 4.2. Let sd .n/ be the cardinality of integer points in the `1-sphere, centered at
the origin and with radius n. Then, for any n � d , we have

sd .n/ D

d�1X
kD0

2d�k
�
d

k

��
n � 1

d � k � 1

�
:

If n < d , the sum above starts in k D d � n.
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This lemma allows us to show that

cdn
d�1
� sd .n/ � 2

2d�1ed�1nd�1

for all n � d and cd D .d � 1/�.d�1/.

Lemma 4.3. There exists kd > 0 such that for every ƒ b Zd , it holds

diam.ƒ/ � kd jƒj1=d : (4.1)

Proof. Consider a closed ball with positive integer radius n. Lemma 4.2 implies that the
diameter satisfies

diam.Bn.x// D 2n � Cd jBn.x/j1=d ;

where Cd D .22ded�1=d/�1=d . Let ƒ be any finite subset of Zd . If we take x�; y� 2 ƒ
such that diam.ƒ/ D jx� � y�j, we have

2diam.ƒ/ D diam.Bjx��y�j.x�// � Cd jƒj1=d :

Inequality (4.1) follows by choosing the constant kd D Cd=2.

In the next proposition, we will give a lower bound for the cost of extracting a contour
from a given configuration. The main difference in our results compared to the short-range
case is that we have an additional surface order term, defined as

Fƒ WD
X
x2ƒ
y2ƒc

Jxy

for every finite set ƒ b Zd . First, let us give a lower bound to the surface energy term,
that will be useful to the proof of phase transition.

Lemma 4.4. Given ˛ > d , there existsK˛ WD K˛.˛; d/ > 0 such that for everyƒ b Zd

it holds
Fƒ � K˛ max¹jƒj2�˛=d ; j@ƒjº:

Proof. Since all the edges of @ƒ are present in the surface energy term Fƒ, we have the
bound Fƒ � J j@ƒj. Fix x 2 ƒ. If we set R D d.dc�1

d
jƒj/1=d e, then using the fact thatP

y2Zd Jxy <1, we getX
y2ƒc

Jxy �
X

y2BR.x/
c

Jxy D
X

y2BR.x/

Jxy �
X
y2ƒ

Jxy �
J.jBR.x/j � jƒj/

R˛
� 0:

Lemma 4.2 yields usX
y2BR.x/c

Jxy D J
X

n�RC1

sd .n/

n˛
� Jcd

X
n�RC1

1

n˛�dC1
:

The right-hand side can be bounded below by an integral, and we take

K˛ D Jcd .˛ � d/
�1..dc�1d /1=d C 2/d�˛:
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In the next proposition, we will denote byH�ƒ the Hamiltonian function in (2.1) when
the field hx D 0 for all x 2 Zd .

Proposition 4.5. ForM large enough, there are constants ci WD ci .˛;d/ > 0, i D 2; 3; 4,
such that for ƒ b Zd , any fixed contour 
 2 E�ƒ, and � 2 �.
/, it holds

H�ƒ.�/ �H
�
ƒ.�.�// � c2j
 j C c3FIC.
/ C c4Fsp.
/:

Proof. Fix some � 2 �.
/. We will denote �
 .�/ WD � and �.�/ WD � throughout this
proposition. The difference between the Hamiltonians is

H�ƒ.�/ �H
�
ƒ.�/ D

X
¹x;yº�V.�/

Jxy.�x�y � �x�y/C
X

x2V.�/
y2V.�/c

Jxy.�x � �x/

D

X
x2A.
/
y2B.
/

Jxy.�x�y � �x�y/C
X

¹x;yº�A.
/

Jxy.�x�y � �x�y/;

where A.
/ D IC.
/ [ sp.
/ and B.
/ D I�.
/ [ V.
/c . Using the definition of the
map �
 and decomposing the sets A.
/ and B.
/ in a suitable manner, we get

H�ƒ.�/ �H
�
ƒ.�/ D

X
x2sp.
/
y2Zd

Jxy1¹�x¤�yº C
X

x2sp.
/
y2sp.
/c

Jxy1¹�x¤�yº � 2
X

x2IC.
/
y2B.
/

Jxy�x�y

� 2
X

x2sp.
/
y2B.
/

Jxy1¹�yDC1º � 2
X

x2sp.
/
y2IC.
/

Jxy1¹�yD�1º: (4.2)

We need to analyze each negative term of the equality above carefully. We start with the
terms depending on sp.
/. Notice that the characteristic functions on B.
/ and IC.
/ can
only be different from zero at the other contours volumes. Thus,X

x2sp.
/
y2B.
/

Jxy1¹�yDC1º C
X

x2sp.
/
y2IC.
/

Jxy1¹�yD�1º �
X

x2sp.
/
y2V.�0/

Jxy ; (4.3)

where � 0 WD �.�/. Let


 D
[

1�k�n


k and 
 0 D
[

1�j�n0


 0j

for each 
 0 2 � 0 be the subsets given to us by condition (B). We will divide the right-hand
side of equation (4.3) into two terms depending on the sets

‡1 D
®

 0 2 � 0 W max

1�k�n
diam.
k/ � max

1�j�n0
diam.
 0j /

¯
and ‡2 D �

0
n ‡1:

On the first sum, condition (B2) impliesX
x2sp.
/
y2V.‡1/

Jxy �
X

x2sp.
/
y2BR.x/

c

Jxy ;
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where R DM max
1�k�n

diam.
k/a. Using condition (B1), it holds

X
x2sp.
/
y2BR.x/

c

Jxy �
J2dC˛�1ed�1j
 j

.˛ � d/M ˛�d
max
1�k�n

diam.
k/a.d�˛/

�
J2dC˛�1ed�1.2r � 1/

.˛ � d/k
a.˛�d/

d
M ˛�d

: (4.4)

We turn our attention to the sum depending on ‡2. We divide the set ‡2 into sets ‡2;m
consisting of contours of � 0 where the maximum diameter of its partition is m. Thus,
for any x in sp.
/ and 
 0 2 � 0, there is a point y
 0;x 2 V.
 0/ such that jx � y
 0;xj D
dist.¹xº; 
 0/. Then, for every 1 � m < max1�k�n diam.
k/,X

x2sp.
/
y2V.‡2;m/

Jxy �
X

x2sp.
/

 02‡2;m

jV.
 0/jJxy
0;x :

For each 
 0 2 ‡2;m, define the graph G
 0 with vertex set v.G
 0/ D ¹
 0j º1�j�n0 and an
edge is placed when dist.
 0j ; 


0
i /� 1. LetGj be the maximal connected component ofG
 0

such that 
 0j is an element of its vertex set. Also, let V.Gj / � V.
 0/ be the subset of all
connected components of V.
 0/ that have a nonempty intersection with the vertices ofGj .
Using Lemma 4.3, we have

jV.
 0/j �
1

kd
d

n0X
jD1

diam.V .Gj //d :

The diameter of V.Gj / is realized by the distance between two points, namely x� and y�,
that must be into 
 0i ; 


0
l
2 v.Gj /. We can make a minimal path �1 in the graph Gj

between 
 0i and 
 0
l

since it is connected. Thus, using the path �1, we can construct a min-
imal path �2 in Zd connecting x� and y� that passes through every vertex that is visited
by the path �1. Let �3 be a minimal path realizing the distance between x� and y�. Since
the path is minimal, we have

diam.V .Gj // D j�3j � j�2j �
X


 0
i
2v.Gj /

Œdiam.
 0i /C 1�:

Hence,
1

kd
d

n0X
jD1

diam.V .Gj //d �
1

kd
d

n0X
jD1

� X

 0
i
2v.Gj /

Œdiam.
 0i /C 1�
�d
: (4.5)

The number of elements in v.Gj / is at most 2r � 1 by condition (B), thusX
x2sp.
/

y2V.‡2;m/

Jxy �
.2.2r � 1//dC1

kd
d

md
X

x2sp.
/

 02‡2;m

Jxy
0;x : (4.6)



Long-range Ising models: Contours, phase transitions and decaying fields 1705

y
 0;x

x

�

Mma

Fig. 6. Minimal path � between x and y
 0;x .

We know that there is no other point y
 00;x at least in a ball of radius Mma centered
at y
 0;x . Thus, taking balls of radius Mma=3 guarantees that they become disjoint by
condition (B2). Also, if � is the minimal path realizing the distance between x and y
 0;x ,
we know that it must have at least Mma points (see Figure 6). Thus,X

x2sp.
/

 02‡2;m

Jxy
0;x �
3

Mma
Fsp.
/: (4.7)

Inequalities (4.7), (4.6), (4.4) plugged into inequality (4.3) yieldX
x2sp.
/
y2B.
/

Jxy1¹�yDC1º C
X

x2sp.
/
y2IC.
/

Jxy1¹�yD�1º �
k
.1/
˛

M .˛�d/^1
Fsp.
/; (4.8)

where

k.1/˛ D 2max
°J2dC˛�1ed�1.2r � 1/

.˛ � d/k
a.˛�d/

d

;
.2.2r � 1//dC13�.a � d/

kd
d

±
;

and .˛ � d/ ^ 1 D min¹˛ � d; 1º.
The remaining term in our analysis is the one involving the interaction between IC.
/

andB.
/. Recall that �.�/D � 0 is the set of external contours of � after 
 is removed and
define �1�� 0 as the set of external contours that are contained in IC.
/ and �2D� 0 n�1.
We have X

x2IC.
/
y2B.
/

Jxy�x�y D
X

x2V.�1/
y2V.�2/

Jxy C
X

x2IC.
/nV.�1/
y2V.�2/

2Jxy1¹�yDC1º

C

X
x2V.�1/

y2B.
/nV.�2/

2Jxy1¹�xD�1º �
X

x2IC.
/nV.�1/
y2V.�2/

Jxy

�

X
x2V.�1/
y2V.�2/

2Jxy1¹�x¤�yº �
X

x2IC.
/
y2B.
/nV.�2/

Jxy : (4.9)
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We start our analysis with the first two terms on right-hand side of (4.9). Note thatX
x2V.�1/
y2V.�2/

Jxy C
X

x2IC.
/nV.�1/
y2V.�2/

2Jxy1¹�yDC1º � 2
X

x2IC.
/
y2V.�2/

Jxy : (4.10)

Consider the two sets

‡3 D
®

 0 2 �2 W max

1�k�n
diam.
k/ � max

1�j�n0
diam.
 0j /

¯
and ‡4 D �2 n ‡3:

Now we proceed as in the previous case for ‡1,X
x2IC.
/
y2V.‡3/

Jxy �
J2dC˛�1ed�1

.˛ � d/M ˛�d
jIC.
/j max

1�k�n
diam.
k/a.d�˛/: (4.11)

Notice that by using the isoperimetric inequality together with Lemma 4.3, we get that

jIC.
/j max
1�k�n

diam.
k/a.d�˛/ �
j@in
 j

d=.d�1/

k
a.˛�d/

d

max
1�k�n

j
kj
a.d�˛/=d

�
.2r � 1/

k
a.˛�d/

d

j@in
 j
1=.d�1/ max

1�k�n
j
kj

a.d�˛/=dC1:

Plugging the above inequality into (4.11) and using our choice of the constant a, we getX
x2IC.
/
y2V.‡3/

Jxy �
k
.1/
˛

M ˛�d
j@in
 j

1=.d�1/
�

k
.1/
˛

M ˛�d
j
 j: (4.12)

For the sum depending on the contours in ‡4, we will need to break, as before, into
sets ‡4;m whose contours have maximum diameter equals to m. An argument similar to
the one employed in (4.8) holds, henceX

x2IC.
/
y2V.‡4/

Jxy �
.2.2r � 1//dC13�.a � d/

kd
d
M

X
x2IC.
/

y2I�.
/[V.
/c

Jxy �
k
.1/
˛

M
FIC.
/: (4.13)

For the next term, since we have B.
/ n V.�2/ � IC.
/c , we getX
x2V.�1/

y2B.
/nV.�2/

Jxy �
X

x2V.�1/
y2IC.
/c

Jxy :

We claim that for any 
 0 2 �1, max1�j�n0 diam.
 0j / < max1�k�n diam.
k/ for M >

.2.2r � 1//dC1=kd
d

. Indeed, by condition (A), sp.
 0/ is contained in only one connected
component of I.
/, let us call it IC.
/.1/. By similar reasonings as the one that gave us
inequality (4.5), we have

jIC.
/.1/j �
.2.2r � 1//dC1

kd
d

max
1�k�n

diam.
k/d :
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Assume by contradiction that max1�j�n0 diam.
 0j / � max1�k�n diam.
k/, then condi-
tion (B2) implies that dist.
 0; 
/�M max1�k�n diam.
k/a. Therefore, jIC.
/jmust have
at least M max1�k�n diam.
k/a points inside it, which is a contradiction with our choice
of M .

Thus, let us break �1 into layers �1;m where max1�j�n0 diam.
 0j / D m. For each
y 2 IC.
/c and 
 0 2 �1, there is x
 0;y 2 V.
 0/ that realizes the distance between V.
 0/
and y. Hence,X

x2V.�1/
y2B.
/nV.�2/

Jxy �

N�1X
mD1

X
x2V.�1;m/
y2IC.
/c

Jxy �

N�1X
mD1

.2.2r � 1//dC1

kd
d

md
X


 02�1;m
y2IC.
/c

Jx
0;yy

�
k
.1/
˛

M
FIC.
/; (4.14)

where N WD max1�k�n diam.
k/. We turn our attention to the term containing 1¹�x¤�yº
in the right-hand side of inequality (4.9). The triangle inequality implies that the following
inequality holds:

Jxy �
1

.2d C 1/2˛

X
jx�x0j�1

Jx0y (4.15)

for every distinct pair of points x; y 2 Zd . Thus, we have thatX
x2V.�1/
y2V.�2/

Jxy1¹�x¤�yº �
1

.2d C 1/2˛

X
x2V.�1/0
y2V.�2/

Jxy ; (4.16)

where V.�1/0 D ¹x 2 V.�1/ W ‚x.�/ D 0º. Plugging inequalities (4.12), (4.13), (4.14),
(4.16) into equation (4.9), we getX
x2IC.
/
y2B.
/

Jxy�x�y �
4k

.1/
˛

M
FIC.
/ C

2.2d/1=.d�1/k
.1/
˛

M ˛�d
j
 j �

1

.2d C 1/2˛�1

X
x2V.�1/0
y2V.�2/

Jxy

�

X
x2IC.
/

y2B.
/nV.�2/

Jxy �
X

x2IC.
/nV.�1/
y2V.�2/

Jxy :

We must add the regions with correct points into the sum depending on V.�1/0. But this
is a simple task, since we have X

x2V.�1/nV.�1/0
y2V.�2/

Jxy �
X

x2V.�1/
y2V.�2/

Jxy ;

and proceeding as we did in (4.10), we arrive at the following inequality:X
x2IC.
/
y2B.
/

Jxy�x�y �
5k
.1/
˛

M
FIC.
/ C

3.2d/1=.d�1/k
.1/
˛

M ˛�d
j
 j �

21�˛

2d C 1

X
x2IC.
/
y2B.
/

Jxy : (4.17)
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Also, inequality (4.15) implies thatX
x2sp.
/
y2Zd

Jxy1¹�x¤�yº C
X

x2sp.
/
y2sp.
/c

Jxy1¹�x¤�yº �
1

.2d C 1/2˛
.Jc˛j
 j C Fsp.
//

�
Jc˛

.2d C 1/2˛
j
 j C

1

.2d C 1/2˛C1

�
Fsp.
/ C

X
x2sp.
/
y2IC.
/

Jxy

�
; (4.18)

where c˛ D
P
y¤02Zd 1=jyj

˛ . Joining inequalities (4.8), (4.17) and (4.18) into (4.2)
yields

H�ƒ.�/ �H
�
ƒ.�/ �

� Jc˛

.2d C 1/2˛
�
6.2d/1=.d�1/k

.1/
˛

M ˛�d

�
j
 j

C

� 1

.2d C 1/2˛C1
�
10k

.1/
˛

M

�
FIC.
/

C

� 1

.2d C 1/2˛C1
�

2k
.1/
˛

M .˛�d/^1

�
Fsp.
/:

Letting

M > max
° .2.2r � 1//dC1

kd
d

;M1;M2

±
;

where Jc˛M ˛�d
1 WD 36d.2d/1=.d�1/k

.1/
˛ 2˛C2 andM .˛�d/^1

2 WD 30dk
.1/
˛ 2˛C2, we arrive

at the desired result.

The following lemma is necessary to study the competition between the magnetic field
and the long-range interaction.

Lemma 4.6. There exists c5 WD c5.d; ı; h�/ > 0 such that for any ƒ b Zd ,X
x2ƒ

hx � c5jƒj
1�ı=d ; (4.19)

where .hx/x2Zd is the magnetic field as in (2.3) and ı < d .

Proof. Fix ƒ b Zd . In order to prove inequality (4.19), we will show that the sum in
the left-hand side is always upper bounded by the sum of the magnetic field hx in some
ball BR.0/ with R large enough. In fact, the magnetic field satisfies hx � h�=Rı for
x 2 BR.0/, and hx < h�=Rı for x 2 ƒ n BR.0/. Then, we haveX

x2BR.0/

hx �
X
x2ƒ

hx �
h�

Rı
.jBR.0/j � jƒj/: (4.20)

By using Lemma 4.2, we find that the volume of ball satisfies jBR.0/j � d�1cdRd .
Thus, if we choose R WD d.dc�1

d
jƒj/1=d e, the right-hand side of inequality (4.20) is
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nonnegative. We can bound the sum of the magnetic field in a ball BR.0/ in the following
way: X

x2BR.0/

hx � h
�
C h�22d�1ed�1

RX
nD1

nd�1�ı :

The result is obtained taking c5 D h�22ded�1.d � ı/�1..dc�1d /1=d C 2/d�ı .

As in the usual Peierls argument, Theorem 4.1 will follow once we prove the following
proposition.

Proposition 4.7. Let ˛ > d and ı > 0. For ˇ large enough, it holds that

��ˇ;h;ƒ.�0 D C1/ <
1

2

for every ƒ b Zd when

� d < ˛ < d C 1 and ı > ˛ � d ;

� d < ˛ < d C 1 and ı D ˛ � d if h� is small enough;

� ˛ � d C 1 and ı > 1;

� ˛ � d C 1 and ı D 1 if h� is small enough.

Proof. Let R > 0 and .yhx/x2Zd be the truncated magnetic field

yhx D

´
0 if jxj < R;

hx if jxj � R:

The constant R will be chosen later. Existence of phase transition under the presence
of the truncated field implies phase transition for the model with the decaying field (see
[25, Theorem 7.33] for a more general statement). If �0DC1, there must exist a contour 

such that 0 2 V.
/. Hence,

��
ˇ;yh;ƒ

.�0 D C1/ �
X

2E�

ƒ

02V.
/

��
ˇ;yh;ƒ

.�.
//:

Using Proposition 4.5, we know that the Hamiltonian H�
ƒ;yh

satisfies

H�
ƒ;yh
.�/ �H�

ƒ;yh
.�.�// � c2j
 j C c3FIC.
/ � 2

X
x2IC.
/[sp.
/

yhx ; (4.21)

where �
 .�/ D �.�/. Notice that X
x2sp.
/

yhx �
h�j
 j

Rı
: (4.22)

The choice Rı > 4h�=c2 is sufficient to guarantee that the term c2j
 j is larger than the
field contribution term (4.22) in the right-hand side of inequality (4.21). The next step is
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to analyze when the term c3FIC.
/ � 2
P
x2IC.
/

yhx is nonnegative. If IC.
/ D ;, there
is nothing to do since the bound is trivial. Otherwise, we must analyze the competition of
the decaying field with the different regimes of decay for the couplings constants Jxy .

(i) Case d < ˛ < d C 1. By Lemmas 4.4 and 4.6, we have

c3FIC.
/ � 2
X

x2IC.
/

yhx � c3K˛jIC.
/j2�˛=d � 2c5jIC.
/j1�ı=d : (4.23)

Thus, if ı > ˛ � d and jIC.
/j � c0˛ WD .2c5=.c3K˛//
d=.ı�.˛�d//, we have that the

right-hand side of inequality (4.23) is nonnegative. In order to get a positive difference
for all sizes of IC.
/, we need to consider Rı > Rı1 WD 2h

�c0˛=.c3K˛/. For the case
ı D ˛ � d , we must take h� small enough since the exponents in (4.23) will be equal.

(ii) Case ˛ � d C 1. By Lemmas 4.4 and 4.6, we have

c3FIC.
/ � 2
X

x2IC.
/

yhx � c3K˛j@IC.
/j � 2c5jIC.
/j1�ı=d : (4.24)

Thus, if ı > 1 and jIC.
/j � b˛ WD .c5=.dc3K˛//
d=.ı�1/, we have that the right-

hand side of inequality (4.24) is nonnegative. In order to get a positive difference
for all sizes of IC.
/, we need to consider Rı > Rı2 WD h

�b˛=.dc3K˛/. In the case
where ı D 1, we must take h� small enough and use the isoperimetric inequality in
inequality (4.24).

It is clear that by taking R D max¹.4h�=c2/1=ı ; R1; R2º together with (4.21), we get

H�
ƒ;yh
.�/ �H�

ƒ;yh
.�.�// �

c2

2
j
 j;

which implies

��
ˇ;yh;ƒ

.�.
// �
e�ˇc2j
 j=2

Z�
ˇ;yh
.ƒ/

X
�2�.
/

e
�ˇH�

ƒ;yh
.�.�//

: (4.25)

Using the decomposition

�.
/ D
[

�W�[¹
º2E�
ƒ

¹� 2 ��ƒ W �.�/ D � [ ¹
ºº;

together with the fact that we may create new external contours when we erase the con-
tour 
 in the decomposition �.
/, but note that V.�.�.�/// � ƒ n sp.
/. Hence, the
right-hand side of inequality (4.25) can be bounded as follows:X
�2�.
/

e
�ˇH�

ƒ;yh
.�.�//

�

X
�2E�

ƒ

V.�/�ƒnV.
/

X
�02E�

ƒ

V.�0/�I.
/

X
�.�/

�.�.�//D�[�0

X
!W�.!/D�.�/

e
�ˇH�

ƒ;yh
.�.�//

� j¹� 2 �sp.
/ W ‚x.�/ D 0; for each x 2 sp.
/ºj
X
�2E�

ƒ

V.�/�ƒnsp.
/

X
�2�.�/

e
�ˇH�

ƒ;yh
.�/
:
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Since the number of configurations that are incorrect in sp.
/ are bounded by 2j
 j, we get

��
ˇ;yh;ƒ

.�.
// �
Z�
ˇ;yh
.ƒ n sp.
//e.log.2/�ˇc2=2/j
 j

Z�
ˇ;yh
.ƒ/

:

Summing over all contours yields, together with Proposition 3.16,

��
ˇ;yh;ƒ

.�0 D C1/ �
X

2E�

ƒ

02V.
/

Z�
ˇ;yh
.ƒ n sp.
//e.log.2/�ˇc2=2/j
 j

Z�
ˇ;yh
.ƒ/

�

X
m�1

jC0.m/je
.log.2/�ˇc2=2/m

�

X
m�1

e.c1Clog.2/�ˇc2=2/m <
1

2
;

for ˇ large enough.

5. Concluding remarks

In this paper, we developed a contour argument for phase transition in long-range Ising
models when d � 2. As an application, we showed that the ferromagnetic Ising model
with a decaying field presents a phase transition. Since for the borderline case ı D ˛ � d
we need to consider h� small, this is an indication that phase transition should not hold
further into the region of the exponents. Some piece of evidence of this phenomenon is
given by the nearest-neighbor case studied in [6], where uniqueness happened whenever
ı < 1.

Another natural question is to investigate if we can extend the argument to more gen-
eral interactions in a sharp region of the exponents. One of such models is the ferromagnet
nearest-neighbor Ising model with a competing long-range antiferromagnet interaction, as
considered in [5]. As stated in that paper, a zero magnetization does not imply the absence
of phase transition, and maybe some of the techniques developed here could be helpful to
investigate the problem.

Moreover, our contours make sense for more general state spaces, so one could try to
study other systems such as the Potts model, extending the results of [36,37]. We did that
and also studied the cluster expansion and decay of correlations, as was done in [28, 29]
for the one-dimensional case, in a separate paper which will appear soon.
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