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Abstract. Peterzil and Starchenko have proved the following surprising generalization of Chow’s
theorem: A closed analytic subset of a complex algebraic variety that is definable in an o-minimal
structure is in fact an algebraic subset. In this paper, we prove a non-archimedean analogue of this
result.
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1. Introduction

The theory of o-minimality provides a framework for a ‘tame topology’ on R, imposing
some strict finiteness properties, and in many instances providing a way to interpolate
between the algebraic and analytic topologies.

In particular, there have been two influential algebraization theorems arising from the
theory of o-minimal structures that have been, in conjunction, a powerful tool in studying
problems of ‘unlikely intersections’. The first one of these is the counting theorem of Pila
and Wilkie [35] that (in imprecise terms) proves that an o-minimally definable subset of
Rn which contains at least polynomially many rational points (counted with respect to
height) must contain a positive-dimensional semialgebraic subset.

The second of these algebraization theorems is due to Peterzil and Starchenko. In [33],
Peterzil–Starchenko develop a theory of holomorphic functions and analytic manifolds in
the category of definable objects in an o-minimal structure. A celebrated result in their
work is the definable Chow theorem [32, Theorem 5.1], which states that a closed analytic
subset of a complex algebraic variety that is simultaneously definable in an o-minimal
structure is in fact an algebraic subset.

These theorems have played a key role in several important developments in Diophan-
tine geometry and Hodge theory in the past decade. The Pila–Wilkie counting theorem
was used by Pila and Zannier [36] to provide a new proof of the Manin–Mumford con-
jecture. The strategy of Pila and Zannier has in turn led to an influential program over
the last decade that culminated in the proof of the André–Oort conjecture, first for Ag
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by Tsimerman [41], and more recently for general Shimura varieties by Pila–Shankar–
Tsimerman–Esnault–Groechenig [34].

A central step in the proofs of these conjectures is establishing a ‘functional transcen-
dence’ result known as an Ax–Schanuel theorem, which is yet another instance of where
algebraization theorems such as the ones mentioned above play a fundamental role. We
mention in passing that these Ax–Schanuel theorems (and their generalizations to various
other settings) (see [4,31]) have furthermore had applications to Diophantine results such
as the recent proof of the Mordell conjecture by Lawrence–Venkatesh [18] and also in
recent work of Lawrence–Sawin [17].

Finally, the definable Chow theorem of Peterzil and Starchenko has been generalized
in the work of Bakker–Brunenbarbe–Tsimerman [3] wherein they develop a corre-
spondence between coherent definable analytic sheaves and coherent algebraic sheaves
on quasi-projective complex algebraic varieties, in the style of Serre’s famous GAGA
paper [39]. They further use their powerful generalization to settle a longstanding conjec-
ture of Griffiths on the algebraicity of images of period maps.

In light of the several striking applications the aforementioned algebraization theo-
rems have seen, it is a natural question to ask whether analogues of these algebraization
results exist in the non-archimedean setting.

In [9], Cluckers–Comte–Loeser prove a p-adic analogue of the Pila–Wilkie counting
theorem for p-adic subanalytic sets. The main results of this paper provide a framework
for a statement and proof of a non-archimedean analogue of the algebraization theorem of
Peterzil and Starchenko. In future work, we hope to provide applications of this circle of
ideas towards certain functional transcendence and bi-algebraicity questions in the p-adic
setting.

In the non-archimedean setting, a number of analogues of o-minimality have been
studied, all with the broad goal of creating a framework that would isolate a class of
subsets satisfying ‘tame’ topological and finiteness properties. From our perspective, an
important class of such subsets is furnished by the so-called rigid subanalytic sets devel-
oped by Lipshitz [20] and further studied in a series of influential works by Lipshitz
and Robinson [22–24]). The rigid subanalytic sets in a sense form the analogue of the
o-minimal structure Ran consisting of the collection of restricted subanalytic subsets
of Rn. We refer the reader to the beginning of Section 2 for an overview of the notion
of rigid subanalytic sets.

As a first step towards the definable Chow theorem, in Section 2 we prove the follow-
ing strong version of the Riemann extension theorem in the context of rigid subanalytic
sets.

Theorem (A rigid subanalytic Riemann extension theorem, Theorem 2.29). Let K be an
algebraically closed field that is complete with respect to a non-trivial, non-archimedean
absolute value j � j WK!R�0. SupposeX is a separated and reduced rigid analytic space
over K. Let Y � X be a closed analytic subvariety of X that is everywhere of positive
codimension. Then any analytic function f 2OX .X n Y / whose graph is a locally suban-
alytic subset ofX.K/�K extends to a meromorphic function on all ofX , i.e. f 2M.X/.
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We also prove an analogue of the definable Chow theorem in the rigid subanalytic
setting. In fact, we prove this in the setting of what we refer to as ‘tame structures’. The
definition of a tame structure follows very closely the definition of an o-minimal structure.
In [21], Lipshitz–Robinson prove that rigid subanalytic subsets of the one-dimensional
unit disk Kı are none other than the subsets that are Boolean combinations of disks.
Thus, it is natural to consider arbitrary structures on Kı such that the definable subsets
of the closed one-dimensional unit disk Kı are the Boolean combinations of (open or
closed) disks. This is (in an imprecise sense) what we refer to as a ‘tame structure’. We
refer the reader to Section 3 for the precise definitions. It is worth mentioning that our
definition of a tame structure is in fact very closely related to the notion of a C -minimal
field introduced by Macpherson and Steinhorn [28]. We refer the reader to Remark 3.6
for more details on this relation.

After going through the preliminary definitions of tame structures, we prove some
basic results in the dimension theory of tame structures that are needed for the proof of
the definable Chow theorem. The two key results are the invariance of dimension under
definable bijections and the Theorem of the Boundary.

Proposition (Invariance of dimension under definable bijections, Proposition 3.19). Let
X � .OCp /

m and Y � .OCp /
n be definable sets .in a fixed tame structure/ and f WX! Y

a definable bijection. Then dim.X/ D dim.Y /.

Theorem (Theorem of the Boundary, Theorem 3.21). Let X � .OCp /
m be a definable

set. Then dim.Fr.X// < dim.X/, where Fr.X/ denotes the frontier of X in .OCp /
m, that

is, Fr.X/ D cl.OCp /
m.X/ nX .

Next we prove the following theorem which may be viewed as a definable version of
a classical theorem of Liouville in complex geometry.

Proposition (A non-archimedean definable Liouville theorem, Theorem 4.6). Let X be
a reduced scheme of finite type over Cp and denote by X an the rigid analytification of X .
Let f 2 H 0.X an;OXan/ be a global rigid analytic function on X an such that the graph
of f viewed as a subset of X.Cp/ �Cp is definable. Then f 2 H 0.X;OX /.

Finally, we prove the non-archimedean version of the definable Chow theorem.

Theorem (The non-archimedean definable Chow theorem, Corollary 4.14). Let V be a
reduced algebraic variety over Cp , and let X � V an be a closed analytic subvariety of
the rigid analytic variety V an associated to V such thatX � V.Cp/ is definable in a tame
structure on Cp . Then X is algebraic.

Outline of the paper

In Section 2, we start with some background on the theory of rigid subanalytic sets as
developed by Lipshitz and Robinson in the series of papers [19–24]. In Section 2.3, we
prove the strong version of the Riemann extension theorem in the rigid subanalytic cate-
gory.
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In Section 3 we introduce the notion of tame structures, and proceed to develop some
preliminary dimension theory in this context. The theorem of the boundary and the invari-
ance of dimensions under definable bijections are proved here. In Section 3.2, we collect
some lemmas on the general dimension theory of rigid analytic varieties that will be used
in the proof of the definable Chow theorem.

In Section 4, we proceed to the proof of the non-archimedean definable Chow theo-
rem.

2. Rigid subanalytic sets and a Riemann extension theorem

In this section, we provide a brief overview of subanalytic geometry in the non-
archimedean setting. Analogous to the real case, one starts by considering sets that are
locally described by Boolean combinations of sets of the form ¹x W jf .x/j � jg.x/jºwhere
f; g are analytic functions. As in the real case, for such sets to define a reasonable ‘tame
topology’ one must restrict the class of analytic functions. In the non-archimedean setting,
such a theory has been developed in a series of works by Leonard Lipshitz and Zachary
Robinson based on the analytic functions in the ‘ring of separated power series’. In the
first part of this section, we summarize some of the main results of their work.

In Section 2.3, we prove a strong version of the Riemann extension theorem for rigid
subanalytic sets.

Notations for Section 2. We suppose throughout this section that K is an algebraically
closed field complete with respect to a non-trivial, non-archimedean absolute value j � jK W
K ! R�0. We denote by Kı the valuation ring consisting of power bounded elements
of K, and Kıı denotes the maximal ideal of Kı consisting of the topologically nilpotent
elements ofK. We denote by zK WD Kı=Kıı the residue field of K, and zW Kı! zK will
denote the reduction map.

For a complete valued field extension .F; j � jF / of .K; j � jK/, we denote by Falg � F

an algebraic closure of F . There is a unique multiplicative norm j � j0 W Falg ! R�0 that
extends the norm j � jF on F . We set F ıalg WD ¹x 2 Falg W jxj

0 � 1º. We shall often abuse
notation by denoting j � j0; j � jF , and j � jK all by the same symbol j � j.

2.1. Rings of separated power series

Definition 2.1. A valued subring C � Kı is called a B-ring if every x 2 C with jxj D 1
is a unit in C .

Remark 2.2. Every B-ring C is a local ring with C \ Kıı being its unique maximal
ideal.

Definition 2.3. A B-ring C � Kı is said to be quasi-Noetherian if every ideal a � C

has a ‘quasi-finite generating set’, i.e. a zero-sequence ¹xiºi2N � a such that any element
a 2 a can be written in the form a D

P
i�0 bixi for some bi 2 C . We note that we are

not insisting that every infinite sum of the form
P
i�0 bixi also lies in a.
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Proposition 2.4 (Properties of quasi-Noetherian rings). We have the following properties
of quasi-Noetherian rings:

(1) A Noetherian B-subring of Kı is quasi-Noetherian.

(2) If B is quasi-Noetherian and ¹aiºi2N � K
ı is a zero-sequence .i.e. lim ai D 0/ then

BŒa0; a1; : : :�¹a2BŒa0;a1;:::�W jajD1º

is also quasi-Noetherian.

(3) The completion of a quasi-Noetherian subringB �Kı .with respect to the restriction
of the absolute value j � j to B/ is also a quasi-Noetherian subring of Kı.

(4) The value semigroup jB n ¹0ºj is a discrete subset of R>0.

Definition 2.5. (a) If R is a complete, Hausdorff topological ring whose topology is
defined by a system ¹aiºi2I of ideals, we define the ring of convergent power series
with coefficients in R as

R¹x1; : : : ; xnº

WD

° X
�D.�1;:::;�n/2Nn

a�x
�1
1 : : : x�nn 2 RJx1; : : : ; xnK W lim

�1C���C�n!1
a� D 0

±
:

The topology on R¹x1; : : : ; xnº is defined by declaring ¹ai � R¹xººi2N to be a fun-
damental system of neighbourhoods of 0. With this topology R¹x1; : : : ; xnº is also a
complete, Hausdorff topological ring.

(b) The Tate algebra Tm.K/ in m variables over K is defined as Tm.K/ WD K ˝Kı

Kı¹x1; : : : ; xmº. We equip Tm.K/ with the Gauss norm which is defined as follows:
k
P
i�0 aix

ikGauss WD maxi jai j. It is a multiplicative norm on Tm.K/ that makes
Tm.K/ a Banach K-algebra.

Definition 2.6 (Rings of separated power series). We fix a complete, quasi-Noetherian
subring E � Kı. Denote by B the following family of complete, quasi-Noetherian sub-
rings of Kı:

B WD ¹EŒa0; a1; : : :�
^
¹x2EŒa0;:::�W jxjD1º

W ¹aiºi�0 � K
ı satisfies lim jai j D 0º:

In the above definition, EŒa0; a1; : : :�^¹x2EŒa0;:::�W jxjD1º denotes the completion (with
respect to the absolute value induced from K) of the localization of EŒa0; a1; : : :� at the
multiplicative subset ¹x 2 EŒa0; a1; : : :� W jxj D 1º.

Define
Sm;n.E;K/

ı
WD lim
�!
B2B

B¹x1; : : : ; xmºJ�1; : : : ; �nK;

Sm;n.E;K/ WD Sm;n.E;K/
ı
˝Kı K:

For an f 2 Sm;n.E;K/ we define its Gauss norm in the usual way: writing

f D
X

�2Nm;�2Nn

b�;�x
�1
1 � � � x

�n
m �

�1
1 � � � �

�n
n

we set kf kGauss WD sup�;� jb�;� j D max�;� jb�;� j.
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Remark 2.7. (a) We call Sm;n.E; K/ the ring of separated power series over K. When
K D Cp for instance, we may choose E to be the completion of the ring of integers of the
maximal unramified extension of Qp in Cp . We shall often suppress the reference to E
and K in notation and write simply Sm;n.

(b) Note that Sm;0 D Tm.K/ and Sm;n � TmCn.K/.

Theorem 2.8 (Lipshitz–Robinson [23]). The rings Sm;n have the following properties:

(1) Sm;n is Noetherian, a UFD, and a Jacobson ring of Krull dimension mC n.

(2) For every maximal ideal m of Sm;n the quotient ring Sm;n=m is an algebraic exten-
sion of K. Furthermore, there is a bijection

¹n 2 Max.KŒx; ��/ W jxi .n/j � 1; j�j .n/j < 1º $ Max.Sm;n/; n 7! n � Sm;n:

We now recall the notion of a generalized ring of fractions � W Tm ! A as defined
in [24].

Definition 2.9. A quasi-affinoid algebra overK is a topologicalK-algebra that is isomor-
phic to a quotient of Sm;n.E;K/ for somem;n � 0, endowed with the quotient topology.

We remark that since every ideal of Sm;n.E;K/ is closed, a quasi-affinoid K-algebra
A equipped with the quotient topology from some surjection ofK-algebras, Sm;n� A is
naturally a Banach algebra overK. We also remark that this topology onA is independent
of the presentation of A as a quotient of Sm;n.E; K/. We refer the reader to [23, Theo-
rem 5.2.3 and Corollary 5.2.4] for a proof of this fact.

Definition 2.10 ([23, Definition 5.3.1]). Let A be a quasi-affinoid algebra, say A D
Sm;n=I . Suppose f1; : : : ; fM ; g1; : : : ; gN ; h 2 A. Then we set

A
˝
f
h

˛q
g
h

y
s
WD SmCM;nCN =J

where J is the ideal generated by the elements of I along with the elements hxmCi � fi
for i D 1; : : : ;M and h�nCj � gj for j D 1; : : : ; N .

Remark 2.11. In the above definition, the quasi-affinoid K-algebra Ahf
h
iJg
h
Ks is inde-

pendent of the presentation of A as a quotient of a separated power series ring Sm;n. We
refer the reader to [23, Theorem 5.2.6] for a proof of this.

Definition 2.12 ([24, Definition 2.1]). A generalized ring of fractions over the Tate al-
gebra Tm.K/ is a map of K-algebras � W Tm.K/ ! A, where A is a quasi-affinoid
algebra A over K, that is obtained via the following inductive procedure: firstly, the
identity map Tm.K/ ! Tm.K/ is a generalized ring of fractions; secondly, for  W
Tm.K/!A0 a generalized ring of fractions, and elements f1; : : : ;fM ;g1; : : : ;gN ;h2A0,
the composite map Tm.K/ ! A0 ! A0hf

h
iJg
h
Ks is also a generalized ring of fractions

over Tm.K/.

Definition 2.13. For a generalized ring of fractions � W Tm.K/! A over Tm.K/, and a
complete valued field extension F of K, we define Dom.A/.F / � .F ıalg/

m inductively as
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follows: for the identity map Tm.K/! Tm.K/, we set Dom.Tm.K//.F / WD .F ıalg/
m; for

 W Tm.K/! A0 a generalized ring of fractions, and elements f1; : : : ; fM ; g1; : : : ; gN ; h
in A0, we set

Dom
�
A0
˝
f
h

˛q
g
h

y
s
/.F / WD ¹x 2Dom.A0/.F / W jfi .x/j � jh.x/j ¤ 0 and jgj .x/j< jh.x/jº:

Remark 2.14. We observe that for a generalized ring of fractions � W Tm.K/! A, any
element f 2 A defines in a natural way a locally analytic function Dom.A/.F /! Falg

(see [24, Remark 2.3 (iii)]).

Definition 2.15. (a) For a power series f .x1; : : : ; xm/ D
P
�2Nm a�x

� , and for every
� 2 Nm, we define the Hasse derivative D�.f /.x1; : : : ; xm/ to be the power series
defined by the following equality of power series in x1; : : : ; xm; y1; : : : ; ym:

f .x1 C y1; : : : ; xm C ym/ D
X
�

D�.f /.x/y
� :

We note that in characteristic zero, D�.f / D 1
�1Š:::�mŠ

@j�jf

@x
�1
1
���@x

�m
m

. We also remark

that if f is given by a power series with coefficients in K that converges on a closed
polydisk, then so do all its Hasse derivatives.

(b) For a generalized ring of fractions � W Tm.K/!A over Tm.K/ and an element f 2A
we denote by �.f / the set of all its Hasse derivatives D�.f / for all � 2 Nm.

2.2. Rigid subanalytic sets

Definition 2.16 (The language L of mutiplicatively valued rings). Denote by

L D .C; �; j � j; 0; 1Ix�; x<;x0;x1/

the language of multiplicatively valued rings. Note that L is a two-sorted language, the
operations C;�; � and elements 0; 1 refer to the corresponding operations and elements
of the underlying ring andx�; x0; x1 are the underlying operations and elements of the value
group along with ¹x0º (which is supposed to be interpreted as j0j, the norm of 0, and is
smaller than every element of the value group).

We set S WD
S
m;n2N Sm;n.E;K/ and T WD

S
m�0 Tm. Consider any subset H � S

such that �.H / � H . The main two examples of such H are provided by H D S or
H D T .

We now define the languages LH introduced by Lipshitz–Robinson [24] which are
used to define subanalytic sets. LH is a three-sorted language; the first sort for the closed
unit disk Kı, the second sort for Kıı the open unit disk and the last sort for the totally
ordered value group with ¹x0º added. The sort structure is mostly a bookkeeping device;
the first sort helps us to keep track of non-strict inequalities of the form jf j � jgj, whereas
the second sort helps us to keep track of strict inequalities.
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Definition 2.17 (The language LH ). The language LH is the language obtained by aug-
menting the language L defined above by symbols for every function in H ; i.e. for every
f 2 H , if f 2 Sm;n we add a function symbol to LH with arity m for the first sort and
n for the second sort. Thus,

LH WD .C; �; j � j; 0; 1; ¹f ºf 2H Ix�; x<;x0;x1/:

Definition 2.18 (Globally H -semianalytic and H -subanalytic sets).

(a) For a complete, valued field F over K, a subset X � .F ıalg/
m is said to be globally

H -semianalytic (resp. H -subanalytic) if X is definable by a quantifier-free (resp.
existential)LH -formula, i.e. there exists a quantifier-free (resp. existential) first-order
formula �.x1; : : : ;xm/ such that .a1; : : : ;am/2X if and only ifFalgˆ �.a1; : : : ;am/.

(b) In the special case that H D S , the H -semianalytic (resp. subanalytic) sets are
referred to as the globally quasi-affinoid semianalytic (resp. quasi-affinoid subana-
lytic) sets. Similarly, in the case that H D T , the H -semianalytic (resp. subanalytic)
sets are referred to as affinoid semianalytic (resp. affinoid subanalytic) sets.

The globally H -semianalytic sets are in other words Boolean combinations of sets
defined by inequalities among analytic functions in H . Similarly, the H -subanalytic sets,
being defined by existential formulas, are precisely the sets obtained by coordinate pro-
jections of H -semianalytic sets from higher dimensions.

Just as in the real subanalytic setting, one would now ask whether subanalytic sets
satisfy basic closure properties. For instance, are they closed under taking complements
or closures? It turns out that they are. Lipshitz–Robinson [24] prove a quantifier-sim-
plification theorem for the language LH (recalled below), which would imply that an
arbitrary LH -definable set is also H -subanalytic. Since complements and closures are
all first-order definable in LH , the required closure properties would then follow.

Lipshitz and Robinson’s proof of the quantifier-simplification theorem forLH is actu-
ally obtained as a consequence of a striking quantifier-elimination theorem in a slightly
expanded language LE.H/ which we introduce now. The expanded language LE.H/,
roughly speaking, contains function symbols for every function that is existentially defin-
able from functions in H (the precise definitions are given below). The need to expand
the language LH to include such functions is reflected in the fact that for an f 2 H , the
Weierstrass data output by the Weierstrass division theorems in the context of the algebras
Sm;n are only existentially definable over H .

We also note that for a generalized ring of fractions ' W Tm ! A over Tm and for an
element f 2 A, the induced analytic function f W Dom.A/.F /! Falg might not neces-
sarily be in H but is nevertheless existentially definable over H .

Definition 2.19 (Existentially definable analytic functions [24, Definition 2.6]). Given
a complete valued field extension F of K, a subset X � .F ıalg/

m, and a function f W
X ! Falg, we say that f is existentially definable from the functions g1; : : : ; gl if there
exists a quantifier-free formula � in the language L of multiplicatively valued rings such
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that
y D f .x/ ” 9z; �.x; y; z; g1.x; y; z/; : : : ; gl .x; y; z//:

Definition 2.20 (The expanded language LE.H/).

(a) We set E.H / to consist of all functions f WDom.A/.F /! Falg for a generalized ring
of fractions ' W Tm! A over Tm and f 2 A such that all of its partial derivatives, i.e.
all the functions in �.f /, are existentially definable from functions in H .

(b) The language LE.H/ is the three-sorted language obtained by augmenting LH with
function symbols for every f 2 E.H /.

Theorem 2.21 (The uniform quantifier elimination theorem of Lipshitz and Robin-
son [24]). Fix a subset H � S such that �.H / D H . Let '.x/ be an LE.H/-formula.
Then there exists a quantifier-free LE.H/-formula  .x/ such that for every complete val-
ued field extension F of K we have

Falg ˆ .8x; '.x/,  .x//:

Corollary 2.22 (Quantifier simplification for LH ). For every LH -formula '.x/, there
exists an existentialLH -formula .x/ such that for every complete valued field F extend-
ing K we have

Falg ˆ .8x; '.x/,  .x//:

In other words, every LH -definable subset is in fact H -subanalytic. In particular, the
closures and complements of H -subanalytic sets are again H -subanalytic.

2.3. A rigid subanalytic Riemann extension theorem

In this section we prove a version of the Riemann extension theorem in the setting of rigid
subanalytic sets.

Throughout this section and in everything that follows, by subanalytic (without further
qualification) we shall simply mean quasi-affinoid subanalytic, i.e. H -subanalytic with
H DS D

S
m;nSm;n.E;K/. We also recall thatK is algebraically closed. We shall denote

by Bd the d -dimensional rigid analytic closed unit disk overK, that is, Bd D Sp.Td .K//.
It is convenient to extend the notion of subanalytic sets to subsets ofKn. We make the

following definition:

Definition 2.23. A subset � � Kn is said to be subanalytic if the following equivalent
conditions are satisfied:

(i) ��1n .�/ � .Kı/nC1 is subanalytic, where

�n W .K
ı/nC1 n ¹0º ! Pn.Kı/ D Pn.K/

is the map .z0; z1; : : : ; zn/ 7! Œz0 W z1 W : : : W zn�. We view Kn � Pn.K/ via the map
.z0; z1; : : : ; zn�1/ 7! Œz0 W z1 W : : : W zn�1 W 1�.
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(ii) For every map � W ¹1; : : : ; nº ! ¹˙1º the set

T� WD ¹.˛1; : : : ; ˛n/ 2 .K
ı/n W ˛r ¤ 0 if �.r/ D �1;

and .˛�.1/1 ; : : : ; ˛�.n/n / 2 �º

is a subanalytic subset of .Kı/n.

It follows that the collection of subanalytic subsets of Kn forms a Boolean algebra
of subsets, closed under projections, and thus forms a structure on K in the sense of
[42, Chapter 1, (2.1)].

Before proceeding to the subanalytic Riemann extension theorem, we recall for the
reader some of the notations and terminology from rigid analytic geometry, which we
shall use henceforth.

Recollections and conventions from rigid geometry

We recall that given an affinoid algebra A over K, i.e. a quotient of some Tate algebra
Tn.K/, the affinoid space overK attached to A [7] is denoted by Sp.A/. As a set, it is the
set of maximal ideals ofA. The affinoid space Sp.A/ comes equipped with a Grothendieck
topology (which we refer to as the G-topology) consisting of a collection of admissible
opens and admissible coverings (see [7, Section 3.3 and Ch. 5]). Furthermore, there is
a natural sheaf of K-algebras on the G-topology on Sp.A/. A rigid analytic variety or
space for us is a locally G-ringed K-space that is locally isomorphic to an affinoid space
over K [7, Section 5.3]. We refer the reader to [7, Section 6.3, Definitions 1, 2, 6 and 8]
for the definitions of closed immersions and quasi-compact, separated, quasi-separated,
and proper morphisms of rigid analytic spaces over K. Furthermore, to every algebraic
variety V over K, one may functorially attach a rigid analytic variety (called the rigid
analytification or the associated rigid analytic variety), denoted by V an, which comes
equipped with a map of locally G-ringed K-spaces aV W V an ! V [7, Section 5.4].

Definition 2.24. Let X be a separated rigid analytic variety over K and let S � X be a
subset. Then we say that S is locally subanalytic in X if there exists an admissible cover
by admissible affinoid opensX D

S
i Xi and closed immersions ˇi W Xi ,! Bdi such that

for all i , ˇi .S \Xi / is subanalytic in .Kı/di .

It is easy to see that if the above condition is true for one admissible affinoid cover and
some choice of embeddings ˇi , then it is true for any other such cover and embeddings.

Definition 2.25. Let V=K be a finite-type reduced scheme over K. We say that a sub-
set S � V.K/ is subanalytic if there exists a finite affine open cover V D

S
i Ui DS

i Spec.Ai / and closed embeddings Ui .K/
ˇi
,�! Kni (arising from a presentation of Ai

as a quotient of KŒt1; : : : ; tni �) such that for all i , ˇi .S \ Ui .K// is subanalytic.
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Remark 2.26. We note that if S � V.K/ is subanalytic, then for every finite affine open
cover Ui of V and for any choice of presentations ˇi WKŒt1; : : : ; tni ��O.Ui /, the subset
ˇi .S \ Ui .K// � K

ni is subanalytic.

Remark 2.27. Suppose V is a separated finite type scheme over K and V an is the asso-
ciated rigid analytic variety, with analytification map aV W V an ! V . Then the map aV
need not necessarily take a locally subanalytic set on V an to a subanalytic subset of V.K/
in the sense of Definition 2.25. Indeed, consider the affine line A1Cp , and the subset

S WD
S
n�0¹z 2 Cp W jp�2nj � jzj � jp�.2nC1/jº. Then S is not a rigid subanalytic sub-

set of the algebraic affine line A1.Cp/, although it is a locally subanalytic subset of the
analytification A1;an

Cp
.

But if V is proper then locally subanalytic sets of V an are indeed subanalytic in V.K/.

Lemma 2.28. Suppose V is a variety overK. Let V an denote the associated rigid analytic
space over K, with analytification map aV W V an ! V . If S � V.K/ is subanalytic as in
Definition 2.25 then a�1V .S/ � V an is locally subanalytic as in Definition 2.24.

Moreover, if V is proper overK then the converse holds, i.e. S � V.K/ is subanalytic
, a�1V .S/ � V an is locally subanalytic.

Proof. This follows from the fact that proper rigid spaces are quasicompact, and in par-
ticular, when V is proper, V an has an admissible covering by finitely many affinoids.

We now turn to the proof of the following version of the Riemann extension theorem.

Theorem 2.29. Suppose X is a separated and reduced rigid analytic space over the
algebraically closed field K. Let Y � X be a closed analytic subvariety of X that is
everywhere of positive codimension. Then any analytic function f 2 OX .X n Y / whose
graph is a locally subanalytic subset of X.K/ �K extends to a meromorphic function on
all of X , i.e. f 2M.X/.

Outline of the proof

The proof is inspired by Lütkebohmert’s proof of the usual non-archimedean Riemann
extension theorem [26]. We make a series of reductions in the course of the proof. We
summarize the main reduction steps below.

� Step 1: The question of extending f meromorphically along X is local for the G-
topology of X and thus we may assume that X D Sp.A/ is a reduced affinoid. Further,
working over irreducible components of X , we also assume that X D Sp.A/ is irre-
ducible and thus that A is an integral domain.

� Step 2: Choose a Noether normalization � W X ! Bd . We show in Lemma 2.34 that
if we prove our theorem for Bd and the analytic subset �.Y / � Bd , we can deduce
the theorem for X . Thus, we may assume X D Bd is the d -dimensional rigid unit disk
over K.
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� Step 3: Since Sing.Y / is of codimension at least 2 in X , by the non-archimedean
Levi extension theorem [26, Theorem 4.1] it suffices to extend f meromorphically to
an f � 2M.X n Sing.Y //. Replace X; Y by X n Sing.Y /; Y n Sing.Y / respectively.
Once more using Step 1, we reduce to the case where Y is regular/smooth and X is an
affinoid subdomain of Bd .

� Step 4: Since X and Y are smooth over the algebraically closed field K, we are now
in a position to use a result of Kiehl (recalled below, Theorem 2.32) which tells us that
locally Y � X looks like Z � ¹0º � Z � Bn for a smooth affinoid space Z. We may
even assume that n D 1 since if Y is codimension at least 2, the result we seek is a
special case of the non-archimedean Levi extension theorem. All in all, we are down to
the case where X D Z � B1 and Y D Z � ¹0º for a smooth, reduced affinoid space Z
over K.

� Step 5: This final case is proved separately in Lemma 2.35.

We first recall Kiehl’s tubular neighbourhod result. We need the following definition.

Definition 2.30 ([16, Definition 1.11]). We say that an affinoid algebra A over the non-
trivially valued non-archimedean field k is absolutely regular at a maximal ideal x of A if
for every complete valued field K extending k and for every maximal ideal y of A b̋k K
above x, the localization .A b̋k K/y is a regular local ring. If the affinoid algebraA over k
is absolutely regular at each of its maximal ideals, we say that A is absolutely regular.

Remark 2.31. For a maximal ideal x of an affinoid algebra A over an algebraically
closed (or more generally perfect) non-archimedean field k, A is absolutely regular at x
if and only if the localization Ax is a regular local ring.

Theorem 2.32 (Kiehl’s tubular neighbourhood theorem, [16, Theorem 1.18]). SupposeA
is an affinoid algebra over a non-trivially valued non-archimedean field k and let a be an
ideal of A generated by f1; : : : ; fl 2 A. Suppose that the quotient affinoid algebra A=a
is absolutely regular and that A is absolutely regular at every point of V.a/. Then there
exists an � 2 k� such that the ‘�-tube’ around V.a/,

Sp.B/ WD ¹x 2 Sp.A/ W jfj .x/j � j�j; 8j D 1; : : : ; lº

has an admissible affinoid covering .Sp.Bi /! Sp.B//, i D 1; : : : ; r , along with isomor-
phisms

�i W .Bi=aBi /¹x1; : : : ; xni º
Š
�! Bi

from the free affinoid algebra over Bi=aBi in the variables x1; : : : ; xni , such that the
elements �i .X1/; : : : ; �i .xni / generate the ideal aBi .

We recall a result on the number of zeroes of a convergent power series in one variable
that will be used in our proof, and then prove a lemma that allows us to make the reduction
mentioned in Step 2.
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Lemma 2.33. Suppose f .t/ 2 K¹tº is an element of the one-dimensional Tate algebra
over K. Let �.f / WD max ¹i � 0 W jai j D kf kGaussº. Then the number of zeroes of f
.counting multiplicities/ in the closed unit disk Kı is at least �.f /.

Proof. Note that f is “t -distinguished” of degree �.f / (see [8, Section 5.2.1, Defini-
tion 1]). By the Weierstrass preparation theorem for Tate algebras [8, Section 5.2.2,
Theorem 1] we may write f D e � ! where e 2 K¹tº� and ! 2 KŒt� is a polynomial
of degree �.f /, and ! has �.f / zeroes (counting multiplicities) in Kı.

Lemma 2.34. Let � W X ! S be a finite morphism of reduced, irreducible affinoids over
K of the same dimension. Suppose Y � X is a closed analytic subvariety of X . Let
T WD �.Y /. Suppose that every analytic function g 2 OS .S n T / extends uniquely to
a meromorphic function g� 2M.S/ on S . Then every analytic function f 2 OX .X n Y /

extends to a meromorphic function on X .

Proof. Following the proof of [26, Satz 1.7], we see that for any f 2 OX .X n Y / there is
a meromorphic f � 2M.X/ such that f �jXn��1.T / D f jXn��1.T /. However, two mero-
morphic functions that agree on the complement of a positive-codimensional analytic
subvariety must agree everywhere [26, Lemma 1.1]. It thus follows that f �jXnY D f .

We are now fully equipped to prove Theorem 2.29.

Proof of the rigid subanalytic Riemann extension theorem, Theorem 2.29. We reduce to
the case where X is a reduced affinoid space over K. Indeed, to make this reduction con-
sider an admissible covering of X by affinoid subdomains,X D

S
i2I Ui . For each i 2 I ,

Ui \Y is an analytic subvariety ofUi of positive codimension at every point ofUi and fur-
thermore f jUinY has a locally subanalytic graph in Ui .K/�K. Suppose that we are able
to find, for every i , meromorphic functions f �i 2M.Ui / such that f �i jUinY D f jUinY .
Then for any i; j 2 I the meromorphic functions f �i jUi\Uj and f �j jUi\Uj agree on the
complement of the positive-codimensional subvariety Y \ Ui \ Uj and hence by [26,
Lemma 1.1] they agree on Ui \ Uj . Thus, the ¹f �i ºi2I glue to a global meromorphic
function f � on X extending f . We may thus assume henceforth that X D Sp.A/ is a
reduced affinoid space over K.

By working on the irreducible components ofX we may assume thatX is irreducible,
and hence thatA is an integral domain. Choose a Noether normalization forX , i.e. a finite
surjective morphism � W X ! Bd where d D dim.X/; with the help of Lemma 2.34 we
further assume that X D Bd is the d -dimensional unit disk over K.

Let f 2 O.Bd n Y / be an analytic function, so that its graph is locally subanalytic.
In order to show that f extends meromorphically to X , it suffices to show that f extends
to an f � 2 M.Bd n Sing.Y // such that f �jBd nY D f . Indeed, since Sing.Y / is an

analytic subset of codimension at least 2 in Bd , we have an isomorphism M.Bd /
Š
�!

M.Bd n Sing.Y // by the non-archimedean Levi extension theorem [26, Theorem 4.1].
Consider an admissible affinoid covering Bd n Sing.Y / D

S
i Ui . We remark that affi-

noid subdomains that are finite unions of rational subdomains are indeed rigid subanalytic
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sets and hence f jUinY has a locally subanalytic graph. Using [26, Lemma 1.1], we may
work individually over each Ui , i.e. we are reduced to proving the theorem in the situa-
tion where X D Sp.A/ is an affinoid subdomain of Bd and Y � X is a regular analytic
subvariety of X of positive codimension everywhere.

Applying the ‘tubular neighbourhood’ result of Kiehl [16, Theorem 1.18], we obtain
an admissible covering .Sp.Bi /! Sp.B//, i D 1; : : : ; l , of some ‘�-tube’ Sp.B/ around Y
in X D Sp.A/. It suffices now to prove that for every i D 1; : : : ; l , f jSp.Bi /nY extends
to a meromorphic function f �i 2M.Sp.Bi //. Indeed, the f �i must necessarily glue to a
meromorphic function f � 2M.Sp.B// (using [26, Lemma 1.1]) such that f �jSp.B/nY D

f jSp.B/nY . Since the functions f � 2M.Sp.B// and f 2 O.X n Y / agree on the inter-
section Sp.B/ n Y and noting that Sp.B/ [ .X n Y / D X is an admissible open cover of
X D Sp.A/, the sections f � and f glue to a global meromorphic function on X .

We are thus reduced to proving the theorem in the case that X D Sp.Bi=aBi / � Bni

and Y D Sp.Bi=aBi /� ¹0º. If ni � 2, then the codimension of Y is at least 2, and in this
case the theorem follows as a special case of the non-archimedean Levi extension theorem
[26, Theorem 4.1]. Thus we may even assume that ni D 1. All in all, we are reduced to
proving the special case of the theorem in Lemma 2.35 below.

Lemma 2.35. SupposeZ D Sp.A/ is a reduced, irreducible affinoid space,X DZ �B1,
and Y D Z � ¹0º � X . Then every analytic function f 2 O.X n Y / whose graph is a
locally subanalytic subset of X �K extends to a meromorphic function f � 2M.X/.

Proof. We denote the coordinate on B1 as t . Let j � j represent the supremum norm on
the reduced affinoid A. Note that A is a Banach algebra over K when endowed with its
supremum norm, and the supremum norm is equivalent to any residue norm on A (see
[8, Section 6.2.4, Theorem 1]).

We may expand f .t/ D
P
i�0 ai t

i C
P
j>0 bj t

�j with ai ; bj 2 A such that
limi jai j D 0 and for every R > 0; limj jbj jRj D 0. Since

P
i ai t

i 2 A¹tº, we know thatP
i ai t

i is a rigid subanalytic function onZ �B1, and thus the function g WD
P
j>0 bj t

�j

defined on X n Y has a graph that is a locally subanalytic subset of X �K. In particular,
for each z 2 Z, the function g.z; t/ D

P
j>0 bj .z/t

�j on the punctured disk B1 n ¹0º
is also locally subanalytic. Since discrete subanalytic sets must be finite, we find that for
each fixed z either g.z; t/ is identically zero on B1 n ¹0º, or g.z; t/ has finitely many
zeroes in B1 n ¹0º.

Consider hz.y/ WD g.z; y�1/ D
P
j>0 bj .z/y

j . The growth hypothesis

8R 2 K�; lim
j!0
jbj j jRj

j
D 0

on the bj implies that hz.y/ 2 K¹R�1yº for every R 2 K�. The number of zeroes of
g.z; t/ on the annulus jRj�1 � jt j � 1 is the number of zeroes of hz.y/ on 1 � jyj � jRj.
For eachR 2K�, we set hz;R.y/ WD

P
j>0.bjR

�j /yj so that by Lemma 2.33 the number
of zeroes of hz.y/ on the closed disk jyj � R is given by �.hz;R.y//.

Now for i < j if bi .z/; bj .z/ ¤ 0, then for R large enough jbi .z/jRi � jbj .z/jRj

and thus �.hz;R/ � j . Thus, if bj .z/ ¤ 0 for infinitely many j , then hz.y/ has infinitely
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many zeroes going off to1 and therefore also g.z; t/ has an infinite discrete zero set in
B1 n ¹0º, which as noted above is not possible. Thus, for each z 2Z, bj .z/ is eventually 0.
In other words, Z D

S
m�0

T
j>m V.bj /. If the set

T
j>m V.bj / is not equal to Z then

it is a nowhere dense closed subset of Z. By the Baire category theorem, Z cannot be
a countable union of nowhere dense closed subsets and therefore for large enough m,T
j>m V.bj / D V.

P
j>m.bj // must be equal to Z. Since Z is reduced, this means that

the bj 2 A are eventually zero. Thus f has a finite order pole along Y and hence extends
meromorphically. This completes the proof of the lemma and thus also of Theorem 2.29.

3. Tame structures

In this section we introduce the notion of a tame structure. The definition of a tame struc-
ture closely follows the definition of an o-minimal structure on R and is suitably adapted
as a generalization of the non-archimedean rigid subanalytic sets discussed in the previ-
ous section. Let K be a non-trivially valued non-archimedean field with valuation ring R
and totally ordered value group .�; </. A ‘structure’ on R is going to be a collection
of subsets of Rn for every n � 0. In fact, it turns out to be convenient to keep track of
definable subsets of the value group � as well. Thus, in this setting a ‘structure’ on R is
actually a collection of subsets of Rm � �n for m; n � 0 that is closed under the natural
first-order operations (see Definition 3.1 for the precise conditions). A ‘tame structure’ is
then defined to be one where the definable subsets of R are precisely the Boolean combi-
nations of disks of R. In Section 3.1, we provide these preliminary definitions and prove
some elementary properties of sets definable in tame structures.

In Section 3.1.2, we develop the basic dimension theory of sets definable in tame struc-
tures. As in the o-minimal setting, the dimension of a non-empty definable set X � Rm is
defined as the largest d � m such that for some coordinate projection � W Rm ! Rd the
interior of �.X/ in Rd is non-empty. The two key results we prove in this section are:

� the invariance of dimension under definable bijections (Proposition 3.19),

� the Theorem of the Boundary, Theorem 3.21, which states that for a definable set
X � Rm, dim.cl.X/ nX/ < dim.X/.

The purpose of Section 3.2 is to collect together some results in the dimension theory
of rigid geometry that we need. Most importantly, we connect the usual notion of dimen-
sion in the rigid analytic setting with the concept of definable dimension of the previous
section (Lemma 3.26). We also prove, in Lemma 3.28, a result on the dimensions of local
rings of equidimensional rigid varieties. This lemma is used in the course of the proof of
the definable Chow theorem.

Notations and conventions for this section

For a subset X of a topological space Y endowed with the subspace topology, the inte-
rior, closure, and frontier of X inside Y are denoted by intY .X/; clY .X/ and FrY .X/
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respectively. We often omit writing the subscript Y when the ambient topological space
is clear from the context. We recall that the frontier of X in Y is defined as FrY .X/ WD
clY .X/ n X . We shall call a map between two sets f W X ! Y quasi-finite if for every
y 2 Y , f �1.y/ is a finite set.

K denotes a field complete with respect to a non-trivial non-archimedean absolute
value j � j W K ! R�0. R denotes the valuation ring of K, m � R the unique maximal
ideal of R, k WD R=m the residue field of K, �� WD jK�j the value group of K, and
� WD �� [ ¹0º. We choose a pseudo-uniformizer$ 2K�, i.e. a non-zero element$ 2R
with j$ j < 1.

For an element x D .x1; : : : ; xn/ 2 K
n, we set kxk WD max1�i�n jxi j. For x D

.x1; : : : ; xn/ 2 K
n and r D .r1; : : : ; rn/ 2 �n, denote by D.xI r/ WD ¹y D .y1; : : : ; yn/ 2

Kn W jxi � yi j < ri for all iº and let xD.xI r/ WD ¹y 2 Kn W jxi � yi j � ri for all iº. The
set D.x; r/ is referred to as an open polydisk (or simply open disk/ of polyradius r and
xD.x; r/ as the closed polydisk/disk of polyradius r .

We shall assume from now on thatK is second-countable, i.e.K has a countable dense
subset. However, when working with the collection of H -subanalytic sets, the hypothesis
of second countability can be eliminated from most statements (see Remark 3.23).

3.1. Preliminaries

3.1.1. Tame structures.

Definition 3.1. A structure on .R; �/ is a collection .Sm;n/m;n�0 where each Sm;n is a
collection of subsets of Rm � �n with the following properties:

(i) Sm;n is a Boolean algebra of subsets of Rm � �n.

(ii) If � 2 Sm;n then R � � 2 SmC1;n and � � � 2 Sm;nC1.

(iii) The diagonal ¹.x; x/ W x 2 Rº is in S2;0, and similarly ¹.˛;˛/ 2 �2 W ˛ 2 �º 2S0;2.

(iv) If � 2 Sm;n then pr.�/ 2 Sm�1;n and pr0.�/ 2 Sm;n�1, where pr W Rm � �n !
Rm�1 � �n denotes the projection forgetting the last R factor and similarly pr0 W
Rm � �n ! Rm � �n�1 denotes the projection omitting the last � factor.

Definition 3.2. We say that a structure .Sm;n/m;n�0 on .R; �/ is tame if

� C; � W R2 ! R are definable, i.e. their graphs are in S3;0,

� j � j W R! � is definable, i.e. its graph ¹.x; jxj/ W x 2 Rº � R � � is in S1;1,

� S1;0 is the collection of subsets of R consisting of the Boolean combinations of disks
(open or closed).

Remark 3.3. (a) It follows from the axioms that in a tame structure .R; �/, the ordering
on � is also definable, i.e. the set ¹.�; �/ 2 �2 W � < �º is in S0;2.

(b) We also remark that S0;1 is the collection of finite unions of (open) intervals and
points in the totally ordered abelian group � . This follows from the fact that S1;0 is the
collection of subsets of R consisting of the Boolean combinations of (open or closed)
disks, and that j � j W R! � is definable.
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(c) The axioms for a tame structure on .R; �/ imply also that the ordered abelian
group �� is divisible.

Remark 3.4. Although we have not explicitly assumed in this section that K is alge-
braically closed, in most cases of interest (see Lemma 3.5 below for the precise condi-
tions), a tame structure on .R;�/ can only exist whenK is algebraically closed. However,
the assumption that K be algebraically closed is not needed to carry out the proofs of this
section, and so we defer making this assumption to the next section.

Lemma 3.5. Suppose .R; �/ admits a tame structure. Then:

(a) The multiplicative groupK� is divisible. In particular, the multiplicative group of the
residue field, k�, is divisible. Therefore, if jkj ¤ 2, then k cannot be finite.

(b) If K has positive characteristic p, then K does not admit any Artin–Schreier exten-
sions. In other words, the map  W K ! K sending x 2 K to xp � x is surjective.

(c) The residue field k is a minimal field .in the sense that every subset of k, definable
with parameters in the first-order language of rings, is either finite or cofinite in k/.
Thus, if jkj ¤ 2 and k has positive characteristic, then k is algebraically closed.

(d) If jkj ¤ 2 and k has positive characteristic, then K is algebraically closed. If k has
characteristic zero, and if the conjecture of Podewski [37] .that every minimal field of
characteristic zero is algebraically closed/ holds, then K is algebraically closed.

Proof. (a) For n � 1, let Pn WD ¹yn W y 2 Rº be the set of nth powers in R. To show
that K� is divisible, it suffices to prove that for every x 2 R with 0 < jxj < 1 and for
every n � 1, we have x 2 Pn. Being definable in R in any tame structure, Pn is a finite
Boolean combination of (open or closed) disks. On the other hand, Pn contains elements
arbitrary close to 0, and thus there is an � > 0 such that D.0; �/ � Pn. Given any x in R
with 0 < jxj < 1, pick a sufficiently large number D, coprime to n, such that jxDj < �.
Then there is a y 2 R such that yn D xD . LetE be an integer such thatD �E � 1mod n.
Suppose D �E D 1Cmn for some m 2 Z. Then x D .yE=xm/n. Thus, x 2 Pn.

(b) Suppose now that char.K/D p > 0. Then from (a) it follows thatK� is (uniquely)
p-divisible. The map  W K ! K sending x to xp � x has definable image, and contains
elements of arbitrarily small absolute value and of arbitrarily large absolute value. Thus,
there is an � > 0 such that for x 2 K if jxj < � or jxj > ��1, then x 2  .K/. Now,
given any x 2 K with jxj ¤ 1, we see from the above that for all sufficiently large m,
xp

m
2  .K/ and thus by the p-divisibility of K� we also have x 2  .K/. If jxj D 1,

we note that jx � .$�p �$�1/j D j$�pj > 1, and therefore x � .$�p �$�1/ D
x �  .$�1/ 2  .K/ and so x 2  .K/ as well.

(c) Any tame structure on .R;�/ induces naturally a first-order structure (in the sense
of [42, Chapter 1, (2.1)]) on k. Namely, we declare a subset of kn to be definable if and
only if its preimage under Rn� kn is definable in Rn in the given tame structure. It is
easy to check that this indeed defines a structure on k. It follows that the field operations
C; � on k are definable with respect to this structure. Furthermore, since in any tame struc-
ture the definable sets of R are precisely the Boolean combinations of (open or closed)
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disks, it follows that the definable subsets of k are necessarily just the subsets of k that
are either finite or have finite complement. In other words, this structure on k makes k a
minimal field. It is well-known that every infinite, minimal field of positive characteristic
is algebraically closed (see [43]). This fact in conjunction with (b) implies that if jkj ¤ 2
and if k has positive characteristic then k is algebraically closed.

(d) This follows from (a)–(c) above, combined with the divisibility of �� and [27,
Lemma 7].

Remark 3.6 (The relation to C -minimal structures). We point out that the notion of a
tame structure is closely related to the definition of a C -minimal field, which is a special
case of the notion of a C -minimal structure. The theory of C -minimal structures was
introduced by Macpherson and Steinhorn [28] (building upon some work by Adeleke–
Neumann [1]), and was further developed by Haskell and Macpherson [14]. A C -relation
is a ternary relation C.x; y; z/ satisfying certain axioms. We refer the reader to the above
papers for the precise definitions. From our point of view, the central examples of C -
minimal structures arise in the context of algebraically closed, non-trivially valued fields.
Given such a field K with a (multiplicatively written) non-trivial valuation j � j W K !
�� [ ¹0º into a totally ordered abelian group .��; 1; �; </, there is a natural C -relation
that one may define:

C.x; y; z/ ” jx � yj > jy � zj:

For an expansion .K; C; 0; 1;C;�; �; : : :/ of the C -structure .K; C / to be C -minimal it
is necessary then that the definable subsets of K (in the expanded language) are precisely
the class of Boolean combinations of disks. However, it appears that this might not be
sufficient to claim that the structure is C -minimal, since for C -minimality one requires
the same property to hold for every structure elementarily equivalent to .K; C; : : :/. The
expansion of an algebraically closed non-trivially valued field with function symbols for
elements of its strictly convergent power series rings (or more generally separated power
series rings) is in fact a C -minimal expansion of the valued field. Thus, the rigid suban-
alytic sets discussed above are in fact examples of C -minimal structures. In the general
context of C -minimal structures, Haskell–Macpherson [14, Section 4] also prove some of
the dimension theory results that we prove for tame structures in Section 3.1.2. Neverthe-
less, we have retained the definition of a tame structure and the following results in their
dimension theory to keep the exposition self-contained. Secondly, the proofs we provide
in this context are geometric and fairly elementary. Lastly, it appears that the invariance of
dimensions under definable bijections is not known in the general setting of C -minimal
structures or even for general C -minimal fields (see the discussion in [14, p. 159]). On
the other hand, the invariance of dimensions is well-known in several other frameworks
of tame geometry on Henselian valued fields, such as v-minimality and b-minimality (see
for instance [10]).

For the remainder of this section, we fix a tame structure on .R; �/, and definability
of sets and maps will be with reference to this fixed structure.
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Example 3.7 (Rigid subanalytic sets). Suppose K is algebraically closed. For such a
K, the central example of a tame structure is those of the rigid subanalytic subsets of
Lipshitz [24] and the H -subanalytic sets defined in [24]. Indeed, it is proved in [21] that
the subanalytic subsets of R are exactly the Boolean combinations of disks.

It will also be convenient to talk about definable subsets ofKn. We make the following
definition:

Definition 3.8. We say that a subset � � Kn is definable if the following equivalent
conditions are satisfied:

(i) ��1n .�/ � RnC1 is definable, where

�n W R
nC1
n ¹0º ! Pn.R/ D Pn.K/; .z0; z1; : : : ; zn/ 7! Œz0 W z1 W : : : W zn�:

We view Kn � Pn.K/ via the map .z0; z1; : : : ; zn�1/ 7! Œz0 W z1 W : : : W zn�1 W 1�.

(ii) For every map � W ¹1; : : : ; nº ! ¹˙1º the set

T� WD ¹.˛1; : : : ; ˛n/ 2 R
n
W ˛r ¤ 0 if �.r/ D �1;

and .˛�.1/1 ; : : : ; ˛
�.i/
i ; : : : ; ˛�.n/n / 2 �º

is a definable subset of Rn.

It follows that the collection of definable subsets ofKn is a Boolean algebra of subsets,
closed under projections, and moreover forms a structure on K in the sense of [42, Chap-
ter 1, (2.1)].

Lemma 3.9 (Basic properties of definable sets and functions). (i) A polynomial map
� W Kn ! Km is definable .i.e. its graph is a definable subset of KnCm/. In par-
ticular, zero sets of polynomials with K-coefficients are definable subsets of Kn.

(ii) For definable functions f; g W Kn! K, the set ¹z 2 Kn W jf .z/j � jg.z/jº is a defin-
able subset of Kn.

(iii) For a definable function f W S ! K on a definable subset S � Km, the set jf .S/j
� � is a finite union of open intervals and points.

(iv) Suppose f W Kn ! K is a definable function that is given by a convergent power
series f .z1; : : : ; zn/ D

P
i�0 ai .z1; : : : ; zn�1/z

i
n. Then the functions

ai W K
n�1
! K; .z1; : : : ; zn�1/ 7! ai .z1; : : : ; zn�1/;

are also definable.

Proof. All of these facts follow from the definition of a tame structure. We note in par-
ticular that C; � W K2 ! K and j � j W K ! � are definable, and that subsets defined by
a first-order formula involving definable sets and definable functions must themselves be
definable.
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Definition 3.10. Let V=K be a finite-type reduced scheme over K. We say that a subset
S � V.K/ is definable if there exists a finite affine open cover V D

S
i Ui D

S
i Spec.Ai /

and closed embeddings Ui .K/
ˇi
,�!Kni (arising from a presentation of Ai as a quotient of

KŒt1; : : : ; tni �) such that for all i , ˇi .S \ Ui .K// is definable.

Remark 3.11. We note that if S � V.K/ is definable, then for every finite affine open
cover Ui of V and for any choice of presentations ˇi WKŒt1; : : : ; tni ��O.Ui /, the subset
ˇi .S \ Ui .K// � K

ni is definable.

3.1.2. Dimension theory of tame structures. Parallel to the notion of definable dimension
in o-minimality, in this section, we shall develop the basic dimension theory in the con-
text of tame structures. In particular, we prove the so-called ‘Theorem of the Boundary’
(Theorem 3.21), which will be an important input in the proof of the definable Chow
theorem.

We remark that in the context of the H -subanalytic sets of [24], the foundational
dimension theory results that we need have been proved in [22] and in the Ph.D. thesis of
Florent Martin [29].

For this section, we shall retain the notations and conventions introduced in the pre-
vious section. We note that our field K is assumed to be second-countable. Throughout
this section, we fix a tame structure on .R; �/ and definability will be with regards to the
fixed structure.

We recall the following definition from [22, Definition 2.1]:

Definition 3.12. (a) For any subset X � Km, we define its dimension, denoted dim.X/,
as the largest non-negative integer d � m such that there exists a collection of d
coordinates I � ¹1; : : : ; mº (with jI j D d ) such that if prI W K

m ! Kd denotes
the projection to these coordinates, the image prI .X/ of X is a subset of Kd with
non-empty interior.

(b) For a subset X � Km and a point x 2 X , the local dimension of X at x, denoted
dimx.X/, is defined by

dimx.X/ WD min ¹dim.U \X/ W U � Km is an open subset containing xº:

Lemma 3.13. If X � Rm is definable, then one of X or its complement Xc contains a
non-empty open disk of Rm.

Proof. We induct on m. For m D 0; 1 this is clear. Let m � 2 and suppose X � Rm is
definable. Consider the projection to the first coordinate pr W Rm ! R. For a point s 2 R
and a set Y � Rm, we denote by Ys � Rm�1 the set pr�1.s/ \ Y D .¹sº � Rm�1/ \ Y
viewed as a subset of Rm�1. Consider the sets

S1 WD ¹s 2 R W Xs contains a non-empty disk of Rm�1º;

S2 WD ¹s 2 R W .X
c/s contains a non-empty disk of Rm�1º:
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Both are definable. Also, for every fixed s 2 R, Rm�1 D Xs [ .Xc/s . Thus, by the induc-
tive hypothesis, for every s one of Xs or Xcs must contain a non-empty disk of Rm�1, i.e.
R D S1 [ S2. By the m D 1 case, one of S1 or S2 contains a non-empty disk. Replac-
ing X by Xc if necessary, we may assume without loss of generality that S1 contains
a non-empty open one-dimensional disk D � S1 � R. Recall that R is assumed to be
second-countable. Let ¹Di � Rm�1 W i � 1º be a countable collection of non-empty open
disks in Rm�1, forming a basis of the metric topology of Rm�1. For each i define

Ti WD ¹s 2 D W Xs � Diº:

We have
S
i Ti DD�R. Since definable subsets ofR are Boolean combinations of disks,

either Ti is finite or Ti has non-empty interior. Being complete, K is uncountable and
hence there is some i such that Ti contains a non-empty open disk of R, say T1 contains a
non-empty open diskD0. ThenD0 �D1 � X , i.e. X contains anm-dimensional disk.

Corollary 3.14. For a definable set X � Rm, we have

int.X/ D ; ” int.cl.X// D ;:

Proof. Suppose int.X/D ;, but the closure cl.X/ has non-empty interior. Let xD � cl.X/
be a closed disk in Rm, with positive radius. Then xD is definably homeomorphic to Rm

(by scaling the coordinates). So we may apply Lemma 3.13 to definable subsets of xD.
In particular, since X \ xD has empty interior, by Lemma 3.13, Xc \ xD contains a non-
empty open disk, i.e. cl.X/ nX has non-empty interior, which is impossible.

Corollary 3.15. (1) Suppose
S1
iD1Xi DR

m for a countable collection of definable sub-
sets Xi . Then there is some i � 1 such that int.Xi / ¤ ;.

(2) For a countable collection ¹Xiºi�1 of definable subsets of Rm, we have

dim
�[
i

Xi

�
D max dim.Xi /:

Proof. Follows from the Baire category theorem and Corollary 3.14.

Corollary 3.16. For a definable set X � Rm, we have dim.X/ D dim.cl.X//.

Proof. Follows from Corollary 3.14. To elaborate, we only need to show the inequality
dim.cl.X//� dim.X/. For a subset I � ¹1; : : : ;mºwith jI j D d , if we let prI WR

m!Rd

denote the projection to the coordinates corresponding to the coordinates in the subset I ,
we have

int.prI .cl.X/// ¤ ; H) int.cl.prI .X/// ¤ ; H) int.prI .X// ¤ ;;

where the second implication is a consequence of Corollary 3.14 and the first follows
from the fact that prI is continuous and therefore prI .cl.X// � cl.prI .X//. The above
chain of implications proves the sought-after inequality.
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Lemma 3.17. Let f W Rm ,! Rn be an injective definable map. Then

dim.f .Rm// � m:

Proof. We induct on m. If m D 1, then since f .R1/ is infinite, there must necessarily be
some coordinate projection pr W Rn! R such that the image pr.f .R1// is infinite. By the
tameness axiom, infinite definable sets ofR contain non-empty disks. So dim.f .R//� 1.

Now suppose m � 2. For any y 2 R, denote by Ly the .m � 1/-dimensional line
Rm�1 � ¹yº. By the inductive hypothesis, dim.f .Ly// � m� 1. So there exists a choice
of m � 1 coordinates (depending on y) of Rn such that the projection of f .Ly/ to those
coordinates has non-empty interior. For each choice of I D .i.1/; : : : ; i.m � 1// with
1 � i.1/ < � � � < i.m � 1/ � n, let �I W Rn ! Rm�1 denote the corresponding pro-
jection. Let TI WD ¹y 2 R W �I .f .Ly// contains a non-empty diskº. Then

S
I TI D R.

Hence, there is a choice of I such that TI contains a closed disk, say D, of positive
radius. Replacing Rm by Rm�1 �D (and rearranging coordinates if necessary) we may
assume that for all y 2 R, �.f .Ly// contains a non-empty open disk of Rm�1 where
� W Rn ! Rm�1 is the projection to the first m � 1 coordinates. Enumerate a countable
basis ¹Bi W i � 1º of non-empty open disks ofRm�1. Letƒi WD ¹y 2R W �.f .Ly//�Biº.
Then ƒi is definable in R and

S
i�1 ƒi D R. So there is some i such that ƒi con-

tains a closed disk, say D0, of positive radius. Again replacing Rm by Rm�1 � D0 we
may assume that for all y 2 R; �.f .Ly// � B0 where B0 � Rm�1 is some fixed non-
empty open disk of Rm�1. Let X WD f .Rm/ � Rn. For every b 2 B0 and every y 2 R,
we have Xb \ f .Ly/ ¤ ;. Thus for every b 2 B0, the set Xb is infinite and so some
projection of Xb to the remaining n � .m � 1/-coordinates must be infinite and hence
contains a non-empty open one-dimensional disk. For each of these remaining coor-
dinates j 2 ¹m; : : : ; nº, let Sj WD ¹b 2 B0 W prj .Xb/ contains a non-empty open diskº.
Since

S
j Sj D B0, by Corollary 3.15 some Sj contains a non-empty open disk. Shrink-

ing B0 further to this smaller disk and rearranging the coordinates if necessary, we may
assume that for all b 2 B0; prm.Xb/ contains a non-empty open disk of R. Enumerate
the disks of R, i.e. let ¹Ci W i � 1º be a countable basis of non-empty open disks of R.
Let �i WD ¹b 2 B0 W prm.Xb/ � Ciº. Then �i are definable and

S
i �i D B0. By Corol-

lary 3.15, we have an i such that �i contains a non-empty open disk, say B 0 � �i . Then
pr.1;:::;m/.X/ � B

0 � Ci , and therefore dim.f .Rm// D dim.X/ � m.

Lemma 3.18. LetX � Rm be definable. Let d �m, and let pr.1;:::;d/ W R
m! Rd denote

the projection to the first d coordinates. Suppose that pr.1;:::;d/.X/ D B is a closed
polydisc in Rd of positive polyradius such that the restriction of the projection to X ,
pr.1;:::;d/ W X ! B , is a quasi-finite surjection, with all the fibers having the same size of
sayN elements. Then there exists a smaller closed polydiskB 0 �B of positive polyradius
and N definable maps si W B 0 ! Rm�d , 1 � i � N , such that X \ .B 0 � Rm�d / is the
disjoint union of the graphs of the si ; 1 � i � N .

Proof. We induct on N . If N D 1, then the projection pr.1;:::;d/ W X ! B is a definable
bijection and the lemma is clear in this case, sinceX is evidently the graph of the definable
inverse of this bijection, composed with the projection to the last m � d coordinates.
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Suppose N � 2. For every m � 1, define

Dm WD ¹b 2 B W for all x1 ¤ x2 2 Xb; kx1 � x2k � j$m
jº:

Note that
S
m�1Dm D B , and thus by Corollary 3.15 for an m0; Dm0 has non-empty

interior. Replacing B with a smaller disk in this interior, and shrinking X too, we assume
that for all b 2 B , and for all x1 ¤ x2 2 Xb , kx1 � x2k � j$m0 j. Now, cover Rm�d by
countably many non-empty open disks ¹�j ºj�1 of polyradius strictly less than j$m0 j.
Since

S
j�1 pr.1;:::;d/..B � �j / \ X/ D B , by Corollary 3.15, for some j � 1, the set

pr.1;:::;d/..B ��j /\X/ has non-empty interior inRd . We replace B by a smaller closed
disk of positive radius contained in this interior. Thus, now pr.1;:::;d/ W .B ��j /\X!B

is a bijection (since distinct points in the fiber of this projection are at least j$m0 j apart
in some coordinate, while the polydisc �j has polyradius < j$m0 j by choice.) Thus
the inverse of this bijection provides a definable section s W B ,! X . And letting s1 WD
pr.dC1;:::;m/ ı s, we see that the graph of s1 is exactly .B � �j / \ X . Let Y WD X \

.B � .Rm�d n �j //. Then pr.1;:::;d/ W Y ! B is a quasi-finite surjection with fibers of
constant cardinality N � 1. We now apply the induction hypothesis to pr.1;:::;d/ W Y ! B

to finish the proof.

Proposition 3.19 (Invariance of dimension under definable bijections). Let X � Rm and
Y � Rn be definable sets and f W X ! Y a definable bijection. Then dim.X/D dim.Y /.

Proof. It suffices to prove that dim.X/ � dim.Y /, since the inverse f �1 W Y ! X is
also definable. Let d D dim.X/. Suppose the projection of X to the first d coordinates
contains a d -dimensional non-empty open disk B , i.e. pr.1;:::;d/.X/� B . ReplacingX by
X \ .B �Rm�d / we may assume that pr.1;:::;d/.X/ D B .

Claim. There is a non-empty open disk B 0 � B such that the projection map pr.1;:::;d/ W
X ! B is quasi-finite over B 0 with constant fiber cardinality N .

For each j 2 ¹d C 1; : : : ; mº, let

Tj WD ¹b 2 B W prj .Xb/ contains a non-empty open diskº

and for each natural number k � 1, let Fk WD ¹b 2 B W jXbj D kº. Then

B D

1[
kD1

Fk [

m[
jDdC1

Tj :

If for any k � 1; Fk has non-empty interior, the Claim would be proved. So suppose
each Fk has empty interior; then by Corollary 3.15 there is some j such that Tj has non-
empty interior, say TdC1 contains a non-empty open disk. Replacing B by this smaller
disk (and modifyingX appropriately), we may assume that TdC1DB . Let ¹Bi W i � 1º be
an enumeration of a countable basis of non-empty open disks ofR, and let Ki WD ¹b 2B W

prdC1.Xb/� Biº. Then
S
i Ki D B and so by Corollary 3.15 there is an i0 such that Ki0

contains a non-empty open disk D. Replacing B by D we assume that prdC1.Xb/ � Bi0



A. Oswal 1430

for all b 2 B . But then pr.1;:::;dC1/.X/ � B � Bi0 , contradicting dim.X/ D d , and thus
proving the claim.

Replacing B with B 0 obtained from the above claim and replacing X by X \

.B 0 �Rm�d / we assume pr.1;:::;d/ W X ! B is quasi-finite with constant fiber cardinality
N � 1. By Lemma 3.18 (after possibly shrinking B further) we can find a definable sec-
tion s W B ,! X . By Lemma 3.17 now, dim.f .s.B/// � d , and as Y � f .s.B// we get
dim.Y / � d as needed.

Lemma 3.20. LetD � Rd be a closed polydisk of positive polyradius. Let s WD! R be
a definable function. Then given any � > 0, there exists a smaller closed polydiskD0 �D
of positive polyradius such that s.D0/ is contained in a disk of diameter < �, i.e. for all
x; y 2 D0; js.x/ � s.y/j < �.

Proof. Cover R by countably many non-empty open disks ¹Biºi�1 each of diameter < �.
Then D D

S
i s
�1.Bi /. By Corollary 3.15, there is an i � 1 such that s�1.Bi / has non-

empty interior inRd . For such an i , takeD0 � s�1.Bi / to be a closed polydisk of positive
polyradius.

Theorem 3.21 (Theorem of the Boundary). Let X � Rm be a definable set. Then

dim.Fr.X// < dim.X/:

Remark 3.22. We remark that for a subset X � Rm, its boundary is often defined as
bdRm.X/ WD clRm.X/ n intRm.X/. With this terminology, it follows from Corollary 3.16
that dim.bdRm.X// � dim.X/. Indeed, being a subset of clRm.X/, bdRm.X/ has dimen-
sion at most dim.clRm.X//D dim.X/. We also note however that depending on the setX ,
the inequality might or might not be strict. For instance, if X � R2 is the diagonal in R2,
its boundary in R2 is X itself; on the other hand, the boundary (in R) of the set R itself
is ;.

Proof of Theorem 3.21. Let d D dim.X/. By Corollary 3.16, we first note that
dim.Fr.X// � dim.cl.X// D dim.X/ D d . Suppose for the sake of contradiction that
dim.Fr.X// D d , and that the projection of Fr.X/ to the first d coordinates has non-
empty interior. Thus if � W Rm ! Rd denotes the projection to the first d coordinates,
there exists a closed polydisk D of positive polyradius in Rd such that �.Fr.X// � D.

So D � �.Fr.X// � �.cl.X// � cl.�.X//, and hence in particular clD.�.X/ \D/
D D. By Corollary 3.16, �.X/\D contains a smaller closed disk of positive radius, say
D0 � �.X/ \D � D. Replacing D with D0 and X with X \ .D0 � Rm�d /, we may
assume that D D �.X/ D �.Fr.X//.

We note that in the argument that follows, we shall often replaceD with a smaller disk.
This is justified, because if D0 � D is a smaller closed disk of positive radius, replacing
D by D0 and X by X \ .D0 � Rm�d / does not change the property that D D �.X/ D
�.Fr.X//.

Continuing, for each j 2 ¹d C 1; : : : ; mº we let

ƒj WD ¹b 2 D W �j .Xb/ has non-empty interiorº:
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If for some j , ƒj has non-empty interior, then again using the same trick of enumerating
a countable basis of disks in R, and following the same line of argument, we would con-
clude that �.1;:::;d;j /.X/ contains a .d C 1/-dimensional disk. This is not possible since
dim.X/D d . Therefore, for each j 2 ¹d C 1; : : : ;mº, we must have int.ƒj /D ;. Hence,
by Corollary 3.15,D n

S
j ƒj contains a closed disk of positive polyradius. ReplacingD

with this smaller closed disk, we may assume that � W X !D is a quasi-finite surjection.
Moreover, using the argument in the proof of the claim in the proof of Proposition 3.19,
we may assume the fibers of � W X ! D have constant finite cardinality N . Running the
same argument for Fr.X/ instead of X and shrinkingD if necessary, we also assume that
� W Fr.X/! D is quasi-finite surjection with fibers of constant size, say M .

Further shrinkingD to a smaller closed disk, we may assume by Lemma 3.18 thatX is
the disjoint union of graphs of N definable functions si WD! Rm�d . If we let Ti denote
the graph of si , then since X D

SN
iD1 Ti , we have Fr.X/ �

S
i Fr.Ti /. Furthermore,

sinceD D �.Fr.X//D
S
i �.Fr.Ti //, for some i the set �.Fr.Ti //must have non-empty

interior. We may then replace D by a smaller disk in this interior, and X by Ti , and
assume that X is the graph of a definable function s W D ! Rm�d . Furthermore, running
the argument in the above paragraphs again, we may ensure that the property that � W
Fr.X/! D is a quasi-finite surjection of constant fiber cardinality still holds. All in all,
we have reduced the proof to the following situation:

X is the graph of a definable function s W D ! Rm�d such that �.Fr.X// D D D

�.X/ and � W Fr.X/! D is a quasi-finite surjection with constant fiber size M .
Applying Lemma 3.18 to Fr.X/, we assume that Fr.X/ is the disjoint union of graphs

ofM definable functions gj WD! Rm�d ; 1 � j �M . Let Yj denote the graph of gj , so
that Fr.X/ D

SM
jD1 Yj . We note that X \ Yj D ; for each j , or in other words for each

j and for every b 2 D, ks.b/ � gj .b/k ¤ 0. For every m � 1, define Em WD ¹b 2 D W
ks.b/� gj .b/k> j$

mj for each j º. We have
S
m�1EmDD, and thus by Corollary 3.15

some Em has non-empty interior. Replacing D by a smaller closed disk contained in this
interior, we may assume that there is some m0 large enough, such that for all 1 � j �M
and for all b 2 D, ks.b/ � gj .b/k > j$m0 j. Applying Lemma 3.20, and shrinking D to
a smaller disk, we may assume that for all x; y 2 D, ks.x/ � s.y/k < j$m0 j.

Now choose a b 2D, and consider y D .b;g1.b// 2 Y1. Since y 2 Fr.X/, in particular
y is in the closure ofX , and thus there must exist some b0 2D such that ks.b0/� g1.b/k<
j$m0 j. However, by our choice ofm0, ks.b/� g1.b/k> j$m0 j. By the non-archimedean
triangle inequality, we therefore get ks.b0/� s.b/k> j$m0 j, contradicting the conclusion
of the previous paragraph.

Remark 3.23. Note that in all our proofs we have made extensive use of the standing
assumption that K is second-countable. However, when the tame structure under consid-
eration is that of the H -subanalytic sets, this assumption can be removed, exploiting the
model completeness and uniform quantifier-elimination results of [24]. See for example
the argument used in the proof of [22, Lemma 2.3]. Running the argument given there with
appropriate modifications enables us to reduce the proof of the Theorem of the Boundary
for H -subanalytic sets to the case where K is second-countable.



A. Oswal 1432

3.2. Miscellaneous lemmas

In this subsection we collect a few auxiliary results relating to the dimension theory
of rigid analytic spaces. These results will be used in the following sections. We prove
in Lemma 3.26 that the usual notion of dimension in rigid geometry defined via Krull
dimensions of associated rings of analytic functions agrees with the notion of definable
dimension defined above via coordinate projections. In Lemma 3.28, we show that for
any point x of a reduced, equidimensional rigid variety X , every minimal prime ideal of
the local ring OX;x has the same coheight. This result is used in the course of proving the
definability of the étale locus of a certain finite map. While the results of this section are
fairly standard, we provide their proofs for completeness.

Definition 3.24. If X is a rigid variety overK, we define its dimension, denoted dim.X/,
by

dim.X/ WD max
x2X

dim.OX;x/:

Lemma 3.25. Let Y D Sp.A/ be an affinoid space over K. Let ¹Yiº1�i�m denote the
finitely many irreducible components of Y . Then

(1) dim.Y / D dim.A/,

(2) for any point y 2 Y , dim.OY;y/ D max ¹dim.Yj / W y 2 Yj º.

Proof. These facts are rather standard. Due to lack of an explicit reference, we provide a
proof.

(1) For a point y 2 Y corresponding to m 2 MaxSpec.A/, we have yAm D
yOY;y [8,

Section 7.3.2, Proposition 3]. Since the Krull dimension of a Noetherian local ring is
preserved under completion (see [40, Tag 07NV]), we get

dim.A/ D max
m2MaxSpec.A/

dim.Am/ D max
m2MaxSpec.A/

dim. yAm/

D max
y2Y

dim. yOY;y/ D max
y2Y

dim.OY;y/ D dim.Y /:

(2) From the argument above, if m 2 MaxSpec.A/ corresponds to y, we know
that dim.OY;y/ D dim.Am/. If the irreducible component Yi corresponds to the mini-
mal prime pi � A, then we note that dim.Am/ D max ¹dim.Am=pjAm/ W pj � mº D

max ¹dim..A=pj /m/ W pj � mº. Now, A=pj is an affinoid algebra that is an inte-
gral domain, and this implies that dim.A=pj /m D dim.A=pj / – see Lemma 3.27 (1)
below. Thus, dim.OY;y/ D dim.Am/ D max ¹dim.A=pj / W pj � mº D max ¹dim.Yj / W
y 2 Yj º.

Lemma 3.26. Suppose Y D Sp.A/ is a K-affinoid space. Suppose � W Tn.K/� A is a
surjective homomorphism of K-algebras. Via � we may view i W Y ,! Rn as a subset of
the n-dimensional unit ball Rn. Then:

(1) The dimension of i.Y / as a subset of Rn .in the sense of Definition 3.12/ is the same
as the dimension of Y as a rigid analytic space.

https://stacks.math.columbia.edu/tag/07NV
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(2) For a point y 2 Y , the local dimension dimi.y/ i.Y / .in the sense of Definition 3.12/
is equal to dim.OY;y/.

(3) Suppose X is a rigid space over K and i W X ,! An;an
K a closed immersion. Then

dim.X/ equals the dimension of i.X/ viewed as a subset of Kn .as in Defini-
tion 3.12/. For a point x 2X , the local dimension dimi.x/ i.X/ .as in Definition 3.12/
is equal to dim.OX;x/.

Proof. (1) This is a special case of [22, Lemma 4.2]. Alternatively, we may reduce to
the case that K is second-countable (see Remark 3.23). Then, using Noether’s normal-
ization for affinoid algebras, if d D dim.A/, we have a quasi-finite subanalytic surjection
i.Y /� Rd . And then we may use an argument very similar to that of Proposition 3.19.
We omit the details.

(2) By definition, we have

dimi.y/ i.Y / D min ¹dim.U \ i.Y // W U � Rn is open with i.y/ 2 U º:

We may take this minimum instead over all closed polydisks xD of Rn of positive polyra-
dius containing i.y/, i.e.

dimi.y/ i.Y / D min
®
dim

�
xD.i.y/; r/ \ i.Y /

�
W r > 0

¯
:

Since i�1.xD.i.y/; r// is an affinoid subdomain of Y , from (1) we have

dim
�
xD.i.y/; r/ \ i.Y /

�
D dim

�
i�1.xD.i.y/; r//

�
;

where the dimension on the right side is the dimension of the affinoid subdomain
i�1.xD.i.y/; r// as an analytic space. Furthermore, note that the affinoid subdomains of
the form i�1.xD.i.y/; r// are cofinal in the collection of all affinoid subdomains of Y
containing y (use for example [11, Lemma 1.1.4]). Therefore,

dimi.y/ i.Y / D min ¹dim.W / W W � Y is an affinoid subdomain containing yº:

The right-hand side is indeed equal to dim.OY;y/ (follows from [13, Section 1.17] and
Lemma 3.25 (2)).

(3) follows immediately from (1) and (2).

Lemma 3.27. (1) Suppose A is a K-affinoid algebra that is an integral domain. Then
every maximal ideal of A has the same height.

(2) Suppose Y is an irreducible rigid analytic variety. Then Y is equidimensional, i.e. for
all y 2 Y , dim.OY;y/ D dim.Y /.

Proof. For (1), we use the Noether normalization for affinoid algebras, the Going-Down
theorem [40, Tag 00H8] and [7, Chapter 2, Proposition 17]. To elaborate, let m � A be
a maximal ideal of A and suppose that the Krull dimension dim.A/ is equal to d . The
height of m is evidently at most d . We show below that the height of m is at least d ,
thereby proving (1). By the Noether normalization for affinoid algebras [8, Corollary 2,

https://stacks.math.columbia.edu/tag/00H8
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p. 228], we may find an injective homomorphism ofK-algebras i W Td .K/ ,!AmakingA
a finite module over Td .K/. The pullback of m, namely i�1.m/ DW n, is a maximal ideal
of Td .K/. By [7, Chapter 2, Proposition 17], the height of n is d . Therefore, there is a
chain of prime ideals n D qd © qd�1 © � � � © q0 D .0/, of length d .

Since Td .K/ is normal (see [8, Section 5.2.6, Theorem 2, p. 208]) and A is an integral
domain, the Going-Down property [40, Tag 00H8] holds for the injection i . Thus, the
chain of prime ideals n D qd © qd�1 © � � � © q0 D .0/ can be lifted to a chain m D

pd © pd�1 © � � � © p0 D .0/. This proves that the height of m is at least d .
For (2), we refer the reader to the paragraph preceding [11, Lemma 2.2.3].

Lemma 3.28. LetX be a reduced equidimensional rigid space overK, i.e. dim.OX;x/D
dim.X/ for all x 2 X . Then for every x 2 X and every minimal prime ideal q of OX;x we
have dim.OX;x=q/ D dim.X/.

Proof. Evidently for every x 2 X , dim.OX;x=q/ � dim.OX;x/ D dim.X/. Suppose the
lemma were false. Then for some x, we would have

dim.OX;x=q/ < dim.X/:

Since OX;x is Noetherian [8, Section 7.3.2 Proposition 7], q is finitely generated, say
q D .h1; : : : ; hm/ for some hi 2 OX;x . We may choose an open affinoid domain Sp.B/
in X containing x such that the hi are (images of elements) in B . Let n 2 MaxSpec.B/
be the maximal ideal corresponding to the point x, and let J WD .h1; : : : ; hm/B be the
ideal in B generated by the hi .

We claim first that JBn is a minimal prime ideal of Bn. To see this, note that since
Bn ,! OX;x is a faithfully flat map (as these local rings have the same completions), JBn

is the contraction of JOX;x D q (see [40, Tag 05CK]) and is therefore a prime ideal.
Moreover, since Bn ,! OX;x is faithfully flat, it has the Going-Down property [40, Tag
00HS]. Therefore, as q is a minimal prime ideal of OX;x , its contraction JBn must also
be minimal.

We have .Bn=JBn/yD yBn=J yBn D
yOX;x=q yOX;x D .OX;x=q/y. Hence,

dim.Bn=JBn/ D dim.OX;x=q/:

Now let p�B denote the contraction of JBn toB , so p is a minimal prime ofB contained
in n. Then dim.Bn=JBn/ D dim..B=pB/n/ D dim.B=pB/, where the last equality fol-
lows from the fact that since B=p is an affinoid algebra that is an integral domain, all its
maximal ideals have the same height (see Lemma 3.27).

Therefore, we have shown that dim.B=p/D dim.OX;x=q/ for a minimal prime p ofB .
And since we are assuming that dim.OX;x=q/ < dim.X/, this means that dim.B=p/ <
dim.X/. However, we can find a closed point n0 2MaxSpec.B/ containing p but not con-
taining any other minimal prime of B (this is possible since B is Jacobson and so closed
points are dense). If n0 corresponds to the point x0 2 X , we have dim.X/ > dim.B=p/ �
dim.Bn0/ D dim.OX;x0/. This contradicts the equidimensionality of X .

https://stacks.math.columbia.edu/tag/00H8
https://stacks.math.columbia.edu/tag/05CK
https://stacks.math.columbia.edu/tag/00HS
https://stacks.math.columbia.edu/tag/00HS
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4. The non-archimedean definable Chow theorem

The goal of this section is to prove a version of the definable Chow theorem in the non-
archimedean setting. Let K be as in the previous section. Namely, K is an algebraically
closed field, complete with respect to a non-trivial non-archimedean absolute value. More-
over, we assume that K is second-countable. The main goal of this section is to prove the
following result:

Theorem 4.1. Let X be a closed analytic subset of An;an
K . Suppose that for some tame

structure on K, X is definable as a subset of An.K/ D Kn. Then X is algebraic i.e. X is
the vanishing locus of a finite collection of polynomials in KŒt1; : : : ; tn�.

We outline the major steps of the proof below:

� Step 0: Our first step is to show that for a reduced variety X over K, a global analytic
function f 2 H 0.X an;OXan/ whose graph is definable must be algebraic. This is the
content of Theorem 4.6, which may be seen as a non-archimedean definable analogue
of Liouville’s theorem from complex analysis. The proof proceeds by a devissage argu-
ment:

� First, when X D AnK – Lemma 4.2.

� Second, when X is a smooth affine variety over K – Lemma 4.4, using Noether
normalization to reduce to the first case.

� And lastly, for a general reduced variety X – Theorem 4.6, using Lemma 4.5 to
reduce to the smooth case.

� Step 1: Now supposeX �An;an
K is as in the statement of Theorem 4.1. We shall induct

on dim.X/C n. By the Theorem of the Boundary, dim.Fr.X// < dim.X/ and so we
can find a point q 2 Pn.K/ n cl.X/.

� Step 2: The projection from q onto a hyperplane H � Kn not containing it, �jX W
X ! H, is finite. The image Y D �.X/ is an analytic subset of An�1;an

K , and therefore
algebraic by induction.

� Step 3: The étale locus U � Y of �jX W X ! Y is definable (thanks to Lemma 4.10),
and of smaller dimension, therefore algebraic.

� Step 4: The characteristic polynomial of the finite étale map

� W ��1.U an/! U an

has coefficients in H 0.U an/ that are definable. By Step 0, we shall then conclude
��1.U an/ � X is algebraic. The complement in X is of smaller dimension, and thus
algebraic by induction.

4.1. A non-archimedean definable Liouville theorem

Lemma 4.2. Let .X;OX / D An;an
K be the rigid n-dimensional affine plane over K and

let f 2 H 0.X;OX / be a global analytic function. Suppose f viewed as a function f W
Kn ! K is definable. Then f is a polynomial function.
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Proof. We prove this by induction on n.

Case n D 1: A function f 2 H 0.A1;an
K ;OA1;an

K

/ is given by a globally convergent power

series f .z/D
P
i�0 aiz

i . Thus, limi!1.p
ir � jai j/D 0 for every r � 0. For a given r � 0,

the number of zeroes of f .z/ on the disk ¹z 2K W jzj � prº is the number of zeroes (with
the same multiplicities) of gr .t/ WD f .p�r t / D

P
�0 aip

�ir t i in the unit disk jt j � 1,
which by Lemma 2.33 is at least �.gr /. Now given any i < j with ai ; aj ¤ 0, we note that
for r large enough, prj jaj j � pri jai j and thus �.gr / � j . Thus, if ai ¤ 0 for infinitely
many i , then f must have infinitely many zeroes. However, as f is definable, f �1.0/ is
a definable subset of K that is discrete, and must therefore be finite. Hence, it cannot be
the case that ai ¤ 0 for infinitely many i , i.e. f is a polynomial.

Proof for general n � 1: The global analytic function f 2 H 0.An;an
K / is again given by

a globally convergent power series on Kn. Thus, we write

f .z1; : : : ; zn/ D
X
i�0

ai .z1; : : : ; zn�1/z
i
n; where ai 2 H 0.An�1;an

K /:

Moreover, each ai .z1; : : : ; zn�1/ is also definable viewed as a function on Kn�1 (by
Lemma 3.9 (iv)). By induction, the ai .z1; : : : ; zn�1/ are polynomials in KŒz1; : : : ; zn�1�.
From the n D 1 case, for every � 2 Kn�1, the sequence ai .�/ must be eventually 0. In
other words,Kn�1D

S
j�0

T
i�j V.ai /, a countable union of closed subsets ofKn�1. By

the Baire category theorem, this is only possible if for some j � 0;Kn�1 D
T
i�j V.ai /,

i.e. ai D 0 for all i � j and hence f is a polynomial.

Lemma 4.3. Suppose that P.t1; : : : ; td / 2KŒt1; : : : ; td � is a non-zero element of the poly-
nomial ring in d variables with coefficients in K. Let A D KŒt1; : : : ; td �Œ1=P.t1; : : : ; td /�
be the localization of the polynomial ring at the multiplicative set of powers of
P.t1; : : : ; td /. Then there exist d elements z1; : : : ; zd 2 A that are algebraically inde-
pendent over K such that A is a finite free module over the subring KŒz1; : : : ; zd � and
furthermore such that A is generically étale over KŒz1; : : : ; zd �. That is, the fraction field
of A is a finite separable extension of K.z1; : : : ; zd /.

Proof. When the characteristic of K is zero, this is just a consequence of the usual
Noether normalization lemma applied to A, since in that case generic étaleness is auto-
matic. So we suppose that the characteristic of K is p > 0. The proof we give below
follows the lines of a standard proof of the Noether normalization lemma. We have a
presentation for A as A D KŒt1; : : : ; td ; y�=.P.t1; : : : ; td /y � 1/. Write P.t1; : : : ; td / DPn
jD0 Pj .t1; : : : ; td / where Pn ¤ 0 and each Pj is homogeneous of degree j .

We may replace P.t1; : : : ; td / with P.t1; : : : ; td /2 if necessary since this does not
change the ring A, and thus we may assume that p − .n C 1/. Choose an element
.c1; : : : ; cd /2K

d such thatPn.c1; : : : ; cd /¤ 0, which is possible sinceK is algebraically
closed. Let t 0i WD ti � ciy. Then in A we have

0 D P.t 01 C c1y; : : : ; t
0
d C cdy; y/ � y � 1

D Pn.c1; : : : ; cd /y
nC1
C .terms of lower order in y/:



A non-archimedean definable Chow theorem 1437

Thus y is integral over KŒt 01; : : : ; t
0
d
�. Furthermore, P.t 01 C c1y; : : : ; t

0
d
C cdy; y/ � y � 1

viewed as a polynomial in y with coefficients in K.t 01; : : : ; t
0
d
/ is the minimal polynomial

of y over K.t 01; : : : ; t
0
d
/. Since the degree of this polynomial in y is nC 1, which is not

divisible by p, we see that this minimal polynomial is separable and therefore the fraction
field Q.A/ D K.t 01; : : : ; t

0
d
/.y/ is separable over K.t 01; : : : ; t

0
d
/. It is also clear that A is

finite free over KŒt 01; : : : ; t
0
d
� of rank n.

Lemma 4.4. LetX be an integral smooth scheme of finite type overK and denote byX an

the rigid analytification of X . Let f 2 H 0.X an;OXan/ be a global rigid analytic function
on X an such that the graph of f viewed as a subset of X.K/ � K is definable. Then
f 2 H 0.X;OX /.

Proof. By passing to a finite affine cover ofX we may assumeX D Spec.A/ for a domain
A that is regular and a K-algebra of finite type. Choose a generically étale, Noether nor-
malization of A, i.e. a finite inclusion i W KŒt1; : : : ; ; td � ,! A such that the induced
injection K.t1; : : : ; td / ,! A ˝KŒt1;:::;td � K.t1; : : : ; td / is a finite étale map or equiva-
lently A ˝KŒt1;:::;td � K.t1; : : : ; td / is a finite separable field extension of K.t1; : : : ; td /.
(By [38, Theorem 3.2.1] this is also equivalent to the existence of a dense Zariski open
U � AdK such that i�1.U /! U is finite and étale.) If K has characteristic zero, generic
étaleness comes for free, and when K has positive characteristic, that there does exist
such a Noether normalization (up to further passing to a finite affine cover) follows for
instance from [15, Theorem 2].

Since A is regular (in particular Cohen–Macaulay), the inclusion i makes A into a
finite, flat (hence locally free) module over KŒt1; : : : ; td � by Hironaka’s Miracle Flatness
criterion [40, Tag 00R4]. There is a finite set of polynomials pi .t/; 1 � i � m, generat-
ing the unit ideal in KŒt� such that AŒp�1i � is free over KŒt�Œp�1i � for each i . Moreover,
by Lemma 4.3 we see that KŒt�Œp�1i � is finite, free and generically étale over another
pure polynomial subring in d variables (after an appropriate change of variables). Thus,
by replacing A with AŒp�1i � and modifying the Noether normalization map as above,
we are in the case where A is finite, free and generically étale over the polynomial ring
KŒt1; : : : ; td �, say of rank r .

Let a1; : : : ; ar 2A be a module basis overKŒt1; : : : ; td �. It follows thatH 0.X an;OXan/

is a free module over H 0.Ad;an/ again with basis a1; : : : ; ar . Thus, f can be written
uniquely as f D

Pr
kD1 ak � gk.t/ with gk.t/ 2 H 0.Ad;an/. To finish the proof, it suf-

fices to show that the gk.t/ have definable graphs in KdC1, since then we may appeal to
Lemma 4.2 to conclude that the gk are polynomials. By continuity, it in fact suffices to
show that gk.t/jU has a definable graph for some Zariski dense open subset U of Kd .
Since the Noether normalization map i W Spec.A/!AdK is generically étale, we may take
U � AdK to be a Zariski dense open subset such that the induced map i�1.U /! U is
finite and étale. For any point u 2 U , letting i�1.u/ D ¹P1; : : : ; Prº, we have r linear
equations in r variables:

f .Pj / D
X
1�k�r

ak.Pj /gk.u/

https://stacks.math.columbia.edu/tag/00R4
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for each j 2 ¹1; : : : ; rº. Over the open subset U , the matrix .ak.Pj //1�k;j�r is invertible
and thus we may write, for each k, the function gk.u/ as an explicit linear combination
of ¹f .Pj / W 1 � j � rº, with coefficients being rational functions in ak.Pj /. Note that
permuting the ordering of the Pj leaves the specific linear combination invariant. Thus,
the graph of the function gk W U ! K can be expressed as a first-order formula with
all its terms using definable functions and sets – indeed, we note that f is definable by
assumption, and that U;X.K/; i; aj , being algebraic, are also definable. We thus find that
the gk.u/ are definable over U , concluding the proof.

Lemma 4.5. Let A be a reduced finite-type K-algebra and let X D Spec.A/. Let ¹Xiº
denote the set of irreducible components of X , given their reduced induced structures.
Suppose f 2 H 0.X an;OXan/ is a global rigid analytic function such that for every i ,
there is a non-empty Zariski open subset Ui � Xi such that f jU an

i
2 H 0.Ui ;OUi /. Then

f 2 H 0.X;OX /.

Proof. By our assumptions on f , we may view f as an element of the total ring of
fractions Q.A/ of A (see [40, Tag 02C5] for the definition). Indeed, if �i 2 Xi denotes
the generic point of Xi , we have (using for instance [40, Tag 02LX]) that Q.A/ DQ
i OXi ;�i , where .Xi ;OXi / denotes the reduced induced subscheme structure onXi �X

and OXi ;�i denotes the generic stalk of OXi . Thus, the tuple .f jUi /i 2
Q
iH

0.Ui ;OUi /�Q
i OXi ;�i D Q.A/ defines an element of Q.A/.

To show that f 2A, it suffices to show that for every maximal ideal m ofA, the image
of f in Q.A/m (the localization of Q.A/ at the multiplicative set A nm) is also in Am.
Indeed, writing f D a=s with a; s 2 A and s a non-zerodivisor, if f … A, then a … sA. So
we may choose a maximal ideal m containing .sA W a/ D ¹b 2 A W ba 2 sAº. However,
for this choice of m; f … Am.

So let us now fix a maximal ideal m of A. We note thatQ.A/m is in fact the total ring
of fractionsQ.Am/ ofAm. We also note that since f 2H 0.X an;OXan/, we have f 2 yAm,
since yAm D

yOXan;m [11, Lemma 5.1.2 (2)]. For notational simplicity let B WD Am, L WD
Q.B/ and yL WDL˝B yB . We have inclusionsL� yL and yB � yL and f 2L\ yB . We must
show that f 2 B . Since B � yB is faithfully flat it suffices to show that f ˝ 1 D 1˝ f
in yB ˝B yB [40, Tag 023M]. Since f 2 L, the equality f ˝ 1D 1˝ f evidently holds in
yL˝L yL and we further note that yB ˝B yB injects into . yB ˝B yB/˝B L D yL˝L yL since
B injects into L and yB ˝B yB is B-flat. Hence f ˝ 1 D 1˝ f in yB ˝B yB , as was to be
shown.

Theorem 4.6 (A non-archimedean definable Liouville theorem). Let X be a reduced
scheme of finite type over K and denote by X an the rigid analytification of X . Let f 2
H 0.X an;OXan/ be a global rigid analytic function onX an whose graph viewed as a subset
of X.K/ �K is definable. Then f 2 H 0.X;OX /.

Proof. Again, by passing to a finite affine open cover we may assume that X is affine.
For each irreducible component Xi of X , let Ui � Xi be a dense open subset of Xi
that is smooth over K. The restriction f jU an

i
2 H 0.U an

i ;OU an
i
/ is definable and hence

https://stacks.math.columbia.edu/tag/02C5
https://stacks.math.columbia.edu/tag/02LX
https://stacks.math.columbia.edu/tag/023M
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by Lemma 4.4 we know that f jU an
i
2 H 0.Ui ;OUi /. From Lemma 4.5 we conclude that

f 2 H 0.X;OX /.

Remark 4.7. It is clear that reducedness of the underlying variety X is necessary in
the above Theorem 4.6 since the graph of a function on the underlying K-points does
not record the nilpotent structure. For example, take X D A1K Œ�� D Spec.KŒt; ��=.�2//.
Choose any function g 2 H 0.X an/ which is not in H 0.X/ and take f D � � g.

4.2. Proof of the non-archimedean definable Chow theorem

We now turn towards proving our main Theorem 4.1:

Theorem 4.8. LetX be a closed analytic subset of An;an
K that is also definable as a subset

of AnK D K
n. Then X is an algebraic subset, i.e. X is defined as the vanishing locus of a

finite collection of polynomials in KŒt1; : : : ; tn�.

Remark 4.9. Recall that if A is a rigid analytic space over K, then by a closed analytic

subset X � A we mean that there is a closed immersion of rigid spaces X
i
,�! A such

that i.X /DX . Equivalently,X is cut out by the vanishing locus of a coherent OA -ideal,
or more concretely, there is an admissible affinoid covering A D

S
i2I Ui , and for each

i 2 I , finitely many functions f .i/1 ; : : : ; f
.i/

n.i/
in OA .Ui / such thatX \Ui is the vanishing

locus of ¹f .i/1 ; : : : ; f
.i/

n.i/
º. Moreover, we note that given a closed analytic subset X � A

as above, there is a canonical structure of a reduced rigid analytic space that can be put
on X , with a canonical closed immersion X ,! A (see [8, Section 9.5.3, Proposition 4]).
We shall refer to this reduced structure as the reduced induced structure on X .

As outlined earlier, the proof of the theorem will proceed by induction on the dimen-
sion of the definable set X � Kn (which agrees with the dimension of X as an analytic
space – Lemma 3.26). First, we prove a preparatory lemma concerning the étale locus of
a finite morphism of rigid varieties that will be used in the proof.

Lemma 4.10. Suppose � W X ! Y is a finite surjective morphism of reduced rigid ana-
lytic varieties over K. Suppose X is equidimensional at every point .i.e. for all x 2 X ,
dim.OX;x/D dim.X// and suppose Y is irreducible and normal .i.e. for all y 2Y , OY;y is
a normal domain/. LetN be the generic fiber cardinality of � .i.e.N D rankOY .��OX //.
Then for y 2 Y , � is étale at every point in the fiber of y if and only if j��1.y/j D N .

Remark 4.11. (a) We recall that a morphism of rigid spaces � WX! Y is said to be étale
at a point x 2 X if the induced map of local rings OY;�.x/ ! OX;x is flat and unramified
(see [12, Section 3]).

(b) Saying that the generic fiber cardinality is N we mean that for every y 2 Y , we
have

N D dimQ.OY;y/

�
.��OX /y ˝OY;y Q.OY;y/

�
:

Here Q.OY;y/ denotes the fraction field of the domain OY;y . Since Y is connected, the
dimension on the right-hand side is indeed independent of the point y. To see this, it
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suffices to work over a connected affinoid open Sp.A/ of Y . ThenAmust be a domain, and
since � is a finite map, ��1.Sp.A// is an affinoid open Sp.B/ of X with the induced map
A!B makingB a finiteA-module. For a point y 2 Sp.A/ corresponding to the maximal
ideal m of A, we have that dimQ.OY;y/..��OX /y ˝OY;y Q.OY;y// D dimQ.OY;y/.B ˝A
Q.OY;y//D dimQ.A/ B ˝A Q.A/.

Proof of Lemma 4.10. By working locally over connected affinoid opens of Y , we may
assume that Y D Sp.A/ is affinoid. Since � is a finite morphism, X is also affinoid, and
X D Sp.B/ with the induced map A! B making B a finite A-module. The assumptions
on Y imply that A is a normal integral domain. Let F denote its fraction field and let
N D dimF .B ˝A F / be the generic fiber cardinality of � .

For a point x 2 X , if we denote the maximal ideals corresponding to x; �.x/ by
n � B;m � A respectively, then we note that since yAm D

yOY;�.x/ and yBn D
yOX;x the

map OY;�.x/ ! OX;x is flat and unramified if and only if the same holds for the map
Am ! Bn (the fact that both maps are unramified simultaneously is easy to see, whereas
for flatness one may use the local flatness criterion [30, Theorems 22.1 and 22.4]).

Suppose now y 2 Y is a point corresponding to the maximal ideal m of A such that �
is étale at every point of ��1.y/. Then from the above, B=mB must be unramified over
A=m and thus j��1.y/j D dimA=mB=mB . Similarly, it follows thatB˝A Am is finite flat
(hence free) overAm and hence rankAm.B ˝A Am/D dimA=mB=mB D dimK.B ˝A F /
D N . Therefore, we see that j��1.y/j D N .

Before turning to prove the converse direction, we first show that dim.X/ D dim.Y /.
By Lemma 3.25, dim.X/ D dim.B/ and dim.Y / D dim.A/. Since � W MaxSpec.B/!
MaxSpec.A/ is surjective, the image of Spec.B/! Spec.A/ contains all the closed points
of Spec.A/. If I denotes the kernel of A! B , then A=I ,! B is a finite inclusion of
rings, and so by [2, Theorem 5.10], the image of Spec.B/! Spec.A/ is the set V.I /
of all primes containing I . Thus, we must have V.I / � MaxSpec.A/. However, since A
is Jacobson (by [8, Section 5.2.6, Theorem 3]), this implies V.I / D Spec.A/ and hence
I D 0. Thus, A ,! B is a finite inclusion of rings and therefore dim.A/ D dim.B/.

Now suppose y 2 Y is a point such that j��1.y/j D N . Let ��1.y/ D ¹x1; : : : ; xN º.
We would like to show that � is étale at each xi . We have a canonical isomorphism
B ˝A OY;y D .��OX /y Š

QN
iD1OX;xi (see [11, pp. 481–482]). If L denotes the fraction

field of OY;y , we have B ˝A L Š
QN
iD1 OX;xi ˝OY;y L.

Subclaim. For each i , the natural map OX;xi ! OX;xi ˝OY;y L is injective.

Proof of Subclaim. Note that OX;xi ˝OY;y L is the localization of OX;xi at the (image
inside OX;xi of the) multiplicative set OY;y n ¹0º. Thus, the claim is equivalent to showing
that OX;xi is a torsion-free OY;y-module. Equivalently, we must show that the image of
OY;y n ¹0º inside OX;xi does not contain any zero-divisors of the ring OX;xi . Since OX;xi
is a reduced ring, the set of zero-divisors of OX;xi is the union of the minimal prime ideals
of OX;xi [40, Tag 00EW]. Therefore, it suffices to prove that every minimal prime ideal q

of OX;xi contracts to the .0/-ideal of OY;y . If we set q \ OY;y DW p, then OY:y=p ,!

https://stacks.math.columbia.edu/tag/00EW
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OX;xi =q a finite inclusion of domains, and hence dim.OY:y=p/D dim.OX;xi =q/. We now
have the chain of equalities

dim.OY:y=p/ D dim.OX;xi =q/ D dim.X/ D dim.Y / D dim.OY;y/;

where the second equality is from Lemma 3.28, the third from the previous paragraphs and
the last from Lemma 3.27. But since OY;y is an integral domain, the equality dim.OY:y=p/
D dim.OY:y/ is only possible if p D .0/. This completes the proof of the subclaim.

The subclaim shows in particular that OX;xi ˝OY;y L must be non-zero for each i .
But since dimL.B ˝A L/ D N , this is only possible if L D OX;xi ˝OY;y L for each i . In
particular, OX;xi � L. However, since OY;y is a normal domain, and since OX;xi is finite
over OY;y , we get OY;y D OX;xi , and so � is evidently étale at xi .

Proof of Theorem 4.1. We induct on d C n where d WD dim.X/. If d D 0, then X is
finite, hence algebraic. And if d D n, then X D Kn and we are done.

Suppose that n > d � 1. It follows from Lemma 3.26 that the set S D ¹x 2 X W
dim.OX;x/ < dº is a definable subset of Kn. Moreover, the closure of S in Kn, cl.S/, is
the union of the irreducible components of X of dimension < d , and so by the induction
hypothesis, cl.S/ is an algebraic subset of Kn. It then suffices to show that X n S is an
algebraic subset of Kn. Note that X n S is the union of the irreducible components of
dimension d and therefore X n S is a closed, analytic subset of Kn. Thus, replacing X
by X n S we may assume that X is equidimensional of dimension d .

Finding a point q 2 Pn.K/ n cl.X/: Embed Kn � Pn.K/ inside projective n-space
and denote the homogeneous coordinates of Pn.K/ by Z1; : : : ; ZnC1. Let � denote
the point Œ1 W 0 W : : : W 0� 2 Pn.K/ nKn, and consider the neighbourhood � WD ¹jZ1j �
jZ2j; : : : ; jZ1j � jZnC1jº � Pn.K/ of the point �. The neighbourhood � is naturally
homeomorphic to the closed unit n-dimensional disk, .Kı/n, via the map ' W�! .Kı/n

that sends ŒZ1 W : : : WZnC1� to .Z2=Z1; : : : ;ZnC1=Z1/, and S WD '.X \�/ is a definable
subset of .Kı/n of dimension � d contained in .Kı/n�1 �Kı n ¹0º. We note that since
cl.S/\ .Kı/n�1 � ¹0º � Fr.S/, and from the Theorem of the Boundary (Theorem 3.21),
since dim.Fr.S// < d � n� 1 we can find a point q 2 .Kı/n�1 � ¹0º such that q … cl.S/,
and pulling back via ' to �, we find a point q 2 Pn.K/ nKn such that q … clPn.K/.X/.
The point q 2 Pn.K/ n Kn D Pn�1.K/ defines a line in Kn. Now let T � X.K/ be
a countable subset of X.K/ consisting of smooth points of X such that the only closed
analytic subset of X containing T is X itself. By Corollary 3.15, the countable unionS
t2T P .Tt .X// � Pn�1.K/ must have dimension dim.X/ � 1 < n � 1, and therefore

cannot completely contain Pn�1.K/ n Fr.X/. We may thus further assume that for every
t 2 T , the line defined by the point q is not contained in the tangent space Tt .X/.

Consider any .n � 1/-dimensional linear subspace H � Kn not containing the line
defined by q, and let � WKn!H denote the projection onto H with kernel being the line
defined by q. We are free to make a linear change of coordinates on Kn, and so we may
even assume for simplicity that q D Œ0 W : : : W 0 W 1� 2 Pn�1.K/ and that � W Kn! Kn�1

is the projection to the first n � 1 coordinates.
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Lemma 4.12. The projection �jX W X ! Kn�1 is a finite morphism of rigid analytic
spaces .endowing X with the reduced induced structure/.

Proof. �jX is quasi-finite: Indeed, for z 2Kn�1, ��1.z/\X is a closed analytic subset
of the one-dimensional line ��1.z/ and is in addition definable. If dim.��1.z/\X/D 1,
then ��1.z/�X , which would imply that q D Œ0 W : : : W 0 W 1� 2 clPn.K/.X/, contradicting
our choice of q. Thus, dim.��1.z/ \X/ D 0, i.e. ��1.z/ \X is finite.

To show that �jX is a finite morphism, it thus remains to show that �jX is a proper
morphism of rigid spaces [8, Section 9.6.3, Corollary 6]. In order to prove this, we con-
sider the map �jX on the level of the associated Berkovich spaces. Note that X , being
a closed analytic subvariety of rigid affine n-space, is a quasi-separated rigid space and
has an admissible affinoid covering of finite type, and moroeover its associated Berkovich
analytic space is ‘good’ in the sense of [6, Remark 1.2.16 and Section 1.5]. Recall that the
morphism �jX W X

Berk ! An�1;Berk
K of good K-analytic spaces is proper if it is topologi-

cally proper and boundaryless (or ‘compact and closed’ in the terminology of [5, p. 50]).
�jX is separated and topologically proper: �jX is indeed separated. If E.0; r/

denotes the closed polydisc of polyradius r in An�1;Berk
K , i.e.

E.0; r/ DM.K¹r�11 T1; : : : ; r
�1
n�1Tn�1º/;

then we claim that ��1.E.0; r//\XBerk is bounded in An;Berk
K . If it were not, there would

be a sequence of points xi 2 ��1.E.0; r// \ XBerk with jTn.xi /j ! 1 as i !1. We
may even find a sequence xi 2 X since by [5, Proposition 2.1.15], the set of rigid points
is everywhere dense. But this would again imply that q D Œ0 W : : : W 0 W 1� 2 clPn.K/.X/,
contradicting the choice of q. Since every compact subset of An�1;Berk

K is contained in
some E.0; r/, it follows that the inverse images of compact sets under the map �jX W
XBerk ! An�1;Berk

K are compact. Thus, �jX is topologically proper.
�jX is boundaryless: Since XBerk ,! An;Berk

K is a closed immersion, it fol-
lows that Int.XBerk=An;Berk

K / D XBerk. By [5, Proposition 3.1.3 (ii)] it suffices to note
that Int.An;Berk

K =An�1;Berk
K / D An;Berk

K . To see this last equality, for any x 2 An;Berk
K

let y D �.x/, and choose an affinoid neighbourhood E.0; r/ � An�1;Berk
K contain-

ing y in its interior. Choosing an R 2 jK�j with R > jTn.x/j, we see that �x W
K¹r�11 T1; : : : ; r

�1
n�1Tn�1; R

�1Tnº ! H .x/ is inner over K¹r�11 T1; : : : ; r
�1
n�1Tn�1º, i.e.

x 2 Int.An;Berk
K =An�1;Berk

K /.
Therefore, the map �jX W XBerk ! An�1;Berk

K is proper and hence by [5, Proposi-
tion 3.3.2], so is �jX W X ! An�1;an

K .

Since �jX WX!An�1;an
K is finite, the image Y WD�.X/ is a closed analytic subvariety

of Kn�1, by [8, Section 9.6.3, Proposition 3]. In addition, as Y is a definable subset, by
the induction hypothesis Y is an algebraic subset ofKn�1. Endowing Y with its structure
as a reduced closed affine algebraic subvariety of An�1K , the morphism �jX gives rise to a
finite, surjective morphism of rigid analytic spaces �jX W X ! Y an.

Lemma 4.13. There is a Zariski dense open U � Y such that �j�1X .U an/ ! U an is a
finite étale surjection of rigid varieties.
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Proof. We first claim that the map �jX WX ! Y an is étale at at least one point ofX . If the
characteristic ofK is zero this is immediate. In the general case, note that �.T /� Y is not
contained in any analytic subset of Y an, and in particular there is a t0 2 T such that �.t0/
is a smooth point of Y . Then note that by our choice of q earlier, the map �jX W X ! Y an

is injective on the level of tangent spaces Tt0.X/ ,! T�.t0/.Y
an/. Therefore, applying

[25, Chapter 4, Corollary 3.27] we see that �jX is étale at t0.
Let ¹Yiº1�i�r denote the finitely many irreducible components of Y , thus ¹Y an

i º1�i�r

are those of Y an. Let Ui � Yi n
S
j¤i Yj be a non-empty, principal open subset of Y

(that is, the complement in Y of the vanishing set of a single regular function on Y ) so
that each Ui is an integral (reduced and irreducible) open subvariety of Y (hence U an

i is
a reduced and irreducible admissible open subset of Y an [11, Theorem 5.1.3 (2)]). Being
a principal open subset of Y � Kn�1, Ui may be viewed as a closed affine subvariety
ofKn. By Lemma 4.10, the étale locus Ei � U an

i of � W ��1.U an
i /! U an

i is definable as
it may be defined using a first-order formula expressing Ei as the subset of points in U an

i

whose fiber under � has cardinality equal to the generic fiber cardinality over U an
i . More-

over, the complement U an
i nEi is a closed analytic subvariety of U an

i � K
n of dimension

< dim.Ui / D d . By the induction hypothesis, U an
i nEi is a Zariski closed algebraic sub-

set of Ui and hence Ei is a Zariski dense open subset of Ui . Now setting U D
S
i Ei

completes the proof of the lemma.

Let U be as in Lemma 4.13 above, let ¹Uj º be the finitely many open connected
components of U and let Vj WD �j�1X .Uj /. Suppose the fiber cardinality of �jVj W
�j�1X .Uj /! Uj isNj . The characteristic polynomial of TnjVj over Uj (here Tn is the last
coordinate function of Cn

p ) is a polynomial of degree Nj with coefficients in OY an.U an
j /.

Moreover, since the Uj are Zariski opens and since X is definable, it follows that the
coefficients are also definable since they may be defined as symmetric polynomials in the
fibers of �jX . Hence, by Theorem 4.6 the characteristic polynomial in fact has coefficients
in OY .Uj /. If W � Kn�1 is a Zariski open subset such that W \ Y D U , then it follows
from the above that X \ .W �K/ is a closed algebraic subset of W �K.

If we let Z denote the Zariski closure of X \ .W � K/ in Kn, then Z is also the
closure of X \ .W � K/ in the metric topology of Kn [11, Theorem 5.1.3 (2)], and
hence Z � X . Moreover, X n .W � K/ D �j�1X .Y n U/ and so dim.X n .W � K// <
dim.Y / � d . By the induction hypothesis, X n .W �K/ is thus a closed algebraic subset
ofKn and since X D Z [ .X n .W �K//, we conclude that X is algebraic, finishing the
proof of Theorem 4.1.

We obtain as a corollary:

Corollary 4.14. Let V be a reduced algebraic variety over K, and let X � V an be a
closed analytic subvariety of the rigid analytic variety V an associated to V such that
X � V.K/ is definable in a tame structure on K. Then X is algebraic.

For a proper algebraic variety V over K, V an is quasi-compact and thus V an has an
admissible cover by finitely many (definable) affinoid subdomains. Since affinoid algebras
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are quotients of Tate algebras, the rigid analytic functions on these affinoids are in fact
rigid-subanalytic. A closed analytic subvariety of an affinoid subdomain, being described
as the zero locus of finitely many such functions, is also therefore rigid-subanalytic. Thus,
when V is proper overK, every closed analytic subvariety of V an is definable in the tame
structure of the rigid-subanalytic sets. Thus the familiar version of Chow’s theorem for
proper varieties follows from Theorem 4.1:

Corollary 4.15 (Chow’s theorem for proper varieties). Every closed analytic subset of
the rigid analytic variety associated to a proper algebraic variety over K is algebraic.
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