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Abstract. We continue the study of the two curvature notions for Kähler manifolds introduced
by the first named author earlier: the so-called cross quadratic bisectional curvature (CQB) and its
dual (dCQB) (which is a Hermitian form on maps between T 0M and T 00M ). We first show that
compact Kähler manifolds with CQB1 > 0 (CQB1 is the restriction to rank 1 maps) or dCQB1 > 0
are Fano, while nonnegative CQB1 or dCQB1 leads to a Fano manifold as well, provided that
the universal cover does not contain a flat de Rham factor. For the latter statement we employ the
Kähler–Ricci flow to deform the metric. We conjecture that all Kähler C-spaces have nonnegative
CQB and positive dCQB. By giving irreducible such examples with arbitrarily large second Betti
numbers we show that the positivity of these two curvatures puts no restriction on the Betti number.
A strengthened conjecture is that any Kähler C-space actually has positive CQB unless it is a P1

bundle. Finally, we give an example of a nonsymmetric, irreducible Kähler C-space with b2 > 1

and positive CQB, as well as of compact non-locally-symmetric Kähler manifolds with CQB < 0

and dCQB < 0.

Keywords. Kähler homogeneous spaces, cross quadratic bisectional curvature, generalized
Hartshorne conjecture, Kähler–Ricci flow

1. Introduction

In a recent work [22] by the first named author, the concept of cross quadratic bisectional
curvature (denoted as CQB from now on) and its dual notion (denoted by dCQB) for
Kähler manifolds were introduced (they will be recalled below). Both concepts are closely
related to the notion of quadratic bisectional curvature (abbreviated as QB, see [6,7,14,22,
23, 31, 32] for the definition and related results). One of the reasons for considering these
different notions of curvature is to find suitable differential-geometric characterizations
for Kähler C-spaces motivated by the generalized Hartshorne conjecture as illustrated
below.
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First recall that a simply connected compact complex manifold is called a C-space
(following H. C. Wang [29]) if its group of biholomorphisms acts transitively. Such
a manifold is a Kähler C-space if it admits a Kähler metric such that the group of holo-
morphic isometries also acts transitively, so the manifold is Kähler homogeneous [2].
It was proved in [17] that any Kähler homogeneous manifold is a product of a torus
with a Kähler C-space. The Hartshorne conjecture (Mori’s theorem [19]) asserts that a
compact complex manifold with ample tangent bundle must be biholomorphic to Pn.
A weaker result is the so-called Frankel conjecture (a theorem of Siu–Yau [27]) which
asserts that any Kähler manifold with positive bisectional curvature must be Pn. These
works together with [18] provide a curvature characterization of Hermitian symmetric
spaces. As an attempt of providing a curvature characterization of homogeneous Kähler
manifolds, the generalized Hartshorne conjecture asserts that a Fano manifold has nef
tangent bundle if and only if it is a Kähler C-space. This was proposed in [5, Conjec-
tures 11.1 and 11.2], and in the Harvard thesis [33] by the second author. The conjecture
is so far only known to hold in dimensions 2 and 3 by appealing to the classification theory
in low dimensions.

In [22], inspired partially by the connection between the positive orthogonal Ricci
curvature (denoted by Ric? > 0, and studied in [24, 25]) and QB > 0, and partially by
the work of Calabi–Vesentini [3], among other things the first named author proved that
CQB > 0 implies Ric? > 0, which leads to the vanishing of holomorphic .p; 0/-forms
and simply-connectedness of compact Kähler manifolds. The positivity of dCQB, on the
other hand, leads to the vanishing of the first cohomology group of the holomorphic tan-
gent bundle, thus the manifold must be infinitesimally rigid, i.e., without nontrivial small
deformations. It is also proved in [22] that for any classical Kähler C-space M n with
b2 D 1 and n � 2 the canonical Einstein metric has positive CQB and positive dCQB.
This makes the two conditions (CQB > 0 and dCQB > 0) better candidates than QB for
describing Kähler C-spaces, as only about eighty percent of the above spaces have posi-
tive or nonnegative QB in the excellent work of Chau and Tam [7], which made use of the
calculations in [13].

Inspired by the perspective of a curvature characterization of Kähler C-spaces, in
this paper we continue the effort of understanding (with the aim of classifying) compact
Kähler manifolds with positive or nonnegative CQB (or dCQB). Recall that by [22], on
a Kähler manifold .M n; g/, if we denote by T 0M and T 00M the holomorphic and anti-
holomorphic tangent bundles of M , then CQB is a Hermitian quadratic form on linear
maps A W T 00M ! T 0M :

CQBR.A/D
nX

˛;ˇD1

�
R
�
A. xE˛/;A. xE˛/;Eˇ ; xEˇ

�
�R

�
E˛; xEˇ ;A. xE˛/;A. xEˇ /

��
; (1.1)

whereR is the curvature tensor ofM and ¹E˛º is a unitary frame of T 0M . The expression
is independent of the choice of the unitary frame. When the meaning is clear we simply
write CQB or CQB.A/. The manifold .M n; g/ is said to have positive (resp. nonnegative)
CQB if at any point x 2 M , and for any nontrivial linear map A W T 00xM ! T 0xM , the
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value CQB.A/ is positive (resp. nonnegative). We write CQBk > 0 if CQBR.A/ > 0 for
all A with rank no greater than k.

Similarly, the dual notion (dCQB) introduced in [22] is a Hermitian quadratic form
on linear maps A W T 0M ! T 00M :

dCQBR.A/D
nX

˛;ˇD1

�
R
�
A.E˛/;A.E˛/;Eˇ ; xEˇ

�
CR

�
E˛; xEˇ ;A.E˛/;A.Eˇ /

��
; (1.2)

where again R is the curvature tensor of M and ¹E˛º is a unitary frame of T 0M . The
manifold .M n; g/ is said to have positive (nonnegative) dCQB if dCQB.A/ > 0 (� 0) at
any point x 2M , and for any nontrivial linear map A W T 0xM ! T 00xM . Related to this is
a tensor analogous to the Ricci tensor: RicC.X; xX/ D Ric.X; xX/CH.X/=jX j2, where
H is the holomorphic sectional curvature. We write dCQBk > 0 if dCQBR.A/ > 0 for
all A with rank no greater than k.

It is proved in [22] that a compact Kähler manifold M n with RicC > 0 is projective
and simply connected. Also, if dCQB > 0, then H 1.M; T 0M/ D ¹0º, so M is locally
deformation rigid. Moreover, dCQB1 > 0 implies RicC > 0.

Serving as a further step of the study, our first result of this article is that the positivity
of either CQB1 (or dCQB1) implies the positivity of the Ricci curvature. Thus a compact
manifold with either CQB1 > 0 or dCQB1 > 0 is Fano, answering positively a question
asked in [22].

Theorem 1.1. Let .M; g/ be a Kähler manifold with either CQB1 > 0 or dCQB1 > 0.
Then its Ricci curvature is positive. So compact Kähler manifolds with positive CQB1 or
dCQB1 are Fano.

As a corollary, the above theorem implies that a product Kähler manifold has positive
(or nonnegative) CQB or dCQB if and only if each of its factors does:

Corollary 1.2. LetM DM1 �M2 be a product Kähler manifold. ThenM has CQB > 0
.or � 0/ if and only if both M1 and M2 do. Also, for any positive integer k, M has
CQBk > 0 .or � 0/ if and only if both M1 and M2 do. The same statements hold for
dCQB and dCQBk .

By deforming the metric via the Kähler–Ricci flow we further show that if M has
CQB1 � 0 (or dCQB1 � 0) and its universal cover does not contain a flat de Rham factor
thenM is Fano as well. Note that the finiteness of the fundamental group ofM implies the
nonexistence of a flat de Rham factor. In particular, if M has CQB1 � 0 (or dCQB1 � 0)
and �1.M/ is finite, then M is a Fano manifold:

Theorem 1.3. Let .M;g/ be a compact Kähler manifold with CQB1 � 0 .or dCQB1 � 0/
and its universal cover does not contain a flat de Rham factor. Then M is Fano. In fact,
the Kähler–Ricci flow will evolve the metric g to one with positive Ricci curvature.

To prove this we adopt a nice technique of Böhm–Wilking [1] of deforming the metric
via the Kähler–Ricci flow into g.t/ with positive Ricci curvature when the initial metric



L. Ni, F. Zheng 1718

g.0/ satisfies our curvature conditions. In [1], the authors deformed a Riemannian metric
with nonnegative sectional curvature (also assuming finiteness of the fundamental group)
into one with positive Ricci via the Ricci flow. Since CQB1 � 0 (or dCQB1 � 0) is dif-
ferent from the sectional curvature being nonnegative, a different collection of invariant
time-dependent convex sets is constructed to serve the purpose. We also need somewhat
different estimates to show that Ric.g.t// > 0 for t > 0, where g.t/ is a short time solu-
tion of the Kähler–Ricci flow. In fact, our curvature conditions here are much weaker than
the same for the bisectional curvature being nonnegative (which is weaker than the sec-
tional curvature), since the result of Mok [18] asserts that an irreducible compact Kähler
manifold with nonnegate bisectional curvature must be locally Hermitian symmetric, and
that the first author proved in [22] that all classical Kähler C-spaces with b2 D 1 admit
Einstein metrics with CQB > 0 and dCQB > 0 (see also further examples with b2 > 1 in
this paper).

As suggested by R. Hamilton, the conditions CQB � 0 and dCQB � 0 have their
analogous versions for Riemannian manifolds, and the above theorem also holds in that
case. See Section 3 for more details.

By the structure theorem of [4] for compact Kähler manifolds with nonnegative Ricci
curvature, we have the following:

Corollary 1.4. Let .M;g/ be a compact Kähler manifold with CQB1�0 .or dCQB1�0/.
Then there exists a finite cover M 0 of M such that M 0 is a holomorphic and metric fiber
bundle over its Albanese variety, which is a flat complex torus, with fiber being a Fano
manifold.

Note that for a compact Kähler manifold with nonnegative QB, any harmonic .1; 1/-
form is parallel, and the positivity of QB implies that b2 D 1. The positivity/nonnegativity
of CQB or dCQB however does not put any restrictions on b2 (see Theorem 1.6 below).
On the other hand, since CQB> 0 implies positive Ric? by [22], while P1 bundles do not
admit any Kähler metric with positive Ric? by [24], it follows that for Kähler C-spaces
with b2 > 1, we could only hope for nonnegative CQB instead of positive CQB in general.
We propose the following:

Conjecture 1.5. Any Kähler C-space .with the canonical Kähler–Einstein metric/ has
nonnegative CQB and positive dCQB.

As a supporting evidence for Conjecture 1.5, we prove the following:

Theorem 1.6. There are irreducible Kähler C-spaces with arbitrarily large b2 which
have nonnegative CQB and positive dCQB.

To prove this result as an initial step towards the conjecture, we look into the simplest
kind of irreducible Kähler C-spaces with b2 > 1, namely, type A flag manifolds: M n D

SU.r C 1/=T , where T is a maximal torus in SU.r C 1/. The complex dimension is
nD 1

2
r.r C 1/, and b2 D r . EquippingM n with the canonical Kähler–Einstein metric g,

we show that it has nonnegative CQB and positive dCQB. This answers negatively another
question asked in [22] regarding b2.
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As shown in [24], a P1 bundle cannot admit a Kähler metric with positive orthogonal
Ricci curvature, thus cannot have positive CQB. We speculate that any Kähler C-space
which is not a P1 bundle has a metric with positive CQB.

For compact Hermitian symmetric spaces, this speculation holds true (see Corollary
2.3 in the next section). For nonsymmetric Kähler C-spaces, the result below gives at least
an example of an irreducible Kähler C-space with b2 > 1 and with positive CQB. Such a
space is necessarily not a P1 bundle.

Consider irreducible Kähler C-spaces of type A in general, namely, SU.r C 1/=K,
where K is the centralizer of some subtorus of T . The smallest-dimensional such space
which is not a P1 bundle nor symmetric is M 12 D SU.6/=S.U.2/�U.2/�U.2//. It has
b2 D 2. Equipped with the Kähler–Einstein metric, it indeed has positive CQB:

Theorem 1.7. Let M 12 D SU.6/=S.U.2/ � U.2/ � U.2// be the irreducible Kähler C-
space which is nonsymmetric, with b2 D 2, and equip it with the Kähler–Einstein metric.
Then it has positive CQB and positive dCQB.

We should point out that understanding the curvature behavior of Kähler C-spaces is
a nontrivial matter, despite the fact that such spaces are classical objects of study since
the 1950s and are fully classified from the Lie algebraic point of view. As an illustrating
example, recall the following folklore conjecture:

Conjecture 1.8. Any Kähler C-space .with the canonical Kähler–Einstein metric/ has
positive holomorphic sectional curvature H .

This question is still widely open. For Kähler C-spaces with b2 D 1, all the classical
types plus a few exceptional ones are known to have H > 0 by the work of Itoh [13]. In
a recent thesis [16], taking a highly sophisticated approach, Simon Lohove was able to
show that all irreducible Kähler C-spaces of classical type with rank less than or equal
to 4 have H > 0. Note that the rank here is that of the group, so all such spaces have
b2 � 4 in particular. Through isometric embedding, he also reduced the question largely
to the case of flag manifolds with Kähler–Einstein metrics.

In the more challenging opposite direction, we propose the following:

Conjecture 1.9. Let .M;g/ be a Kähler .resp. Kähler–Einstein/ manifold with CQB � 0
and dCQB > 0. Then M is biholomorphic .resp. isometric/ to a Kähler C-space .resp.
with the canonical Kähler–Einstein metric/.

This conjecture, if confirmed, would be the first curvature characterization of compact
homogeneous Kähler manifolds, which has long been missing but hoped for, in rela-
tion to the generalized Hartshorne conjecture (cf. [5]). A more general conjecture is to
drop the Kähler–Einstein assumption above. The simply-connectedness, projectivity, and
deformation rigidity result proved recently in [22], and Theorem 1.3 above, support this
conjecture. Theorem 1.3 and Corollaries 1.2 and 1.4 also serve as an initial step towards
the classification conjecture, as does the main result of [12] towards the classification
of Kähler manifolds with nonnegative bisectional curvature. The examples in Theorems
1.6 and 1.7 indicate that the situation here is more delicate. There are also attempts of
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investigating the generalized Hartshorne conjecture by using a Hermitian curvature flow
(cf. [28]), which aims to classify Hermitian Fano manifolds with nonnegative Griffiths
curvature.

Note that most of the results mentioned above, except the construction of examples,
hold for the nonpositive cases by flipping the sign of the curvature. These results are
summarized in the last section. In that section we also show that the two-dimensional
Mostow–Siu example [20] has CQB < 0 and dCQB < 0. This is a non-Hermitian-sym-
metric example to which Theorem 4.1 of [22] can be applied, hence is locally deformation
rigid (it is in fact strongly rigid by the work of Siu [26]). The existence of nonsymmetric
examples with CQB < 0 and dCQB < 0 also shows that the local rigidity result of [22]
is indeed more general than that of [3]. The examples naturally lead to the question of
the role played by CQB and dCQB in the strong rigidity and holomorphicity of harmonic
maps. We leave this to a future study.

2. Cross quadratic bisectional curvature and its dual

It is proved in [22] that positive CQB1 implies that the orthogonal Ricci curvature Ric?

is positive, and CQB2 > 0 implies that the Ricci curvature Ric is 2-positive, that is, the
sum of any two of its eigenvalues is positive. We first show that the Ricci curvature is also
positive under the CQB1 > 0 assumption:

Theorem 2.1. Let .M n; g/ .n � 2/ be a Kähler manifold with positive .resp. nonnega-
tive/ CQB1. Then its Ricci curvature is also positive .resp. nonnegative/. Moreover,
Ric.X; xX/ � 1

n�1
Ric?.X; xX/.

Proof. First we claim that, under the assumption that CQB1 > 0, for any unit vectors
X , Y in T 0M such that X ? Y we must have Ric.X; xX/ > R.X; xX; Y; xY /. To see this,
let E be a unitary frame for T 0M with X D E1 and Y D E2, and let A be the map such
that A. xE2/ D E1 and A. xEi / D 0 for any i ¤ 2. Applying (1.1) we get Ric1x1 > R221x1.
By the same token, Ric1x1 >Rixi1x1 for any i > 1. Adding up these inequalities for i from 2

to n, we get .n� 1/Ric1x1 > Ric?
1x1

, so the Ricci curvature is positive since the orthogonal
Ricci is known to be positive by [22]. The nonnegative case is similar. �

The proof also implies

Corollary 2.2. Let .M n; g/ .n � 2/ be a Kähler manifold with positive .resp. nonnega-
tive/ CQB1. Then Ricn�1 is also positive .resp. nonnegative/.

Corollary 2.3. Let M n D M1 �M2 be a product Kähler manifold. Then, for any 1 �
k � n, M has positive .or nonnegative/ CQBk if and only if both M1 and M2 do.

Proof. Since CQB is independent of the choice of unitary frames, we take a unitary
frame E compatible with the product structure:

E D ¹E1; : : : ; Er IErC1; : : : ; Enº;
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where r is the dimension of M1 and the first r elements give a frame for M1. We will use
the convention that i , j; : : : run from 1 to r , while ˛, ˇ; : : : run from r C 1 to n. Denote
by R0, R00 the curvature tensor of M1, M2, respectively, and write

A. xEi / D A
0. xEi /C B. xEi /; A. xE˛/ D C. xE˛/C A

00. xE˛/

for the decomposition into T 0M D T 0M1 � T
0M2, then by definition, we have

CQBM .A/ D
nX

a;b;cD1

Ricaxb AcaAcb �
nX

a;b;c;dD1

Raxbc xdAacAbd

D

X
i;j;c

Rici xj AciAcj C
X
˛;ˇ;c

Ric˛ x̌Ac˛Acˇ �
nX

a;b;c;dD1

Raxbc xdAacAbd

D CQBM1.A0/C CQBM2.A00/C
X
i;j;˛

Rici xj A˛iA j̨ C

X
˛;ˇ;i

Ric˛ x̌Ai˛Aiˇ ;

so the conclusion follows. Note that the positivity of CQBk implies that the dimension of
the manifold must be at least 2. �

Since every irreducible compact Hermitian symmetric space of dimension greater
than 1 has positive CQB and dCQB by [22], the above corollary implies

Corollary 2.4. Every compact Hermitian symmetric has positive dCQB and nonnegative
CQB, and it has positive CQB if and only if it does not have any P1 factor.

If .M n; g/ is a compact Kähler manifold with nonnegative Ricci curvature, then by
the work of Campana, Demailly and Peternell [4], the universal cover zM of M is holo-
morphically and isometrically the product Ck �M1 �M2, where the first factor (if k > 0)
is the flat de Rham factor, andM1 is Calabi–Yau (simply connected with trivial canonical
line bundle), while M2 is rationally connected. Also, there exists a finite cover M 0 of M
such that the Albanese map � W M 0 ! Alb.M 0/ is surjective and is a holomorphic and
metric fiber bundle with fiber M1 �M2. Here the bundle being metric means that any
point in the base has a neighborhood over which the bundle is isometric to the product of
the fiber with the base neighborhood.

Now if .M n; g/ is a compact Kähler manifold with CQB1 � 0, then since it has non-
negative Ricci curvature, the above structure theorem applies. We claim that the Calabi–
Yau factor cannot occur in this case:

Theorem 2.5. Let .M n; g/ be a compact Kähler manifold with CQB1 � 0. Then a finite
cover M 0 of M is a holomorphic and metric fiber bundle over its Albanese torus, with
fiber being a rationally connected manifold. In particular, ifM has no flat de Rham factor,
then it is rationally connected.

Proof. The goal is to rule out the Calabi–Yau factor, namely, to show that ifM1 is a simply
connected compact complex manifold with c1D 0, then it cannot admit any Kähler metric
with CQB1 � 0. To see this, notice that we have shown that .n � 1/Ric � Ric? � 0. So
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if Ric.X; xX/D 0 for X 2 T 0M1, then Ric?.X; xX/D 0 and R.X; xX;X; xX/D 0. Let � be
the Ricci .1; 1/-form of M1. Then from

c1 � Œ!�
n�1
D

Z
M1

� ^ !n�1 D
1

n

Z
M1

S!n;

where ! is the Kähler form and S is the scalar curvature, we see that the vanishing of the
first Chern class c1 plus the nonnegativity of the Ricci curvature implies that M1 has to
be scalar flat, hence Ricci flat. So the holomorphic sectional curvature is identically zero,
contradicting the fact that M1 is simply connected. �

In fact, for any pair of X and Y , by choosing ¹Eiº such that E1 D X=jX j, and letting
A be the map with A. xE1/ D Y , A. xEi / D 0 for i � 2, the argument above implies

Corollary 2.6. The assumption CQB1 � 0 is equivalent to the assertion that for any X
and Y ,

jX j2 Ric.Y; xY / �R.X; xX; Y; xY / � 0: (2.1)

If CQB1 > 0, then the inequality is strict if X; Y are nonzero.

Remark. It is not hard to see that under the CQB � 0 assumption, any tangent vector
X 2 T 0M with Ric.X; xX/ D 0 must be in the kernel of the curvature tensor R, namely,
R.X; xY ;Z; xW / D 0 for any Y , Z, W 2 T 0M .

Next, let us recall the notion of dual cross quadratic bisectional curvature (dCQB)
introduced in [22]. It is a Hermitian quadratic form on linear maps A W T 0M ! T 00M :

dCQB.A/D
nX

˛;ˇD1

�
R
�
A.E˛/;A.E˛/;Eˇ ; xEˇ

�
CR

�
E˛; xEˇ ;A.E˛/;A.Eˇ /

��
; (2.2)

where again R is the curvature tensor of M and ¹E˛º is a unitary frame of T 0M . The
manifold .M n; g/ is said to have positive (resp. nonnegative) dCQB if at any point in M ,
for any unitary frameE of T 0M at p, and for any nontrivial linear mapA W T 0pM ! T 00pM ,
the value dCQBE .A/ is positive (resp. nonnegative). Related to this is the tensor

RicC.X; xX/ D Ric.X; xX/CH.X/=jX j2:

It is proved in [22] that a compact Kähler manifold M n with RicC > 0 is projective
and simply connected. If dCQB > 0 then also H 1.M; T 0M/ D ¹0º, so M is locally
deformation rigid. Moreover, dCQB1 > 0 implies RicC > 0. Strictly analogous to the
CQB � 0 case, we have the following

Theorem 2.7. A Kähler manifold with positive .resp. nonnegative/ dCQB1 will have
positive .resp. nonnegative/ Ricci curvature. A compact Kähler manifold with dCQB1 � 0
and without a flat de Rham factor is rationally connected. Moreover,

Ric.X; xX/ �
1

nC 1
RicC.X; xX/:
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In fact, dCQB1 � 0 is equivalent to the estimate

jX j2 Ric.Y; xY /CR.X; xX; Y; xY / � 0 (2.3)

for any pair of .1; 0/-vectors X; Y . If dCQB1 > 0, then the inequality in (2.3) is strict if
X; Y are nonzero.

Corollary 2.8. Let M n D M1 �M2 be a product Kähler manifold. Then for any 1 �
k � n, M has positive .or nonnegative/ dCQBk if and only if both M1 and M2 do.

As noted in [22], when .M n; g/ is Kähler–Einstein, the CQB or dCQB conditions can
be given in terms of the eigenvalue information for the curvature operator Q introduced
by Calabi–Vessentini [3] and Itoh [13], which is a self-adjoint operator from S2.T 0M/

into itself, defined by

hQ.X � Y /;Z �W i D R.X; xZ; Y; xW /

for any type .1; 0/ tangent vectors X , Y , Z, W in T 0M , where X � Y D 1
2
.X ˝ Y C

Y ˝X/ and the induced metric on S2.T 0M/ is given by

hX � Y;Z �W i D 1
2

�
g.X; xZ/g.Y; xW /C g.X; xZ/g.Y; xW /

�
:

If we denote by � the constant Ricci curvature of M , and by �1, �N the smallest and
largest eigenvalues of Q, respectively, then

CQB > 0 ” � > �N ; and dCQB > 0 ” �1 > ��:

In Section 4, we shall examine the eigenvalue bounds for the simplest kind of Kähler
C-spaces, namely, the type A spaces, and check the sign of CQB and dCQB.

3. Fanoness of the nonflat factor

In this section we further study the factor in the splitting provided by Theorem 2.5. We
show that if we assume that the manifold .M;g/ in Theorem 2.5 is simply connected then
it is a Fano manifold. More precisely, we have the following slightly stronger result.

Theorem 3.1. Assume that .M; g/ is a compact Kähler manifold with CQB1 � 0 .or
dCQB1 � 0/. Assume that the universal cover QM does not have a flat de Rham factor.
Then M must be Fano. In fact, the Kähler–Ricci flow evolves the metric g into a Kähler
metric g.t/t2.0;�/ with positive Ricci curvature for some �.

Proof. Here we adapt an idea of Böhm–Wilking [1] who proved that the Ricci flow
evolves a metric with nonnegative sectional curvature of a compact manifold with finite
fundamental group into one with positive Ricci curvature for some short time. The
assumption on the fundamental group is to effectively rule out the flat de Rham factor
in its universal cover. A dynamic version of Hamilton’s maximum principle (cf. [1, Sec-
tion 1], [8, Chapter 10], as well as [21]) was employed. Since CQB1 � 0 (or dCQB1 � 0)
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is different from the sectional curvature being nonnegative, we need to construct a dif-
ferent collection of invariant time-dependent convex sets and prove the corresponding
estimates to show that Ric.g.t// > 0. We shall focus on the case CQB1 � 0 since the
other case is similar.

Let g.t/ be the solution to the Kähler–Ricci flow with initial metric g satisfying
CQB1 � 0:

@

@t
g˛ Ň .t/ D �R˛ Ň ; g.0/ D g;

where R˛ Ň denote the Ricci curvature of g.t/. By Hamilton’s maximum principle we can
focus on the study of the collection ¹C.t/º of convex subsets of the space of algebraic
curvature operators defined by the following conditions:

0 � Ric.X; xX/; 8X 2 T 0xM I (3.1)ˇ̌
Ric.X; xY / �Rg.t/

X xYZ xZ

ˇ̌2
� .D1 C tE1/Ric.X; xX/Ric.Y; xY /; 8X; Y;Z; jZj D 1I

(3.2)

kRk � D2 C tE2: (3.3)

Here in (3.3), R is viewed as the curvature operator and k � k is the natural norm extended
to the corresponding tensors from the Kähler metric on T 0xM .

First we need to check that the sets C.t/ are convex. Clearly (3.1) and (3.3) are convex
conditions. For (3.2), let R and S be two Kähler curvature operators. We shall check that
if (3.2) holds for R and S then it holds for �RC .1� �/S for all � 2 Œ0; 1�. Given Z with
jZj D 1, Ric.X; xY /�RX xYZ xZ is a Hermitian symmetric form on T 0xM , which we denote
by A, and denote the corresponding one for the curvature operator S by B . We also write
a1 and a2 for R.X; xX/ and R.Y; xY /. Similarly we use b1 and b2 for the corresponding
Ricci curvature of the curvature operator S . Then

j�AC .1 � �/Bj2 D �2jAj2 C �.1 � �/.AB C B xA/C .1 � �/2jBj2

� �2jAj2 C 2�.1 � �/jAj jBj C .1 � �/2jBj2

� .D1 C tE1/
�
�2a1a2 C 2�.1 � �/

p
a1a2b1b2 C .1 � �/

2b1b2
�

� .D1 C tE1/.�a1 C .1 � �/b1/.�a2 C .1 � �/b2/:

This completes the proof of the convexity of C.t/.
Recall that after applying Uhlenbeck’s trick [10] the Kähler–Ricci flow evolves the

curvature tensor R by the following PDE:�
@

@t
��

�
R˛ Ň
 Nı D R˛ Ňp NqR
 Nıq xp CR˛ Nıp NqR
 Ňq xp �R˛ xp
 NqRp Ňq Nı : (3.4)

Here the computation is with respect to a unitary frame. The first term on the right
hand side can be written as .2Rm2/˛ Ň
 Nı ; the second and third terms combined can be

expressed as .2Rm#/˛ Ň
 Nı with Rm#
WD ad � .Rm^Rm/ � ad�. Here we identify

V2
TpM

with so.TpM/, we view Rm as a symmetric map of so.TpM/, and ad W
V2
.so.TpM//!
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so.TpM/ is the adjoint representation. Tracing it gives the evolution equation of the Ricci
curvature: �

@

@t
��

�
R˛ Ň D R˛ Ňp NqRq xp: (3.5)

We shall show that the sets C.t/ defined by (3.1)–(3.3) are invariant under equations
(3.4) and (3.5). Hamilton’s maximum principle (see [1, Section 1]) allows us to drop the
diffusion term in verifying the invariance.

We first have to show that (3.2) holds at t D 0, since by Theorem 2.1 we know that
(3.1) holds at t D 0, and it is easy to choose D2 and E2 to make (3.3) hold if � is suf-
ficiently small. By (2.1), we see that for any Z with jZj D 1, A.X; xY / WD Ric.X; xY / �
RX xYZ NZ is a Hermitian symmetric tensor which is nonnegative. Diagonalize A with a uni-
tary frame ¹Eiº and eigenvalues ¹�iº. Then for X D xiEi and Y D yjEj we compute

jAi Njx
i
Nyj j2 D

ˇ̌̌X
�ix

i
Nyi
ˇ̌̌2
�

X
�i jx

i
j
2
�

X
�j jy

j
j
2

D .Ric.X; xX/ �RX xXZ NZ/ � .Ric.Y; xY / �RY xYZ NZ/

�

nX
iD1

.Ric.X; xX/ �RX xXE 0
i
NE 0
i
/

nX
jD1

.Ric.Y; xY / �RY xYE 0
j
NE 0
j
/

D .n � 1/2 Ric.X; xX/Ric.Y; xY /:

Here ¹E 0j º is another unitary frame so chosen that E 01 D Z. Hence if we choose D1 D
.n � 1/2 the estimate (3.2) holds at t D 0.

Now we need to verify that the PDE/ODE preserves the setC.t/. For that we only need
to prove that the time derivative of the convex condition lies inside the tangent cone of the
convex set. The trick of [1] is to chooseE1 sufficiently large (compared withD1;D2;E2)
to make sure that (3.2) stays invariant under the PDE (3.4) (or the corresponding ODE
d
dt

Rm D Rm2
CRm#) for t 2 Œ0; �� if � is very small. With a suitably chosen D2, it is

easy to have (3.3). In fact, we may choose E2 D 1 if � is small. For (3.1), if Ric.X; xX/
ever becomes zero for some X , then within C.t/, by (3.2), we have

Ric.X; xY / �RX xYZ xZ D 0; 8Y;Z:

This then via polarization implies that RX xYZ xW D 0 for all Y; Z;W . Thus (3.5) implies
@
@t

Ric.X; xX/ � RX xXp NqRq xp D 0. This shows that (3.1) is preserved by (3.5).
As in [1], the main issue is to show that (3.2) is preserved under the flow, namely (3.4)

and (3.5). For this it suffices to show that as long as R is in C.t/,

@

@t

�
.D1 C tE1/Ric.X; xX/ � Ric.Y; xY / � jRic.X; xY / �RX xYZ xZ j

2
�
� 0: (3.6)

Direct calculation shows that the left hand side is

E1 Ric.X; xX/Ric.Y; xY /C .D1 C tE1/
�
RX xXp Nq Ric.Y; xY /CRY xYp Nq Ric.X; xX/

�
Rq xp

� 2<

��
@

@t
Ric.X; xY / �

@

@t
RX xYZ xZ

�
.Ric.X; xY / �RX xYZ xZ/

�
:
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We shall show that for � small and t 2 Œ0; �� the above is nonnegative, namely, the first
term dominates the rest. By (3.2), by letting � � 1=E1 (with E1 to be decided later),
D1 C tE1 � 2D1. In the meantime E1 is chosen to be large compared with D2

1D2. First
(3.2), together with jRic.X; xY /j �

p
Ric.X; xX/Ric.Y; xY /, implies that

jRX xYZ xZ j � 4D1

q
Ric.X; xX/Ric.Y; xY /; (3.7)

which then yields
jRX xXp NqRq xpj � 4nD1D2 Ric.X; xX/:

This, together with tE1 � 1, implies that

.D1 C tE1/
�
RX xXp Nq Ric.Y; xY /CRY xYp Nq Ric.X; xX/

�
Rq xp

� �16nD2
1D2 Ric.X; xX/ � Ric.Y; xY /: (3.8)

To handle the term involving @
@t
RX xYZ xZ we use the following estimates:

jRXUZ xW j � 32nD1
p
nD2

q
Ric.X; xX/; (3.9)

jRYUZ xW j � 32nD1
p
nD2

q
Ric.Y; xY /; 8U;Z;W; jU j D jZj D jW j D 1: (3.10)

These can be derived easily from (3.7) and (3.3). Now note thatˇ̌
Ric.X; xY / �RX xYZ xZ

ˇ̌
�
p
2D1

q
Ric.X; xX/Ric.Y; xY /:

Hence we only need to establish thatˇ̌̌̌
@

@t
Ric.X; xY / �

@

@t
RX xYZ xZ

ˇ̌̌̌
� C.D1;D2; n/

q
Ric.X; xX/Ric.Y; xY /

for some positive C depending on D1;D2 and n. By (3.4) and (3.5) we have

@

@t
Ric.X; xY / �

@

@t
RX xYZ xZ D RX xYZ xW RicZ xW �RZ xZp NqRq xpX xY

�RZ xY q xpRp NqX xZ CRZ xpX NqRp xZq xY :

Putting estimates (3.7), (3.9) and (3.10) together we have the estimate we want. Taking
E1 � 100C.D1; D2; n/ we have proved (3.6). Hence ¹C.t/º is an invariant collection of
convex subsets under the Kähler–Ricci flow.

If for some t 2 .0; �/, Ric.g.t// has a nontrivial kernel, the strong maximum principle
(see for example, [1, pp. 675–676]) takes effect to imply that the universal cover splits
a factor according to the distribution provided by the vectors in the kernel of the Ricci
curvature. The factor is flat since by (3.2) the kernel of Ric would be the kernel of the
curvature tensor. If there exists a sequence of such ti ! 0 this implies that the universal
cover contains a flat de Rham factor. This is a contradiction. Thus we have proved that
Ric.g.t// > 0 for any t 2 .0; �0/ for some �0 small. �
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The result indicates a connection with Kähler C-spaces in view of the splitting theorem
of Matsushima [17]. An argument similar to [1] was also employed by Liu [15] in the
nonpositive setting to conclude that the deformed metric has negative Ricci curvature if
the initial metric has nonpositive bisectional curvature.

The conditions CQB � 0 and dCQB � 0 have corresponding Riemannian versions:
We say that a Riemannian manifold .M n; g/ has CQBR

� 0 if for any x 2 M and any
orthonormal frame ¹eiº,

nX
jD1

Ric.A.ej /; A.ej // �
nX

i;jD1

R.A.ei /; ej ; ei ; A.ej // � 0

for all linear maps A W TxM ! TxM: (3.11)

For dCQBR
� 0 we require that

nX
jD1

Ric.A.ej /; A.ej //C
nX

i;jD1

R.A.ei /; ej ; ei ; A.ej // � 0

for all linear maps A W TxM ! TxM: (3.12)

Here to be consistent with the Kähler notations,1 the curvature tensor is defined as

R.X; Y /Z D rXrYZ � rYrXZ � rŒX;Y �Z

(which implies thatR.X;Y;Y;X/D hR.X;Y /Y;Xi is positive for spheres). If we restrict
to A of rank 1 we have similar conditions to (2.1) and (2.3). Namely, CQBR

1 � 0 is
equivalent to

jX j2 Ric.Y; Y / �R.X; Y; Y;X/ � 0: (3.13)

Similarly, dCQBR
1 � 0 is equivalent to

jX j2 Ric.Y; Y /CR.X; Y; Y;X/ � 0: (3.14)

It is easy to see that (3.13) and (3.14) will each imply the nonnegativity of the Ricci
curvature. By adapting the proof of Theorem 3.1 we have the following result.

Theorem 3.2. Assume that .M; g/ is a compact Riemannian manifold with CQBR
1 �

0 .or dCQBR
1 � 0/. Assume that the universal cover QM of Mdoes not have a flat de

Rham factor. Then M admits a metric with positive Ricci curvature. In particular, its
fundamental group is finite. In fact, the flow evolves the metric g into a metric g.t/t2.0;�/
with positive Ricci curvature for some �.

It is easy to check that the nonnegativity of the sectional curvature implies CQBR
1 � 0

and dCQBR
1 � 0. In fact, CQBR

1 � 0 is the same as the .n � 2/-nonnegativity of curva-
ture in the sense of H. Wu (namely, for any orthonormal .n � 1/-frame ¹e0; : : : ; en�2º,

1Thanks to N. Wallach for suggesting this.
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Pn�2
jD1 R.e0; ej ; ej ; e0/ � 0).2 Hence the result above provides a generalization of the

result of Böhm–Wilking [1]. The notions of CQBR and dCQBR are not geometrically
motivated as CQB and dCQB. We are grateful to Professor R. Hamilton for suggesting
(3.13) and that Theorem 3.2 may still hold . The nonnegative/positive conditions for these
curvatures respect the product structure (hence there is no difficult problem of a corre-
sponding Hopf conjecture for these curvatures).

Proposition 3.1. Let M n D M1 �M2 be a product manifold. Then for any 1 � k � n,
M has positive .or nonnegative/ dCQBR

k
if and only if both M1 and M2 do.

It is also not hard to check CQBR
� 0 and dCQBR

� 0 for locally symmetric
spaces. A study of these conditions should perhaps begin with the homogeneous Rie-
mannian manifolds. Homogeneous manifolds with positive sectional curvature are quite
scarce [30]. We expect that CQBR

� 0 and dCQBR
� 0 are more inclusive. We leave the

more detailed study in this direction to a future project.

4. Kähler C-spaces

Recall that Kähler C-spaces are the orbit spaces of the adjoint representation of compact
semisimple Lie groups [2]. Any such space is the product of simple Kähler C-spaces, and
all simple Kähler C-spaces can be obtained in the following way.

Let g be a simple complex Lie algebra. They are classified into four classical
sequences: Ar D sl rC1 (r � 1), Br D so2rC1 (r � 2), Cr D sp2r (r � 3), Dr D so2r
(.r � 4), and the exceptional ones, E6, E7, E8, F4 and G2.

Let h � g be a Cartan subalgebra with the corresponding root system � � h�, so
we have g D h ˚

L
˛2� CE˛ where E˛ is a root vector of ˛. Let r D dimC h and

fix a fundamental root system ¹˛1; : : : ; ˛rº. This gives an ordering in �, and let �C

and �� be the sets of positive and of negative roots. Each ˇ 2 �C can be expressed as
ˇ D

Pr
iD1 ni .ˇ/˛i . For a fixed nonempty subset ˆ � ¹˛1; : : : ; ˛rº, denote

�Cˆ D ¹ˇ 2 �
C
W ni .ˇ/ > 0 for some ˛i 2 ˆº:

Let G be the simple complex Lie group with Lie algebra g, and L the closed subgroup
with Lie subalgebra l D h ˚

L
ˇ2�n�

C

ˆ

CEˇ . Then M n D G=L is a simple Kähler
C-space, and all simple Kähler C-spaces can be obtained that way. The complex dimen-
sion n ofM is equal to the cardinality j�Cˆ j, while b2.M/D jˆj. The tangent space T 0M
at the point eL can be identified with the subspace mC D

L
ˇ2�

C

ˆ

CEˇ of g. Following
Itoh [13], we will denote this simple Kähler C-space as M n D .g; ˆ/.

Next let us recall the Chevalley basis (see [11] or [16, Proposition 11]). Let B be
the Killing form of g. For each ˛ 2 �, let H˛ be the unique element in h such that
B.H˛; H/ D ˛.H/ for any H 2 h. One can always choose root vectors E˛ of g˛ so

2See the Appendix. We are grateful to B. Wilking for pointing this out to us.
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that ŒE˛; E�˛� D H˛ , xE˛ D �E�˛ , and N�˛;�ˇ D �N˛;ˇ , where N˛;ˇ is defined by
ŒE˛; Eˇ � D N˛;ˇE˛Cˇ for any ˛, ˇ 2 � with ˛ ¤ �ˇ. If ˛ C ˇ is not a root, then
N˛;ˇ D 0 . Denote z˛ D B.E˛; E�˛/. Then ŒE˛; E�˛� D z˛H˛ , and the z˛ are all real
and z�˛ D z˛ for each ˛. Now we describe the invariant Kähler metrics on M . Such
a metric g makes the tangent frame F WD ¹E˛ W ˛ 2 mCº an orthogonal frame, with
g.E˛; xE˛/ D g˛z˛ where g˛ satisfy the following additive condition with respect to ˆ:

WriteˆD ¹˛i1 ; : : : ;˛imº, where 1� i1 < � � �< im � r . Assign g˛ij D cj > 0 arbitrar-
ily, and require gˇ D ni1.ˇ/c1 C � � � C nim.ˇ/cm for any ˇ D n1.ˇ/˛1 C � � � C nr .ˇ/˛r
in �Cˆ . Denote this metric as g D g.c1;:::;cm/. So the invariant Kähler metrics on M are
determined by m D b2 positive constants c1; : : : ; cm. It turns out (see [16, Section 3.2])
that the metric is Einstein if and only if, up to scaling, g˛ D

P
ˇ2�

C

ˆ

B.˛; ˇ/ for any
˛ 2 �Cˆ .

Following the computation initiated in [13], Lohove [16, Proposition 16] established
the curvature formula for .M n; g/ under the Chevalley frame F , which we will describe
below. For ˛;ˇ; 
; ı 2�Cˆ , writeR.E˛; xEˇ ;E
 ; xEı/ asR˛ x̌
xı . A highly distinctive prop-
erty of the curvature of M is that

R˛ x̌
xı D 0 unless ˛ C 
 D ˇ C ı: (4.1)

To take advantage of the symmetry of curvature for Kähler metrics, let us consider the
order relation < in �: for ˛ ¤ ˇ 2 �, write ˛ < ˇ if ns.˛/ < ns.ˇ/ but ni .˛/ D ni .ˇ/
for all 1 � i < s (if s > 1).

For R˛ x̌
xı with ˛ C 
 D ˇ C ı, by Kähler symmetries, we may assume that ˛ is the
smallest, and ˇ � ı. If ˛ D ˇ, then 
 D ı, so we are left with R˛ x̨
 x
 where ˛ � 
 . If
˛ ¤ ˇ, then we are left with the case ˛ < ˇ � ı < 
 . In the first case, Lohove found that,
for any ˛, 
 2 �Cˆ with ˛ � 
 ,

R˛ x̨
 x
 D

8<:g˛z˛z
B.H˛;H
 /C
g˛g

g˛C


z˛C
N
2
˛;
 if 
 � ˛ 2 �Cˆ ;

g
z˛z
B.H˛;H
 /C
g2

g˛C


z˛C
N
2
˛;
 if 
 � ˛ … �Cˆ :

(4.2)

For the second case, he deduced that, for any ˛, ˇ, 
 , ı 2 �Cˆ with ˛ < ˇ � ı < 
 and
˛ C 
 D ˇ C ı,

R˛ x̌
xı D

8<:g˛z˛�ˇN˛;�ˇN
;�ı C
g˛gˇ
g˛C


z˛C
N˛;
Nˇ;ı if 
 � ˇ 2 �Cˆ ;

gız˛�ˇN˛;�ˇN
;�ı C
g
gı
g˛C


z˛C
N˛;
Nˇ;ı if 
 � ˇ … �Cˆ :
(4.3)

Note that in [16] the curvature R differs from ours by a minus sign. Next let us specialize
to the simplest case, namely, when

g D Ar D sl.r C 1/

is the space of all traceless complex .r C 1/ � .r C 1/ matrices. A Cartan subalgebra h is
given by all (traceless) diagonal matrices. The Killing form B is B.X;Y /D tr.XY /. The
root system is given by�D ¹˛ij W 1 � i; j � r C 1º, where ˛ij .H/DHi i �Hjj for any
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H 2 h, with a fundamental basis ¹˛1; : : : ; ˛rº where ˛i D ˛i;iC1. The positive roots are
�C D ¹˛ij W 1 � i < j � r C 1º, with �˛ij D j̨ i .

Denote by Eij the .rC1/�.rC1/ matrix with .i; j /-th entry 1 and the others zero,
and writeHij D Ei i �Ejj . Then ¹Hij ; Eij º forms a Chevalley basis. Since ŒEij ; Ej i � D
Hij , we know that z˛ D 1 for all ˛ 2 �. Thus the square norm g.E˛; xE˛/ equals g˛ .

To simplify our further discussions, let us introduce the following notations. For any
˛ < 
 in �C, we will write


 t ˛ ” 
 D ˛ij ; ˛ D j̨k for some 1 � i < j < k � r C 1;


 A0 ˛ ” 
 D ˛ik ; ˛ D ˛ij for some 1 � i < j < k � r C 1;


 A00 ˛ ” 
 D ˛ik ; ˛ D j̨k for some 1 � i < j < k � r C 1;


 A ˛ ” 
 A0 ˛ or 
 A00 ˛:

Since B.Hij ;Hkl / D tr¹.Ei i �Ejj /.Ekk �El l /º D ıik C ıjl � ıil � ıjk , we get

B.H˛;H˛/ D 2 for each ˛;

and for any ˛ < 
 in �C, we have

B.H˛;H
 / D

8̂̂<̂
:̂
�1 if 
 t ˛;

1 if 
 A ˛;
0 otherwise:

Also, since ŒEij ; Ekl � D ıjkEil � ıilEkj , for any ˛ < 
 in �C we get

N˛;
 D

´
�1 if 
 t ˛;

0 otherwise:

Also, for any ˛ < ˇ in �C,

N˛;�ˇ D

8̂̂<̂
:̂
�1 if 
 A00 ˛;
1 if 
 A0 ˛;
0 otherwise:

Note that for ı < 
 in �C, we have N
;�ı D �N�
;ı D Nı;�
 . Putting all this into the
Itoh–Lahove curvature formula, we get R˛ x̨˛ x̨ D 2g˛ , and for any ˛ < 
 in �Cˆ ,

R˛ x̨
 x
 D

8̂̂<̂
:̂
�
g˛g

g˛C


if 
 t ˛;

g˛ if 
 A ˛;
0 otherwise:

Also, for ˛ < ˇ < ı < 
 in�Cˆ with ˛C 
 D ˇC ı, only two cases will result in nonzero
values forR˛ x̌
xı : when either 
 t ˛ D ı t ˇ and 
 A0 ı, or ˇ A0 ˛, ı A00 ˛, and 
 D ˇC
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ı � ˛. In the first case the curvature equals � g˛gı
g˛C


, and in the second case it equals g˛ .
Note that these two cases can be described equivalently as: there exist 1 � i < p < q <
k � r C 1 such that ı D ˛ip , ˇ D p̨k , 
 D ˛iq , ˛ D ˛qk for the first case, while ı D ˛iq ,
ˇ D p̨k , 
 D ˛ik , ˛ D p̨q for the second case.

Now let us switch to the unitary frame QE˛ D E˛=
p
g˛ of mC. For the sake of con-

venience, we will still use R˛ x̌
xı to denote the curvature component R. QE˛; QEˇ ; QE
 ; QEı/.
Also, to avoid clumsy notations, we will write g˛ik simply as gik . Up to Kähler symme-
tries, the only nonzero components of the curvature are

R˛ x̨˛ x̨ D
2

g˛
; ˛ 2 �Cˆ ; (4.4)

R˛ x̨
 x
 D

8<:� 1
gik

if 9i < j < k W 
 D ˛ij ; ˛ D j̨k ;

1
gik

if 9i < j < k W 
 D ˛ik ; ˛ D ˛ij or j̨k ;
(4.5)

where we assume ˛ < 
 . For ˛ < ˇ < ı < 
 in�Cˆ , the curvature component R˛ x̌
xı will
be equal to the following nonzero values only when there are 1 � i < p < q < k � r C 1
such that

R˛ x̌
xı D

8<:�
p
gipgqk

gik
p
giqgpk

if ı D ˛ip; ˇ D p̨k ; 
 D ˛iq; ˛ D ˛qk ;
p
gpq

p
gikgiqgpk

if ı D ˛iq; ˇ D p̨k ; 
 D ˛ik ; ˛ D p̨q :
(4.6)

Now we check the sign of CQB or dCQB. First let us consider the case when ˆ D
¹˛1; : : : ; ˛rº, namely, when M n D SU.r C 1/=T is the flag manifold, where T is a
maximal torus. We have n D 1

2
r.r C 1/, b2 D r , and �Cˆ D �

C. We will choose g to be
the Kähler–Einstein metric. In this case, cj D 1 and g˛ik D k � i for all indices. It is easy
to see that the Ricci curvature is constantly equal to � D 2.

For any symmetric n � n matrix A, the quadratic form

hQ.A/; xAi D

nX
a;b;c;dD1

Raxbc xdAacAbd

is equal toX
˛

R˛ x̨˛ x̨jA˛˛j
2
C

X
˛<


4R˛ x̨
 x
 jA˛
 j
2
C

X
˛<ˇ<ı<


8<¹R˛ x̌
xıA˛
Aˇıº

D

X
˛

2

g˛
jA˛˛j

2
C

X
i<j<k

4

gik
.jAij;ikj

2
C jAjk;ikj

2
� jAjk;ij j

2/

C

X
i<p<q<k

8<

²
�

p
gipgqk

gik
p
giqgpk

Aqk;iqApk;ip C

p
gpq

p
gikgiqgpk

Apq;ikApk;iq

³
(4.7)

Let us denote by X and Y the two terms in the last line above. We have

CQB QE .A/ D �kAk
2
� hQ.A/; xAi; dCQB QE .A/ D �kAk

2
C hQ.A/; xAi:
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In order to check that CQB � 0 and dCQB > 0 for .SU.r C 1/=T ; g/, the flag manifold
of type A with Einstein metric, it suffices to take care of the two crossing terms X and Y .
For Y , the square root part of the coefficient is less than 1=2, so we have

jY j �
X

i<p<q<k

4jApq;ikApk;iqj �
X

i<p<q<k

.2jApq;ikj
2
C 2jApk;iqj

2/

Note that in 2kAk2 D 2hA; xAi D
P
˛ jA˛˛j

2 C 4
P
˛<
 jA˛
 j

2, each jApq;ikj2 term or
jApk;iqj

2 term will appear four times, so the Y term will be dominated by �kAk2 from
above or below. For theX term, let us fix i < k with k � i D t C 1� 2. WriteAip;pk DZp
and p0 D p � i . Since the square root part of the coefficient of X is less than 1, we have

jX j �
X
i<k

X
1�p0<q0�t

4

t C 1
.jZpj

2
C jZqj

2/ D
X
i<p<k

4.t � 1/

t C 1
jZpj

2:

Again since for each i < j < k, the term jAij;jkj2 D jZj j2 will appear four times
in �kAk2, the X term will be dominated by �kAk2 from above and below. Note that
for the lower bound part, the term jZpj2 will also emerge from the bisectional curvature
terms, with coefficient � 4

tC1
. We have �4.t�1/

tC1
�

4
tC1
D �

4t
tC1

> �4, so dCQB will be
nonnegative, and actually positive since its vanishing would imply A D 0. We have thus
proved Theorem 1.6 stated in the introduction.

Note that if A has only nontrivial entries along the diagonal line for the simple roots,
then hQ.A/; xAi D 2kAk2, so CQB is only nonnegative and not positive.

Next let us give a nonsymmetric example of irreducible Kähler C-space with b2 > 1
that has positive CQB. The smallest-dimensional type A space which is nonsymmetric
and not a P1 bundle would be M 12 D SU.6/=S.U.2/ � U.2/ � U.2//, or equivalently
.A5; ˆ/ D .sl6; ˆ/ where ˆ D ¹˛2; ˛4º. It has n D 12 and b2 D 2. We have

�Cˆ D ¹˛kl W 1 � k < l � 6º n ¹˛12; ˛34; ˛56º:

Up to a scaling, the Kähler–Einstein metric g has gkl D g˛kl D
P
ˇ2�

C

ˆ

B.˛kl ; ˇ/, so

g13 D g14 D g23 D g24 D 2;

g35 D g36 D g45 D g46 D 2;

g15 D g16 D g25 D g26 D 4:

Let �1 D ¹˛15; ˛16; ˛25; ˛26º and �2 D �Cˆ n�1.
So the curvature components are R˛ x̨˛ x̨ D 2=g˛ , which is 1=2 for ˛ 2 �1 and 1 for

˛ 2 �2. While R˛ x̨
 x
 are given by .4:5/. It is easy to see that the Ricci curvature is
constantly � D 2 in this case. The crossing terms R˛ x̌
xı are given by .4:6/. We have

�kAk2 D
X
˛

2jA˛˛j
2
C

X
˛<


4jA˛
 j
2:

Now consider the quadratic form hQ.A/; xAi given by .4:7/. Let us examine the two terms
X and Y in the last line of .4:7/. For Y , note that i < p < q < k could be .1; 2; 3; 4/ or
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.3; 4; 5; 6/, in which case the square root part of the coefficient is 1=2, or .1; 2; 3; 5/,

.1; 2; 3; 6/, .1; 2; 4; 5/, .1; 2; 4; 6/, .1; 2; 5; 6/, .1; 3; 5; 6/, .1; 4; 5; 6/, .2; 3; 5; 6/, or

.2; 4; 5; 6/. In each of these last nine cases the square root part of the coefficient for
the Y term is 1=4. So we have

jY j � 2
X

i<p<q<k

jAik;pqAiq;pkj �
X

i<p<q<k

.jAik;pqj
2
C jAiq;pkj

2/:

Here in the sum we are skipping those terms with .p; q/ D .3; 4/. Note that in �kAk2,
each of the terms jAiq;pkj2 appears with coefficient 4, so jY j is strictly dominated by
�kAk2 from above and below. Next let us consider the X terms. For each of ˛ D ˛qk ,
ˇD p̨k , 
 D ˛iq , ıD ˛ip to be in�Cˆ , the indices i < p < q <k could only be .1;3;4;5/,
.1; 3; 4; 6/, .2; 3; 4; 5/, or .2; 3; 4; 6/. In each case, the square root part of the coefficient
is 1, while gik D 4, so we have

jX j �

2X
iD1

6X
kD5

.jAi3;3kj
2
C jAi4;4kj

2/:

So each of these jAi3;3kj2 or jAi4;4kj2 terms in the quadratic form will be strictly domi-
nated by that from �kAk2 from both sides. The other terms are clearly strictly dominated
by�kAk2 from both above and below. So .M 12;g/ has positive CQB and positive dCQB,
and we have completed the proof of Theorem 1.8 stated in the introduction.

5. Nonpositive cases

One may also consider Kähler manifolds with nonpositive CQB or dCQB. Similar to the
nonnegative cases, we have the following results:

Theorem 5.1. Let .M;g/ be a Kähler manifold with CQB1�0. Then for anyX;Y 2T 0xM ,

jX j2 Ric.Y; xY / �R.X; xX; Y; xY / � 0: (5.1)

The inequality is strict . for nonzero X , Y / if CQB1 < 0. In particular,

Ric.Y; xY / �
1

n � 1
Ric?.Y; xY / � 0:

Similarly, if .M; g/ is Kähler with dCQB1 � 0, then for any X; Y 2 T 0xM ,

jX j2 Ric.Y; xY /CR.X; xX; Y; xY / � 0; (5.2)

and the inequality is strict .for nonzero X , Y / when dCQB1 < 0. In particular, Ric.Y; xY /
�

1
nC1

RicC.Y; xY / � 0.
A product Kähler manifoldM DM1 �M2 has CQB< 0 .or CQB� 0, or dCQB< 0,

or dCQB � 0/ if and only if each factor does. For any positive integer k, M has CQBk
.or dCQBk/ < 0 or � 0 if and only if each factor does.
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Proof. The proof is exactly the same as that of Theorem 2.1. �

Theorem 5.2. Assume that .M; g/ is a compact Kähler manifold with CQB1 � 0 .or
dCQB1 � 0/. Assume that the universal cover QM of M does not have a flat de Rham
factor. Then M must admit a metric with Ric < 0. In fact, the Kähler–Ricci flow evolves
the metric g into a Kähler metric g.t/t2.0;�/ with negative Ricci curvature for some �.

Proof. We can prove the result by following the same argument and flipping the sign
when needed in the proof of Theorem 3.1. �

Next we construct examples of compact Kähler manifolds with negative (or nonposi-
tive) CQB and dCQB. First of all, if M n is a compact quotient of a Hermitian symmetric
space zM of noncompact type, then by [3], we see thatM always has dCQB< 0 and CQB
� 0, and it will have CQB < 0 when and only when zM does not have the unit disc as an
irreducible factor.

For nonlocally Hermitian symmetric examples, we adapt the construction of strongly
negatively curved manifolds by Mostow and Siu [20] and by the second named author
[34, 35]. To state the result, let us recall the notion of good covers.

A finite branched cover f W M n ! N n between two compact complex manifolds
is called a good cover if for any p 2 M , there exist locally holomorphic coordinates
.z1; : : : ; zn/ centered at p and .w1; : : : ; wn/ centered at f .p/ such that f is given by
wi D z

mi
i , 1 � i � n, wheremi are positive integers. Note that the branching locus B and

ramification locus R are necessarily normal crossing divisors in this case.
In [20], Mostow and Siu computed the curvature for the Bergman metric of the

Thullen domain ¹jz1j2m C jz2j2 < 1º, and used it to construct examples of strongly
negatively curved surfaces which are not covered by a ball. In [34], the second named
author generalized this to higher dimensions, and also to the quotient space level using
the Poincaré distance, and showed [34, Theorem 1] that if N is a compact smooth quo-
tient of the ball, and B � N a smooth totally geodesic divisor (possibly disconnected),
then for any good cover f W M ! N branched along B , M admits a Kähler metric
with negative complex curvature operator. We will use this computation to deduce the
following:

Theorem 5.3. LetN n .n� 2/ be a smooth compact quotient of the ball, equipped with the
complex hyperbolic metric, and let B � N be a smooth totally geodesic divisor . possibly
disconnected/. If f WM !N is a good cover branched alongB , thenM admits a Kähler
metric g which has negative CQB and negative dCQB.

Remark. Such a manifold M is not homotopy equivalent to any locally Hermitian sym-
metric space, and it is strongly rigid in the sense of Siu: any compact Kähler manifold
homotopy equivalent to M must be (anti)biholomorphic to M .

Proof of Theorem 5.3. We construct Kähler metrics !" exactly as in [34, proof of Theo-
rem 1]. Notice that at a point p in a tubular neighborhood V of the ramification locus R,
there exists a tangent frame e such that ei ? ej whenever i ¤ j , and under e the only
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nonzero curvature components of !" are Rixij xj , with

�R1x11x1 D b; �R1x1ixi D c; �Rixiixi D 2e; �Rixij xj D e

for any 2 � i < j . It was shown in [34] that b > 0, c > 0, e > 0, and nbe > .n � 1/2c2.
Note that if we normalize e, that is, replace ek by ek=jekj for each k, then the above

inequalities on b, c, and e still hold. So let us assume that e is unitary at p. For any
nontrivial n � n matrix A, we have �CQBe.A/ D P �Q, and � dCQBe.A/ D P CQ,
where

P D �
X
i;j;k;`

Ri xjkxkA`iA j̀ D �

X
i;k;`

RixikxkjA`i j
2

D .b C .n � 1/c/
X
`

jA`1j
2
C .c C ne/

X
i>1;`

jA`i j
2;

Q D �
X
i;j;k;`

Ri xjk x̀AikAj` D �
X
i

Rixiixi jAi i j
2
�

X
i<k

RixikxkjAik C Aki j
2

D bjA11j
2
C 2e

X
i>1

jAi i j
2
C c

X
i>1

jA1i C Ai1j
2
C e

X
1<i<k

jAik C Aki j
2:

Clearly, P CQ > 0 for all A ¤ 0, and if we write tij D jAij j2, we have

P �Q D .n � 1/c t11 C .c C .n � 2/e/
X
i;k>1

tik

C

X
i>1

�
.b C .n � 2/c/ ti1 C ne t1i � 2c<.Ai1A1i /

�
;

which is positive as nbe > .n � 1/c2 > c2. So the metric !" has CQB < 0 and dCQB
< 0 in V , for any " > 0. By choosing " sufficiently small, one see that CQB and dCQB
will be negative everywhere in M . �

By [34,35], we see that there are many examples of such M in n D 2. An example in
nD 3 was constructed by M. Deraux [9], and we are not aware of any higher-dimensional
such constructions, even though it has been widely believed that there should be plenty in
all dimensions.

Appendix

Proposition 5.1 (Wilking). Let .M n; g/ be a Riemannian manifold of dimension n � 3.
Then CQBR

1 � 0 .> 0/ is the same as the .n� 2/-nonnegativity .positivity/ of curvature.
Dually, CQBR

1 � 0 .< 0/ is the same as the .n� 2/-nonpositivity .negativity/ of curvature.

Proof. Recall that the .n � 2/-nonnegativity of the curvature is defined to mean that for
any n � 1 orthonormal vectors ¹e0; : : : ; en�2º,

Pn�2
jD1 R.e0; ej ; ej ; e0/ � 0. To verify

this under CQBR
1 � 0 we pick X D e0 and Y D en�1 with en�1 being the unit vector
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perpendicular to ¹e0; : : : ; en�2º. Then jY j2 Ric.X;X/ �R.X; Y; Y;X/ � 0 immediately
implies the result.

To prove the other direction we first observe that .n � 2/-nonnegativity of the curva-
ture implies Ric � 0. This can be seen from the fact that, for any fixed 1 � k � n � 1,

n�1X
jD1

R.e0; ej ; ej ; e0/ �R.e0; ek ; ek ; e0/ � 0:

Summing them together we have

.n � 2/Ric.e0; e0/ D .n � 1/Ric�Ric � 0:

Since this holds for any .n � 1/-orthonormal vectors, we have Ric � 0.
Given X; Y ¤ 0, let X D e0. And let en be the unit maximum eigen-direction of

the symmetric bilinear form B.Y; Z/ WD R.X; Y; Z; X/. Clearly R.e0; en; en; e0/ � 0,
otherwise R.e0; ej ; ej ; e0/ � R.e0; en; en; e0/ < 0, which implies that Ric.e0; e0/ < 0,
a contradiction.

We may assume that e0 ? en. Otherwise we may split en as en D e?n C e
T
n into the

perpendicular and tangent parts with eTn ¤ 0with je?n j< 1. We may assume that je?n j ¤ 0,
otherwise we have R.e0; Y; Y; e0/ � R.e0; en; en; e0/ D 0. This together with Ric � 0
implies that jY j2 Ric.X;X/ �R.X; Y; Y;X/ � 0. Under the condition 1 > je?n j > 0,

R

�
e0;

e?n
je?n j

;
e?n
je?n j

; e0

�
D

1

je?n j
2
R.e0; en; en; e0/ > R.e0; en; en; e0/

unless R.e0; en; en; e0/ D 0, which implies jY j2 Ric.X; X/ � R.X; Y; Y; X/ � 0 by the
above argument and Ric � 0.

Altogether, the above shows that either e0 ? en or jY j2Ric.X;X/�R.X;Y;Y;X/�0.
Under the assumption e0 ? en we can choose the other vectors e1; : : : ; en�2 in the sub-
space perpendicular to span ¹e0; enº so that we can apply the .n� 2/-nonnegativity of the
curvature to conclude that

Ric.X;X/ �R.X; en; en; e0/ D
n�2X
jD1

R.e0; ej ; ej ; e0/ � 0:

But for any Y with jY j D 1 we have

jY j2 Ric.X;X/ �R.X; Y; Y;X/ � Ric.X;X/ �R.e0; en; en; e0/:

This proves the other direction as well. The positivity case is the same. �

A restatement of the CQBR
1 part of Theorem 3.2 is

Theorem 5.4. Assume that .M; g/ is a compact Riemannian manifold with nonnegative
.n� 2/-Ricci curvature. Assume that the universal cover QM does not have a flat de Rham
factor. Then M admits a metric with positive Ricci curvature. In particular, the funda-
mental group is finite. In fact, the flow evolves the metric g into a metric g.t/t2.0;�/ with
positive Ricci curvature for some �.
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It is of interest to investigate whether a result similar to the above holds for k-nonnega-
tive curvature with k < n� 2, that is, whether g.t/ has positive kC 1-curvature assuming
g.0/ has k-nonnegative curvature and .M; g.t// does not split locally.
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