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Dimensions of a class of nonautonomous carpets and measures
on R?

Yifei Gu, Chuanyan Hou, and Jun Jie Miao

Abstract. For each integer k > 0, let nx and my be integers such that ng > 2, my > 2, and let
Dy be asubset of {0,...,nx — 1} x{0,...,mg — 1}. Foreach w = (i, j) € Di, we define an
affine transformation on R? by

Pu(x) =Ti(x +w),  we Dy,

where Ty = diag(n;1 , m;l). The non-empty compact set

oo

Ezﬂ U (leoq)wzo"‘oq)wk

k=1 (wiw,...wi)elTi—, D;

is called a nonautonomous carpet.

In the paper, we provide the lower, packing, box-counting and Assouad dimensions of the
nonautonomous carpets £. We also explore the dimension properties of nonautonomous meas-
ures u supported on E, and we provide Hausdorff, packing and entropy dimension formulas
of w.

1. Introduction

1.1. Dimensions of measures

In the dimension theory of fractal geometry and dynamical systems, the dimensions
of invariant measures are important objects to investigate, and the most frequently
used dimensions are Hausdorff, packing and entropy dimensions.

Let p be a finite Borel measure on R4 . The Hausdorff and packing dimensions of
W, respectively, are defined as

dimgu = inf{dimg 4 : u(A°) = 0},
dimpu = inf{dimp A : u(A4A°) = 0}.
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The lower and upper local dimensions of u are given by

1 B N 1 B
—og,u( x, r))’ dimyoe p1(x) = lim sup —og,u( x, r))’

di — liminf
dimy, p(x) = logr r—0 logr

and we say that the local dimension exists at x if these are equal, writing dimyy. 1 (x)
for the common value. Let M,, be the partition of R into grid boxes

d
[ ]2 ji.27"Gi + D]

i=1

with integers j;. The lower and upper entropy dimensions of p, respectively, are
defined as
H, (1) — Hy (1)

9

where

Hy(w)=— Y u(Q)log u(Q).

QeMy,

If these are equal, we refer to the common value as the entropy dimension of p. We
refer the readers to [10, 13] for the background reading.

The following well-known theorem of Young [40] shows the connection of these
dimensions.

Theorem 1.1. Let j1 be a probability measure on R¢. Suppose that the local dimen-
sion
dimyoe u(x) = «, p-a.e. x € RY.

Then dim, pu = dimg 4 = «.

In 2002, Fan, Lau and Rao improved the conclusion of the theorem to dim, u =
dimp 4 = dimy 4 = «, see [13]. Determination of the dimensions of fractal sets is a
challenging problem, see [2,8,11,12,14,19,21,25,36, 38] for various studies on the
dimension theory of fractal sets. In particular, for self-affine sets with grid structure,
which are often called non-typical self-affine sets such as Bedford—-McMullen carpets,
Gatzouras—Lalley sets, Barariski sets, see [2,3,5,26,29,33], one strategy is to compute
the Hausdorff dimensions of measures supported on the fractal set via local dimen-
sions, and the supreme dimension of measures often gives the Hausdorff dimension
of the set, that is

dimy E = sup{dimyg v : v is a Borel probability measure supported on E}.
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Since the lower and upper local dimensions often give the Hausdorff and packing
dimensions of measures (see Lemma 4.4 in Section 4), it is important to investig-
ate the local dimensions and the dimension of measures in the dimension theory of
fractal sets. In many cases, people found that local dimensions exist and equal a con-
stant almost surely, that is to say, in these studies the Hausdorff, packing and entropy
dimensions of measures are identical, see [13]. However, there are fractal measures
whose local dimensions do not necessarily exist, and it is an interesting question to
investigate the dimension theory of such measures.

1.2. Self-affine sets

First, we review a class of non-typical self-affine sets, and we refer the readers to
[10-12] for the study of typical self-affine sets.

Given integers m and n such thatn > m > 2, let D be a subset of {0,...,n — 1} X
{0,...,m — 1}. For each w € D, we define an affine transformation ®,, on R? by
Dy (x) =T(x + w), (1.1)

where T = diag(n™',m™1). Then {®, }wcp forms a self-affine iterated function sys-
tem (IFS). By the well-known theorem of Hutchinson, see [10,24], this self-affine IFS
has a unique self-affine attractor, that is a unique non-empty compact set £ C R? such
that
m
E=|])®(E).
i=1

The self-affine set E is also called a Bedford—McMullen set or a Bedford—McMullen
carpet [5,33].

Various dimensions of Bedford—-McMullen carpets have been investigated, see [5,
15,32,33], and these sets are often used as good examples for the following dimension
inequalities

dim; £ < dimyg E < dimg £ < dimp E, (1.2)

where E C R is compact, and where dim;, and dima denote lower dimension and
Assouad dimension, respectively, see Section 5 for the definitions. Note that the lower
dimension is only a lower bound to the Hausdorff dimension with additional assump-
tions such as the set E is closed, and we refer readers to [16] for details of Assouad
type dimensions. Since Bedford-McMullen carpets are a class of simplest self-affine
sets, they are frequently used as a testing ground on questions and conjectures of
fractals, and we refer readers to [1, 17,22, 23,27,30, 31, 34] for various studies on
Bedford—McMullen carpets.

There are many different generalisations for Bedford-McMullen carpets, see [3,4,
14,15,17,26,29]. In [26], Kenyon and Peres studied the self-affine sponge E, which is
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a generalization of Bedford—-McMullen carpets in R?, and they found the Hausdorff
dimensions of self-affine measures by using ergodic property to show that the local
dimension exists. Moreover, they proved that there exists a unique ergodic self-affine
measure of full Hausdorff dimension. The research on the generalisations of Bedford—
McMullen carpets is also an active area, and we refer readers to [8, 17, 18,28,37] for
the related studies on different generalizations and the references therein.

In this paper, we study a class of fractals, named nonautonomous carpets (see Sub-
section 1.3), which may also be regarded as a generalisation of Bedford-McMullen
carpets. Since we apply different affine IFSs at the different levels in the iterating
process, such sets do not have dynamical properties any more. Therefore, the tools of
ergodic theory cannot be invoked, which causes that the local dimensions of meas-
ures supported on these sets do not necessarily exist, and this leads to the difficulties
to determine their dimensions of the sets and measures.

1.3. Nonautonomous carpets

Given a sequence {(nx, mg)}7=,, where my and ny are integers such that ny > 2 and
my > 2. For each integer k, let D be a subset of {0, ..., nx — 1} x{0,...,mx — 1}.
We write r;, = card(Dy) and always assume that r; > 2. The set of all finite sequences
with length k and the set of infinite sequences are denoted by

k k 00
s=T]o. =f=1]] o ===]]9
j=1 j=I+1 J=1

Forw:wl...wkeEk,v:vl...vl eEl,zH,write

WXV =1W...WEV]...7] e 3kt

We write wk = (wy ... wy) for the curtailment after k terms of the infinite sequence
w = (wjw;y...) € X®°. We write w < v if w is a curtailment of v. We call the set
[w] = {v € % : w < v} the cylinder of w, where w € ¥*. If w = @, its cylinder is
[w] = Z°°.
Given an integer k > 0 for each w = (i, j) € Dy, we define an affine transform-
ation on R? by
D,(x) =Tr(x +w), we Dy, (1.3)

where Ty = diag(n; !, m;!). For each w = (wjws ... wy) € X*, we write
Dy = Dy, 0Py, 0---0 Dy, .

Suppose that J = [0, 1]> C R?. For each integer k > 0, let {®y }yep, be the
self-affine IFS as in (1.3). For each w € =¥, the set Jy, is a geometrical affine copy
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to J, i.e., there exists an affine mapping ®,, : R? — R? such that J,, = ®(J). The

non-empty compact set
o0
E = ﬂ U Ju (1.4)
k=1weXk

is called a nonautonomous carpet or self-affine Moran set {(ng, my, Dy )}z, - For all
w € XX the elements Jw are called k-th-level basic sets of E, see Figure 1 for the
first three levels.

Note that this may also be regarded as a generalization of Moran fractals where
only similarity contractions are used in the construction, see [35, 39]. In [20], the
authors studied a special case of these sets where they require that ny > my for all
k > 0, and they provided the Assouad, packing and box-counting dimensions of the
sets. They also obtained the Hausdorff dimension formula under some strong tech-
nique assumptions. In this paper, we are interested in investigating the dimension
properties of measures supported on nonautonomous sets, and we also provide the
Assouad, packing and box-counting dimension formulas of sets which extend the con-
clusions in [20]. Furthermore, we study the lower dimension of the nonautonomous
set which has not been studied, and this conclusion completes the dimension formu-
las in inequality (1.2). All these studies strongly rely on the fixed translations at each
level, which gives the fine grid structure, and this is different to the classic Moran sets
where the translations are very flexible in the Moran structure. Recently, Gu and Miao
in [21] have studied a class of sets, called nonautonomous iterated functions systems
and nonautonomous fractals, where they replaced the similarities by affine contrac-
tions and removed the separation assumption in the Moran construction. Like typical
self-affine fractals, they obtained various almost sure results on dimensions.

Let IT : ©*° — R2 be the projection given by

00 k k
I(w) = Zdiag(l_[ n;l, l_[ mgl)wk.
k=1 h=1 h=1

Then the nonautonomous carpet E is the image of II, i.e., £ = I1(X°°). Note that
the range restriction of IT to E is surjective, i.e., [1 : ¥°° — F is surjective.

Let P denote the collection of all probability vectors on Dg, and P = [re; Pk-
Given p = (pr)ze, € &, where px = (pr(ij))(,j)en, € Pk is a probability vector.
Foreachw = wiw, ... w € >k, we write

vp([W]) = pw = p1(w1) p2(w2) - - pr (wi). (1.5)

Note that equation (1.5) uniquely determines a Borel probability measure on X°° by
Kolmogorov’s existence theorem, see [7], and vj, is the distribution of a sequence of
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(nym)(43)

(n,my)=(3,2) s =2 (n2,m)=(2,4) 59 =3 53=2
2(3) = 1 ra(2) =
r(l) =1 :2(2) _y (2)=3
(1) =0 ra(1) =0
r1(0) =2 m(0) =1 ra(0) = 1
#1(0)=1 A1)=0 7(2)=2 F2(0) =3 Fo(l) =1 F3(0) =1 75(2) =
(1) =2 75(3) =
81 = 2 §2 =2 v§3 73

Figure 1. Nonautonomous carpet constructed to Level 3, where D; = {(0, 0), (2, 0), (2, 1)},
Do = {(0,0),(0,2),(0,3),(1,2)} and D3 = {(0,2), (1,0),(1,2),(3,2)}.

independent Dy -valued random vectors Xy which have distributions py. It is clear
that
pp(A) = vp(T1714) (1.6)

is a Borel probability measure on E, and we call it a nonautonomous measure on E.
For each k > 0, we write that, for w = (i, j) € D,

acw) =qc(H) =Y pl.j). G =q@ = > pli.j).
(i,))eDy (i,))eDy
Note that (gx (j ));";‘0_ ' and (G (i)))?io_1 are also probability vectors, where g ()
is the measure distributed on j-th row, and G (i) is the measure distributed on i-th
column.
For each § > 0, let k = k(§) be the unique integer satisfying

1 1 1 1 1 1

. (1.7)
nmiy my mp miy my Mp—1
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Note that if there is no integer satisfying the above equation, we always set k = 1. For
each given integer k, let / = /(k) be the unique integer satisfying
11 1 1 1 1 11 1
—— e S (1.8)
nipnz nj miy ma mp ninz nj—1
We sometimes write [(§) for [ (k) if k = k(§) is given by (1.7). If there is no ambiguity
in the context, we just write / instead of /(k) for simplicity.

There are certain sets essential to the arguments of the paper which are called
approximate squares. Such analogous sets were defined in [3, 29, 33]. In this paper,
we use such sets repeatedly in calculations involving dimensions. For each § > 0 and
every w = Wiz ... Wy, ... € X, where w, = (iy, jn), we define the §-approximate
square containing w by

U(8,W)={V:vlvz...vn...eZ°°:in=i,’1,n=1,...,l(8),

Jn=Jjpn=1,....k@).,va = (i, jn)}
and we write Uy for the collection of all such sets, i.e.,
Us = {US,w) : w e TV

We write
$s = {TI(U) : U € Us}. (1.9)

For simplicity, we also call the elements S of Ss the §-approximate squares if there is
no ambiguity. The measure distributed on approximate squares is essential in finding
the dimensions of sets and measure.

Let vp and pup be the measures given by (1.5) and (1.6). Given § > 0, for each
U(5,w) € Ug, we have that

o (U6, w)) = { pr(wy) - pr(w)gre1 (W) - qe(wg), 1 <k, (1.10)

p1(wy) - pr(Wi)Gr1 (Wi 1) - qr(wy), 1> k.

where k = k(8) and [ = [(§) are given by (1.7) and (1.8). For each S(8, x) € §5 where
x € §(8,x) N E, there exists w € X°° such that IT(w) = x and IT(U (8, x)) = S(8, x).
Then

wp(S(8.x)) = vp(U(S, w)). (1.11)

Approximate squares are an essential tool in studying non-typical self-affine
fractals, see [3, 5, 17,29, 33], and we may also apply this tool to study the dimen-
sions of the nonautonomous carpets and nonautonomous measures.
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2. Main Results
In this section, we state our main conclusions. Let
N =sup{ng,my :k=1,2,...}. 2.1

We always assume that N T is finite in the paper. Given p € £, for each integer k > 0,
the k-th entropy is defined as

1 k
- > > piwlogpi(w)y— > > pi(w)loggi(w), [ =<k;
i=1wedD; | = w i
Hk(P)= P €eD; i ll+1 €eD;
- 2 piwlogpi(w)y— > > pi(w)loggi(w), [ >k,
i=1wedD; i=k+1weD;

2.2)
where [ = [(k) is given by (1.8).
First, we give formulas of the upper and lower entropy dimensions by using k-th
entropy.

Theorem 2.1. Let E be the nonautonomous carpet defined by (1.4) with Nt < oc.
Given p € P, let 1y be the nonautonomous measure defined by (1.6). Then

I L Hi (p)
imgi, = limsup 5 .
k—o00 Zi -1 log m;
H
dim,pup = liminf «(P)

To study the Hausdorff dimension of the nonautonomous measures, it often
requires certain separation conditions. We introduce two such conditions from geo-
metric and measure aspects.

Given k > 0, the set Dy is centred if i ¢ {0, N — 1} and j ¢ {0, M — 1} for
every (i, j) € Dg. That Dy, is centred implies that the rectangles corresponding to the
affine mappings at k-th level do not connect to the boundary of square [0, 1]%. We say
nonautonomous carpet E satisfies the frequency separation condition (FSC) if there
exists ¢ > 0 such that

card{k : Dy is centred fork = 1,...,n}
m

n—oo n

=C.

Given p € &, we say the nonautonomous measure /i, satisfies the measure separ-
ation condition (MSC) if there exists a constant 0 < C < 1 such that for each k > 0,

max{qx (0), gx (mx — 1), Gx (0), Gr (nx — 1)} < C.



Dimensions of a class of nonautonomous carpets and measures on R> 43

This condition guarantees that the measure is not supported only on one of the four
sides of the square [0, 1]?, and it implies that the measure on the sides of approx-
imate squares is zero. If we do not assume the strong separation condition on the
nonautonomous carpets, this condition is important for the proof of Hausdorff and
packing dimensions of measures supported on the sets.

Next, we state that the dimension formulas hold under either of FSC and MCS.

Theorem 2.2. Let E be the nonautonomous carpet defined by (1.4) with Nt < oc.
Given p € P, let jup be the nonautonomous measure defined by (1.6). Suppose that
either E satisfies FSC or i satisfies MSC. Then

di L Hi(p)
imy pp = liminf -
k=oo ) im1logmi
di L Hi(p)
impup = limsup

k—o0 Zf:l log m;

In Section 4, the FSC is replaced by a weaker condition, called boundary sep-
aration condition, see Theorem 4.1, and the Hausdorff and packing dimensions of
measures are studies under the weak condition. Such geometric separation conditions
are also useful to study the dimensions of sets.

It would be ideal that the supreme dimension of nonautonomous measures equals
the dimension of the sets, but we only obtain the equality under geometric separation
conditions in the following special case, see Corollary 4.2 as well.

Corollary 2.3. Let E be the nonautonomous carpet defined by (1.4) with N* < oo.
Suppose that E satisfies FSC, and for all k > 0, ny > my, and ri(j) = cy for all j
such that ri(j) # 0. Then there exists p € P such that

dimygpp, = max{dimypy :p’ € P} =dimy E;

dimp pp = max{dimp py : p’ € P} = dimp E.

Next, we state our conclusions on the dimension of nonautonomous carpets. For
each integer k > 0, we write

re(j) = -card{i : (i,j) € Dy foreach j},
r,j = max{rg(j):j =0,1,...,my — 1},
e = min{re() () £0.j = 0.1...omg — 1),
sp = card{j: (i, j) € Dy for some i}.

These count the rectangles from horizontal direction at k-th level, simply to say, ri ()
is the number of rectangles in j -th row, r]:’ is the largest number of rectangles in these
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TOWS, 7' is the smallest number of rectangles in these rows, and s is the number of
non-empty rows, see Figure 1.

Since it may happen that mj > ny in our setting, we have to count the rectangles
from vertical direction at each level as well. Similarly, for each integer k > 0, we write

Tk(@) = card{j : (i, j) € Dy foreachi},
’r\,‘: = max{rp(i):i =0,1,...,np — 1},
PO o= min{Fe(i)FeG) £0.i =0.1,.. .ng—1},
Sk = card{i : (i, ]) € D for some j},
—~

where 7 (i) is the number of rectangles in i-th column, 7 + 1s the largest number of
rectangles in these columns, ?k_ is the smallest number of rectangles in these columns,
and 5y is the number of non-empty columns, see Figure 1.

For each integer k > 0, let [ = (k) be given by (1.8), and we write

ryeeerSier Sk, L <k,
N (E) = 2.3
Lie(E) { FyccTESkgr S, L >k (2:3)
We write
N (E N (E
d* = limsup L, dy« = liminf —l’k( ) . 2.4)
k—oo lOgmy---my k—oo logmy .- -my

The box dimension and packing dimension of E are given by d* and d., respectively.

Theorem 2.4. Let E be the nonautonomous carpet defined by (1.4) with N+ < oc.
The packing dimension, upper box dimension and lower box dimension of E are given
by

dimp E = dimg E =d*,  dimg E = d..

The proof of the theorem is similar to the one of [20, Theorem 2.1], and we omit
it.

Finally, we state the conclusions on lower and Assouad dimensions for
nonautonomous carpets, see Section 5 for the definitions and [17] for details. For
integers k and k’ such that k&’ > k > 1,1et! = I(k) and I’ = I’(k’) be given by (1.8),
and we have that [’ > [. Hence, there are 6 different permutations for k', k, !’ and
. To obtain the lower dimension formula, we have to find the smallest number of
approximate squares with side length m%m% ‘e mlk/
m%m% mik and this number is given by the following formula
according to the permutations of k’, k, !’ and [,

covering the approximate square
with side length
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Py Ty Sk+1 " Sk/s I <l' <k <Kk,
rl__H---rk_rk_H---rl/s1/+1---sk/, [ <k<l <k,
NZ o (E) = :l_+1 ;{fl;+1 TR Skl ST, iSk < k,/ < l:,
k+1'” TR RS AR A 1 Y S T 7 <Il<l <k,
rk+1 -~-?l_rl+1 -‘-rk/'s\kxﬂ Sy, k<l <k <,
rk+1---?k_,fs\1+1---§l/, k<k<l<l/.

(2.5)

Similarly, to obtain the Assouad dimension, we must find the greatest number of

approximate squares w1th side length -1 mr m—2 e mLk/ covering the approximate square

with side length - -L ... m_k’ and this number is given by the following formula,

m m2

P Sk Sk I <l' <k <k,
rli_i_l---rlf-::rk+1---rl/.z/+1---s/]i/, l§k<l//§k:,
kk,(E)— ;\lj_l"":’{f_’_’;l‘c—i—l”'rk’sk’+l"'sl’a ][€§<];<;{/<§]i,’
AlJcr+1 o 1 l+1""’l/SAl/+1"'S/li/, =< =r
i’i“ rl rl+1-~-2€/sk/+1msl/, k<l<k'</l,
PUER rk/s1+1---s1/, k<k<l<l.

(2.6)

The following theorem shows that the lower and Assouad dimension of E are
given by different limits involving N7, (E) and N’ k,(E ).

Theorem 2.5. Let E be the nonautonomous carpet defined by (1.4) with NT < oo.
The lower dimension and the Assouad dimension of E are given by

{ logNk_JH_m(E) }

dimg £ = lim inf
logmpyq -+ Mpym

m—oo k

dimy £ = lim sup
m—>00 k

{ log Ny 4 (E) }
logmyyq - Mpym )

3. Entropy dimensions of nonautonomous measures

To prove the entropy dimension, we need the following well-known inequality.

Lemma 3.1. The function f :[0,00) — R defined by

{0 ifx =0,
f(x)_{—xlogx ifx #0

is strictly concave, and for all x1,...,xy >0,

f(ixi) <3 fo < f(ixi) n (;x) log .

i=1 i=1 i=1
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Let f be the function defined in Lemma 3.1. The lower and upper entropy dimen-
sion may be rewritten as

di —  limi fZQeMn f(Mp(Q))

Hhebe = DL log2—"

meﬂ — hms ZQEMn (/’LP(Q))
P n—>oo 10g2 n

Proof of Theorem 2.1. For each § > 0, let n be the integer such that 27" < § < 27"+1,
Then for each O € M,,, it intersects at most C; = 4(N )3 approximate squares of S,
and for each S € S;, it intersects at most 3% cubes in M. Therefore, by Lemma 3.1,
it follows that for each Q € M,,,

F(p(2)) £ Y fup(S N Q) < f(1p(Q)) + (log C)pp(Q) (3.1

Sess

and for each S € §g,

F(p() = D7 Fp(S N Q) < f(1p(S)) + 2log3)p(S). (B2

QeMy

Summing up (3.2) and (3.1) respectively, we obtain that

DT f(@) = Y D SN Q) = Y f(1p(Q)) +log Cy

oeMy, QeM;, SeSs QeMy

and

Y )= Y D Fe(@n8) = D f£(1p(S)) + 2log3.

Sess SeSs QeM, Sess

It follows that

3 S = Y f(1p(0))| = 210g3 +log . (3:3)

Sess QeM,

Let [ = [(§) and k = k(§) be given by (1.8) and (1.7). For I < k, by induction, it
follows that
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Z f(ﬂp(S))

Sess

= Y piwn) - pr(w)grer wigy) -+ g (wi)
UG, weUs

~log p1(w1) -+ pr(wi)qr41(Wi41) -+ g (W)
= Y prn) - pr(w)grer(wigs) -+ i (we) log pr(wy) -+ pr(wy)

weXk
+ > prwi) - pr WG (Wig1) - que(wie) 1og gr1 (Wi 1) -+ g (wi)
weXk
1 k
=3 piw)logpiw)+ Y > pi(w)logg;(w).
i=1wed; i=l+1wed;

For [ > k, similarly, we have that

D fe®) = > prw) - pe(we)Gkr1 (i) -+ Gr(wy)

Sess U(s,weUs
-log p1(w1) -+ pe(Wi)Gk+1 (W) -+ G1 (wy)
k I
=> Y piwlogpiw)+ > > pi(w)logqi(w).
i=1wed; i=k+1weD;

Hence, by (2.2), we obtain that

D7 F(up(S)) = —He(p).

Sess

Combining this with (3.3), we have that

—_— . ZQG.Mn f(Mp(Q))
dimgpp, = limsup log 27
n—-oo
i ZSGS,; f(up(S))
= limsup
§—0 10g5
— Hi (p)
= limsup ————.
k—oo Y iy logm;

By the same argument, we have that

i e o [ (9(Q) L He(p)
im,pp = liminf — = liminf —————,
n—00 log2—" k—oo MY logm;

which completes the proof. |
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4. Hausdorff and packing dimensions of nonautonomous measures

In this section, we study the Hausdorff and packing dimensions of nonautonomous
measures under a weak condition.

Given k > 0, the set Dy is left (right, bottom, top) empty if i # 0 (i # np — 1,
Jj #0,j #myg —1). Wesay E is left separated if

card{k : Dy is left empty fork = 1,...,n}
m

n—oo n

=cr > 0.

Similarly, we may define E is right separated, top separated and bottom separated
where the limits are denoted by cg, cT, cp, respectively. If E is left, right, bottom and
top separated, we say E satisfies the boundary separation condition (BSC).

Since BSC is weaker than FSC, we prove the dimension formulas of nonautonom-
ous measures under the assumption of the BSC.

Theorem 4.1. Let E be the nonautonomous carpet defined by (1.4) with NT < oo.
Given p € P, let up be the nonautonomous measure defined by (1.6). Suppose that
either E satisfies BSC or i, satisfies M SC. Then

H
dimy pp = liminf — @)
k=oo } iy logm;
di L Hi (p)
imp up, = limsup

koo Y r_ logm;

Corollary 4.2. Let E be an arbitrary nonautonomous carpet defined by (1.4). Sup-
pose that E satisfies BSC, and for all k > 0, ny > my, and ri.(j) = cy for all j such
that ri.(j) # 0. Then there exists p € P such that

dimy up = max{dimypy :p’ € P} = dimy E;
dimp up = max{dimp pp : p’ € P} = dimp E.
To study the dimensions of nonautonomous measures, we need a version of the

law of large numbers. For the readers’ convenience, we cite it here, see, for example,
[6, Corollary A.8] for details.

Theorem 4.3. Let {X,};2, be a sequence of random variables which are bounded
in L? and such that
E(Xp|X1,...,Xn_1) =0,

foralln > 1. Then the sequence % Z?Zl X, converges to 0 almost surely and in L?.

To estimate the Hausdorff dimension, we need the following well-known fact,
which is often called Frostman’s Lemma, see [9].
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Lemma 4.4. Let i be a finite Borel measure on R.

(1) Ifliminf, ¢ % > s for p-almost every x, then dimy j > s.

(2) Ifliminf,_q % < s for p-almost every x, then dimyg u < s.

log w(B(x,r)

(3) Iflimsup,_,q Tog7 > s for w-almost every x, then dimp . > s.

(4) Iflimsup,_,, W < s for p-almost every x, then dimp p < s.

Given an integer k > 0, let § = (my ---my) ™!, and we write U(k, w) = U(8, w)
and Si(w) = TI(U(k, w)) for simplicity in the rest of this section.

Proof of Theorem 4.1. First, we show that the conclusion holds under the assumption
of the BSC. Given w = wjw, ... wg ... € X%, since (log px (Wk))ren 1S a sequence
of independent random variables, their variances are uniformly bounded by

Var(log px (wx)) < (N1)* max_xlog® x.
x€[0.1]

By Theorem 4.3, we have

N N
— logpr(wi) =Y D pr(w)log p(w) + o(N),
k=1

k=1weDy

almost surely.
Similarly, the following equalities hold almost surely:

N N
=Y loggr(wr) = > D pre(w)logg(w) + o(N):

k=1 k=1weDy

N N
— Y logGrwi) = Y Y pr(w)logGi(w) + o(N).
k=1

k=1weDy

For each integer k > 0, recall that U(k, w) = U(S, w) and Si(w) = II(U(k, w))
where § = (my ---my)~'. By (1.10), we have that for k > [,

k

log vp(U(k, w)) = Zp,(w,) + D qi(wi)

i=l+1

= Z > pe(w)log pi(w)

i=1 weDy

k
+ Z Z pr(w)log gk (w) + o(k),

i=l+1weDy
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and for k < [,
1

k
log vy (U (k. w)) = Zp,(w,)+ > qiwi)

i=k+1

k
=>" > pe(w)log pe(w)

i=1 Gi)k
+ Z > pr(w)logqe(w) + o(k),
i=k+1weDy

almost surely. Hence, by (1.11) and (2.2), it follows that
log 11p(Sk(W)) = log vp(U(k, w)) = —Hi(p) + o(k), “.1)

almost surely.
Fixe > 0,andlet§ = 12—_‘2 It is clear that £ — 0 as ¢ tends to 0. Since E satisfies
the separation condition, there exists Ko > 0 such that for k > K,
card{h : Dy, is left empty for (1 — &)k < h <k} > 1, 4.2)
card{h : Dy, is right empty for (1 — &)k < h <k} > 1,
card{h : Dy, is top empty for (1 — &)k <h <k} > 1,
card{h : Dy, is bottom empty for (1 — &)k < h < k} > 1.

For sufficiently small p > 0, let k be the integer such that

k k—1 k
l_[mi <p< nmi <WNH! Hmi-
i=1 i=1 i=1

Let [ = I(k) be given by (1.8). Setting
K'=k+1, k" =min{(1-&k.k((1-§)>)},

where k((1 — £)?1) denotes the largest integer B such that /(8) < (1 — £)2/. Then, by
(4.2), we have that

card{h : Dy isleftfor 1" (k") <h < (1 = &)} > 1,
card{h : Dy isright for I”(k") < h < (1 —§)I} > 1,
card{h : Dy, is top empty for k" < h < k} > 1,
card{h : Dy, is bottom empty for k" < h <k} > 1.

Next, we show that the distance from IT(w) to the each side of Si~ (W) is greater
than p. We first consider the distance from IT(w) to the left side of Sg~(w). Let [y an
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integer satisfy [ (k") < ly < (1 — £)I. Then the distance from TT(w) to the left side
log(N 1)? it

of Sk~ (W) is no less than (n ---ny,)~". Since / is sufficiently large, £/ > gz

is clear that
(n1--m) "t =28 (g on) 7t = (N2 (g on) 7t = p.

Hence, the distance from I1(w) to the left side of S~ (w) is greater than p. For the

distance from I1(w) to the bottom side of Si~(w). Similarly, we may find an integer

ko k" < ko < k such that Dk, is bottom empty. Then the distance from IT(w) to the

bottom side of Sk~ (W) is no less than (my ---my,) ", which is greater than p.
Similarly, the distances from IT(w) to the top and right sides of Sp~(w) are

greater than p as well. This implies that B(IT(w), p) C Sk~ (w). From the inequal-

ities (my ---my)"t < (my---my)~! < p, we have Si/(w) C B(I1(w), p).
Therefore, we obtain that

Skr(w) C B(IL(W), p) C Sk (w). 4.3)
By (4.1), immediately, we have that

H 4 k 10 B H A"\% , H I k
timint PO i i 2 1p(BUILW). £)) > tim inf 2/ ) + 000,
koo % iy logm; p=0 log p koo YK jogm;

almost surely. Note that

Hy:(p) — Hi(p), Hyr(p) — Hi(p)

as ¢ tends to 0, they imply that

lo B(IT(w), H,
timipr 22 BAW-2) e Hi®)
0—0 log p k—oo N7 logm;
almost surely. By Lemma 4.4, it follows that
Hi (p)

dim = liminf ———.
T e >y logm;

Similarly, by (4.3) and (4.1), we have that

Hy k log 11y (B (TT(W), Hir k
lim sup M > lim sup gﬂp( ( ( ) ,0)) > lim sup k k(p) + 0( )
k—oo Y i_qlogm; p—0 log p koo 3K logm;

By Lemma 4.4, we have that

di . Hi(p)
imp pp = lim sup -
k—oo Y iy logm;
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Next, we prove that the conclusion holds for MSC. For each integer k > 0, we
write

A = {x =TI(w) € E : B(x, (m; ---mk)_le_“/];) NE C Sk(w)}.

Let L; be the collection of x € E such that the distance from x to the bot-
tom side of Si(w) is less than (m; ---mk)_le_‘/E

(i1, j1) -Gk, jk)... € Z®°. Itisclear that jz4; =--- = jk+[JE/1ogN+] = 0. Hence,
the measure of L is bounded by

, where x = II(w) and w =

Mp(Lk) < qi+1(0) - 'qk+[ﬁ/1ogN+](0) = Cf/];,

where C; = CV/0eNT+1) < | We apply the similar argument to other three sides
and obtain that

o0 [e.¢]
3 rp(49) <4 Yk < oo,
k=1 k=1
By Borel-Cantelli Lemma, it follows that
up(Agi.o) =0.
Therefore, for pp-almost all x, we have that

p(B(x, Om1 - -mi) "' e ™)) < 1y (Se(w),
for sufficiently large k. For each p > 0, there exists a unique integer k such that
(my i) eV < p < my e omp) e VR

which implies that pp(B(x, p)) < pp(Sk(x)). Therefore, we have that
log pp(B(x.p) _ . .

Io Sk (w H,
lim inf > liminf M = lim infkki'
p—0 log p k—oo — 37 | logm; koo %, logm;

On the other hand, for each p > 0, let k be the integer such that

k k—1
Hmi <p= Hmi.
i=1 i=1

Then for all x € E, choose w € IT™!(x), and we have Si (W) C B(x, p), which implies
wp(B(x,p)) > pp(Sk(x)). Therefore, by (4.1), we have that

lo B(x, lo S (w H
lim infw < liminf M = liminf ——~22 ®) )
p—>0 log p k—oo _— Zi:l log m; k—o0 Zi:l log m;
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It follows that

lo B(x,
lim infM = lim 1nf¢.
0—>0 log p k—o0 Z | logm;
almost surely. By Lemma 4.4, the Hausdorff dimension of jt,, is given by
dimy pp = 11m inf &
k—o00 Zl | logm;

Similarly, for pp-almost all x, we have that

imeus 020 (BGp) _ Hi(p)
imsup ———— = limsup —/———

r—0 logp k=00 Y iy logm;
and by Lemma 4.4, the packing dimension of 1, is given by

di Hy (p)
imp ftp = limsup ————— |

k—>00 Zf 1logm,

Proof of Corollary 4.2. Foreachk > 0, let pi(w) = i forall w € Dy. Since re(j) =

cx forall j such that r (j) # 0, we have ry = ¢ sk, and it implies g (w) = <-. Recall
that U(k,w) = U(8,w) and S (w) = IT(U(k,w)) where § = (m - - -my) ™! by (1.10),
we have that

log 11p(Sk(W)) = logvy(U(k, w))

1 k
= Zlogpk(w)+ Z log gk (w)

i=1 k—l+1
= —Zlogrk— Z log s¢,
k=I+1

for all w € £*° and k > 0. By the same argument in Theorem 2.2, we have that

lo B(x, L logre + Y k_,.  logs
liminfM — liminf 2i=1108 l; 2k=r41108 5k
p—>0 log P k—o00 Zi:l logmi

for all x € E. Then by [9, Proposition 2.3],
) k
Di=1 1087k + D k=41 log sk
Zf’c:l log m;

Since dimyg £ = sup{dimy w; for all Borel it on E such that 0 < u(E) < oo}, we
have that

dimy E = dimy pp = liminf
k—o0

dimy pp = max{dimy pp : p’ € P} = dimy E.
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Similarly, we have that

/ k
_logry +> i_;.qlogs
dimp E = dimp 1, = lim sup > i=1log I;( D k=1+1108 k’
ko0 > iy logm;

and this implies that
dimp p1p = max{dimp yy : p’ € P} = dimp E. ]

Proof of Theorem 2.2. Since E satisfies the frequency separation condition, there
exists ¢ > 0 such that
card{k : Dy iscentred fork = 1,...,n}

lim =c.
n—o00 n

It is clear that if Dy is centred, then Dy is left, right, top and bottom separated and
¢ = Cr = cr = cp = c, that is, FSC implies BSC. Hence, E satisfies boundary
separation condition, and by Theorem 4.1, the conclusion holds. |

Proof of Corollary 2.3. Since FSC implies BSC, by Corollary 4.2, the conclusion
holds. |

5. Lower and Assouad dimensions of nonautonomous carpets

In this section, we give the proofs for the lower and the Assouad dimension of
nonautonomous carpets.

First, we show the connection between approximate squares and balls which is
fundamental to our proofs. For simplicity, let

R = (my---mp)7",
and we write Sy for the collection of Ry-approximate squares,
Sk = SRy

where Sg, is given by (1.9).

Lemma 5.1. Given an integer k > 0, for every approximate square S € Sy, there
exists x € S such that B(x, (NT)3Ry)NE CS.

Proof. Given k > 0, let [ = [(k) be given by (1.8). Without loss of generality, we
assume that [ < k (if [ > k, the conclusion follows by exchanging the x and y axes).
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Given S € g, there exist y € S and an approximate square U(w) such that S =
S(y) = I(U(w)) for some W = wyws ... = (i1, j1)(i2, j2) ..., where y = T1(w) € E
and

U(W)={V=v1v2...vn...:zn=in,n=1,...,l,

We write
oU(w) = {v eUW)tij =i ,=00ri]  =n41—1ij,=n4,—1,
Jks1 = Jgsa =000 jiygy =mp iy — L iy, =mpio — 1,
Up = (lrll’]r:)}’
geometrically, it means that dU(w) containing all the rectangles going down 2 levels
from U(w) and connecting to the side of U(w), and all the elements in U(w) whose
distances to boundary of U(w) are less than (N T)73 Ry, are contained in dU(w).

The conclusion immediately follows if there exists an element v € U(w) such
that the distance from T1(v) to the side of S greater than (N )73 Ry. Precisely, if
there exists v € U(w) such that v ¢ dU(w), then by taking x = I1(v), we have that
B(x,(NT)™3R;) N E C S. Therefore, the key is to consider the approximate squares
S empty in the middle, that is, the distance from I1(v) to the side of S is less than or
equal to (N T)73Ry forall v € U(w).

Since Nt = supy {ng,my}, itis sufficient to assume that U\dU = @ and dU # 0.
Hence, it is clear that v =vqv,... € dU forall ve U.Recall thati, =i,,n =1,...,]
and j, = jp,n=1,....k, v, = (i}, j,) forallv = vjv,... € 0U.

First, we show the conclusion holds if there exists v € dU that satisfies one of the
following six cases:

(M) i), =i, =0,and j;_ | {0, meqr— 1}

(2) i =i =0, jgyy = 0and ji, #0.

B) 4y =il =0 Jgiy = miyr — Land ji, # mpgn — 1.

@) ij =nm1— i, =npo—land ji, {0, meq — 1}

&) ijy=ms1— i, =n2— 1, ji ,=0and j;_ , #0.

©6) i) = — L], =n0—1, ji =mgyr—land ji, #mgio— 1.
Suppose that v satisfies one of (1)—(3). Let x = I1(v). The distance from x to the

top and bottom sides are more than (N *)™3Ry. Since U\OU = @, ifk > + 1, we
have that

(n141 =1 j141(8)) ¢ Dy 1,

and if k = [, we have that
Ti(nj41 —1) =0.



Y. Gu, C. Hou, and J. Miao 56

This implies that the intersection of B(x, (N *)™Ry) and the approximate square on
the left of S is empty, and it immediately follows that

B(x,(N")’R,)NECS.

Hence, the conclusion holds. The proofs for (4)—(6) are identical.

Otherwise, if there is no element v € dU satisfying (1)-(6), then every v =
V1V ... Un ... € OU satisfies either j; | = ji ., =0orji =mgy1 =1, ji , =
My — 1. Since U\QU = @, the identity j; , , = ji, = Oimplies that rg 41 (mg41 —
1) =0, and j; ,; = mg+1 — 1, ji,, = mgip — 1 implies that 7441 (0) = 0. Next,
we show the conclusion holds if there exists v € dU satisfying one of the following
Six cases:

D) Jiar = Jyn = 0vifyy  {0.n141 — 1}

®) jlé+1 = j,é“ =0, il/+1 =0, il/+2 # 0.

O) Jggr = Jrgo = 0l py = Miv1s iy 7 N2

(10) iy =Mr1 = L jgin = mrg2 — Lip £40,n741 — 1}

D) Jggq =Mkt =L jgyy = M2 = Lij = 0,07, #0.

(12) iy =mrr1 = Ljgn = Mrg2 — Lij =01, i), # niga.

Suppose that v satisfies one of (7)—(9). Let x = I1(v). The distance from x to the
left and right sides are more than (N 7)™2Ry. Since i1 (mj41 — 1) = 0, the inter-
section of B(x, (N1T)73Ry) and approximate squares above S is empty. It implies

that
B(x,(NHTR)NECS,

and the conclusion holds. The proofs for (10)—(12) are similar.

Finally, suppose that there is no v € dU satisfying any of (1)—(12), which implies
that for each v =v1v2...v,... € 0U, v, = (i,, j,). Then there exists v € dU satis-
fying one of the following case:

(3) ijy =114 = 0 jpyy = Jgga =0

A4) if g =i =0 gy =M1 = 1 jgy, = M2 — 1.

(A5) iy =mp— L, =nm =1 ji iy = Jgyn =0

(16) ij y =nip1— L], =nppo— 1, jry = Mmegr — L ji, = mga — 1
Suppose that v satisfies (13). Let x = I1(v). Since rg4q(mr+1 — 1) = 0, the inter-
section of B(x, (N*)™3Ry) and any approximate square above S is empty. Since
v does not satisfy (7), we have that (n;+1 — 1, ji+1(S)) ¢ Dy41 if k >[4+ 1, and

71(nj11 — 1) = 0 if k = [. Hence, the intersection of B(x, (NT)™3R;) and the
approximate square on the left of S is empty. It follows that

B(x,(N")?’Rg)NECS,
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and the conclusion holds. The proofs for (14)—(16) are similar. ]

The following three lemmas are the key ingredients for the proof of lower dimen-
sions. For each integer k > 0, we write §; = S5 and U = Us for § = (my---my)~ L.
For all integers k' > k > 0, we write

T (E) = 51‘21811 T (S), F]:fk,(E) = gléa}g); card{S' € 8§y : S’ C S},
T (S) = card{S’ € S : S C S}.
The next lemma shows that I';” w (E) is bounded by the number N, r. o (E).
Lemma 5.2. For all integers k' > k > 1, let N 4/ (E) be given by (2.5). Then
T (E) = N (E).

Proof. Fixk and k’,let] =I(k) and !’ = I’(k’) be given by (1.8). For each S(x) € 8y
where x € S(x) N E, there exists a unique U(w) € Uy, such that S(x) = II(U(w))
and x = IT(w). Foreach S’(x”) € 8y, such that S'(x") C S(x),letw=wiw,...wy,...
and W = wjw) ... wj,...be infinite sequences such that IT(w) = x and IT(w’) = x,
where wy, = (in, ju), w), = (i,,. j,,) € Dp, and we have that

.y _
in=1,, n=1,...,1,

Ja=Jjl, n=1,.k

Computing I'y x/(S(x)) is equivalent to counting the number of sequences W’ such
that TT(w') € Sy satisfying the above property. Therefore, it is divided into six cases:
I<l!'<k<k,l<k<l <kl,l<k<k <l'k<l<l'<kl,k<l<k' <l
and k < k’ <1 < I’. We only prove the first three cases, and the other three cases are
the same by interchanging the directions.

(1) For ! <1’ <k < k’. We have that

card{iy : (iy,, ju) € Dn} =ra(jn) =1y, forn=101+1,....0,
and
card{j, : (iy. j,) € Dy, forsomei,} =s,, forn=k+1,....k"
Therefore,

T (S(x)) = rig1Girgr) -+ ro G )Skgr -+ sk
> ry TSkt Sk = Ny (E).

Since it holds for all x € E, we have that

T (E) = Ny (E).
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On the other hand, we choose W = wiw; ... wy, ... € X°°, where w,, = (iy, ju) €
Dy such that r, (jn) =1, forn =1,2,3,...Letx = II(w) and S(x) = II(U(S, w)).
Then, we have that

Fk_,k’(E) < I‘k,k/(S(x)) = rl_+1 ~'~I’l_,Sk+1 e Sk = Nk_,k’(E)'

Hence, for ] <1’ <k < k', it is true that Ly (E) = N (E).
(2)Forl <k <1’ <k’, we have that

card{in 2 (in, jn) € O‘D,,} =ry(ju)=r,, forn=104+1,...  k,
card{(in, jn) : (in, ju) € Dn} =rn, forn=k+1,....0',
and
card{jy, : (in. jn) € Dy for some ;;} =5, forn=104+1,...kK.
Therefore, we have that

i (SX)) = rig1Gier) - reGi)Tkan == ToSy41 -+ Ser

Z Py TR Tkl US4 Sk = Nk_,k/(E)
Since it holds for all x € E, we have that
F,Zk,(E) > N,;k,(E).

On the other hand, we choose W = wiws ... wy, ... € X°, where w, = (in, jn) €
D, such that r, (j,) =r, forn =1,2,3,...Letx = IT(w) and S(x) = ITI(U(3, w)).
Then, we have that

Dr i (S(X)) = rjpy - T Tt - TUSU41 -+ Sk = Ny (E).

It follows that
T (E) < T (S(x)) = N (E).

Hence, for [ < k <[’ < k',itis true that I, , ,(E) = N, ., (E).
(3)Forl <k <k’ <!’, we have that

card{in 2 (in, jn) € JD,,} =ry(ju)=r1,, forn=104+1,... k,
card{(in, jn) : (in, ju) € On} =rn, forn=k+1,... Kk
and

card{in * (ins jn) € Dy for some J~n} =%, forn=k +1,...,0.
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Therefore, we have that

e (S) = rig1Gren) - Gkt -+ reSirgr -+ S
> Pyt TE Tk TSk Sy = Ny (E).

Since it holds for all x € E, we have that
T w(E) = N (E).

On the other hand, we choose an infinite sequence w = wiw, ... Wy ... € X°°,
where w, = (in, ju) € Dy such that r,(ju) =1, forn =1,2,3,... Let x = II(w)
and S(x) = ITI(U(8, w)). Then, we have that

D (E) S Tipr(S(0)) =1y g =1 Tt == TrSkr1 S0 = N o (E).

Hence, forl <k < k’ <, it is true that [y 1 (E) = N/ (E). Therefore, the
conclusion holds. [

Lemma 5.3. Given B > 0, there exists a constant C such that

Re \?
Nk_k/(E)>C(R—) , foralll <k <k,
: »

if and only if there exists a constant C’ such that infyeg N, (B(x,R) N E) > C’(%)ﬂ

forall0 <r <R < 3.

1

Proof. For all reals r, R satisfying 0 <r < R < 57,

that

there exist integers k, k&’ such

Ry <r < Rpr_q, Ry < R < Rp_;,.

Immediately, we have that

8 8 8
(N’L)‘ﬁ(B) f(R") §(N+)3(5) . 5.1)
r Ry r

First, assume that Nk_’ k/(E )>C (%«/)5 for every 1 < k < k’. Arbitrarily, choose
x € E. The ball B(x,2R) contains at least one approximate square in S, and any set

with diameter no more than r intersects at most (N + + 1)3 approximate squares in
Syr. Hence, forall 0 < r < R < = by Lemma 5.2 and (5.1), we have that

NT°
N (B(x.2R)NE) = (N*+ 17N (E)

+ -3 Ry g
e (&)

k/

\

A%

B
(NT+D)3c(c,NH™F (?) .
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By taking C’ = (Nt 4+ 1)73C(2N+)~8, we have that

B
R

inf N,(B(x,R)NE) > C’(—) ,
xeE r

forall0<r <R < Nl—+ Next, assume that infyeg N, (B(x,R) N E) > C’(é)ﬂ holds
forany0 <r < R < N_1+ Therefore, by Lemma 5.2 and (5.1), forall 1 <k <k’ and
S € 8, if I%‘/ > 2(N7T)3, we have that

8
> C'27B(NT)T3F R
Ri) '

Tew(S) = Nary, (B(x,(NY)T3Ry) N E)

and if & < 2(N*)3, we have that
k’

—B (AT +\—38 B
Cesr(S) > 1> &(&) ,

2 Ry

By taking C = min{C'27#(NT)738, W}, we have that
_ R \*
Nk,k’(E) >C (R_)
k/
forall 1 < k < k’. The desired conclusion then follows. ]

We write that
Wik (6) = N (E)(Miegr -+ -mpr) 5.

Clearly, the function Wy ;s (&) is decreasing in &. For all k < k', we write & x for the
unique solution Wy x/(£) = 1, and it is clear that

log N 1/ (E)
ke = o o (5.2)
Og M4 +- M/
For all integers k" > k' > k > 1, by Lemma 5.2, we have that
Nk_,k”(E) = Nk_,k/(E)Nk_’,k”(E)
Immediately, it follows that
Wik () > Wi i (§) Wi i (§). (5.3)

Lemma 5.4. The sequence {infy & g 4m} o is convergent.
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Proof. For each integer m > 0, we write {,, = infy &k k4+m. Since &y < &k k4m. it is
clear that for all integers i > 0 and k > 0,

Yitimk+G+1)m(m) = 1.

Fix an integer m > 0. For each £ < £, for all integers k > 0, p > 0 and n > 0 such
that 0 <n < m — 1, by (5.3), we obtain that

p—1
Ykt pmin(§) > (l_[ qjk-i—im,k—i—(i-i—l)m(é)) Wit pmk+pm+n (&)
i=0
p—1
_ Em—&
= 1_[ Wietim k4G +0ym Cm) (Miktim1 -+ M 4+1)m)
i=0
tn—§&
Wit pm et pmn Cn) (Mics pmt1 *** Mt pmtn)
Z 2P(§m_5) min{zn@'n_g)’ (N+)n(§n_§)}

Since £ < &, there exists an integer K¢ such that for all p > K,

\Ijk,k+pm+n (f) > 1.

Hence, for all integers p > Ko, kK > 0 and n such that 0 < n < m — 1, we have that
€k k+pm+n = &, and this implies that {,,,+, > &. Therefore, for all integers n such
that 0 <n <m — 1, we have that liminf, o {pm+n > . Since it holds for all £ < {,,
we obtain that

liminf &, > limsup {p,.

m—>00 m—00

Therefore, {{,,} is convergent, and the conclusion holds. [

To prove the formula for the Assouad dimension, we need the following three
lemmas. Since the Assouad dimension is the dual of the lower dimension, the proofs
of these lemmas are similar to the lemmas used for the lower dimensions, and we skip
them.

Lemma 5.5. For all integers k' > k > 1, we have that
F]::k/(E) = N]::k/(E)
Lemma 5.6. Given B > 0, there exists a constant C such that
R \?
N,ik,(E) < C(R—k/) foralll <k <k,

if and only if there exists a constant C’ such that

R\” 1
sup N, (B(x,R)NE) <C'| =) forall0<r <R < —.
x€E r N+
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We write that
Apr(B) = N (E)(miyy - mi) P,
and we write B i/ for the unique solution Ay x/(B) = 1.

Lemma 5.7. The sequence {supy Bi k+m sy — is convergent.

Now, we are ready to prove the lower and Assouad dimension for nonautonomous
carpets.

Proof of Theorem 2.5. By (5.2) and Lemma 5.4, we write that

log N~ (E)
Ex = 11m 1nf"§k k+m = lim inf koktm . 5.4)
m—00 k 10g M4 - Mitm

To prove that £, is the upper bound for the lower dimension of E, we choose a sub-
sequence {(kyn, k;,)}52 such that lim, e k;, — kp, = 00 and lim, 0 &g, 1/, = Ex.
For all £ > &,, there exists an integer K’ > 0 such that, for all n > K’,

&> &k, k-

Combining with (5.2), we obtain that

& K H
Rkn kn.kp Rkn

N o (B) = (2K < (S
" Ry, Ry,

For all € > 0, by the definition of lower dimension, there exists C such that
dimL E—¢
inf N,(B(x,R)NE) > Cg(—) .

x€E r

By Lemma 5.3, this is equivalent to

9

Rk ) dlmL E—¢

Ne, k’(E)>C(Rk/

for all n > 0. Immediately, we obtain that

H dim; E—¢

R R

( . ) = CS( . ) ’
Ry Ry

and it implies that
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by taking n tend to oo, we have that £ > dim; £ — ¢. Since ¢ is arbitrarily chosen, we
obtain that
dimg E <,

for all £ > &,. Thus, the inequality dimp E < &, holds.

Next, we prove that &, is the lower bound. The conclusion holds for &, = 0, and
we only consider that £, > 0.

Arbitrarily choose 0 < § < &4, by (5.4), there exists an integer K > 0 such that,
for all m > K”, we have that § < & x4, for all integers k > 0. Combining with
(5.2), it follows that for all k' — k > K”,

. ’ Rk gk’k/ Rk §

Ri Ry

For all k' — k < K”, since £ > 0, we obtain that

£—¢ £

— Rk Rk +—K”§
N (E) > > N .
ki (E) = (Rk,) —(Rk,)( )

Let C¢ = (N )K€, we have

_ R \*
Nk,k’(E) Z Clg- (R_k/) )

for all £ > &,. By Lemma 5.3, dim;, E > £.. Hence, the lower dimension formula
holds.

The proof for Assouad dimension is similar to the lower dimensions, where
Lemma 5.2, Lemma 5.3 and Lemma 5.4 are replaced by Lemma 5.5, Lemma 5.6
and Lemma 5.7 and we omit it. |
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