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Tube formulae for generalized von Koch fractals through
scaling functional equations

Will Hoffer

Abstract. In this work, we provide a treatment of scaling functional equations in a general set-
ting involving fractals arising from sufficiently nice self-similar systems in order to analyze the
tube functions, tube zeta functions, and complex dimensions of relative fractal drums. Namely,
we express the volume of a tubular neighborhood in terms of scaled copies of itself and a
remainder term and then solve this expression by means of the tube zeta functions.

We then apply our methods to analyze these generalized von Koch fractals, which are a
class of fractals that allow for different regular polygons and scaling ratios to be used in the
construction of the standard von Koch curve and snowflake. In particular, we describe the vol-
ume of an inner tubular neighborhoods and the possible complex dimensions of such fractal
snowflakes.

1. Introduction

In this work, we establish tube formulae for a class of fractals called generalized
von Koch snowflakes (see Definition 2.3) such as those depicted in Figure 1. We
construct and analyze scaling functional equations in a general setting where a set is
partitioned into finitely many scaled copies and a remainder term from the leftover
region. Using the theory of tube zeta functions and complex fractal dimensions, we
deduce the leading asymptotics of the tube function for such sets based on the order
of this remainder term.

Then, as an application of our main result, we deduce explicit tube formulae for
the generalized von Koch fractals studied herein. In doing so, we extend the results of
Lapidus and Pearse on computing a tube formula for the standard von Koch snowflake
in [15]. Additionally, our analysis of scaling functional equations with remainder
terms can be applied to many other types of fractals whose tubular neighborhoods
are not completely self-similar.

Mathematics Subject Classification 2020: 28A80 (primary); 44A15, 39B22 (secondary).
Keywords: fractal geometry, tube formulae, complex dimensions, von Koch snowflake, fractal
zeta functions, iterated function systems.

https://creativecommons.org/licenses/by/4.0/


W. Hoffer 136

Figure 1. The von Koch snowflake (left) and two of its generalizations, one with squares (mid-
dle) and the other with pentagons (right).

Our work is organized as follows. We begin with a background regarding the ori-
gins of these fractals, previous work that we build upon, and then a summary of our
main results in Section 1. Next, in Section 2, we introduce generalized von Koch frac-
tals that are the source of our examples and the main application of results, and then
we provide necessary background on tube functions, tube zeta functions, and complex
dimensions relevant to our work in Section 3. We state and prove our main results on
the analysis of scaling functional equations (with error terms) first in a general setting
(Section 4) and then specializing to tube and zeta functions in Section 5. Finally, we
apply our results to generalized von Koch fractals in Section 6.

1.1. Background

In 1904, Helge von Koch published his work on the construction of a planar curve
without tangent lines at any point, describing the curve that now bears his name [29,
30]. See the left curve in Figure 2 for a depiction. The union of three of these curves,
placed about the edges of an equilateral triangle, from what is now called a von Koch
snowflake1 as seen in the leftmost shape in Figure 1. The other two fractals depicted
are what we call generalized von Koch fractals, and are the focus of this work.

A tube formula (see Definition 3.2) for the von Koch snowflake was established in
the work of Lapidus and Pearse. They computed that the volume of an inner epsilon
neighborhood of the von Koch snowflake takes the following form:

V."/ D
X
n2Z

�n"
2�D�inP

C

X
n2Z

 n"
2�inP ;

whereD D log3 4 is the Minkowski dimension of the snowflake, P D 2�= log3 is the
multiplicative period of the oscillations, and with  n; �n as constants depending only

1Interestingly, it may or may not have been von Koch himself who first made this combina-
tion of the curves leading to the snowflake shape. The earliest known reference to it appears as
an exercise in a book published in 1912; see [3] for the reference and discussion of the history.
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Figure 2. Two fractal curves are depicted, that studied by von Koch (left) and a curve created
from generalizing his construction (right).

on n [15]. As a consequence, they deduced the possible complex (fractal) dimensions
of the von Koch snowflake. These complex dimensions encode both the amplitude
and period of geometric oscillations in a fractal and are pivotal to establishing such
tube formulae in the work of Lapidus and collaborators; see [18, 19] and references
therein.

Our method of studying functional equations is closely related to the methods
developed in renewal theory. Feller established the renewal equation and methods
thereabout in his work in queuing theory [7], and now renewal theory has many
applications in fractal analysis such as in the work of Strichartz on self-similar mea-
sures [22–24], the work of Lapidus in [14], and the work of Kigami and Lapidus on
the Weyl problem [11]. Furthermore, the notion of a (scaling) functional equation
was employed by Deniz, Koçak, Özdemir, and Üreyen in [4] to provide a new proof
of a tube formula for self-similar sprays in the work of Lapidus and Pearse [16, 17].
In regard to the same fractals studied herein, Michiel van den Berg and collabora-
tors have used techniques from renewal theory to study the heat equation on these
generalized von Koch fractals, such as in [26–28].

In the study of fractals with multiple scaling ratios, there is a lattice/non-lattice
dichotomy in behavior depending on whether or not the ratios are arithmetically
related or not. This dichotomy has also been called the arithmetic/non-arithmetic
dichotomy, and has been discussed in the work of Lalley in [12, 13] and his paper
in [2], in the work of Lapidus and collaborators (such as in [14, 16–19]), and for
the generalized von Koch snowflakes by van den Berg and collaborators in their
aforementioned work on heat content. See [5] and the references therein for more
information about this dichotomy in fractal geometry.

1.2. Main results

Our main results consist of establishing scaling functional equations and analyzing
their solutions first in a general setting (Section 4) and then specifically with relative
tube and zeta functions (Section 5). We conclude by applying our work to generalized
von Koch fractals (introduced in Section 2 and analyzed in Section 6).
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Firstly, Theorems 4.8 and 4.9 represent our treatment of scaling functional equa-
tions of the following form:

f .x/ D

mX
iD1

aif .x=�i /CR.x/;

where we include a remainder term R. Additionally, our treatment of the solution is
through multiplicative means, using restricted Mellin transforms, rather than convert-
ing to an additive variable and using renewal theory directly. Letting Mı denote the
restricted Mellin transform (cf. Definition 4.1), we show that

Mı Œf �.s/ D
1

1 �
Pm
iD1 ai�

s
i

.E.s/CMı ŒR�.s//;

where

E.s/ D

mX
iD1

ai�
s
iM

ı=�i
ı

Œf �.s/

is an entire function and where Mı ŒR�.s/ is holomorphic in the right half plane H�0

when R.t/ D O.t��0/. The function f may be recovered by Mellin inversion and
computation (or estimation) of the integrals appearing E; see Theorem 4.9 and the
discussion after its proof.

Secondly, in the context of fractal geometry, we describe relative fractal drums
.X;�/ that arise from self-similar iterated function systems ˆ obeying the open set
condition. We introduce a notion of the set � “osculating” X under iteration by ˆ so
that points in �.�/ remain closest to �.X/ for each � 2 ˆ (see the fifth condition
in Definition 5.2). For any such relative fractal drums, we establish in Theorem 5.3 a
scaling functional equations satisfied by the tube function VX;� D jX" \�j, namely,

VX;�."/ D

mX
iD1

ai�
N
i VX;�."=�i /C VX;R."/;

where
VX;R.t/ D O.t

N��0/

and where the set ¹�iº is the set of distinct scaling ratios of maps in ˆ and ai is
the multiplicity of each scaling ratio. We then deduce Theorem 5.3 that the tube zeta
function Q�X;� (see Definition 3.4) takes the form

Q�X;�.s/ D
1

1 �
Pm
iD1 ai�

s
i

� h.s/;

where h.s/ is holomorphic in the right half plane H�0 (compare with equation (5.4)).
Consequently, the complex dimensions of X with real part strictly larger than �0 are
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exactly the solutions ! to the complexified Moran equation

1 D

mX
iD1

ai�
!
i ;

where also h.!/ ¤ 0; see Theorem 5.5 and Corollary 5.6.
We conclude by returning to the main class of examples in this work, generalized

von Koch snowflakes. These are described in Section 2 and see Figure 1 for some
examples. One way to construct such fractals is to begin with a regular n-gon. Then,
for each edge between vertices, replace the middle r th portion with the n � 1 edges
of a smaller regular n-gon to construct the first prefractal approximation. Repeat-
ing this process yields the fractal Kn;r though to be precise, we define these fractals
through iterated function systems. We deduce in Theorem 6.2 that the possible com-
plex dimensions of Kn;r (with positive real part) are solutions ! to the equation

1 D 2
�1 � r

2

�!
C .n � 1/r! :

Furthermore, we show that the kth antiderivative V Œk�Kn;r ;�
of the tube zeta functions

of Kn;r relative to the interior region � takes the form

V
Œk�
Kn;r ;�

.t/ D
X

!2DKn;r ;�.H0/

Res
�
t2�sCk

.3 � s/k
Q�Kn;r ;�.sI ı/I!

�
CO.t2�˛Ck/;

where we refer the reader to Theorem 6.4 and Section 6 for the appropriate definitions
and constraints. If the poles of the function Q�Kn;r ;�.sI ı/ are simple, then this formula
takes the form

V
Œk�
Kn;r ;�

.t/ D
X

!2DKn;r ;�.H0/

Res. Q�Kn;r ;�.sI ı/I!/
!2�sCk

.3 � !/k
CO.t2�˛Ck/:

In both of these formulae, .s/k is the Pochhammer symbol defined by

.s/k WD �.s C k/=�.s/ D s.s C 1/.s C 2/ � � � .s C k � 1/

and ˛ > 0 is any (small) positive alteration to the exponent.
Of note, in the case of generalized von Koch fractals, we see the appearance of the

lattice/non-lattice dichotomy: the geometry of the fractal is fundamentally different
depending on the arithmetic properties of the scaling ratios. In studying this problem
through the lens of fractal zeta functions, we are able to understand this behavior by
way of the structure of the complex dimensions of the fractal. See, for example, Fig-
ure 9, where the standard von Koch snowflake is arithmetic while the “squareflake”
and “pentaflake” fractals depicted are non-arithmetic. For the former, the tube func-
tion will have an oscillatory leading term, but for the other two the tube formula will
have a monotone leading order term and oscillatory effects at lower orders.
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2. Generalized von Koch fractals

What we will dub generalized von Koch fractals (abbr. GKFs) are fractals in which
regular polygons other than triangles are used in the construction of the snowflake
and/or those in which the scaling ratio chosen is a factor other than one third. This
provides a two-parameter family of fractal curves, where n � 3 is the number of sides
of the regular polygon and r 2 .0; 1/ is the scaling ratio for the middle segments.

2.1. Generalized von Koch fractal curves

To define an .n; r/-von Koch curve, we will employ the notion of an iterated func-
tion system, which were introduced by Hutchinson in [9]. Hutchinson, in particular,
proved that iterated function systems induce a contraction on the space of nonempty,
compact subsets of RN equipped with the Hausdorff metric, whence by the Picard–
Banach fixed point theorem there is a unique fixed point of the system (which is
nonempty and compact). This fixed point, or equivalently the attractor of the system,
is a convenient way to define many fractals [1, 6].

We will actually use a slightly more restrictive type of iterated function system,
namely, a self-similar system, whose definition we provide below.

Definition 2.1 (Self-similar system). A self-similar system ˆ on a complete metric
space .X; d/ is a finite set of contractive similitudes

ˆ WD ¹�k W X ! XºmkD1;

where, for each k D 1; : : : ; m and for every x; y 2 X ,

d.�k.x/; �k.y// D rkd.x; y/;

where rk 2 .0; 1/ is the scaling ratio of �k .

Note that an equivalent phrasing of the above statement is that a self-similar sys-
tem is an iterated function system where each contraction mapping is, a fortiori, a
similitude.

Similitudes in Euclidean spaces are compositions of translations, rotations, reflec-
tions, and homotheties. In order to explicitly write self-similar systems in what fol-
lows, we introduce the following translation, rotation, and homothety/scaling trans-
formations of R2:

T.a;b/.x; y/ WD .x C a; y C b/; .a; b/ 2 R2;

R� .x; y/ WD .x cos � � y sin �; x sin � C y cos �/; � 2 R;

S�.x; y/ WD .�x; �y/; � 2 RC:

(2.1)
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�n D
2�
n

˛n D � �
2�
n

Figure 3. A depiction of the central angle �n D 2�=n and the interior angle ˛n D � � 2�=n
of a regular n-gon, illustrated on a hexagon where n D 6.

Note that the scaling ratio of S� is �, and that translations and rotations are isometries,
thus their scaling ratios are equal to one.

Lastly, we will also need some angles related to a regular n-gon. Let us define
�n D

2�
n

to be the exterior angle (or equivalently the central angle) and ˛n D � � 2�
n

to be the interior angle of a regular n-gon. See Figure 3 for a depiction of these angles
on a hexagon.

With all of this geometric information, we may now explicitly write a self-similar
system whose attractor will be an .n; r/-von Koch curve. We will also allow for sets
which are isometric to such an attractor to be considered generalized von Koch curves
as well.

Definition 2.2 (.n; r/-von Koch curve). Let n � 3 be an integer, let r 2 R satisfy
0 < r < 1, and let ` D 1�r

2
.

A set C 0n;r � R2 is said to be an .n; r/-von Koch curve if it is isometric to the
set Cn;r � R2 which is the unique, nonempty, compact fixed point associated to the
following self-similar system on R2:

ˆn;r WD ¹�L; �R;  k W R
2
! R2; k D 1; : : : ; n � 1º;

�L WD S`;

�R WD T.`Cr;0/ ı S`;

 1 WD T.`;0/ ıR˛n ı Sr ;

 k WD T k�1.1;0/ ıR˛n�.k�1/�n ı Sr ; k > 1:

Note that T.a;b/; S�; and R� are transformations of R2 as defined in equation (2.1)
and �n and ˛n are, respectively, the central and interior angles of a regular n-gon such
as those depicted in Figure 3 for n D 6.
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In other words, we may write that

C 0n;r Š Cn;r D
[

�2ˆn;r

�ŒCn;r �:

If we denote by F WR2!R2 the isometry that sends Cn;r to C 0n;r , then we may write
a self-similar system for C 0n;r using

F ıˆn;r WD ¹F ı � W � 2 ˆn;rº:

Note that there can be more than one iterated function system that generates the same
set Cn;r or C 0n;r .

An algorithmic approach to constructing the curve is given by iterating the system
ˆn;r on the unit interval Œ0; 1�� ¹0º. The first step removes the middle r th piece of the
interval on the x-axis and adjoins the n� 1 other sides of a regular n-gon with length
r . Each successive step repeats this process on every line segment, again removing the
middle r th portion of the line and adjoining the edges of a polygon whose side length
is r times that of the line segment’s length. The regular polygon is always added with
the same orientation with respect to the line segment.

Given n total .n; r/-von Koch curves, a generalized von Koch snowflake is simply
the union of these curves placed about the edges of a regular n-gon (of side length
one).

Definition 2.3 (.n; r/-von Koch snowflake). Let n � 3 be an integer, let r 2 R with
0 < r < 1, and let Cn;r be an .n; r/-von Koch curve with endpoints .0; 0/ and .1; 0/.

A set K 0n;r � R2 is an .n; r/-von Koch snowflake if it is isometric to the set

Kn;r D

n[
kD1

UkŒCn;r �;

where U1 WD R�n ı T.1;0/ and Uk WD Rk�n ı TUk�1.1;0/ for k > 1. Note that T.a;b/
and R� are transformations of R2 defined in equation (2.1).

Note that .3; 1
3
/-von Koch snowflake is the “ordinary” von Koch snowflake, de-

picted in Figure 1. Additionally, we have depicted a “squareflake” and a “pentaflake”,
which are generalized snowflake fractals with fourfold and fivefold symmetry, respec-
tively. Figure 4 depicts a prefractal approximation of the pentaflake K5; 15 with two
extra levels of zoom onto one of the fringes, which can be seen to be pentagons.

Additionally, it is of note that we are identifying these von Koch snowflakes as
unions of curves. One might instead define a snowflake to be the region(s) enclosed
by the union of .n; r/-von Koch curves, in which case what we call the snowflakes
here would be the boundary of this set. In this setting, it would be suitable to callKn;r
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Figure 4. A depiction of K
5; 15

(at the fourth stage of the prefractal approximation) together
with two zoomed-in images of the pentagonal frills.

Figure 5. Three .6; r/-von Koch snowflakes, with values of r equal to 0:3, 1
6

, and 0:1, respec-

tively, from left to right. The fractal curve is topologically simple if r < 1 �
p
3
2

, such as with
the rightmost figure. For the other two fractals, depicted in the middle and on the left, the curves
are self-intersecting.

an .n; r/-von Koch snowflake boundary or a snowflake curve to be unambiguous. In
this work, the distinction will not be necessary.

The author first encountered these in the work of M. van den Berg and his col-
laborators on asymptotics of heat content of GKFs, such as in [27]. These have been
studied by other authors, such as Paquette and Keleti [10], who, in particular, describe
when such GKFs are topologically simple curves or not. They established the condi-
tion stated in Proposition 2.4 for self-avoidance of the curve. Figure 5 depicts three
.6; r/-von Koch snowflakes with decreasing values of r ; the boundary of the curve
may intersect if r is large but cannot when r is sufficiently small.

Proposition 2.4 (Self-avoidance of GKFs [10]). An .n; r/-von Koch curve is non-
self-intersecting if the scaling ratio r > 0 satisfies the following:

r <
sin2.�=n/

cos2.�=n/C 1
if n is even;

r < 1 � cos.�=n/ if n is odd:
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The boundary of the corresponding .n; r/-von Koch snowflake Kn;r is topologically
simple under these conditions.

In particular, this proposition implies that for each n � 3, there is an interval of
admissible scaling ratios, namely .0; r0/. The condition in Proposition 2.4 is sufficient
but not necessary, as the fractals can interleave for certain values of n and r . We refer
the interested reader to Keleti and Paquette’s paper [10] for more information. Of
note, n D 6 is the first value for which 1=n exceeds the value of r0 provided in the
proposition. See Figure 5 for a depiction of K6; 16 .

3. Tubular neighborhoods and zeta functions

Tube zeta functions were introduced in [18] to study fractals in higher dimensions
and to extend the theory of complex dimensions (see Definition 3.5) to such fractals.
These tube zeta functions are constructed from tube functions, which are the volumes
of tubular neighborhoods of the given set. The tube zeta functions are essentially
restricted Mellin transforms of this volume function, and thus, they possess important
scaling properties (cf. Lemma 3.6).

3.1. Tube functions and their properties

Let N denote a given Euclidean dimension. Given a set X � RN , let X" denote an
epsilon neighborhood of X , that is,

X" WD
®
y 2 RN W 9x 2 X; jy � xj < "

¯
:

Note that even if X itself is not Lebesgue measurable, X" is necessarily measurable
as it is open. For example, it may be written as a union of open sets B".x/ for x 2 X ,
where B".x/ is an open ball of radius " centered at x.

In what follows, we will be considering these tubular neighborhoods relative to
some other set��RN . To that end, we recall the notion of a relative fractal drum [18].

Definition 3.1 (Relative fractal drum). Let X;� � RN and suppose further that� is
open, has finite Lebesgue measure, and has the property that 9ı > 0 such that�ı �X .
Then, the pair .X;�/ is called a relative fractal drum, or RFD for short.

The tube function of an RFD .X;�/ will be the volume of the tubular neighbor-
hood of X contained within the set �. Notably, such tube functions may be defined
for any subset of RN so long as the set� relative to which the volume is computed is
Lebesgue measurable.
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Definition 3.2 (Relative tube function of a set). Let X � RN , let � � RN be a
Lebesgue measurable set, and denote by m the N -dimensional Lebesgue measure.
The tube function VX;� of X relative to � is the function VX;�."/ WD m.X" \ �/,
defined for " � 0.

When the set � is clear from context or is all of RN , we may suppress it in the
notation. Any such function VX;� is continuous and non-decreasing on its domain,
and it is finite when X or � is a bounded set.

Note that the Lebesgue measure m has the scaling property that, for any � 2 RC,
m.�X/ D �Nm.X/. When a tubular neighborhood X" is scaled, the parameter "
defining the new scaled neighborhood will scale linearly. In other words, � � .X"/ D
.�X/�". Combining these properties, we may deduce how tube functions change
under scaling. In the simplest case, where � D RN and we omit it, we have that
V�X .�"/ D �NVX ."/. We state and prove the following property for relative tube
functions.

Lemma 3.3 (Scaling property of relative tube functions). Let X � RN and let � �
RN be measurable. For any " � 0 and � > 0, we have that

V�X;��."/ D �
NVX;�."=�/:

More generally, if � W RN ! RN is a similitude with scaling ratio �, then we have
the analogous identity

V�.X/;�.�/."/ D �
NVX;�."=�/:

Proof. Let � D z ı �� ı  0, where  0; z are compositions of rotations, reflections,
and translations and where �� is a scaling transformation, viz. ��.x/ D �x. Any
similitude of scaling ratio �, by definition, may be written this way. Note that the
first identity is a special case of the second property; merely, set z D  0 D Id. For
convenience, let us denote U 0 D  0.U / in what follows, and note that �U D ��.U /.

The maps in question have lots of nice properties. First, we note that  0 and z 
are isometries, which is to say that m.U 0/ D m.U / and m. Q .U // D m.U / for any
U � RN . Since z ; 0; ��; and their composition � are injective, they each have the
property that the intersection of the images of two sets is the image of the intersection
of those sets. The same property is true (unconditionally) for the union of images
being the image of the union.

This lattermost fact is one way to see that z .X"/ D . z .X//". One may write
the neighborhood X" as a union of "-balls, and then apply the preservation of unions
under images to see that this set is exactly the neighborhood of the transformed set
z .X/.
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Using this fact and the above properties, we find that the tube functions are unaf-
fected by an injective isometry, such as z :

V z .�X 0/; z .��0/."/ D m.
z ..�X 0/"/ \ z .��

0//

D m. z Œ.�X 0/" \ ��
0�/ D V�X 0;��0."/:

As mentioned before, we have that ��.X"/D .�X/�". Writing "D �t , we obtain that

V�X 0;��0.�t/ D m.��.X
0
t \�

0// D �NVX 0;�0.t/;

where the last step is the scaling property of the Lebesgue measure. We have already
shown that for an injective isometry like  0, V 0.X/; 0.�/ D VX;�. Thus, the result
follows by writing t D "=� and combining these equalities.

3.2. Tube zeta functions and complex dimensions

Tube zeta functions were introduced in [18] to study fractals in higher dimensions.
They are defined as a restricted Mellin transform of the tube function of the corre-
sponding set, introducing a cutoff value of ı > 0 to the upper bound of the usual
Mellin transform.

Definition 3.4 (Relative tube zeta function). Let .X;�/ be a relative fractal drum and
let ı > 0. The relative tube zeta function Q�X;� of X relative to � is given by

Q�X;�.sI ı/ WD

Z ı

0

t s�N�1VX;�.t/ dt

for s 2 C with sufficiently large real part.

As with the tube functions, when the set � is clear from context, we will some-
times write

Q�X D Q�X;�

and omit the relative set. We will also denote by Q�X;� the maximal meromorphic
extension of the holomorphic function defined by the integral.

Next, we observe that for any two ı2 > ı1 > 0, we have that

Q�X;�.sI ı2/ � Q�X;�.sI ı1/ D

Z ı2

ı1

t s�N�1VX;�.t/ dt: (3.1)

Of note, this difference is a holomorphic function which possesses an entire analytic
continuation [18]. As such, the poles of a tube zeta function are not dependent on the
choice of ı.
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These poles of a tube zeta function are of importance to the geometry of the frac-
tal. They are called complex (fractal) dimensions of the setX . Typically, one specifies
a subset of the complex plane, or a “window,” which is usually the domain of mero-
morphicity of the function in C or a half-plane contained therein.

Definition 3.5 (Complex dimensions of a set). Let .X;�/ be a relative fractal drum
and let Q�X;� be the relative tube zeta function of X .

If W � C, then the complex dimensions of X relative to � contained in the win-
dow W , denoted by DX .W /, are the poles of Q�X;� contained within W .

The complex dimensions control the exponents and the form of the tube formula
for the set [18, 19]. See especially chapter five in [18].

Tube zeta functions are well suited to studying self-similar or nearly self-similar
objects due to their scaling properties. These follow from the nature of the zeta func-
tion as a (restricted) Mellin transform on the space of positive scaling factors. The
scaling relation is complicated only slightly by the truncation of the integral, as the
cutoff value will change with the scaling.

Lemma 3.6 (Scaling property of Q�X;�). Let .X;�/ be a relative fractal drum in RN

and let � > 0. Then, for all s in its domain, the tube zeta function of X relative to �
satisfies the following:

Q��X;��.sI ı/ D �
s Q�X;�.sI ı=�/:

Moreover, if � W RN ! RN is a similitude of scaling ratio � > 0, then similarly we
have that

Q��.X/;�.�/.sI ı/ D �
s Q�X;�.sI ı=�/:

We note that this result is essentially just Proposition 4.6.11 in [18], where the
only change is that we draw explicit attention to the usage of similitudes. We include
a proof since this result may be seen as a corollary of Lemma 3.3.

Proof. Using Lemma 3.3 and a change of variables, we compute that

Q��.X/;�.�/.sI ı/ D

Z ı

0

t s�N�NVX;�.t=�/
dt

t

D

Z ı=�

0

.�t/s�N�NVX;�.t/
dt

t
D �s Q�X;�.sI ı=�/:

Now, from Lemma 3.6 and equation (3.1), we obtain the functional relation

Q��X;��.sI ı/ D �
s Q�X;�.sI ı/C �

s

Z ı=�

ı

t s�N�1VX;�.t/ dt: (3.2)

We will introduce notation for this “partial” tube zeta function, as it encapsulates the
effects the truncation on the scaling property of the tube zeta function.
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Definition 3.7 (Partial tube zeta function). Let .X; �/ be a relative fractal drum in
RN , VX;� its relative tube function, and 0 < ı1 < ı2. We define a partial tube zeta
function to be the following:

z�X;�.sI ı1; ı2/ WD

Z ı2

ı1

t s�N�1VX;�.t/dt

for all s 2 C with sufficiently large real part.

These partial tube zeta functions will appear in scaling functional equations such
as equation (3.2), and thus, we will need to estimate them. We note the following.
Letting � D <.s/, we have that

ˇ̌
z�X;�.sI ı1; ı2/

ˇ̌
�

8<:VX;�.ı2/
ı��N
2

�ı��N
1

��N
; � ¤ N;

VX;�.ı2/ log.ı2=ı1/; � D N:
(3.3)

Note that these bounds are enough to deduce that z�X;� extends to an entire function
in the complex variable s 2 C, whence follows the result of Lapidus, Radunović, and
Žubrinić on the independence of the poles of Q�X;� on the parameter ı in [18]. We
conclude by stating this as a lemma.

Lemma 3.8 (Partial tube functions are entire). Let z�X;�.sI ı1; ı2/ be a partial tube
zeta function of the relative fractal drum .X;�/, with fixed positive parameters ı1; ı2.
Then, z�X;� extends to an entire function in the variable s.

4. General scaling functional equations

In this section, we study scaling functional equations in a general setting. In partic-
ular, we show how they may be solved by means of (truncated) Mellin transforms.
The approach is similar in spirit to solving functional equations by means of renewal
theory, except in this case we use the Mellin transform which is natural for studying
for the positive real line as a group with multiplication. We will illustrate the ideas
up through the use of the transform to create nicely solvable functional equations into
the Mellin inversion theorem. Notably, we use a truncation of the Mellin transform as
opposed to the standard Mellin transform. This is primarily because in the application
to tube functions in Section 5, these are preferred.

The positive real line RC (as a group with multiplication) may be thought of as the
space of scaling factors, and its associated Haar measure dt

t
is invariant with respect

to scaling transformations. We will first treat scaling functional equations of functions
on this space and, in the next section, specialize to tube and zeta functions.
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4.1. Truncated Mellin transforms

Let C 0.RC/ denote the space of continuous functions f W RC ! R. The standard
Mellin transform of f is the integral MŒf �.s/ D

R1
0
xs�1f .x/ dx: A truncated or

restricted Mellin transform is simply an integral of the same integrand but over an
interval which is a subset of .0;1/.

Definition 4.1 (Truncated Mellin transform). Let f 2 C 0.RC;R/ and fix ˛; ˇ � 0.
The truncated Mellin transform of f , denoted by M

ˇ
˛ Œf �, is given by

Mˇ
˛ Œf �.s/ WD

Z ˇ

˛

t sf .t/
dt

t

for all s 2 C for which the integral is convergent. If ˛ D 0, we write Mˇ for the
truncated transform, and if additionally ˇD1, then MDM10 is the standard Mellin
transform.

Note that we may equivalently define M
ˇ
˛ Œf � to be the Mellin transform of f

times the characteristic function of the interval .˛; ˇ/, viz.

Mˇ
˛ Œf � DM

�
f � 1Œ˛;ˇ�

�
:

This allows us to compare the convergence of the two directly, and it shows that the
truncated transform inherits the properties of its counterpart, most notably linearity.

First, to discuss the convergence of such transforms, we note an immediate corol-
lary of the alternate definition is that a restricted transform converges automatically
if the Mellin transform converges. It is known (see, for example, [8, Chapter 6]) that
MŒf �.s/ is holomorphic in the vertical strip �� < <.s/ < �C, where

�� WD inf
®
� W f .x/ D O.x�� ; x ! 0C/

¯
;

�C WD sup
®
� W f .x/ D O.x�� ; x !1/

¯
:

When ˛ < ˇ <1, f � 1Œ˛;ˇ� � 0 as x!1, whence �C D1. Similarly, if 0 < ˛ <
ˇ then f � 1Œ˛;ˇ� � 0 as x ! 0C, whence �� D �1. So, if 0 < ˛ < ˇ < 1, the
restricted transform is automatically entire, i.e., holomorphic in C. If 0D ˛ < ˇ <1
and f D O.x�0/, then Mˇ Œf �.s/ is holomorphic in the half plane H��0 , i.e., when
<.s/ > ��0.

Notably, the restricted transform may converge even if the full Mellin transform
integral diverges. Perhaps, the most important class of functions for which this occurs
is that of polynomials: if f .t/ D tk and <.s/ > �k, Mˇ Œf �.s/ converges whilst
MŒf �.s/ is divergent for all s 2 C. Thus, for a general polynomial

p.t/ D

nX
kD0

akt
k;
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we have that

Mˇ Œp�.s/ D

nX
kD0

ak

s C k
ˇsCk; <.s/ > max¹�k W ak ¤ 0º:

Negative powers become admissable if the lower bound ˛ of the truncation is positive.

4.2. Scaling operators and associated zeta functions

Next, we define scaling operators which act on C 0.RC/. To borrow terminology from
statistical mechanics, we will define pure and mixed scaling operators. A pure scaling
operator M�, where � 2 RC, will act by precomposition by a scaling operator in the
following fashion:

M�Œf �.x/ WD f .x=�/;

where this convention of inverting the scaling factor will be convenient for our appli-
cations. A mixed scaling operator will be a linear combination of such scaling oper-
ators. If we have that L D

Pm
iD1 aiM�i is a (mixed) scaling operator, then it acts

by

LŒf �.x/ D

mX
iD1

aif .x=�i /:

We will not require the combination to be convex; later, the only constraint we will
add is that the multiplicities be positive and integral. For now, each ai 2 R.

Given such a scaling operator L, we define an associated scaling zeta function.
This function will play a key role in describing solutions to scaling functional equa-
tions, owing to its relation to the Mellin transform of such functions and the role of
its poles.

Definition 4.2 (Associated scaling zeta function). Let LD
Pm
iD1 aiM�i be a scaling

operator with �i 2 RC and ai 2 R for each i D 1; : : : ; m.
We define the zeta function �L associated to L to be

�L.s/ WD
1

1 �
Pm
iD1 ai�

s
i

for all s 2 C for which the expression converges.

In practice, we will enforce that 0 < �i < 1 and that ai > 0 for each i . Under these
conditions, we obtain the following characterization of such a zeta function. Of note,
the results are the exact same as those for self-similar fractal strings, cf. Chapters 2
and 3 and, in particular, Theorem 3.6 in [19]. See Figure 6 for two examples of such
zeta functions which we will relate to von Koch fractals later in Section 6.
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Figure 6. Plots of associated scaling zeta functions of the scaling operator L
3; 13
WD 4M 1

3
(left)

and the operator L
4; 14
WD 2M 3

8
C 3M 1

4
(right). We will show in Section 6 that the possible

complex dimensions of the fractals K
3; 13

and K
4; 14

, respectively, occur at the poles of these
functions.

Proposition 4.3 (Properties of scaling zeta functions). Let �L be the zeta function
associated to the scaling operator L with scaling ratios �i 2 .0; 1/ and positive mul-
tiplicities ai . Then, there is a unique real pole of �L at the point D 2 R which solves
the Moran scaling equation associated to L,

1 D

mX
iD1

ai�
s
i : (4.1)

We callD the similarity dimension ofL. If
Pm
iD1 ai >1 andm>2, thenD is positive;

this is automatically true if the multiplicities are integral and there are either at least
two distinct scaling ratios or at least one scaling ratio with multiplicity larger than
one.

Additionally, the function �L is holomorphic in the right half plane HD . It pos-
sesses a meromorphic continuation to all of C, with poles at points the set DL D

DL.C/ defined by

DL.W / WD

²
! 2 W � C W 1 �

mX
iD1

ai�
s
i D 0

³
:

DL.W / is the set of complex dimensions associated to L in the window W .

Proof. Clearly, �L has poles at points s 2C for which equation (4.1) holds. To see that
there is one real pole, define the function p.s/D

Pm
iD1 ai�

s
i . Then, p.0/D

Pm
iD1 ai ,

lims!�1p.s/DC1, and lims!1p.s/D 0 since 0 < �i < 1. Additionally, a simple
calculation shows that p0.s/ < 0 for all s 2 R since log.�i / < 0 and ai > 0 for each
i . Thus, it follows that p.s/ D 1 has exactly one solution for s 2 R, and this solution
is positive if p.0/ D

Pm
iD1 ai > 1.
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The function is holomorphic when � D <.s/ > D sinceˇ̌̌̌ mX
iD1

ai�
s
i

ˇ̌̌̌
�

mX
iD1

ai�
�
i D p.�/ < p.D/ D 1;

and thus, z D p.s/ lies within the unit disk wherein 1
1�z

is holomorphic. That �L has
a meromorphic extension to C follows by analytic continuation.

Lastly, we will need growth estimates for this zeta function �L. There are two
versions, the first of which is languid growth; see [18, Definition 5.1.3] and [19, Def-
inition 5.2]. The second condition, which we will use in this paper, is known as
strongly languid growth, which implies languid growth; see [18, Definition 5.1.4]
and [19, Definition 5.3]. We provide the definition for strongly languid growth for an
function in general; a relative fractal drum .X; �/ or a scaling operator L is said to
the strongly languid if the corresponding zeta function ( Q�X;� or �L, respectively) is
strongly languid (for some ı > 0 in the former case).

There are two hypotheses, the first of which concerns power-law/polynomial growth
along a sequence of horizontal lines.

Definition 4.4 (Languidity hypothesis L1). Let f be a complex function which is
holomorphic in the half plane HD and which possesses analytic continuation to a
neighborhood of the set ¹s 2 C W <.s/ > S.=.s//º, where S is a Lipschitz continuous
function called a “screen.” Then, f is said to satisfy the languidity hypothesis L1 with
exponent � (with respect to the screen S ) if the following holds.

There is a positive constant C > 0, a constant ˇ > D, and a doubly infinite
sequence ¹�nºn2Z with limn!1 �n !1, limn!�1 �n D �1, and 8n � 1, ��n <
0 < �n so that on every horizontal interval of the form

In D ŒS.�n/C i�n; ˇ C i�n� � C;

f has at most power-law � growth with respect to �n. More precisely, for all � in
ŒS.�n/; ˇ�, we have that

jf .� C i�n/j � C.j�nj C 1/
� :

The second hypothesis concerns power-law/polynomial growth along a vertical
curve. The standard version of languidity concerns growth along a single curve, and
strong languidity concerns growth along a sequence of such curves moving to the
left. These curves are known as screens owing to their connection to the windows
appearing in Definition 3.5.

Definition 4.5 (Languidity hypothesis L2). Let f be a complex function which is
holomorphic in the half plane HD and which possesses analytic continuation to a
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neighborhood of the set ¹s 2 C W <.s/ > S.=.s//º, where S is a Lipschitz continuous
function called a “screen.” Then, f is said to satisfy the languidity hypothesis L2 with
exponent � (with respect to the screen S ) if the following holds.

There is a positive constant C such that for all � 2 R with j� j � 1,

jf .S.�/C i�/j � C j� j� :

A function which satisfies both hypotheses L1 and L2 with respect to the same
screen S and exponent � is said to have languid growth (with respect to these param-
eters).

Strong languidity may be seen as a sequence of languidity conditions. Namely, it
concerns languidity along a sequence of screens converging to the left.

Definition 4.6 (Strong languidity of a function). Let f be a complex function which
is holomorphic in the half plane HD and which possesses analytic continuation to the
whole complex plane excepting for a discrete set of singular points. Then, f is said
to be strongly languid with exponent � if the following conditions hold.

In what follows, we suppose the existence of a sequence ¹Smºm2N of sequence
of Lipschitz continuous functions called “screens" with two properties: firstly, letting
kSmk1 denote the supremum of Sm over R, we have that supm2NkSmk1 D �1;
secondly, there exists a uniform bound for the Lipschitz constants of the screens Sm.

L1 f satisfies languidity hypothesis L1 with respect to � and each screen Sm.
(Equivalently, with respect to the replacement S.�/ � �1).

L20 There exist positive constants C and B such that for all � 2 R and m � 1, f
satisfies

jf .Sm.�/C i�/j � CB
jSm.�/j.j� j C 1/� :

Note that the strong languidity condition allows for a prefactor with exponential
growth related to kSmk1, but is otherwise analogous to L2. Condition L20 implies
L2 for each of the screens with finite supremum. Also, without loss of generality, the
constant C may be chosen to be the same in each of the hypotheses.

Additionally, we note that typically it is the geometric object (e.g., a relative fractal
drum, a fractal string, or similar) which is said to be languid. In the case of associated
scaling zeta functions, the corresponding object would be the scaling operator itself.
However, we are extending this notion to apply to a function which satisfies the cor-
responding growth conditions. We note that this will be useful later in reference to
a function whose corresponding geometric object may or may not be known. See, in
particular, Corollary 6.3.

Now, we have that any of the associated scaling zeta functions �L will be strongly
languid with respect to the exponent � D 0.
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Proposition 4.7 (Languidity of scaling zeta functions). Let L WD
Pm
iD1 aiM�i be

scaling operator with distinct scaling ratios �i 2 .0; 1/ and positive multiplicities ai
and suppose that �L is its associated scaling zeta function. Let ƒ D miniD1;:::;m �i
and let D be the similarity dimension of L.

Then, �L is strongly languid with respect to exponent � D 0 as in Definition 4.6.
Explicitly, there is a constant C > 0 and a sequence ¹�nºn2Z with limn!1 �n !1,
limn!�1 �nD�1, and ��n < 0< �n for all n� 1 such that the following conditions
hold.

(1) For any fixed ˛; ˇ with ˛ < D < ˇ, we have that �L is uniformly bounded all
of the intervals In D Œ˛ C i�n; ˇ C i�n�, with constant C . That is, for all �n
and � 2 Œ˛; ˇ�, j�L.� C i�n/j � C:

(2) For all s 2 C with sufficiently small � D <.s/, j�L.s/j � Cƒj� j.

Proof. This result is a corollary of Theorem 3.26 and the discussion in [19, Sec-
tion 6.4], as �L is essentially the same as that of a self-similar fractal string. (Let
the length and gap parameters be zero.) Note, in particular, the explicit estimate in
[19, equation (6.36)].

4.3. Scaling functional equations

Let f; R 2 C 0.RC/. The function f is said to obey a scaling functional equation on
RC with remainder term R if we have that for all x 2 RC, there is a scaling operator
L such that

f .x/ D LŒf �.x/CR.x/ D

mX
iD1

aif .x=�i /CR.x/: (4.2)

The scaling functional equation is exact ifR� 0 and approximate if not. We generally
assume that R cannot be written as the image of f under some scaling operator T
(whence the equation is exact with respect to the operator LC T ), but do not require
it since it may be unknown except perhaps for estimates thereupon.

We now analyze the solutions to scaling functional equations using (truncated)
Mellin transforms. The first step is to transform the functional equation into an equa-
tion for the truncated Mellin transform.

Theorem 4.8 (Truncated Mellin transforms of SFEs). Let f; R 2 C 0.RC/ and let
L D

Pm
iD1 aiM�i be a scaling operator such that the scaling ratios �i are each in

.0; 1/ and with positive integer multiplicities ai . Suppose also that either m � 2 or
that a1 � 2. Additionally, assume that

R.x/ D O.x��0/

as x ! 0C for some �0 2 R.
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If f satisfies the scaling functional equation f D LŒf �C R, then its truncated
Mellin transform Mı Œf � satisfies the equation

Mı Œf �.s/ D �L.s/.E.s/CMı ŒR�.s//

for any s 2 C nDL \H�0 . Here, E is the entire function explicitly given by

E.s/ WD

mX
iD1

ai�
s
iM

ı=�i
ı

Œf �.s/;

and H�0 is the half plane <.s/ > �0.
Moreover, if D is the unique positive solution to equation (4.1), then the function

Mı Œf � is holomorphic in Hmax.D;�0/. It is meromorphic in H�0 , with poles contained
within a subset of DL.H�0/.

Proof. We begin by applying Mı to the scaling functional equation

f D LŒf �CR:

This and a change of variables yield

Mı Œf �.s/ D

mX
iD1

ai

Z ı

0

t sf .t=�i /
dt

t
CMı ŒR�.s/

D

mX
iD1

ai�
s
i

Z ı=�i

0

t sf .t/
dt

t
CMı ŒR�.s/:

By the linearity of integration, we may split the integrals to write

Mı Œf �.s/ �

mX
iD1

ai�
s
iM

ı Œf �.s/ D E.s/CMı ŒR�.s/:

Provided that s … DL, it follows that

Mı Œf �.s/ D �L.s/.E.s/CMı ŒR�.s//:

We have that the function E is entire since it is a linear combination of entire
functions �siM

ı=�i
ı

Œf � and that Mı ŒR�.s/ is holomorphic in H�0 . By Proposition 4.3,
�L is holomorphic in the half plane HD and meromorphic in all of C.

So, the functions �L �Mı ŒR� and �L �E are holomorphic when<.s/ > maxD; �0
and meromorphic in H�0 with poles at exactly the points ! 2 C such that

Res.�L.E.s/CMı ŒR�// ¤ 0:
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The solution to this scaling functional equation is then produced by the Mellin
inversion theorem. This result is analogous to the Fourier inversion theorem, and pro-
vides a means by which one may invert the Mellin transform; see, for instance, [25].
We will make use of the following notation convention:Z cCi1

c�i1

f .z/ dz WD lim
T!1

Z cCiT

c�iT

f .z/dz;

which may also be considered a principal value integral, such as in [8].

Theorem 4.9 (Solutions to scaling functional equations). Let f; R 2 C 0.RC/, let
L D

Pm
iD1 aiM�i be a scaling operator, and suppose that f satisfies the scaling

functional equation f DLŒf �CR. Suppose further thatR.x/DO.x��0/ as x! 0C

and that D is the unique positive solution to equation (4.1).
Then, for any x 2 RC and for any ı > x, f is given by

f .x/ DM�1Œ�L � .E CMı ŒR�/�.x/

D
1

2�i

Z cCi1

c�i1

x�s�L.s/.E.s/CMı ŒR�.s//ds;

where c is any positive constant greater than both D and �0 and E is as in Theo-
rem 4.8.

Proof. Theorem 4.8 yields that

Mı Œf �.s/ D �L.s/.E.s/CMı ŒR�.s//:

We know from this theorem and from Proposition 4.3 that the functions �L and Mı ŒR�

are holomorphic in the half planes HD and H�0 , respectively.
Since Mı Œf � D MŒf � 1Œ0;ı�� is holomorphic in the half plane Hmax.D;�0/, we

may apply the Mellin inversion theorem to find that for any c > max.D; �0/,

f .x/ � 1Œ0;ı�.x/ D
1

2�i

Z cCi1

c�i1

x�s�L.s/.E.s/CMı ŒR�.s//ds:

Since ı > x, we have that
1Œ0;ı�.x/ D 1;

whence the result follows.

In practice, the next step is to apply the residue theorem and contour deformation
in order to obtain the function in terms of the poles of �L and integration involving the
remainder term. As this has already been done in detail for fractal tube functions (see
[19, Chapters 5 and 8] in the context of explicit formulae and Chapter 5 of [18] for
the treatment of higher dimensional tube formulae), we will specialize to the relative
tube functions of interest in the next section.
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5. Fractal scaling functional equations

In this section, we establish our main results for fractal geometry: analysis of scaling
functional equations for tube functions and explicit description of the corresponding
tube zeta functions. We will focus on relative fractal drums which describe attractors
of self-similar systems, i.e., fractals arising from iterated function systems in which
the mappings are all similitudes. The relevant background information may be found
in Section 3, and we will use the theorems of Section 4 which have been established
in a more general setting.

5.1. Osculant fractal drums

Throughout this section, let ˆ D ¹�iºmiD1 be a self-similar system on RN . For conve-
nience, given a set U � RN , let us denote Ui D �i .U / for each i D 1; : : : ; m. Then,
if X is the attractor of ˆ, we have that X D

Sm
iD1 �i .X/ and in this case, X is said

to be self-similar.
We will study iterated function systems satisfying the open set condition, intro-

duced by Moran [21] for relating similarity and Hausdorff dimensions. See also the
work of Hutchinson in [9].

Definition 5.1 (Open set condition). An iterated function systemˆD ¹�iº
m
iD1 on RN

satisfies the open set condition (OSC) if there exists an open set U � RN such that

(1) U �
Sm
iD1 �i .U /;

(2) for each i; j 2 ¹1; : : : ; mº with i ¤ j , �i .U / \ �j .U / D ;.

In particular, we will focus on relative fractal drums .X; �/ such that X is the
attractor of a self-similar system ˆ for which � is such an open set.

When X is a self-similar set, its tubular neighborhoods X" may or may not them-
selves be self-similar in the same sense that it partitions according to a self-similar sys-
tem. However, with an appropriate relative fractal drum an approximate self-similarity
will still lend itself to direct analysis. Namely, if a relative fractal drum .X;�/ (recall
Definition 3.1) can be written in terms of some similar RFDs .�iX;�i�/ and a resid-
ual RFD .X; R/, then the tubular neighborhood can be partitioned according to its
overlap with the sets �i� and R.

To that end, suppose ˆ is a self-similar system with attractor X , and let � be an
open set for which ˆ satisfies the open set condition and such that .X;�/ is a relative
fractal drum. Write R D � n .

Sm
iD1 �i .�// so that � is the disjoint union of each

�i .�/ andR. There are two points of order. Firstly, we need thatX" \ �i .�/ is in fact
.�i .X//" \ �i .�/. Equivalently, for every point y 2 �i .�/, d.y;X/ D d.y; �i .X//.
This condition will be necessary to relate VX;�i .�/ to V�i .X/;�i .�/.
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The other is a small technical point: R need not be open, so strictly speaking
.X; R/ is not an RFD. If @R has measure zero, we may safely replace R with its
interior and VX;R will be unaffected. Even if not, however, the definition of R ensures
that it is measurable withm.R/�m.�/ <1, and thus VX;R (and consequently Q�X;R)
will still be well-defined as in Definition 3.2 (resp., Definition 3.4).

We will conclude this subsection by endowing the relative fractal drums to which
our methods apply with a suitable name.

Definition 5.2 (Osculating sets of iterated function systems). Let ˆ D ¹�iºmiD1 be an
iterated function system on RN , and let X be its attractor. An open set � � RN is
said to be an osculating set for ˆ if the following hold:

(1) � �
Sm
iD1 �i .�/;

(2) For each i; j 2 ¹1; : : : ; mº with i ¤ j , �i .�/ \ �j .�/ D ;;

(3) � has finite Lebesgue measure;

(4) 9 ı > 0 such that �ı � X ;

(5) For each i D 1; : : : ; m, if y 2 �i .�/, then d.y;X/ D d.y; �i .X//.

The pair .X;�/ is called an osculant fractal drum for ˆ.

Note that the first two conditions imply that ˆ satisfies the open set condition as
per Definition 5.1. The third and fourth conditions imply that .X;�/ is a relative frac-
tal drum as per Definition 3.1. The last condition, which to the best of our knowledge
has not been studied before, might be called the “osculating" condition: the points in
iterates �i .�/ of � stay closest to the corresponding iterate �i .X/ of X , rather than
to a different iterate �j .X/.

5.2. Self-similar systems yielding SFEs

Given a self-similar system ˆ which satisfies the open set condition, we suppose that
it gives rise to an osculant fractal drum .X;�/. For this work, our examples will be
focused on (self-avoidant) generalized von Koch snowflakes; see Section 6. Under the
conditions of Definition 5.2, we deduce a scaling functional equation satisfied by the
volume of a tubular neighborhood relative to �.

Theorem 5.3 (SFE of a self-similar system). LetˆD¹�iºmiD1 be a self-similar system
on RN where the scaling ratio of �i is �i for each i D 1; : : : ;m. LetX be the attractor
of ˆ and suppose that � is an osculating set for ˆ. Define

R D �

�� m[
iD1

�i .�/

�
:
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Then, the tube function VX;� W RC ! Œ0;1� satisfies the following scaling func-
tional equation:

VX;�."/ D LŒVX;��."/C VX;R."/ D

mX
iD1

�Ni VX;�."=�i /C VX;R."/ (5.1)

for all ". Here, L WD
Pm
iD1 �

N
i M�i is the associated scaling operator.

Note that a scaling ratio may be repeated, in which case L may be written in the
reduced form

L D

m0X
jD1

aj�
N
j M�j ;

where the �j ’s are distinct, aj 2 N is the multiplicity of �j , and m0 � m.

Proof. We begin by partitioning � according to the iterates and the residual set

� D

m]
iD1

�i .�/
]
R:

Next, we intersect the sets of the partition with X" and taking the Lebesgue measure.
By disjoint additivity, we obtain that

VX;�."/ D

mX
iD1

VX;�i .�/."/C VX;R."/:

Now, we have that for each i 2 ¹1; : : : ; mº, d.y; X/ D d.y; �i .X// for all y 2
�i .�/. Consequently, X" \ �i .�/ D .�i .X//" \ �i .�/, as the epsilon neighbor-
hoods are the preimages of the interval Œ0; "/ under the respective distance functions
d.�; X/ � d.�; �i .X//, equivalent in �i .�/. Thus, VX;�i .�/ D V�i .X/;�i .�/.

Therefore, we obtain the identity that

VX;�."/ D

mX
iD1

V�i .X/;�i .�/."/C VX;R."/:

Using Lemma 3.3, we have that

V�i .X/;�i .�/.t/ D �
N
i VX;�.t=�/:

Equation (5.1) then follows by applying this term-by-term.

In practice, it is generally easiest to ensure that a relative fractal drum is oscu-
lant in the construction of the set �. In this work, we explicitly apply our results to
generalized von Koch fractals in Section 6.
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5.3. Complex dimensions from SFEs

We first note the following which will serve as a dictionary between truncated Mellin
transforms and tube zeta functions.

Proposition 5.4 (Tube zeta functions are Mellin transforms). Let .X;�/ be a relative
fractal drum in RN . Then,

Q�X;�.sI ı/ DMı Œt�NVX;�.t/�.s/:

The main note of interest is that the tube function is scaled by a factor of t�N . This,
in particular, is behind the weights of �Ni in the scaling operator in Theorem 5.3.

Now, given a scaling functional equation determined by a scaling operator L and
a remainder term for the tube function of a set X , we deduce the possible complex
dimensions of X up to an order based on the estimates for the remainder.

Theorem 5.5 (Complex fractal dimensions from SFEs). Let .X;�/ be a relative frac-
tal drum in RN and let VX;�."/ be the corresponding relative tube function. Suppose
that VX;� satisfies the following scaling functional equation:

VX;�."/ D LŒVX;��."/CR."/ D

mX
iD1

ai�
N
i VX;�."=�i /CR."/; (5.2)

where

L WD

mX
iD1

ai�
N
i M�i

is a scaling operator with distinct ratios �i 2 .0;1/ with positive integral multiplicities
ai and where R."/ is a continuous remainder term of order O."N�r/, where r 2 R

depends on this remainder quantity.
Then, the set of complex fractal dimensions with real part � > r , i.e., in the open

right half plane Hr , is contained in the set

DX .Hr/ �

²
! 2 Hr W 1 D

mX
iD1

ai�
!
i

³
: (5.3)

IfDD dimMink.X;�/ is the relative upper Minkowski dimension of the setX , suppose
that r < D. Then, Q�X;� is holomorphic in HD with abscissa of absolute convergence
D. Q�X;�/ D dimMink.X;�/.

The structure of these complex (fractal) dimensions is dependent on the nature of
the scaling ratios. In particular, there is a dichotomy between the lattice (or arithmetic)
and the non-lattice (or non-arithmetic) cases. We note that the structure results are
exactly the same as in [19, Theorem 2.16].
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Proof. First, we note that the function f .t/D t�NVX;�.t/ satisfies the corresponding
scaling functional equation:

f .t/ D

mX
iD1

aif .t=�i /C t
�NR.t/;

since�Ni "
�NVX;�."=�i /Df ."=�i /. Note that by Proposition 5.4 the restricted Mellin

transform of f is exactly the tube zeta function of the RFD .X;�/, i.e., Mı Œf �.s/ D
Q�X;�.sI ı/. Let us also define Q�R by Q�R.sI ı/ DMı Œt�NR.t/�.s/.

So, by Theorem 4.8, we have that the tube zeta function Q�X;� satisfies the func-
tional equation:

Q�X;�.sI ı/ D �L.s/.E.sI ı/C Q�R.sI ı//: (5.4)

Here, L D
Pm
iD1 aiM�i , �L is its associated scaling zeta function, and the remainder

term satisfies t�NR.t/ D O.t�r/ since R.t/ D O.tN�r/. This formula is valid for
all s 2 C nDL \Hr . Additionally, the entire function E can be written in terms of
partial tube zeta functions, namely,

E.s/ D E.sI ı/ D

mX
iD1

ai�
s
i
z�X;�.sI ı; ı=�i /:

The theorem additionally yields that Q�X;�.sIı/ is holomorphic in Hmax.D;r/ and mero-
morphic in Hr , with DX .Hr/ � DL.HL/. Equation (5.3) follows from this contain-
ment and Proposition 4.3.

The abscissa of absolute convergence is a consequence of Theorem 4.1.7 in [18],
in light of the functional equation relating tube and distance zeta functions. See [18,
equation (2.2.23) and Theorem 5.3.2].

Note that equation (5.4) yields the following additional information about the
structure of DX .Hr/. Namely, if <.!/ > r , then ! 2DX .Hr/ if and only if �L has a
pole of higher order than the degree of vanishing of the term E.sI ı/C Q�R.sI ı/. So,
we obtain the following corollary.

Corollary 5.6 (Criterion for exact complex dimensions). Let .X; �/ be a relative
fractal drum as in Theorem 5.5, in particular, whose complex dimensions in Hr satisfy
equation (5.3). Suppose that for each ! 2 DL.Hr/ we have that

mX
iD1

ai�
!
i
z�X;�.!I ı; ı=�i /C Q�R.!I ı/ ¤ 0:

Then, in fact DX .Hr/DDL.Hr/, where DX .Hr/ is the set of complex dimensions of
the RFD .X;�/ in Hr , as in Definition 3.5. In other words, each such ! is a complex
dimension of .X;�/ rather than simply a possible complex dimension.
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We conjecture that for every pole of �L, there is at least one value of ı for which
the factor is nonzero. This claim would be enough to prove that these sets of poles are
in fact equal, as the poles of Q�X;� are known to be independent of the parameter ı.
The integrals defining z�X;� are notably oscillatory, so one must take care in estimating
them and their linear combination. Additionally, this claim is likely dependent on a
suitable estimate for Q�R.sI ı/.

Of note, Theorem 5.5 is only as good as the scaling exponent in the known esti-
mate of the remainder term. If the remainder term is merely bounded (viz. R.t/ D
O."0/, with r D N ), then there is little information to be gained. The best results
occur if the parameter r is small; in Section 6, our results will apply for any order
˛ > 0 arbitrarily close to 0. Informally, r corresponds to the (Minkowski) dimension
of the remainder quantity: when R scales like the volume of an epsilon neighborhood
of a point, the exponent is N and thus r D 0; when R scales like the volume of a
neighborhood of a line, so the exponent is N � 1 and r D 1; and so forth. In other
words, our work determines the complex dimensions with real parts (or amplitudes)
up to the real part corresponding to the dimension of (the estimate of) the remainder
term.

6. Results on generalized von Koch fractals

In this section, we will apply the results of Section 5 to generalized von Koch fractals
(or GKFs). See Section 2 for the definitions and properties concerning these fractals.
In particular, we provide a scaling functional equation for the tubular neighborhood
volume and estimates of the error term that allow us to describe the possible complex
dimensions of these GKFs.

Notably, a lattice/non-lattice dichotomy arises depending on whether the scaling
ratio r and its conjugate factor ` D 1

2
.1 � r/ are arithmetically related or not. For

the standard von Koch snowflake, or the .3; 1
3
/-von Koch snowflake to be precise, the

ratios are the same: r D `, and thus, the fractal falls under the lattice (aka arithmetic)
case. The emergence of the non-lattice (aka non-arithmetic) case is unique to the
generalizations of the von Koch snowflake.

6.1. Complex dimensions of GKFs

Let Kn;r be a .n; r/-von Koch snowflake which is a simple, closed curve2. By the
Jordan curve theorem, a simple closed curve bisects the plane into two connected

2See Proposition 2.4 for a sufficient condition based on r and n.
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Figure 7. Inner tubular neighborhoods of the fractals K
3; 15

(left) and K
4; 15

(right).

components, one of which is bounded and the other unbounded. Let us denote by �
the bounded component; then @� D Kn;r .

Note that .Kn;r ; �/ is readily seen to be a relative fractal drum since the sets are
both bounded. We will be interested in describing the inner tubular neighborhood of
Kn;r , which is the tube function of Kn;r relative to the set �. Our goal is to construct
a tube functional equation à la equation (5.2) and apply Theorem 5.5.

To that end, we first note that by constructionKn;r has n-fold rotational symmetry
about its center. So, we may reduce our analysis to the portion of .Kn;r/" contained
inside a single sector of angle 2�=n intersected with �. So, let S be any one of the
n congruent (open) sectors defined by the center of Kn;r and two adjacent vertices of
the underlying regular n-gon. Defining VK for convenience, we have that

VK."/ WD VKn;r ;�\S ."/ D
1

n
VKn;r ;�."/

for all " � 0. Let us also define a set K."/ which represents the portion of the inner
epsilon neighborhood contained in � \ S , namely,

K."/ WD
®
y 2 � \ S W 9x 2 K; jx � yj < "

¯
D .Kn;r/" \� \ S:

We may partitionK."/ into 2C .n� 1/ self-similar copies of itself as well as 4 pieces
contained within congruent triangles and 2 pieces which are exactly circular sectors.
This partitioning leads to the following theorem.

Theorem 6.1 (Scaling functional equation of VK). For any " � 0, VK satisfies the
approximate scaling functional equation

VK."/ D 2`
2VK."=`/C .n � 1/r

2VK."=r/CR."/; (6.1)

where `D 1
2
.1� r/ is the conjugate scaling factor to r andR."/DO."2/ as "! 0C.
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The remainder satisfies the estimateR."/� .2 cot.�n=2/C �n/"2, where �n D 2�
n

is the central angle of the regular n-gon, for all " > 0.

Proof. Without loss of generality, we may suppose thatK WD Kn;r \ S is exactly the
.n; r/-von Koch curve Cn;r ; in general, K is isometric to this set. In this setting, we
have explicitly the similitudes for the self-similar system ˆn;r D ¹�L; �R;  k; k D

1; : : : ; n � 1º which defines Cn;r as in Definition 2.2. (In the general setting, simply
compose these maps �i with the isometry between the sets.)

By definition, K is the attractor of the self-similar system ˆ in Definition 2.2.
There are two similitudes �L and �R with scaling ratios ` WD 1

2
.1 � r/ 2 .0; 1/ and

n � 1 similitudes  k with scaling ratios r 2 .0; 1/. So, we define the scaling operator
L D Ln;r by L WD 2M` C .n � 1/Mr .

Let U D � \ S . Then, we have that U is an osculating set for ˆ. Indeed, the
collection of sets ¹�L.U /; �R.U /;  k.U /; k D 1; : : : ; n � 1º is readily seen to be
pairwise disjoint and each set is contained withinU itself. .K;U / is a clearly a relative
fractal drum since K and U are bounded sets.

The osculating condition may be seen from the symmetry involved in the construc-
tion of K. In particular, we will use the property that if X and X 0 are two sets in R2

related by reflection about the line L, then the set of points which are equidistant toX
andX 0 must lie onL. We note that by choice of U , its images  k.U / partition a regu-
lar n-gon scaled by a factor of r about the lines of symmetry passing from the center of
the shape to its vertices. Because the adjacent images  j .K/ and  jC1.K/ are reflec-
tions of each other about these lines, it follows that d.�;K/ D min�2ˆ d.�; �.K// can
only change form across these lines by continuity of the distance functions. In other
words, it follows that d.�; K/ � d.�;  j .K// in each  j .U /, j D 1; : : : ; n � 1.

Now, the other two iterates on the edges are simpler. Indeed, we have that d.�;K/�
d.�; �L.K// in �L.U / (resp., d.�; K/ � d.�; �R.K// in �R.U /) is clear from the
geometry of K since a ball B".y/ for y 2 �L.U / (resp., y 2 �R.U /) will intersect
with �L.K/ (resp., �R.K/) before ever reaching  1.K/ (resp.,  n�1.K/).

So, by Theorem 5.3, we obtain the following equality:

VK."/ D 2`
2VK."=`/C .n � 1/r

2VK."=r/C VK;R."/;

where

R D U

�� [
�2ˆ

�.U /

�
and VK;R."/ D m.K."/ \R/:

Now, we note thatK."/\Rmay be partitioned into two sectors of angle �n and length
" and four congruent pieces contained in triangles of height " and width " cot.�n=2/.
See Figure 8 for a depiction of one such triangle. Therefore, we may write that

R."/ WD VK;R."/ � �n"
2
C 2"2 cot.�n=2/:
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Figure 8. A portion of the epsilon neighborhood of the von Koch snowflakeK3;1=3 is depicted.
In particular, note the regions contained in the triangles of height " and width "cot.�n=2/, where
�n D 2�=n, on the left and the right.

Note that it follows that VKn;r ;� satisfies the same functional equation as equa-
tion (6.1) but with remainder nR."/. So, Theorem 5.5 will yields a description of the
complex dimensions of Kn;r . Additionally, we highlight the description of the tube
zeta function in terms of a self-similar zeta function, �L.

Theorem 6.2 (Possible complex dimensions of GKFs). Let n � 3 and r 2 .0; 1/ be
such that Kn;r is a simple, closed curve. Let Q�Kn;r ;�.s/ be the relative tube zeta func-
tion for Kn;r relative to the bounded component � of R2 n Kn;r . Further, let ` D
1
2
.1� r/ be the conjugate scaling ratio to r and ı > 0. Then, for all s 2C nDL \H0,

Q�Kn;r ;�.s/ D
1

1 � 2`s � .n � 1/rs
� .E.sI ı/C Q�R.sI ı//; (6.2)

whereE.sI ı/ is an entire function, Q�R.sI ı/ WD n
R ı
0
t s�3R.t/dt is holomorphic in the

right half plane H0, andL WD 2M`C .n� 1/Mr is a scaling operator with associated
zeta function �L.s/ D 1

1�2`s�.n�1/rs
and complex dimensions

DL.C/ D
®
! 2 C W 1 D 2`! C .n � 1/r!

¯
:

Consequently, we have that the complex dimensions of Kn;r satisfy the contain-
ment

DKn;r .H0/ �
®
! 2 C W 1 � 2`! � .n � 1/r! D 0

¯
:

Q�Kn;r ;� is meromorphic in H0 with poles at the points in DKn;r .H0/ and holomorphic
in HD , where

D D dimMink.Kn;r ; �/:
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Proof. This is a corollary of Theorem 6.1 and Theorem 5.5. See, in particular, equa-
tion (5.4) from the proof of the latter. Explicitly, we have that

E.sI ı/ D 2`sz�Kn;r ;�.sI ı; ı=`/C .n � 1/r
sz�Kn;r ;�.sI ı; ı=r/

and that
R."/ � .�n C 2 cot.�n=2//"2;

where �n D 2�=n.

6.2. Languidity of generalized von Koch fractals

In this section, we provide estimates on the growth of Q�Kn;r ;� known as languidity,
see [18, Definitions 5.1.3 and 5.1.4]. These are primarily necessary in order to deduce
tube formulae for VKn;r ;�. Note that here we use i for the imaginary unit, whereas in
previous sections we have used it as an indexing variable.

Theorem 6.3 (Languidity of GKF relative fractal drums). Let .Kn;r ; �/ be the rela-
tive fractal drum of a GKF as in Theorem 6.2, with tube zeta function Q�Kn;r ;�. Then,
Q�Kn;r ;� is languid with exponent � D 0. If, a fortiori, Q�R is strongly languid as a
function (in the sense of Definition 4.6) then so too is Q�Kn;r ;� and the RFD .Kn;r ;�/.

Proof. Firstly, we note that by Proposition 4.7, �L is strongly languid with exponent
� D 0. We will thus need to estimate the terms in the multiplicative factor in order to
deduce the languidity of Q�Kn;r ;�. We do have that

j Q�Kn;r ;�.sI ı/j � j�L.s/j.jE.sI ı/j C j
Q�R.sI ı/j/;

so we may estimate E.sI ı/ and Q�R.sI ı/ independently.
Let ˛ 2 .0;D/, ˇ > 2 � D, and ı > 0 be fixed. Let us define the screen S.�/ to

be the constant function S.�/ � ˛. Further, suppose that ¹�mºm2Z is a sequence of
real numbers for which �L satisfies the languidity estimates. In particular, it satisfies
that limm!1 �m !1, limm!�1 �m D �1, and 8m � 1, ��m < 0 < �m.

To estimate the entire function E.sI ı/, we recall the estimates in equation (3.3)
for partial tube zeta functions. Using these estimates on the function E.sI ı/, when
� D <.s/ ¤ 2, we have that

jE.sI ı/j � 2`�VKn;r ;�.ı=`/
ı��2

� � 2
.`2�� � 1/

C .n � 1/r�VKn;r ;�.ı=r/
ı��2

� � 2
.r2�� � 1/

� C
ı��2

� � 2
.`2 � `� C r2 � r� /:
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Additionally, E.sI ı/ is bounded in a neighborhood of � D 2, say Œ2 � ; 2C �, by
the second estimate of equation (3.3) and the continuity of E.�I ı/. So, E.sI ı/ may
be uniformly estimated on the intervals Œ˛ C i�m; .2 � /C i�m�, Œ2 �  C i�m; 2C
 C i�m�, and Œ2C  C i�m; ˇ C i�m� with a constant C which does not depend on
�m. Along the screen S.�/� ˛, we similarly have that E.sI ı/ is uniformly estimated
by a constant determined only by ˛ and the other fixed parameters (ı; n; r and so
forth). We do note that the estimate involves a factor of the form B˛ for some B > 0,
but otherwise is valid for any ˛ < D; thus E.sI ı/ may in fact be seen to satisfy the
estimates required of strongly languidity.

Next, we estimate the remainder term. By Theorem 6.1, we have the estimate
nR.t/ � Ct2 for a constant C > depending only on n. Therefore, we have that if
<.s/ D � > 0,

j Q�R.sI ı/j � C

Z ı

0

t��1 dt � C
ı�

�
:

Therefore, we have that it is bounded on <.s/ D ˛ > 0 independently of =.s/ (with
bound depending only on n and ˛) and on the intervals Œ˛ C i�m; ˇ C i�m� indepen-
dently of �m.

Let CL be a constant for which the estimates on �L hold, CE forE, and CR for Q�R.
Combining these estimates together with the constant C D CL.CE C CR/ yields the
estimates for the function Q�Kn;r ;�. Thus, the RFD .Kn;r ;�/ is languid with exponent
� D 0 with respect to any screen S.�/� ˛ > 0. Additionally, if Q�R satisfies the strong
languidity conditions, then so too does Q�Kn;r ;� since the functions �L and E both
satisfy the necessary estimates.

6.3. Tube formulae for GKFs

Having proven the necessary growth estimates, we may now deduce explicit tube for-
mulae for the RFDs .Kn;r ; �/. We will focus on pointwise formulae in this paper
for simplicity, but the interested reader may also wish to consider the distributional
analogues which are simpler in expression but more technical in their interpretation.
There is an explicit formula for the tube function VKn;r ;� which is valid distribution-
ally (equation (6.4)), and the pointwise formulae of Theorem 6.4 will be valid for the
integrated tube functions V Œk�Kn;r ;�

for any k � 2.
In what follows, we will use the Pochhammer symbol .s/k which may be defined

as

.s/k D
�.s C k/

�.s/
;

which for k 2 N takes the form

.s/k D s.s C 1/ � � � .s C k � 1/:
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Theorem 6.4 (Pointwise tube formula for GKFs). Let .Kn;r ; �/ be the relative frac-
tal drum of a generalized von Koch snowflake relative to its interior component �.
Let VKn;r ;� be its tube function and let V Œk�Kn;r ;�

be the kth antiderivative of VKn;r ;�
with the constraint that V Œl�Kn;r ;�.0/ D 0 for all l D 1; : : : ; k.

Let ı > 0 and k > 1. Then, for any t 2 .0; ı/, we have that

V
Œk�
Kn;r ;�

.t/ D
X

!2DKn;r ;�.H˛/

Res
�
t2�sCk

.3 � s/k
Q�Kn;r ;�.sI ı/I!

�
CO.t2�˛Ck/ (6.3)

as t ! 0C for any ˛ > 0 for which ¹! 2 DKn;r ;�.H0/ W <.!/ D ˛º D ;.

Proof. By Theorem 6.3, the RFD .Kn;r ; �/ is languid. Therefore, we may apply
[18, Theorem 5.1.11] to obtain equation (6.3). Explicitly, we construct the screen
S.�/ WD ˛ C i� , which by assumption does not intersect any poles of Q�Kn;r . In this
case, supS D ˛ and the error estimate follows from equation (5.1.33).

Note that if a pole ! 2 DKn;r ;�.H0/ is simple, then we have that

Res
�
t2�sCk

.3 � s/k
Q�Kn;r ;�.sI ı/I!

�
D

t2�!Ck

.3 � !/k
Res.�L/.E.!I ı/C Q�R.!I ı//;

where �L, E, and Q�R are as in Theorem 6.2. In this case, the formula is seen to be
a sum of terms of the form r!

.3�!/k
t2�!Ck , where r! is a constant determined from

Q�Kn;r . Note that this computation of the residue relies on equation (6.2) and the holo-
morphicity of E and Q�R.

Also, we note that the Pochhammer symbol has a shift by one since the term in
equation (5.1.30) in [18] is .N � sC 1/k; the codimension 2�! is still the important
term in the denominator. Indeed, by writing the product formula in reverse order and
fixing the codimension 2 � ! in each factor, we remark that it takes the form

.3 � !/k D .2 � ! C k/.2 � ! C k � 1/ � � � .2 � ! C 1/:

In this form, the correspondence between the exponent of t and the factors in the
product is clearer.

Lastly, we stress that the sum in equation (6.3) must be interpreted as an appropri-
ate limit of sums over poles contained in windows of increasing size. More explicitly,
it is the limit of the sum of the complex dimensions whose imaginary parts are
bounded in magnitude by a fixed upper bound, say Tn, with the limit taken over the
bounding parameter Tn going to infinity. Equivalently, this may be stated in terms of
a limit of sums over truncated windows. See [18, Remark 5.1.12] for more details.

Now, equation (6.3) is explicitly for second order and higher antiderivatives of
the tube function VKn;r ;�. This formula is, however, valid in a distributional sense
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for all k 2 Z (and, in particular, for the tube function itself where k D 0) without
further assumption; see [18, Theorem 5.2.2]. Interpreting the following equality in
the distributional sense, the formula for k D 0 takes the form

VKn;r ;�.t/ D
X

!2DKn;r ;�.H˛/

Res.t2�s Q�Kn;r ;�.sI ı/I!/CRKn;r ;�.t/; (6.4)

where RKn;r ;� is a distribution whose action on test functions is of asymptotic order
O.t2�˛/ for small ˛ > 0, in the sense of Definition 5.2.9 in [18]. If the poles ! are
each known to be simple, then equation (6.4) takes the simpler form

VKn;r ;�.t/ D
X

!2DKn;r ;�.H˛/

a! t
2�!
CRKn;r ;�.t/; (6.5)

where a! WD Res. Q�Kn;r ;�.sI ı/I!/ are constants determined only by the residues of
the tube zeta function. We refer the interested reader to [18, Section 5.2] for more
details and most importantly the description of the appropriate space of test functions
for which these distributions act. Theorem 5.2.2, in particular, leads equation (6.4)
and equation (6.5) follows from Corollary 5.2.12.

6.4. Lattice/non-lattice dichotomy

The possible complex dimensions DL.H0/, or equivalently the complex solutions to
equation (4.1) with positive real part, have structure heavily dependent on the arith-
metic properties of r and its conjugate `. We will say that Kn;r is arithmetic (or
lattice) if log r= log ` is rational and non-arithmetic (or non-lattice) otherwise. In the
arithmetic case, this implies there exists a (unique) positive number x and positive
integers p; q so that r D xp and ` D xq .

Corollary 6.5 (Complex dimensions of Kn;r , arithmetic case). Let the scaling ratios
r and `D 1

2
.1� r/ be arithmetic, that is, there exist a positive x and positive integers

p; q so that r D xp , ` D xq .
Then, there exist finitely many poles D D !1; !2; : : : ; !n with real parts D D

�1 > �2 � � � � � �n so that the complex dimensions of Kn;r are contained in the set²
!k C

2�in

log x�1
W n 2 Z; k D 1; : : : ; n

³
:

For each ! with<.!/k > 0, these are indeed complex dimensions, and all of the poles
with real part D are simple.

Proof. This result is a corollary of Theorem 6.2 and the results in [19, Theorem 2.16]
regarding self-similar zeta functions having the same form as �L.
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Figure 9. Two-dimensional complex argument plots of associated scaling zeta functions of the
fractals K

3; 13
(left), K

4; 14
(middle), and K

5; 15
(right). The possible complex dimensions of the

fractals occur at the poles of these functions, indicated in the plots by the white circles.

Note that this corollary implies whenever Kn;r is arithmetic, it is not Minkowski
measurable.

Meanwhile, in the non-lattice case, the complex dimensions are no longer dis-
tributed periodically along finitely many vertical lines. Instead, there is a unique pole
of highest order, the Minkowski dimensionD of the fractal or equivalently the unique
positive real solution to equation (4.1) specialized to these fractals. Compare the pos-
sible complex dimensions of the fractals plotted in Figure 9: the first example is the
lattice case since there is one scaling ratio r D 1

3
. However, in the other cases, the

ratios of logarithms of scaling ratios take the form log.1=4/= log.3=8/ for K4; 14 and
log.1=5/= log.2=5/ for K5; 15 .

Describing these poles exactly is in general quite challenging since they are solu-
tions to a transcendental equation without the simplifications possible in the arithmetic
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case. However, the possible complex dimensions in the non-lattice case have a quasip-
eriodic structure which, in particular, may be approximated by sets of lattice complex
dimensions. We refer the reader to Chapter 3, and, in particular, [19, Theorem 3.6]
for a thorough description of the structure of non-lattice complex dimensions and
the proofs of these statements. The theory of approximation of non-lattice complex
dimensions may be found in [19, Section 3.4] and also in the further study of Lapidus,
van Frankenhuijsen, and Voskanian in [20].

7. Conclusion

In summary, we have analyzed fractals arising from self-similar systems by construct-
ing scaling functional equations. These scaling functional equations may be solved by
means of truncated Mellin transforms. In the case of tube formulae for relative frac-
tal drums, this process induces a functional equation satisfied by the zeta function.
Moreover, the poles of this zeta function are essentially controlled by the self-similar
complex dimensions from the scaling functional equation.

We conclude the work by discussing future directions and open problems related
to this work.

7.1. Future directions

Firstly, the methods here may be applied to compute the possible complex dimen-
sions of many other self-similar fractals. All of the necessary framework is present in
Sections 4 and 5, and one primarily needs to verify that an RFD .X; �/ is osculant
and languid in order to deduce an explicit tube formula such as equation (6.3) for
generalized von Koch fractals.

Secondly, it is of interest to more carefully analyze the exactness of complex
dimensions obtained via this methodology. Under what conditions are the possible
complex dimensions exact, such as when does Corollary 5.6 apply? We conjecture
that a much stronger conclusion is possible, namely, that equation (5.3) is in fact an
equality with only mild assumptions on the remainder term.

Additionally, the analysis of generalized von Koch fractals has been done in this
specific way in order to better understand the connection between geometry and
spectrum of fractals in higher dimensions. For one-dimensional fractal strings, the
relationship is elegantly given by an identity of geometric and spectral zeta functions
using Riemann’s zeta function (see [19]). The relationship is being explored in higher
dimensions, and while there are known results (see, for example, [18, Chapter 4, Sec-
tion 3], and explicitly Theorems 4.3.8 and 4.3.11), the general problem is open. See
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[18, Problem 6.2.32] and references therein for a more thorough discussion of this
problem.

In particular, we have studied geometric properties of generalized von Koch frac-
tals by means of scaling functional equations in order to compare with the work of
Michiel van den Berg such as in [26–28] on the heat equation on such fractals. We
plan to further explore this connection in future work.

Acknowledgments. We wish to thank Dr. Michel Lapidus for his mentorship and
helpful conversations regarding this work.
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