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Bounds on the dimension of lineal extensions

Ryan E. G. Bushling and Jacob B. Fiedler

Abstract. Let E � Rn be a union of line segments and F � Rn the set obtained from E by
extending each line segment inE to a full line. Keleti’s line segment extension conjecture posits
that the Hausdorff dimension of F should equal that of E. Working in R2, we use effective
methods to prove a strong packing dimension variant of this conjecture. Furthermore, a key
inequality in this proof readily entails the planar case of the generalized Kakeya conjecture for
packing dimension. This is followed by several doubling estimates in higher dimensions and
connections to related problems.

1. Introduction and main results

Let E D
S

	, where 	 is a family of line segments in Rn, n � 2. Throughout, 	 is
assumed to be maximal in the sense that if I is a line segment and I �

S
	, then

I 2 	—a hypothesis that results in no loss of generality in what follows. Denoting by
A.n; 1/ the affine Grassmannian of lines in Rn, we define the lineal extension of E to
be the set L.E/ formed from E by extending each I 2 	 to the unique line `I � Rn

containing I :

L.E/ WD
[
I2	

`I D
[®

` 2 A.n; 1/ W E \ ` contains a line segment
¯
:

With this setup, Keleti [10] proposed the following conjecture. Let dimH denote Haus-
dorff dimension.

Conjecture 1 (Line segment extension conjecture). Let E � Rn be a union of line
segments and L.E/ its lineal extension. Then, dimH L.E/ D dimHE.

Conjecture 1 is open in dimensions n � 3 but is known for n D 2.

Theorem 1.1 (Keleti [10]). IfE �R2 is a union of line segments, then dimH L.E/D
dimHE.

This article concerns variants and extensions of this problem, emphasizing the
planar case.
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1.1. Line segment extension in R2

We begin by introducing some notation. Let dimP denote packing dimension.

Definition 1.1. For s 2 .0; 1� and E � Rn a union of subsets of lines with (packing
or Hausdorff) dimension at least s, let

LH
s .E/ WD

[®
` 2 A.n; 1/ W dimH.` \E/ � s

¯
and

LP
s .E/ WD

[®
` 2 A.n; 1/ W dimP.` \E/ � s

¯
be, respectively, the s-Hausdorff extension and s-packing extension of E.1 In the
extreme case s D 0, we let

L0.E/ WD
[®

` 2 A.n; 1/ W #.` \E/ � 2
¯
;

which we call the two-point extension of E.

Our first result—a generalization of Theorem 1.1—pertains to the lineal extension
of Furstenberg sets.

Proposition 1.2. Let s 2 .0; 1�, and let E � R2 be a union of (at least) s-Hausdorff-
dimensional subsets of lines. Then, dimH L

H
s .E/ � dimH E C 2 � 2s. In particular,

if E is a union of line segments and L.E/ is its lineal extension, then dimH L.E/ D
dimHE.

Keleti’s proof of Theorem 1.1 combines Marstrand’s slicing theorem and the
“Fubini inequality” for Hausdorff measures in a simple and elegant argument, whereas
we prove Proposition 1.2 by effective methods that, in particular, hinge on a result [15]
of N. Lutz and Stull (Theorem 3.3 below). We remark here that this is in fact implied
by the Furstenberg set bound [16] of Molter and Rela; cf. Section 2 below.

One motivation for Proposition 1.2 is that the proof is morally similar to (but much
simpler than) that of our main result.

1Alternatively, in the above definitions, we could drop the requirement that E be the union
of certain subsets of lines and instead write LH

s .E/ WD
S
¹` 2A.n; 1/ W dimH.E \ `/ � sº [E,

and likewise for packing dimension. One could partition E into (1) the set of points covered
by lines intersecting E in sets of Hausdorff dimension at least s and (2) the remainder of E;
calling the first of these Elines, it is easy to see that LH

s .E/ D L
H
s .Elines/ [ E. The same holds

for packing dimension. Morally speaking, then, the actual definitions we use encompasses all
of the interesting features of the problem.
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Theorem 1.3. IfE �R2 is a union of 1-Hausdorff-dimensional subsets of lines, then
dimPL

H
1 .E/ D dimPE. In particular, if E is a union of line segments and L.E/ is its

lineal extension, then dimP L.E/ D dimPE.

This theorem follows from a different effective analogue that cannot be proved
directly from the aforementioned Lutz–Stull result. The bulk of the proof in Section 4
is establishing this analogue, which involves a sort of multiscale application of the
ideas underlying [15].

A strong “generalized Kakeya conjecture” for packing dimension (see Section
2.1) follows readily from the penultimate step of the proof of Theorem 1.3. Let
Pn�1 WD Sn�1=¹˙1º be the set of directions of lines in Rn.

Corollary 1.4. Let E � R2, and let D � P1 be the set of directions of lines inter-
secting E in a set of Hausdorff dimension 1. If D ¤ ¿, then

dimPD C 1 � dimPE: (1.1)

1.2. Line segment extension in Rn and elementary Besicovitch set estimates

Partial results in higher dimensions, including some (non-)doubling bounds on the
dimension of lineal extensions, follow from more rudimentary “two-part code” argu-
ments in the spirit of [1, Theorem 1.2].

Proposition 1.5. If E � Rn is a union of line segments, then

dimH L.E/ � dimHE C dimPE � 1 and dimP L.E/ � 2 dimPE � 1: (1.2)

Such results are connected to the Kakeya conjecture via the following theorem.
Call a subset of Rn (not necessarily Borel) a Besicovitch set if it contains a unit line
segment in every direction.

Theorem 1.6 (Keleti [10]). (a) If the line segment extension conjecture holds in Rn

for some n � 2, then every Besicovitch set in Rn has Hausdorff dimension at least
n � 1.

(b) If the line segment extension conjecture holds in Rn for all n � 2, then, for
every n � 2, every Besicovitch set in Rn has packing dimension n.

While Theorem 1.6 assumes the full strength of Conjecture 1, with a small modifi-
cation of the final step in Keleti’s proof—to which the reader is referred—one obtains
the following generalization.

Lemma 1.7. Suppose that there is a function g W Œ0; n�2! Œ0; n� such that the follow-
ing holds.
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IfE is a union of line segments in Rn, then g.dimHE;dimPE/� dimH L.E/.

Then, g.dimHK; dimPK/ � n � 1 for every Besicovitch set K � Rn.

As an immediate consequence of this lemma and Proposition 1.5, we obtain an
elementary estimate on the dimension of Besicovitch sets in Rn. (See also Section 2
for implications for the generalized Kakeya conjecture.)

Corollary 1.8. If K � Rn is a Besicovitch set, then

dimHK C dimPK � n:

This is of course far from state-of-the-art, but the implication of Kakeya inequali-
ties from line segment extension inequalities has something of a practical importance
that we describe below.

2. Background on the line segment extension conjecture and its
relatives

2.1. History and context

Keleti [10] introduced the line segment extension problem as a natural follow-up to
the constructions of Nikodym [17] and Larman [12], showing that a union of closed
line segments in Rn can have positive Lebesgue measure even when the union of the
corresponding open line segments is Lebesgue-null.

In this same vein, Falconer and Mattila [4] introduced a “hyperplane extension
problem,” which they treated as a slicing problem with a dual projection problem
that is amenable to a Marstrand-type exceptional set estimate. The planar case of
their Theorem 3.2 weakens the hypothesis in Theorem 1.1 that E contains many line
segments to the hypothesis that it contains many positive-measure subsets of lines,
which Proposition 1.2 further weakens to s-dimensional subsets of lines (possibly
of H s-measure 0). Another consequence of [4] is an equation for the dimension of a
family of hyperplanes in terms of that of its union. Héra, Keleti, and Máthé [8] pursued
this direction in arbitrary dimension and codimension, bounding the dimension of
families ƒ � A.n; k/ from above in terms of the dimension of any set giving large
slices to

S
ƒ.

Redirecting attention back to the connection between the line segment extension
problem and the Kakeya problem, Keleti and Máthé [11] showed that Theorem 1.6
has a strong converse.

Theorem 2.1 (Keleti–Máthé [11]). If the Kakeya conjecture is true in Rn, then the
line segment extension conjecture is true in Rn.
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They established this as a corollary to the equivalence of the Kakeya conjecture
with the generalized Kakeya conjecture.

Conjecture 2 (Generalized Kakeya conjecture). Let E � Rn, and let D � Pn�1 be
the set of directions in which E contains a line segment. If D ¤ ¿, then

dimHD C 1 � dimHE:

In particular, this conjecture is true in R2 but open in all higher dimensions. Unlike
Conjecture 2, the generalized Kakeya conjecture for packing dimension does not seem
to readily imply the packing dimension analogue of Conjecture 1. On the Hausdorff
side, this implication follows from Marstrand’s slicing theorem, of which the pack-
ing dimension analogue is considerably weaker (cf. [5]). In fact, without additional
hypotheses, replacing Hausdorff dimension with packing dimension in the proof of
Conjecture 1 from Conjecture 2 only gives the trivial lower bound dimP E � 1. It
is furthermore not obvious to us that the argument used to establish the equivalence
between Kakeya and generalized Kakeya in [11] easily adapts to packing dimension,
and for these reasons, it seems surprising that both Theorem 1.3 and Corollary 1.4 fall
out of a single proof.

On a different note, it should also be remarked here that the implication in The-
orem 2.1 is not quantitative, in the sense that absolute lower bounds on the size
of Besicovitch sets (or of unions of line segments more generally) do not translate
into progress toward the line segment extension conjecture. This stands in contrast
to Lemma 1.7, according to which partial results on the line segment conjecture do
make headway on the Kakeya problem. In fact, the equivalence between the Kakeya
and generalized Kakeya conjectures proved in [11] is also quantitative.

Theorem 2.2 (Keleti–Máthé [11]). Let E � Rn, and let ¿ ¤ D � Pn�1 be the set
of directions in which E contains a line segment. Then, there exists a compact Besi-
covitch set K � Rn with

dimHK � n � 1C dimHE � dimHD:

Our method gives such inequalities of generalized Kakeya type for packing and
mixed Hausdorff-packing dimensions directly, without reference to a general result
analogous to Theorem 2.2; see the remarks following the proof of Proposition 1.5 in
Section 5.

2.2. s-Hausdorff extensions and the Furstenberg set conjecture

We take a moment to expound on the relationship between Proposition 1.2 and the
Furstenberg set conjecture. For s 2 .0; 1� and t 2 Œ0; 2�, call a set E � R2 an .s; t/-
Furstenberg set if there exists a nonempty t -Hausdorff-dimensional set ƒ � A.2; 1/
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such that
E D

[
`2ƒ

.E \ `/; where dimH.E \ `/ � s 8` 2 ƒ:

If ƒ is the maximal set of lines with this property, then a special case of the afore-
mentioned [4, Theorem 3.2] gives

dimHL
H
s .E/ D min¹t C 1; 2º; (2.1)

which in conjunction with Proposition 1.2 entails

min¹t C 1; 2º � dimHE C 2 � 2s; i.e., 2s Cmin¹t; 1º � 1 � dimHE:

When E is Borel, this is essentially the 1 � s C t
2

case of the Molter and Rela [16]
Furstenberg set bound, and running the argument in reverse in turn yields Proposi-
tion 1.2 for Borel sets from their Furstenberg set estimate.2

More recently, Ren and Wang fully resolved the Furstenberg set conjecture in the
plane.

Theorem 2.3 (Ren–Wang [21]). If E � R2 is a Borel .s; t/-Furstenberg set, then

dimHE � min
²
s C t;

3s C t

2
; s C 1

³
:

A corollary, then, is a strengthening of Proposition 1.2 for Borel sets. The sharp
examples for the Ren–Wang inequality are likewise sharp for this corollary.

Corollary 2.4. Let s 2 .0; 1� and let E � R2 be a union of (at least) s-dimensional
subsets of lines. If E is Borel, then

dimHL
H
s .E/ � max

®
dimHE C 1 � s; 2 dimHE C 1 � 3s

¯
: (2.2)

Proof. We work by cases according to the values of s and t WD dimH¹` 2 A.2; 1/ W

dimH.E \ `/ � sº. Suppose first that s C t � 2. Then, necessarily, t � 1, so Theo-
rem 2.3 implies dimH E � s C 1 and (2.1) implies dimH L

H
s .E/ D 2, from which it

follows that

dimHL
H
s .E/ D .s C 1/C 1 � s � dimHE C 1 � s:

Next, suppose instead that sC t � 2 and s � t . Then, Theorem 2.3 implies dimHE �
3sCt
2

and (2.1) gives dimHL
H
s .E/ � t C 1, so

3s C dimHL
H
s .E/ � 1

2
�
3s C t

2
� dimHE:

Rearranging terms gives the second expression on the right-hand side of (2.2).

2The authors thank Tamás Keleti and Joshua Zahl for sharing this observation.
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Finally, suppose that s C t � 2 and 0 � t < s so that dimH E � s C t by Theo-
rem 2.3 and dimHL

H
s .E/ D t C 1 by (2.1). Then,

s C dimHL
H
s .E/ � 1 D s C t � dimHE; (2.3)

once more giving the first expression on the right-hand side of (2.2). As this covers
all three cases, the corollary is proved.

Conversely, the final step in the proof of Proposition 1.2 shows that the conclu-
sion (2.3) holds when s � t , recovering the corresponding case of Theorem 2.3.

3. Preliminaries on effective methods

3.1. Basic definitions

The main goal of this section is to collect in one place several tools which we use
repeatedly in the remainder of the paper, especially for the benefit of readers less
familiar with Kolmogorov complexity. We operate in the algorithmic framework laid
out in [14], which we briefly recall here to establish terminology and notation. Let
¹0; 1º� be the collection of all finite strings over ¹0; 1º, including the empty string ;.
Fixing some prefix-free universal oracle Turing machine U , we define for each pair
�; � 2 ¹0; 1º� the Kolmogorov complexity of � given � to be the minimal length of a
program that, when given to U as an input with side information � , returns � as the
output:

K.� j �/ WD min
®
j�j 2 N W � 2 ¹0; 1º�; U.�; �/ D �

¯
:

When � D;, we writeK.�/ WDK.� j ;/ and simply call this quantity the Kolmogorov
complexity of � .

The “universality” of U refers to the fact that, for every prefix-free oracle Turing
machine M , there exists a program �M 2 ¹0; 1º

� such that

U.�M ; �/ DM.�/ 8� 2 ¹0; 1º
�:

The length of the shortest such �M is called the machine constant of M . When it is
more awkward to work with U.�M ; � / than it is to work with M directly, we opt for
the latter and then add the machine constant to the length of the shortest � such that
M.�/ D � when computing the Kolmogorov complexity of � .

Identifying the family of all rational vectors with ¹0; 1º� via some effective encod-
ing

S
n2N Qn ,! ¹0; 1º�, we may extend these definitions from strings to real vectors

as follows. Let x 2 Rn, y 2 Rm, and r; s 2 N. We call

Kr.x/ WD min
p2B.x;2�r /\Qn

K.p/
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the Kolmogorov complexity of x to precision r and

Kr;s.x j y/ WD max
q2B.y;2�s/\Qm

�
min

p2B.x;2�r /\Qn
K.p j q/

�
(3.1)

the Kolmogorov complexity of x to precision r given y to precision s. When s D r ,
we simply write Kr.x j y/ WD Kr;r.x j y/, and when y D x, we write

Kr;s.x/ WD Kr;s.x j x/:

When working with conditional complexities, we will have occasion to make
statements like “� testifies to Kr;s.x j y/.” By this, we mean “� testifies to K.x �
r j y � s/,” where � denotes the truncation of a (possibly infinite) string to the given
number of bits of precision. This technical nuance is necessary owing to the fact that
there may be many pairs .p; q/ as in (3.1) such thatKr;s.x j y/DK.p j q/. In partic-
ular, there is generally no single p 2 .x; 2�r/\Qn such that K.p j q/ � Kr;s.x j y/
for all q 2 B.y; 2�s/ \Qm. However, since

Kr;s.x j y/ D K.x � r j y � s/CO.log r C log s/

(cf. [15, Corollary 2.5]), one can work as though such p did exist modulo a logarith-
mic error.

By allowing a machine access to an oracle A � ¹0; 1º�, we can relativize the
above definitions to A, in which case we embellish the symbols U , K, and M with a
superscript A. An oracle represents extra information that an oracle Turing machine
is allowed to use in computations. Access to an oracle can never make a computation
meaningfully harder, as a machine can always “ignore” the oracle if its information is
irrelevant. In particular, if A and B are oracles, then

KA;Br .x/ � KAr .x/CO.1/

for all x 2 Rn.
Using some standard encoding, we can consider points in Rn as oracles. Intu-

itively, conditional access to a point up to a certain precision should be no more useful
than oracle access to all of the information in that point, and this is made precise by
the inequality

KA;xr .y/ � KAr .y j x/CO.log r/:

3.2. Some useful results

One key property of Kolmogorov complexity is symmetry of information. The follow-
ing quantitative form will see repeated use in this paper.
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Lemma 3.1 (Symmetry of information [15]). For all A � ¹0; 1º�, x 2 Rn, y 2 Rm,
and r; s 2 N with r � s, we have the following.

(a) jKAr .x j y/CK
A
r .y/ �K

A
r .x; y/j � O.log r/CO.log logkyk/.

(b) jKAr;s.x/CK
A
s .x/ �K

A
r .x/j � O.log r/CO.log logkxk/.

In practice, the norms of the points we work with are fixed and independent of the
level of precision, so we frequently use these facts in the (relativized) forms

KAr .x; y/ � K
A
r .x j y/CK

A
r .y/ and KAr .y/ � K

A
r;s.y/CK

A
s .y/;

where both equalities hold up to a logarithmic term in r . The latter of these is particu-
larly useful as a tool to bound the complexity of y at a given precision: its repeated use
allows us to partition the interval Œ1; r� into smaller intervals on which the complexity
function of y may have more desirable properties.

We add to this another result to understand how complexity varies with precision.
Case and J. Lutz [2] showed that, for any A � ¹0; 1º�, r; s 2 N, and x 2 Rn,

KAr .x/ � K
A
rCs.x/ � K

A
r .x/C ns CO.log.s C r//:

This bound captures two essential features of the Kolmogorov complexity of points:
it is non-decreasing, and its growth rate is essentially bounded by n on sufficiently
long intervals.

Ultimately, we study the Kolmogorov complexity of points in x 2 Rn to bound
their asymptotic information density. Given an oracle A � ¹0; 1º�, we call

dimA.x/ WD lim inf
r!1

KAr .x/

r
and DimA.x/ WD lim sup

r!1

KAr .x/

r

the effective Hausdorff dimension and the effective packing dimension of x relative to
A, respectively. The utility of effective dimensions in geometric measure theory stems
from the following theorem of J. Lutz and N. Lutz.

Theorem 3.2 (Point-to-set principle [14]). For every set E � Rn,

dimHE D min
A�¹0;1º�

sup
x2E

dimA.x/ and dimPE D min
A�¹0;1º�

sup
x2E

DimA.x/:

We frequently use the following immediate consequence of this theorem: given
someE �Rn, for any oracleA and "> 0, there exists some x2E such that dimA.x/>

dimHE � ", and likewise for packing dimension.
Turning our attention to the effective dimension of points on lines, we note the

following observation of N. Lutz and Stull: for any A � ¹0; 1º� and any x; a; b 2 R,

KAr .x; ax C b/ � K
A
r .x; a; b/COx;a;b.log r/:
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This is because, for every large enough precision r , a Turing machine given x, a, b at
precision r can perform a very accurate calculation of ax C b at precision r . A main
theme of [15] is how close this upper bound is to being a lower bound for the points
on a line, the answer to which is expressed in the following theorem. Let

dim.x j y/ WD lim inf
r!1

Kr.x j y/

r

be the conditional dimension of x given y.

Theorem 3.3 (N. Lutz–Stull [15]). For all a; b; x 2 R and A � ¹0; 1º�,

dimA.x j a; b/Cmin
®

dimA.a; b/; dima;b.x/
¯
� dimA.x; ax C b/:

This is the key ingredient in our proof of Proposition 1.2. However, as the effective
packing dimension analogue of this statement is false,3 the proof of Theorem 1.3 will
require a different strategy.

4. Line segment extension in the plane

4.1. The Hausdorff dimension bound for s-Hausdorff extensions

We begin this section by using Theorem 3.3 of [15] to prove a bound on the Hausdorff
dimension of line segment extensions in the plane. This proof takes Lutz and Stull’s
result as a black box and illustrates the connection between effective and classical
theorems in this setting, which we will need to prove Theorem 1.3.

Proposition 1 (Proposition 1.2, Restated). Let s 2 .0;1�, and letE �R2 be a union of
(at least) s-Hausdorff-dimensional subsets of lines. Then, dimH L

H
s .E/ � dimH E C

2� 2s. In particular, if E is a union of line segments and L.E/ is its lineal extension,
then dimH L.E/ D dimHE.

Proof. With E` WD E \ `, write

E D
[
`2ƒ

E`;

whereƒ �A.2; 1/ is the family of lines ` such that dimHE` � s. By the point-to-set
principle,

dimHE D min
A�¹0;1º�

sup
z2E

dimA.z/ D min
A�¹0;1º�

sup
`2ƒ

sup
z2E`

dimA.z/

3The authors appreciate Donald Stull informing us of this in private communication.
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and

dimHL
H
s .E/ D min

A�¹0;1º�
sup

z2LH
s .E/

dimA.z/ D min
A�¹0;1º�

sup
`2ƒ

sup
z2`

dimA.z/:

Comparing the right-hand sides of these equations, we see it suffices to show that

sup
z2`

dimA.z/ � sup
z2E`

dimA.z/C 2 � 2s (4.1)

for every oracle A � ¹0; 1º� and every line ` 2 ƒ. Taking such an A and `, we inter-
change the x- and y-coordinates if necessary so that ` is not vertical, and we let .a; b/
be the slope-intercept pair of `. As observed in the previous section, for each x 2 R

and each precision r 2 N,

KAr .x; ax C b/ � K
A
r .x; a; b/COx;a;b.log r/ � r CKAr .a; b/COx;a;b.log r/:

Hence, dimA.x; ax C b/ � min¹1C dimA.a; b/; 2º and, consequently,

sup
z2`

dimA.z/ � min¹1C dimA.a; b/; 2º: (4.2)

Now, let S be the projection ofE` onto the x-axis. Then, dimH S � s, so by the point-
to-set principle, for every " > 0, there exists x" 2 S such that dimA;a;b.x"/ � s � ".
Applying Theorem 3.3, we have

dimA.x"; ax" C b/ � dimA.x" j a; b/Cmin¹dimA.a; b/; dima;b.x"/º

� dimA;a;b.x"/Cmin¹dimA.a; b/; dimA;a;b.x"/º

� s � "Cmin¹dimA.a; b/; s � "º:

Letting " go to zero gives

sup
z2E`

dimA.z/ � min¹s C dimA.a; b/; 2sº: (4.3)

The difference between the upper bound in (4.2) and the lower bound in (4.3) is great-
est when dimA.a; b/ � 1, so subtracting the latter inequality from the former implies
the desired inequality (4.1).

4.2. The packing dimension bound for 1-Hausdorff extensions

Now, we turn our attention to the packing dimension version of the line segment exten-
sion problem. The key issue is that we do not have an analogue of Lutz and Stull’s
bound for effective packing dimension. In fact, the statement obtained by replacing
effective Hausdorff dimension with effective packing dimension in Theorem 3.3 is
simply not true.



R. Bushling and J. Fiedler 116

Essentially, the inequality fails because a high packing dimension for the pair
.a; b/ can be the result of KAr .a; b/ growing relatively slowly in r up to some level
of precision, and then significantly more quickly up to a higher level of precision.
At a key technical step in the proof, the complexity function of .a; b/ needs to have
certain properties, which can be guaranteed by reducing its complexity up to preci-
sion r via an oracle D. This “wastes” complexity growth of .x; a; b/ that we would
like to transfer to .x; ax C b/, but since effective Hausdorff dimension only reflects a
lower bound on the asymptotic complexity growth,D does not reduce the complexity
of .x; ax C b/ unacceptably in comparison to the effective Hausdorff dimension of
.a; b/. Effective packing dimension, however, reflects an upper bound on asymptotic
complexity growth, which dashes any hope for the analogous packing inequality. We
will proceed without proving an explicit lower bound on the packing dimension of
arbitrary points on a line, but will still show that, for x of essentially maximal com-
plexity at certain precisions, .x; ax C b/ also has essentially maximal complexity.
This will imply (a somewhat stronger version of) the line segment extension conjec-
ture for packing dimension in the plane.

Theorem 1 (Theorem 1.3, Restated). IfE�R2 is a union of 1-Hausdorff-dimensional
subsets of lines, then dimP L

H
1 .E/ D dimP E. In particular, if E is a union of line

segments and L.E/ is its lineal extension, then dimP L.E/ D dimPE.

The proof will proceed in three main steps. First, we will need to understand the
complexity function KAs .a; b/ on the interval Œ1; r�. Based on its behavior, we will
judiciously choose an oracle D that reduces the complexity at precisions close to r .
Next, we will show that, with the addition of this oracle, we can apply a technical
lemma from [15] to establish a lower bound for KAr .x; ax C b/ on Œ1; r�. This lower
bound improves if x has high complexity at all precisions relative to A, a, b. Finally,
we prove that, for such x, the lower bound in the previous step essentially matches an
upper bound at all sufficiently large precisions, a property which is guaranteed by the
choice of D.

Before we begin, we will need several lemmas in [15], starting with their Lemma
3.1 stated in a relativized form.

Lemma 4.1. Suppose that a; b; x 2 R, B � ¹0; 1º�, r 2 N, ı 2 RC, and "; � 2 QC

satisfy r > log.2jaj C jxj C 5/C 1, and the following.

(1) KBr .a; b/ � .�C "/r .

(2) For every .u; v/ 2 B..a; b/; 1/ such that ux C v D ax C b,

KBr .u; v/ � .� � "/r C ı.r � s/

whenever s WD � log j.a; b/ � .u; v/j 2 .0; r�.
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Then,

KBr .x; ax C b/ � K
B
r .x; a; b/ �

4"

ı
r �KB."/ �KB.�/ �O.log r/:

We note that the implicit constant may depend on x, a, and b, but these will be
fixed in each application. This kind of lemma is often referred to as an “enumeration”
lemma, as its proof depends on enumerating many short strings to find one that gives
an output with the desired properties; enumeration lemmas are key technical elements
of many proofs using effective methods because they give us conditions under which
a desired lower bound holds. In the proof of our main theorem, showing that the two
conditions are satisfied is a significant element in proving the desired lower bound.

We also make use of [15, Lemmas 3.2 and 3.3], stated in the form we will need.4

Lemma 4.2. Let x;a; b 2R. For all .u; v/ 2 B..a; b/; 1/ such that uxC v D axC b
and for all r � s WD � log j.a; b/ � .u; v/j,

KAr .u; v/ � K
A
s .a; b/CK

A
r�s;r.x j a; b/ �O.log r/:

Lemma 4.3. Let A � ¹0; 1º�, r 2 N, z 2 Rn, and � 2 QC. There is an oracle D D
D.A; n; r; z; �/ satisfying the following.

(1) For every natural number t � r ,

K
A;D
t .z/ D min¹�r;KAt .z/º CO.log r/:

(2) For every m; t 2 N and y 2 Rm,

K
A;D
t;r .y j z/ D KAt;r.y j z/CO.log r/

and
K
A;D;z
t .y/ D K

A;z
t .y/CO.log r/:

(3) If B � ¹0; 1º� satisfies KA;Br .z/ � KAr .z/ �O.log r/, then

KA;B;Dr .z/ � KA;Dr .z/ �O.log r/:

(4) For every m; t 2 N, u 2 Rn, and w 2 Rm,

KAr;t .u j w/ � K
A;D
r .u j w/CKAr;t .z/ � �r CO.log r/:

4Lemmas 3.2 and 3.3 are used in a relativized form in [15], so we state them in this way.
The third and fourth properties in Lemma 4.3, which are implicit in [15, Lemma 3.3], are easy
consequences of the construction of D and also are enumerated in [22].
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Lemma 4.2 is the key geometric observation of Lutz and Stull, and it formalizes
the statement that lines passing through the same point are either almost parallel (in
which case they contain much of the same information), or they are transverse enough
that their approximations together determine the x-coordinate of the intersection to a
high precision.

Lemma 4.3 is common in effective arguments. Although it is lengthy to state, the
idea is rather simple: if you want to lower the complexity of a point z at some preci-
sion r , look back to find a precision s < r at which the complexity of z is what you
want it to be at precision r . Then, let D encode all of the new information in z from
s to r . Property 1 says this oracle accomplishes the goal of lowering the complex-
ity. By contrast, the remaining properties tell us that D is not too helpful; that is, D
does not undesirably lower the complexity of other objects. Specifically, D is not any
more helpful in any calculation than knowing z up to precision r (Property 2); it does
not magically become more useful when combined with other unhelpful oracles for z
(Property 3), and it does not reduce the complexity of any object more than it reduces
the complexity of z at precision r (Property 4).

Proof of Theorem 1.3. By the same application of the point-to-set principle used in
Proposition 1.2, it suffices to show that, for any planar line ` with slope-intercept pair
.a; b/ and for any oracle A � ¹0; 1º�, if dimA;a;b.x"/ � 1 �

"
4

for a collection of x",
then

lim
"!0

DimA.x"; ax" C b/ D sup
z2`

DimA.z/:

With this aim in mind, let a; b 2 R and A � ¹0; 1º� be given. Let " 2 .0; 1/ \Q and
assume x" 2 R is such that dimA;a;b.x"/ � 1 �

"
4

. In the following, we will always
assume r is large enough that, for s > log r ,�

1 �
"

2

�
s � KA;a;bs .x"/:

Choosing an oracle for the complexity function on Œ1; r�: for the first step of the
argument, our aim is to find, given A � ¹0; 1º�, a; b 2 R, and r sufficiently large, an
oracle relative to which we can apply Lemma 4.1 and which does not lowerKAr .a; b/
too much. Let cr be the largest minimizer of KAt .a; b/ � t on Œ1; r�. This implies that

KAs .a; b/ � K
A
cr
.a; b/ � .cr � s/ 8s 2 Œ1; cr �:

This property, which we call the teal property after [22], is essentially what will allow
us to show the second condition of Lemma 4.1 is satisfied. However, we would like
the teal property to hold on Œ1; r� and not just Œ1; cr �, which entails reducingKAr .a; b/
with D so that

KA;Dr;cr
.a; b/ � r � cr ;
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KA
s .a; b/

rcr

KA;D
s .a; b/

rcr

D

(i) (ii)

Figure 1. (i) The definition of cr guarantees that the teal property holds on Œ1; cr �. (ii) We
choose D such that the teal property holds on Œ1; r� relative to .A;D/ and the average growth
rate of KA;D

s .a; b/ on Œcr ; r� is close to 1.

i.e., the average growth rate on Œcr ; r� is about 1. The effect of the oracleD on a typical
complexity function is shown in Figure 1. In particular, if it is possible to do so,5 pick
� to be an element of the finite set ¹ i

2m W i 2 N; m D 2 � dlog "e and 0 � i � 2mº
such that

r � cr CK
A
cr
.a; b/

r
� 2
p
" < � <

r � cr CK
A
cr
.a; b/

r
�
p
":

Using Lemma 4.3, let D D D.A; 2; r; .a; b/; �/. By the definition of D,

KA;Dr .a; b/ D �r �O.log r/:

Hence,

KA;Dr .a; b/ � KAcr
.a; b/C .r � cr/ � 2

p
"r �O.log r/: (4.4)

In the next part of the proof, we will use both this lower bound and the fact that this
oracle gives the following version of the teal property:

KA;Ds .a; b/ � KA;Dr .a; b/ � .1 �
p
"/.r � s/ �O.log r/: (4.5)

5If no element of the set satisfies the inequalities, just set � D 0. In this case, we can do no
better than the trivial lower bound of 0 in (4.4) for this choice of ", but in practice, we will pick
up any actual growth as we pass through with smaller and smaller ".
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To prove (4.5), first observe that, by definition,

KA;Ds .a; b/ D min
®
�r;KAs .a; b/

¯
�O.log r/:

In the first case,

KA;Ds .a; b/ D �r �O.log r/

D KA;Dr .a; b/ �O.log r/

� KA;Dr .a; b/ � .1 �
p
"/.r � s/ �O.log r/:

In the second case, by the definition of cr ,

KAs .a; b/ � s � K
A
cr
.a; b/ � cr :

Hence,

KA;Ds .a; b/ D KAs .a; b/ �O.log r/

� KAcr
.a; b/C s � cr �O.log r/

D KA;Dr .a; b/ � �r CKAcr
.a; b/C s � cr �O.log r/

� KA;Dr .a; b/ �
�
KAcr

.a; b/C .r � cr/ �
p
"r
�

CKAcr
.a; b/C s � cr �O.log r/

D KA;Dr .a; b/C s � r C
p
"r �O.log r/

� KA;Dr .a; b/C s � r C
p
".r � s/ �O.log r/

D KA;Dr .a; b/ � .1 �
p
"/.r � s/ �O.log r/;

and we have established (4.5).

Lower bound for x": now, we will prove a lower bound onKAr .x";ax"C b/ by apply-
ing Lemma 4.1. If r is sufficiently large, the first condition of Lemma 4.1 is satisfied
for B D .A;D/, since

KA;Dr .a; b/ D �r CO.log r/ � .�C "/r:

Now, we show that the second condition is also satisfied. For .u; v/ 2 B..a; b/; 1/, by
Lemma 4.2 and the second property of D, we have

KA;Dr .u; v/ � KA;Ds .a; b/CKA;Dr�s;r.x" j a; b/ �O.log r/

D KA;Ds .a; b/CKAr�s;r.x" j a; b/ �O.log r/

� KA;Ds .a; b/CKA;a;br�s .x"/ �O.log r/:

Applying (4.5), we obtain

KA;Dr .u; v/ � KA;Dr .a; b/ � .1 �
p
"/.r � s/CKA;a;br�s .x"/ �O.log r/:
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Now, by our assumption on x", either r � s � log.r/ or KA;a;br�s .x"/ � .1�
"
2
/.r � s/

holds. In both cases, we have

KA;Dr .u; v/ � KA;Dr .a; b/ � .1 �
p
"/.r � s/C

�
1 �

"

2

�
.r � s/ �O.log r/

D KA;Dr .a; b/ �
� "
2
�
p
"
�
.r � s/ �O.log r/

D �r �
� "
2
�
p
"
�
.r � s/ �O.log r/

D

�
� �

"

2
C
"

2

�
r �

� "
2
�
p
"
�
.r � s/ �O.log r/

�

�
� �

"

2

�
r �

� "
2
�
"

2
�
p
"
�
.r � s/ �O.log r/

D

�
� �

"

2

�
r C
p
".r � s/ �O.log r/:

Thus, for sufficiently large r , we have

KA;Dr .u; v/ � .� � "/r C
p
".r � s/:

This is precisely the second condition of Lemma 4.1 with ı D
p
". Both conditions of

Lemma 4.1 are satisfied; hence, applying it without any additional oracle, we obtain

KA;Dr .x"; ax" C b/ � K
A;D
r .x"; a; b/ � 4

p
"r �K."/ �K.�/ �O.log r/:

In practice, we will keep the same choice of " throughout a partitioning argument even
as r goes to infinity, and we chose � from a fixed set that depends only on ". Thus,
we can treat the complexity of these terms as constant in r . Furthermore, removing an
oracle can only increase complexity (up to a log term), so

KAr .x"; ax" C b/ � K
A;D
r .x"; a; b/ � 4

p
"r �O.log r/:

Now, applying symmetry of information and the properties of D to KA;Dr .x"; a; b/,
we obtain

KA;Dr .x"; a; b/ D K
A;D
r .x" j a; b/CK

A;D
r .a; b/ �O.log r/

� KA;D;a;br .x"/CK
A;D
r .a; b/ �O.log r/

D KA;a;br .x"/CK
A;D
r .a; b/ �O.log r/

�

�
1 �

"

2

�
r CKA;Dr .a; b/ �O.log r/

� .1 �
p
"/r CKA;Dr .a; b/ �O.log r/:

Finally, applying (4.4), we establish the desired lower bound when r is sufficiently
large:

KAr .x"; ax" C b/ � r CK
A
cr
.a; b/C .r � cr/ � 7

p
"r: (4.6)
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Upper bound for arbitrary x: now, we want to upper bound KAr .x; ax C b/ for any
given x 2 R. We use two facts. The first is that, on any interval, KAr;t .x; ax C b/ is
essentially upper bounded by 2.r � t /. The second is thatKAr .x;axC b/ is essentially
upper bounded by KAr .x; a; b/, since precision r approximations of x, a, and b are
enough to compute ax C b to a similar precision.6 Noting that cr only depends on A,
a, b, and r (in particular, not on x), we want to use the first bound on Œcr ; r� and the
second on Œ1; cr �.

More formally, assume that x is such that

DimA.x; ax C b/ � sup
z2`

DimA.z/ � ":

Clearly, .x; ax C b/ 2 R2, so for sufficiently large r and for t � r , we have

KAr;t .x; ax C b/ � 2.r � t /C o.r � t / � 2.r � t /C "r: (4.7)

At the same time, also for sufficiently large r ,

KAt .x; ax C b/ � K
A
t .x; a; b/C o.t/ � K

A
t .x; a; b/C "r: (4.8)

Now, assume that r is large enough that the above bounds hold. We apply (4.8) on
the interval Œ1; cr � and (4.7) on Œcr ; r�. This gives

KAr .x; ax C b/ D K
A
cr
.x; ax C b/CKAr;cr

.x; ax C b/CO.log r/

� KAcr
.x; a; b/C "r C 2.r � cr/C "r CO.log r/

� cr CK
A
cr
.a; b/C 2.r � cr/C 3"r:

Now, assume dimA;a;b.x"/ > 1 � "
4

. By the last step of the proof, this ensures that
(4.6) holds. Combining this lower bound with the above upper bound gives that

KAr .x; ax C b/ �K
A
r .x"; ax" C b/ � 10

p
"r

for all sufficiently large r . Hence,

DimA.x; ax C b/ � DimA.x"; ax" C b/ � 10
p
":

6It is not true that KA
r;t .x; ax C b/ � K

A
r;t .x; a; b/, since x; a, and b could all be indepen-

dently random on Œ1; t � and then consist only of zeros on Œt; r�; in this case, the complexity keeps
growing for .x; ax C b/. Informally, this is because the product of a up to precision t and x up
to precision t can have length 2t . This would present a problem for the proof, if we did not have
from the definition of cr that the average growth rate of KA

s .a; b/ is no more than 1 on Œ1; cr �

and no less than 1 on Œcr ; r�.
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Finally, by our choice of x, this gives

DimA.x"; ax" C b/ � sup
z2`

DimA.z/ � 11
p
":

We could pick " to be arbitrarily small, so this completes the proof.

Using the lower bound (4.6), we also establish (a slightly stronger version of) the
generalized Kakeya conjecture for packing dimension in the plane.

Corollary 1 (Corollary 1.4, Restated). Let E � R2, and let D � P1 be the set of
directions of lines intersecting E in a set of Hausdorff dimension 1. If D ¤ ¿, then

dimPD C 1 � dimPE:

Proof. Let ƒ D ¹` 2 A.2; 1/ W dimH.E \ `/ D 1º, and let F` denote the orthogonal
projection of E \ ` onto the x-axis. Without loss of generality, we assume that ƒ
contains no vertical lines. Define

E1 D
[
ƒ

.E \ `/:

Identifying D with the set of slopes of lines in ƒ, and letting A be a packing oracle
for E1 and D, we see by the point-to-set principle that

sup
a2D

DimA.a/ D dimPD

and

sup
`2ƒ

sup
x2F`

DimA.x; ax C b/ D dimPE1 � dimPE:

Hence, the desired inequality (1.1) follows if

sup
a2D

DimA.a/C 1 � sup
`2ƒ

sup
x2F`

DimA.x; ax C b/;

where the line ` is given by y D ax C b. It therefore suffices to show that, for all
a; b 2 R, A � ¹0; 1º�, and S � R of Hausdorff dimension 1,

DimA.a/C 1 � sup
x2S

DimA.x; ax C b/:

By the point-to-set principle, this follows if for any x" 2 R such that dimA;a;b.x"/ >

1 � "
4

,

DimA.a/C 1 � lim inf
"!0

DimA.x"; ax" C b/:
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Assuming r is sufficiently large, (4.6) implies

KAr .x"; ax" C b/ � cr CK
A
cr
.a; b/C 2.r � cr/ � 7

p
"r

� cr CK
A
cr
.a/C 2.r � cr/ � 8

p
"r

� cr CK
A
cr
.a/C .r � cr/CK

A
r;cr
.a/ � 9

p
"r

� cr CK
A
r .a/C .r � cr/ � 10

p
"r

D r CKAr .a/ � 10
p
"r:

This holds at every sufficiently large precision r , so dividing by r and taking the limit
superior on both sides complete the proof.

4.3. Pathological behavior of s-packing extensions

In contrast to 1-Hausdorff extensions, which do not increase the Hausdorff or pack-
ing dimension of E � R2, the 1-packing extensions do not play so well with either
notion of dimension. It is clear that the s-packing extension can increase the Haus-
dorff dimension of set: just let E be a Hausdorff dimension 0, packing dimension-s
subset of a line. In fact, the 1-packing extension can maximally increase the packing
dimension of some sets E, as illustrated in the following example.

Example 4.1 (LP
1 can increase the packing dimension). Let ¹riºi2N be a rapidly

increasing sequence. Define

X D
®
x D 0:x1x2x3 � � � 2 Œ0; 1� W j 2 Œr2i ; r2iC1/ for some i 2 N ) xj D 0

¯
;

S D
®
a D 0:a1a2a3 � � � 2 Œ0; 1� W j 2 Œr2iC1; r2iC2/ for some i 2 N ) aj D 0

¯
:

Note that X and S both have packing dimension 1. Further, define

E D
®
.x; ax/ 2 R2 W x 2 X; a 2 S

¯
:

Clearly, E has packing dimension at least 1. We get equality using the point-to-set
principle: for any A � ¹0; 1º� relative to which ¹riºi2N is computable, any x 2 X ,
and any a 2 S ,

KAr .x; ax/ � K
A
r .x; a/CO.log r/

D KAr .x C a/CO.log r/

� r CO.log r/;

where the second line holds because x and a can only have nonzero digits on disjoint
intervals of precision, so their sum is enough to compute both of them. Taking the
limit superior shows that the packing dimension of any point in E is no more than 1,
so dimPE D 1.
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Since E was defined to be a collection of packing dimension-1 subsets of lines
with slope a, ®

.x; ax/ 2 R2 W x 2 R; a 2 S
¯
� LP

1.E/:

Choose a 2 S such that when the intervals Œr2iC1; r2iC2/ are removed from its binary
expansion, the remaining string Qa is random relative to A; since r2i D o.r2iC1/, this
ensures that DimA.a/ D 1. In addition, let x be random relative to .A; a/ so that

dimA.x/ D dimA;a.x/ D 1:

Because .x; a/ can be calculated to precision r from .x; ax/ at precision r with little
additional information,

KAr .x; ax/ D K
A
r .x; a/C o.r/ � K

A;a
r .x/CKAr .a/C o.r/:

Taking the limit superior of both sides as r !1 gives

DimA.x; ax/ D lim sup
r!1

KAr .x; ax/

r

� lim inf
r!1

K
A;a
r .x/

r
C lim sup

r!1

KAr .a/

r

D dimA;a.x/C DimA.a/ D 2:

The oracle A was arbitrary, so dimPL
P
1.E/ D 2.

These examples illustrate the lack of nontrivial bounds on the increase of Haus-
dorff and packing dimension for 1-packing extensions in the plane. More generally,
for s > 0, we can seek upper bounds on

sup
E�R2

�
dimHL

P
s .E/ � dimHE

�
and sup

E�R2

�
dimPL

P
s .E/ � dimPE

�
:

The aforementioned trivial example shows that the first quantity above is at least 1.
Likewise, a slight modification of Example 4.1 shows that the same is true of the
second quantity. However, we would not be surprised by stronger examples in both
cases.7 We note the relationship of this problem to that of dimension estimates on
exceptional sets of orthogonal projections. For Hausdorff dimension in the plane,
the sharp bound was proved in [21] as a consequence of Theorem 2.3—hence the
connection to line segment extension. Analogous to the worse behavior of s-packing
extensions, bounding the packing dimension of exceptional sets of projections (rela-
tive to either dimHE or dimPE) is a rather different problem; see [5, 9, 18].

7We consider the extreme case of “two-point” extensions in the next section.
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5. Extension in higher dimensions and related problems

Given a point z 2Rn on a line, there are two degrees of freedom in choosing collinear
points x; y such that x C t .y � x/ D z for some t 2 R. To prove Proposition 1.5, we
choose x and y such that (along with another condition) x’s first coordinate encodes
the largest possible quantity of information about y. We justify the possibility of such
an encoding as a lemma.

Lemma 5.1. For all y 2Rn, A� ¹0; 1º�, and " > 0, there exists a dense set of points
x 2 R such that, for all sufficiently large r (depending on x),

KAr .y j x/ � max
®
KAr .y/ � .1 � "/r; "r

¯
: (5.1)

The idea of the proof is simple: build the point x 2 R such that successive seg-
ments of its binary expansion are strings that aid in the computation of successive
segments of y.

Proof. Given a rational 0 < ı < 1, we build a point xı 2R as follows. For each i 2N,
let Œri ; riC1� be an interval of length d.1C ı/ie, where r0 D 1. Let �i denote a string
testifying toKAriC1;ri

.y/, and let xı 2 Œ0; 1� be the real number with binary expansion
0:�1�2 � � � .

Let � D �1�2�3, where �1 is a given string, UA.�2/ is a finite list of positive
integer lengths l0; : : : ; lk , and UA.�3/ is a rational number. Define an oracle Turing
machine MA that computes MA.�/ as follows. The machine MA first calculates
UA.�3/D q 2Q and determines the successive strings q0; : : : ; qk of lengths l0; : : : ; lk
formed from the binary digits of q. It then iteratively computes

UA.q0/ D p0; U
A.q1; p0/ D p1; : : : ; U

A.qk; pk�1/ D pk

and returnsMA.�/DUA.�1;pk/ as the output. Let cM be a constant for this machine.
Now, let r 2 N be sufficiently large, and let t D rm be the lesser of (1) the largest

precision ri as defined above such that KAri .y/ � r and (2) the smallest precision ri
such that ri � r . (This r can be assumed to be large enough that KAr1.y/ � r .) If
there is no largest such ri in (1), we default to the ri given by (2). As ¹riºi2N is an
increasing sequence tending to infinity, such an ri clearly exists.

Let �1 testify to KAr;t .y/, let �2 testify to

KA
�
KAr0.y/;K

A
r1;r0

.y/; : : : ; KArm;rm�1
.y/
�
;

and let �3 testify to KAr 0.xı/, where

r 0 WD KAr0.y/C

m�1X
iD0

KAriC1;ri
.y/:
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Note that r 0 � r C O.m log r/. One may check that, on these inputs, MA outputs a
precision-r estimate of y:8 from the definition of xı , the qi ’s are precisely the strings
that give the additional information in y from precision ri to precision riC1. From this
and by repeatedly using the fact that each KAriC1;ri

.y/ 2 ¹1; : : : ; r 0º, we find that

KAr .y j xı/ D K
A
r;r 0.y j xı/CK

A
r 0;r.xı/CO.log r C log r 0/

� KAr;r 0.y j xı/CO.m log r/

� KAr;t .y/CK
A
�
KAr0.y/;K

A
r1;r0

.y/; : : : ; KArm;rm�1
.y/
�

CO.m log r/C cM
D KAr;t .y/CO.m log r/:

Since m � O.log r/ by the definition of t , this in turn implies

KAr .y j xı/ � K
A
r;t .y/CO..log r/2/:

Now, consider the two cases for the choice of t . If t � r , thenKAr;t .y/ � O.log r/ and
for sufficiently large r

KAr .y j xı/ � O..log r/2/ < 3nır: (5.2)

For the case that t < r , let s D rmC1. Then, KAs .y/ > r and t � s by the definition
of t , so

KAr .y j xı/ � K
A
r .y/ �K

A
t .y/CO..log r/2/

D KAr .y/ �K
A
s .y/CK

A
s;t .y/CO..log r/2/

� KAr .y/ � r CK
A
s;t .y/CO..log r/2/

� KAr .y/ � r C n.s � t /CO..log r/2/

by the choices of t and s. Since

s � t D rmC1 � rm � 2
�
.1C ı/rm � rm

�
D 2ırm < 2ır;

it immediately follows that

KAr .y j xı/ � K
A
r .y/ � r C 2nır CO..log r/2/:

So, for all r sufficiently large that nır dominates the O..log r/2/ term, we have

KAr .y j xı/ � K
A
r .y/ � r C 3nır: (5.3)

8Technically, our approximation may be off by one in its digits. We could resolve this by
also giving MA a short input specifying how to address the ambiguity; this does not increase
the input length by more than a logarithmic amount, so for simplicity we ignore the possibility.
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Picking ı < "
3n

and combining (5.2) with (5.3) give the existence of one x D xı
satisfying (5.1). Appending the digits of x to any dyadic rational (which are dense
in R) gives it the same property for sufficiently large r , completing the proof.

For simplicity and considering how it is used below, we stated the lemma for
x 2 R, but an almost identical proof allows one to encode information about y 2 Rn

within x 2 Rm.

Proposition 2 (Proposition 1.5, Restated). If E � Rn is a union of line segments,
then

dimH L.E/ � dimHE C dimPE � 1 and dimP L.E/ � 2 dimPE � 1:

Proof. Let A � ¹0; 1º� be both a Hausdorff oracle and a packing oracle for E, and
let " > 0. Given a point z 2 Rn, we construct a machine MA (depending on z) that
operates as follows. Let Œ � � denote the fractional part of a real number, and for each
y 2Rn, let cD cy 2N be such that Œ2cy1�D Œ2cz1�, i.e., such that the first coordinates
of y and z agree from the cth binary digit onwards, assuming such a number exists.
Finally, given y 2 Rn and given any other x 2 Rn with x1 ¤ y1, we denote

t D tx;y WD
z1 � x1

y1 � x1
:

Then, z D x C t .y � x/ with this choice of t , provided x lies on the line through y
and z. Fixing a parameter s 2N to be specified momentarily, we then let �1; : : : ;�4 2
¹0; 1º� be such that

• p WD UA.�1/ is a precision-.r C s/ approximation of x,

• q WD UA.�2; p/ is a precision-.r C s/ approximation of y,

• UA.�3/ D d2
cz1e is the first c digits of z1 (equivalently, of y1) for some c 2 N

as above, and

• u WD UA.�4; p; q; d2
cz1e/ is a precision-.r C s/ approximation of t .

The machine MA is taken to satisfy

MA.�/ D p C u.q � p/; where � D �1�2�3�4:

In order for MA.�/ to be a precision-r approximation of z, we select s large enough
that p0 C u0.q0 � p0/ 2 B.z; 2�r/ whenever p0; q0 2 Qn and u0 2 Q are precision-
.r C s/ approximations of x; y 2 Rn and t 2 R, respectively. Notice that s depends
only on x, y, and z, but in particular not on r .

Now, let z 2 ` for some line ` � L.E/, and let y 2 E \ ` be a point such that, up
to a permutation of the axes, Œ2cy1� D Œ2cz1� for some c 2 N. Next, let x 2 E \ ` be
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a point with x1 ¤ y1 such that x1 assists in the computation of y as in Lemma 5.1,
i.e., such that

KAr .y j x1/ � max
®
KAr .y/ � .1 � "/r; "r

¯
for all sufficiently large r . Up to a loss of O.log r/, the same inequality holds with x
in place of x1, the other n� 1 coordinates of x being ignored in the computation of y.
Finally, let t be as before, and let �1, �2, �3, and �4 witness KArCs.x/, K

A
rCs.y j x/,

KA.d2cz1e/, and KArCs.t j x; y; d2
cz1e/, respectively. Since t is computable from x,

y, and d2cz1e, we have

KArCs
�
t j x; y; d2cz1e

�
D o.r C s/ D o.r/:

Hence, by the design of MA, the choice of x, and symmetry of information, the
following holds for all large r 2 N:

KAr .z/ � j�1�2�3�4j C cM

� KArCs.x/CK
A
rCs.y j x/CK

A
�
d2cz1e

�
CKArCs

�
t j x; y; d2cz1e

�
CO.log.r C s//C cM
� KArCs.x/CK

A
rCs.y j x/C o.r/

� KAr .x/CK
A
r .y j x/C 2snC o.r/

� KAr .x/Cmax
®
KAr .y/ � .1 � "/r; "r

¯
C o.r/:

Dividing through by r and taking the limit inferior as r !1 give

dimA.z/ � dimA.x/Cmax
®
DimA.y/ � .1 � "/; "

¯
� dimHE C dimPE � .1 � "/;

where we have chosen the first alternative in the maximum because dimP E � 1.
Taking the supremum over all z 2 F gives the first inequality in (1.2) modulo an ",
which we let decrease to 0. To obtain the second inequality in (1.2), we simply take
the limit superior instead of the limit inferior.

On some level, the argument is morally similar to that of [6, Theorem 6], which
leverages the dimension inequalities for product sets. Their Kakeya set estimate

dimHK C dimPK � nC 1

improves on Corollary 1.8 by C1, but this is to be expected, as they prove their esti-
mate directly rather than by way of line segment extension.

The complications in the proof of Proposition 1.5 arise primarily from the appli-
cation of the encoding lemma. Forgoing this encoding, one can one can modify the
conclusions of Proposition 1.5 to

dimH L.E/ � min
®
dimHE C dimPD; dimHD C dimPE

¯
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and
dimP L.E/ � dimPE C dimPD;

where D � Pn�1 is the set of directions of the segments in E. Specifically, one com-
putes a given z D x C tv 2 ` � L.E/ from x 2 E \ `, v 2 D, and t 2 R, where x
is chosen such that Dim.t/ D 0. With this setup, there are no longer enough degrees
of freedom to encode additional information about z in one of these parameters as in
Lemma 5.1—hence the disappearance of the �1 terms. Bounding the dimension ofD
in terms of the dimension ofE is the generalized Kakeya problem, so in practice these
inequalities are no more useful than those in (1.2). Similarly, playing with the choices
of x and y in the proof of Proposition 1.5 can allow one to derive similar inequalities
that only lead to better estimates on the dimension of L.E/ given additional structural
information about E.

In this vein, at the cost of control over the base point x and the scalar t , one
can turn the inequality for line segment extensions into an inequality for “two-point
extensions” (recall Definition 1.1).

Proposition 5.2. If E � Rn, then

dimHL0.E/ � dimHE C dimPE C 1 and dimPL0.E/ � 2 dimPE C 1: (5.4)

Proof. The proof is the same in spirit as that of Proposition 1.5, but forgoing the
encodings greatly simplifies the matter. Let z 2 L0.E/ so that z D x C t .y � x/ for
some x; y 2 E and some t 2 R. Taking the limit inferior of both sides of

KAr .z/ � K
A
r .x/CK

A
r .y/CK

A
r .t/C o.r/ � K

A
r .x/CK

A
r .y/C r C o.r/

gives the first inequality and taking the limit superior gives the second.

Example 5.1 (Sharpness of Proposition 5.2). The inequalities in (5.4) are sharp in
R2. Let C˛ � Œ0; 1� be the middle-˛ Cantor set, ˛ 2 .1

2
; 1/, so that

s WD dimH C˛ D dimP C˛ D
log 1

2

log 1
2
.1 � ˛/

2

�
0;
1

2

�
:

Then, H2s.C˛ �C˛/ > 0, so by Marstrand’s projection theorem, dimH.tC˛ �C˛/D

2s for L1-a.e. t 2 R. In fact, by [19, Proposition 1.3], it is also the case that

dimP.tC˛ � C˛/ D 2s

for a.e. t 2 R, so we fix a t satisfying both of these equations and let

E WD .¹0º � C˛/ [ .¹1º � tC˛/:
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Then, the set of slopes of lines in L0.E/ is simply .tC˛ � C˛/ [ ¹1º, and in par-
ticular, the set D � P1 of directions in which L0.E/ contains a line has both Haus-
dorff and packing dimension 2s. By the generalized Kakeya conjecture in the plane
(cf. Conjecture 2 and Theorem 2.2 above),

dimPL0.E/ � dimHL0.E/ � dimHD C 1 D 2s C 1

D dimHE C dimPE C 1 D 2 dimPE C 1:

Hence, both inequalities in (5.4) hold with equality. Taking an intersection of the
exceptional sets in [19, Proposition 1.3] shows that our argument similarly works
when ˛ D 1

2
(although tC˛ � C˛ may have zero 1-dimensional packing measure),

yielding the extreme case dimHE D dimPE D
1
2

. In the other extreme, any two-point
set poses a sharp example for dimHE D dimPE D 0.

Interestingly, dimP E cannot be replaced with dimH E in the first inequality of
Proposition 5.2. In fact, no nontrivial inequality bounding the Hausdorff dimension of
the two-point extension of a set is possible solely in terms of the Hausdorff dimension
of the original set.

Example 5.2 (Failure of dimHL0.E/ � 2 dimHE C 1). Through a simple argument
(in the spirit of [3, Example 7.8], [7], or the construction in [1, Theorem 1.4]), we
observe that the analogous bound for the Hausdorff dimension of two-point extensions
severely fails. Let E D ¹x 2 Rn W dim.x/ D 0º. It is immediate by the point-to-set
principle that this set has Hausdorff dimension 0 (although this also follows from a
simpler counting argument; see [13, Theorem 3.3.1]). Its two-point extension is

L0.E/ D ¹x C t .y � x/ 2 Rn W dim.x/ D 0; dim.y/ D 0; t 2 Rº

� ¹2y � x 2 Rn W dim.x/ D 0; dim.y/ D 0º;

and since scaling a vector by a nonzero rational does not change its pointwise dimen-
sion, it follows that

L0.E/ � ¹x C y 2 Rn W dim.x/ D 0; dim.y/ D 0º:

Now, observe that any z 2 Rn can be written as the sum of two Hausdorff dimension-
0 points. We illustrate for z 2 Œ0; 1� with binary representation 0:z1z2z3 � � � . Let x D
0:x1x2x3 � � � , where xi D zi when there exists even j 2N such that j Š� i < .j C 1/Š
and xi D 0 otherwise. If y D z � x, then x and y both consist of alternating blocks
of zeros which rapidly increase in length; hence, they both have effective Hausdorff
dimension 0. Repeating the same construction in each coordinate gives the result
in Rn. Consequently, L0.E/ D Rn, so

dimHL0.E/ D n but dimHE D 0:
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This also poses a counterexample to any sort of “reverse continuum Beck’s theo-
rem”; see [20, Corollary 1.5].
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