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Fractal dimensions of fractal transformations and quantization
dimensions for bi-Lipschitz mappings

Amit Priyadarshi, Manuj Verma, and Saurabh Verma

Abstract. In this paper, we study the fractal dimension of the graph of a fractal transformation
and also determine the quantization dimension of a probability measure supported on the graph
of the fractal transformation. Moreover, we estimate the quantization dimension of the invari-
ant measure corresponding to a weighted iterated function system consisting of bi-Lipschitz
mappings under the strong open set condition.

1. Introduction

In fractal geometry, the iterated function systems (IFSs) play an important role. They
are commonly used to generate fractals. In fact, most of the fractals are the attractors
of some IFS. Plenty of literature is available on the study of an IFS, its attractor and
the fractal dimensions of the attractor (see, for instance, [2,7,10,12, 13, 18]). In 2009,
Barnsley [3] introduced the idea of fractal transformation. Basically, fractal trans-
formation is a map between the attractor of one IFS to the attractor of another IFS.
After that, Barnsley et al. [4] discussed many applications of fractal transformation.
In 2014, Barnsely and his collaborators [5] determined some conditions under which
a fractal transformation is measure preserving. In 2016, Bandt et al. [1] proved that
under some conditions a fractal transformation becomes a homeomorphism. In 2018,
Vince [19] showed that we can extend a fractal transformation from the non-empty
attractor to the whole space and described some conditions under which a fractal
transformation is the attractor of some IFS, which is constructed from the given IFSs.

The quantization dimension is one of the most important thing in the quantiz-
ation theory. In 1964, Zador [20] was the first, who introduced the term quantiza-
tion dimension and also discussed some properties of this dimension. In 2002, Graf
and Luschgy [9] gave a formula of the quantization dimension of the self-similar
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measures under the open set condition (OSC). After that, Lindsay et al. [11] gen-
eralized the result of Graf and Luschgy [8] for the self-conformal measures and
described some connection between quantization theory and fractal geometry. The
quantization dimension is also related to some other known fractal dimensions like
the Hausdorff dimension and the box-counting dimension, see, for more details [8].
In 2010, Roychowdhury [15] obtained the quantization dimension of the Moran meas-
ures. After that, Roychowdhury [16] also determined the quantization dimension of a
Borel probability measure supported on the attractor of the bi-Lipschitz IFS by taking
some conditions on the bi-Lipschitz constants and assuming that the IFS satisfies the
strong open set condition (SOSC). In 2021, Roychowdhury and Selmi [17] estimated
bounds of the quantization dimension of the invariant measure generated by the hyper-
bolic recurrent IFS under the strong separation condition. In this paper, we determine
bounds of the quantization dimension of the invariant Borel probability measures sup-
ported on the attractor of a general class of bi-Lipschitz IFSs under the SOSC. This
result also generalizes the result of Graf and Luschgy [8]. We also estimate the quant-
ization dimension of the invariant Borel probability measure supported on the graph
of a fractal transformation. Here, we discuss some dimensional results for the graph
of a fractal transformation.

Let (Y, p) be a metric space. A map 6 : (Y, p) — (Y, p) is called a contraction if
there exists a constant ¢ < 1 such that

p(@(a),@(b)) <cpla,b)foralla,b eY.

Definition 1.1. The system I = {(Y, p); 61,05, ...,0x} is called an iterated function
system (IFS) if each 6; is a contraction self-map on Y fori € {1,2,...,N}.

We know that depending on the type of the maps 6;, we name the IFS. For
example, an IFS is said to be a bi-Lipschitz IFS, an affine IFS and a conformal IFS,
respectively, if the maps 6;’s are bi-Lipschitz transformations, affine maps and con-
formal maps, respectively. Note that a bi-Lipschitz IFS has the capability to handle
all the well-known classes of fractal sets such as self-similar, self-affine and self-
conformal sets as listed below.

(1) Let I ={(Y, p);041,0>,...,0n} be abi-Lipschitz IFS, that is,
cipla,b) < p(@(a), Q(b)) < Cjp(a,b) foralla,b €Y.

Then, by choosing ¢; = C;, we get an IFS consisting of similarity transform-
ations, and a self-similar set as the associated fractal set.

(2) An affine transformation on R? is a map 6 : R — R of the form 6(x) =
Ax + b, where A is a linear transformation on R? and b € R?. If the map A
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is injective, then

1
mllx —yl2 = lAx = Ayl2 = [6(x) = 0(») 2

= [[Ax — Ayll2 = [ A]lllx = y 2.

3) Let T ={(X, p);01,6,,...,0N} be a conformal IFS, where X C R is a
compact set such that X = int(X). Then, by [14, Lemma 2.2], there exists an
open set V such that X C V and a constant C > 1 such that

CH6llx = yII < 165(x) = 6 < Cl16, ]Il =yl

forallx,y € Vando € Uy=1{1,2,...,N}".

From the above points, it is clear that using the dimensional results for a bi-Lipschitz
IFS, one can obtain some estimates for the dimensions of self-similar, self-affine,
and self-conformal IFSs. However, it should be noted the exact dimensional value of
self-affine and self-conformal sets may not be obtained by bi-Lipschitz IFS, see, for
instance, [7, 11, 13, 14]. The novelty of our result on the quantization dimension of a
bi-Lipschitz IFS is evident in view of Remark 4.13 and Remark 4.14 when comparing
to [16].

The paper is organized as follows. In the upcoming Section 2, we discuss some
preliminary results and the required definitions for the forthcoming section. In Sec-
tion 3, we give some results on the fractal transformation and the product of two
IFSs. Firstly, we determine some results related to the product of two IFSs. Next,
we obtain the bounds on the Hausdorff dimension of the graph of the fractal trans-
formation under some conditions. After that, we determine a relation between the
invariant measures of two IFSs and their product IFS. We also give a relation between
the quantization dimensions of these invariant measures. Finally, in Section 4, we
provide the bounds on the quantization dimension of the invariant probability meas-
ure corresponding to a bi-Lipschitz IFS under the SOSC and also give bounds on the
quantization dimension of the invariant measure supported on the graph of the fractal
transformation.

2. Preliminaries
Definition 2.1. Let F be a subset of a metric space (Y, p). The Hausdorff dimension

of F' is defined as follows: dimg F = inf{ > 0 : for every € > 0, there is a countable
cover {V;} of F with 3" |V;|# < €}, where |V;| denotes the diameter of V;.
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Definition 2.2. The box dimension of a non-empty bounded subset F of a metric
space (Y, p) is defined as

dimp F = lim 28 N¢(F)
§—0 —logé
where Ns(F) is the minimum number of sets of diameter § > 0 that can cover F,
provided the limit exists. If this limit does not exist, then by taking the limsup and
the liminf, we define the upper and the lower box dimensions, and are denoted by
dimp (F) and dimg (F), respectively.

Let (Y, p) be a complete metric space, and we denote the family of all non-empty
compact subsets of Y by H(Y). Forany A, B € H(Y), we define the Hausdorff metric
by

h(A, B) = inf{S >0:ACBsand B C A,g},

where Ag and Bg denote the §-neighbourhoods of sets A and B, respectively. It is
well known that (H(Y'), h) is a complete metric space.

Definition 2.3. The system {(Y, 0);01,6>,...,0n:p1, P2,..., pN}iscalled a weighted
iterated function system (WIFS) if {(Y, p) : 01, 0,, ..., 0y} is an IFS with probability

vector (p1, p2,.--» PN)-

Remark 2.4. Notice that (p;, p2,..., py) is a probability vector if and only if
SN pi=1land p; >Oforalli €{1,2,....N}.

Note 2.5. Let T = {(Y, p); 61,02, ..., 0xn} be an IFS. We define the Hutchinson
mapping S from H(Y) into H(Y) given by

N
S(4) = 6:(4).

i=1

The map S is a contraction map under the Hausdorff metric 4. If (Y, p) is a complete
metric space, then, by Banach contraction principle, there exists a unique £ € H(Y)
such that

N
E=]6(E).
i=1

The set E is called the attractor of the IFS. Furthermore, if (p1, p2,..., py) is a prob-
ability vector corresponding to the IFS I, then there exists a unique Borel probability
measure u supported on the attractor E such that

N
12 =Zl)zﬂoez—l
i=1
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We call i the invariant measure corresponding to the WIFS {(Y, p); 61,6>,...,60n; p1,
P2, ..., pN}. We refer the reader to see [2,7] for details.

Definition 2.6. We say that an IFS I = {(Y, p); 01, 05, ..., Oy} satisfies the open
set condition (OSC) if there is a non-empty open set O with 6;(0) C O forall i €
{1,2,....,N}and 6;(0) N 6;(0) = @ fori # j.Moreover, if O N E # @, where E
is the attractor of the IFS I, then we say that I satisfies the strong open set condition
(SOSC). If 6;(E) N 6;(E) = @ for i # j, then we say that the IFS I satisfies the
strong separation condition (SSC).

2.1. Code space

For this part, we refer the reader to [7]. Let (X, p) be a complete metric space. Let
F :=A{X; f1, f2,..., fn} be an IFS. Next, let 2 be the set of all infinite sequences
Q= {{okjz 0k €{1,2,...,N}}. We write 0 = 010203 - - - € {2 to denote a typical
element of 2, and we write oy to denote the kth element of o € Q. Then (2,dg) isa
compact metric space, where the metric dg is defined by dg (0, w) = 0 wheno = w
and dq (0, w) = 27% when k is the least index for which oy # wy. We call Q the code
space associated with the IFS ¥ .

Leto € @ and x € X. Then, using the contractivity of , it is not difficult to prove
that

¢.77(0) = kli)n;ofal o fUz ©--+0 fok(x)

exists, is independent of x, and depends continuously on o. Furthermore, let Az =
{¢p#(0) : 0 € Q}. Then, it is easy to show that Az C X is the attractor of ¥. The
continuous function

¢)}' Q- A F

is called the address function of ¥ . We call ¢§1 ({x}) = {0 € Q: ¢z (0) = x} the
set of addresses of the point x € Ag. We order the elements of {2 according to

o < w if and only if o} < wg,

where k is the least index for which o} # wg. We observe that all elements of 2 are
less than or equal to N = NN N ... and greater than or equal to I = 111. .. Note that
qb}l ({x}) contains a unique largest element. Let ¥ be an IFS with attractor A# and
address function ¢z : 2 — Ag. Let

7 (x) = max{(r eQ:pgz(0) = x}

for all x € A¢. Then
Qe = {‘L'f’(X) LX € Ay}
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is called the tops code space and
TF . A F — Q 7

is called the tops function corresponding to the IFS % . It can be seen that the tops
function t¢ : A — Q¢ is one-one and onto.
The address structure of the IFS ¥ is defined to be the set of sets

Cq = {(]53_71()6) NQg :x € Afﬁ}.

Let €¢ be the address structure of another IFS § = {Y; g1, g2, ..., gn}. We write
€Cg < Cg, if foreach P € €4, thereisa Q € €g such that P C Q.

Definition 2.7. Let ¥ = {X; f1, f2,..., fn}and § = {Y; g1,82,...,gn} be two
IFSs. Suppose Az and Ag are the attractors of ¥ and §, respectively. The associated
fractal transformation T¢¢ : Az — Ag is defined by

Tgg = ¢pg o1y,
where ¢g is the code map corresponding to § and t# is the tops function correspond-
ingto F.

Remark 2.8 ([3, Theorem 1]). Let ¥ and § be two IFSs, ¥ = {X; f1, f2,.... fn}
and 9§ = {Y;g1,82,...,8gN}, such that € < Cg. Then, the fractal transformation
map T'¢g is continuous.

Let (X, p) be a complete metric space. Given a Borel probability measure p on
X, anumber r € (0, 4+00) and n € N, the nth quantization error of order r for p is
defined by

Var(p) := inf{/p(x,A)rd,u(x) A C X, Card(A) < n},

where p(x, A) represents the distance of the point x from the set A. Next, we define
1

en.r(1) := V[ (). Finally, we define the quantization dimension of order r of j by

logn

D, = Dy(n) i= lim — 2"
n—00 —log (en,r (M))

if the limit exists. If the limit does not exist, then we define the lower and upper quant-

ization dimensions by taking the limit inferior and the limit superior of the sequence

and are denoted by D, (u) and D, (i), respectively.

Remark 2.9. Let u be a Borel probability measure on R? with S lxlI"dp(x) < oo.
Then for every n € N there exists a finite set A, C R? such that

Vir ) = [ min x = alf duo).
acAy,
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This A, is called an n-optimal set for measure p of order r.

Remark 2.10. Let ;2 be a Borel probability measure on R? with compact support.
Then

/ 7 dpa(x) < oo,
for any r € (0, +00).

Lemma 2.11 ([8, Lemma 6.1]). Let u be a Borel probability measure on R with
J IIx|I"du(x) < co. Then, for any r € (0, 00)

Var(n) — 0, asn — oo.
Definition 2.12. Let A4 be a subset of R¢. The Voronoi region of a € A is defined by

W(a|A) = {x e R? : —al = min|lx — b
(alA) = {x [x —all gggllx I}

and the set {W(a|A); a € A} is called the Voronoi diagram of A.

Lemma 2.13 ([8, Lemma 13.8]). Let u be a Borel probability measure on R with
compact support Ay and r € (0, 00). Let A, be an n-optimal set for measure |u of
order r. Define

lAnlloo = max  max_|lx —al.
a€Ay xeW(alAp)NAx

A ro A
(%) ;ggu(l?(x, | ;”‘”)) < Var ().

Proposition 2.14 ([8, Proposition 11.3]). Let p be a Borel probability measure on
R? with [ Ix]|"dp(x) < oo. Then, we have the following:

(1) If0 < t; < D,(n) < tp, then

Then

limsupn - el (u) = oo and lim n-e?2, (un) = 0.
n—00 ’ n—00 ’

) If0<t1 < D,(u) < ta, then
liminfn -e?2,(u) =0 and lim n-ell (1) = oo.
n—>oo ’ n—>oo ’

Let {(X, p); f1, f2, ..., fn} be an IFS with probability vector (p1, p2,..., PN)-
We denote the set of all finite sequences of symbols belonging to the set {1,2,..., N}
by {1,2,..., N}* and |o| denotes the length of ¢ € {1,2,..., N}*. We denote the set
of all finite sequences of length n over the symbols belonging to the set {1,2,..., N}
by {1,2,...,N}*.Leto € {1,2,..., N}* and m < |o|, we define o|,, as follows

a, m=20
Olm =
0102 -+ 0O, m # 0.
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We define a natural order on {1,2,..., N}* by
o<t iff |o|=]t|.75) =0,

where 0,7 € {1,2,..., N}*. We use the notations ps = pg, * Po, * - - - * Pa,, a0d po— =
Doy * Doy« --* Doy foro €{1,2,....N}*, |o| =m.Leto,r € {1,2,...,N}*. We
say that o and t are incomparable if neither 0 < T nor 7 < o.

A finite set I' C {1,2,..., N}* is called a finite antichain if and only if any two
elements of I" are incomparable. A finite antichain I" is called maximal if and only if
for every finite antichain IV C {1,2,...,N}* with ' C I/, we have I'" =T

Lemma 2.15 ([8], [16, Lemma 3.8]). Let {R%: fi, fa. ..., fN: P1. P2.-... PN} be
a WIFS. Let u be the invariant measure corresponding to this WIFS. If T is a finite
maximal antichain, then

Y po=1 and =Yy pepo f;.
oel oel

Lemma 2.16 ([8, p. 192]). Let (p1, p2, ..., pn) be a probability vector. If

0 <e <min{p1, p2,.... PN},

then
Fe={0€{l.2,....N}*; po— >€> ps}

is a finite maximal antichain.

Let {Rd; f1, f2, ..., NP1, P2, ..., pN} be a WIFS such that each f; is a con-
tractive similarity transformation such that

/i (x1) = fi(x2)[| = cillx1 — x2,

where 0 < ¢; < 1. Then, there is a unique Borel probability measure p supported on
the attractor E of the IFS {Rd; f1, f2,..., fn} such that

N
p=y pipo fi

i=1

In this case, we call the measure w an invariant self-similar measure. As it was proved
by Graf and Luschgy [8, 9], the quantization dimension function [, of the invariant
self-similar measure p exists, and satisfies the following equation:

N .
Y (pic) T =1,

i=1

provided that the given WIFS satisfies the OSC.
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3. On the product IFS and the dimension of the graph of a fractal
transformation

First, we define a metric on the product space as follows.
Let (X, p1) and (Y, p2) be two complete metric spaces. We define a metric £ on
X x Y by

i)((xv y)’ (X/, y/)) = maX{Pl (X,X/), IOZ(y7 y/)}’

where x,x" € X and y, y’ € Y. It is well known that (X x Y, D) is a complete metric
space.

In the following theorem, we determine the bounds of the Hausdorff dimension of
graph of fractal transformation without any separation condition.

Theorem 3.1. Let ¥ = {(X,p1); f1, fo,..., [n}and § = {(Y, p2); €1, 82,.--, &N}
be two IFSs. Consider the iterated function system H = {X X Y;hy,ha, ..., hy},

where hi(x,y) = (fi(x).&i(y)). Then
dimg Ay < dimg G(Tgg) < dimg Ag,
where G(T#g) denotes the graph of the fractal transformation Tz ¢.
Proof. We define a mapping ¥ : G(T¢¢) — Az by
\I‘(x, Tgpg(x)) = x.
Let (x, Tgg(x)), (x', T (x')) € G(Tgg). Then, we have
p1(¥(x, Trg(x)), ¥(x', Trg(x')) = p1(x, x")

=< maX{Pl ()C,X/), PZ(Tb”ﬁ(x)’ ng(x/))}
= D((x. Trg(x)). (x'. Tgg (x)).

Thus, W is a Lipschitz map. Therefore, by the Lipschitz invariance property of the
Hausdorff dimension, we get

dimy Ay < dimg G(T#g). 3.1

For the other inequality, let (x, T¢g(x)) € G(T#¢). So, there is a 0 € Q¢ such that
¢%(0) = x. Now,

(x.Trg(x)) = (957 (0).¢pg o T5 © ¢5(0)) = (¢p7(0).Pg(0)) € Age.

Hence, G(T#¢) C Ag. Therefore, using the monotonic property of the Hausdorftf
dimension, we have
dimg G(T;’g) < dimg Ag. (3.2)

Combining inequalities 3.1 and 3.2, we get our required result. |
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In the next lemma, we show that the product IFS satisfies SSC, OSC and SOSC,
respectively, provided one of the IFSs satisfies SSC, OSC and SOSC, respectively.

The proof of the following lemma is not difficult. But, we give the complete proof
for the convenience of the reader.

Lemma3.2. Let ¥ ={X; f1, f2,..., [n}and § ={Y ;g1,82,...,8n} be two IFSs.
Forthe IFS # :={X XY ;hy,ha,...,hn}, where hi(x,y) = (fi(x), gi (y)), we have
the following:

(1) If ¥ satisfies SSC, then # also satisfies SSC.
) If ¥ satisfies OSC, then H also satisfies OSC.
3) If ¥ satisfies SOSC, then K also satisfies SOSC.

Proof. (1) Since ¥ satisfies SSC, we have
fi(Az) N fi(Ag) =0 foralli # j.
This further yields

hi(Ag x Ag) N hj(AJr X Ag)
= (fi(Ag) x gi(Ag)) N (fj (A7) x gj(Ag)) =0

foralli # j.
Since Ay C Ay X Ag, we obtain

hi(Ag) Nhj(Ag) =@ foralli # j.

Therefore, the IFS J¢ satisfies SSC.
(2) Since F satisfies OSC, we have an open set U such that

N
|J fiU) cU and £i(U)N f;(U) =0 foralli # j.
i=1

This further yields

hi(UxY)Nh;(UxY) = (ﬁ(U) X gi(Y)) N (fj(U) X gj(Y)) =0
foralli # j.
Now, define an open set W = U x Y. Then

N
| Jm(W) c W and hy(W)nhj(W) =@ foralli # j.

i=1

Therefore, the IFS J¢ satisfies OSC.
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(3) Sinc satisfy SOSC, we have an open set U such that

e
N
AW cU UnAg #0. i(U)N f;(U) =@ foralli # j.
i=1

This further yields
hi(UxY) = (fi(U)xgi(Y)) CUxY, (UxY)N(G(Tzg)) # 9,

hi(UxY)Nhi(UxY)=(fi(U)xg¥)N(fiU)xgj¥)) =0,
foralli # j.
Now, we define an open set W = U x Y. Since G(T¢g) C Age, we have

N
JrW) cw. hi(W)nhj(W) =0. foralli # j. and W N (Az) # 0.

i=1
Therefore, the IFS J¢ satisfies SOSC. n
Lemma 3.3. Let ¥ ={(X,p1); f1, f2,..., fn}and & ={(Y,p2);21.82,..., 8N} be

two IFSs. Forthe IFS H :={X XY h1,ha,...,hn}, where hi(x,y) = (fi(x),gi (»)),
foralli € {1,2,..., N}, we have the following:

() If fi and g; are similarity transformations such that p1(f;(x), fi(x")) =

cip1(x,x’) and p2(gi(y), g (¥') = cip2(y.y') forallx,x" € X, and y, y" €
Y, then so is h;.

(2) If f; and g; are bi-Lipschitz mappings, then so is h;.
Proof. Since the proof is easy, we skip it. ]

Lemma 3.4. Let ¥ = {R%; fi, fo,..., fnand € = {R%; g1, g2,..., 8N} be two
IFSs. Consider the IFS

H = {R? xR by ha, ... hy},

where hi(x,y) = (fi(x), gi()). If, for each i, f; and g; are affine transformations,
then so is h;.

Proof. Since the proof is easy, we skip it. |

Remark 3.5. We define three mappings fi, f2, f3 : R — R by

1

A =5 A0 =3 A=3+5

Let T ={R; f1, f2, f3}and § = {R; f>, f3} be two IFSs. Then ¢ is a sub IFS of I.
One can easily show that the sub IFS ¢ satisfies SOSC and SOC but the IFS I does
not.
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In the following proposition, we give the exact value of the Hausdorff dimension
of the graph of the fractal transformation under some separation condition.

Proposition 3.6. Let ¥ ={(X,p1); f1, f2,..., fn}and & ={(Y,p2);81,82,--.. 8N}
be two IFSs such that

p1(fi(x). fi(x")) = cipr(x,x"),

p2(8i (¥), &1 (Y") = rip2(y, ¥,
where ci,ri € (0,1). If r; <cjforalli € {1,2,...,N}, ¥ satisfies SOSC, then
dimg G(Tgg) = so, where sq is given by ZlN=1 ;%0 =

Proof. If we consider the IFS # = {X x Y;hy,hs,...,hx}, then

D (hi(x. ). hi(x'.y") = D((fi(x). & (). (fi(x"). & (¥")
= max(p1 (fi (x), fi(x"), p2(gi (¥), & (V"))
< max(c;p1(x,x"), rip2(y, "))
= c,-{l)((x,y), (x’,y')).

Therefore, by [7, Theorem 9.6], dimg A g < so where s¢ is given by ZII\;I ;50 =
Since ¥ satisfies SOSC and each f; is a similarity transformation, by [18, The-
orem 2.6] dimyg Ag = so, where s is uniquely determined by ZzN=1 ¢;*0 = 1. The-
orem 3.1, yields that

so =dimg Ay <dimg G(Tzg) < dimg Agp < so.
Hence, dimy G(T¢) = so. This completes the proof. ]

Proposition 3.7. Let ¥ ={(X,p1); f1, f2,-.-, fn}and§ ={(Y,p2);81,82,-- -, &N}
be two IFSs such that

p1(fi(x). fi(x)) = cipr(x.x"),
p2(8i(»). & (Y)) < rip2(y, ¥").
where ci,ri € (0,1). If ¢; <r;foralli € {1,2,..., N}, ¥ satisfies SOSC. Then
so < dimpg G(Tgg) < to,
where to and so are given by ZIN=1 ri'™ = 1and ZIN=1 ¢;’0 =1, respectively.
Proof. Using similar arguments of Proposition 3.6, one can easily prove this. ]

In the upcoming theorem, we obtain bounds of the Hausdorff dimension of the
product IFS provided some conditions hold.
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Theorem 3.8. Let the iterated function system # = {X X Y;hy,ha, ..., hy} satisfy
SOSC, where hi(x,y) = (fi(x), g (y)), and assume that

i D((x, ). (x",y)) < D(hi(x,y). hi(x'. y")) < C:O((x.y). (x".¥)),

where (x,y),(x",y) e X xY and0 < ¢; <C; < 1foralli € {1,2,...,N}. Then
r < dimg(Ag) < R, where r and R are given by Z;N:l ¢/ =1land ZIN=1 CiR =1,
respectively.
Proof. For the upper bound of dimg(Ag), follow Proposition 9.6 in [7]. For the
lower bound of dimg (A ), we proceed as follows.

Since the IFS # satisfies SOSC, there exists an open set V' of X x Y such that

N
Uhi(V) CV, VNAxr #0,h(V)Nh;(V) =0 foralli # j,1 <i,j <N.

i=1

Since V N Ay # @, therefore there exists an index w € {1,2,..., N}* such that
he(Ag) C V. We denote hy,(Age) by (Age)e for any w € {1,2,..., N}*. Now, by
using the condition /; (V) Nh;j(V)=0 Vi # j, 1 <i,j <N andhy(Az) CV,itis
clear that for each n € N, the sets {(Ax )i : i €{1,2,..., N}"} are pairwise disjoint.
We define an IFS &£, = {h;e : i € {1,2,...,N}"}. Let A} be the attractor of IFS £,,.
By analysing the code space of IFS £, and J¢, we deduce that A, C Ag. This further
yields that the IFS £,, = {hj, : i € {1,2,..., N}"*} satisfies SSC. Thus, the IFS £,
fulfills all the assumptions of Proposition 9.7 in [7]. Hence, by Proposition 9.7 in [7],
we obtain that r, < dimpg (A}), where r, is given by > 15y ¢/t = 1. Then,
rn < dimg (A)) < dimg (Ag) because A); C Ag. Suppose that dimg (Ag) < r. This

implies that r, < r. Let ¢ = max{ci, ¢, ...,cn}. Then, we have
—rn _ 'n r dimg (Age)—r r n(dimg (Age)—r)
Co "= Z 1 z Z Ci ¢ z Z € Cmax
i€{1,2,...,N}" ie{1,2,...,N}" ie{1,2,...,N}"

This implies that
—r < ,n(dimg (Age)—r)
Cw —_ Cmax °

We have a contradiction for large values of n € N. Therefore, we get dimg (Ag) > r,
proving the assertion. ]

Remark 3.9. We may compare the above result with the work of Edgar and Golds [6],
wherein the authors determined the upper and the lower bounds of the Hausdorff
dimension of the graph directed bi-Lipschitz IFS using the Perron—Frobenius theory.
We have obtained the upper and the lower bounds of the Hausdorff dimension for the
bi-Lipschitz IFS using Moran—Hutchinson technique. We note that our result can be
obtained as a special case of Edgar and Golds [6]. However, our technique is different
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and the proof is simpler. For determining the Hausdorff dimension using the Perron—
Frobenius theory in more general setting, one can see [13].

In the next result, we estimate bounds of the Hausdorff dimension of the graph of
the fractal transformation by using the previous theorem.

Proposition 3.10. Let ¥ ={(X,p1); f1, f2,..., [ntand & ={(Y,p2):21.82.,..., &N}
be two IFSs such that f; and g; are bi-Lipschitz mappings as follow!

cip1(x, x") < p1(fi(x), fi(x")) < clpr(x,x"),

rip2(y.y") < p2(gi (¥). & (V) < rip2(y. ¥,

where ¢i ¢}, ri,r] € R,0<c¢; <c; <1land0 <r; <r] < 1.Assume that ¥ satisfies
SOSC and €¢ < €g Then s1 < dimgy G(Tg:g) < 52, where s1 and s, are uniquely

determined by Z —,; min{c;, ;i }*' = 1and Zl_l max{c/, r]}*2 = 1, respectively.

l’l

Proof. Since ¥ satisfies SOSC and € < €g, by [19, Theorem 6.8], the graph of
the fractal transformation T¢g¢ is the same as the attractor of the iterated function
system H ={X xY;hy,hs,...,hy}, where h;(x,y) = (fi(x), g (y)) for all indices
i €{1,2,..., N}. In the light of part (2) of Lemma 3.3, part (3) of Lemma 3.2 and
Theorem 3.8, we get our required result. ]

Corollary 3.11. Let ¥ ={(X,p1): f1. f2,.... [n}and G ={(Y,p2);g1.82,.... &N}
be two IFSs such that f; and g; are similarity transformation as follows

p1(fi(x), fi(x") = cip1(x.x),  p2(gi(¥). & (V) = cip2(y. ).

where c; € (0,1). If ¥ satisfies SOSC and €¢ < Cg, then dimpy G(Tx¢) = So, where
. . . N Ky
8o is uniquely determined by ) ;_, ¢;*0 =

Proof. This is a direct consequence of Proposition 3.10. |

Next, we discuss some aspects of the invariant measure corresponding to an IFS.
Consider an IFS I = {[0, 1]; f1, f>}, where f; and f, are defined as follows

1

A =3 ) =3+5.

2 ’

l\)|><

Then, [0, 1] is the attractor of IFS I. If we take two probability vectors p = (1, 1)
and g = (— —) then the invariant measures j, and pg corresponding to IFS I with
probability vectors p and g, respectively, satisfy

1
Mp __Mp f1 + Hpofz . Mpl0 1] =1,
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1
Hq o fi'+ Mqofz . Kgl0 1] =1.

Since IFS T satisfies the OSC and 9[0, 1] = {0, 1}, by using [, Theorem 2.2], we get
wp({0,1}) = g ({0, 1}) = 0. Therefore,

1 1 _ 1 1 _ 1 1 1 1
o053 ] = 3ro 0 S0 5[+ Jup e 15705 ] = Smal0 11+ S (0)) = 5.

This implies that 1, ({0, 1}) = :fi[lo 1][0, 1] In fact, it is not difficult to show that

pp = £} [0.1]° where £} . is the normalized Lebesgue measure on [0, 1]. And,

[0,1]

ﬂq[o’ %] = %Mq ° fl_l [0, %] + %ﬂq ° fz_l [07 %] = éﬂq[ov 1]+ %Mq({o}) = %

This implies that [0, 3] # Lo, 1][ 1]- So. for different probability vectors, we get
different invariant Borel probability measures supported on the attractor of the IFS.

In the following theorem, we determine a relation between the invariant measures
ofthe IFS ¥, % and ¥ x §.

Theorem 3.12. Let ¥ ={(X,p1); f1, f2,..., fntand § ={(Y,p2):81.82...., 8N}
be two IFSs with a probability vector (p1, pa, ..., pN). Define the WIFS

Fx§:={XxY;V¥;;pipj:1=i,j <N},

where W;; (x,y) = (fi(x), gj(¥)). We denote the invariant measures by g , jbg and
U5 xg associated with IFSs ¥, 8§ and ¥ x &, respectively. We have the following

HFxg = UF X Lg,

where (Lg X Lg)(A X B) = ug(A)ug(B).

Proof. With p;; = p; p;, we have

N N
pE =Y pipgo fil g =Y pipgog; and ugxg= D pijiugxgo V'
— pary i=1,j=1
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Now,

N N
pg X g =Y pitgo fi Xy pingog;’
i=1 j=1

N
-1 -1
= Y pijpgofi xpugog;
i=1,j=1
N

= > pijlur xpwe) (g
i=1,j=1
N
= Y pijlpg x pg) o Wy,

i=1,j=1
Since [ #xg 1s the unique measure satisfying the equation

N

-1

W xg = Z Pijhgxg © Wi,
i=1,j=1

the above equation yields that uzxg = g X pg. Thus, the proof of the theorem is
complete. ]

In the next result, we obtain a relationship between the quantization dimension of
the invariant measures of the IFSs ¥, % and ¥ x 6.

Theorem 3.13. Let F = {R? ; fi, fo..... fn)and § = {R? ; g1, g2.....gN) be
two IFSs such that

1) = i = ¢ lx = X'l and |gi(y) = g (W)l = ¢ |y =l

foralli € {1,2,...,N},wherex,x’ € X, y,y' € Y and 0 < ¢ < 1. Also, assume that
(p1, p2,..., PN), and (41,42, . .., qN) are the probability vectors corresponding to
IFS ¥ and 8, respectively. Define the WIFS

Txg:z{Rded;\Ilij;piqj:lfi,j§N},

where W;; (x,y) = (fi(x), g (y)). We denote the invariant measures by jLg , [Lg and
UFxg associated with IFSs ¥ ,8 and ¥ x §, respectively. If ¥ and '§ satisfy OSC,
then

D, > max{D,*, D,},

where D,*, D! and D, denotes the quantization dimension of order 0 < r < 0o of
U, g and [Lg xg, respectively.
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Proof. Since the IFSs ¥ and § satisfy OSC and each f; and g; are similarity maps
with similarity constant ¢, D,* and D/. are uniquely determined by

N Dy *
D (pic")rHorT =1 (3.3)
i=1

and

N Dl
> (gic")Pr =1, (3.4)

i=1

Since each f; and g; are similarity maps with similarity constant ¢, we have

W3 (x, y) — Wi (x", YOIl = 1(fi (%), &5 (0) = (fi(x), & O
= VL) = fiD? + lgi(y) — g ()12
=cVIx=x2+1ly —y'I?
=c[l(x,y) = " )l

Thus, W;; is a similarity map with similarity constant ¢. Since the IFSs ¥ and §
satisfy OSC, there exist open sets U and V' such that

N
i) cu. fio)n f;(U) =0 foralli # j,

i=1

and

N
Ug,-(V) cV. g(V)Ng;j(V)=9 foralli # j.
i=1

This further yields,
\Ifij(U X V) = f,(U) ng(V) cUxV,

Wij (U x V)N (U x V) = (fi(U) x gi (V) 0 (fir(U) x gjr(V)) =@

forall (i, j) # (i’, j'). Therefore, the IFS ¥ x § satisfies OSC. The probability p;q;
corresponds to similarity W¥;;. So, the quantization dimension D, of order 0 < r < oo
of invariant measure | # xg¢ is given by

N
2
> (pigjc") b =1.
i=1,j=1

This implies that

N o N by
D (pic)TEPT Y (q))THPT = 1.
i=1 j=1
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. N Dy N
Since Y ()b > YN ;= 1, we get

N D
> (e 7 < 1.

i=1

Since t — ZIN=1 (pic™)! is a strictly decreasing continuous function, by the above
and equation (3.3), we get
D, D,*
>
r+D, r+D,*
rD, + D,D,* >rD,* + D,D,*
D, > D,*.

Similarly, we can also prove that D, > D;. Therefore,
D, > max{D,*, D, }.
This completes the proof. =

Remark 3.14. Let ¥ and § be two IFSs, ¥ = {R; fi(x) = 2, fo(x) = % + 1} and
f={R:igi(x)=3.8(x)=3+ %}, with the same probability vector (%, %) Define
the IFS # := {R2; hy, hy}, where h; (x,y) = (f;(x), gi(»)). In this case, we have

(1) A7 = Ag =[0,1]and Ay = {(x,x) : x € [0,1]}.
(2) (ng x pg)(Azx) = 0.

By the above remark, it is clear that we may not obtain the invariant measure of
sub IFS by restricting the invariant measure of the super IFS.

Next, we give an example of a measure supported on a countable set and also
compute its quantization dimension.

Example 3.15. Let £ = {xm X, = l(l + m;—l—l) forallm e N} and let u be the

2\m
measure supported on E such that u(x,) = -5, where y = (3_7_, m™>)~". We

show that

Dr(M)=2+l-
-

Let A be a subset of R with Card(A) = n. We define a set

A:{meN:Am[miLl,nil]:(a}.

Then, for each m € A, we have

3=

1 r
- 1
min |x,, —a|” > mil ) = .
acA 2 2'm"(m + 1)"
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So that,

/min|x —al"du(x) > E min | X, —a|’L2
acA acA m
meA

1 y
> —

= Z 2
— 2'm" (m + 1)" m

o0

y Y
> L S
= 2r+2
2rm=n—|—1(m+1) '
o
LA N SN
- or 1 (x +_1)2r+2
_ Y (n +_1)—2r—1
2 2r+1)
From the above, we deduce that V, (i) > y1(n + 1)72"~1, where y; = m
1
Since ey, (10) = Vi/r b, we get
1 1
enr(t) = y17(n+1) >
From the above inequality, we conclude that
1 1 1
D, (n) = liminf oen > s

> lim — : =—.
n>o0 —logen, () ~ n>o —Llogy  + @+ Dlogn +1) 2+ 1

Using the same technique of [7, Example 3.5], it is not difficult to compute that
dimp(E) = % By using Lemma 1 in [21], for any real number ¢ > dimp(E), we
can choose a set A, C R with Card(4,) = n such that

min |x —a|” < (y2)'n7 forallx € E,

acA,
where y, is some constant. We define a set By, = {x;, : | <m <n} U A,. Thus, by
using the above inequality and the definition of V5, (1), we have

Van (1) < / min [x — bJ" dju(x)
bGan

oo
<y(2)'n7T Z 2
m=n+1

—r S
<y(y)'nt /

1
—zdx
n X
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where yo = y(y2)". By the above inequality and the definition of e, (1), we deduce

that
1 1

1
€n,r() < yorn 7@ 7.
Therefore, by the above inequality, we determine that

logn log2n 1

D = limsup ——— < lim = .
r (1) oo —logen, (1) ~ o0 —Llogye + (3 + L)logn 141

1
241"

The above inequality holds for any ¢ > % Therefore, D, (1) < This proves our

claim.

4. Bounds on the quantization dimension of the invariant probability
measure supported on the attractor of a bi-Lipschitz WIFS

In this section, we establish bounds for the quantization dimension of the invariant
Borel probability measure supported on the attractor of a bi-Lipschitz IFS. We should
admit that we use the similar technique of Graf and Luschgy [8] to determine the
upper bound. However, we use a different technique for the lower bound.

Firstly, we give some lemmas and propositions for determining an upper bound of
the quantization dimension for the invariant Borel probability measure supported on
the attractor of a bi-Lipschitz WIFS.

Lemma 4.1. Let ju be a Borel probability measure on R and f : R — R? be a
bi-Lipschitz map such that s|x — y|| < | f(x) — fO)| < cllx — y|, where x, y € R4
and s,c € (0,1). Then

V(@ o f_l) < " Var(p).

Proof. Letv = o f~! It can be easily observed that v is a Borel probability meas-
ure on R?. We begin with the definition of Vir(v). We have

Var() = inf{/ 21612 x —a|dv(x): A C R?, Card(A) < n}
- inf{/ min x — al"d(uo f~)(x) : 4 C RY, Card(4) < n}
— int{ [ min | f() ~ alf du(y) : 4 € RY, Card(4) <
<infl [ min /()= fOI dp(y) : B CRY, Card(B) < nf
< inf{/ min |y — b du(y) : B C RY, Card(B) < n}

=c’ Vi r ().
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Thus, the proof of the lemma is established. ]

Lemma 4.2. Let ; be a Borel probability measure on RY fori =1,2,...,K. We
define p = YK | s; i, where s; > 0and Y5 | s; = 1.1f>°X  n; <n, wheren; e N
and [ ||x||"dpi(x) < oofori =1,2,...,K. Then

K
Vn,r (/L) = Z N Vni,r (I‘Ll)
i=1

Proof. Since [ ||x||"dui(x) <oofori =1,2,...,K, we getn;-optimal set A, C R4
for measure p; with Zlel ni <n.Let A= UX A, . Then Card(4) < n. By the
definition of V;, ,(u), we have

Var) < [ min x —al” du(x)
a€A

K
-Y s / min x — a|"du; (x)
=1 acA

This completes the proof. =

Lemma 4.3. Let {R%; fi, f». ..., fx)} be an IFS such that each f; satisfies
sillx =yl = 1 /iGx) = finl < cillx =yl

where x,y € R? and 0 < s; < ¢; < 1. Also, assume that (p1, pa, ..., pN) be a
probability vector corresponding to the IFS. Let r € (0, 00) be a fixed number. Then
there exists a unique [, € (0, 00), satisfying

N /
Y (pic) I = 1.

i=1

Proof. We define a function F : [0, 00) — R by

N
F(t) =) (pici")".

i=1
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We see that F is a strictly decreasing continuous function as 0 < p;,¢; < 1 and
r € (0, 00). Furthermore,

N N
F()=Nz=2and F(1) =Y pic] <Y pi=1.

i=1 i=1
Therefore, by the intermediate value theorem and the strictly decreasing property of
F, there exists a unique number ¢y € (0, 1) such that F(ty) = vazl(pici’)to =1.
Since to9 € (0, 1), there is a unique /, € (0, oco0) such that r-li-_'l, = to. Hence, there is
Iy
a unique number [, € (0, 00) such that Zfil(pici’)m = 1. This completes the
proof. ]

Proposition 4.4. Let W = {R%: fi, fo..... fN: P1.P2..... PN} be a weighted IFS
(WIFS) such that each f; satisfies si||x — y|| < | fi(x) — i) < cillx — ||, where
X,y € RY and 0 < s; < c¢; < 1. Let i be the invariant Borel probability measure
corresponding to the WIFS W. Then, for everyn € N and r € (0, 00)

N N
Vor (1) < min{ZpicirV”f”(M) in; € N,Zni < n}
i=1

i=1

Proof. Since p is the invariant measure corresponding to the WIFS ‘W,

N
=y pipo fi .

i=1
Using Lemma 4.1, for each n € N, we get

Var(Guo fi')y <elVy,(u)foralli =1,2,...,N.

Since [ ||x|"du(x) < oo, [|x|"d(n o £fi7H(x) < co. Thus, in view of Lemma 4.2
and by the above inequality, we get

N N
Vo) < min{ 3 pic Vo o) s € N Y s < .

i=1 i=1
Thus, the proof is complete. u

Corollary 4.5. Let W = {Rd; f1, f2r-. s NP1, P2, ..., PN} be a WIFS such that
each f; satisfies si|x — y|| < || fi(x) — fi()|| < cillx — y|, where x,y € R and
0 <s; <c¢i <1landeach p; > 0. Let |4 be the invariant Borel probability measure
corresponding to the WIFS W. Let T' C {1,2, ..., N}* be a finite maximal antichain.
Then, for anyn € N withn > |I'|, 0 € " and r € (0, 00)

Var() < min { Zpgchnmr(u) ‘ne €N, Zna < n}

oel oel
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Proof. Since I is a finite maximal antichain, by Lemma 2.15 measure u satisfies

w=>Y popo fo .

oel

The rest of the proof of this corollary follows from the proof of Proposition 4.4. =

In the upcoming theorem, we give an upper bound of the quantization dimension
for the invariant Borel probability measure supported on the attractor of a bi-Lipschitz
WIFS without any separation condition on the IFS.

Theorem 4.6. Let W = {R%; fi, f>..... fN: DP1.D2..... pn} be a WIFS such that
each f; satisfies si||x — y|| < [ fi(x) = fi(W = cillx — y|
0<s; <c¢ <1andeach p; > 0. Let |4 be the invariant Borel probability measure
corresponding to the WIFS W. Let r € (0, 00) and [, € (0, 00) be the unique number

Ir
such that va:l(p,-ci’)m = 1. Then

, where X,y € R and

: /
limsupn - e, (1) < oo,
n—>oo

where ey () = Vi r (,u)%. Moreover, D, (i) < l,, where D, () denotes the upper
quantization dimension of order r of .

Proof. Let & = (p; ci’)rjrirlr. Notice that each & > 0 and ZzN=1 & = 1. Therefore,
(&1,&2, ..., &EN) is a probability vector. Let &,,;, = min{&1, &>, ..., En}. Then, we
have &,,i, > 0. Let mo € N be fixed. Choose n € N with the property % < 53”.", this
property holds for all but finitely many values of n € N. Sete = ¢! 70, We define
a set

e ={oe{l.2,....N}*; & >€>&}.

Lemma 2.16 yields that I'¢ is a finite maximal antichain. Therefore, in the light of
Lemma 2.15, we obtain

1= "6= b bop = D € bog = D € Emin=6 Emin-|Te|.

oele oele oele oele

Therefore, by the above, we get [T¢| < (€ - Epnin) ™! = mlo This can be also written
as ZUEI‘G mo < n. So, by using Corollary 4.5, we get the following inequality

Var(p) = Z PoCqVimo.r (1)

ogelc
_Ir__ r
=Y (Poch) T (poch) THF Ving r (1)
ogele

3 60 (Pocl) T Ving.r (1),

ogele
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Ir
Since € > &, = (poce”)7Hr for o € T'¢, by the above inequality, we conclude that

r+ir ﬁ
Var(u) < Z EG(G ir ) i Vmo,r(ﬂ)

ogele

Z 2 celr Vino.r (1)

oelc

=€lr . Vm(),r(ﬂ) Z EO"

ogele

: -1
Since € = Epin - 52, we have

=)

By Lemma 2.15, we get Zael“e &s = 1. Thus, by the previous inequality, we obtain

Vi 00 = £ () Vo G0

—r

I’lLV ‘ nr(/fL) Smln 'moﬁ ° mo,r(M)
o) < Epty -mo el ().

The above inequality holds for all but finitely many values of n. Therefore, we get

limsupn - elr (1) < &t - mo - el (1) < o0,

n—>oo
By using Proposition 2.14, we get D,(u) < [,. Thus, the proof of the theorem is
complete. |

Next, for obtaining a lower bound of the quantization dimension of invariant Borel
probability measure corresponding to a WIFS, we give some lemmas and proposi-
tions.

Lemma 4.7. Let W = {Rd; fi, f.-., fN: P1, P2...., PN} be a WIFES such that
each f; satisfies si||x — y|| < ||fi(x) = i) < cillx = y|, where x,y € R¢ and
0 <s; <c¢; < 1. Let u be the invariant Borel probability measure and Aw be the
invariant attractor corresponding to the WIFS 'W. Then, for every € > 0

inf{iu(B(x,€)) : x € Ay} > 0,
where B(x, €) is the open ball of radius € and centre x.

Proof. 1t is well known that there is a unique m € R such that Z;N—1 ¢;™ = 1. Set
gi = ¢;"™. Then (g1, g2, ....qn) is a probability vector. Let €y = (m) . Then
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Fep ={0€{l,2,...,N}*: qo— > €9 > g5} is a finite maximal antichain. Next, let
x € Ayw. Since Ay = User, Jo(Aw), there is 0g € I'¢, such that x € f5,(Aw). Let
X1,X2 € A'W. Then

| foo (X1) = foo (Xx2) | = copllx1 — X2

From the above inequality, we can conclude that diam( f5,(Aw)) < cg, diam(A).
Thus, diam( f5,(Aw)) < €, which further yields that f;,(Aw) € B(x,€). Since p
satisfies u = Zaerq) oo fu ', we have

1(foo(Aw)) = Y popo fo  (foo(Aw))

O’GFEO

> PogM © fao_l(foo(A'W))
= Poy-

Let p = min{ps;0 € I'¢,} > 0. Then, by the above inequality

w(B(x,€) = p(foo(Aw)) = p > 0.
This holds for arbitrary x € Ayw. Therefore, we get our assertion. |

Lemma 4.8. Let 'W, as in the above lemma, satisfy strong open set condition and |
be the invariant measure corresponding to 'W. Then, for each m € N, there is a WIF'S
Lm ={R%; g;: p; foralli € {1,2,..., NY"} such that

Sillx =yl = llgi(x) = &Il = Cillx =yl

where x,y € R? and 0 < S; < C; < 1 and the WIFS £, satisfies SSC. Further-
more, if [y, is the invariant Borel probability measure corresponding to the IFS £,
then there exists ng € N such that for each n > ng there exists n; € N such that

Z:1‘6{1,2 ..... Nyn i < nand

Var(n) = > piSi" Vi (1)
i€{1,2,..,N}yn

forany r € (0, 00).

Proof. Since W satisfies the strong open set condition, there exists an open set U such
that

N
AW cU Undyw £0. f;U)N f;(U) =0 foralli # j.

i=1
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Since U N Ay # @, there exists o € {1,2,..., N}* such that f;(Aw) C U. Set
gi = fio fefori e{l,2,..., N} Forx,y € R4, we have

sisollx =yl = llgi (x) = g W) = cicollx =yl
Hence
Sillx =yl = llgi(x) — g = Cillx =yl
where S; = 5;55 € (0,1) and C; = cjcy € (0, 1). Therefore,

Em = {R%; g foralli € {1,2,...,N}"}

isan IFS. Since } ;c(y 5. nym Pic = Po # 1, we have

Diec _ o
ZiE{I,Z ..... N}m p_a - Zie{l,z ,,,,, Nym pi =1

Therefore, £, = {R%; g;; p; foralli € {1,2,..., N}™}is a WIFS. Let A% be the
invariant attractor and let py, be the invariant Borel probability measure correspond-
ing to WIFS &£,,. Analysing the code space of both IFS ‘W and £,,, one can easily
show that A}, € Ay. Since f;(U) N f;(U) =@ foralli # j € {1,2,..., N} and
Jo(Aw) C U, weget gi(Ay) Ngj(Ay,) =9 foralli # j e {1,2,..., N}"™. Thus,
the WIFS £,, = {R%; g;; pi foralli € {1,2,..., N}™)} satisfies strong separation
condition. Set

8o = min min ||a—b||}.

min {
i#j€{1,2,...N}" laeg; (A};) beg; (Af)

Since the WIFS £,, satisfies strong separation condition, we have §¢ > 0. Lemma 4.7

yields that
8= inf{(%)ru;(3<x, %’)) D X € A;‘n} > 0.

By using Lemma 2.11, we have V;, ,(u,,) — 0 as n — oo. Then there is an np € N
such that V;, ,(uy,) < é forall n > ng. Let A, be an n-optimal set for measure 1, of
order r. In the light of Lemma 2.13, for all n > ng, we have

[Anlloo\r . & [ 4n o
(57 i (80 55)) <2

It can be easily shown that for r € (0, 00), the function ¢ : (0, 00) — R defined by
¢(t) =t" min p;, (B(x,t)) is increasing. This further yields that
xX€AN,

2 8

[Anlloo 8o
<
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and hence

)
[ nllos < 2

for all n > ny. We define

Ap, ={a € Ap; W(alAn) N gi(4,,) # 0} fori € {1,2,..., N}

Let n; be the cardinality of A, . By the definition of || 4, || and 8y, we conclude that
foralln > no, Ay, N Ap; =0 fori # j €{l,2,....N}"and } ey 5, nymNi <n.
Now, for n > ng, we have

Vi) = [ min I = aldy, (o)

= X [ min a0 - el deg (o)
acAy

ie{1,2,..,.N}"
= X e -aragw
i€{1,2,..,N}m n;
> ”"Sir/ min [lx - bl du (x)
i€{1,2,.,Nym beg; ' (4n;)
= Z PiSi" Vi, r (i)
ie{1,2,..,N}m
This completes the result. .

Proposition 4.9. Let W and £, be two WIFSs as defined in the above lemma. For
r € (0,00), let ky » € (0, 00) be the unique number such that

Y (s = 1.
ie{l1,2,... . N}y
Then
liminfn - ,2, (1i;,) > 0
forany ly € (0, kp, ;). Moreover, ky, » < D, (uy,), where D, (u),) denotes the lower

quantization dimension of measure |1}, of order .

seee

Kkm.r
tionand ) ;eqy o Nym(piSi")"Femr =1, then for 0 < lp < kyn,r, we have

_lo Km.r
Yo mSHTR >y (g = 1,

ie{1,2,..,N}m ie{1,2,..,N}m
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Let ng be as in the above lemma. Let Cy = min{n’LO - Var(ur)in < ng}. It is easy
to show that Vj, (i) > 0, from which we deduce that Cyx > 0. Our aim is to show
that 70 - Va,r(iy,) = Cy for all n € N. Clearly the inequality holds for n < ng by
the definition of Cy. For n > ny, we prove it by induction on n € N. Let n > ng and
n% - Var (i) = Cyx hold for all n < n. Lemma 4.8 yields that there are numbers
ni € Nsuchthat } (5 nymni <nand

nlo Vy ,(u%) > nl Z PiSi" Vo r ()
ie{1,2,..,N}"m

=r r
=n'o Z piSi"ni o ni 0 Vy, ()
ie{1,2,..,N}"m
r —r
Can®o Y piSi'mio
ie{1,2,...,N}m

= Cy Z PiSir(%>%or-

ie{1,2,..,.N}"

A%

Using Holder’s inequality for negative exponents, we get

2 _lo H—% n; i‘%lo Ty
”lIOVn,r(M:;,)ZC*( Z (PiSir)r'HO) ( Z (;z)lo ) )

ie{1,2,..,.N}" ie{1,2,..,.N}"

lo
. B\RAYETY nj
Since Y g1 n,  nym (PiSi") T > Tand 3 ey 5 yym 5F < 1, we have

n'o Var (i) > Ce.

Therefore, by induction on n € N, n% Var(),) = Cy hold for all n € N. Thus, we
deduce that ,

.. I lo

lkn_l)gfn e (Upm) = Cx ™ > 0.

Proposition 2.14 implies that k,, » < D, (u,,). The proof is complete. ]

In the following theorem, we determine a lower bound of the quantization of the
invariant Borel probability measure supported on the attractor of a bi-Lipschitz WIFS
under the SOSC.

Theorem 4.10. Let ‘W be the WIFS defined as in Lemma 4.7 and assume that it
satisfies the SOSC. For r € (0, 00), we have D () > k,, where

N k
> (i) =1

i=1
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Proof. Since the WIFS ‘W satisfies the SOSC, there exists an open set U of R4 such
that

N

Uﬁ(U) CU UNAw #0, i(U)N f;(U) =@ foralli # j, 1<i,j<N.

i=1
Since U N Ay # @, there exists a0 € {1,2,..., N}* such that f;(Aw) C U. We
denote fy(Aw) by (Aw)s for any o € {1,2,..., N}*. Now, by using the condi-
tion ;(U)N f;(U) =@ foralli # j,1 <i,j < N,itis clear that foreachm € N,
the sets {(Aw)is : 1 € {1,2,..., N}"} are pairwise disjoint. We define a WIFS
Em = {Rd; fio: pi foralli € {1,2,..., N}™} as in Lemma 4.8. Therefore, by the
Proposition 4.9, we obtain that k,,, , < D, (y,), where k,y , is given by

Km,r
Yo (pisi) T =1
ie{1,2,...,Nym
Let A}, be the attractor of the WIFS &£,,. Note that 0 < dimg (1) < D, () (see
[8, Theorem 11.6]). Hence, D,(u) > 0. Now, we claim that D,.(u;,) < D, (n).
If dimg(A;,) < D,(n) is not true, then we may choose another word T = ow €
{1,2,...,N}* for some w € {1,2,..., N}* such that the attractor A}, of the WIFS
Lm =R : fipipiforalli € {1,2,..., NY"} satisfies dimg(4%) < D, (11). By
using the inequality D, (uy,) < dimg(A;,) given by [8, Proposition 11.9] and the
condition dimg(A4;,) < D, (), we obtain D () < D, (w). Since kp, , < D, (1},),
we have k,, , < D, (u). Now, we show that k, < D, (u). Suppose for contradiction
that D, () < ky. Let tax = max{p157, p2s5,..., pNSy}. Using

D,w  k

kr
,
E (pisj)r+& =1 and — <0,
r+ D r+k
ie{1,2,..,N}m +D,(w t R
we have
—rkm.r km.r
r+km.r __ N7 -
87 = > (pisj)rTkm.r
i€{1,2,...,.N}"
, Dy ()
> E (PiSi )r+2r(u)
ie{1,2,..,N}m
3 PYVFEBLGD ( ;5T (g™ Pk
= (pis; ) FLrW (pis;)r+kr (pis; ) rHkr
i€{1,2,....N}
ml 2r) _ kr
Kz r+D,(w)  r+kr
> § (Pisi)’+kr Imax

ie{1,2,..,N}m

m Dy(W) _ _ky
r+Dy(u) r+kr

=1 max
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This implies that

. Dy () kr
—rkr m(4r+Qr(M) T )

We have a contradiction for large values of m € N. Therefore, we get D, (1) > k;,
proving the assertion. u

In the next theorem, we combine the above results on the quantization dimension.

Theorem 4.11. Let W = {Rd; fi. f2s.. s [N P1. P2, ..., PN} be a WIFS such that
each f; satisfies

silx =yl = ILfi(x) = i < cillx =yl 4.1)

where x,y € RY and 0 < s;i < c¢; < 1. Let ju be the invariant Borel probability measure
corresponding to the WIFS ‘W and assume that ‘W satisfies SOSC. Then

kr < D, (1) < Dp(p) < Iy,

_kr_ _r
where k, and I, are given by vazl(p,-s,-r) r+kr = 1 and vazl(p,-c,-r) +r =1,
respectively.

Proof. By combining Theorems 4.6 and 4.10, we get our required result. ]

Remark 4.12. In [9], Graf and Luschgy gave a formula for the quantization dimen-
sion of the invariant self-similar probability measure generated by a self-similar IFS
under the open set condition. Here, we give bounds for the quantization dimension
of the invariant probability measure generated by a bi-Lipschitz IFS under the strong
open set condition. If we choose s; = ¢; in (4.1), then our result gives the formula of
Graf and Luschgy [9]. Thus, our result generalizes the result of Graf and Luschgy [9]
in a more general setting.

Remark 4.13. In [16], Roychowdhury determined the quantization dimension of the
invariant probability measure supported on the limit set generated by a bi-Lipschitz
IFS with the strong open set condition and the bi-Lipschitz constants satisfying that
So < Ks, forallo € I *. The condition taken by the author is satisfied for similar-
ity mappings but not for the general class of bi-Lipschitz mappings. For example, if
%,gi = % for all 1 <i < N, then we cannot find any such K € R.
However, our result, Theorem 4.11, gives the quantization dimensions of the invariant

we take §; =

probability measures corresponding to a general class of bi-Lipschitz IFSs.

Remark 4.14. Here, we shed some light on mathematical issues that seem to have
appeared in [16]. In the proof of [16, Lemma 3.11], the author uses the following
incorrect equality

ps(U€) = ((PU(U))C»
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where o € I". Choose an IFS {[0,2]; fi(x) = 3, fa(x) = 5 + %} and an open set
U = (0, 1) satisfying SOSC. Now,

U = (0)UNL2) AU = UL (A@) = [o.5] U2

which yields f>(U¢) # (f2(U))¢. After a careful reading, one may notice some other
issues in the proofs of some other results in the same paper.

In the next proposition, we estimate the quantization dimension of the invariant
Borel probability measures supported on the graph of the fractal transformation.

Proposition 4.15. Let ¥ = {]Rd;fl, fa,..., fnand § = {Rd;gl,gz, ..., 8N} be
two IFSs such that f; and g; are bi-Lipschitz mappings as follows

cillx = x| < Lfix) = i DI = cillx = x|,

rilly =yl < g () — g O = rilly = 'l

where c;,cl,ri,r] €R,0<¢; <c; <land0 <r; <r] <1.Assume that ¥ satisfies
SOSCand €¢ < €g. Let I = {Rd xR%:hy,ha,. .., hn} be the IFS with probability
vector (p1, pa2,...,PN), where hi(x,y) = (fi(x),gi(¥)). Let u be the invariant Borel
probability measure corresponding to the IFS K such that u(T¢g) = 1. Then

Sy < Qr(ﬂ) = 5r(,LL) < t,

where s, and t, are uniquely given by

N . N .
Z(Pi min{ci,ri}r)’gri” =1 and Z(pi max{c;,r} ’)’jfi’r =1,

i=1 i=1
respectively.
Proof. Since ¥ satisfies SOSC and €¢ < €g, by using [19, Theorem 6.8], the graph
of the fractal transformation Tz ¢ is the same as the attractor of the IFS #. Using

Theorem 4.11, part (3) of Lemma 3.2 and part (2) of Lemma 3.3, we get our required
result. ]

Acknowledgements. We would like to thank the anonymous referees for their valu-
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