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Random subsets of Cantor sets generated by trees of coin flips

Pieter Allaart and Taylor Jones

Abstract. We introduce a natural way to construct a random subset of a homogeneous Cantor
set C in Œ0; 1� via random labelings of an infinite M -ary tree, where M � 2. The Cantor set
C is the attractor of an equicontractive iterated function system ¹f1; : : : ; fN º that satisfies the
open set condition with .0; 1/ as the open set. For a fixed probability vector .p1; : : : ; pN /,
each edge in the infinite M -ary tree is independently labeled i with probability pi , for all
i D 1;2; : : : ;N . Thus, each infinite path in the tree receives a random label sequence of numbers
from ¹1; 2; : : : ; N º. We define F to be the (random) set of those points x 2 C which have a
coding that is equal to the label sequence of some infinite path starting at the root of the tree.
The set F may be viewed as a statistically self-similar set with extreme overlaps, and as such, its
Hausdorff and box-counting dimensions coincide. We prove non-trivial upper and lower bounds
for this dimension, and obtain the exact dimension in a few special cases. For instance, when
M DN and pi D 1=N for each i , we show that F is almost surely of full Hausdorff dimension
in C but of zero Hausdorff measure in its dimension. For the case of two maps and a binary
tree, we also consider deterministic labelings of the tree where, for a fixed integer m � 2, every
mth edge is labeled 1, and compute the exact Hausdorff dimension of the resulting subset of C .

1. Introduction

Consider an iterated function system (IFS) ¹f1; : : : ; fN º consisting of N similar con-
tractions fi W Œ0; 1�! Œ0; 1�, i D 1; 2; : : : ;N such that fi ..0; 1//\ fj ..0; 1// D ; for
all i ¤ j . In other words, ¹f1; : : : ; fN º satisfies the open set condition with the open
set being an interval. We assume furthermore that the IFS is equicontractive; that is,
there is a constant 0 < r � 1=N such that

jfi .x/ � fi .y/j D r jx � yj for all x; y 2 Œ0; 1�, i D 1; 2; : : : ; N :

The attractor of the IFS ¹f1; : : : ; fN º is a nonempty compact set C satisfying

C D

N[
iD1

fi .C /:
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When r < 1=N , C is a Cantor set with

dimH C D dimB C D �
logN
log r

;

where dimH and dimB denote Hausdorff and box-counting dimensions, respectively.
When r D 1=N , C is simply the unit interval Œ0; 1�.

We are interested in certain random subsets of C that are generated by trees of
coin flips. The idea – made precise in the next section but outlined here for the special
case N D 2 – is simple: In a full infinite binary tree, we randomly label each edge
with either 1 with probability p or 2 with probability 1 � p, where p 2 .0; 1/ is a
fixed parameter. Each path down the tree from the root then has a random infinite label
sequence which is the coding of a point in C . We let F denote the random subset of C
of all points obtained in this way. We show that when p D 1=2, F has almost surely
the same Hausdorff dimension as C itself, but with zero Hausdorff measure in its
dimension. In particular, when r D 1=2, our construction generates a random subset of
the unit interval which has Lebesgue measure zero but full Hausdorff dimension one
almost surely. When p ¤ 1=2, we obtain instead a random subset of C with strictly
smaller Hausdorff (and upper box-counting) dimension. For this biased case, we are,
unfortunately, only able to obtain rough (but non-trivial) bounds on the dimension.
These are given in Theorem 2.2 below, which we prove in Sections 3 and 4. In fact, we
develop our bounds for arbitrary N � 2 and for random subsets obtained by random
labelings of M -ary trees, where M � 2.

The random subset F may be viewed as a statistically self-similar set with extreme
overlaps, as we explain in the next section. Statistically self-similar sets were intro-
duced in the 1980s by Falconer [6], Graf [10] and Mauldin and Williams [17], and
have since been studied by many other authors. In almost all of these papers, some
separation condition, such as the open set condition, is assumed. While there is a sig-
nificant body of literature on dimension computations for deterministic self-similar
sets with overlaps, little appears to be known about the random case in the absence
of a separation condition. With this article, we hope to make a modest contribution
to this line of research, although we did not manage to compute the exact dimension
of F .

We observe that our setup is essentially the same as that of Benjamini et al. [2].
However, their principal focus was on the overlapping case (i.e., r > 1=N ), and
instead of the random set F , they were mainly interested in the stochastically self-
similar measure � supported by F . This random measure � is in fact precisely the
measure m! that we use in the proof of the lower bound; see Section 3. Benjamini
et al. do not give dimension estimates for r < 1=N , and indeed, our results here are
nearly disjoint from theirs.
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We consider, in Section 6, a deterministic version of our randomization scheme,
corresponding to a sequence of coin flips in which every mth flip is heads, and com-
pute exactly the Hausdorff dimension of the resulting subset of C . Interestingly, this
dimension is not strictly monotone in m.

1.1. Models of random fractals

Following Hutchinson’s result [11] on the Hausdorff dimension of self-similar frac-
tals generated by an IFS satisfying the open set condition, there was a rapid rise in
analogous results on a broad class of random constructions known as statistically self-
similar fractals. Below, we discuss a few models from the literature for constructing a
random Cantor set in the line. The randomness we are interested in resides in the pro-
cess of deletion of intervals, as opposed to position or length of intervals (considered
in [13, 14]).

Perhaps the best-known model of random Cantor sets begins with a partition of
the unit interval into M � 2 disjoint subintervals of length 1=M , and a vector of
probabilities p D .p1; : : : ; pM / 2 Œ0; 1�

M (not necessarily a probability vector). At
stage 1, the i th interval in the partition is either kept or discarded with probabilities
pi and 1 � pi , respectively. Within each non-discarded subinterval this process is
repeated proportionally, and independently of past stages. The limit set, conditioned
on non-extinction, results in a random Cantor-like fractal F , say. In [6,10,17], it was
determined independently that dimHF D 1

M
log
�PM

iD1 pi
�

almost surely on F ¤ ¿.
This model was also used in [5] to study the question of when the arithmetic difference
of two random Cantor sets contains an interval.

Another model for constructing random Cantor sets, which removes the need for
conditioning on non-extinction, is to fix a sequence of integers N1; N2; : : : for which
1 � Nk � M for all k. At each stage k in the construction, and within each interval
remaining at stage k � 1, randomly and independently chooseNk subintervals of size
M�k , then discard the rest. This was used in [4], where the almost sure Hausdorff
dimension was computed, as well as a close variation of it in [18] in connection to
tube null sets.

The random Cantor sets we consider here also never go extinct, but our construc-
tion involves a complex form of interdependence which implies that the number of
“basic intervals" remaining at level n is neither Markovian nor a martingale, even
after appropriate scaling. As a result, traditional martingale approaches or branching
arguments are not applicable. In fact, we could think of only one natural (random)
mass distribution on our random Cantor subset, which led us to a lower bound that is
(for the biased coin case), unfortunately, significantly below the best upper bound we
could find.
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We point out that our construction also differs from the V -variable fractals of [1],
and their generalization in [12] to random code tree fractals.

2. Notation and main result

For definiteness, we assume that fi .Œ0; 1�/ lies to the left of fj .Œ0; 1�/ when i < j .
Further, for ease of presentation, we also assume that each fi is orientation preserving;
in other words, there are constants b1; : : : ; bN such that fi .x/ D rx C bi , for i D
1; : : : ; N . However, this is not essential for our main results; see Remark 4.2 below.

Our probability space is � WD ¹1; : : : ; N ºN equipped with its Borel � -algebra B

and a probability measure �p to be described below. We also write�n WD ¹1; : : : ;N ºn

for n 2 N, and �� WD [n2N�n. For any finite sequence !� D .!1; : : : ; !n/ 2 ��

with j!�j D n, we define the basic open set, or cylinder,

Œ!�� WD ¹! 2 � W !jn D !
�
º;

where !jn denotes the restriction of ! to the first n letters. Let � WD ¹Œ!�� W !� 2��º.
Denote by P the set of all probability vectors p D .p1; : : : ; pN / 2 Œ0; 1�N such

that
PN
iD1 pi D 1. For p D .p1; : : : ; pN / 2 P , we define a premeasure �p on � by

�p
�
Œ!��

�
WD

NY
iD1

p
#¹k�n W !�

k
Diº

i ; for !� D .!�1 ; : : : ; !
�
n/;

and observe that �p extends uniquely to a probability measure on .�;B/ which we
again denote by �p.

Next, we consider a second integer parameter M � 2, and let

	n WD ¹1; : : : ;M º
n .n 2 N/; 	� WD

1[
nD0

	n; 	 WD ¹1; : : : ;M º1:

Here ,we set 	0 WD ¹�º, where � denotes the empty word. We define an order <� on
	� in a natural way: For any pair of words i D .i1; : : : ; im/ and j D .j1; : : : ; jn/ in
	�,

(1) i <� j if m < n, and

(2) i <� j if m D n and i <LEX. j in the lexicographic order.

We think of <� as ordering the M -ary tree from top to bottom, left to right.
Next, we define a function � W 	� ! N by

�.i/ WD 1C #¹j 2 	� W j <� iº; i 2 	�:
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Note that � is well defined as there are but finitely many words less than i in the <�
order. For instance, when M D 2, the first few values of � are �.1/ D 1, �.2/ D 2,
�.1; 1/ D 3, �.1; 2/ D 4, �.2; 1/ D 5, etc. Observe that � defines an order-preserving
bijection from .	�; <�/ to .N; </.

Now, we define the collection of random variables Xi W �
� ! ¹1; : : : ; N º by

Xi.!/ D !�.i/; i 2 	�:

These are the random labels of the edges in the M -ary tree.
For any ! 2 �, we define a subset of C by

F.!/ WD
®
x D lim

n!1
fXij1 .!/

ı fXij2 .!/
ı � � � ı fXijn .!/

�
Œ0; 1�

�
W i D .i1; i2; : : : / 2 	

¯
:

(We emphasize that due to the randomization, different choices of the path i could
yield the same point x in the limit set F.!/.)

2.1. F as the limit of a branching random walk

To help visualize the random subset F.!/, the reader may wish to imagine a kind of
branching random walk. We illustrate this for the caseM D N D 2. The walk begins
with a single ancestor at time 0 occupying the interval Œ0; 1�. At each stage n � 0,
each individual of generation n splits into two descendants of generation nC 1. If the
individual occupies the interval I , its descendants, independently of each other, move
either to the left subinterval f1.I / with probability p1, or the right subinterval f2.I /
with probability p2. (Basically, this process is a “branching random walk with expo-
nentially decreasing steps", as in [2].) Note that at stage n there are 2n individuals,
collectively occupying some (random) subcollection of the intervals Ii; i 2 ¹1; 2ºn.
Let En denote the union of the occupied intervals; then F.!/ D

T1
nD1En.

The difficulty in computing the dimension of F.!/ stems from the fact that, in
order to understand the probability law of the branching random walk below stage
n, it is not sufficient to know merely the number of occupied intervals at stage n,
but in fact, one needs to know the individual occupancy rates for each of the stage n
intervals. As a result, we are able to obtain the exact dimension only for a few special
cases.

2.2. F as a statistically self-similar set

We can also think of F as a statistically (or stochastically) self-similar set with ex-
treme overlaps. The general setup of statistically self-similar sets, introduced by Graf
in [10], is as follows: Let Sim denote the set of all similarities in R, with the topology
of uniform convergence, and let � be a Borel probability measure on SimM . Consider
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the space e� WD .SimM /	� , with the product measure �	� . For i 2 	� and Q! 2 e�,
put Si;j . Q!/ WD Q!.i/j , j D 1; 2; : : : ; M . When i D �, we write simply Sj instead of
S�;j . Under �	� , the randomM -tuples of maps .Si;1; : : : ; Si;M /, i 2 	�, are mutually
independent and all have distribution �. Now define the random mapping � Q! W 	!R

by
� Q!.i/ WD lim

n!1
Sij1. Q!/ ı � � � ı Sijn. Q!/.0/;

where ijk denotes the prefix i1 : : : ik of the word i D i1i2 : : : Finally, set K. Q!/ WD
� Q!.	/. The set K. Q!/ is statistically self-similar in the sense that

K. Q!/ D

M[
jD1

Sj .!/
�
Kj . Q!/

�
;

where K1; : : : ; KM are independent copies of K. Q!/ that are also independent of
.S1; : : : ; SM /. If we take � to be the product measure

� D

MO
iD1

.p1ıf1
C � � � C pN ıfN

/; (2.1)

then K. Q!/ has the same probability distribution as F.!/. Note that for any Q! 2 e�
and any two words i; j 2 	� of equal length, either Si. Q!/.0; 1/ \ Sj. Q!/.0; 1/ D ; or
Si. Q!/.0; 1/ D Sj. Q!/.0; 1/. Thus, F.!/ is a statistically self-similar set with “extreme
overlaps".

It was shown by Falconer [7] (see also [8, Chapter 3]) that for any deterministic
self-similar set, with or without overlaps, the Hausdorff and box-counting dimensions
coincide. More recently, Liu and Wu [16] proved that the same is true for statistically
self-similar sets, under a mild condition which is trivially satisfied by the measure �
in (2.1). Moreover, the dimension is almost surely constant. Therefore, we obtain the
following result:

Proposition 2.1. There is a constant a � 0 such that, �p-almost surely, dimH F D
dimBF D dimBF D a.

Note that for all !, we have F.!/ � C . On the other hand, F can always be
covered by at most M n intervals of length r�n for each n. Thus, we have the trivial
upper bound

dimBF.!/ � min
²
�

logN
log r

;�
logM
log r

³
: (2.2)

Our goal is to establish the following more precise dimension bounds:

Theorem 2.2. (a) Lower bound. We have, �p-almost surely,

dimH F � min
²
�

logM
log r

;
log.p21 C � � � C p

2
N /

log r

³
:
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(b) Upper bound. If
NY
iD1

p
�pi

i �M �

� NY
iD1

pi

��1=N
; (2.3)

then there is a unique � 2 Œ0; 1� satisfying

NX
iD1

p�i log.Mpi / D 0; (2.4)

and

dimBF � �
� logM C log

�PN
iD1 p

�
i

�
log r

; �p-almost surely: (2.5)

Remark 2.3. (a) The upper bound in (2.5) really is better than the trivial bound (2.2).
To see this, set

�.x/ WD x logM C log
� NX
iD1

pxi

�
; x 2 R;

and observe that �.0/ D logN , �.1/ D logM . The function

�0.x/ D logM C
P
pxi logpiP
pxi

has exactly one zero namely at x D �. Furthermore,

�0.0/ D logM C
1

N

X
logpi � 0

and
�0.1/ D logM C

X
pi logpi � 0;

where the last two inequalities follow from (2.3). Thus, �.�/ � min¹logM; logN º.
(b) Note that the inequalities in (2.3) are always satisfied when M D N , since

NX
iD1

pi logpi � � logN D log
�
1

N

NX
iD1

pi

�
�
1

N

NX
iD1

logpi ;

by concavity of the logarithm. But the range of values of M satisfying (2.3) can
be much larger. For instance, take N D 3 and p D .0:05; 0:2; 0:75/. Then a direct
computation yields that

QN
iD1 p

�pi

i � 1:9886 and
�QN

iD1 pi
��1=N

� 5:1087, so M
could be 2; 3; 4 or 5.
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Unfortunately, if M is outside the range (2.3), our method yields nothing better
than the trivial upper bound (2.2). However, sometimes that bound turns out to be the
exact dimension:

Corollary 2.4 (Large N , small M ). If

M � min
² NY
iD1

p
�pi

i ;
1

p21 C � � � C p
2
N

³
;

then, �p-almost surely,

dimH F D dimB F D �
logM
log r

:

For example, the conclusion of Corollary 2.4 holds when N D 3, M D 2 and
p D .0:2; 0:2; 0:6/.

We observe that the inequality M � .p21 C � � � C p
2
N /
�1 can be satisfied only if

either M < N , or M D N and pi D 1=N for each i , since it is easy to see thatPN
iD1 p

2
i � 1=N , with equality if and only if pi D 1=N for all i .

When N D 2, the equation (2.4) can be solved explicitly, and we get

Corollary 2.5. Take N D 2, and put p WD p1. If p.1 � p/ �M�2, then, �p-almost
surely,

dimBF �
� log � C .1 � �/ log.1 � �/

log r
;

where
� WD �.p/ WD

logMp
logp � log.1 � p/

:

(When M D 2 and p D 1=2, we set �.p/ WD 1=2.)

Observe that the condition p.1 � p/ � M�2 is always satisfied when M D 2.
We illustrate the upper and lower bounds for the case N D M D 2 in Figure 1. The
bounds are plotted as a function of p WD p1. Observe that the upper bound tends to
0 as p tends to 0 or 1; however, it is still quite large even for values of p very close
to 0 and 1. This stems from the fact that the upper bound is the composition of two
functions which both have vertical tangent lines at 0 and 1.

Corollary 2.6. When M � N and pi D 1=N for each i , we have

dimH F D dimB F D dimH C D �
logN
log r

�p-almost surely:

Remark 2.7. When N DM , the random subset F may also be viewed as an orthog-
onal projection of a statistically self-similar set in the plane satisfying the open set
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Figure 1. The upper and lower bounds of Theorem 2.2, with N DM D 2.

condition. We thank an anonymous referee for pointing this out. Define the maps

gi;j .x; y/ WD
�
fi .x/; fj .y/

�
; i; j 2 ¹1; 2; : : : ;M º:

These maps take the unit square onto M 2 non-overlapping subsquares of width r ,
arranged in M rows and M columns. Now consider the setup from Subsection 2.2,
but with maps on R2 instead of R. We take the probability measure � to be

� D
X

i1;:::;iM

pi1 : : : piM ı.gi1;1;gi2;2;:::;giM ;M /:

In essence, the measure � picks out precisely one square in each row. LetK. Q!/ be the
resulting statistically self-similar set. It follows from the results in [6, 10, 17] that K
has almost sure Hausdorff and box-counting dimension� logM= logr . The projection
of K onto the y-axis is the full Cantor set C , while its projection onto the x-axis
has the same probability distribution as our random subset F . Note that Marstrand’s
projection theorem implies that the projection of K in the “typical” direction (in the
sense of Lebesgue measure) has Hausdorff dimension � logM= log r D dimH C .
As a result, the horizontal direction in this context is “typical", whereas the vertical
direction is not, except when pi D 1=M for each i .

3. Proof of the lower bound

Recall that every basic interval at level n in the construction of the deterministic Can-
tor set C is given by Ii WD fi1 ı � � � ı fin.Œ0; 1�/ for some i 2 �n. We first define a
random probability measure on F.!/:
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For any i D .i1; : : : ; in/ 2 �n and j D .j1; : : : ; jn/ 2 	n, define the event

A.iI j/ WD
®
! 2 � W

�
Xj1

.!/;Xj1;j2
.!/; : : : ; Xj1;j2;:::;jn

.!/
�
D i

¯
: (3.1)

Then for i 2 �n, define

m!.Ii/ WD
1

M n

X
j2	n

1A.iIj/.!/: (3.2)

Intuitively,m!.Ii/ is the relative number of branches labeled i in the tree at time n
by the realization !. It follows again from standard theorems thatm! uniquely defines
a measure on F.!/. We use this random measure along with the potential-theoretic
method [9, Theorem 4.13] to prove the lower bound in Theorem 2.2.

Proof of Theorem 2.2, lower bound. Fix

t < s.p/ WD min
²
�

logM
log r

;
log.p21 C � � � C p

2
N /

log r

³
: (3.3)

We derive an estimate for the t -energy of m! , that is,

ˆt .m!/ WD

“
Œ0;1��Œ0;1�

jx � yj�tdm!.x/dm!.y/:

If x and y are two different points in F.!/, then there is a smallest basic interval
(say x ^ y) to which they both belong. If x ^ y D Ii with jij D n, we define k.x; y/
to be the smallest integer k such that x and y are separated by at least one full basic
interval of level nC k. Note that if k.x; y/ D k, then

jx � yj � rnCk;

since each basic interval of level nC k has length rnCk . Without loss of generality,
we may assume that x < y. If kD 1, then there are indices inC1 and i 0nC1 2 ¹1; : : : ;N º
such that i 0nC1 � inC1 � 2 and x 2 Ii;inC1

, y 2 Ii;i 0
nC1

. If k � 2, there are two possi-
bilities:

(i) x 2 Ii;inC1;Nk�2;inCk
and y 2 Ii;inC1C1;1k�2 , where inC1 2 ¹1; : : : ;N � 1º

and inCk 2 ¹1; : : : ; N � 1º;

(ii) x 2 Ii;inC1;Nk�2 and y 2 Ii;inC1C1;1k�2;i 0
nCk

, where inC1 2 ¹1; : : : ;N � 1º
and i 0

nCk
2 ¹2; : : : ; N º.

Note that these two cases have some overlap; ignoring these overlaps leads at most to
an overestimate of the energy.
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We begin estimating the contribution of i to the t -energy of m! , ˆi
t .m!/, by

ˆi
t .m!/ WD

“
¹.x;y/Wx^yDIiº

jx � yj�tdm!.x/dm!.y/ (3.4)

D

1X
kD1

“
x^yDIi;
k.x;y/Dk

jx � yj�tdm!.x/dm!.y/

� 2

1X
kD2

r�.nCk/t
� N�1X
inC1D1

N�1X
inCkD1

m!.Ii;inC1;Nk�2;inCk
/m!.Ii;inC1C1;1k�2/

(3.5)

C

N�1X
inC1D1

NX
i 0
nCk
D2

m!.Ii;inC1;Nk�2/m!.Ii;inC1C1;1k�2;i 0
nCk

/

�
(3.6)

C 2r�.nC1/t
N�2X
inC1D1

NX
i 0
nC1
DinC1C2

m!.Ii;inC1
/m!.Ii;i 0

nC1
/: (3.7)

We first estimate the expectation of the summands in (3.5). By the definition of m! ,
we have

m!.Ii;inC1;Nk�2;inCk
/ D

1

M nCk

X
j2	nCk

1A.i;inC1;Nk�2;inCk Ij/.!/;

m!.Ii;inC1C1;1k�2 D
1

M nCk

X
j02	nCk�1

1A.i;inC1C1;1k�2Ij0/.!/:

Thus, letting Ep denote the expectation operator associated with �p,

Ep
�
m!.Ii;inC1;Nk�2;inCk

/m!.Ii;inC1C1;1k�2/
�

D
1

M 2nC2k�1

X
j2	nCk

X
j02	nCk�1

�p
�
A.i; inC1; N k�2; inCkI j/

\ A.i; inC1 C 1; 1k�2I j0/
�

�
1

M 2nC2k�1
M kpinC1

pk�2N pinCk
M k�1pinC1C1p

k�2
1

X
j;j02	n

�p
�
A.iI j/ \ A.iI j0/

�
�M�2n.p1pN /

k�2Sp.i/;

where
Sp.i/ WD

X
j;j02	n

�p
�
A.iI j/ \ A.iI j0/

�
:
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Similarly, for the summands in (3.6),

Ep
�
m!.Ii;inC1;Nk�2/m!.Ii;inC1C1;1k�2;i 0

nCk
/
�
�M�2n.p1pN /

k�2Sp.i/;

and for the summands in (3.7),

Ep
�
m!.Ii;inC1

/m!.Ii;i 0
nC1

/
�
�M�2nSp.i/:

Combining these estimates and noting that the double sums in (3.5)–(3.7) have at most
N 2 terms, we obtain

Ep
�
ˆi
t .m!/

�
� 4N 2

1X
kD2

r�.nCk/t �M�2n.p1pN /
k�2Sp.i/C 2N 2r�.nC1/tM�2nSp.i/

� 4N 2M�2nSp.i/
�
r�.nC2/t

1X
kD2

.r�tp1pN /
k�2
C r�.nC1/t

�
D K.r tM 2/�nSp.i/ (3.8)

for a certain constant K that depends on r and t , but not on i. Note that the last
summation in (3.8) converges because (3.3) implies

r�tp1pN <
p1pN

p21 C � � � C p
2
N

�
p1pN

p21 C p
2
N

�
1

2
< 1:

To estimate the double sum Sp.i/, we introduce the sets

Wn.q/ WD
®
.j;k/ 2 	n � 	n W jj ^ kj D q

¯
; q D 0; 1; : : : ; n;

where j ^ k is the longest common prefix of j and k. Observe that for any k � 1,
we have #Wk.0/ D .M � 1/M 2k�1. Furthermore, we have the recursive relation
#Wn.q/ DM q � #Wn�q.0/ for q < n. Thus,

#Wn.q/ DM q.M � 1/M 2n�2q�1
D .M � 1/M 2n�q�1; q D 0; 1; : : : ; n � 1:

For q D n, we have #Wn.n/ DM n. In all cases, then, #Wn.q/ �M 2n�q .
Before continuing with our previous calculation, we define

cl.i/ WD #¹k � n W ik D lº; i 2 	n; n 2 N; l D 1; : : : ; N: (3.9)

We also write, for i 2 	n,
ijq WD .iqC1; : : : ; in/;
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to be the suffix of i after the qth digit (as opposed to the prefix ijq up to q). Notice that
cl.ijq/C cl.ijq/ D cl.i/. Now, we have

Sp.i/ D
nX
qD0

X
.j;k/2Wn.q/

�p
�
A.iI j/ \ A.iIk/

�
: (3.10)

Since the labels .Xj1
; : : : ; Xj1;:::;jn

/ and .Xk1
; : : : ; Xk1;:::;kn

/ of each pair of
branches .j;k/ in Wn.q/ agree up to index q, and are independent after q, we have

�p
�
A.iI j/ \ A.iIk/

�
D

NY
lD1

p
cl .ijq/
l

�

NY
lD1

p
2cl .ijq/
l

;

for all .j;k/ 2 Wn.q/. Since there are at most M 2n�q pairs of words in Wn.q/, (3.10)
gives

Sp.i/ �
nX
qD0

M 2n�q

NY
lD1

p
cl .ijq/
l

�

NY
lD1

p
2cl .ijq/
l

:

Writing i0 WD ijq and i00 WD ijq , and noting that summing over all i 2 �n is the same
as summing independently over i0 2 �q and i00 2 �n�q , we obtain the estimateX

i2�n

Sp.i/ �
nX
qD0

M 2n�q
X

i02�q

NY
lD1

p
cl .i0/
l
�

X
i002�n�q

NY
lD1

p
2cl .i00/
l

:

Now observe thatX
i02�q

NY
lD1

p
cl .i0/
l
D

X
.i1;:::;iq/2�q

pi1 : : : piq D .p1 C � � � C pN /
q
D 1

and similarly, X
i002�n�q

NY
lD1

p
2cl .i00/
l

D .p21 C � � � C p
2
N /

n�q:

Hence,X
i2�n

Sp.i/ �
nX
qD0

M 2n�q.p21 C � � � C p
2
N /

n�q
DM n

nX
jD0

�
M.p21 C � � � C p

2
N /
�j
:

Combining this with (3.4) and (3.8) yields

Ep
�
ˆt .m!/

�
D

1X
nD0

X
i2�n

Ep
�
ˆi
t .m!/

�
�

1X
nD0

K.r tM 2/�n
X
i2�n

Sp.i/

�

1X
nD0

K.r tM/�n
nX

jD0

�
M.p21 C � � � C p

2
N /
�j
:



P. Allaart and T. Jones 80

We must consider two cases:

Case 1. M.p21 C � � � C p
2
N / � 1. Then

Ep
�
ˆt .m!/

�
�

1X
nD0

K.nC 1/.r tM/�n
�
M.p21 C � � � C p

2
N /
�n

D

1X
nD0

K.nC 1/
�
r�t .p21 C � � � C p

2
N /
�n
<1;

because (3.3) implies r�t < .p21 C � � � C p
2
N /
�1.

Case 2. M.p21 C � � � C p
2
N / < 1. Then

Pn
jD0ŒM.p

2
1 C � � � C p

2
N /�

j is bounded by
some constant QK, and we get simply

Ep
�
ˆt .m!/

�
� K QK

1X
nD0

.r�tM�1/n <1;

since (3.3) implies r�t < M .
Therefore, for any t < s.p/ we have that EpŒˆt .m!/� < 1, which means that

ˆt .m!/ <1 for �p-almost every ! 2 �. Hence, dimH F.!/ � s.p/ almost surely.

4. Proof of the upper bound

Proof of Theorem 2.2, upper bound. Assume the inequalities (2.3) hold. Uniqueness
of the zero � of (2.4) follows from a version of Descartes’ rule of signs: Arrange the
pi ’s so that p1 � p2 � � � � � pN , and make the substitution u WD p�1 . ThenX

p�i log.Mpi / D
X

uˇi log.Mpi / DW g.u/;

where ˇi WD logpi= logp1. Note that the exponents ˇi decrease in i whereas the coef-
ficients log.Mpi / increase in i , so there is at most one sign change in the coefficients.
Descartes’ rule of signs does not require the exponents to be integers, so there is at
most one positive solution to g.u/ D 0.

For a word i D .i1; : : : ; in/ 2 �n, let ai be the probability under �p that at least
one path of length n starting at the root of the M -ary tree has label sequence i. That
is,

ai WD �p

�[
j2	n

A.iI j/
�
: (4.1)
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Since the probability of A.iI j/ is the same for each path j, we have

ai �M
n

NY
lD1

p
cl .i/
l

; (4.2)

where cl.i/ was defined in (3.9). Trivially, we also have ai � 1. Let Zn.!/ denote the
number of basic intervals at level n in the construction of C that intersect the limit set
F.!/. Then

Ep.Zn/ D
X
i2�n

ai: (4.3)

Our goal is to bound the growth rate of Ep.Zn/. Note that

Ep.Zn/ �
X

k1C���CkNDn

 
n

k1; : : : ; kN

!
min

²
1;M n

NY
iD1

p
ki

i

³
; (4.4)

by grouping together all label words of length n that have the same digit frequencies.
This is a rough estimate because it does not take into account the overlaps among the
events A.iI j/, j 2 	n. But understanding these overlaps appears to be a daunting task
that we have not pursued further. We can, however, determine the exact exponential
growth rate of the right-hand side of (4.4).

Since the number of summands in (4.4) is no greater than nN�1 (a polynomial in
n), it suffices to find the largest summand and determine its growth rate in n. To begin,
write ki D ˛in for i D 1; : : : ; N . Then, we need to solve the optimization problem

max

´ 
n

˛1n; : : : ; ˛Nn

!
min

²
1;

�
M

NY
iD1

p
˛i

i

�n³
W ˛i 2 Œ0; 1�8i;

X
i

˛i D 1

µ
; (4.5)

where, if ˛in is not an integer, we define .˛in/Š to be �.˛inC 1/, with � denoting
the gamma function. Now observe that

M

NY
iD1

p
˛i

i D 1 ”

NX
iD1

˛i logpi D � logM;

and this last equation determines a hyperplane in RN . This hyperplane intersects the
simplex

� WD

²
.˛1; : : : ; ˛N / 2 Œ0; 1�

N
W

NX
iD1

˛i D 1

³
;

and in fact, by (2.3), the point p D .p1; : : : ; pN / lies on the side of the hyperplane
whereM

QN
iD1 p

˛i

i � 1, and the point .1=N; : : : ; 1=N / lies on the opposite side. The
functions

 1.˛1; : : : ; ˛N / WD

 
n

˛1n; : : : ; ˛Nn

!



P. Allaart and T. Jones 82

and

 2.˛1; : : : ; ˛N / WD

 
n

˛1n; : : : ; ˛Nn

!
NY
iD1

p
˛i

i

are both unimodal on �;  1 is maximized at .˛1; : : : ; ˛N / D .1=N; : : : ; 1=N /;
and  2 is maximized when .˛1n; : : : ; ˛Nn/ is near the mode of the multinomial
.nIp1; : : : ;pN / distribution, i.e., when .˛1; : : : ;˛N /� .p1; : : : ;pN /. The error in this
approximation goes to zero as n!1. Since the global maximum of both  1 and  2
lies on the “wrong” side of the hyperplane

PN
iD1 ˛i logpi D� logM , the constrained

maximum in (4.5) must be attained on this hyperplane. By Stirling’s approximation, 
n

˛1n; : : : ; ˛Nn

!
D Qn.˛1; : : : ; ˛n/

�
˛
˛1

1 : : : ˛
˛N

N

��n
;

where Qn is a function such that both Qn and 1=Qn grow at most at a polynomial
rate in n. Hence, to determine the exponential growth rate of the maximum in (4.5),
we must solve the constrained optimization

max
²
�

NX
iD1

˛i log˛i W .˛1; : : : ; ˛N / 2 �;
NX
iD1

˛i logpi D � logM
³
:

This is a straightforward Lagrange multiplier problem; we find that the maximum is
attained when

˛i D
p�iP
j p

�
j

; i D 1; : : : ; N;

where � satisfies the equationP
p�i logpiP
p�i

D � logM;

i.e.,
P
p�i log.Mpi / D 0. A further calculation then yields that

�

X
˛i log˛i D � logM C log

�X
p�i

�
:

Denote this last expression by �. Then, we find that, for given " > 0 and sufficiently
large n, Ep.Zn/ � .�C "/

n. So

�p
�
Zn > .�C 2"/

n
�
�

Ep.Zn/

.�C 2"/n
�
.�C "/n

.�C 2"/n
:

Hence, the series
P1
nD1 �p.Zn > .� C 2"/n/ converges, so by the Borel–Cantelli

lemma, Zn � .�C 2"/n for all sufficiently large n with probability one. Therefore,

dimBF.!/ � �
log.�C 2"/

log r
for �p-almost every !;
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and letting "! 0 along a discrete sequence gives

dimBF.!/ � �
log �
log r

for �p-almost every !;

as was to be shown.

Remark 4.1. We briefly comment here on the difficulty of improving the upper
bound. Consider the simplest case,N DM D 2, and set p1 D p and p2 D 1� p. We
can then write down a pair of quadratic recursions for the probabilities ai: For n � 2,

a1;i2;:::;in D 2p.1 � p/ai2;:::;in C p
2.2ai2;:::;in � a

2
i2;:::;in

/

D 2pai2;:::;in � p
2a2i2;:::;in ;

(4.6)

and
a2;i2;:::;in D 2p.1 � p/ai2;:::;in C .1 � p/

2.2ai2;:::;in � a
2
i2;:::;in

/

D 2.1 � p/ai2;:::;in � .1 � p/
2a2i2;:::;in :

(4.7)

For instance, (4.6) can be understood by looking at the three cases in Figure 2.

at least one branch
of length n�1

labeled i2; : : : ; in here

1 2 2

at least one branch
of length n�1

labeled i2; : : : ; in here

1

either at least one
branch labeled

i2; : : : ; in here or...

1

...at least one
branch labeled
i2; : : : ; in here

1

Figure 2. Three possibilities if a branch labeled .1; i2; : : : ; in/ is in the tree at time n.

Ignoring the quadratic terms in the recursions would simply lead us back to (4.2).
But a full understanding of their effects, averaged out over all paths i, would entail a
delicate analysis of the joint dynamics of the two quadratic maps x 7! px.2 � px/

and x 7! .1 � p/x.2 � .1 � p/x/, which appears to be extremely complicated. (For
one thing, better bounds on ai would depend not only on the number of 1’s and 2’s in
i, but also on the order in which the digits appear.)

Remark 4.2. While we assumed in Theorem 2.2 that the maps f1; : : : ; fN are orien-
tation preserving, the same result holds when one or more maps are instead made
orientation-reversing. We briefly indicate here how the proof of the lower bound
would need to be modified. For ease of presentation, consider again the case N D
M D 2 and suppose f1.x/D �rx C b1 and f2.x/D rx C b2, where we still assume
that f1.Œ0; 1�/ lies to the left of f2.Œ0; 1�/. In this case, (i) and (ii) at the beginning of
the proof of the lower bound in Theorem 2.2 become, for k � 3:

(i) x 2 Ii;1;1;2k�3;1 and y 2 Ii;2;1;2k�3 ;
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(ii) x 2 Ii;1;1;2k�3 and y 2 Ii;2;1;2k�3;1.

For k D 2, we have x 2 Ii;1;2 and y 2 Ii;2, or x 2 Ii;1 and y 2 Ii;2;2. Put p WD p1.
The constant K from (3.8) is now replaced with the sum

1X
kD3

r�ktp4.1 � p/2.k�3/C1

(plus an unimportant term for k D 2), which converges for

t < s.p/ WD
log

�
p2 C .1 � p/2

�
log r

;

because the latter implies

r�t .1 � p/2 <
.1 � p/2

p2 C .1 � p/2
< 1:

Other combinations of orientations can be dealt with similarly. Clearly, the orienta-
tions of the maps have no bearing on the proof of the upper bound.

5. Hausdorff measure in the symmetric case

Throughout this section, we assume that we are in the symmetric case where all of the
maps f1; : : : ; fN are chosen with the same probability; that is, p D .1=N; : : : ; 1=N /.

Corollary 2.6 states that if M � N , then the Hausdorff and box-counting dimen-
sions of F are almost surely equal to � logN= log r , the dimension of C . In this
section, we consider the Hausdorff measure of F in the critical dimension. By using
more information about the overlaps between the sets A.iI j/ for j 2 	n, we can say
something slightly stronger and show the following:

Proposition 5.1. AssumeM DN and pD .1=N; : : : ; 1=N /. Then H s.F /D 0 almost
surely with respect to �p, where s D � logN= log r .

(By this, we mean that there is a set of !’s of full measure under �p for which
H s.F.!//D 0; note that it is not obvious a priori that the function ! 7!H s.F.!// is
measurable. We therefore bound it by a function whose measurability is not in doubt
and which takes the value 0 for �p-almost all !.)

As a consequence of Proposition 5.1, we point out that when M D N and r D
1=N , our construction generates a random subset of the interval which has Lebesgue
measure zero but full Hausdorff dimension one almost surely.

Recall the definition of ai from (4.1). We also continue to use Zn for the number
of basic intervals at level n in the construction of C needed to cover F . We first prove
the following dichotomy.
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Lemma 5.2. The following statements hold.

(i) If M � N , then Ep.Zn/=N
n ! 0.

(ii) If M > N , then Ep.Zn/=N
n !  , for some number  2 .0; 1/.

Proof. By symmetry, ai is the same for all i 2 �n, so we just consider the label
sequence iD 1n. Set �n WD a1n . Then, by reasoning similar to that in Remark 4.1, �n
satisfies the recursion

�n D

MX
kD0

 
M

k

!�
1

N

�k�
1 �

1

N

�M�k�
1 � .1 � �n�1/

k
�

D 1 �

�
1 �

�n�1

N

�M
:

Clearly, �n is decreasing in n, so its limit as n!1 exists. Denote this limit by  ;
then  is a root of the equation

x D 1 �

�
1 �

x

N

�M
DW h.x/:

Observe that

h0.x/ D
M

N

�
1 �

x

N

�M�1
; h00.x/ D �

M.M � 1/

N 2

�
1 �

x

N

�M�2
:

This shows that h is strictly concave on Œ0; 1�, and if M � N , then h0 � 1 on Œ0; 1�.
Since furthermore, h.0/ D 0, it follows that whenM � N , h has a unique fixed point
x D 0, and hence �n ! 0 as n!1. Part (i) of the lemma now follows since

Ep.Zn/ D
X
i2�n

ai D N
na1n D N n�n: (5.1)

On the other hand, if M > N , then h0.0/ D M=N > 1 whereas h.1/ < 1, so h
has an additional fixed point  2 .0; 1/. In this case, the fixed point x D 0 is repelling,
while the fixed point  is attracting. Thus, �n !  as n!1, and part (ii) of the
lemma follows by (5.1).

We also need the following standard result from probability, of which we omit the
proof.

Lemma 5.3. Let ¹Xnºn2N be a sequence of random variables defined on a proba-
bility space .�;F ; P /. Suppose E.Xn/! 0 as n!1, and for all n 2 N and all
! 2 � we have 0 � XnC1.!/ � Xn.!/. Then Xn ! 0 almost surely.
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Proof of Proposition 5.1. Given ı > 0, choose n0 so large that rn0 < ı. Then, since
F.!/ may be covered by Zn.!/ intervals of length rn, we have for all n � n0 and all
! 2 �

H s
ı

�
F.!/

�
� rsnZn.!/ D N

�nZn.!/:

(Recall s D � logN= log r). Note that ZnC1.!/ � NZn.!/ for all !. Therefore,
N�nZn is decreasing, and the limit in the following inequality exists for all !:

H s
ı

�
F.!/

�
� lim
n!1

N�nZn.!/ DW Y.!/:

As this holds for all ı > 0, we have H s.F.!// � Y.!/ for all ! 2 �. Furthermore,

Ep.N
�nZn/ D �n ! 0 as n!1

by Lemma 5.2 (i). This implies �p.Y D 0/ D 1 by applying Lemma 5.3 with Xn D
N�nZn, P D �p and .�;F /, completing the proof.

Remark 5.4. By a very similar argument, we can show also that H s0.F / D 0 almost
surely when M < N , where s0 D � logM= log r . Thus, at least in the symmetric
case of Corollary 2.4, we also have that the Hausdorff measure of F in the critical
dimension is zero. Unfortunately, we do not know how to prove this, or whether it is
in fact true, in the non-symmetric case.

While we did not use Lemma 5.2 (ii) in the above proof, it does serve to inform
the following conjecture:

Conjecture 5.5. WhenM > N and p D .1=N; : : : ; 1=N /, H s.F / > 0 almost surely
with respect to �p, where s D � logN= log r .

Remark 5.6. When N D 2 and M � 4, something stronger than Conjecture 5.5 is
true: With �p-probability 1, F contains a similar copy of the full Cantor set C (or
contains an interval in case r D 1=2), and F is even equal to all of C with positive
probability. As pointed out in [2], this is a consequence of [3, Corollary 6.2]. The
argument there is easily extended to obtain the same conclusion for arbitrary N � 2
and M � 2N . This still leaves a gap in our knowledge: What happens when N <

M < 2N ?

Remark 5.7. In view of Proposition 5.1, it is natural to ask whether in the caseM D
N there exists a gauge function ' (that is, a strictly increasing continuous function
' W Œ0;1/! Œ0;1/ with '.0/ D 0) such that

0 < H'
�
F.!/

�
<1 for �p� almost every !; (5.2)
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where for a set E,

H'.E/ WD lim
ı&0

inf
²X

i

'.jUi j/ W ¹Uiº is a ı-cover of E
³
:

For instance, for N DM D 2, we can show that

1

1C n
� �n �

4

4C n
8n � 0:

We expect that similar inequalities hold in general when N DM . These inequalities,
together with Ep.Zn/ D N

n�n suggest that a good candidate is the function '.x/ D
xs log.1=x/, where s D � logN= log r . Unfortunately, we have been unable to prove
either inequality in (5.2) for this '.

6. Deterministic case

In this section, we consider a simple deterministic scheme for labeling the tree, and
compute the Hausdorff dimension of the resulting subsets of C . For the sake of sim-
plicity, we take N D M D 2 and denote the maps of the IFS by f0 and f1. For any
integer m � 2 let gm W 	� ! ¹0; 1º be defined by

gm.i/ D

´
1 if �.i/ � 0 .mod m/;

0 otherwise.

Then define the subset Fm � C by

Fm WD
®
x D lim

n!1
fgm.ij1/ ı fgm.ij2/ � � � ı fgm.ijn/.Œ0; 1�/ W i 2 	

¯
:

Essentially, Fm is generated by the binary tree for which every mth edge is labeled 1
while all others are labeled 0, see Figure 3. In the notation of the previous sections,
Fm D F.!/ where ! D .0m�11/1.

Observe that F2 D C , since g2 is precisely the usual labeling of the full binary
tree. By contrast, for m � 3, Fm has an interesting connection to golden mean-like
shifts of finite type.

ForL2N, letXL� ¹0;1ºN be the one-sided subshift of finite type with forbidden
words list

FL WD
®
10k1 W 0 � k � L � 1

¯
:

Thus, a sequence i 2 ¹0; 1ºN lies in XL if and only if any two consecutive 1’s in i
are separated by a string of at least L consecutive 0’s. It is well known that XL has
entropy log �L, where �L 2 .1; 2/ is the positive real root of 1 C xL D xLC1 (see
[15, Exercise 4.3.7]). In particular, �1 D .1C

p
5/=2 is the golden ratio.



P. Allaart and T. Jones 88

0 0

1

1 0

0

0

0 1

0

0 0

1

0

Figure 3. An example tree with m D 3 (left) and the third level approximation of F3 (right).

Proposition 6.1. For an integer m � 3, let L be the integer such that

m 2 ¹2LC1 � 1; 2LC1; : : : ; 2LC2 � 2º:

Then

��1ŒFm� D
®
j D .j1; j2; : : : / 2 XL W j1 D j2 D � � � D jL D 0

¯
; (6.1)

where � is the natural projection of the symbolic space onto the Cantor set C , i.e.,

�.j/ WD lim
n!1

fj1
ı � � � ı fjn

.0/ for j D .j1; j2; : : : / 2 ¹0; 1ºN :

Consequently,

dimH Fm D
log �L
� log r

: (6.2)

(Recall that r is the common contraction ratio of the maps f0 and f1.)

Proof. First, construct a directed graphG whose vertices are labeled 0;1; : : : ;m� 1 to
represent the residual classes modm. Then draw an edge from each vertex j to 2j C 1
mod m and 2j C 2 mod m (see Figure 4 for the casemD 6). Notice in particular that

2.m � 1/C 1 � m � 1 .mod m/ and 2.m � 1/C 2 � 0 .mod m/:

Thus, vertex m � 1 admits a self loop, as well as an edge connected to vertex 0.
Furthermore, for any k � LC 1 and 2k � 1 � j � min¹2kC1 � 2;m � 1º, there is a
walk of length k from vertex 0 to vertex j . This becomes clear when drawing G as a
tree rooted at 0 and omitting incoming edges, as shown in Figure 5.

Now, by construction, every word in ��1ŒFm� can be represented as an infinite
walk in G beginning at either vertex 1 or 2. That is, any step passing through vertices
1; : : : ; m � 1 records a 0, while a step through vertex 0 records a 1.
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0

1

2

3

4

5

Figure 4. The directed graph G, shown for m D 6. Each vertex j has outgoing edges to 2j C 1
mod m and 2j C 2 mod m. Vertex m � 1 always has a self-loop and an outgoing edge to 0.

Since 2LC1 � 1 � m � 2LC2 � 2, we have a minimum of LC 1 steps to walk
from vertex 0 back to itself in G. Thus, no word in FL can appear as a sub-word of
any word in ��1ŒFm�. Consequently, ��1ŒFm� � XL.

To show the other inclusion, we need to show that for every integer l � LC 1,
there exists a walk in G from vertex 0 back to itself of length l (without passing
through 0 along the way). This is clear for l D L C 1, so assume l > L C 1. If
m D 2LC1 � 1, we take the L-step walk

0! 2! 6! � � � ! 2LC1 � 2 D m � 1;

then repeat the self loop at vertex m � 1 for l � L � 1 times, and finally we take
m � 1 ! 0 for the last step. On the other hand, if m � 2LC1, then as previously
discussed, we may reach vertexm� 1 inLC 1 steps, repeat the self loop for l �L� 2
times, then takem� 1! 0 as the last step. Therefore, every sequence inXL beginning
with 0L lies in ��1ŒFm�.

This gives (6.1). Finally, since the IFS ¹f0; f1º satisfies the open set condition, it
follows from standard arguments that the Hausdorff dimension of Fm is given by the
entropy of XL over log r�1 (see [19, Lemma 16.4.2] for example), yielding (6.2).

It may be of interest to compare the value dimH Fm D � log �L= log r with the
bounds from Theorem 2.2 and Corollary 2.5 for the random case with N D M D 2
and p D 1=m.
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3 4 5 6

::: ::: :::

Figure 5. Each vertex j for 2k � 1 � j � 2kC1 � 2 may be reached in exactly k steps.

m p lower bound dimH Fm upper bound
2 1=2 .631 .631 .631
3 1=3 .535 :438� .618
4 1=4 .428 .438 .599
6 1=6 .296 .438 .569
7 1=7 .256 .348 .557

14 1=14 .130 .348 .503
15 1=15 .121 .293 .498
30 1=30 .061 .256 .450

Table 1. Comparison of dimH Fm with the upper and lower bounds from Theorem 2.2 and
Corollary 2.5 with pD 1=m and r D 1=3, for select values ofm. Note that dimH Fm is constant
on each interval 2LC1 � 1�m� 2LC2 � 2, forL� 1. It appears that only the value formD 3
is outside the bounds.

We have made such a comparison in Table 1. Although there is no reason why the
dimension of Fm should lie between the bounds of Theorem 2.2 (since Fm is but one
of uncountably many realizations of the random subset F.!/), this does appear to be
the case for all m � 4.
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