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Strongly nonfinitely based monoids

Sergey V. Gusev, Olga B. Sapir, and Mikhail V. Volkov

Abstract. We show that the 42-element monoid of all partial order preserving and extensive
injections on the 4-element chain is not contained in any variety generated by a finitely based
finite semigroup.

1. General background: Identities and the Finite Basis Problem

The idea of an identity or a law is very basic and is arguably one of the very first
abstract ideas that students come across when they start learning mathematics. We
mean laws like the commutative law of addition:

A sum isn’t changed at rearrangement of its addends.

At the end of high school, a student is aware (or, at least, is supposed to be aware) of
a good dozen of laws:

• the commutative and associative laws of addition,

• the commutative and associative laws of multiplication,

• the distributive law of multiplication over addition,

• the difference of two squares identity,

• the Pythagorean trigonometric identity,

etc, etc. Moreover, the student may feel (though probably cannot explain) the differ-
ence between ‘primary’ identities such as

ab D ba (1)

and
.ab/c D a.bc/ (2)
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and ‘secondary’ ones such as, for instance,

.ab/2 D a2b2: (3)

‘Primary’ laws such as (1) or (2) are intrinsic properties of objects (say, numbers) we
multiply and of the way the multiplication is defined, whereas ‘secondary’ identities
can be formally inferred from ‘primary’ ones, without knowing which objects are
multiplied and how the multiplication is defined. Here is a simple example of such a
formal inference:

.ab/2 D .ab/.ab/ by the definition of squaring

D a.ba/b by the law (2)

D a.ab/b by the law (1)

D .aa/.bb/ by the law (2)

D a2b2 by the definition of squaring:

Thus, (3) is a formal corollary of (2) and (1) and holds whenever and wherever the two
laws hold. That is why, when extending the set of natural numbers (positive integers)
to the set of integers, and then to the set of rationals, and then to the set of reals, and
then to the set of complex numbers, we have to take care of preserving (2) and (1) in
the sense that it has to be proved that the laws persist under each of these extensions.
In contrast, there is no need to bother with ‘secondary’ identities like (3) as their
formal proofs carry over.

A big part of algebra in fact deals with inferring some useful ‘secondary identities’
from some ‘primary’ laws. Identities to be inferred may be quite complicated, and the
inference itself may be highly nontrivial. Think, for instance, of the product rule for a
determinant:

detAB D detA detB: (4)

It looks quite innocent due to convenient notation, but the reader certainly realizes that
in fact (4) constitutes a powerful identity whose explicit form is rather bulky already
for matrices of a modest size. Indeed, if, say, A D

�
a b
c d

�
and B D

�
x y
z t

�
, then (4)

amounts to the identity

.ax C bz/.cy C dt/ � .ay C bd/.cx C dz/ D .ad � bc/.xt � yz/;

and even imagining the explicit form of (4) for 3� 3-matrices is painful, to say nothing
of actually writing it down.

However, one can observe that usually only a few ‘primary’ laws are invoked in
the course of the inference even if it is cumbersome. For instance, to deduce the iden-
tity (4), one needs only the very basic laws, namely, the commutative and associative
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laws of addition and multiplication, the distributive law of multiplication over addi-
tion, and the existence of subtraction (that is expressed by the law a D .a � b/C b).
This observation leads to the idea of composing a complete list of ‘primary’ laws that
would allow one to infer every possible identity. Such a list is called an identity basis.
It should be mentioned that even though this usage of the word ‘basis’ is quite com-
mon, its meaning here differs from the standard meaning of this term in linear algebra
since no independence assumptions are made: the only requirement for a collection
of identities † to form an identity basis is that every identity should be deducible
from †!

Of course, in order to speak about an identity basis, one has to specify which iden-
tities are under consideration. In this paper, we deal with the simplest nontrivial case
of a single binary operation. The attribute ‘binary’ means that the operation involves
two operands, like addition and multiplication of numbers do. Thus, a binary opera-
tion on a nonempty set S is merely a map S � S ! S .

The principal question on which studies of identity bases are focused is known as
the Finite Basis Problem (FBP, for short). For the purpose of this paper, the FBP may
be formulated as follows.

The Finite Basis Problem. Given a structure .S; �/ where � is a binary operation on
a set S , determine whether or not the identities of .S; �/ have a finite basis.

The FBP is natural by itself, but it has also revealed a number of interesting and
unexpected relations to many issues of theoretical and practical importance ranging
from feasible algorithms for membership in certain classes of formal languages to
classical number-theoretic conjectures such as the Twin Prime, Goldbach, existence
of odd perfect numbers and the infinitude of even perfect numbers—it has been shown
by Peter Perkins [15] that each of these conjectures is equivalent to the FBP for a
structure of the form .S; �/.

We say that a structure .S; �/ is finitely based if the answer to the FBP for .S; �/ is
positive, that is, if the identities of .S; �/ have a finite basis. Otherwise, .S; �/ is called
nonfinitely based.

Even a finite structure of the form .S; �/ can be nonfinitely based. The smallest
example is a 3-element structure known as Murskiı̌’s groupoid [12]. However, argu-
ably, the most striking example (known as the 6-element Brandt monoid B12 ) is formed
by the following six 2 � 2-matrices: 

1 0

0 1

!
;

 
1 0

0 0

!
;

 
0 1

0 0

!
;

 
0 0

1 0

!
;

 
0 0

0 1

!
;

 
0 0

0 0

!
; (5)

the operation being the usual matrix multiplication. The example is due to Perkins [14].
Thus, here we see a very transparent, very natural, and very finite structure whose
identities cannot be axiomatized by finite means.
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In the 1960s, Alfred Tarski [21] suggested to study the FBP for finite structures
as a decision problem. Indeed, since any finite structure is an object that can be given
in a constructive way, one can ask for an algorithm which when presented with an
effective description of the structure, would determine whether or not it is finitely
based.

Tarski’s Finite Basis Problem. Is there an algorithm that when given an effective
description of a finite structure decides whether it is finitely based or not?

This fundamental question was answered in the negative by Ralph McKenzie [11]
who showed that no algorithm can decide the FBP for finite structures of the form
.S; �/. Thus, no mechanical procedure for answering to the FBP exists in general, and
one should be more clever than a computer to get an answer!

2. The Finite Basis Problem for semigroups and our contribution

In this paper, we deal with the FBP for semigroups, that is, structures of the form .S; �/

satisfying the associative law (2). Perkins’s example cited in Section 1 revealed that
finite semigroups can be nonfinitely based. Moreover, it turns out that semigroups
are the only ‘classical’ algebras for which finite nonfinitely based objects can exist:
finite groups [13], finite associative and Lie rings [3, 8, 9], finite lattices [10] are all
finitely based. Therefore studying finite semigroups from the viewpoint of the FBP
has become a hot area in which many neat results have been achieved and several
powerful methods have been developed, see the survey [22] for an overview. The
present paper develops a novel approach to the Finite Basis Problem for finite semig-
roups initiated in [19] and solves one of the problems posed in [22]. As an application,
we answer a question left open in [23].

In order to describe our contribution in precise way, we proceed with introducing
a few notions and setting up our notation. The basic concepts we need come from
equational logic; see, e.g., [4, Chapter II]. For the reader’s convenience, we present
them here in a form adapted to the use in this paper, that is, specialized to semigroups.
When doing so, we closely follow [19, Section 1].

A (semigroup) word is a finite sequence of symbols, called variables. Sometimes
we employ the empty word, that is, the empty sequence. Whenever words under con-
sideration are allowed to be empty, we always say it explicitly.

We denote words by lowercase boldface letters. If wD x1 � � �xk , where x1; : : : ; xk
are variables, possibly with repeats, then the set ¹x1; : : : ; xkº is denoted by alph.w/.
If w is empty, then alph.w/ D ¿.

Words are multiplied by concatenation, that is, for any words w, w0, the sequence
ww0 is obtained by appending the sequence w0 to the sequence w.
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Any map 'W alph.w/! S , where S is a semigroup, is called a substitution. The
value '.w/ of w under ' is the element of S that results from substituting '.x/ for
each variable x 2 alph.w/ and computing the product in S .

A (semigroup) identity is a pair of words written as a formal equality. From now
on, we use the sign � when writing identities (so that a pair .w;w0/, say, is writ-
ten as w � w0), saving the standard sign D for ‘genuine’ equalities. A semigroup S
satisfies w � w0 (or w � w0 holds in S ) if '.w/ D '.w0/ for every substitution
'Walph.ww0/! S , that is, substitutions of elements from S for the variables occurring
in w or w0 yield equal values to these words.

In Section 1 we mentioned formal inference of identities. For semigroup identities,
the inference rules are very transparent as they amount to substituting a word for each
occurrence of a variable in an identity, multiplying an identity through on the right
or the left by a word, and using symmetry and transitivity of equality. Birkhoff’s
completeness theorem of equational logic [4, Theorem 14.17] gives a clear semantic
meaning to formal inference: an identity w � w0 can be inferred from a set † of
identities if and only if every semigroup satisfying all identities in † satisfies the
identity w � w0 as well. In this situation, we say that an identity w � w0 follows
from † or that † implies w � w0.

As defined in Section 1, a semigroup S is finitely based if it possesses a finite
identity basis and nonfinitely based otherwise. We mentioned at the start of this sec-
tion that the FBP restricted to finite semigroups becomes nontrivial; moreover, its
algorithmic version, that is, Tarski’s Finite Basis Problem restricted to semigroups,
remains open so far.

The class of all semigroups satisfying all identities from a given set † is called
the variety defined by †. A variety is finitely based if it can be defined by a finite
set of identities; otherwise it is nonfinitely based. Given a semigroup S , the variety
defined by the set of all identities S satisfies is denoted by varS and called the variety
generated by S . A variety is called finitely generated if it can be generated by a finite
semigroup.

A variety is locally finite if each of its finitely generated members is finite. A finite
semigroup is called inherently nonfinitely based if it is not contained in any finitely
based locally finite variety. The very first example of an inherently nonfinitely based
semigroup was discovered by Mark Sapir [17], who proved that the 6-element Brandt
monoid B12 is inherently nonfinitely based. In [16] he gave a structural characteriz-
ation of all inherently nonfinitely based semigroups, which, in particular, led to an
algorithm to recognize whether or not a given finite semigroup is inherently non-
finitely based. (This sharply contrasts McKenzie’s result [11] that no such algorithm
exists for general finite structures.)

It is easy to see that the satisfaction of an identity is inherited by forming dir-
ect products and taking divisors (that is, homomorphic images of subsemigroups)
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of semigroups so that each variety is closed under these two operators. In fact, this
closure property characterizes varieties (the HSP-theorem; see [4, Theorem 11.9]). An
easy byproduct of the proof of the HSP-theorem (see [4, Theorem 10.16]) is that every
finitely generated variety is locally finite. By the definition, a semigroup and the vari-
ety it generates are simultaneously finitely or nonfinitely based. Hence, to prove that a
given finite semigroup S is nonfinitely based, it suffices to exhibit an inherently non-
finitely based semigroup in the variety var S . This argument, combined with Sapir’s
characterization of all inherently nonfinitely based semigroups, has become one of the
most powerful and easy-to-use methods in studying the FBP for finite semigroups.

Now let us quote from the survey [22].

If one focuses on the finite basis problem for finite semigroups (like we do
in this survey), then the notion of an inherently nonfinitely based semigroup
appears to be rather abundant. Why should we care about locally finite vari-
eties which are not finitely generated when we are only interested in finitely
generated ones? This question leads us to introduce the following notion: call
a finite semigroup S strongly nonfinitely based if S cannot be a member of any
finitely based finitely generated variety. Clearly, every inherently nonfinitely
based finite semigroup is strongly nonfinitely based, and the question if the
converse is true is another intriguing open problem:

Problem 4.4. Is there a strongly nonfinitely based finite semigroup which is
not inherently nonfinitely based?

In this paper, we answer the question asked in [22, Problem 4.4] in the affirmat-
ive. Our example is the 42-element semigroup IC4 from [19] where it was shown to
have a weaker property. We recall the definition of the semigroup IC4 and one of its
features in Section 3 and then prove our main result in Section 4. Section 5 presents
an application.

3. Preliminaries

Following [19, Section 2], we introduce the semigroup IC4 as a member of a family
of transformation monoids.

Let Œm� stand for the set of the first m positive integers ordered in the usual way:
1 < 2 < � � � < m. By a partial transformation of Œm� we mean an arbitrary map ˛
from a subset of Œm� (called the domain of ˛ and denoted dom ˛) to Œm�. We write
partial transformations on the right of their arguments. A partial transformation ˛ is
order preserving if i � j implies i˛ � j˛ for all i; j 2 dom˛, and extensive if i � i˛
for every i 2 dom ˛. Clearly, if two transformations have either of the properties of
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being injective, order preserving, or extensive, then so does their product, and the
identity transformation enjoys all three properties. Hence, the set of all partial injec-
tions of Œm� that are extensive and order preserving forms a monoid1 that we denote
by ICm and call the mth i -Catalan monoid. Both ‘I ’ in the notation and ‘i ’ in the
name mean ‘injective’; the ‘Catalan’ part of the name again refers to the cardinality
of the monoid: jICmj is the .mC 1/th Catalan number. In particular, jIC4j is the fifth
Catalan number 42 a.k.a. the Answer to the Ultimate Question of Life, The Universe,
and Everything; see [1].

The key property of the monoid IC4 for this paper involves two combinatorial
notions, which we now recall.

Let u be a word and x a variable in alph.u/. If x occurs exactly once in u, then
the variable is called linear in u. If x occurs more than once in u, then we say that
the variable is repeated in u. A word u is called sparse if every two occurrences of a
repeated variable in u sandwich some linear variable.

Given a semigroup S , a word u is called an isoterm for S if the only word v such
that S satisfies the identity u � v is the word u itself.

Lemma 1 ([19, Lemma 3.4]). Every sparse word is an isoterm for the monoid IC4.

We also need some properties of a class of finite semigroups defined in terms
of the Green relation D . Recall that for a semigroup S , the notation S1 stands for
the least monoid containing S , that is, S1 WD S if S has an identity element and
S1 WD S [ ¹1º if S has no identity element; in the latter case the multiplication in S
is extended to S1 in a unique way such that the fresh symbol 1 becomes the identity
element in S1. James Alexander Green (cf. [5]) introduced five equivalence relations
on every semigroup S which are collectively referred to as Green’s relations. Of those
five relations, we need the following four:

xR y , xS1 D yS1; i.e., x and y generate the same right idealI

xL y , S1x D S1y; i.e., x and y generate the same left idealI

xJ y , S1xS1 D S1yS1; i.e., x and y generate the same idealI

xD y , .9z 2 S/ xR z ^ zL y; i.e., D D RL :

In addition, we write x �J y if x 2 S1yS1.
An element e of a semigroup S is called an idempotent if e2 D e. We let DS stand

for the class of all finite semigroups in which every D-class containing an idempotent
is a subsemigroup. It is well known (and easy to verify) that DS is a pseudovariety,

1Recall that a monoid is a semigroup with an identity element.



S. V. Gusev, O. B. Sapir, and M. V. Volkov 136

that is, a class of finite semigroups closed under forming finite direct products and
taking divisors.

The following proposition summarizes the features of semigroups in DS that we
employ. They can all be found (or readily follow from some results) in either Jorge
Almeida’s monograph [2], where the pseudovariety DS is comprehensively studied in
Chapter 8, or Lev Shevrin’s memoir [20], where Section 3 treats a semigroup class
whose finite members exactly constitute DS.

Proposition 2. Let S be a semigroup in DS.

(a) Every D-class of S containing an idempotent is a union of its subgroups.

(b) If u;v are words with alph.u/Dalph.v/, then for any substitution 'Walph.u/!
S such that '.u/ is an idempotent, '.u/ �J '.v/.

(c) If e �J a and e �J b for some idempotent e 2 S and some a; b 2 S , then
aebD e.

Proof. Claim (a) is contained in [20, Theorem 3]; see conditions (4a) or (4c) there.
For (b), we use condition (1b) in [20, Theorem 3]. It provides a homomorph-

ism  from S onto a commutative semigroup of idempotents such that for every
idempotent e and every element a in S , the equality  .e/ D  .a/ implies e �J a.
(In terminology of [20], this fact is expressed by saying that S is a semilattice of
Archimedean semigroups.) The condition alph.u/ D alph.v/ readily implies

 .'.u// D  .'.v// D
Y

x2alph.u/

 .'.x//

due to commutativity and idempotency of the semigroup .S/. Hence, '.u/�J'.v/.
Claim (c) follows from [2, Lemma 8.1.4] combined with the observation that

D DJ on every finite semigroup [5, Theorem 3].

The proof of the next lemma closely follows the proof pattern of [2, Lemma 8.1.9],
but is included for the sake of completeness.

Lemma 3. Let S 2 DS and k WD jS jŠ. Then for every word u that can be decomposed
as uD u0u1 � � �un with n> jS j and alph.u0/D alph.u1/D � � � D alph.un/, the identity
u � ukC1 holds in S .

Proof. Let wi WD u0u1 � � �ui . Take an arbitrary substitution 'W alph.u/! S . For brev-
ity, let ui WD '.ui / and wi WD '.wi /. The n elements w0; w1; : : : ; wn�1 cannot be all
distinct, and so there exist indices p;q with 0� p < q < n such thatwp Dwq . Hence,

wq D wpupC1upC2 � � �uq D wqupC1upC2 � � �uq;
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from which we deduce the equality

wq D wq.upC1upC2 � � �uq/
k : (6)

It is known (and easy to verify) that the kth power of any element of S is an idem-
potent. Since alph.wq/ D alph.ui / D alph.uqC1uqC2 � � �un/ for i D 0; 1; : : : ; n, Pro-
position 2 (b) implies that

.upC1upC2 � � �uq/
k
�J wq and .upC1upC2 � � �uq/

k
�J uqC1uqC2 � � �un:

Then by Proposition 2 (c) the element

wn D wquqC1uqC2 � � �un
(6)
D wq.upC1upC2 � � �uq/

kuqC1uqC2 � � �un

and the idempotent .upC1upC2 � � �uq/k lie in the same D-class. By Proposition 2 (a)
the D-class of the element wn is a union of its subgroups. Thus, wn belongs to a
subgroup of S . Then the idempotent wkn is the identity element of this subgroup, and
wkC1n D wn. Consequently, we have

'.u/ D wn D wkC1n D '.ukC1/:

Since the substitution 'W alph.u/! S is arbitrary, S satisfies the identity u � ukC1,
as claimed.

By B2 we denote the subsemigroup of the Brandt monoid B12 consisting of the
five nonidentity matrices in (5). The following characterization of finite semigroups
beyond DS occurs as [2, Exercise 8.1.6]; the solution to this exercise follows from [20,
Theorem 3].

Lemma 4. A finite semigroup S does not belong to the pseudovariety DS if and only
if S � S has the semigroup B2 as a divisor.

For each idempotent e of a semigroup S , the set eSe WD ¹ese j s 2 Sº is a sub-
semigroup in which e serves as an identity element. We call eSe the local submonoid
of S at e. By LDS we denote the class of all finite semigroups all of whose local sub-
monoids lie in DS. The class LDS also forms a pseudovariety; see [2, Section 5.2].
We need the following corollary of Lemma 4.

Corollary 5. A finite semigroup S does not belong to the pseudovariety LDS if and
only if S � S has the monoid B12 as a divisor.

Proof. For the ‘if’ part, observe that B12 … LDS. Indeed, B12 is a local submonoid
of itself, and the four matrix units in (5) form a D-class that contains an idempotent
matrix but is not closed under matrix multiplication. Now the claim follows from LDS
being closed under forming finite direct products and taking divisors.
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For the ‘only if’ part, take an arbitrary finite semigroup S … LDS. Then for some
idempotent e 2 S , the local submonoid eSe does not belong to the pseudovariety DS.
By Lemma 4 we conclude that the monoid T WD eSe � eSe has the semigroup B2
as a divisor. Consider a subsemigroup U of T such that there exists an onto homo-
morphism 'WU ! B2. The identity element f WD .e; e/ of T cannot belong to U
since otherwise its image '.f / would be an identity element in B2, and B2 has no
identity element. The union U 0 D U [ ¹f º is a subsemigroup of T . We extend the
homomorphism ' to an onto map '0WU 0 ! B12 , letting '0.f / WD

�
1 0
0 1

�
. Clearly, '0

is a homomorphism whence the monoid B12 as a divisor of T which is a submonoid
of S � S .

4. Main result

The paper [19] has promoted the idea of relativizing the property of being inherently
nonfinitely based (first suggested in [7] in the context of quasivarieties). If C is a class
of semigroups, a semigroup T is called inherently nonfinitely based relative to C if
every semigroup S 2 C such that T 2 varS is nonfinitely based. Specializing C, one
gets various concepts that occur in the literature. For instance, the property of being
inherently nonfinitely based as considered by Mark Sapir in [16, 17] arises when C
consists of all semigroups that generate locally finite varieties. If C is the class of all
finite semigroups, one gets the property of being strongly nonfinitely based discussed
in Section 2.

Theorem 3.1 in [19] shows that the i -Catalan monoid IC4 is inherently nonfinitely
based relative to the class of all finite semigroups in which Green’s relation R is trivial
(that is, coincides with the equality relation). We strengthen this result in Theorem 7
below, but first we provide a sufficient condition on a class of semigroups, under
which IC4 is inherently nonfinitely based relative to this class.

We fix a countably infinite set A of variables. Denote by AC the set of all words
whose variables lie in A and let A� be AC with the empty word added. We assume
that all words that we encounter below come from A�.

Let w be a word. ForX � alph.w/, we denote by w.X/ the word obtained from w
by removing all occurrences of variables from alph.w/ n X . An occurrence of a
word u in a word w as a factor is any decomposition of the form w D v0uv00, where
the words v0; v00 may be empty. If such a decomposition of w is unique, then we say
that the factor u occurs in w once; otherwise, u occurs in w more than once.

Proposition 6. Suppose that C is a class of semigroups and for each semigroup S 2C
such that the i -Catalan monoid IC4 belongs to the variety varS , there exist an infinite
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sequence ¹un � vnº of identities holding in S and an infinite sequence ¹Xnº of sets
of variables such that

(P0) un.Xn/ ¤ vn.Xn/;

(P1) for all variables y; z, not necessarily distinct, the word yz occurs in un.Xn/
as a factor at most once;

(P2) for every variable z, there are at least n pairwise distinct variables between
any two occurrences of z in un.Xn/.

Then the i -Catalan monoid IC4 is inherently nonfinitely based relative to the class C.

Proof. We have to verify that each semigroup S 2 C such that IC4 2 varS is nonfin-
itely based. For this, it suffices to exhibit a property � of words such that

(i) the word un has the property � , while the word vn does not have the prop-
erty � ;

(ii) for an arbitrary identity un � u of S such that the word u has the property � ,
an application of any identity of S in less than n � 2 variables to the word u
preserves the property � .

Indeed, a standard syntactic argument (see [22, Section 4] or [18, Fact 2.1]) then
implies that for each n, the identity un � vn cannot be inferred from identities in less
than n � 2 variables holding in S . Therefore, no finite set of identities holding in S
can infer all identities of this semigroup.

We show that the following property � is relevant: a word w has � if w.Xn/ D
un.Xn/. Evidently, (i) holds by the property (P0). It remains to verify (ii) provided
that IC4 2 varS .

Let un � u be an identity of S such that u.Xn/ D un.Xn/. We need to establish
that if a word v is obtained from u by an application of some identity s � t of S in
less than n� 2 variables, then v.Xn/D un.Xn/. Obtaining v from u by an application
of s � t means that u D c '.s/ d and v D c '.t/ d for some c; d 2 A� and some
substitution 'W alph.st/! AC.

Take two variables c;d … alph.st/. The identity s� t implies each of the identities
c s d � c t d , c s � c t, and s d � t d . If the words c and d are nonempty, then
u D  .c sd/ and v D  .c td/, where  W alph.st cd/! AC is the substitution given
by  .c/ WD c,  .d/ WD d and  .x/ WD '.x/ for each x 2 alph.st/. Similarly, if one of
the words c and d is empty while the other is not, then the words u and v are images
of either the words c s and respectively c t or the words sd and respectively td under
a suitable substitution. It follows that we may assume without any loss that u D '.s/
and v D '.t/, and s � t is an identity of S in less than n variables.

Let
Yn WD ¹z 2 alph.st/ j alph.'.z// \Xn ¤ ¿º:
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Let us verify that the word s.Yn/ is sparse. Indeed, for every repeated variable y of s,
the word '.y/ occurs as a factor in u more than once. In view of the property (P1),
we see that for each variable y 2 Yn repeated in s, the word '.y/.Xn/ must be a
single variable x 2 Xn, say. Now choose two occurrences of 1y and 2y of y in s
and let 1x and 2x be the corresponding occurrences of x in u. By the property (P2)
there are at least n pairwise distinct variables from Xn between 1x and 2x in u. Since
jalph.s/j< n and Yn is the set of all variables whose images under ' contain variables
from Xn, there must be a variable t 2 Yn \ alph.s/ such that '.t/ involves at least
two variables in Xn. In view of the property (P1), the variable t must be linear in s.
Therefore, the word s.Yn/ is sparse.

Since IC4 2 varS , the identity s� t holds in IC4. As IC4 is a monoid, so does the
identity s.Yn/� t.Yn/ since removing all occurrences of variables from alph.st/ n Yn
has the same effect as substituting the identity element of IC4 for these variables. By
Lemma 1 every sparse word is an isoterm for the i -Catalan monoid IC4. It follows
that t.Yn/ D s.Yn/. Hence, v.Xn/ D u.Xn/ D un.Xn/, as required.

Theorem 7. The i-Catalan monoid IC4 is inherently nonfinitely based relative to the
pseudovariety LDS.

Proof. Take any S 2 LDS such that the variety varS contains IC4; we have to prove
that S is nonfinitely based.

Let k D jS jŠ; then the kth power of any element of S is an idempotent. In view of
Proposition 6, it suffices to find an infinite sequence ¹un � vnº of identities hold-
ing in S and an infinite sequence ¹Xnº of sets of variables such that the proper-
ties (P0), (P1) and (P2) hold. We will show that the following are relevant:

un WD
nY
iD0

anŒ� i �bnŒ� i �; vn WD ukC1n ;

Xn WD ¹x0; y0; z0; x1; y1; z1; : : : ; xn; yn; znº;

where � denotes the cyclic permutation .01 � � �n/ of the set ¹0; 1; : : : ; nº, and

anŒ� � WD xkx0�xky1xkx1�xky2xkx2�xk � � � xkynxkxn�xk;

bnŒ� � WD xkz0�xky1xkz1�xky2xkz2�xk � � � xkynxkzn�xk

for any permutation � of ¹0; 1; : : : ; nº.
By the definitions of the identities un � vn and the sets Xn, the properties (P0),

(P1) and (P2) hold for each n. Since

alph.anŒ�0�bnŒ�0�/ D � � � D alph.anŒ� i �bnŒ� i �/ D � � � D alph.anŒ�n�bnŒ�n�/;
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Lemma 3 implies that every local submonoid of S satisfies the identity un.Xn/ �
vn.Xn/ for all n > jS j. Since the kth power of any element of S is an idempotent,
this implies that the identity un � vn holds in S . Theorem 7 is proved.

Now it easy to deduce our main result. Recall that a semigroup is said to be
strongly nonfinitely based if it is inherently nonfinitely based relative to the class
of all finite semigroups.

Theorem 8. The i-Catalan monoid IC4 is strongly nonfinitely based.

Proof. Take any finite semigroup S such that the variety var S contains IC4; we
have to prove that S is nonfinitely based. If S 2 LDS, this follows from Theorem 7.
If S … LDS, then Corollary 5 implies that the variety var S contains the 6-element
Brandt monoid B12 . Since B12 is inherently nonfinitely based [17, Corollary 6.1], we
conclude that S is nonfinitely based is this case as well.

It readily follows from the structural characterization of inherently nonfinitely
based semigroups [16, Theorem 1] that such a semigroup must have a nonsingleton
D-class. Since all D-classes of the i -Catalan monoid IC4 are singletons, we conclude
that IC4 is not inherently nonfinitely based. Thus, Theorem 8 provides an example
of a strongly nonfinitely based semigroup which is not inherently nonfinitely based,
answering the question from [22] quoted in Section 2.

Remark 9. Reviewing the proofs of Proposition 6 and Theorems 7 and 8, one sees
that all our arguments rely on only two properties of IC4: that IC4 is a monoid and
that every sparse word is an isoterm for IC4. Therefore, any monoid for which every
sparse word is an isoterm is strongly nonfinitely based. Using this, the first-named
author has constructed a strongly nonfinitely based monoid with only 9 elements
which is not inherently nonfinitely based. This result will be published separately.

Remark 10. We point out a subtle yet important difference between the concept of
being inherently nonfinitely based as considered in [16,17] and that of being strongly
nonfinitely based. The difference comes from the fact that the local finiteness of a
variety is inherited by its subvarieties while the property of being finitely generated
is not. Therefore, if a semigroup S is not contained in any finitely based locally finite
semigroup variety, then S is contained in no finitely based locally finite variety V
of groupoids—otherwise, the intersection of V with the variety of all semigroups
would be a finitely based locally finite variety of semigroups containing S . Thus,
when we speak about inherently nonfinitely based semigroups, it is unnecessary to
specify within which class we work. In contrast, when we speak about strongly non-
finitely based semigroups, we should distinguish between the ‘absolute’ case and
the case when we work within the class of all semigroups. In the present paper we
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have only proved that every finitely generated semigroup variety containing the mon-
oid IC4 is nonfinitely based. This does not exclude the possibility that some finitely
based finitely generated groupoid variety contains IC4. The question of whether or
not there exists a semigroup which, being not inherently nonfinitely based, is strongly
nonfinitely based relative to the class of all finite groupoids still remains open.

For a more detailed discussion of the property of being strongly nonfinitely based
in a broader universal-algebraic context, we refer the reader to [6, Section 1.1].

5. An application

Theorem 8 can be applied to prove the absence of a finite identity basis for many finite
semigroups for which the FBP remained open so far. Here we restrict ourselves to just
one application, resolving a question left open in [23].

Let Tn.q/ stand for the semigroup of all upper triangular n � n-matrices over
the finite field with q elements. In [23], it was shown that the semigroup Tn.q/ is
inherently infinitely based if and only if q > 2 and n > 3. Thus, semigroups of upper
triangular matrices over the 2-element field turn out to be not inherently nonfinitely
based, but the question of whether or not they are finitely based remained unsolved for
20 years, with the only exception of the 8-element semigroup T2.2/ that was proved
to be finitely based in [24]. Now we are in a position to answer the question for all
n > 3; the case n D 3 still remains open.

Theorem 11. For each n > 3, the semigroup Tn.2/ of all upper triangular n � n-
matrices over the 2-element field is (strongly) nonfinitely based.

Proof. Due to Theorem 8, it suffices to show that for each n > 3, the variety varTn.2/
contains the i -Catalan monoid IC4. In fact, we construct an embedding IC4! T4.2/;
since T4.2/ naturally embeds into Tn.2/ for all n � 4, the claim will follow.

Recall that the monoid IC4 consists of all extensive and order preserving partial
injections of the chain 1 < 2 < 3 < 4 into itself. Given any such partial injection ˛,
we define a 4 � 4-matrix A WD .aij / over the 2-element field by setting

aij WD

´
1 if i˛ D j;

0 otherwise.

Since ˛ is extensive, i˛ D j implies i � j whence the matrix A is upper triangular.
Clearly, the map ˛ 7! A is one-to-one, and it is easy to verify that the map is a homo-
morphism, using the fact that the image of IC4 consists of row-monomial matrices so
that one never adds two 1s when multiplying such matrices.
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