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Quantitative stochastic homogenization of
nonlinearly elastic, random laminates

Stefan Neukamm, Mathias Schéffner, and Mario Varga

Abstract. In this paper we study quantitative stochastic homogenization of a nonlinearly elastic
composite material with a laminate microstructure. We prove that for deformations close to the set
of rotations, the homogenized stored energy function Wyop, is C 3 and that Whom, the stress tensor
D Whom, and the tangent-moduli D2 Wy can be represented with the help of stochastic correctors.
Furthermore, we study the error of an approximation of these quantities via representative volume
elements. More precisely, we consider periodic representative volume elements (RVEs) obtained by
periodizing the distribution of the random material. For materials with a fast decay of correlations
on scales larger than a unit scale, we establish error estimates on the random and systematic error of
the RVE with optimal scaling in the size of the RVE and with a multiplicative random constant that
has exponential moments.
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1. Introduction

A standard model for a nonlinearly elastic, composite material is given by the noncon-
vex energy functional &, (u) := |, o W(%.Vu) dx, where O C R4 denotes the reference
domain occupied by the elastic body, u: O — R its deformation, and W:R¢ x R?*4 —
R U {400} the stored energy function, which encodes the mechanical properties of the
material. We are interested in the macroscopic behavior of composites that oscillate on a
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microscopic scale 0 < ¢ < 1. Therefore, we consider the homogenization limit e — 0 of &,
in the framework of I'-convergence. The first results in this direction are due to Braides
[10] and Miiller [35]: for periodic composites (that is, x — W(x, F') is periodic for all
F) and assuming additional growth conditions for W (in particular, standard p-growth
with 1 < p < 00), they show that & I'-converges to an energy functional of the form
u > [ Whom(Vur) dx with a homogenized stored energy function given by the multi-cell

formula
Whom (F) := lim Whyom,L(F),
L—oo

(1.1)
Whom,L (F) = inf W(x, F 4+ Vo) dx,
peWps? (O;RY) JO,
where [y, := [—%, %)d and Wple’rp Or; Rd) denotes the space of L-periodic Sobolev

functions. A similar homogenization result and, in particular, formula (1.1) are also valid
in the random case, that is, when x +— W(x, F') is a stationary and ergodic random field;
see [15,16,34].

The multi-cell formula for the homogenized stored energy function W, is the main
subject of this paper. Its definition invokes a nonconvex minimization problem and an
asymptotic limit L — oo, and, therefore, a priori not much is known about its analytic
properties. The energy function Wy, describes the effective mechanical behavior of the
composite. It is especially important to understand the first Piola—Kirchhoff stress ten-
sor and the tangent modulus, i.e., the Jacobian D Wjom(F) and the Hessian D2 Wiom (F).
Therefore, it is natural and relevant to investigate the following questions:

(Q1) Is Whom twice continuously differentiable?
(Q2) How can Wyom(F), DWpom(F), and D?Wiom(F) be evaluated or approximated?

In this paper we study these questions in the regime of small but finite strains for random
laminates composed of frame-indifferent materials with a stress-free, nondegenerate ref-
erence state (see Definition 2.1 below). Before we summarize our results we emphasize
that the restriction to laminates (i.e., W(x, F) = W(xy4, F)) is a critical assumption for
our method to work in the case of random materials and cannot be relaxed; see Remark 2.5
below. In a nutshell, the main results of this paper can be summarized as follows:

*  (Qualitative results and answer to Q1) We show Wy € C2(U) for an open neigh-
borhood U of SO(d); see Theorem 2.4 (iii). This result is based on a representation
of Whom(F) for F € U with the help of a sublinear corrector ¢ that solves the non-
linear corrector equation — div DW(x, F + Vor) = 0 in R4, see Theorem 2.4 (>i1).
Since W is nonconvex, this corrector representation is highly nontrivial and extends
recent results for periodic composites by the first two authors [39,40].

*  (Quantitative results and answer to Q2) We prove optimal error estimates for a peri-
odic representative volume element approximation of Wion(F), DWiom(F), and

D?Wiom(F) for F close to SO(d); see Theorem 2.12 and the discussion at the end of
this introduction.
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Before we present our results in detail, we discuss previous, related works.

Convex case. We first note that a complete understanding of (Q1) is currently only avail-
able for convex integrands with quadratic growth. Indeed, as shown by Miiller [35], if
W(x, F) is periodic in x and convex in F, the multi-cell formula reduces to a one-cell for-
mula that can be represented with the help of a corrector, i.e., Waom(F) = Whom,1 (F) =
i oW, F + Vor)dy, where the corrector ¢ is a minimizer of the minimization prob-
lem in the definition of Wiom,1(F). Furthermore, in [24, Theorem 5.4] it is shown that,
if W(x, F) is additionally C? in F and satisfies a quadratic growth condition in F, then
Whom is C2. The argument exploits the corrector representation of Wy, and only uses
basic energy estimates for the corrector. It extends verbatim to the random, convex case.

To reach regularity beyond C?2 is a nontrivial task and requires improved regularity
of the corrector. For convex potentials with quadratic growth, the corrector ¢ can be
characterized by a monotone, uniformly elliptic system with quadratic growth and thus,
a stronger regularity theory is available; we refer to [39] for C3-regularity of the homog-
enized potential in the periodic, vector-valued case, and [3, 12,21] for related results for
random, monotone equations.

Nonconvex case. The results mentioned so far do not extend to the case of nonlinear
elasticity, since there the stored energy function is necessarily nonconvex. In fact, Miiller
[35, Theorem 4.3] provides a counterexample in the form of a laminate material that fea-
tures a buckling instability under compressive loading; in particular, one has Wyon (F) <
Whom,L (F) for some F ¢ SO(d) and all L € N. This shows that we cannot even expect a
one-cell formula or a corrector representation to hold for general deformations F'. How-
ever, better behavior can be expected for deformations close to SO(d) for materials with a
nondegenerate, stress-free reference state at the identity. Indeed, in [36] the first author and
Miiller show for periodic composites that Wy, admits a quadratic expansion at identity:

Whom(Id + G) = Ohom(G) + 0(|G %), (1.2)

where we have Qnom(G) = inf(perler(D;Rd) Jg O(x, G + Vo) dx, and Q(x,G) =
%D2W(x, Id)[G, G] denotes the quadratic term in the expansion of W at identity. The
argument uses soft properties of the corrector ¢ and appeals to the geometric rigidity
estimate of [22]. An analogous statement holds in the random case; see [25]. Identity
(1.2) says that the tangent modulus of W, at identity is given by the homogenization of
the tangent modulus of W.

Differentiability for small, but finite strains. To establish an expansion similar to (1.2)
for F ¢ SO(d) is nontrivial — and, in fact, not always possible; cf. Miiller’s counterex-
ample mentioned above. Therefore, it is natural to focus on the regime of small strains,
i.e., when F is close to SO(d). The first differentiability result for Wi, away from
SO(d) has recently been obtained by the first and second authors in [39,40] for a periodic
composite with a “regular” microstructure, e.g., a matrix material with smooth, possibly
touching inclusions. It is shown that if W(x,-) is C? in a neighborhood of SO(d), then
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the homogenized stored energy function Wion is C? in a neighborhood of SO(d), say in
U, ={F € R4*4 : dist(F,SO(d)) < p} for some p > 0. The argument critically relies
on the observation that for /' € U, the multi-cell formula simplifies to a single-cell for-
mula that features a representation with the help of a periodic corrector. More precisely, in
[39,40] we prove that for any F' € U, there exists a periodic corrector g € leer(D; R%)
such that

Whom(F) = Whom1 (F) = ][D W(x, F + Vor (x) dx. (1.3)

Moreover, we obtain a similar representation for the derivatives of Wyon; in particular, we
show that the tangent modulus admits the representation

D*Wyom(F)H -G = ][ D?*W(x,F + Vor)(H + Vor i) -G dx
O

for the periodic, linearized corrector ¢ F i € leer(D; R%). These corrector representations
are the starting point for a quantitative analysis of Wi, and minimizers of &,; in partic-
ular, in [39,40] we prove error estimates for the nonlinear two-scale expansion and we
establish Lipschitz estimates for minimizers of &, that are uniform in ¢ > 0. The general
strategy of proof for (1.3) relies on a reduction to the convex case based on two major
ingredients:

* (A matching convex lower bound) Inspired by [14] we construct in [39, Corollary 2.3]
a strongly convex integrand V' with quadratic growth such that

W(x,F) + udetF > V(x,F) forall F € R¥¢,
W(x,F)+ pudetF =V(x,F) forall F e U, (1.4)

where > 0 and p > 0 only depend on W. With the help of V', convex homogenization
theory and the fact that F' + det F' is a null-Lagrangian, we obtain the lower bound
Whom(F) + pdet F > Viom(F) = .fD V(x, F + VgF) with a convex corrector ¢
given as the unique (up to a constant) sublinear solution to the monotone corrector
problem,

—V-DV(x,F +Vgp) =0 inR%. (1.5)

* (Global Lipschitz regularity) By the regularity theory for uniformly elliptic, mono-
tone systems with piecewise constant, periodic coefficients, we establish the following
global Lipschitz estimate for the convex corrector:

|dist(F + Ver. SO()| =@ < C dist(F.SO(d)),

where for d > 2 we require the right-hand side to satisfy an additional smallness
condition; see [40, Corollary 1]. In view of the matching property of V' (cf. (1.4)), this
allows us to deduce the sought-for corrector representation (1.3).
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Random composites and laminates. The construction of the matching convex lower
bound V verbatim extends to the random case; see Lemma 3.2 below. Nevertheless,
the analysis in [39, 40] is restricted to periodic composites, since periodicity is criti-
cally used to obtain the required global Lipschitz estimate for the corrector: indeed, in
[40] we obtain the Lipschitz estimate by combining a small-scale Lipschitz estimate
(cf. [40, Theorem 4]) of the form ||V [|Le(m, ,) < ClIVeF | L2@) with the energy esti-
mate |Vor || 2oy < C dist(F, SO(d)) for sublinear solutions to (1.5). While the latter is
standard in the periodic case, in the random setting such an estimate generally only holds
in the weaker form of a large-scale L?-estimate: for all L larger than a random minimal
radius we have L~% IVer L2,y < C dist(F, SO(d)); we refer to [21] where such an
estimate has been established for monotone systems. Thus, in the random setting we may
only expect the bound

dist(F + Vor. SO()) | (s <€) dist(F. SO()).

where €(x) is a stationary random field with stretched exponential moments. We note
that this Lipschitz estimate is not global, which prevents us from following the strategy of
[40].

In contrast, for random laminates, as considered in this paper, the situation is better,
since then the corrector problems for ¢ and the linearized corrector ¢f,g simplify to
ordinary differential equations; see Theorem 2.4 (ii)(b). This allows us to retrieve global,
deterministic Lipschitz estimates by appealing to ODE arguments; see Lemma 3.8 below.

Quantitative periodic RVEs. We finally comment on our quantitative analysis of the
representative volume element (RVE) approximation for Wyom, D Whom, and D% Wiom. As
we explain in detail in the next section, in our paper we consider parametrized models to
describe random laminates. More precisely, we denote by (€2, P) a probability space of
parameter fields w: R — R, where P is stationary and ergodic with respect to the shifts
o +— o(-+ z), z € R. We then consider stored energy functions of the form (x, F) —
W(w(xq), F), where x4 denotes the dth coordinate of x € R?; see Assumption 2.2. Our
qualitative Theorem 2.4 then yields the corrector representation formula

Whom(F) = E[][D W(w(xq), F + Vor) dxi|, (1.6)

for F sufficiently close to SO(d). A direct evaluation of (1.6) is not possible in practice,
since the expression invokes two “infinities”: the domain of the corrector equation (1.5)
is unbounded and the probability space has infinite degrees of freedom. Hence, a suitable
approximation is required. The RVE method is a well-established procedure for this pur-
pose. In this method, the corrector problem is considered (for a finite number of samples)
on a domain of a finite size L, together with suitable boundary conditions. It is an ongoing
discussion in the computational mechanics community how to choose the size of the RVE
and the appropriate boundary conditions; see, e.g., [32,42] and the references therein. In
particular, we note that [32] also provides a numerical study of the convergence rate for
the RVE approximation of the tangent modulus of a nonlinear material.
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The first analytic convergence results with optimal scaling in L for the RVE approx-
imation have been obtained by Gloria and Otto in [29, 30] for discrete, linear elliptic
equations. Periodic RVEs were first investigated in [26] in the discrete setting and recently
in [21] in the case of monotone systems. In periodic RVEs (in the form of [21,26]) the
original probability measure [P is approximated by a stationary, probability measure Py,
that is supported on L-periodic parametrizations. The effect of this approximation is that
for Pz -almost every realization, the corrector equation simplifies to an equation on a finite
domain (of size L) with periodic boundary conditions. These equations are well posed
pathwise and thus for P7 -a.e. parameter field wy € 2 the proxy

Whom.r (@r, F) = ][ W(or(xa). F + Vo (wr.) dx
O

is well defined (provided F € U,). As already observed in [29] the RVE error naturally
decomposes as

VVhom,L(F) - Whom(F) = Whom,L(F) - IE:L[VVhom,L(F)] + IE:L[I/Vhom,L(F) - VVhom(F)L

=terrrand (L) =leITgyst L)

into a random error (due to random fluctuations with respect to Pz ) and a systematic error
due to differences of Pz and IP. As already observed in [26], in order to quantify the error,
the assumption of ergodicity needs to be quantified. Moreover, both errors are sensitive to
the decay of correlations of the random material; see also [28] for a detailed analysis on
the impact of the decay rate of correlations and the scaling of the sublinear corrector. In
the present paper we study the periodic-RVE approximation under the strongest possible
assumption on the decay of correlations, namely, materials that feature a rapid decay of
correlations on scales larger than 1. In the existing literature two different approaches
exist to quantify ergodicity: either by means of mixing conditions as in [5, 7] or in the
form of functional inequalities; see [18, 19,28-30,37]. In the present paper we follow the
second approach and work with a spectral gap estimate. In essence, we make the following
assumptions:

* (Existence of an L-periodic approximation) There exists a shift-invariant probability
measure Py that is supported on L-periodic fields in €2 and that recovers the distribu-
tion of IP in Oz, /»; see Definition 2.8 for details.

* (Fast decorrelations) (2, P) and (2, P ) feature spectral gap estimates that encode
fast decorrelations on scales larger than 1; see Definition 2.9.

If W(w, F) is sufficiently regular in w and F, and for deformations F that are sufficiently
close to SO(d), our main result then yields estimates on the error of the RVE approxima-
tion of Wyom (F), the stress tensor D Wiop,, and the tangent modulus D?Wiom. In particular,
for Whom,1 We get

InL
lettna] < € dis(F,SO(d))L™2,  |erryq(L)| < C dis*(F, s0(d>)“T,



Quantitative stochastic homogenization of nonlinearly elastic, random laminates 337

where € denotes a random constant with Ez, [exp(%‘é’)] <2, and C denotes a deterministic
constant; see Theorem 2.12. These estimates are essentially optimal with respect to scal-
ing in L and with respect to the integrability of €. Moreover, they are the first analytical
estimates for RVEs for geometrically nonlinear composites. Due to the different scaling
of the random and systematic error, our results allow for optimizing the ratio between
the number of Monte Carlo iterations and the size of the RVE; see Corollary 2.13. Next,
we discuss the optimality of the scaling of |errrna| and |errgy| in L. The scaling of the
random error err,,,q coincides with the central limit theorem scaling in dimension d = 1
and is thus optimal. For the systematic error |errsy (L)|, we recover the previous find-
ings of [26] and [21] for linear and nonlinear elliptic equations restricted to the case of
laminates. Finally, we mention the recent paper [13], where for a linear elliptic equation
with Gaussian coefficients, the systematic error is precisely identified and in particular the
In L-factor is removed (in dimensions d > 2).

Structure of the paper. We present the assumptions and main results of this paper in
detail in Section 2. In Section 3 we collect and prove the deterministic auxiliary results
needed for the proofs of the main results. In Section 4 the proof of the main qualitative
result is presented. In Section 5 we collect and prove the stochastic auxiliary estimates
that are needed for the proof of the quantitative error estimates. Section 6 is dedicated to
the proof of the main quantitative results.

Notation.

«  We write f -, * Tor the averaged integral ﬁ / 4 = we frequently write (f)4 to denote
faf

e For L >0andd € N, we use the notation [0y, := (0, L)d.

* We identify one-dimensional functions R > x — u(x) € R with their extension to
R4 that depends only on the dth coordinate direction, i.e., RY 5 x > u(xg) € R.
We usually write x; for a one-dimensional variable in R. Derivatives with respect
to x4 are denoted by dy,. In particular, for ¢ € H,! (R;R™) we write Vg to denote
0x,9 ® eq and not d,,¢. The same applies to divergence; in particular, div always
denotes the d-dimensional divergence operator.

*  For a matrix-valued mapping v: 4 — R”*¢ we denote by vg: 4 — R its dth col-
umn, i.e., Vg (x) = [v14(x), ..., Vpma (X)]-

*  We write .

perO(DL) = {(p e WP (Op) J[DL g dx =0},
per O(DL) per O(DL)
*  We set
1,
uloc (Rd) = {u € I/Vlocp(Rd) : SUPy R4 ”u”Wl’P(Bl(x)) < OO}’
(Rd) — Wl Z(Rd).

uloc

« For§ > 0, we use the notation Us := {F € R*? : dist(F,SO(d)) < 8}.

uloc
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2. Setting and main results

In this section we first introduce the standard setting for the description of stationary ran-
dom media. Consequently, we present the main results about nonconvex integral function-
als in the vicinity of rotations: in Theorem 2.4 we argue that the RVE approximations are
well defined and the so-called stochastic one-cell formula holds. Theorem 2.12 describes
the precision of the RVE method in terms of the size of the representative elements.

We consider the parameter space 2 = {w : R — R measurable} equipped with a o-
algebra § and a probability measure P. The mathematical expectation is denoted by [-] :=
fQ -dP(w). A sample w € Q describes the spatially varying (layered) material properties
and for this reason we frequently refer to it as a configuration. We assume the following
standard assumptions for the random configuration space (€2, §, P):

(P1) (Stationarity) For any z € R, the vectors (w(x1),...,w(x,)) and (0(x1 + 2),. ..,
w(x, + z)) have the same joint distribution for arbitrary x1,...,x, € R and
neN.

(P2) (Ergodicity) For any random variable ¥ € L!(Q) we have

R
lim Fo(-+x))dx = [F].

R—o0 0

We state the assumption on the considered energy density W as follows. We first
introduce a class of frame-indifferent stored energy functions that are minimized, nonde-
generate, and smooth at the identity, and satisfy the growth condition stated below.

Definition 2.1. For @ > 0, p > 1, and a modulus of continuity p, we denote by 'W,f, o the
class of Borel functions W: R?*4 — [0, +00] which satisfies the following properties:

(W1) W satisfies p-growth from below, i.e.,
alF|P — é <W(F) forall F € R4*4.
(W2) W is frame indifferent, i.e.,
W(RF) = W(F) forall R € SO(d), F € R*¢;
(W3) F =Idis a natural state and W is nondegenerate, i.e., W(Id) = 0 and
W(F) > adist?(F,SO(d)) forall F € R%*?;
(W4) W is C3 in a neighborhood of SO(d):

1
||W||c3(Uj) < P
VF,F' € Uy |D*W(F)— D3W(F')| < p(|F — F'|).

2.1)

Assumption 2.2. Fix ¢ > 0, p > d, and a modulus of continuity p. We suppose that
W:R x R9*? — [0, +00] is a Borel function and W(w,-) € 'W{ , for almost every w € R.
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Remark 2.3. Note that we use the same constant « in the growth condition (W1), the
nondegeneracy condition (W3), and the regularity assumption (W4). The only reason for
this is that we want to reduce the number of parameters invoked in the assumption for
W . Let us anticipate that the region, in which the multi-cell formula reduces to a single-
cell expression, will depend (in a quite implicit way) on the constants in (W1), (W3), and
(W4). Hence, working with the single parameter « simplifies the presentation. Note that
we have W C Woff for0 <o’ < a.

We associate with W the following approximation for the homogenized stored energy
function:

Whom,L: 2 X RY*4 R,
2.2)

Whom,L(w, F) = inf W(w(xg), F + Vo)dx.
oW, h(OL;RY) JOL

We state the first main result of this paper as follows. Based on a merely qualitative
ergodicity assumption combined with the laminated structure of the material, we show that
in the vicinity of rotations correctors exist and the homogenized stored energy function is
characterized by a stochastic one-cell formula. We also discuss regularity properties of the
homogenized stored energy function.

Theorem 2.4 (Corrector representation and regularity of Whom). Let (2,8, P) satisfy
(P1)~(P2) and let Assumption 2.2 hold. Then there exists § = §(«,d, p) > 0 and ¢ =
c(a,d, p) €[1,00) such that for all F € Us the following statements hold true:

(i) (Homogenized energy density) The following limit exists and it is deterministic:

Whom(F) == Lli_)rr;o Whom,L (@, F) forP-a.e. w € Q.

(ii) (Corrector) There exists a unique random field pr: Q x R? — R¥ with the fol-
lowing properties:

(a) ForP-a.e. w € Q it holds that pF (w,-) € W P (RY;RY), foer(@.)) =0,

loc
and

—divDW(w(xg). F +Vor) =0 inRY, (2.3)
and the corrector ¢ is sublinear in the sense that
lim o . )ll=@p = 0 4
dm, gher @ liman =0 -

(b) The corrector ¢F is one-dimensional in the sense of pF (w,x) = ¢ (®,Xg).

(¢) The gradient of the corrector ¢ is stationary and satisfies E[V¢] = 0 and

[Vor (@, )|l po®ay < ¢ dist(F,SO(d)) for P-a.e. w € Q. (2.5)
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The homogenized energy density given in (i) satisfies the stochastic one-cell for-
mula

Whom(F) = IEJ|:]|[] W(w(xg), F + Vor(w)) dxi|. (2.6)

(iii) (Regularity) The energy densities Whom,L(w, +) and Whom defined in (2.2) and in
(i) are of class C*(Us) and it holds, for all G, H € R4, that

DWoon(F) -G = E|:][ DW(w(xg), F + Vor)-G dxi|, 2.7
|

D*Whom(F)H -G = E[][DZW(w(xd), F+Vorp)(H+VerH) -G dx}, 2.8)
O

where the linearized corrector g pg: Q2 X RY — R s uniquely characterized
by

—div(D*W(w(xq). F + Vor)(H + Vor i)
=0 in ]Rd,for P-ae w € Q, 2.9)

and

][ or,Hdx =0, Ve g is stationary,
O (2.10)

E[Vor,u] =0, E[Vern|*] < co.

Moreover, o g is one-dimensional in the sense that o g (w,X) = ¢F,H(®,Xq)
and, for all H € R?*9, it holds that limr—co %|¢F,illLeo@g) = 0 and
IVor o (@, )| Loray < c|H| for P-a.e. w € Q.

(iv) (Strong rank-one convexity)
1
D*Wyom(F)la ®b,a®b] > —la ®b|> foralla,b € R?.
c

The proof is presented in Section 4.

For deterministic, periodic composites, the conclusion of Theorem 2.4 was proven in
[39, 40] under various assumptions on the regularity of x — W(x, F). However, Theo-
rem 2.4 is the first corrector representation result for nonlinearly elastic materials with a
random microstructure. Furthermore, the smallness assumption F € Uy in Theorem 2.4
cannot be relaxed, as can be seen by Miiller’s counterexample [35, Theorem 4.7] which
features a periodic laminate material that undergoes buckling for sufficiently strong com-
pressions.

Remark 2.5 (The restriction to laminates in the random case). The restriction to laminates
is a critical assumption for our method when applied to random materials: to our knowl-
edge, the only current method for proving the existence of correctors for hyperelastic
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composites (periodic and random) is the one introduced in [39] and described in the
introduction. There, the corrector for the nonconvex problem is obtained by means of
the corresponding convex lower bound (see Section 3.1 below). To relate the corrector
for the convex problem to the corrector for the nonconvex problem, the key point is that
correctors for the convex lower bound satisfy a deterministic bound on its gradient thanks
to the laminate structure of the coefficients (see Lemma 3.6).

This is no longer true for general multidimensional random media: examples in [7],
[27, Remark 5] show that for solutions of linear elliptic systems with random, rapidly
decorrelating coefficients, global Lipschitz bounds can fail (even when the coefficients
are smooth). The reason is that in suitable random media, with positive probability “bad”
configurations of the coefficient field can be found in the ensemble. If we transfer this
observation to nonlinear elasticity, this means that even for small macroscopic strains,
we might locally observe concentration of large strains. On the other hand, even in the
periodic case, the problem of quantitative homogenization in situations with large strains is
completely open. Thus, we believe that substantially new ideas are needed to treat general
random heterogeneous materials. Furthermore, it is unclear whether a corrector-type result
in the sense of Theorem 2.4 can be expected for general random materials, since it is
possible that a local concentration of strains leads to a buckling behavior.

Nevertheless, with the methods of the present paper, we could prove the following
conditional result for multidimensional media: if there exists a random field pf: Q2 x
RY — R4 satisfying (2.3), (2.4) and a uniform Lipschitz estimate in the form (2.5) with
dist(F,SO(d)) < 1, then (2.6) follows. Furthermore, it seems possible that the method of
the present manuscript could be extended to the almost-periodic, multidimensional case,
since for linear elliptic systems with sufficiently smooth, almost-periodic coefficients,
global Lipschitz estimates can be established; see, e.g., [4,6].

We remark that Assumption 2.2 does not impose any condition on the growth of W
from above; W(w, F') might even be equal to +oo for F outside an open neighborhood of
SO(d). Therefore, it is unclear whether the energy functional u — [, W(a)(x?d), Vu)dx
homogenizes (in the sense of I'-convergence). However, if W additionally satisfies p-
growth of the form

W(w, F) S1+4 |F|? forall F € R¥ and P-ae. w € Q, (2.11)

the corresponding I"-limit takes the form u f 0 Whom (V) dx where

Whom(F) = lim inf W(w(xg), F + Vo(x)) dx.
L= pew, P (@L:RY) JOL

Assuming p-growth of the form (2.11), standard I'-convergence arguments yield Wiom =
Whom; see, e.g., [41, Lemma 3.2] in a general ergodic (and discrete) setting. The following
corollary shows that under the assumptions of Theorem 2.4 (in particular without assum-
ing (2.11)), Waom and Wyom coincide in the vicinity of rotations.
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Corollary 2.6. Consider the setting of Theorem 2.4. There exists 5=26 (a,d, p) > 0such
that .
Whom (F) = Whom(F) forall F € Us.

See Section 4 for the proof.

Remark 2.7. Homogenization of u > |, o W(a)(%"), Vu) dx in the sense of I'-conver-
gence has been established under weaker conditions than the upper-growth condition
(2.11); see, e.g., the classic textbooks [11,31], and more recent works [2, 17]. However,
to our knowledge all existing results require some control from above or some convexity
condition on the set {W < oo} that rules out the application to stored energy functions
that satisfy physical growth conditions. In contrast, with the help of the corrector repre-
sentation of Wy, it is possible to prove homogenization in a small-strain regime without
imposing an additional growth condition for . More precisely, by adapting the method
of [39, Theorem 3] we get the following: Let O C R¢ be sufficiently smooth and let
(Ug)e = (Ue(w,*))e C g+ Wol’p(O;Rd) be such that
I.(uy) = inf  I.+o0(1), where I.(u):= [ W(a)(x—d),Vu) — f-udx.
g+W, 7 (0) o €

Suppose that the assumptions of Theorem 2.4 are satisfied and assume the smallness con-
dition || f |lze(ay + llg — id|lw24(4) <K 1 for some g > d. Then it holds that

lirr(l) lue(w, ) —uollLroy =0 P-ae weQ, (2.12)
£—
where u( denotes the unique minimizer of the homogenized energy functional
Thom(u) := / Whom(Vu) — f -udx subjecttou —g € Wol’p(O).
o

Since in Theorem 2.4 we do not assume any growth conditions from above on F >
W(w, F), the convergence (2.12) does not follow from the known homogenization theory.

In the following we discuss an approximation of Wi, and its derivatives by periodic
RVEs. In contrast to the approximation (2.2), which relies on the introduction of peri-
odic boundary conditions, the periodic RVE that we discuss below is analogous to the
one considered in [21] and is based on a periodic approximation of the probability space
(2,5,P).

Definition 2.8 (L-periodic approximation of P). Let L > 1. A probability space (21 =
Q,8. = 8,Pr) is called an L-periodic approximation of (£2, §, P) if the following con-
ditions hold:

(1) Pz concentrates on L-periodic functions and it is stationary in the sense of (P1).

(ii) If the random field 2 x R > (w, x) + w(x) is distributed according to P and
Qr xR 3 (wp, x) = wp(x) according to Pr, then the random fields

Q x B%(O) 3 (w,x) > w(x) and Qf x B%(O) 3> (wr, x) = wr(x)

have the same distribution.
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In order to quantify the statement in Theorem 2.4 (i) we will make an additional quanti-
tative ergodicity assumption on the probability space and its periodic approximation. This
relies on a Malliavin-type functional calculus; see [18, 19] for a systematic discussion.

Definition 2.9 (Spectral gaps). Let L > 1. Let (2, §, P) be a probability space and
(R, 8L, Pr) its L-periodic approximation.

(i) We say that (€2, §, P) satisfies a spectral gap estimate with constant p > 0 if the
following holds: for any random variable ¥ : 2 — R, we have

avr i< 1, 2 )

where [ () |38—i| denotes
i |F (0 + téw) — F ()]
sup lim sup ,

Sw t—0 t

where the supremum is taken over all configurations dw: R — R supported in
Bi(s) with [|$w]|Leo@) < 1.

(ii) (Periodic spectral gap) We say that (21, S, Pr) satisfies a periodic spectral
gap estimate with constant p > 0 if the following holds: for any random variable

F1: Q1 — R, we have
1 L 0F 1\?
EL[w«‘—EL[f‘]P]s—ZEL[/ (f —)ds:|,
P o \Up'dwL

where [p,) |%| denotes

. |7 (wr + téwr) — F (wr)]
sup lim sup ,
Swp 10 t

where the supremum is taken over all L-periodic configurations dwr: R — R
supported in B1(s) + LZ and with ||dwp,||peo,L) < 1.

Remark 2.10 (Example of Gaussian type). It is convenient to give examples of admis-
sible distributions in the class of stationary Gaussian random fields, since the latter are
uniquely determined by their covariance functions and allow us to apply Malliavin cal-
culus to establish spectral gap inequalities. A specific example is the following: Suppose
that P describes a stationary, centered Gaussian random field w: R — R with a bounded
and compactly supported covariance function €(s) := Cov(w(x + 5), w(s)) satisfying
|€(s)| = O for |s| > £/2 for some correlation length £ > 0. Then (2, §, P) satisfies the
spectral gap estimate of Definition 2.9 (i); see, e.g., [19]. For L > 4{ we may define an
L-periodic approximation by periodizing the covariance function: Set €, (x) := €({x}L),
where {x};, € —%, %) is uniquely defined by x — {x}; € LZ. Let P. describe the sta-
tionary, centered Gaussian random field with covariance function €. Then Py, is indeed
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an L-periodic approximation of [P in the sense of Definition 2.8 and additionally satisfies
the spectral gap estimate of Definition 2.9 (ii) with a constant p that is independent of L.

Remark 2.11. There are several ways to periodize the coefficients. Here we follow [21,
26] and periodize the ensemble. A different approach would be to periodize the real-
izations, which is replacing @ with the L-periodic extension of the restriction of w to
(=L/2, L/2). In general, different periodization procedures yield different systematic
errors. The results of [13] for linear elliptic equations suggest that periodization of the
ensemble yields a smaller systematic error than the “periodizations of the realizations”
in dimensions d > 2. For laminates, which correspond to d = 1, it seems plausible that
periodizing the realization yields a comparable systematic error to the periodization of the
ensemble.

We present our main quantitative result:

Theorem 2.12 (Quantitative RVE approximations). Suppose Assumption 2.2 is satisfied
and in addition that W satisfies

||D4W(a),~)||c([7a) + 10 W(w, 3@y < forallw € R.

1
«
We let (2, 8, P) satisfy (P1) and the spectral gap estimate with constant p > 0 of Defini-
tion2.9 (). Let L > 2 and let (2, S, P) be an L-periodic approximation of P in the sense
of Definition 2.8 which satisfies the periodic spectral gap estimate with constant p > 0 of
Definition 2.9 (ii). We denote by Wiom, 1. the corresponding representative volume element
approximation defined in (2.2).

Then there exists ¢ = c(«, p,d, p) € [1, 00) such that for all F € Us with § > 0 as in
Theorem 2.4 the following statements hold true:

(i) (Estimate on random fluctuations)
[Whom,(, F) = EL[Waom,L (F)]| < €() dis®(F,SO(d))L™%,  (2.13)
| DWhom,L. (-, F) = EL[DWhon, (F)]| < €() dist(F, SOW))L™2,  (2.14)
| D> Whom,1 (. F) = EL[D* Whom £ (F)]| < €()L™2, 2.15)
where € denotes a random variable satisfying

Er [exp(é‘é’)] <2.

(i) (Systematic error)

InL
[EL Whom, ()] = Who(F)] < ¢ dis?(F.SO()) =~

InL
IEL[DWhom,.(F)] — DWoom(F)| < c dist(F. SO(d»“T,

In L
|EL[D2Wh0m,L(F)] - Dthom(F)| = CT~

The proof is presented in Section 6.
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The total error is dominated by the random component of order Lz However, the
deviations from the mean may be reduced by empirical averaging: for N € N, we consider
N independent copies of the coefficient field {w; };{1,..., 5} sampled according to Pz, and
we define the Monte Carlo approximation by

.....

N
1
Whom,L,N(wa F) = N ; Whom,L(a)ia F)

With Theorem 2.12 at hand, we obtain the following:

Corollary 2.13 (Monte Carlo approximation). Let the assumptions of Theorem 2.12 be
satisfied. There exists ¢ = c(a, d, p, p) > 0 such that for all F € Uz with § > 0 as in
Theorem 2.12 and for £ € {0, 1,2},

EL[| D Whom,.v (F) — DEW hom(F)[?]2 < cdist?™¢(F, SO(d))(ﬁ +—

The proof of Corollary 2.13 is standard and thus omitted here. Note that the total
L2-error is of order L™ In L if we choose N ~ 1n2L I We note that the variance of the
RVE can be reduced by discarding samples in the evaluation of the Wyom,r,n based on
cheaply computable statistical quantifiers; see, e.g., [33] where this has been implemented

for linear elliptic equations, and [20] for a rigorous error analysis.

)y,

3. Deterministic intermediate results

In the following we present the deterministic ingredients of our analysis. In particular, in
the first part we recall a matching convex lower bound construction that allows us to relate
the nonconvex corrector problem to a convex corrector problem. In the second part we
collect some standard results about elliptic equations, and in the third part we establish
deterministic Lipschitz estimates for correctors that rely on the laminate structure of the
material.

3.1. Reduction to a convex problem

The proof of Theorem 2.4 follows the strategy of [39]. The starting point is the observation
that W € ‘WY implies the existence of a “matching convex lower bound”. For the precise
statement we introduce the following class of strongly convex functions.

Definition 3.1 (Convex energy density). For 8 > 0 we denote by Vg the set of functions
V e C2(R¥*9) satisfying for all F, G € R?*4,

BIFP? - % < V(F) < %(|F|2 1),
IDV(F)(G]| < %(1 +FDIGI.

BIGP < D*V(F)[G.G] < %|G|2.
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The following lemma is proven in [39], extending a construction that appeared earlier
in the context of discrete energies in [14,23].

Lemma 3.2 (Matching convex lower bound; see [39, Corollary 2.3]). Let Assumption 2.2
be satisfied. Then there exist §, i, B > 0 (depending on «, d, and p), and a Borel mea-
surable function V:R x R4*4 — R satisfying for almost every w € R, V(w, ") € Vg,
V(w,-) € C3(R4*4), and

W(w, F) + pdetF > V(w, F) forall F € R¥4, (3.1)
W(w, F)+ pdetF = V(w, F) forall F € R¥*¢ with dist(F,SO(d)) < §, (3.2)
V(w,RF) = V(w, F) forall F € R*? and R € SO(d).

As a consequence of the matching property (3.2), together with the strong convexity
of V' and the fact that det is a null-Lagrangian, we obtain the following corollary.

Corollary 3.3. We consider the assumptions and setting of Lemma 3.2. Let v € 2 and
¢ € Wh(R2: RY) sarisfy

loc
Idist(F + V. SO(d)) | oo (e < §- (3.3)

Then the following statements hold:
(i) Foreveryu € Hulloc(Rd; R%) and v, w € Wlééoo(Rd; R%), the following identities
hold in the sense of distributions:
div DW(w(xg), F + Vo) = div DV(w(xg), F + Vo), (34
div(D>W(w(xg), F + Vo)Vu) = div(D?V(w(xg), F + Vo)Vu), (3.5
div(D3*W(w(xg), F + V¢)Vv - Vw)
= div(D3*V(w(xq), F + Vo)Vv - Vw). (3.6)

(ii) There exists ¢ = c(a, d, p) > 0 such that .(x) := D?>*W(w(xy), F + Vo(x))
satisfies

/Rd |Vn|?dx < C/RL(x)Vn-Vndx forall n € CZ(RY;RY),
ILO)| <c¢ ae

The proof is presented in Section 3.4.

This corollary implies that the corrector equations corresponding to W and V have the
same solutions for F in a sufficiently small neighborhood of SO(d); see, e.g., the proof
of Lemma 3.8. In particular, this also implies that

VVhom,L(F) + Mdet(F) = Vhom,L(F)s VVhom(F) + ,udet(F) = Vhom(F)’

where Viom is the homogenized integrand corresponding to V' and Viom, 1, its correspond-
ing RVE approximation; see Section 4 for the details.
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3.2. Standard estimates for elliptic equations

We formulate three simple deterministic existence, uniqueness, and regularity statements
for uniformly elliptic equations.

Definition 3.4. Let d,m € N. For given 0 < A < A < oo we denote by 'A’f\\ the set of
functions A: R™*d — Rmxd satisfying for all Fy, F, € Rmxd

(A(F1) — A(F)) - (F1 — F2) > A|F1 — B>,

3.7
|A(F1) — A(F2)| < AlF1 = F2|,  A(0) = 0.

Lemma 3.5. Ford,m € N, let A:R? x R™*4 — R™*4 pe Borel measurable, and there
exists 0 <A < A < oo such that A(x,-) € Aﬁfor all x € R?. Then the following statements
hold:

(i) Foreveryg € L>(R4;R™*?), f e L2(R?;R™), and T > 0 there exists a unique
weak solution ¢ € H'(R?;R™) of

%(p —divA(x,Vg) =divg + f inR?, (3.8)
and it holds that
[ el +avpPas < [ FleP+TiPax 69
(ii) Foreveryge L®[R;R™4), f e L2(R%:R™), and T > 0, there exists a unique

€ Hulloc(]Rd; R¥) satisfying equation (3.8). Moreover; there exists ¢ € [1, 00)
such that for all xy € RY, R > T,

1 2 2 1 2 2
[ (FioP + 21vgPYnax < [ (Fle+71r7)dx,

where n: R — R is given by n(x) = exp(—%|x — Xxo|) withy = y(%) € (0, 1].
In particular, we have

1
f o gl AP ax
Br(xo)

1 > 1 5
=< c(mllgllmw) + %a /Rd Tnlf| dx). (3.10)

Part (i) is completely standard and part (ii) follows for g € (L% N L®)(R?; R™*?) by
testing (3.8) with n¢ and a suitable choice of y and the general case follows by approxi-
mation; see [21, Lemma 36] for details.

The following simple lemma is central to the analysis of the present paper. Based on
the observation that in the case of laminates the PDE (3.8) reduces to an ODE, we establish
the following crucial Lipschitz estimate.
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Lemma 3.6. Letd € N. Let A:R x R?*4 — R4*4 pe q Borel measurable function and
suppose that there exist A > A > 0 such that A(z,-) € ,Ai\ forallz € R. For T > 0 and
g€ LOMR)* et € HullOC(Rd; R%) be the unique solution to

%(p(x) —div A(xg, Vo(x)) = div(g(xg)) in R,

Then the following statements are true:

(i) ¢ is one-dimensional in the sense that (x) = @(xg) and it solves
1 :
79 (Xa) = Ox,a(xa. 0a¢(xa)) = 0x,8a(xa) inR, (3.11)

where a:R x R? — R% is givenby a(xq, f) = A(xq, f ® eq)eq, and gq(xq) =

g(xq)eq.
If we replace g € L®(R; R4*4) by g € L2(R; R?*4), an analogous claim
holds for the weak solution of the equation.

(ii) There exists ¢ = c(%) € [1, 00) such that
c
Vol Looray < X”g”LW(R)- (3.12)

(iii) Let L > 0. For given g € L®((0, L); R4*?), there exists a unique weak solution
¢ € Hy(OL:RY) 10

—div A(xg4, Vo(x)) = div(g(xg)) inOg

satisfying J[DL @ dx = 0. Moreover, ¢ is one-dimensional in the sense that ¢(x) =
¢(xg) and it weakly solves

—0x,a(xq,0a9(xa)) = 0x,84(xq) in(0,L).
Finally, there exists ¢ = c(A, A) € [1, 00) such that (3.12) is valid.

The proof is presented in Section 3.4.

Remark 3.7. The properties (3.7) imply that the operator a: R x R4 — R? given in
Lemma 3.6 satisfies for all x4 and all f1, f» € R4,

(@a(xa. f1) —a(xa. f2))- (fi = f2) = ALfi = o,
la(xa, f1) —a(xq, )| = Alfi = fal,  al(xa,0) = 0.

If additionally A(xg4,-) is linear and symmetric, then a is also linear and symmetric.

3.3. Lipschitz estimates and differentiability of localized correctors

ForT > 0, F € R4 and w € 2, we consider the localized corrector equation

1
=0k —div DW(w(xq). F + Vg[) =0 inR. (3.13)
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Lemma 3.8. Let T > 0 and w € Q2. Suppose Assumption 2.2 is satisfied. Then there exist
8§ =6(a, p,d) > 0andc = c(a, p,d) > 0 such that the following statements hold:
(i) For all F € Uy, there exists a unique solution (p},w e WL R4 R?) 10 (3.13)
which satisfies
IF + Vog |l Logdy <8,

where § = §(«,d, p) > 0 is as in Lemma 3.2. Moreover, gog is one-dimensional
in the sense that (pg (x) = 9017; (x4) and satisfies

IVoE Il oomay < ¢ dist(F, SO(d)). (3.14)

(ii) The function Ug > F (plz e WL (R4; R?) is C? in the sense of Fréchet.
The first derivative (p};,G = DF(p};(F)G e WLhoR4; RY) at F € Us in the

direction G € R4*4 ig characterized by

1
T(pEJG —div(D*W(w(xq). F + VoF)(G + Vol 5)) =0 inR?. (3.15)
Moreover, it is one-dimensional in the sense that goIT;,G(x) = (p;’G (xq) and sat-
isfies

IVoE Gl Leoay < ¢|G|  forall G € R, (3.16)

(iii) The second derivative (p;G,H = D%ga;HG at F € Us with G, H € Réxd jg
characterized by

1 .
T‘PITV,G,H — div(D*W(w(xq), F + V‘P;)V%Z,G,H) (3.17)

= div(D*W(o(xq). F + Vo) (H + Vok 1)(G + Vel ;) inRY.

Moreover, it is one-dimensional in the sense that (p; c.gx) = (p}; .y (xa) and
satisfies

() co(rd) = C ora R € . .
IVoF .1l omay < c|HI|G| forall G, H € R¥*4 (3.18)

The proof is presented in Section 3.4.

For the proof of the systematic error estimates of Theorem 2.12, we need the follow-
ing result. In the following lemma, we denote by <p£, (p;’G, <p£’G’ g the correctors from
Lemma 3.8 and by L, ‘ﬁIZ,G’ (’p\;G y the same objects if we replace w € Q by another
realization & € Q.

Lemma 3.9. Suppose that Assumption 2.2 is satisfied and that it holds that W(w,-) €
C*(Uy) with

||D4W(w»')||c((7u) < — forallw € R.

1
o
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Let T,L > 0, w,® € Q with w(xg) = &(xg) for xq € [—%, %] Then there exists ¢ =
c(a, p.d) € [4,00) such that for all F € Uz with § = §(c, p,d) > 0 as in Lemma 3.8, we
have

1L
][ IVoT — VT 2 dxy < c dis®(F,SO(d)) exp(———), (3.19)
Br

¢ JT
][ VoL o — Vol o2 dxy < c|G|2exp(—li) (3.20)
B F.G F.G —= ¢ \/T ’
AT T 2 2 2 1 L
IVoF 6.1 — VoF.o.n > dxa < c|GPIH P exp(———2). (3.21)
Byr cvT

The proof is presented in Section 3.4.

3.4. Proofs of deterministic intermediate results

Proof of Corollary 3.3. Step 1. Proof of part (i). Equation (3.4) is a direct consequence of
(3.3), (3.2), and the fact that div D det(F + V¢) = 0 in the sense of distributions since
det is a null-Lagrangian.

Next we show (3.5). We suppose u € C®(R?; R?); the general claim follows by
approximation. For every n € C° (R¥:;R9) there exists /g > 0 such that for all & € [0, 1]
it holds that ||dist(F" + V¢ + hVu, SO(d)) || oo (suppn) < 8 and thus

R

1
= Z[ (DV(a)(xd), F+Vo+hVu)—DV(w(xg), F+V(p)) -Vndx Yh e (0, hy].
R4
Letting i — 0, we obtain
f D2W(w(xq), F + Vo)Vu -Vndx = / D*V(w(xq), F + V¢)Vu - Vndx
R4 R4

and (3.5) follows from the arbitrariness of n € C>° (R4:R?). The argument for (3.6) is
analogous and left to the reader.

Step 2. By (3.3) and (3.2) we have
/ L(x)Vn-Vndx
R4

= / D?V(w(xq), F + Vo)V -Vn—uD?det(F + Vo)V - Vndx
R4

> B f IVnl? dx.
Rd

where the inequality follows by strong convexity of V(w(xz),) and [ps D? det(F +
V@)Vn - Vn = 0, which follows from the fact that det is a null-Lagrangian. Estimate
IL(-)| < c is a consequence of W € C2(Us). |

Proof of Lemma 3.6. We only present the arguments for (i) and (ii), since (iii) is similar.
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Step 1. Proof of part (i). Forany h € R and i € {1,...,d — 1}, consider w := ¢(- +
he;) — . Obviously, we have w € H! (R4;R™) and

uloc
%w(x) — div(A(xg, Vo(x) + Vw(x)) — A(xg, Vo(x))) =0 in R,

Hence, estimate (3.9) applied with A(x, F) := A(xq, F + Vo(x)) — A(xg, Vo(x)) and
g =0, f = 0yields w = 0 and thus ¢ depends only on x; and satisfies (3.11).

Step 2. Proof of part (ii). Without loss of generality we suppose A = 1; the general case
follows by replacing a, T', and g by a/A, T A, and g/A. Assumption (3.7) and Remark 3.7
imply that for any ball B C R we have

][ 19ny 0l dxa < ][ laeg. 0, 0 dxg
B B
52(]{9 (a3, 0) + gal? dxa +]i|gd|2dxd)

< z( f e + ||g||im(R)), (3:22)

where we use the shorthand W(x;) 1= a(xq, 0x,¢(xq) ® eq) + ga(xq).
We prove the following: there exists ¢ = ¢(A) € [1, 0o) such that for every xo € R it
holds that

sup ][ |W(xq)|* dxa < cllgl}o® whererB :=rB s(xo) CR. (3.23)
re(0,1) JrB

Clearly, (3.23) together with (3.22) and the arbitrariness of xq imply the claimed estimate
(3.12).
In the following we use the notation (u)p = fB u(xg) dxg. We have

][ ) dg <2 f ) — (), 5 dxg +2(9), 5
rB rB

With help of the (one-dimensional) Poincaré inequality, equations (3.11), and (3.10), we
estimate the first term on the right-hand side:

][ ) — (0, 5P dxg < |ré|2][ |00 W(xa)P dxg
rB rB
G . 1 12
=1 [ |l v
L5IT

1 2 (3.10) 2
= 4 7|§0| dxg = crlgliom)- (3-24)
B /7(x0)
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To estimate |(¥), 3|, we use (3.24) and a standard dyadic argument. First, we observe that
forr € [41_1’ 1], there exists ¢ = ¢(A) € [1, 0o0) such that

), 41 sz(]i |\v|2dxd)2
JT

T

2 (3.10)
52(A(][ |ad<p|2dxd) +||g||Loo<R)) L lgliem. (325
JT

T
For r € (0, 4—1‘), we choose ¢ € (}T’ %) and k € N satisfying r = ¢¥. We have

k—1

S W) 5 — (W), 5

i=0

|(¥), 5 =

+ (¥ 51

(3.25) k=1 A
= YNy 5 = Wil + (T ) I8 he:
i=0

Using

(Wirg = Wyigl = W= ()5l dng

1 2 (3.24)
5(][.1_!} W — (V)5 dxd) < (VD' lglom)
ql

=

we obtain
k-1 k-1

C : C
(V)15 — (Wil < —lglleeo® ) (V' < ——=IlgllLe®)
; qit'B q'B q ();m C](l—ﬁ) R)

which concludes the proof. ]

Proof of Lemma 3.8. Throughout the proof we write < if < holds up to a multiplicative
constant depending only on «, d, and p.

Step 1. Proof of part (i). First, we consider the convex lower bound V for W from
Lemma 3.2 and the equation

1
T%F —divDV((xg), F + Vo) =0 inR". (3.26)

Since DW(w(xy4), R) = 0 and thus DV(w(xy), R) = uD det(R) for any R € SO(d), we
may rewrite this equation as

1
=9k —divA(xg, Vi) = divg inRY,
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with
A(xg,G) := DV(w(xq), F + G) — DV(w(xy), F),
g(xq) = DV(o(xq), F) — DV(w(xa), R).

Note that A satisfies the assumptions of Lemma 3.6 and it holds that | g||Leom) < |F —
R|. Hence, Lemmas 3.5 and 3.6 imply that there exists a unique (p; e H! (R4;R%)

uloc

satisfying (3.26) and which is one-dimensional and satisfies ||V<p£|| Lo®) S |F —R|.
Minimizing over R € SO(d) we obtain ”Vgﬂ;”Lw(R) < dist(F, SO(d)). Hence, we find
8 = 8(a,d, p) > 0 such that for all F € Us, it holds that

[dist(F + Vo, SO()) || oo ey < 6. (3.27)

with § > 0 as in Lemma 3.2. Combining (3.27) with Corollary 3.3 (i), we obtain that for
all F e Ug, (p}; solves (3.13). On the other hand, any solution of (3.13) satisfying (3.27)
satisfies (3.26). However, the latter equation admits a unique solution. This implies the
claimed uniqueness.

Step 2. Proof of part (ii) except C?-regularity of F (pg.

Substep 2.1. Lipschitz estimate on F + @p. For F, F' € R4*4 let 9T and ¢F, be
defined via (3.26). We claim

IV(ef = 0F )l Loay S |F — F'. (3.28)

Indeed, ® := gof; — <p;, solves

%@ —div(DV(0(xa), F + V® + Vok) — DV(w(x4), F + Vor,))
= div(DV(w(xq), F + Vo£) — DV(o(xg), F + Vgk)) inR.
Lemma 3.6 together with the Lipschitz continuity of DV (w(x4), -) implies (3.28).
Substep 2.2. Differentiability of F +— ¢r. Lemma 3.6 and the one-dimensionality of

gog imply that

1
Fp;,G —div(D?*V(w(xq). F + Vo) (G + Vof ) =0 inR? (3.29)

admits a unique solution (pIC G € Hulloc(Rd : R?) which depends only on x4 and satisfies
(3.16). Combining (3.26) and (3.29), we obtain that W := (pIT”G — @17; — (p;G solves

1
T\If —div(D?*V(w(xq), F + VoE)V¥) = divg inRY, (3.30)
where

g = DV(o(xa), F + G + Vop . 6) — DV(0(x4), F + Ver)
— D*V(w(xa), F + Vo) (G + Vi g — Vi)
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For |G| small enough, we have F' + G € U; and thus F + G + V(pIC+G € Us a.e. Since
the smoothness of W and (3.2) imply sup gy, D3V(w(xg), F)|| <1 we obtain, by a
Taylor expansion,

T T2 @28 2
lgllLe®dy S NG +Vop 6 = Vorlioges S IGI° (3.31)
Hence, Lemmas 3.5 and 3.6 applied to (3.30) yield
1
V9o + f,  FNP+IVUPaSIGF YreR! (3
B rxo) T

and thus, by the Poincaré inequality,

: - T T T
lim |G|™" sup ll¢f g — ¢F — @k gllwicos (o) = O
G0 R

Hence, F +— 90; is differentiable with derivative (p}; ¢ =DF (p;G.

Substep 2.3. Conclusion. Let F € U; and G € R4*4 be given. Combining Corol-
lary 3.3 and Step 1, we observe that equation (3.15) admits a unique solution in
Hulloc(]Rd; R%), which coincides with the solution of (3.29). Hence, claim (ii) (except
C2-regularity) is proven.

Step 3. Proof of part (iii). Fix F € Us. Forevery G, H € R?*¢  Lemma 3.6 implies that

1 .
—(p}C’G,H - dlv(DzV(a)(xd), F + V(p}C)V(p;,G’H)

T
= div(D3V(o(xq). F + Vo) (H + Vol 1) (G + Vel 5)) inR?Y  (3.33)

admits a unique solution (p;G g Which depends only on x4 and satisfies (3.18). Set U=
(p£+H’G — (pIC,G — (p;,G’H. In view of (3.33) and (3.29), we have

1 - _
0 div(D2V(w(xq), F + VoF)V¥) = div(gs + gp + gc) inR?,

where
_ 2 T 2 T T
g4 = (D*V(w(xq), F + H + Vog  g) — D*V(0(x4), F + Vop))(G + Vo p )
— D*V(w(xa). F + Vop)(H + Vi g — Vo) (G + Vor , g g)-
gp = —D*V(0(xq). F + Vo) (H + Vot ) (Vok ¢ = VoF ).

gc = —D¥V((xa). F + Vop) (Vo y = Vi in + Vi) (G + Voip ).
Obviously, the functions g4, g, gc depend only on x; and we claim that

llga + gB + gcllLoway < |GIH|p(|H]).  where %iilgﬁ(t) =0. (3.34)
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Before proving (3.34), we note that (3.34) implies the claim. Indeed, Lemmas 3.5, 3.6 and
(3.34) yield

- 1 - — ~
VO + f FIOP+VOPax S GRIHPAIHD.  G39)
B /7(x0)

Taking the supremum over |G| < 1 and letting H — 0, the differentiability of F
D F(pg () follows. Finally, in view of Corollary 3.3, the function (pg’G, g 1s the unique
solution of (3.17).

Hence it is left to prove (3.34). For | H| sufficiently small, the smoothness of W and a
Taylor expansion imply

1
lgal < /0 (D3*V(w(xa). F + Voi +s(H + Vor .y — Vor))

— D3V (w(xq), F + V(p;))| ds
< |H +V¢p g = Vep||G + Vi, g6l
@1
< p(H +Vop g —VepDIGIHI.
Clearly, estimate (3.28) implies that we find p satistying lim, o 6(¢) = 0 such that
p(H +Vop g —Verp)) < A(H).
Further, it holds that
lgall <|H||VeEc — Vor [ -
8BllLoRd) = YF.G YF+H,GlILo®R4)
We estimate the last expression by noting that ® := (pg YHG — (p}: G solves
1= _
0= div(D?V(w(xg), F + VoE)V®) =divg inRY,
where
g = (D*V F+H+Vok, 4)—D*V F +Voh)(G + Vok
g = (D>V(o(xa), F + H + VoF_ y) (@(xa), F + Vo)) (G + Vop, pg)
satisfies [|g]| Lo r¢) < |G| |H |. Hence we obtain, with the help of Lemma 3.6,
lgB Loy < 1HIIVOl oomay < IGIIH .
Finally, we estimate
lgc i@y S IGHVOE s = Vi 45 + VoELomay S 1GIHI.

where the last inequality follows by applying Lemma 3.6 to equation (3.30); cf. (3.31).
Summarizing these bounds, we obtain the desired estimate (3.34).
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Step 4. Continuity of second derivatives. Consider F € U;. We claim that F;, — F implies
(pgn G.H (p}C G.g In WLoo(R4, R) for every G, H € R?*4_ Equation (3.33) implies
that the difference v, := §0£,,,G = <p;,G g satisfies

—1//,, —div D?V(F, + V(pF WY, = d1v(g(1) (2))
where

gV = D3V(Fy + VoL Y(H + Vol )G + Vol )
— D3V(F + Vol)(H + Vot 1) (G + Vof ).
gP = (D*V(Fy + VoL ) — D*V(Fy + VoL )Vor 6 -

Combining V(pgn — V(pg, Vgogn = V(p; e V(pgn G V(pg G in L® as n — oo with

(3.18) and the uniform continuity of D3V (x4, -) in the vicinity of SO(d) (cf. (2.1)), we

obtain that g,(,l), g,(,z) — 0 in L®(R%). Hence the claim follows with the help of Lem-

mas 3.5 and 3.6. [

Proof of Lemma 3.9. Throughout the proof we suppose F' € U; and we write < if < holds
up to a multiplicative constant depending only on «, d, and p.

Step 1. Proof of (3.19). We first note that by (3.26), vr = @& — ¢F solves
1
VP = div(A(xq, Vor)) = div(gr (xg)) in R?, (3.36)

where
A(-,G) := DV(®, F 4+ VoL + G) — DV(®, F + Vok)

and, for an arbitrary R € SO(d),
gr == DV(®,F +VoL)— DV(®.R) — (DV(w, F + Vok) — DV(w, R)).
Lemma 3.6 applies to (3.36) and thus Lemma 3.5 yields
1
/n;lwl2 +n|Vor | dxg s/ nlgr|* dxq (3.37)
R R
with n(xg) = exp(— ylxd‘) for some y = y(«, p,d) € (0, 1]. Since w = @ in BL (0), we

have gr = 0 in B% (0) and (3.14) implies |gr| < |F — R| + || VoL | L. In comblnatlon
with (3.37), we obtain

1
[n—|vF|2+n|VvF|2dxdsf nlgr P dxa
R I R

<

< dis®(F, SO(d))v/T exp(—— L

: ﬁ) (3.38)
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Since n > exp(—y) > 0 on B s, we obtain

1 1 1
—|vF|2+|va|2dxd < —/ n—|vp|2+r;|VvF|2dxd
][ﬁT VT Jr 'T
(3.38) y L
< dis?(F, SO(d)) ex (———)
(750 exp(~§ 7%
and thus (3.19) (recall v = {0\; — (pg).

Step 2. Proof of (3.20). We first note that by (3.29), vr.¢ = ¢F. g — ¢ g solves

1
?UF,G - diV(D2V((:)(xd), F + V@F)VUF,G) = dngF,G in Rd,

where
e (D2V(A ~ 2 T T
8F.G = (D V(o, F + Vo) —D"V(o, F + VfPF))(G + V(PF,G)~
For n as in Step 1, we have
i| >+ 9|V 2dxg < 2d 3.39
nlvr.c nVvrgl®dxa < | nlgr.cl~dxa. (3.39)
R R
The Lipschitz estimate of Lemma 3.8 (ii) yields |G + Vgog’G| < |G| and we have
gr.6| £ ID*V(@(xa), F + Vo7) — D*V(w(x4), F + Voi)| |G|
< [D?*V(@(xa). F + V) — D*V(@(xq). F + Vop)| |G|
+|D2V(@(xa). F + Vo) = D*V(w(xq). F + Vop)| |G|
< IV@F —¢p)l 1G]+ 1r\z, Gl

In combination with (3.39) and (3.38), we obtain

/n|wF,G|2dxd5|G|2(/ n|V(¢£—w£)|2dxd+/ ndxd)
R R R\B%

< |GI2(dis(F, SO(d)) + 1)ﬁexp<—%%) (3.40)

and (3.20) follows.
Step 3. Proof of (3.21). We first note that by (3.33), vr,g,i = @& g g — P& G g SOlves

1

—VF.GH —diV(D?V(@(xa). F + VPp)VurGn) = div(gr.6.n + fron) inRY,

where
gro.n = D*V(@(xq), F + VL) (H + V& 1) (G + §F )
—D3V(w(xq). F + Vop)(H + Vol 1)(G + ¢f ).
fre.u = (D*V(@(xq). F + Vo) — D*V(o(xq). F + Vo) Vor ¢ u.
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As before, we obtain

1
/ 777|UF,G,H|2 +n|Vvr,gul* dxq S/ n(gr.c.ul” + | fre.ul*)dxs. (3.41)
R R

Furthermore, we compute, with the help of the estimates in Lemma 3.8 and a Taylor
expansion,

\gr.c.ul SIH||V@F g — ko) + |Gl IV@E g — ¢0f 1)l
+ (e, + IV(@F —¢p)) |H||G]

|fr6.ul S (rypy + IV(@F — P |H|IG|.

As aresult of the previous two estimates and relying on (3.38) and (3.40), we obtain

/R'I(lgF,G,le + | fr.6,H|?) dxa

s [ (HPIVorGP +IGPIVurAl + Uiy + [Vor ) HPIGP) dxa

< (dis?(F,S0(d)) + 1) |G| H|? Texp(—%%)

and in combination with (3.41) we have (3.21). [

4. Proofs of qualitative results: Theorem 2.4 and Corollary 2.6

In this section, we denote by V' the matching convex lower bound for W from Lemma 3.2.
We also consider the corresponding RVE approximation

Vhom,L(w, F) = inf ][ Viw(xg), F + Vo) dx. 4.1
(PEHPIH,Q(DL) Og

In particular, the infimum on the right-hand side is attained by ¢ € Hp]er,O(D L:R¥) char-
acterized by the equation

—div DV(w(xq), F + Vok) =0 inOg. (4.2)

Under the assumptions of Theorem 2.4, standard homogenization results (see for instance
[9] in the convex quadratic case) imply

Vaom(F) == IE|:][ V(w(xg), F + Vor) dxi| = lim Viom,r(w, F) forP-ae. o,
O L—oo

where gr: Q x R? — R¥ is the unique solution to

—divDV(w(xq), F + Vor) =0 inR?, for P-ae. o, (4.3)
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with the conditions

][ ¢or dx =0, Vg is a stationary random field,
O

4.4
IE[][ Vor dxj| =0, E[][ |V<pp|2dx} < 00.
O |
The existence of ¢ can be obtained by considering the solution <p; € Hulloc (R?; R9) of
1
7(/); —div DV(w(xq). F + VoF) =0 inR9,
and passing to the limit 7 — oo. In particular, it holds that
lim ]E[][ VoL — V¢F|2dx} =0, 4.5)
T—o00 O
Jim IE[ ][ V(w(xg), F + V(p;)dx:| = Vaom(F). (4.6)
—>00 O

Proof of Theorem 2.4. Throughout the proof we write < if < holds up to a multiplicative
constant depending only on «, d, and p.

Step 1. Lipschitz estimates for (pIL, and ¢F. Let (p% = (p% (w, -) be given by (4.2). With
Lemma 3.6 (iii) and arguing as in Lemma 3.8 (i), we obtain that (p% is one-dimensional in
the sense of (p{; (x) = (p% (x4) and satisfies

IV@E | Loomay < dist(F,SO(d)) forall L > 1. 4.7

In Step 1 of the proof of Lemma 3.8, we showed that || VoL | oo (ray < dist(F,SO(d)) and
that golz is one-dimensional. Hence, by (4.5) and weak™ lower semicontinuity of norms,
we have

IVor @.)|Lo@dy < Uiminf| VoE (@. )| Lo ea)
—00
< dist(F,SO(d)) for P-ae. w € Q. 4.8)
This means that we may choose § = §(c, p,d) > 0 such that for F € Us, we have

max_[[dist(F + Vo, SO(d))|| sogay <8 VL. T > 1, 4.9)
pe{ok oL}

where § is given by Lemma 3.2. Moreover, for ¢(w, ) = ¢ (w, -) the estimate in (4.9)
holds P-a.e. w € 2, and (4.8) improves E[|VoF|?] < oo to

P[|Vor| < cdist(F, SO(d))] = 1, (4.10)

where ¢ = c(a, p,d) <ocoand F € Us.
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Step 2. We show that for F' € U, we have
Whom,L (@, F) = Vaom,L (@, F) — pdet F. (4.11)
This implies (i), in particular,
Whom(F) = Lli_)m(>Q Whom,L (@, F) = Vaom(F) —pdet FF forP-ae.w € 2. (4.12)
We first prove
Whom.L (@, F) > Viom.L (@, F) — pdet(F) forall F € R4*, (4.13)

For every ¢ € Wple’rp (Oz; R9), inequality (3.1) implies

W(w(xgq), F + Ve)dx > ][ V(w(xg), F + Vo) — pdet(F + Vo) dx

OL

> Vhom,L(wv F) - /,Ldﬁt(F),

O

where we use that det is a null-Lagrangian in the form J[DL det(F + V) dx = det(F) for
allp € Wple’rp (Or; R?) with p > d. Taking the infimum over ¢, we obtain (4.13).

Finally, we prove (4.11). Fix F € U; and let gof; € Wple’rp(DL; ]Rd) be as in Step 1.
Then, it holds that

Whomi(@. F) < ][ W(w(xa). F + Vk) dx
Or

@202 ]l V(o(xq), F + Vok) — i det(F + Vok) dx
O
= Vhom,L(va)_/‘LdetFy

and in combination with (4.13) we have (4.11).

Step 3. Proof of (ii). For F € Uy, let pp: Q x R? — R? be characterized by (4.3) and
(4.4). A combination of (4.9), (3.2), and Corollary 3.3 (i) implies that ¢ r (w, -) is a solution
to (2.3) for P-a.e. w € Q. Moreover, (4.4) and (4.10) imply sublinearity of ¢ in the sense
of (2.4). Hence, we have existence of a random field satisfying properties (a)—(c) of The-
orem 2.4 (ii). Uniqueness follows as in the proof of Lemma 3.8 (i) (based on uniqueness
for solutions to (4.3) and (4.4)).

Finally, combining E[V¢Fr] = 0 and the one-dimensionality of ¢ ¢ in the form Vor =
(0x,9F) ® e4, together with the identity det(F + u ® v) = det(F)(1 + v F~1u), we
obtain E[det(F + VgF)] = det(F) and thus

Whom(F) “=” Voom(F) — judet(F) = E[ ][D V(w(xq), F + Vor) — pdet(F + vm}

2 E[f W(w(xq), F + Vor) dxi|.
o

This completes the proof of (ii).
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Step 4. Whom,L (@, )GC (U(S) ThemappingF|—><pF belongs to C (US,W“’"(D R%))

per

and the derivatives % Fc = Do FG and ¢k Foun =D (p{,;H G are characterized as the
unique (up to a constant) solutions to

—div(D*W(w(xq). F + Vog)(G + Vof ) =0 inOg (4.14)
and
: 2 L L
—div(D*W(w(xq), F + V(pF)prF’G,H)
= div(D*W(w(xa). F + Voi)(H + Vog g)(G + VoE ) inOp. (4.15)

Moreover, they satisfy the Lipschitz bounds

IV Glle@ay S Gl 1V0E G gl emay < |Gl IHI. (4.16)

All of these statements follow analogously to the proof of Lemma 3.8 (with the help of
Lemma 3.6 (iii)) and we omit their proofs. As a result of these facts, the claim follows
with

DWiom.L(F)G = ][ DW(w(xq), F + Vok) -G dx,
O
D*Wiom.L.(FYHG = ][D D2W(w(xq), F + Vok)(H + Vgaé,H) -G
L

D3 Wiom.L (F)IHG = ]{j D3W(w(xq). F + Vop)(I + Vo )(H + VoE )
" (G + Vgkg)dn,

where in the last identity we used (4.14) and (4.15) in the form
][ D>*W(w(xq). F + Vop)Vof g ;- G dx
OL
= D3W(w(xg), F + Vi) + Vok ) (H + Vok ) - Vok - dx
g ; F YF,1 YF.H YF,G 4X-
L

Step 5. We show that Whon € C3(U5). Consider F € Uj, where § is chosen as in Step 1.
We note that in view of (4.9) and (3.2), the unique function ¢r: Q x R? — R¥ satisfying
(4.3) and (4.4) also satisfies (2.3).

Substep 5.1. Differentiability of U; > F +— @p. We claim that the mapping U; € F
oF € L*(Q, WHo(O; R)) is differentiable with derivative Dor G = ¢F g for every
G € R4 where YF.G: 2 X RY - R is uniquely characterized via (2.9) and (2.10)
(with H replaced by G).

For G € RY*? and » € Q, we consider ¢, ; () € H},,

Appealing to Corollary 3.3 and Proposition A.1, we have

(R%;R?) as in Lemma 3.8 (ii).

hmEUWwG wddﬁ—o
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Since ¢, ; satisfies 9f, (@, x) = ¢F (@, x4) and |V ;[ po@ay < |G| (see Lemma
3.8(ii)), we obtain ¢F g (@, x) = ¢F,G (@, xq) and || VoF G || poray S |G| for P-ae. w €
2. Furthermore, the proof of Lemma 3.8 (ii) implies for |G| small enough,

E[][ |V(¢F+G—¢F—¢F,G)|2} — lim E[][ |V<¢£+G—¢£—¢£,G>|2]
O T—oc0 O

< lim SUPE[”V(‘P}C+G - ‘PIC - (PIC,G)”zoo(D)]

T—o00
< 1G4 4.17)

This means that the mapping Uz € F +— ¢F € L2(Q, H'(O;R?)) is differentiable with
derivative Dor G = ¢F g (recall fD @F dx = 0). From (4.17) and the weak™ lower semi-
continuity, we deduce

1
E[IV(¢r+c — oF —9F.6)1o@m]? < IGI.
and thus the claimed differentiability in L2($2, W 1-°°(0; R%)).

Substep 5.2. Differentiability of Us > F + ¢F . We claim that for every G € R4*4
the mapping Uz € F > ¢Fp g € L2(Q, Wb (O; R?)) is differentiable.
For G, H € R4*? and w € Q, we consider (p; o.n®) € Hulloc(]Rd; R?) as in Lemma

3.8 (iii). Appealing to Corollary 3.3 and Proposition A.1, we have

lim ]E|:][ |(p17’4:,G,H —(PF,G,H|2 dx] =0,
O

T —o00
where ¢r G H: Q2 X R4 — R is uniquely characterized by
—div(D*W(w(xq). F + Vor)Ver.c.u)
= div(D*W(w(xq), F + Vor)(H + Vor n)(G + Vorg)) inRY  (4.18)
for P-a.e. bw € 2, and
or.c,Hdx =0, Vorg, g is stationary,
][D (4.19)
E[Vorc.u) =0, E[Vorgcul’] <.
As in the previous substep, we deduce from Lemma 3.8 (iii) that ¢ F G, g is one-dimen-

sional and satisfies ||Vor,G #llpore) < |G| |H| for P-ae. € Q. Furthermore, we
obtain for | H| > 0 small enough,

E[][ I\V(¢Fr+H,G — YF.G — ¢F,G,H)|2i|
0

< limswpE[|V(¢F 4 ¢ — PF.c — PFc.m) o)

T —o00
3.35)

(3.
< IGPIH|*

~

From the above estimate, we conclude, as in the previous substep, that U 5 € F—org e
L2(, Who(0O; R9)) is differentiable with derivative Dor.c H = ¢F.G.H.
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Substep 5.3. Differentiability of Whom. Since Wiom, 1, (®; ) is bounded in C3(Ug) uni-
formly in L and  (see Step 4), we directly conclude from (4.12) that Wiom € C2Y (U, 5)
for every y € (0, 1).

The L2(Q2; W1°°(0; R¥)) differentiability of Us > F — ¢F combined with (4.9)
implies

DWaom(F)G = E[][ DW(w(xa). F + Vor)(G + Vor,) dX],
O

and with the help of
]E[][ DW(w(xg), F + Vor)Vorc dx] =0 (4.20)
O
we obtain the claimed formula (2.7) for D Wyon,. The identity (4.20) is standard and relies

on the corrector equation (2.3), together with the stationarity of Vor and Ve g: recall
that for any stationary field ¥ and n € C2°(R) it holds that

IE|:/ 7737i|=IE[?7]/ndxd and IEJ|:/ 8xd7737i|:E[37]/8xd77dxd:0. 4.2
R R R R

Hence, by stationarity and one-dimensionality of Vgr and Vg g, we have for any n €
C(R) satisfying [p ndx =1,

E[][ DW(w(xg), F + Vor)Vorc dx}
[}
@2h E[A nDW(w(xq), F + Vor)Vorc dxd]

= UR DW(w(xq), F + Vor)V(ner,c)

(B, MDW((xa). F + Vor)orc ® eq dxd}
@ _p [ /R (3, ) DW(@(xa). F + Vor)orc ® ea dxd]. 4.22)

Next, we choose n € C2°(R) satisfying [p ndx = 1 with suppn C (—%, %), and set
nr = R™'5(-/R). Combining (4.22) with (2.1), (2.5), and the sublinearity of ¢ g, we
obtain

‘E[ ][ DW(@(xa), F + Vor)\Vor.o dx}
O

“.22)

E[ /ﬂ; (0, ) DW(@(xa). F + Vor)prc ® ea dxd]

R
1 > 1 R—00
S Bl [, loraldsa| 5 glorcliman 0.

R
2
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Next, we come to the second and third derivatives of Wiom. The L2(2; W10 (O; ]Rd))
differentiability of Uz > F +— ¢, Us > F > ¢F g, together with (2.7) and (4.9), implies
Whom € C3(Ul§) and

D> Whom(FYHG = E[ ][ D>W(w(xq). F + Vor)(H + Vor.u) -G dx],
[}
D3I/Vhom(F)GHI = ]E[f DSW((,()(Xd),F-FV(pF)(I +V§0F,I)(H +V¢F,H) . de:|
O

+ E[][ D*W(w(xq), F +Vor)Vor a1 -G dx]
O

Hence, we obtain (2.8) and with the help of
E|:][ D2W(a)(xd), F + V(PF)V(PF,H,I -G dx]
O

= E[]{] D>W(w(xq), F + Vor)(I + Vor,)(H + Vor,a)Verc dx}

(which follows from (2.9), (2.10), (4.18), (4.19), and a similar calculation to (4.22)), we
arrive at

D3*Woom(F)IHG

Step 6. Strong rank-one convexity. This follows from the strong convexity of V' and thus
Vhom,L and Viom, combined with the fact that F +— det(F) is rank-one affine (see [39, proof
of Theorem 2, Step 6] for details). [

Proof of Corollary 2.6. We only show Wiom(F) = Whom(F) since the reverse inequality
is trivial. For given L € N and ¢ € (0, 1), we consider a cut-off function n € C§°(O.)
satisfying n = 1 in O g and |Vy| < i, where here and for the rest of the proof
< means < up to a multiplicative constant that depends on «, d, and p. For ¢pf as in
Theorem 2.4, we have

inf W(w(xg), F + Vo(x)) dx
peW,?(OL;RY) JOL

< g W(w(xq), F + V(ner)) dx

< ][ W(w(xa), F + Vor) dx
m)3
1

+— W(w(xq), F + V(ner)) dx,
1Ol JoOu_o.
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where we used W > 0 in the last inequality. By the subadditive ergodic theorem (cf. [1]),
the left-hand side converges to Wiom(F) as L — oo and thus by (2.6) we obtain

I/I_/hom(F) =< Whom(F)

+ lim sup W(w(xg), F+V(ner))dx for P-ae. w € Q. (4.23)
L—>oo |0OL| O\DOg—oL

In order to bound the second term on the right-hand side in (4.23), we observe that

[dist(F + V(n¢F), SO(d)) | Le@y)
< dist(F,SO(d)) + [VorF | Looay + lor ® VilLe@,)

@5 1
< dist(F,SO(d)) + S—LIIW lze@p)-

where we use |Vn| < (¢L)~! in the second estimate. In view of the sublinearity of the
corrector (2.4), we have for P-a.e. w € 2,

[dist(F + V(ngr),SO(d))||Le@,) < dist(F,SO(d))
provided L is sufficiently large (depending on «, d, ¢, p, and w). Hence, for § =

8(ce. d, p) > 0 sufficiently small, we have ||dist(F + V(n¢F). SO(d))|lLe@,) < a for
all F e Ug and thus

1 2.1) O O
lim sup —— W(w(xq), F + V(ner))dx < limsup 182\ Ba-arl <
L—oo Ol Jo\Ou_s:. Lo O

and the desired inequality Waom (F) < Whom(F) follows from the arbitrariness of ¢ > 0. m

5. Stochastic intermediate results

In this section, we provide optimal estimates on the growth of the correctors <p1§, (p; G

and 90; .y Which are constructed in Lemma 3.8. For this, we recall in Section 5.1 some
results from the literature. In Section 5.2 we state the estimates, and the corresponding
proofs are in Section 5.3.

5.1. Multiscale decomposition and the spectral gap

The spectral gap inequalities of Definition 2.9, imply L?-versions of the spectral gap
inequality:

Lemma 5.1 ([18, Proposition 1.10]). Suppose (2, S, P) satisfies a spectral gap estimate
of Definition 2.9 (i) and P satisfies (P1). Then there exists C = C(p) < oo such that for

anyq > 1,
472
(/ i| . 5.1
Bi(s)

N IF 1\?
E[|F (@) - E[F (@)]]??]* < CqE[/R o ) &
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Moreover, suppose that the L-periodic approximation (in the sense of Definition 2.8)
(21,8L,Pr) of (2,8, P) satisfies a (periodic) spectral gap estimate of Definition 2.9 (ii).
Then there exists C = C(p) < oo such that for any q > 1,

q] b

(o

Remark 5.2. From Lemma 5.1, we will frequently deduce estimates of the form
1
E[F (w)*]¥ < ck forall k € N and a random variable ¥ > 0. By the elementary inequal-

1ty

2
3—3’)615

1 L
E[|7 (L) - E[F (0p)][*7]* < CqE[/O o

(2ce) FE[F (w)¥] _ 1 k* _ 1
k! = 2k ekk) = 2k’

this implies exponential moments of ¥ in the form E[exp(& )] < 2 with C = 2ce.

The following lemma is a special case of [8, Lemma 4.8] and can be interpreted as an
improved Poincaré inequality in which spatial oscillations of the gradient are taken into
account (see also [5, Proposition 6.1] for a related deterministic estimate).

Lemma 5.3 ([8, Lemma 4.8]). Letm >2and K > 0. Let u: 2 Xx R — R be a measurable
function such that

1

2w e
]E[(][ |Vu|2dx) ] <K and ]E[(/ Vu~g) } < Krz
B1(x0) R

forallr > 2, all xo € R, and all measurable g: R — R supported in B,(xo) satisfying

3
By (xo0)
5 7
E[(][ lu — (1) B, (xo)] a’x)
Br(X())

5.2. Decay estimates for localized correctors

Then it holds that

=

1
i| <cKrz.

Lemma 5.4. Let the assumptions of Theorem 2.12 hold and let § = §(«, p,d) > 0 be as
in Lemma 3.8. Then for any F € Uj, we have the following estimates:

(i) Forallr >2,x0 € R T >2 and R > /T, it holds that

2
(][ P —<¢§>B,<xo>|2dx) < er} disi(F.SO0(d)). (5.2)
Br(xo)

1

1 (f T2 2 R T
— loF12dx ) +4/ = g dx
\/ﬁ BR(x0) T Bg(xo0)

< €dist(F,S0(d)).  (5.3)
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(ii) Forall xo € R4, T > 2, and R > /T, it holds that

1
(£ et = okP 41968 - VoF P ax)
Br(xo)

1
2

< t’(g)E dist(F, SO(d)). (5.4)

In (5.2)—(5.4), € = €(x¢,w) denotes a random field that, in particular depends on F, T,

and r but satisfies the uniform moment bound E[exp(%f)] <2, wherec = c(a, p,d, p) >
0.

The proof is presented in Section 5.3.

Lemma 5.5. Consider the situation of Lemma 5.4. For any F € Uy, it holds that
(i) Forallr >2,x0 € R T >2 R> T, and G € R¥*? e have

2 1
(][ |¢£,G—<¢£,G>B,<xo>|2dx) <erdiGl. 55)
Br(xo)

1

1 (f T 2 2 R T
lppgl”dx | +4/= Vg dx

\/E Bgr(xo) ' r Br(xo)

(ii) Forallxg € R4, T >2 R > /T, and G € R*? it holds that

<€|G|. (5.6)

1

1 2 R\3

(f gl —ohal + Ve~ ek gl ax) =te(F) I61 6
Br(xo) T T

In (5.5)—(5.7), € = €(xg, w) denotes a random field that, in particular, depends on
F, G, T, and r, but satisfies the uniform moment bound E[exp(%f’)] < 2, where ¢ =
c(a, p,d,p) > 0.

The proof is presented in Section 5.3.

Lemma 5.6. Consider the situation of Lemma 5.4. For any F € Uy, it holds that
(i) Forallr >2,x0 € R4 T >2 R> T, and G, H € R**4 e have

2 1
(][ ( )wE,G,H—<¢£,G,H>B,<xo>|2dx) < e|G]|H|r. (5.8)
r{Xo

1
1 (f T 2 2 R T

—= lof guldx | +/ = OF.c,m 4X

\/ﬁ Br(xo) T Br(xo)

(ii) Forallxg € R, T >2 R > /T, and G, H € R?*? it holds that

<¥€|H||G|]. (59

1

1
(][ 7|¢%,TG,H - ¢1€,G,H|2 + |V(p%‘,TG,H - V‘P;,G,H|2)
BRr(x0)

<€|G]| |H|(§)%. (5.10)
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In (5.8)—(5.10), € = €(xg, w) denotes a random field that, in particular, depends on
F, G, H, T, and r, but satisfies the uniform moment bound E[exp(%‘é’)] < 2, where
¢ =c(a, p,d,p) >0.

The proof is presented in Section 5.3.

5.3. Proofs of stochastic intermediate results

Proof of Lemma 5.4. Throughout the proof we write < if < holds up to a multiplicative
constant depending only on «, d, p, and p. Suppose F € U and recall that, according to
the proof of Lemma 3.8, (p;; is the unique solution to

1
F(p;‘f —div DV(w(xg), F + Vo) =0 inRY, (5.11)

where V' corresponds to the matching convex lower bound for W from Lemma 3.2.

Step 1. Estimate (5.2). We consider the random variable ¥ (w) = [ 0x, (pg (w) - gdxyg,
where g: R — R is supported in B, (xo) and it satisfies

1
3
(][ lg]? dxd) <r L (5.12)
Br(XO)

We compute the derivative of equation (5.11) with respect to a bounded perturbation dw
supported in Bj(s): the change 8(,0177w of the corrector under such a perturbation, which is
the weak limit in A (R4, R?) of

T T
o0+ tdw) — ¢r ()
St(/);:(w) =L ; E ,

satisfies the linear equation

1 .
F&p; — d1V(D2V(a)(xd), F + V(pIC)V&pIC)
= div(d, DV (w(xq), F + VoF)sw) inRY. (5.13)

Let us briefly sketch the argument for this claim. Observe that 6, golc (w) satisfies the linear
equation

1
TS,(p; —div A,VS,go}; = div g,

where

1
Ai(w,xq) = f D2V(a), F + V(p%(a),xd) + stVS,go;(a))) ds,
0

1
gi(w,xq) = / doDV(w + stéw, F + VoE(w, xq) + V8,05 (0, x4)) ds So.
0
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The deterministic estimate (3.14) on V(p; (and thus on tVS,(pIC) and the fact that w
is bounded and supported in Bj(s) yield that g, is bounded (independent of ¢ as ¢ |
0) with compact support. In combination with Lemmas 3.5 and 3.6 this implies that
IV8:0F | Loomay + 18:0F || 1 (ay is equibounded as 7 |, 0 and thus

Ai(w,*) = DZV(a), F + ng);(a),-)), gi(w,) > d,DV(w, F + V(p;(a),-)) Sw a.e.

Altogether, we conclude that from every sequence (#;); with ¢; | 0 we can extract a sub-
sequence (not relabeled) such that &y, (pg converges weakly in H'(R4,R?) to the unique
solution Sgog of (5.13) and uniqueness of the limit yields weak convergence of the whole
sequence.

According to Lemma 3.6, 890? depends only on x; and since

Xg +> v4(Xq) = 3 Da V(w(xa), F + Vot (xa))dw(xq) (5.14)

is bounded and compactly supported, (x; — &p; (xq)) € H'(R;R?) is the unique weak
solution to

1 .
T&p; — x,(a(xg)0x,80%) = dy,v4 inR, (5.15)
where a(xz): R4 — R¥ is given by
a(xq) [ = (D>V(©(xa), F + Vi) (f ® ea))ea. (5.16)

We denote by & € H'(R; R¥) the unique weak solution to

1
=0, (@ (), ) = B, 8. (5.17)

F(w+tsw)—F (w)
t

We compute §F = lim;_,¢ as follows:

5.17)

1
537:/ axd&p;-gdxd(_ /Th-5¢£+aaxdh-axd<p£dxd
R R

O / Vg - Ox,hdxg.
R
Note that vy is supported in Bj(s) (for s € R). Also, we have the estimate
|00 DaV(@, F + Vop) = 10DaV(@, F + Vi) —0uDaV(@, R)| S |F = R+ Vo |

for an arbitrary R € SO(d ), where we use DV (w, R) = D det(R) and thus d, DV (w, R) =
0. In particular, with the help of (3.14), this implies |vg| < dist(F, SO(d)) |éw|. Thus we

have
/Bl(s)

0F
—‘ < dist(F, SO(d)) / |0, h| dxq.
dw Bi(s)
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The gth version of the spectral gap inequality (see (5.1)) implies

) 2 472
E[|F —E[F]?9]2 < qdist(F,SO(d))E[/(/ |8xdh|dxd) ds }
R \JBi(s)
924
< qdist(F,SO(d))IEH / |0x, h|* dxg }
R
(3.9),(5.17) 3
< qdist(F,SO(d))(/ |g|2dxd)
Br(xO)
(5.12) 1
< qdist(F,SO(d))r™=. (5.18)

Since <p£ is a stationary field, we have that ]E[go},w is constant and thus E[F] = [ g -
8xdE[go£] dxg = 0. Hence, (3.14), (5.18), and Lemma 5.3 imply

T T 2 % % . 1
E o loF — (9F)B, (xo)|” dx < q dist(F,SO(d))r=,
r(Xo

for every ¢ > 2 and we obtain (5.2) (see Remark 5.2).

Step 2. Estimates (5.3). In view of (5.2) and the triangle inequality it suffices to show

][ (pg dx
BRr(x0)

We define random variables, fori € {1,...,d},

<e \/g dist(F, SO(d)). (5.19)

50 = § @ edu = [ o) fidva,
Bg R
where f; = ﬁIBR e;. Analogously to Step 1, we obtain

5%:/8<p£-ﬁdxd=—f Va - Ox hi dxg,
R R

where vy is given in (5.14) and h; solves

1
i = O, (a(xa)dx, i) = fi (5.20)

(see (5.16) for the definition of a). Using E[#;] = 0 and (5.1), we obtain

q] 2
(3.9),(5.20)

< gdist(F, SO(d))ﬁ( / | f,-|2ds)2
R

E[|Fi[9)% < q dist(F. SO(d))]EH/ |0, hil*ds
R

IT
< g dist(F, SO(d)) z (5.21)
From (5.21) we deduce (5.19), which together with (5.2) yields (5.3).
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Step 3. Estimate (5.4). Using (5.11), we obtain that W := ¢2I — ¢T solves

1 1
o7 ¥ —div B(xg,VV) = ﬁtp; in R9,

where
B(x4,G) = DV(w(xg), F + Vok + G) — DV(w(xg), F 4+ Vok).

Lemma 3.5 (ii) in combination with the fact that <p£ depends only on x; yields

1 1
=¥+ VU2 dxg S — P12 dxq.
£ For s verar s o [ neaoleER

where n(z) := exp(—y ER‘) for some y = y(«, p,d) € (0, 1]. Finally, a dyadic decompo-
sition of the integral on the right-hand side, together with (5.3) and the exponential decay
of 7, yields

1 00
1 T2 )2 1 i—1 '(][
— X dx < — exp(—y2'7 )22
m(/Rn( DetPa) = p 3 ewrz e (f

53 [R . - i—1\ni
< T‘Gdlst(F,SO(a’))ZeXp(—)’z )2

i=1

and thus (5.4) follows (since Y o, exp(—y2:~1)2" < 1). n

2
|¢£|2dxd)

Proof of Lemma 5.5. Throughout the proof we write < if < holds up to a multiplicative
constant depending only on «, d, p, and p. As in the proof of Lemma 5.4, we recall that
for F € Uj the function <p£ ¢ 1s the unique one-dimensional solution to

1
?p;ﬁ — div(D?V(0(xq). F + Vo) (G + Vol 5)) =0 inRY, (5.22)

where V' corresponds to the matching convex lower bound for W from Lemma 3.2.

Step 1. Estimate (5.5). We consider the random variable
F@ = [ ek e gdx.

where g: R — R4 is supported in B, (xo) and satisfies (5.12). We compute the derivative
of equation (5.22) with respect to a bounded perturbation §w supported in B (s): First, we
note that 8(/);,G € H!, (R4;R%) is one-dimensional in the sense that 8(0;’ ¢=F9 (p;, ¢ (xa)
and it is the unique weak solution to the ODE (cf. Step 1 of proof of Lemma 5.4)

1
Tg(plj;,G - axd (a(Xd)axd 8(p17;,G)
= 0x,00D*V(0(xq). F + Vo})(G + Vol ¢ ® eg)eqdw
+ 0x, D*V(w(xa). F + Voi)(V9E)(G + Voi g)eq inR, (5.23)
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where a(xz) is given in (5.16). We denote by /4 the unique weak solution in H'(R; R?)
to

1
Thl —0x,(a(xq)0x,h1) = 0x,8 inR (5.24)

and by h, € H'(R;R?) the unique weak solution to

1
72 = 0x, (@(xa)dx, ha)
= 0y, (D*V(xq. F + Vo) (G + Vo 6)(0x,h1 ® eq)) inR. (5.25)

Similarly to Step 1 of the proof of Lemma 5.4, by testing (5.24) with S(p; G- (5.23) with
h1, (5.25) with 5(p£, and finally (5.15) with /5, we obtain

§F = Aaxd&p;ﬁ -gdxg
- fR 000 (x)(G + Vo g)ea)sw - 0z by dxg
+ /R D>V(w(xa). F + Vo) (V)G + Vol g)eq - 0x,h1 dxg
_ /R 00a(xa)(G + Vo )ea)ew - e,y dxg
+ A doDV(0(xq), F + VoI)swey - dx,ha dxg,

and thus for all s € R (using (3.14) and (3.16)),

fBl(S)

97
ow ! ™

/|axdhz|25|c|2/ |axdh1|25|c|2/ g,
R R By (x0)

|F| < 1,and E[¥] = 0, we obtain
q]zlq

][ |G| [0x,h1| + dist(F,SO(d)) [0x, h2| dxg.
Bi(s)

Using

1
E[| % 29]|% 5q|G|EWR|axdh1|2ds

1
2
561|G|(/ |g|2ds)
By (x0)

<qlGlr 3,

and thus applying Lemma 5.3 we deduce (5.5).

Step 2. Estimate (5.6). This follows analogously to Step 2 of the proof of Lemma 5.4 and
using similar arguments to Step 1 of this proof.



Quantitative stochastic homogenization of nonlinearly elastic, random laminates 373

Step 3. Estimate (5.7). Using equation (5.22), we obtain that W := <p]2,,TG - (p; G solves

1 1
7Y div(D*V(w(xq), F + Vor)VV) = ﬁwg,G +divg inR?,

where
g = (D*V(w(xq). F + Vo) = D*V(0(xq). F + Vo 1)) (G + Vo).

Note that W is one-dimensional and solves an ODE corresponding to the above equation.
Thus Lemma 3.5 and (3.16) yield

A

1 1 1
— W2+ V2 d —/ 312+ —nleL o 12d
£ er e vetase < g [ Ee + nigol dx

A

1 1
L / G0V — VoL P + ~nlgk ¢ dxa,
R Jg T

where 1(z) = exp(—y |iR‘), y = y(a, p,d) > 0. Combining estimates (5.6) and (5.4) with
a dyadic decomposition of R and the exponential decay of 7, we obtain (as in Step 3 of
Lemma 5.4)

1

[ G eEGP + IRV GF — PP av) = el6I(R)"
RJg T - T
This completes the proof. u

Proof of Lemma 5.6. Throughout the proof we write < if < holds up to a multiplicative
constant depending only on «, d, p, and p. As before, we note that (p;G, g 18 the unique
one-dimensional solution to

1 i
ng,G,H —div(D*V(w(xa). F + Vor)Vok ¢ 1)

= div(D*V(0(xq). F + VoF)(H + Vol ;)(G + VoI 5)) inRY. (5.26)

Step 1. Estimate (5.8). We consider the random variable
7@ = [ 009k on) g dva,

where g: R — R is supported in B, (xo) and satisfies (5.12). We compute the derivative
of equation (5.26) with respect to a bounded perturbation dw supported in Bj(s): First,
we note that 8(/);’6 € Hlf)c(Rd; R¥) is one-dimensional in the sense that 8¢;’G =

8(,0},w .z (xa) and it is the unique weak solution to the ODE (cf. Step 1 of proof of
Lemma 5.4)

1 .
78‘/’}«:,(;,11 - axda(xd)axd&ﬁ;,cﬂ = 0x,v(xg)eq inR,
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where a(xy) is given as in (5.16) and
v =0,D?V(w(xa). F + Vo) Vol ¢ u
+ D*V(w(xa), F + Vor)(V8er)(Vor 6. i)
+ 00 D*V((xa), F + Vo) (H + Vor 5)(G + Vof )sw
+ D*V(w(xq), F + Vor)(V8ep)(H + Vi 5)(G + Vor )
+ D*V(w(xa), F + Vi) (V8¢E 1) (G + Vi )
+ D*V(w(xq). F + Vo) (H + Vor 1) (VégF 6).

As in Step 1 of the proof of Lemma 5.5, we compute §F := lim;_,¢ w as

follows:
5F =/ Vg - Ox P,
R

where 1y € H'(R; R?) denotes the unique weak solution of (5.17). In a very similar
manner to Step 1 of the proof of Lemma 5.5, thus omitting the details here, we obtain the
following estimate, for ¢ > 1:

E[|7 24|24 < q|G||H|r 2.

This yields the claim.

Step 2. Estimate (5.9). These estimates follow analogously to Step 1 of this proof and
Step 2 of the proof of Lemma 5.4.

Step 3. Estimate (5.10). We note that using equation (5.26), W := @%TG o= qp? G.g solves

1 1
Y- div(D?V(w(x4), F + VoF) VW) = ﬁ%@’G,H +divg inRY, (527

where

g = (D*V(w(xq). F + Vo3 ) — D*V(w(xa). F + VL)) Veis o
+ D*V(0(xa), F + Vo )(H + Vor p)(G + Vois)
— D*V(0(xa), F + Vop)(H + Voi 1)(G + Vor ;)

= (D*V(w(xq). F + Voi") = D*V(o(x4). F + Vo)) Voi s u

+ D*V(w(xa). F + Voi" )H + Vi ) (Voi's — Yok )
+ D*V(0(xq). F + Voi )(Voi y — Voi g)(G + Vor )
+ (D*V(0(xq). F+Vei)—D*V(w(xq). F+Ve[))(H+Vel p)(G+Vof 6).



Quantitative stochastic homogenization of nonlinearly elastic, random laminates 375

The Lipschitz continuity of D?V(w,-) and D3V (w, -), combined with estimates (3.16)
and (3.18), yields
21 S |HIIGIIVeE = Voi| +H|IVoEG = Vokgl + |G Vei y = Vi ul.

We remark that W is one-dimensional and thus (5.27) boils down to an ODE, hence
Lemma 3.5 yields

1
][ — W% + |[V¥|2dxg
Br(xo) T

1 5 1
< E(/ nlg1> dxq + 7/ 77|‘/’17~:,G,H|2dxd)
R R

1
<7 [ HPIGPIVGET — VoFR) dxy
R
1
+ 1 [ UHPI0HG =L o+ GP Vgl = Yok ) dva

1 T
+ ﬁAU|¢F,G,H|2dxdv

where 7(z) = exp(—y %l) with y = y(«, p,d) > 0. Using a dyadic decomposition of R

combined with (5.4) and (5.7), we conclude (5.10). [

6. Proofs of quantitative results: Theorem 2.12 and Corollary 2.13

6.1. Random fluctuations, proof of Theorem 2.12 (i)

Proof of Theorem 2.12 (i). Throughout the proof we write < if < holds up to a multiplica-
tive constant depending only on «, d, p, and p.

Step 1. Preparation. For given oy € Q1 and F € R*?, we denote by (pf; the unique

corrector for the matching convex lower bound, i.e., the unique minimizer of (4.1) (and
solution to (4.2)). We recall that (pf; e Wh>°(Og;R?) is one-dimensional in the sense that
golé (x) = (p{,; (x4) and satisfies estimate (4.7). Moreover, for all F' € Uz with S(ad, p) >
0 as in Theorem 2.4, we have ||dist(F + Vgolé, SO(d))||Le@;) < 6§ with § > 0 as in
Lemma 3.2 and thus

Whom 2 (1. F) = ][D W(ww (). F + Vok) dx
L

L
= VLo P+ Yokt dsa = udeF). 6.1

Step 2. Fluctuations of Whom,L, proof of (2.13). We define a random variable ¥: Q —
[0, o0) by

. 6.1
F(or) = Waom,L(wL, F) @ ]{ | V(oL (xa). F + Vok) dxg — pdet(F).
0,L



S. Neukamm, M. Schiftner, and M. Varga 376

We compute its derivative with respect to a bounded periodic perturbation §wy, supported
in B1(s) + LZ:

5F (g, Seop) = lim S PL+180L) = F(wr)

t—0 t

—{  BuV(Lva). F o+ Vehibor

5

+ DV(wp(xa), F + Vok) - Vépk dxq. (6.2)

where &pf; is an L-periodic function with zero mean (solution to (6.3)). Hence, the second
term on the right-hand side in (6.2) vanishes. In order to estimate the first term on the
right-hand side above we make use of W(-, R) = 0, DW(-, R) = 0 for all R € SO(d)
(hence 0,V (-, R) =0, d, DV (-, R) = 0), and thus we obtain with Rr € SO(d) such that
|RF — F| = dist(F,SO(d)) that

30 V(oL (xq), F + Vok)

1
= [ (1—1)D?3,V(wr(xq), RF + t(F — Rp + VoF))

x [F — Rp + Vi, F — Rp + Vok]dt

1
= 510DV lico@y|F = R + VoE 2.

Therefore, (4.7) and |Rr — F| = dist(F, SO(d)) yield

oF 1
][ ) up I8F (01, 801)| < — dis®(F, SO(d)).
Bi(s) 0oL | 54, L

Finally, the gth version of the spectral gap inequality in the form of (5.1) yields

L

EL[|F —EL[F]?]% < qL~"dist*(F,SO(d)).
This implies the claim (2.13) (see Remark 5.2).

Step 3. Fluctuations of DWiom,L, proof of (2.14). As in the previous step it suffices to
show the corresponding claim for DV instead of DW. For F € U; and G € R¥*4  we
consider the random variable

F=f  DV@L(a). F+Veh)- G dx = Dlhan1(FG].

0,

We compute its derivative with respect to a bounded periodic perturbation wy, supported
in Bi(s) + LZ:

SF(@) = | 0uDViwr(ra).F + Voh)bor -G + Lufwr () Vigk - G da,
(0,L)
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where R
Lz(o1(xq)) = D*V(wr(xa), F + Vek(xa)),

and 8(,0% € Wpi},zo (dr) solves
—divLEVSpE = div(d, DV (wr(x4), F + Vek)swr) inOp. (6.3)
As in [21, proof of Theorem 9a] we introduce the auxiliary function & € Wpl’2 (Op) sat-

er,0
isfying
—divL,Vh =divL,G inOg 6.4)

and obtain (by testing (6.4) with 89011; and (6.3) with h)
§F(wr) = ][ doDV(wr(xq), F + VoE)swr - (G + Vh) dx.
OL

Appealing to d, DV (w, R) = 0 for all R € SO(d), we have
|80 DV (L. F + Vo) llL=@y)
= 19o DV (@1 F + Vo) 1=0.L)
< dist(F, SO(d)),
and, by Lemma 3.6 (iii), it holds that i (x) = h(xg) with
IVilLe@y) < IVAllLe©,L) < 1G]

Combining the previous three estimates, we obtain

aF
Sup][ | S dist(F. SO(d)) |G|L™",
s JBi(s)! 0L

and thus, appealing to the gth version of the spectral gap inequality in the form of (5.1),

1

EL[|F —EL[F]1?7]% < qL™"dist(F,SO(d)) |G]|.

Hence, (2.14) follows.

Step 4. Fluctuations of D?*Wiom.L, proof of (2.15). For G, H € R4*4 | we define the
random variable

¥ (wr) = D*Vhom, (0. F)H -G

= ][ D*V(wr(xq). F + Vo) (H + Vof 5) - G dx,.
[0,L]
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We compute its derivative with respect to a bounded periodic perturbation §wy, supported
in B1(s) + LZ:

§F = ][ doLESwL(H + Vok 1) - G dxg
(0,L) ’
+ ][ D*V(wr(xq). F + Vop)VpE(H + Vo ) - G dxg
(0,L)

+ ][ IEIL;V&;)I% g Gdxy
©o,L) ’
= 11+12+I3, (65)
where 8¢k solves (6.3) and 8¢}€’H € Wple;?o(DL; R4) solves
—div(LEV8pk ) = div f inOp, (6.6)
where
f = 0oLE(H + Vof g)sor + D*V(or(xa), F + Vok) Vg (H + Yok ).

We estimate the three terms on the right-hand side of (6.5) separately: For the first term,
we use
L L (4.16) L
L S |GIIH +V¢F,HI|L0<>(DL)][ borldx; < |G| IHl][ 8w | dxy.
0 0

. . 1,2
To estimate />, we introduce /1y € Wy

(Or; RY) satisfying
—divL, Vi = divD*V(wp(xg). F + VeE)(H + Vek )G in0Of, 6.7)

and obtain (by testing (6.7) with 5(,01% and (6.3) with /)

|I,| = 30DV (wr(xq), F + Vok)swy - Vhy dx

O

L
< dist(F.SO(d)) |H| |G| ][ S,
0

It remains to estimate |/3|. Considering /, the solution to (6.4), we obtain (testing (6.4)
with §¢% ; and (6.6) with h)

I = ][ doLESwL(H + Vok ;) - Vhdxg
(0,L)

+ ][ D3V(wp(xa). F + Vo£)VépE(H + Vg 5) - Vhdx,
(0,L)

=: 14+ Is.
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As before, we have | 14| S |H| |G| J[(o L |6wr | dxg4. The same argument as for the estimate
of I, but with G replaced by Vh yields

151 £ dis(F.SOW@) G H| f s | dva.
(o,L)
Collecting all these estimates, we obtain

0F
Sup][ So-| = (14 dist(F.50@@)) (6] |H|L™!
s JBy(s)' OWL

and the claim follows via a further application of the spectral gap inequality. ]

6.2. Systematic error, proof of Theorem 2.12 (ii)

In order to treat the systematic error, we introduce a localized version of the RVE approx-
imation: for any configuration w: R — R, and for a compactly supported cut-off function
n satisfying

neCrMR), nz=0, /RW(Xd)dxd =1, (6.8)

we set
Wy (F) = /Rr)(xd)W(a)(xd), F + V(p;(xd)) dxy for F € Us, (6.9)

where the localized corrector (p}; and § are as in Lemma 3.8. Furthermore, we define a
cut-off for a realization w € Q:

Cl)(xd) lfxd € [_Lv %]7

nrw(xg) = { (6.10)

0 otherwise.

We define Wy, r(rpw, F) by replacing w by mpw in (6.9). Note that @ and w;, admit the
same distribution on B L (0) according to Definition 2.8. Thus we have E; [ (rrwp)] =
E[¥ (;rpw)] for any random variable ¥ . This motivates the following decomposition of
the systematic error of Whom:

IEL[I/Vhom,L(F)] - Whom(F) = IEL[Whom,L(F)] - IEL[Wn,T(F)]
+ EL[W,,’T(F)] — IEL[W,,,T(T[L(U, F))
+ E[Wyr(mLw, F)] = E[W,r(F)]
+ E[Wy,7 (F)] — Whom (F). (6.11)
The first and last terms on the right-hand side in (6.11) measure the localization error

and the middle terms correspond to the error made by the ensemble periodization. In the
following we treat these two sources of error separately; see Lemmas 6.2 and 6.3 below.
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In order to estimate the systematic error related to D W, and D?Wiom We use an analo-
gous decomposition to (6.11), where DW,, 7 and DZW,],T are given via

DW,r(F)-G

= [ 1) DWw(xa). P + V9FGa)) - (G + ik g () dxa (6.12)
D*W, r(F)H -G

= /R n(xa) D*W((xa), F + Voi(xa))(H + Voi. 5 (xa)) - (G + Vof 5(xa))

+ 1(xa) DW(w(xq). F + Vor(xa)) - Vi ¢ g (xa) dxg. (6.13)

Remark 6.1. Assumption (6.8) and the stationarity of the random field (x4, ®) —
F (xq, ) = W(o(xq), F + VoL (xg)) imply

E[Wy,r(F)] = JE[/R n(xa)¥F (x4, ) dxd} = JE[}']/Rndxd = E[F].

Hence, E[W,, r] coincides for any choice of 1 satisfying (6.8). Clearly, analogous state-
ments hold for DW,, 7 and D?W, .

Lemma 6.2 (Cost of localization). Suppose the assumptions of Theorem 2.12 are satis-
fied. Let L > 3 and let P, be an L-periodic approximation of P in the sense of Defini-
tion 2.8, and denote by Wyom,L the corresponding representative w_)lume approximation.
There exists c = c(a, p,d, p) € [1,00) such that forall F € Us with 8 > 0asin Lemma 3.8
the following estimates are valid:

() Forall T > /2, we have for £ € {0, 1,2} and all n satisfying (6.8),

1

ﬁ.
(i) For all T € [v/2, L?], we have for £ € {0, 1,2} and all n satisfying (6.8) with

suppn C (=%. %),

IE[D W, 1 (F)] — D Whom(F)| < ¢ dist? (F, SO(d)) (6.14)

1
i

Lemma 6.3 (Cost of ensemble periodization). Suppose the assumptions of Theorem 2.12
are satisfied. Let L > 3 and let P, be an L-periodic approximation of P in the sense of

|EL[D Wy, 1 (F)] = EL[D*Whom,(F)]| < ¢ dist?~“(F, SO(d))

Definition 2.8, and denote by Whom,L the corresponding representative volume approxi-
mation. There exists ¢; = c1(a, p,d) € [1,00) such that for all F € Uz with § > 0 as in
Lemma 3.8 the following estimates are valid:

|E(D Wy, 7(nL(). F) = D Wy, (. F)]| < c dis®™ (F. SO(d»%, 6.15)

where T = (% ﬁ)z with ¢ = c(a, p,d) € [4,00) as in Lemma 3.9 and ny, denotes a

nonnegative weight supported in B _;7(0) with [ni| < % Moreover, the same estimates

are valid with E replaced by Ep .
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Proof of Theorem 2.12 (ii). Follows directly from Lemmas 6.2 and 6.3 and the decompo-
sition of the systematic error (6.11). [

Proof of Lemma 6.2. 'We provide the argument only for part (i); the argument for part (ii)
follows the same pattern. Throughout the proof we write < if < holds up to a multiplica-
tive constant depending only on «, d, p, and p. Moreover, we suppose that § is as in
Lemma 3.8.

Step 1. Estimate (6.14) with £ = 0. Since limr oo E[W; 1 (F)] = Whom(F), which fol-
lows from E[f det(F + V(p;)] = det(F), Remark 6.1, (4.6), and (3.2), we have

oo

Whom(F) = E[Wy 7 (F)] = Y (E[W, is17(F)] = E[W, 57 (F))).
i=0

and thus it is sufficient to prove

|E[W, 21 (F)] — E[W,.7(F)]| < dist?(F,SO(d)) forall T > 1.

1
JT
We compute
Wy o1 (F) — Wy, 7 (F)
- /R H(W((a). F + V) — W), F + Vob)
— 1DW(w(xq). F + Vo) - (Vo3 — VoF)
+nDW(w(xg), F 4+ VL) - (Vo2 — VL) dx,
_ /Rn(W(w(xd), F 4+ Vo) — W(w(xg). F + Vo))
—nDW(w(xq), F + Vol) - (Voi —Vof)

1
— N0k - (@F —F) = DW(0(xa). F + Vo[)eq - dx,n(¢F —¢F) dxa.

Taking the expectation of the estimate above and using E[ [ 9x,7F | =E[F] [g 0x,nd x4
= 0 for any stationary field ¥, we obtain

[ELWy o7 (F)] — E[W, r(F)]
1
S| [ 01963~ VobPaxa| v 5| [ olobl i — o dna |

< EUR n|Ve3 — V«)?Izdxd]

1
1 > 1 2
+]E/—n|¢%T—<p§|2dXd E/—W?Izdxd :
rR T rRT

According to Remark 6.1, we may choose 7 supported in B 7(0) with || < # In this
way, (5.3) and (5.4) yield the claim.
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Step 2. Estimate (6.14) with £ = 1. As in Step 1, it is sufficient to show that
1

[ELDWy 21 (F) - G] = E[DW, 7 (F) - G| 5 dist(F. S0(@) 6]

We compute
DW, 7 (F)-G — DW, 7(F)-G
= [ iDW(a). P+ V6E) - (G + Vo)
—nDW(w(xq). F + VoL) - (G + VoL ¢)dxg

= / N(DW(w(xq). F + Vo3 ) — DW(w(xa). F + Vo})) - (G + Vor ¢) dxg
R

+ /R IDW(w(xa). F + Vg3T) - (Vo2ly — Vol o) dxg

[ n0W (o). F 4 V) = DW@ixa). F o+ VoF) - (G + Yk o) dxa
= [ D W (a). F + Vo)V = Vob)- G + VoF ) dva

+ /R nDW((xq). F + Vo) - (Voi e — Vor ¢) dxa

+ /R ID2W(0(x0), F + Vo) (Vo3 —Vk) - (G + Vo ) dxy

=lo+ 11 + 1+ I3

We treat the four integrals on the right-hand side using the following arguments. In par-
ticular, for this purpose we rely on the cancellations coming from (5.4). Specifically,
a Taylor expansion, combined with (3.16), (5.4), and a suitable choice for 5 (that is,
supp7 C B 7:(0) with |n] < %) yields

1

E[10+1115|G|1E[][ -

[T v dva| 161 dise(F,50(a)
JT

Further,

(3.13) 1
L= —/ TW%T(sO%,TG —0Fc)
R
+ 35, DW(w(xq). F + Vo Yeq - (976 — ¢F.6) dxa.

The second term on the right-hand side has zero expectation and thus (5.3) and (5.7) yield

E[l,] < dist(F, SO(d)) |G|%.
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Finally, we have
I = [ D*W(lxa). F+ VPG + VoF.o) n(eF = VoF) dva
2 /R %w?,c(w%T —9F)

+ 02, 1(D*W(w(xq). F + Vo) (G + Vo geq) - (95 —¢f) dxa.

Taking the expectation, the second expression on the right-hand side vanishes. Therefore,
using (5.4) and (5.6) we conclude E[/3] < dist(F, SO(d)) |G| «/LT Collecting all the esti-
mates, the claim follows.

Step 3. Estimate (6.14) with £ = 2. As in the first step, it suffices to prove

|E[D*Wyor (F)H - G] = E[D*W,,r(F)H - G| < |H| |G| (6.16)

1
JT
We compute (dropping w from the notation)
D*Wyor(F)H -G — D*W, r(F)H - G
- /R D(DPW(F + VoIV (H + Veily) - (G + Vo2l
— D*W(F + VL) (H + Vok ) (G + Vo ) dxq
+ /R n(DW(F + Vo) - Voi'c g — DW(F + Vor) - Vok ¢ i) dxa
- /R H(D>W(F + Vg2T) — DW(F + Vb)) (H + ok 1) - (G + Yok ¢) dxg
- /I; ID3W(F + Vol) (Vo3 — Vel )(H + Vgl 1) - (G + Vb ¢) dxg
+ /ﬂ; IDPW(F + Vol ) (Vo — Vol )(H + Vol ;) - (G + ok ) dxg
+ [ IDPW(F + Vo2l (V2ly — Vgl ) - (G + Vol o) dxg
R
+ /ﬂ; IDW(F + Vg2l )(H + Vg2Ty) - (Ve2Ty, — Vol o) dxg
+ / n(DW(F + Ve3') — DW(F + Vgk)
— D*W(F + Vo) (Voi —Vor) - Vor gy dxa
+ [R IDW(F + Vg2T) - (Vo 1 — Vb 6 i) dxa
+ / nD>*W(F + Vo) (Vei" —Vep) Vo 6y dxa
R

=h+L+Iz+14+1s+1s+ 17+ Is.
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A Taylor expansion combined with (5.4) and (3.16) yields
1

|E[11+121|5|G||H|E[f P

Vo3 — vk ﬂ < |G| H] | dise(F. SO(d))
B

Testing equation (3.17) with n(goIZVT - gog), we obtain

1
Isi+Is = —/R FN9EGu(PF —¢F) dxa — /R Vn® (pF —¢F) - S dxs,
where
S = D>W(F + VoL)\Vor g g + D*W(F + Vo) (H + Voi 1)(G + Vol ;)

is a stationary random field. Hence, the expectation of the second term above vanishes
and thus (5.4) and (5.9) yield |E[/5 + Ig]| < |G| |H|JLT. Analogously to the treatment of
I + I, we obtain with the help of a Taylor expansion, (3.18), and (5.4),

. 1

|E[Z6]| < dist®(F,SO(d)) |G| IHlﬁ-

Similar computations to the estimate for /3 + I3 yield (using (3.15) and (3.13))
1

ﬁ.

Collecting all these bounds we conclude (6.16). [

[E[ls + Is]| + [E[[7]| S |G[[H]

Proof of Lemma 6.3. Throughout this proof, we set ® = wyw (see (6.10)) and denote by
@;, (25;’6, and @; 6.5 the solutions to (3.13), (3.15), and (3.17) with  replaced by .
The relevant estimates for $%, ¢L -, ¢L . ,, are contained in Lemma 3.9.

Step 1. Proof of (6.15) with £ = 0. Note that v/T < % (recall VT = 5-E7 with ¢ > 4)
and thus w = @ on the support of 7. Hence, a Taylor expansion implies

W'IL,T(&Bv F) - W'IL,T(C’)’ F)

= /RnL(W(a)(xd), F +V§r) — W(o(xq), F + Vok)) dx,

1
- /R " /0 DW(w(xq). F + Vb + (9(F — pEN(V(oE — §5)) dxq.

Using DW(-, R) = 0 for all R € SO(d) and the deterministic estimates ||V(p£||Loo +
||V@;||Loo < dist(F, SO(d)) (see (3.14)), we obtain

1

2

E[Wy,.r(mL F) — Wy, 7(F)] < dist(F,SO(d»]E[][ |V¢£—V¢£|2dx3}
N

(3.19) 1 L
< dis®(F;S0(d)) exp(—— —)
~ 2¢ T

and in combination with the choice of 7" we obtain (6.15).
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Step 2. Proof of (6.15) with £ = 1. As in the previous step, we use @ = @ on supp 7z,
and Taylor expansion to obtain

DWy, 7(F)-G — DWy, r(m10. F) -G
6.12)
2 [ DW( (o). F +Y9h) (G + Vo)
—nLDW(w(xq). F + V§5) - (G + VoF ¢) dxa

= /R nL((DW(w(xq), F + VoL)— DW(w(xq), F + Vor)) - (G + V(p},:’G)) dxg
+ [ DWetea), F + ) - Viek g = 7F.) dva.
Hence, the deterministic estimates (3.14) and (3.16) imply

(DWy, 7 (F) = DWy, 7(mL(0), F))- G

1
2
< |G|(]£ V(oF — oF |2dxd)
.

T

+ dist(F. SO(d)) ( ][ VE g — @F )l dxd) §

Byt
Finally, (3.19) and (3.20) in combination with the choice of T yield the claim.

Step 3. Proof of (6.15) with £ = 2. Using @ = w on supp 1z, we compute
D?W,, r(nrw, F)H -G — D*W,, 7(F)H -G
(6.13) ~ ~ R N
= UL[DzW(CO, F+Vop)(H +Vop g) (G + Vog g)dxa
+ DW(@. F +Vor) -Vt g u)

[D*W(w, F + Vop)(H + Vor i) - (G + Voi )
+ DW(w.F + Vop) - Voi g y]dxa

- [ (D> W(w. F + V§E) — D2 W(w. F + Vol)(H + Vgl )
R
x(G + V(pICyG) dxg

+ / LD*W(w, F + V5 (VoT ;= Vol )G + Vel o) dxg
+ /ﬂ; ILD?W(w. F + V) (H + V§L ) (VoF ¢ — Vol ¢) dxa
+ /R n(DW(w,F +Vor) — DW(w, F + V@F))(V(p;,G,H) dxg

+ /R nDW(w.F + Vo) (Vor 6.y — Vb 6.u) dXa
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1 1

2 2

< |H||G|(f |V¢£—w£|2dxd) +|G|(][ |V¢F,H—V¢£,H|2dxd)
Byr Bor

T

1
2
+ |H|(][ Vot e — Vok gl dxd) + dist(F, SO(d)) |G| |H|
.
1

2
AT T 2
Y F,G,H_V‘PF,G,H| dxd) )

+ dist(F, SO(d)) ( ][

B
where the last estimate follows from the properties of W and (3.14), (3.16), and (3.18).
Finally, estimates (3.19)—(3.21) and the choice of 7" yield the claim. ]

A. Linear corrector equation

We recall the following standard result. We state it in terms of our specific probability
space; however, it also holds in a more general stationary and ergodic setting.

Proposition A.1. Ler (2, S, P) satisfy (P1)—(P2) and for T > 0 we consider a measurable
function L7:Q x R? — L(R4*4 RI*4). We assume that there exists ¢ > 0 such that for
all T > 0 and for P-a.e. w € Q, it holds that

1
-/ |Vn|2dx§/ Lr(w.x)Vn-Vndx foralln e CP(RY),
C JRdA R4

L7 (w(xa))| < c. (A1)

(i) Then, for any gr € L®(Q x R4; R¥*4) there exists ¢ € Hulloc(Rd; R%) a
unique solution to

1

T(pT - div(]LT(w,x)V(pT) =div(gr(w,x)) in R,

(i) We additionally assume the following:

(a) There exists L: Q2 x R4 — L(R*4 R4*4) satisfying an analogous assump-
tion to (A.1). There exists g € L®(Q x RY; R4*4),

(b) The mapping (w,x) —~ (L1 (w, x),L(w, x), gr(w, x), g(w, x)) is a station-
ary random field.

(c) It holds that
limsup||g7 (| Lo (@xre) < 00,
T—o00
lim (L7 (w, x), gr(®,x)) = (L(w, x), g(w,x)) a.e.
T —o00

1
uloc

Then there exists ¢ € H: (R?:R%), a unique solution to

—div(L(w, x)Ve) = div(g(w, x)) in R,
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with the following properties:
][ ¢dx =0, Vo is a stationary random field,
O

E[][Dwdx] =0, E[]{jwwdx} < o0.

Moreover, it holds that
1
lim sup —2][ lp|?>dx =0,
l1m IE[][ |Vor — Vo|? dx] = 0.

The proof of this proposition is a simple variation of [38] and for this reason we omit it.
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