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Norm inflation for solutions of semi-linear
one-dimensional Klein—Gordon equations

Jean-Marc Delort

Abstract. In space dimension larger than or equal to 2, the nonlinear Klein—-Gordon equation with
small, smooth, decaying initial data has global-in-time solutions. This no longer holds true in one
space dimension, where examples of blowing-up solutions are known. On the other hand, it has been
proved that if the nonlinearity satisfies a convenient compatibility condition, the “null condition”,
one recovers global existence and that the solutions satisfy the same dispersive bounds as linear
solutions. The goal of this paper is to show that, in the case of cubic semi-linear nonlinearities, this
null condition is optimal, in the sense that, when it does not hold, one may construct small, smooth,
decaying initial data giving rise to solutions that display inflation of their L% and LZ2-norms in
finite time.

Introduction

It is well known that quasi-linear Klein—-Gordon equations with smooth, small, decay-
ing initial data have global-in-time solutions, in space dimension larger than or equal
to 3, as has been proved independently by Klainerman [21] and Shatah [28]. The same
holds true in two space dimensions, according to Simon-Taflin [29] and Ozawa—Tsutaya—
Tsutsumi [27]. On the other hand, in one space dimension, finite-time blow-up may occur.
Examples of nonlinearities for which this happens have been obtained by Yordanov [32]
and Keel-Tao [18]. In [10], we introduced for a general quasi-linear nonlinearity a “null
condition”, expressed explicitly in terms of the quadratic and cubic parts of the nonlin-
earity, and we conjectured that, under that null condition, small data that are smooth and
have some decay at infinity should give rise to global solutions. We showed in [11, 12]
that this conjecture holds true for C§° initial data. We refer to Lindblad—Soffer [23-25]
for nonlinearities depending only on u, to Hayashi—-Naumkin [17] and to Stingo [31] for
more general data, and to the bibliography of [11] for references about the state of the art
at the time of publication of that paper.

The goal of the present paper is to show that, in the case of cubic semi-linear nonlin-
earities, i.e. for the equation

(07 — 0% + Du = P(u, d,u, dxu), (1)
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where P is a homogeneous polynomial of degree three, our null condition is optimal, in
that sense that if it is not satisfied, one can construct solutions, with small and decaying
initial data, that do not enjoy the same dispersive bounds as the ones that hold true for
linear solutions (or nonlinear global solutions when the null condition is satisfied). More
precisely, the null condition was obtained in [10] extracting from the PDE an ODE which
has global solutions for small data if and only if the null condition holds. When this is
the case, the asymptotics of the solution of this ODE give the asymptotic behavior of the
global solution of the PDE. When the null condition is not satisfied, this ODE blows up at
some finite time, depending on the parameter y = 7 € |1, 1. The minimal blow-up time
for y describing ]—1, 1] is of the form eS*/ ¢? for some Sy > 0 (when blow-up occurs in the
future), ¢ < 1 being the size of the initial condition. In [10] it was shown that the solution
exists and has L°°-norm at time ¢ which is 0(%) fort < e4/¢*, for any constant A < Si.
The main result of this paper (see Theorem 1.2.1 below) asserts that one may construct
initial data so that for t = T'(g) close enough to eS*/ ¢?_ one has inflation of norms in the
sense that

VT@XWKT@DHU0+H@MUY@th)ZCT@ﬁ—CN€§, £—>0

for positive constants ¢, ¢’. In other words, the solution is still small at time 7'(g), but
exponentially large when compared to the size of linear solutions. Of course, this norm
inflation result does not mean that the solution does blow up, but we explain in the remarks
that follow the statement of Theorem 1.2.1 that this is the best we may expect, if we want
to single out a property of the solution that follows only from the violation of the null
condition, and that is in contrast with the kinds of estimates that hold true under the null
condition.

The proof of the main theorem relies on the construction of an approximate blowing-
up solution, that was inspired for us by the papers of Cazenave—Martel-Zhao [6] and
Cazenave—Han—Martel [5]. In these references, the authors construct blowing-up solutions
for Schrodinger equations of the form

(i0; —*)u = ajul*u, o eC—R. )

(In fact, their result is not limited to one space dimension nor to cubic nonlinearities.)
They first look for an approximate solution given in terms of a profile that satisfies some
ODE and blows up at time ¢t = 1. Next they write the equation satisfied by the difference
between this approximate solution and the exact one. They prove that this equation has
a global backwards solution with zero initial condition at (or close to) the blow-up time.
The sum of this solution and of the approximate one brings thus an exact solution to (2)
that blows up at time ¢ = 1. See also Liu—Zhang [26] and for blowing-up solutions of
Schrodinger equations with small data, the preprint by Kita [19].

Our general strategy is the same, except that we have to cope with some difficulties
inherent to the Klein—-Gordon equation. To describe the strategy, let us write equation (1)
as a first-order system on (u 4, i 4 ), where u 4 is a new complex-valued unknown deduced
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from u, with first equation

(D = V1+DHur =MDy uyur) + MP (g uy iiy)
+ M® g iy i) + M@ (g iy i), (3)

M ) being nonlocal expression of their arguments, homogeneous of degree 3. The differ-
ence from (2) comes from MM M3 M@ which are not invariant under w4 — zu for
z € U(1). On the other hand, these terms are “noncharacteristic”’ ones, since when com-
puted on a linear solution, they oscillate along a noncharacteristic phase for the linear part
of (3). Our proof thus has two steps, as in [5, 6]. First, we construct an approximate solu-
tion starting from small initial data (e, £go) With fo, go in 8 (R). If the null condition is
not satisfied, choosing fy, go conveniently, we have constructed in [10] an approximate
solution defined on some interval [1, eS*/ & [as

€ X\
U;pp(l, xX) = 2Re[$a1,1(82 log1, ?>ezm

3
+ 8—3a3,3 (82 log ¢, ;, 8)€3i Viz-xZ 4 O(EI_%)], 4)
12
where ay,1(s, y), as,3(s, y, €) are functions supported for |y| < 1, smooth in (s, y) for s <
S«. As a consequence of the violation of the null condition, one may construct a1 (s, y),
as (s, y, ) that blow up if s — Sx—, so that (4) provides a useful approximate solution
only fort < e4/?” with A < S,. If one wants to study what happens for ¢ close to eS*/gz,
one has to construct a more accurate approximate solution, gluing (4) for say t < e3S+/ 4s?
to another approximate solution, defined on 5/ 268 < < @SH/? given by an ansatz of
the form

2 — 2—0,—t iJi2—x2 2 X
uapp(t,x)—ZRe[ E e T 2et * ag,l(s logt,?s
=1
£ odd
N , .
¢ —L£ 3 2_x2
+ E E 82(1 Kl‘ 2ezq«/t X ae,q(é‘zlogl‘,?,&‘)}, (5)
(=3 3<g<l
£ odd g odd

where ag 4 (s, y, ) are functions that blow up at s = S, like (S« — s)_%_o. If s = g2 logt
is close to Sy, the ag 4 terms in the two sums in (5) are thus larger and larger, so that
(5) cannot provide an approximate solution. But we may exploit the dispersive decay
factor =2 and limit ourselves to times ¢ < T'(¢), where T'(¢) is such that T (¢)~'(Sx —
e2log T'(¢))~! < 1. Under this restriction, (5) provides a function satisfying (1) up to a

small remainder. Moreover, T'(g) is close enough to ¢5*/¢* so that ufpp(T(e), x)+/T(¢)

will be large (actually of size e¢”/ %) in L.

The second step of the proof is to look for an exact solution u(t, x) = u,pp(t, x) +
r(t, x), where u,p, is the approximate solution obtained gluing together u;pp and ufpp
above, and r a remainder that will be zero as well as its time derivative at t = T'(¢).
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Then r solves the backwards equation with force term deduced from (1) replacing u by
Uapp + 7. One has to show that if the approximate solution has been constructed in an
accurate enough way, the remainder r exists down to time ¢ ~ 1 and that at this initial
time, it perturbs the initial condition (g fy, £g¢) used to construct the approximate solution
only at order o(¢). The general strategy employed to prove such properties is to use the
methods that are useful in the study of global existence (normal forms, energy estimates
for the action of x £ t(;—) on the solution of the reduced system obtained by normal forms
for the remainder). A difference from problems of global existence is that the equation
satisfied by the remainder contains linear terms (coming from the linearization of the
approximate solution). The coefficients of these linear terms being expressions containing
the approximate solution, they are relatively large close to 7' (¢), and thus cannot be treated
as perturbations. In order to overcome this difficulty, we use an idea of Cazenave—Han—
Martel [5]: we remark that in a Gronwall inequality, the growth of the amplifying factor
coming from this large coefficient is more than compensated by the fact that the source
term against which it is integrated — which comes from the error in the equation applied
to the approximate solution — may be made as small as we want.

The plan of the paper is as follows: In Section |1 we recall the definition of the null
condition and state the main theorem. Section 2 is devoted to the construction of the
approximate solution. In Section 3 we study the remainder given by the difference between
the exact and the approximate solutions. We express it as a solution of a (2 x 2)-system
with source term, and obtain energy estimates for the Sobolev norm of the remainder and
for the L%-norm of the action of Ly =x+ t% on it. Finally, in Section 4 we con-
clude the proof using a bootstrap argument and a Klainerman—Sobolev estimate to control
L*°-norms. The appendix is devoted to some technical results used in the proof.

To conclude this introduction, let us give some references to other works concern-
ing the construction of blowing-up solutions for nonlinear wave equations instead of
Klein—Gordon ones. In the quasi-linear case, recall that in three space dimensions, the null
condition was introduced by Christodoulou [9] and by Klainerman [20, 22], who proved
that global existence with small decaying initial data holds true under that assumption. In
two space dimensions, Alinhac [3] defined the (more complicated) corresponding version
of the null condition and also proved global existence when it holds.

When the null condition is not satisfied, the study of blowing-up solutions and of
their asymptotic behavior was undertaken by Alinhac in a series of papers [1,2,4]. For
more recent references on that and further results, we refer to the book by Speck [30] and
especially its preface and introduction. We notice also that the situation considered in all
these papers is quite different from the one we encounter in the present work, as in these
quasi-linear models, the singularities that form are of shock type, i.e. the quantities that
blow up are second-order derivatives, while in our setting, the function itself (or its time
derivative) will display norm inflation. For the construction of blowing-up solutions for
semi-linear wave equations with a nonlinearity depending only on the function itself, and
not on its derivatives, we refer to the papers by Cazenave—Martel-Zhao [7, 8] and their
bibliographies.
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1. Statement of the main theorem

1.1. Semi-linear Klein—-Gordon equation and the null condition

We consider the cubic semi-linear Klein—Gordon equation in one space dimension
(07 — 92 + Du = P(u, d;u, dxu), (1.1.1)

where P is a polynomial homogeneous of degree 3, with real coefficients, which we write
in the form

3
P(u,d;u,0xu) = Z Py (u;0:u, 0xu), (1.1.2)
k=0
where Py (T; Z1, Z,) is homogeneous of degree k in (Z1, Z,) and 3 — k in T, with real
coefficients. We define, for y € |1, 1],

Y

1
w(y) = —. 01(y) = ——"—,
0 /T—y2 ! 1—y2

(1.1.3)

and we set
Pk(wo(y), w1(y)) = Pr(1:wo(y), w1(y)),

¢(y) = (p1 +3p3)(@o(y), w1(»)), (1.1.4)
¥V (y) = —=Bpo + p2)(@o(y), w1(y)).
We recall the following definition from [10]:

Definition 1.1.1. One says that the nonlinearity in (1.1.1) satisfies the null condition if
¢ =0.

Assume that the null condition is satisfied and take in (1.1.1) initial conditions of
the form u(1, x) = ef(x), 0;u(1, x) = eg(x) with f, g € Cg°(R). Then, it was proved
in [11, 12] (see also Stingo [31]), including in the case of quasi-linear equations with
quadratic and cubic nonlinearities (for which one has to modify the expression of ¢ in
(1.1.4)), that, if the null condition is satisfied, for ¢ > 0 small enough, the solution to
(1.1.1) is globally defined for # > 1 and satisfies L bounds of the form ||8’;u(t, e =
O(SI_%) when ¢ goes to +00. The solution thus decays like a solution of the linear Klein—
Gordon equation in one space dimension. Of course, a similar statement holds when ¢ goes
to —oo. On the other hand, it was also proved that scattering does not hold (one has only
modified scattering).

We are interested here in the case when the null condition is not satisfied, and we
want to construct initial data that generate inflation of the norms of the solution in finite
time, i.e. we want to show for instance that the L°°-norm will not satisfy the dispersive
bounds that hold true under the null condition. Consequently, in order to ensure that the
null condition does not hold, we assume

sup $(y) > 0. (1.1.5)
ye]_lﬂl[
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This will allow us to construct solutions that display norm inflation at some positive time.
Ifin (1.1.5) ¢ was replaced by —¢, we would in the same way get inflation of the norms
at some negative time.

1.2. Main theorem and norm inflation

Let fo, go be two real-valued functions in § (R). We associate to them a quantity that will
appear in the expression (2.1.9) of the modulus of the solution to the ODE (2.1.8) below,
and that will control the blowing-up time. Namely, we set

L) = (=) o) =i VT= g0 (12

which is a smooth function on ]—1, 1] that, extended by zero outside this interval, gives
a smooth function on R. (This function was introduced in [10, formula (1.18)], but the
expression given there is correct only if fy, go satisfy some evenness or oddness condi-
tions. In general, the correct expression is (1.2.1).) By (1.1.5), we may choose fy, go in
$ (R) such that sup,¢j_; 1[(I'(y)¢(y)) is positive, and we define S« > 0 by

1
5. = Swp T»e (). (1.2.2)
* yel-1,1]

As I'(y) vanishes at infinite order at y = +1, and ¢ grows at most polynomially at these
points, the supremum is reached at some points in |—1, 1[. We shall assume

y — I'(y)¢(y) reaches its maximum at a unique point yo € |—1, 1],
and, moreover, there is kg € N* such that 83 TO»EO))y=y, =0
fora =0,...,2ko — 1 and 83"0 T3P))]y=y, <O0. (1.2.3)

Of course, one may always choose functions on, go in S(R) such that (1.2.3) holds,
because of (1.1.5).
Lety > 0,8 > 0 be fixed positive numbers. For ¢ > 0 small, define

, _ 2+y+28
& =€ 14257 exp(-

S—) <1 (12.4)
(1 + 20 : -

Let u (&) be the unique small solution satisfying 1(0) = 0 of the equation

uze’exp( " )
1426

so that u(e’) = &' + O(¢'?), ¢ — 0. We define
S* 4 Sx / 12 /
T(e) = exp(g—z —u(e )) —ed (1—¢ + 0(?), & —0. (1.2.5)

Our main theorem is the following one:
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Theorem 1.2.1. Let fy, go € S(R) be given such that assumption (1.2.3) holds. Let ¢ > 0,
0 > 0 be given small numbers. Let so € N be a large enough integer. There is §; > 0 and
forany §' €10, 8y], any y = 2(8' + 2), there are g9 > 0, C > 0 such that for any ¢ € ]0, o],
there are functions x — (f(x,¢€),g(x,€)) in HOTY(R) x H% (R), small in the sense that
1£Co)lgsoss + 18C &)l = Ce'™°

lxfC.o)lla + lxg(e)llz2 = Ce' ™,

so that the unique solution u of (1.1.1) with initial data

u(l,x) = e(fo(x) + f(x,8), du(l,x) =e(go(x) + g(x.¢)) (1.2.7)
is defined for t € [1, T (¢)] and satisfies

(1.2.6)

I
[u(T (&), VLo + [[0:u(T (e), )L = WI(S), (125
[u(T (&), )Lz + 10:u(T (e), ")l = eJ(e),
where L
I(e) > cT(e)2™, J(e) > cT(e)2 0 . (1.2.9)

Remarks. Let us make the following comments:

e By (1.2.5), T(e) is exponentially large when ¢ — 0+. Then (1.2.8) and the first
inequality (1.2.9) show that one has inflation of the estimate of the L°°-norm of the
solution by a factor /(g) in comparison with the O(g/+/T (¢)) bound that holds when
the null condition is satisfied. In the same way, if k9 > 2, (1.2.8) and the lower bound
for J(g) in (1.2.9) imply inflation of the L2-norms in comparison with the O(T (&)%)
(o > 0 arbitrary) bound that holds under the null condition.

e The solution u will be written as the sum of an approximate solution and of a remain-
der. The lower bounds (1.2.8) are those of this approximate solution (constructed from

fo, go) at time T (g).

* The exact solution will be given by the sum of the approximate solution and of an
error obtained solving a backwards Klein—Gordon equation with zero data att = T ()
and source term determined by the approximate solution. This error generates in the
initial conditions (1.2.7) the O(e2~?) perturbation of (& /o, £20).

* As mentioned in the introduction, our method of proof is inspired by the construction
of blowing-up solutions for nonlinear Schrodinger equations by Cazenave—Martel—
Zhao [6] and Cazenave—Han-Martel [5]. For Klein—Gordon equations that do not
satisfy the null condition, in general we cannot expect to get blowing-up solutions,
but only norm inflation. Actually, the null condition provides a global existence cri-
terion only in the framework of small data: in order to uncover it, one has to make
some reductions (through normal forms) in order to eliminate some noncharacteristic
contributions to the nonlinearity. These reductions bring new terms in the nonlin-
earity, vanishing at order five at the origin. As long as data are small, these quintic
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corrections are negligible, but they could play a prominent role for larger solutions.
As a toy example, consider the ODE y = % y3, with data y(0) = &, whose solution
y(t) = JL blows up at time ¢ = e% The perturbed equation y = %y3(1 —y?)

1— 2
with the samté initial condition has solutions that are globally defined for ¢ > 0. If we
set
&2 \~3
= (1-¢1 )
a(e) ( &” log —

the solution satisfies

y(1)? N2 ea(e)

y(t)(l — (1) log —) S (1.2.10)
1—y(1)? (1 — te2a(e)?)?

At time 1, = ¢ 2a(e)"2(1 — £272%) with § > 0 small, we deduce from (1.2.10) that
y(t) will be of size essentially ¥, much larger than the size ¢ of the initial data (though
still small). This is the same phenomenon as the one that happens in the theorem.

2. Construction of approximate solution

2.1. Construction for moderate time

Our first goal is to construct an approximate solution for equation (1.1.1) with initial
condition

u(l,e) = efo(x), du(l,e) =ego(x) 2.1.1)

where (fo, go) are functions in §(R) chosen so that (1.2.2) and (1.2.3) hold true. In this
subsection, we construct the solution up to time e35*/ 4e? essentially following [10]. We
introduce the notation

p&) =V1+E% Li=x=x1p'(Dy).

We first take as an approximate solution over an interval [1, e1+9], where 6 > 0 is small,
the solution u¢ of the linear equation

(02 — 32 + Dug = 0,

(2.1.2)
uo(l,-) = efo, ruo(l,-) = &go.
Proposition 2.1.1. Set
ro(t,x) = (8? - 3)26 + Dug — P(ug, dsug, 0xUg). (2.1.3)
Then for any so € N, 8 > 0,¢ > 0, there is C > 0 such that
C871+0
[ Il dr < e
! (2.1.4)

1460

ce”
/ |Liro(z,)|lgrdr < Ce?tf,
1
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370 means e37% for any k > 0. Moreover, if for |y| < 1, we denote

p(y) = V1—-y2,

then for t > 1, we may write ug in the form

wo(t, x) = 2Re[%e”¢(x/’>(a‘f(f) + ;b1< ) + tlz 1( x))] +se(t,x), (2.1.5)

t t

where &

where a%(y), b%(y), (resp. ¢¥(t, y)) are smooth functions on R (resp. [1, +0o[ x R), sup-
ported for |y| < 1, with

~/_

for |y| < 1, with ¢? satisfying for any o, B, N in N,

al(y) = —=(1—y*)" 4[f0(w1(J/))—l — y280(01(»))] (2.1.6)

10305 ¢Y (1, )| < Capnt (1= Iy)", .1.7)
and where e(t, x) is a real-valued function in S ([1, +00] x R).

Proof. Expansion (2.1.5) is given in [10, Proposition 2.1.1]. To get estimates (2.1.4), we
just notice that ro(t, x) = — P (ug, 0;Ug, IxU) may be written according to (2.1.5) as the
sum of an element of §([1, +o0o[ x R) that is O (&) in that space, which trivially satisfies
(2.1.4), and of expressions of the form

3
S_eiqt(p(x/t)c<t’ ’I_C)

12

for some function ¢ of the same form as ¢ in (2.1.7) and some ¢ in Z. Such terms satisfy
(2.1.4). This concludes the proof. ]

Our next step is to construct the approximate solution for ¢ up to e35+/ e We first
introduce the solution s — a1 (s, y) of the differential equation

0165 ) = 3@0) + WO Dlara 5.0 (s.)
ar1(0,y) = a}(y),

where a?(y) € C{°(R) with support in [—1, 1] is defined in (2.1.6) and where wo(y),
¢(y), ¥ () have been introduced in (1.1.3), (1.1.4). It follows from (2.1.8) that

(2.1.8)

slar,1(s, > = ¢(»)wo(y) Har (s, y)|*

when |y| < 1, so that

0 2
lara (s, )1 = 1) = Lok 2.1.9)

1— a3 Pe()y/T—y2s 1 =Té()s
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using definition (2.1.6) of a‘l) and notation (1.2.1). By (1.2.2), ay,; is thus defined for
s € [1, S«[ and plugging (2.1.9) into (2.1.8), we get the explicit expression

LYy
2(y)

In particular, a; 1 is a smooth function of (s, y) € [0, S«[ x ]—1, 1] that extended by zero
for |y| > 1 is smooth on [0, S«[ x R, since a9 and I" are C* on R, supported in [—1, 1].

We shall construct an approximate solution of (1.1.1) defined for 7 € [ce™' ¢ ¢3S+/ 462]
that will match with u¢ defined in Proposition 2.1.1.

ar1(s.3) = af((1 = TP~ exp| =5 T2 log(1 = T(1P()s) | 2.1.10)

Proposition 2.1.2. There are, in addition to function a1 introduced in (2.1.10), smooth
functions (s, y) — a} 5(s. y) (resp. (s, y,€) = ag5(s.y.€), (s,y,8) = als(s.y.¢))
defined on |0, 35*] x R (resp. on [0,235*] x R x [0, 1]), supported for |y| < 1, such that if
we define for ce 7110 <1 < ¢35+/48%,

(t,x) = 2Re[—a1 1<8 log?, ) ite(x/1)

NG
+

aPP

™
w

X .
a;’3 (82 log?, ?>e3”“’(x/t)

al 53 (82 log?, )t_c’ 8)e3i"”(x/’)

+

-~
n | P o

|°””

+ —ral (% logr, ;,g)eS’W(x/’)] @.1.11)

~
(S

the following holds true: the remainder

Fap(t2X) = (07 — 8% + Dujy — Py, 0, 8xul) (2.1.12)
may be written as
x 1
dpp(t X) = 2Re[ t zetﬂﬂ(x/t)CSl(g log?, L E )] + FaLp, (2.1.13)

where Cs.1(s, y, h, &) is continuous on [0, 3f*] x R x]0, 1] x [0, 1], with uniform estimates
for the function and all its 9, 0y, hoy-derivatives, supported for |y| < 1, and Fa},p satisfies
forany s € N estimates

exp(384/4£2) 0
/ ” app([’ ')”HS dt < Ce* s
c

146

exp(3S4/482) (2.1.14)
/ L4 Fp(t, )l g1 dt < C&>~ 9.

e 146
Before starting the proof of the proposition, we introduce some notation. We shall
denote by £ the ring of continuous functions (y, &, &) — w(y, h, ¢) defined on the domain
]—1,1[ x ]0, 1] x [0, 1], such that for any «, o’ in N2, there is Koo in N so that the
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function (1 — y2)Xaw a5 (h d5)¥ w is uniformly bounded. Then the space of functions of
(. h, ¢) defined and continuous on R x ]0, 1] x [0, 1], bounded as well as their 9y, 10,
derivatives on that domain, and supported for |y| < 1, is a -module. If (s, y) — a(s, y)
is a smooth function on [0, S«[ x R, supported for |y| < 1, and if ¢, £ are (odd) integers
with 1 < |¢g| < £, we notice that

(02 — 92 + 1)[ei’q‘”(x/’)t_%a(82 logt, ;)]

= (11— 21990 g(s, y)

s=e2logt
y=x/t
+2igr 00 g (1) 280 — 2(E Va5 9o g
y=x/t
—5-2,itqe(y)
+12 % Ra(a)(s.y,8)ls=s2 10g1> (2.1.15)
y=x/t

where wg was defined in (1.1.3) and R;(a) belongs to the J#-module generated by
8"‘8“a(s y),o+a <2
Let us first compute the linear part in expression (2.1.12) of rapp

Lemma 2.1.3. There is a smooth function (s, y, &) — bs 3(s, y, ) (resp. a smooth function
(s,y,8) = bs1(s,y,¢)), defined on [0, 3i*] x R x [0, 1], supported for |y| < 1, which
is fully determined by a§’3 (resp. ai,1) in (2.1.11), and there are continuous functions
(s,y,h,8) = by 4(s,y,h,¢), defined on [0, 3‘2*] x R %0, 1] x [0, 1], supported for |y| <1,
bounded as well as their 05, 0,,, (h0p)-derivatives, for ¢ = 3,5,77, fully determined by a 1,
aéj, a§,3, aé,s such that the following equality holds true:

3 .
@ -9+ Dul = 2Re[2iw0(y)8—38”“’(”8sa(s,y)
12

app

e 5
—8=e*"Wgl (s, y)
t2
8 .
+ _Selt‘p(y)bs’l (S, Y, 8)
t2
_63”‘/’()’)[8@,3(& y.€) —bs3(s,y,8)]

12

_24t edite() 1 (s V., €)

5
£ itqe(y) p1 ( 1 )
+ . De brals:y.7oe R CAR D)
g=1 y=x/t
Proof. We apply (2.1.15) to each term in definition (2.1.11) of udpp The a;,; term in

(2.1.11) brings the ﬁrst term on the right-hand side of (2.1.16) and the third one. If we
apply (2.1.15) to the 1~ 363300 3.3(s, ) termin (2.1.11), we get the second term on the
right-hand side of (2.1.16), the b5,3 term (which depends only on a 3’3) and contributions
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to the last sum. In the same way, applying (2.1.15) to the et_iaé 3e3"" term in (2.1.11),
we get the al 5 term in (2.1.16) and contributions to the last sum. Finally, the last term of
(2.1.11) brings the aé,s term in (2.1.16) and contributions to the last sum. ]

Next we compute the nonlinear part in definition (2.1.13) of rapp

Lemma 2.1.4. There are continuous functions (s, y) — ¢3,4(s,y), ¢ = 1,3 (resp. (s, y, )
— c54(s,v,6), 1 <q <5 g odd resp. (s,y,h,e) = c74(s,y,.h,¢), 1 <q=15 ¢
odd) defined on [0, 35*] x R (resp. [0, 321*] x R x [0, 1], resp. [0, 3f*] x R x]0, 1] x
[0, 1]), supportedfor |¥| < 1, with all their 05, 0y, hop-derivatives bounded, such that

P(uapp, app, ) uapp) may be written in the form

2Re[83t_g Z 1My (s, y)
q=1,3

+&343 Z e”q“’(y)cs,q (s, y,e) + 851_%eit5“’(y)cs,5(s, )

q=1,3
3,-1 itqe(y) ( 1 )
+&’t72 de e c1qls,y, t,e = logt” (2.1.17)
124<15 y=x/t
Moreover, c3 1 is given by
c31(s.y) = i(p(y) +iv()lari(s. y)Pari(s. y) (2.1.18)
with ¢,  defined in (1.1.4) and
c3,3 depends only on ay 1,
¢s,q, 4 = 1,3,5 depends only on ay 1, a§’3, (2.1.19)

¢1,4, 4 0dd, 1 < q <15, depends only on ay j, a§,3, aéjq,, q =3.,5.

Proof. For the proof, we introduce the notation

Ul (t’x) \j— ltw(x/t) (82 logt’ ;)7
3
Us(t,x) = 8_ 3ite(x/1) 1 (8210gt, ;)

é
2

~

Then, by (2.1.11), we may write

P (g, sty Dxttgyy) — P(2Re(Ur + Us, 8, (Ur + Us). 0x(Us + U3)))  (2.1.20)

as a linear combination of expressions of the form

L X
Ptz e"”“’(x/’)c(e2 logt, - e)
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with p >3,£>7,1<|q| <15, q odd, and c(s, y, ¢) smooth on [0, 3‘2*] x R x [0, 1],

supported for |y| < 1, i.e. (2.1.20) contributes to the last term in (2.1.17). We are thus
reduced to the study of P(U; + U3z), where

Uj = (Uj + U0}, 00(U; + ). 9:(U; + ).
By Taylor expansion,
P(U; + Us3) ~ P(Uy) + DP(Uy) - Us

modulo terms that contribute again to the last term in (2.1.17). The last term DP(U;) - U3
may be written as contributions to the t_%—expression in (2.1.17) with coefficients c¢s5 4
satisfying (2.1.19) and as contributions to the last term in (2.1.17). It remains to study

P(Uy) = P(Uy + Uy, 0,(Uy + Uy). 0x(Uy + 0y)). (2.1.21)

When computing 9, Uy, 0, Uy, if the derivative does not fall on the exponential, we get an
extra ¢! factor, so that (2.1.21) may be written as new contributions to the last two sums
in (2.1.17) and as the expression

&3

P(ei“”(y)al,l(s, VIQUY) + e 1Way (s, MRY)), (2.1.22)

3
2

~

with the notation

Q) = (Liwo(y),iw1(y)). (2.1.23)
Then (2.1.22) provides the =3 termin (2.1.17), and to prove (2.1.18) we have to explicitly
compute the ¢?/¢(") term in (2.1.22), which gives

¢3,1(5,¥) = DP(ar,1(s, y)Q»)) - a (s, y)Q(»)

= lari(s.y)Pari(s. Y) DP(Q() - Q) (2.1.24)
since P is homogeneous of degree 3. The explicit expression of c3,; given by (2.1.18)
follows from the next lemma. |

Lemma 2.1.5. Let P be the cubic polynomial given by (1.1.2) and let Q2 be given by
(2.1.23). Then

DP(Q(y)-Q(y) =i(¢p(y) +iy(»)) (2.1.25)
with ¢, ¥ defined in (1.1.4). Moreover,
D*P(Q(y) - (Q(y). Q(»)) = 2i(@(y) +iv(y)). (2.1.26)

Proof. Since P is homogeneous of order 3, DP(X)X = 3P(X), whence the equality
D?P(X)(Y,X) =2DP(X)-Y, so that (2.1.25) implies (2.1.26). Let us show (2.1.25).
Writing as (T, Z1, Z5,) the variables of P, we have by (2.1.23),

= opP opr oP
DP(Q)Q = ﬁ(l,iwo,iwl)—iwoﬁ(l,iwo,ia)l)—iwlﬁ(l,iwo,ia)l)

= (T8T—ZIBZI —ZzaZZ)P(l,iwo,iwl). (2127)
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Write the decomposition (1.1.2) as P(T, Z1, Z5) = Zi:o P.(T:; Zy, Z,), where Py is
homogeneous of degree k in (Z1, Z,) and 3 — k in T. We get that (2.1.27) is given by

(3P() — P2)(1,ia)o,iw1) + (P] — 3P3)(1,i600,i(01)
= (3P0 + P2)(1,wo, 1) + i(P1 + 3P3)(1, wo, ®1).

Going back to definition (1.1.4) of ¢, ¥ we obtain (2.1.25). ]

Proof of Proposition 2.1.2. By (2.1.12), ralpp is the difference of (2.1.16) and (2.1.17). We
first choose a1,; as the solution to equation (2.1.8). By (2.1.18) this implies that the first
term on the right-hand side of (2.1.16) cancels out the ¢3 1 termin (2.1.17). By (2.1.19), the
c3,3 term in (2.1.17) is now determined, and we may eliminate it from (2.1.17), choosing
aéﬁ(s, y) = —%c3,3(s, ¥)in (2.1.16). By (2.1.19), the ¢s 4 are now determined, as are bs ;
and bs 3 in (2.1.16), according to the statement of Lemma 2.1.3. The bs; contribution to
(2.1.16) and the c¢5,; contribution in (2.1.17) will form part of the ¢5,; term in (2.1.13). On

the other hand, if we set

1
1 2
as3 = —g(CS,38 —bs3),
1 1
a = —7—C55
3,3 2477

we cancel out the =3 terms in (2.1.16) and (2.1.17).
We are thus left with only the ¢~ contributions coming from (2.1.16), (2.1.17), which

are all of the form
Sei,q¢<y>tfgc(s, w1 5)
t

e logt (2.1.28)
y=x/t

for continuous functions on [0, 3{*] x R x]0, 1] x [0, 1], supported for |y| < 1, bounded

as well as their dy, 0y, (h0j)-derivatives. The Sobolev norms of (2.1.28) integrated for
t > ce 119 are thus 0(53_29), which is better than the first inequality (2.1.14). If we
make L act on (2.1.28) before computing the H !'-norm, we lose an extra power of ¢ and
get instead, after integration, an O(¢2~?) bound that brings the second estimate (2.1.14).
This concludes the proof. ]

Next we glue together the function u¢, solution to (2.1.2), which is an approximate
solution of (2.1.1) for small times according to Proposition 2.1.1, and the function u]
defined by (2.1.11), which is also an approximate solution for intermediate times.

PP

Proposition 2.1.6. Let yo in C*°(R) be equal to 1 close to 0. Define for 1 <t < 35+/4¢%

o (£,%) = o (' ~0 (1 = Duo(t,x) + (1 = xo) ('t = D)ugyy(t.x)  (2.1.29)

and

M x) = (02— 92+ Dl — P!

hp — PQul . dxttngy)- (2.1.30)

atu app

M
app’



Norm inflation for solutions of Klein-Gordon equations 487

One may write

e _ 1
r;\gp(t» x) = 2Re [l—gell(p(y)xl(El 9[)C5’1<S, y, ;’ 8)i| + FM

app

(t,x) (2.1.31)

s=¢&2logt
y=x/t

where x1 € C®(R) is equal to 0 close to 0 and equal to 1 outside a neighborhood of 0,

¢s,1(8, v, h, &) is a continuous function, bounded as well as its 05, 0y, (hdy)-derivatives
on [0, %] x R x]0, 1] x [0, 1], supported for |y| < 1, and where Fal\élp satisfies

exp(38s/4£2) .
/ | Fopo (2. ) |l zs dt < Cse?™ (2.1.32)
1
forany s € N and
exp(3Sy/482) 9
f L+ Flp(t,) | g1 dt < Ce*™ (2.1.33)
1

Proof. We decompose r » using notation (2.1.3), (2.1.12) as
ran =T+ x0T @ = D)o + (1= xo) (e = D)y, (21.34)
with
ram = (07 — 92 + Dujh, — xo(e' 0 (t = 1))(97 — 92 + Dug

—(1- xO)(el“’(t — )37 — 9% + Duy, (2.135)
and
r}l\sp,NL = —P(uggp, 8,u2gp, app) + yo(e'™ g(t — 1)) P(ug, 0;ug, dxUp)
+ (1= xo) (e ™0t = D) P(uly,. dubyy. dxuly). (2.1.36)

Let us study (2.1.35) and (2.1.36) successively.

* Study of (2.1.35). By definition (2.1.29) of uM . we may write (2.1.35) as

app’
e 0 0o (e 0t — 1)) ruo — drupyy) + e yg (e 0t — D)o — ). (2.1.37)

By (2.1.5) and (2.1.11), we have

Uapp

e .
(1, 3) — ul (1. %) = [ L) a1 5.)

e . 1

+ — lw(y)th,l <y, —)
t3 t
& ..

+ 5e¥Wes5(s, y)
t3
e .

+ e300 3 (5,3, )
12
&

+

~
N\Ul

5it(p(y)cs,s(& Vs 8)}

s=¢&2logt
y=x/t

+ ee(t, x), (2.1.38)
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where the functions c¢ 4 (s, y, &, €) are continuous functions of their arguments s € [0, %] ,
y €R, h €]0,1], e € [0, 1], supported for |y| < 1, bounded as well as their 9, 9, (h0p)-
derivatives on their domain of definition, and where e (¢, x) is in § ([1, +00[ x R).

Denote by o some function in C§°(]0, +-00[). If we take a time derivative of the
second term on the right-hand side of (2.1.38) and multiply it by '~ 7o (¢!~ (r — 1)) =
1~ 11" 7o(e'=?(t — 1)), we get an expression of the form of the first term on the right-
hand side of (2.1.31). This shows that the contribution of the c3; term in (2.1.38) to
(2.1.37) has such a form.

We need thus to prove that all other terms in (2.1.38) give, when plugged into (2.1.37),
contributions to Fal‘gp in (2.1.31). By (2.1.8), a1,1(0, y) = a?(y), so that the product of
the first term on the right-hand side of (2.1.38) by &'~ 7o('~(r — 1)) is bounded in
modulus by

L6 01 Fo ("0 (1 — D)6t log 11 ju/rj<1. (2.1.39)
t2
Similar or better estimates hold if we take d; or d,-derivatives, so that the contribution of
the first term on the right-hand side of (2.1.38) to (2.1.37) satisfies, as well as its derivat-
ives, bound (2.1.39). As the L2(dx)-norm of (2.1.39) is 0(82+9_0t_2]l,~87
that a bound of the form (2.1.32) holds. If we make L4 act on the corresponding term
before computing an H '-norm, we get a bound in O(219=°r=11,___i.4) which implies
that (2.1.33) holds as well.
We are thus reduced to showing that the third to the last terms on the right-hand side of
(2.1.38) also give contributions satisfying (2.1.32), (2.1.33) when plugged into (2.1.37).
This is evident for the last term. The other ones bring to (2.1.37) expressions of the form

146), We see

t~e~

8(1
l%—i_l

T = 1)e "D e(s, 3. &) smg10g - (2.1.40)
y=x/t

with eithera =3, £ =3 ora = 1, £ > 5. The L?-norm of (2.1.40) and its derivatives
is O(S“IJ# 1, .-1+6), whose integral largely satisfies (2.1.32). To obtain (2.1.33), one
has to make L act on (2.1.40), which makes one factor ¢ appear, so that the H !-norm is
0(8%_@%1 1,...-1+6). Because of the conditions on a, £, one gets an 0(£279) bound as in
(2.1.33). This concludes the estimate of (2.1.35).

» Estimate of (2.1.36). From definition (2.1.29) of uggp, we may write (2.1.36) as the sum
of expressions
P(ugf,p, X00suo + (1 — )(O)Btu;pp, Bxuggp)
— P (uby. 9; (xouo + (1= xo)uyy). dxupy ) (2.1.41)
and
XoP (o, drttg, dxtto) + (1= x0) P(Ugppys ez, Dxttgyy)
— P(xouo + (1 = x0)uyp» x0d:10 + (1 — x0)ds1iyyp,
X00xuo 4+ (1= x0)dxuy,,). (2.1.42)
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Difference (2.1.41) may be bounded pointwise by

2
Ce' | xp(e" 0 (t = 1) Juo — app( > (9508u ;pp|+|a“aﬂuo|)). (2.1.43)

a+p<1
The difference uy — u;pp is given by (2.1.38), so that its modulus is bounded from above on
the support of yp(e'™ O(t — 1)) by Cet™2 (using that the first term in (2 1.38) is 0(%3)
with s = e2logt = O(t) if t ~ ¢~ 1+9). In addition, uapp, ug are O(et~ 2) as well as their
derivatives. Then (2.1.43) is bounded from above by
Ce* 1)/ 0( — 1))t 3 (Ux=r + O((x) V). (2.1.44)

A similar bound holds for the derivatives of (2.1.41), so that (2.1.32) is largely satisfied.
To get (2.1.33), one has to bound the L?-norm of (2.1.44) multiplied by ¢, so that the
conclusion follows as well.

It remains to study (2.1.42), which may be written as

X0(1 = x0)M (o, ;10. 9x10. gy D11ty Dxthgy) (2.1.45)

for some cubic expression M. Since by (2.1.5), (2.1.11), uy, uapp and their derivatives are

O(st_%]l|x|5,) + O(et™V (x)_N), we get that the Sobolev norm of (2.1.45) is of mag-
nitude O(e3t~'1,_,-1+6), which brings an estimate of the form (2.1.32). In the same way,
the integrand in (2.1.33) is O(31,._,-1+¢), which gives an O(2*?) bound for the integral.

This concludes the proof, since we have shown that (2.1.35) may be written as a con-
tribution to the ¢s; term in (2.1.31) and as a remainder that may be integrated to F, app,
since (2.1.36) is also of the form F;\gp and since the remaining terms yoro + (1 — )(O)rapp
in (2.1.34) are of the form of the right-hand side of (2.1.31) by Proposition 2.1.1 and
(2.1.13). [ ]

2.2. Construction for large time

Our next goal is to extend the approximate solution that has been constructed up to time
35+/4¢? in order to almost reach the blow-up time e5+/ ¢ At this time, the main part of
the profile (2.1.11) blows up and we introduce notation for spaces describing the solution
close to the blow-up time.

Definition 2.2.1. Letm € R, yo be a point in |—1, 1] and k¢ € N*. We denote by X" the
space of continuous functions (s, y, h, &) — a(s, y, h, ) defined on [0, S«[ x R x ]0, 1] x
[0, 1], with values in C, smooth in (s, y, k), supported for |y| < 1, that satisfy for any
integers «, 8, ¢, N, any (s, y, &, €) in the domain of definition, estimates

B
10208 (hop)ta(s. y. h.e)| < Capen (Se =5+ |y — yol*)" 20 (1— [y, 2.2.1)

In particular, ™ is a #”-module (for & defined after Proposition 2.1.2). Moreover, 0% 85 a

B
belongs to =% 2% C X"~%~B_ When a does not depend on one of the variables / or
g, we remove it from the notation.
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Example. Consider the function ay,;(s, y) defined in (2.1.10) with a(l) smooth on R,
supported for |y| < 1. Then a;,; is smooth on [0, Sx] x R — {(S«, yo)} because
of (1.2.2), (1.2.3). Moreover, for y close to yg, (1.2.3) implies that I'(y)¢(y) = SL* —

(y — y0)?°O(y) for some smooth positive function ®, so that we get estimates of the
form (2.2.1) withm = —%, i.e. ay,; belongs to »3.
Our goal is to prove the following proposition:
Proposition 2.2.2. Let § > 0 be a small number, N € N. One may construct for all odd
¢
integers q, € satisfying 1 < q < { < N elements ay 4 of 228D yirh ai, given by

S Sx
(2.1.10) so that, if we define fort € [e2e2 ,e* [, x € R,

N
uZ (1,x) =2Re |: Z SZ_KZ_%eitw(y)al,l(s» V. €)

app
£=1
£ odd
i ¢
2q—L,—5 ,itqe(y)
+ £ t"2e ayg (s, v, & , 222
423 326 Z,q( Y ):| s=¢2logt ( )
= <g< —
odd g cdd y=x/t
then
2 _ (92 a2 2 2 2 2
Fapp = (07 — 0% + Dy, — Pugy,, 0rugy,, 0xtiy,,) (2.2.3)
may be written as the sum of the noncharacteristic expression
3N .
2Re 24421199y, (s, y, e 2.2.4
D> o L @2
{=N+23=<g=<tl y=x/t
£ odd ¢ odd
with, for3 < q <,
e )
and of a characteristic expression
3N .
6—L,—5 it
2Re Y 772D dy (5. 9. 8)]mg 10gs (2.2.5)
(=N+4 y=x/t
£ odd

with
diy € SEIE

Before proving the proposition, we establish several lemmas.

Lemma 2.2.3. Assume we are given N an odd integer and for any odd integers £, g
satisfying 1 < q < { < N continuous functions (s, y,€) — agq(s,y,€) on [0, Sx[ x R x
[0, 1], smooth in (s, y), supported for |y| < 1. Let Py be the ring of functions (y, &) —
y(v, &) continuous on 1—1, 1] x [0, 1], that are smooth in y and have at most algebraic
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growth, as well as their 0, -derivatives when y2 — 1 (uniformly in ¢). For each ¢, { as
above, denote by C; 4 the Po-module generated by all cubic expressions of the form

3
[157 9 ag,.q, (5. . 0). (2.2.6)
j=1

where Lj € N, q; € Z are odd, o, Bj € N, ag; —q, = ay; q;, and where the following
inequalities hold true:

3
DO +20; +28) <L g =lg1+q+4qsl. (2.2.7)
j=1
Introduce
N .
Ult.x)y =Y Y 27721 Way o (s. 9. 8)]sm 2 10 (2.2.8)

=1 1<g<{ y=x/t
£ odd g odd

Then we may write

3N
PQ2Re(U. 3;U,3,U)) = 2Re [ 3N 20ty (s, y.6)

(=3 3<g<t(
£ odd g odd

3N

6—C,—% itp(y) 79
~|—Z€ [ 2e ce,l(s,y,s)”S:slegt, (2.2.9)

=3 =
£ odd y=x/t

where ¢y 4 belongs to €y 4. Moreover, for3 < q < {,
cg,q depends onlyonapy g, 1<q <0 <{-2. (2.2.10)
In addition, c3,1 is given explicitly by
c31(s.y) = i(@(y) +iv(y)lariari(s. y) (2211
and for £ > 5, one may decompose
co1(s,y,8) =cy (s, ,8) +cp (s, y,8), (2.2.12)

where Cé,l is given explicitly by

. . 1,
¢fa(s.3.8) = 200 () + 1Y Ol Parai + 503 11 )(.7.0)  (2213)
and
¢/ y depends only onay g for1 <q' <€’ <{—4

oronag4,3<q <{—2anday;. (2.2.14)
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Proof. We notice first that (2.2.7) implies that

3
> @lgjl—t;) =2q9 ¢ 2.2.15)
j=1

and that for terms (2.2.6) that are characteristic, i.e. such that ¢ = |q1 + g2 + ¢3| = 1, we
have |q1] + |g2] + |q3] — g > 2, so that

3
> @lgil— ) =2lgl +4—L=6-L. (2.2.16)
j=1

Let us compute (2.2.9). From (2.2.8), and the expressions that may be obtained for d,U,
¢ . .

dxU from that formula, we see that the 772 terms in (2.2.9) are given by the product of

etiatex/1) (4 € N, g odd), of an element of €y,q and of a power of ¢ of the form

eXi=12lgj|~¢)+a 2.2.17)

for some @ > 0. In the noncharacteristic case ¢ # 1, it follows from (2.2.15) that (2.2.17)
is O(£247%) and in the characteristic case, (2.2.17) will be O(£5~¢) by (2.2.16). We thus
obtain the structure indicated in (2.2.9). Let us check properties (2.2.10) to (2.2.14).

Since in (2.2.7) all £; are larger than or equal to 1, and ¢; 4 is given by a cubic expres-
sion of the form (2.2.6), (2.2.10) holds necessarily.

Let us consider now specifically the characteristic terms c¢; in (2.2.9) with £ > 5.
These terms are given by (2.2.6) with indices satisfying (2.2.7). In this property, either
one {; is equal to £ — 2 and then the others are equal to 1 and o; = ; = O for all j, or all
{; are smaller than or equal to £ — 4 (recall that they are odd). This last case corresponds
to contributions c(’z”l satisfying the first alternative in (2.2.14). On the other hand, if one
{jisequaltof —2,say {3 = £ —2,then £; = £, = 1. If the g3 associated to £3 satisfies
|g3] > 3, we get a contribution to cZ’ | corresponding to the second alternative in (2.2.14).
We are thus left with terms of the form (2.2.6) with

aj=B;=0, l3=L£-2, |q3|=1, Li=L=1 |q1+q2+q3=1 (22.18)

These terms give 02,1 in (2.2.12) and have to be computed explicitly. Notice also that in
the case £ = 3, c3,; is itself of that form. Moreover, we have also |¢;| < {; =1, j = 1,2
so that we see that we have to compute those terms of (2.2.9) that oscillate on the phases
+1¢(y) and that come from the contribution to U given by

N
U'tx) = Y 2 ay 1 (5, 1) sme2 g (2.2.19)
=1 y=x/t
Denote by U, the general term of that sum and set

v = U, + U, 0,(Uy, + U}, 0x(U, + Up)). (2.2.20)
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We thus have to compute the contribution to (2.2.9) given by those terms in
P( > (U + ﬂ’,)) (2.2.21)

that oscillate along the phases e**¢*/?) and that come from the terms (2.2.20), where 9,
and d, act on the oscillatory factors coming from (2.2.19) (since in (2.2.18),a;j = ; =0
for any j). Using the notation Q2(y) = (1, iwg(y),iw1(y)) we see that we may reduce
(2.2.21) to the expression

P(2R ite(y) =% ay : 2.

( e|:52(y)e Z & 2ag 108, y) ime? gt (2.2.22)
[,’ 1 y=x/t
£’ odd

By (2.2.18) we are only interested in contributions to (2.2.22) that are at least quadratic in
ai,i,di,i,1.e. we may reduce (2.2.22) to

P2 Re[Q(y)eit"’(y)t_%al,l (s, )D
N
+ Y @ DPQRQ( V1 ar (5. )
L2

-2 Re[Q(y)e”‘p(y)t_%/ag/,l (s, »)e* )| (2.2.23)

s=¢2logt"
y=x/t

The first term in (2.2.23) has been already computed in (2.1.22), (2.1.24) and brings ¢33

given by (2.2.11). The term in t_%e”‘/’(y) coming from the sum in (2.2.23) is obtained

when £/ = £ — 2 and is equal to the ¢?*¢(") term in
eG_Zt_%DP(Qe”‘"al,l +e7Qay ) - (QePag_y 1 + e Qa5 ).
Taylor expanding this expression, we see that we have to consider
74 5e10a? g0 DP(Q) - Q + a1 Pag—2, D2 P(R) - (2. Q)].
By (2.1.25), (2.1.26), this gives (2.2.13) and concludes the proof of the lemma. [

We apply the preceding lemma to compute P (u> apps 0 dpp, Oxu dpp)

Corollary 2.2.4. Assume that ufpp is given by (2.2.2). Then

P@u? . 0.u% ,0u

app’ aPP ’ aPP)

3N

= 2Re [ Z sﬁ—ft—ge"’“’(y)ce,l(s, . ¢€)

{=3
£ odd

3IN L

0.t
+ Z Z g29—4 Ze”q‘p(y)64’q(s,y,8):|

(=3 q=3
q odd ¢ odd

L (2.2.24)
s=¢g* logt
y=x/t
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where ¢y 4 is an element of ¥~ §-8(=D+28 which, for q > 3, depends only on ay 4,

1 <q' <l <{—2 wherecs, is given by (2.2.11) and for £ > 5, ¢y, may be decomposed
into the form (2.2.12) with (2.2.13) and (2.2.14) holding true.

Proof. The left-hand side of (2.2.24) is (2.2.9), so that we obtain expression (2.2.24).
The coefficients cg , belong to €; 4, i.e. are given (up to Po-multiplicative factors) by
expressions of the form (2.2.6) with indices satisfying (2.2.7). Since ay, 4, belongs to

Z
Y3 —-Ds , it follows from the definition of these classes and from (2.2.7) that ¢y 4 is in
oG D+25 . The other assertions of the corollary follow from (2.2.10) to (2.2.14). =

In order to prove Proposition 2.2.2, we also need the following result.

Lemma 2.2.5. Let y — O(y) be a complex-valued smooth function defined on |—1, 1],
with at most algebraic growth when |y| — 1—, as well as its derivatives. Let a(s, y) be an
element of Y 2. Assume that there is an open neighborhood V of yg in]—1,1[and ¢ > 0
such that for any y in 'V, any s € [0, S|,

[Re ®(y)| > c, (2.2.25)
la(s. y)] = ¢(Sx — 5 + |y — yol*0)72, (2.2.26)

and that a solves the ODE dsa(s, y) = ©(y)|a(s, y)|*a(s, y). Let £ be an odd integer;
£ > 5, and let r be an element of $58U=3) Lot (s, y) = b(s, y) be the solution of

d5h(s,y) = O Qla(s, »)*b(s, y) + als, )*b(s, 7)) + r(s, ),

2227
b(0, y) = 0. (22:27)

Then b belongs to ¥~ 2 9¢=3),

Proof. We notice first that if y stays outside V', then by definition of E_%, the coefficients
on the right-hand side of (2.2.27) are smooth functions on [0, Sx] X (R — V), so that the
same holds true for the solution b, which is moreover supported for |y| < I.

We may thus assume that y stays close to yg, so that (2.2.25), (2.2.26) hold true. We

introduce B(s, y) = [Zgi ;] that solves the system

dsB(s,y) = M(s,y)B(s,y) + R(s, y), (2.2.28)

2 2
won = [10]. e = P00

Define the two functions

@y (s, y) = [_’l“cfis_yy))} . Da(sy) = [gzzg—m = la(s, )| [gz} :

with
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Then ®; solves the homogeneous equation d;®; = M (s, y)®P; and the wronskian w(s, y)
of ®1(s, y), ®2(s. y) is equal to 2i Re O(y)|a(s, y)|*, so satisfies for y € V, |w(s, y)| >
cA(s, y)~* according to (2.2.25), (2.2.26) if we set

A(s.7) = (Sx =5 41y = yo*)2.

The fact that @ € ¥~2 and that (2.2.25), (2.2.26) hold for y close to yo imply that the
wronskian matrix W(s, y) and its inverse W(s’, y) satisfy

O(A(s.y)™) O(A(S,y)_3)]
w S, = — — s
60 =[0G ot
- O(A(s",y))  O(A(s,y)) ]
W', y) ! = [ .
CT =106, 0AE »))
Since s — A(s, y) is decreasing, we conclude that for 0 < s’ <'s,
_ A(s', ¥)\3
W, )W'. y) P =0 ’ . 2.2.29
oW ™ =0((F=5)) (2.2.29)
Writing the solution to (2.2.28) with zero initial condition at s = 0 in the form
S
/ W(s, V)W(s', y)"IR(s", y) ds’ (2.2.30)
0

and using that r € =5 8¢="D+28 we oet from (2.2.29), (2.2.30),
S
|Bmyni(1/AMMJW%A%MAHMdyA@yYQ
0

Since £ > 5and § > 0, this is O(A(s, y)z—e—28(2—3)), i.e. B satisfies (2.2.1) witha = 8 =
0,m= —6%2 — 8(£ — 3) for y close to yo. If we take 9, or d, derivatives in (2.2.30), we
get in the same way the estimates (2.2.1) for positive « or 8. This concludes the proof. m

Proof of Proposition 2.2.2. We shall compute first the action of 87 — 83 + 1 onuZ,, given
by (2.2.2) and use the fact that the last term in the expression (2.2.3) of razpp was computed
in Corollary 2.2.4. We shall then construct the ag 4 recursively in order to reduce r2  to

app
an expression of the form (2.2.4).

* Linear termin (2.2.3). We apply (2.1.15) to the general term of the sums in (2.2.2). We
get on the one hand the characteristic contribution

N+2
2Re|:2i Z 86_£t_£e”‘p(y)wo(y)asaz—z,l(&y,8)] )
s=¢&~logt
Foid y=x/t
N+4 .
+ 2Re [ Z 86_£l_76”¢(y)R2(£M—4,1)(S, Vs 8)i| g (2.2.31)
s=¢g* logt
£=5 y=x/t

£ odd
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where R, (a;—4,1) belongs to the $-module generated by 9% Byﬂag_‘;,] fora + 8 <2, s0
that

Ry(ag—4,1) € $3 789

by the definition of this class. On the other hand, the second sum in (2.2.2) provides to the
linear term in (2.2.3) the noncharacteristic contribution

N
2Re [ Z Z 8zq—zt—g(1 _qz)eizw(y)aegq(s,y,g)]

=3 3 ‘ s=¢e2logt

= <g< =

¢ odd g add y=x/t
N+2 .

2q+2—L . —% itqe(y)
+ 2Re E E & t 2e Ri(ay—
(=5 3<q<{—2 H@e-2.0) s=e?logt
= <g<{— =
£ odd _qudd y=x/t
N+4 ,
2q+4—L . —% itqe(y)

+ 2Re E E £ t"2e Ry(a,— , 2.2.32
(=7 3<q<i(—4 2(t=40) s=e?logt ( )
= <g<t— -
£ odd _qq&m y=x/t

where Ry(ag—z,4) (resp. Ra(ag—4,4)) is in the -module generated by agafjae_z,q (resp.
8;"8§ag_4,q) fora + B <1 (resp. a + B < 2). Thus, Ry(a¢—2,4) (resp. Ra(ay—4,4))isin
$578E=3) (resp. £573¢=5) Tt follows from (2.2.31) and (2.2.32) that

(07 — 0% + Dugy,

N+2
= 2Re|:2i Z th—%e”""”wo(y)asaz—z,l(Say’s)

(=3
£ odd
N L
2 D eI =) a5y )
{=3 3<g<l
£ odd g odd
N+4 ,
+ Y T Dby (s, )
{=5
£ odd
N+4 .,
+ Z Z szq—et—zethw(Y>qu(s,y,8)} s logs” (2.2.33)
Con S5 y=x/t
where for5 <{ < N + 4,
L
be1 € »~27%¢=5) and depends only on a;_4 1,
: P Y ! (2.2.34)

beg € $378¢=3) 4pg depends only on ay 4, ¢’ < min({—2, N) when ¢ > 3.

* Nonlinear term in (2.2.3). This term is given by formula (2.2.24).
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* Determination of the ag 4. To prove Proposition 2.2.2, we have to choose the ay 4
recursively in order to eliminate most terms in the difference (2.2.2) between (2.2.33)
and (2.2.24), to be left only with terms of the form (2.2.4) or (2.2.5). We determine first
the characteristic coefficient a;,;. Equating the 173690 terms in (2.2.24) and (2.2.33),
and using expression (2.2.11) for c3,1, we obtain

1
wo(N)dsary = Z($() + iv(y)laii(s, y)*aii(s, y).

If we take for a,; the function (2.1.10), this equality is satisfied by (2.1.8), and the explicit
formula (2.1.10) shows that a;,; belongs to »3.

Next we determine the coefficient a3 3, equating the 17231¢0) coefficients in
(2.2.24) and (2.2.33). We get —8a3,3 = c3,3, where ¢33 is determined by a;,; accord-
ing to Corollary 2.2.4 and belongs to oas el -l

Assume by induction that we have determined for some £ > 5,

apg, 1<q <l <€—4 and ay,py.3<q <L-2. (2.2.35)

Let us determine ay_5 ;. Equating the =510 terms in (2.2.24) and (2.2.33), we
get, also using expressions (2.2.12) to (2.2.14),

Isar—2,1(5,y) = O2lar1Pag—a,1 + af ae—i](s.y) + rea1(s.y),  (22.36)

where ©(y) = 1wo(y) "1 (¢ (y) +i¥(y)) and

Feoa(s.y) = —m@’,l(s,y) — by(s.y)).

By Corollary 2.2.4, and decompositions (2.2.12)—(2.2.14), ¢ | is in the space $5—8-3)

and depends only on ay g for 1 < ¢’ < <{—4andonay, 4 for3 <q’' <{—2.
These coefficients are determined by assumption (2.2.35). Moreover, by (2.2.34), by ;
belongs to 57309 and depends only on coefficients already determined. It follows
that 74—, ;1 is known and belongs to n-5-8-3) If we supplement (2.2.36) by the initial
condition ay_, 1 (0, y) = 0, we may thus apply Lemma 2.2.5 with a = a;; to conclude
that ag_, ; belongs to $~5*=8¢=3) a5 wanted in the statement of the proposition, if
we check that assumptions (2.2.25), (2.2.26) hold. The first one, which is equivalent to
%a)o (7o)'@ (y9) # 0, follows from conditions (1.2.2), (1.2.3). The second one is implied
by the explicit expression (2.1.10) of a1,; and the fact that by (2.1.6), (1.2.1), and (1.2.2),
a(yo) does not vanish.

We have thus determined ay o for 1 < ¢’ < ¢’ < { — 2. To obtain (2.2.35) with

¢ replaced by £ + 2, we are left with finding a4, for 3 < ¢ < {. Equating terms in
~3ei1490) i (2.2.24) and (2.2.33), we obtain an equation

(1= g2 agy = crqg—big € 2783 ¢ p=3-3¢D, (2.2.37)
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where ¢y 4, by 4 depend only on ay o with 1 < ¢" < £ —2by (2.2.34) and Corollary 2.2.4.
Consequently, the right-hand side of (2.2.37) is already determined, so that we have
defined a;—, 4 for 3 < g < {. We have finally recovered (2.2.35) at rank £ + 2.
Consequently, we have eliminated all characteristic terms in (2.2.33) that are O(I_%)
for £ < N + 2 and all noncharacteristic terms that are O(I_%) for £ < N. We are thus
left with the terms in the third (resp. fourth) sum in (2.2.33) corresponding to £ = N + 4
(resp. £ = N + 2 or N + 4) and with the terms in the first (resp. second) sum in (2.2.24)
corresponding to N + 4 < £ <3N (resp. N + 2 < £ < 3N). These terms contribute to
(2.2.4) and (2.2.5). This concludes the proof. ]

Sx
We construct now an approximate solution to equation (1.1.1) defined forz € [1, e <2 [,

gluing together the approximate solution for moderate times ug’ép that was defined in Pro-

position 2.1.6 and the approximate solution ufpp of Proposition 2.2.2.

Corollary 2.2.6. Let jo be in C§°([0, 35+ [) and be equal to 1 on [0, %] Define fort €

5 71
[1e],

Uapp(t, X) = Fo(e? log t)uggp(t, x) + (1 — Fo)(£? logt)ufpp(t, X). (2.2.38)

Then
Fapp(t, X) = (07 — 0% + 1)tapp — P (Uapp, ¢ tapp, OxUapp) (2.2.39)

may be written as the sum

e . 1
2Re[t—§€lw(y))(1(81_91)05,1 (S, .o 8)]
2

s=g2logt
y=x/t

+ (1= o) (€ logt)rg (1. x) + Fupp (2. %), (2.2.40)

where y1 is smooth, equal to O close to 0 and to 1 outside a neighborhood of 0, where
¢5,1(8, y, h, €) is a continuous function on [0, +o00[ x R x ]0, 1] x [0, 1], supported for
s < % and |y| < 1, bounded as well as all its 0, 0y, h0y derivatives on that domain,

given by (2.2.3) is the sum of (2.2.4) and (2.2.5) and where Fyy, is compactly
384/4€2

2
where ry,,

supported fort < e and satisfies

exp(Sx/e?)
[ || Fapp (T, )|z d T < C¥70,
! (2.2.41)

exp(S«/e?)
/ | L+ Fapp(z, )| g1 dT < C&>7F.
1
Proof. By the definition of u,p, and (2.1.30), (2.2.3), we may write

rapp(tax) = io(é\z log [)r;\gp(t»x) + (1 - i())(82 logt)razpp(tvx)
2
&”
+ 27)(0(82 logt)at(uggp — ufpp)(t, X)
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et . &2 _
+ (Z—zxg(ez logt) — t—2)(()(82 log t)) (uﬂgp - ufpp)(t, X)

M 9 uM )

— P (uapp, ¢ Uapp. xUapp) + Xo(e? logt) P (ul, app> OxUapp

app’
+ (1 — jo)(*log t)P(ufpp, B,ufpp, 8xu§pp)
=I+---+ VIL

We examine terms I to VII successively.

* Contribution of term 1. By Proposition 2.1.6, we get contributions to the first term in
(2.2.40) and to Fipp.

e Contribution of term 1I. This is the second term in (2.2.40).

* Contributions of terms 11 + IV. On the support of jg(s? log?), uM  coincides with

app
Uy, by (2.1.29), so that we have to estimate u}, —uZ, and its time derivative. This
difference may be computed from (2.1.11) and (2.2.2). The t~% terms cancel out. We are

thus reduced to the following terms:

— Characteristic terms in 0(1‘7%) coming from the f%am term in (2.2.2): This provides
a contribution to the first term in (2.2.40).

— Noncharacteristic terms in O(I_%) coming from the a3 3 term in (2.2.2) and the a§,3
term in (2.1.11): When plugged into III 4 IV, these terms give contributions

s ; 1
Re|:8—5)(0(s)e3”"’(y)53,3 (s, v, —, 8)] (2.2.42)
t2 = !

s=¢2 logt’
y=x/t

where o € Cs°(]0, +-00[) and where a3 3(s, y, h, €) is a continuous function on the
product [0, +oo[ x R x ]0, 1] x [0, 1], supported for s < 3‘2* and |y| < 1, bounded as
well as all its d, 0y, hdp, derivatives on that domain. The Sobolev norm of (2.2.42)
is O(°t72), so that the first estimate (2.2.41) largely holds. If we make L act on
(2.2.42) and bound the H !-norm, we getan 0(85l_1) estimate. Integrating for 1 <t <
35x/4¢? gives an O(&3) bound, better than the right-hand side of the second inequality
(2.2.41). Thus (2.2.42) may be included in Fpp, in (2.2.40).

— Characteristic or noncharacteristic terms coming from (2.1.11) or (2.2.2) that are
O(I_%), i.e. terms in aé,s, aé,s in(2.1.11)and ay 4, £ > 5in (2.2.2): The contributions
of all such terms to III + IV may be written in the form

86—[ ) 1
Re[ ) )_(O(S)elqt(a(y)dﬁ,q (s,y, ;,8):| (2.2.43)

L
2

s=e2logt’

y=x/t
with £ > 7 and dy 4 satisfying the same estimates as d3 3 above. Then the Sobolev
norm of (2.2.43) or its H '-norm after action of L, integrated for ¢ in the support of
)_(0(82 logt) is O(e_c/sz), so that (2.2.41) is largely verified and these terms may be
included inside Fypp.
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* Contributions of V + VI 4 VII. We write this contribution as the sum of
P(uappa ioatul;;l)p +(1- XO)atuazpps axuapp)
— P (uapp. 1 (Fottzgy, + (1 = Fo)tzry). xthapp) (2.2.44)
and of
iOP(u]avI[)pv 8;“2;13, axu];gp) + (1 - XO)P(uippv atuippv 8xu§pp)
— P(Toully + (1= Fo)uly. Fode, + (1 — F0)du,,
Todxupe, + (1= 70)dxuny,). (2.2.45)

Consider first (2.2.44). This expression may be bounded pointwise by

&2 2
—l To(e*log 1) uphy —u2,, ( > oealul |+ |a';‘a§ua2pp|) . (2.2.46)
a+p=<1
We have seen in the study of III + IV that the =7 terms cancel out in ugf)p — ufpp, SO

that this difference is O(s‘“t_%) for some a. The squared factor in (2.2.45) is moreover
O(g2/1t), so that we may get for (2.2.46) a bound in O(e‘“t_%llmst). The same holds
for derivatives of (2.2.44) so that, computing its H*-norm or the H !-norm of the action
of L+ on it, we shall obtain, as at the end of the study of III + IV, that the time integral
of these quantities is O(e™¢/ 82). Thus (2.2.44) largely satisfies (2.2.41).

Finally, consider (2.2.45) which may be written as — (fo(¢? logt)) with

V() = P(uupn, + (1= pwul . wdas, + (1= p)0ul,,. poxup + (1 — p1)oxul, )
— }LP(ME/II,P, 8tu2’l§p, BXqup) —(1- ;L)P(uazpp, Bzuazpp, Bxuazpp).
As ¥ (1) = ¥(0) = 0, we have

¥ (Fo(e*log0)| < (1= 7o) Ko sup [¥"(w)|

wel0,1]
< C(1 = 7o) Folludhy, —uZ,| + 10, @l — uZ )| + 10x (s, — uZ )12
x> (07 Pul | + 10208 uZ ). (2.2.47)

at+p<1

We have seen in the study of (2.2.44) that u%p - ”pr is O(e‘“t_%), as well as its deriv-
atives, on the support of (1 — ¥o) o (e? logt). It follows that again (2.2.47) is O(s‘“t_%)
and supported for |x| < ¢. As the same bound holds for derivatives of (2.2.45), we con-

clude that this term satisfies (2.2.41) as well. This concludes the proof. ]

3. Reduction to a system and normal form

In this section we shall reduce equation (1.1.1) to a first-order system. We shall then look
for the solution as the sum of an approximate solution deduced from u,p, constructed in
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Section 2 and of a remainder. Finally, in Section 3.2, we shall perform a normal form
procedure in order to eliminate part of the cubic nonlinearity.

3.1. Reduction to a system

Let us introduce some notation that will be used in the rest of the paper. We shall denote by

Mo (&1, .. .,&n) asmooth positive function on R”, valued in RY , such that Mo (§1, ..., &)
is equivalent to 1 + max,(|&1],. .., |&x|), where max, stands for the second largest among
|&11, ..., |&x|. For instance, we may take

Mo(él,.--,én)=( > (5“)2+1)2(1+Zsj2)_2. (3.1.1)
n j=1

max(ej)<n—1

Definition 3.1.1. Letn € N*, v € R,k € R4, B € Ry. We denote by S, g(M},n) the

space of smooth functions on R x R”, (x,&1,...,&,) — m(x,&1,...,&,), with values in
C, satisfying for any a9 € N, « € N*, N € N estimates
0200¢m(x.&1..... &) < Capav Mo(§)" DA 4 gRPIENN . (3.12)

Remark. Most of the time we shall only need the special case 8 = 0, so that the last factor
on the right-hand side of (3.1.2) disappears. If m is in S, 0(My,n) and y € C§°(R"), then
m(x,€) x(hP§) isin S, g (M. n) for B > 0.

If misin S, g(My,n) andif uy, ..., u, arein S (R"), we set

/eix(§1+"'+‘§”)m(x, £l En)

Op(m) .. ) = G5

n
X ujEj)dé ---déy. (3.1.3)
ji=1
In Appendix A.2 we observe that (3.1.3) remains meaningful when u; belongs to Sobolev
spaces of high enough order, so that we may use (3.1.3) for the solution to our problem.

Let u — u(¢, x) be defined on [1, T[ x R for some T € |1, eS*/"’"z[ with values in R,
which is in CO([1, T[, H*(R)) N C'([1, T[, H*~'(R)) for some large enough s, solving
equation (1.1.1). We define, with the notation p(Dy) = /1 + D2,

ur = (Dy = p(Dx))u (3.1.4)
so that
| .
uo =it u=p(Dx) ey —us). D=3y +uo). (3.1.5)

If I = (i1,i2,i3) is an element of {—, +}3, we set uy = (u;,, u;,, u;;). If we express u
and its derivatives from (3.1.5) in (1.1.2), we may write

P(u,d;u,0xu) = — Z Op(my)(uy) (3.1.6)
Te{—,+)3
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for some my in So,0(1, 3) (with constant coefficients). Consequently, equation (1.1.1) is
equivalent to

(D = p(Dx)us = Y Op(mr)(up). (3.1.7)
Te{—+}3

Of course, by conjugation, using (3.1.5), we have

(Di + p(D)u—= > Op(my)(uj), (3.1.8)
Ie{—,+}3

where I = —1 and

myp(x.€1,.... 60) = (=D)"'m(x, =61, —6n).

Let us construct an approximate solution u"fp of equation (3.1.7) from the approximate
solution u,p, of Corollary 2.2.6. We shall do that when the time ¢ stays smaller than the
time 7 (&) defined in (1.2.5). We shall use the following inequality, with § > 0 introduced
in Proposition 2.2.2 and §’ > 0, y > 0 to be chosen:

there is g9 € ]0, 1] such thatif 0 < ¢ < ggand ¢ € [eS*/Zgz, T ()],

then t_%(S* —¢? logt)_%_‘s < 8%_8/(S* —¢? logt)s,_‘s. (3.1.9)

Si/262

Actually, this inequality is trivial if Sx — g2 log? > &2 since, as t > e , the factor

t~2 in the left-hand side is then exponentially decaying, so that (3.1.9) holds for small

—_ 2 . . . .
enough e. Ifu = w < 1, then inequality (3.1.9) is equivalent to
_ _24y+28 Sk
ue 1428 > g7 1428 ¢ 201428 (3.1.10)

whose right-hand side is the quantity ¢’ introduced in (1.2.4). Since u — ue T s
strictly increasing on [0, 1] if 8’ > 0, inequality (3.1.10) is equivalent to u > u(¢’) where
u(¢’) was defined before (1.2.5). But by the definitions of u and of T'(¢) in (1.2.5), this
means ¢ < T'(¢). In the sequel, the parameters §, §’, y will be chosen positive, with § and
8’ small, satisfying the inequalities

§>8, y=28+2). (3.1.11)

We notice for further reference that (3.1.9) implies that 1 =1 (Sx — e2log?)™! = O(1), so
that, when ¢ € [1, T'(¢)[, definition (2.2.1) of classes ¥ shows that

1 1
aeY" = 8‘;‘85 [a(sz logt, ; o 5)] = b<82 log?, ; ?8) (3.1.12)
for some b in ™. We define, from the approximate solution u,, of Corollary 2.2.6,

i = (D; + p(Dx)gpp, T = —i"" (3.1.13)
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and ﬁi (uapp ~app, ~app) if I = (i1, 1i2,13). Then, by (2.2.38), (2.2.39), (2.2.40), and
(3.1.6),

(Ds = p(D)E* = >~ Op(mp) (™)

Ie{—+}3

e 1
= —(—Se”“’(”xl(el_gl)cm(s, o 8)
t2

e . 1
+ t—ge_tt(p(y))(1(€1_61)c5,—1 (S, v, ;8))
2

s=¢&2logt
y=x/t

Fapp(t, ) — (1 = fo)(e* log ) (£, %), (3.1.14)

where ¢5_; = ¢s 1 is supported for s < %, [y] <1, and Fyp(t, x) for ¢t < e35:/48%

and satisfies (2.2.41). On the right-hand side of (3.1.14), we have an €1/ term that is

characteristic for D; — p(D,) and an e "**¢*/?) term that is noncharacteristic for the same

operator. We start by eliminating the noncharacteristic term, introducing a modification
uy? of P, We first define this function and study its structure.

Lemma 3.1.2. Define

. B 1
WP (1) = T 0) = e (e YT yes i (s.v e | oo g1
y=x/t
(3.1.15)
Then we may write, for 1 <t < T (¢),
ulfP(t.x) = xo(e! 0t — Duo,4 (. x)
: _ e
+ O — o) 70 = D) —=a 1 (5. V) yme2 10gs
\/; y=x/t
N+1 |
+ Z Z Pi1a9 () 5 2a (s Y. o€ )eg,q(t,8)|s:8210gt
(=3 1<|q|<t y=x/t
£ odd g odd
+ er(t, x), (3.1.16)
where yo was introduced in Proposition 2.1.6, where we denoted
uo,+(t,x) = (D; + p(Dx))uo, (3.1.17)
where a?'l(s y)=2(1- 2)_%611 1(s, y) ay,1 being defined in (2.1.10), where the coef-
ficients al (s, y,h, €) are elements of ¥~ 581D and where eqq(t, €) satisfy, for any ¢,
(t0,)%er 4(t,8) = O(e) ift <354,
(t0;)8eqq(t.6) = O ifr = &5+/2% g £ —1, (3.1.18)

(t0) ep1(t.6) = O(*Y)  ift > &5+/2
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and where r(t, x) is a smooth function satisfying, for all «, B, N,
10908 r (1, x)] < C(t + |x|)™V. (3.1.19)

Moreover, we may write wy 4 (t, x) in the form

1 € x 1
u tx elte(x/1) +(x7 ) 4 ZeTitelx/n) g _< ) + ero(t, x), (3.1.20
0,+( ) \/Z 1 t t t% 1 t 0( ) ( )
where at(y, h) are continuous on R x 10, 1], bounded as well as their d, and hd,-deriv-
atives on that domain, supported for |y| < 1, and where rq satisfies (3.1.19).

Proof. Consider first an element ay 4 of Z_%_W_l) with 1 < |¢| < £. We may apply
Corollary A.1.4 of the appendix to compute p(Dx)le ’q"”(x/’)ae (e2logt, %, 1 )] since
the assumption # (Sx — ) 7 > ¢ of the appendix is satisfied: this is trivial for s < SZ and
holds for s = e2logt > % and ¢t < T (&) by (3.1.9) (for & small enough). By this corollary
and estimates (2.2.1), we have

; 1
(D + p(Dx)[ "W (s.7.7.¢)]

s=g2logt

y=x/t
g+ V1+(g*>—Dy?\ ; 1
_ ( 2 ezl‘q(ﬂ()’)az,q (s, v, s 8) s=&2log1
\% - Y y=x/t
1 itge() 1 1
+ e (s v, —, ) s=¢2logt +r(t, x), (3.1.21)
y=x/t

where at} g isin »=3-1-8¢=1 and r satisfies (3.1.19).
First we compute fta in (3.1.15) from its definition (3.1. 13) making (D; + p(Dy))

act on definition (2.2. 38) of Upp. Using expression (2.1.29) of uapp, we get

1" = xo(e' %t — D))(Dy + p(Dx))uo
+ (1= x0) (€0t = 1) o (e? log 1)(D; + p(Dx)uyy,
+ (1= 7o) (e log1)(D; + p(D)ul,,
—ie" 0y (70t — D))uo(t, x)
+i(e" o = 1) — &7 o (e log 1))l (1. x)
+ie?t™ gp(e? logt)uapp(t X)
=I4+.-.4+ VL (3.1.22)

We study terms I to VI above successively, in order to obtain expressions (3.1.16) from
(3.1.15).

e Term 1. This provides the first term on the right-hand side of (3.1.16) by (3.1.17).
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* TermII. Recall that uapp is given by (2.1.11). We may apply (3.1.21) to all terms in that
sum. Since each of these terms is supported for s = e2logt < 35« =7* and since the first term

on the right-hand side of (3.1.21) vanishes if ¢ = —1, we shall get

= (1— xo) (e~ (r — 1)>zo<s>} Gt (5,7, )lse g

y=x/t
1
+ Z S (- ro)e e(r—m el ! (5.3 7 8) | —oroge
(=3 1<|q|<t y=x/t
£ odd q odd
+ er(t, x), (3.1.23)

with al 1 (s y) deﬁned in the statement of the lemma, and where the a; ' ¢=3,5are
elements of £~ 373¢=D and are supported for 0 < s < SS* and |y| < 1. Thus, (3.1.23)
provides a contribution to the last sum in (3.1.16) and to sr Notice that the last term in
(3.1.15) may also be written as a contribution to the sum in (3.1.16) with £ = 5, ¢ = —1.

o TermIIl. We make D; + p(D,) act on the sums (2.2.2). Consider first the contributions
coming from the second sum,

(Ds + p(D)E 47299 ay 4 (5, 7.8)] 4= 2 o1 (3.1.24)
y=x/t

According to (3.1.21), we get a first term which is of the form of the (£, ¢) term in the sum
(3.1.16) with 3 < |¢g| < £. The second term on the right-hand side of (3.1.21) also brings
to (3.1.24) a contribution in the form of the (£, ¢) term in (3.1.16): actually, we may write
it as !
¢
m2ei190) (5, — S)ae q(s ¥y, —, )Eg,q([, E)s=c2 1og1>
y=x/t

with eg ,(t,¢) = g2lal=4=1(§, — &% log t)_l)_(l(s2 log ¢) for some function X, suppor-
ted for s > % Then property (3.1.9) shows that for t < T'(¢), eg 4 satisfies the second
inequality (3.1.18) when 3 < |¢| < .

We consider next the contributions coming from the first sum in (2.2.2). We have to
study

.t
(Dt +p(Dx))[82 4[ ze”(p(y)al,l(svyvs)“s:szlogt’ (3125)
y=x/t
. L _;
(De + p(Dx)[e 17267 WPag 1 (5,3, €)lly=e2 10g1- (3.126)
y=x/t

with ag 1 = ag,;. We apply (3.1.21) to (3.1.25). We get a first term that may be written
as ,
1
e74722(1 = y1) 726" Wag 1 (5,7, €)ly=e2 g1
y=x/t

(3.1.27)
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For £ = 1, this brings the second term on the right-hand side of (3.1.16), when we combine
it with the ﬁrst term on the right-hand side of Il in (3.1.23), since we defined a;” 1(s y,8)=
2(1—y?%)~ 2a1 1(s, y, €). Terms (3.1.27) with £ > 3 contribute to the last sum in (3.1.16)
with ¢ = 1. On the other hand, the second term on the right-hand side of (3.1.21) applied
to (3.1.25) is of the form

—42 1
2= o) (S S | (3.1.28)
y=x/t
&2 50¢-1) —££2_5(e+2-1) :
with a6 ,in X cX . For any £ > 1, we may incorporate that

term to the sum in (3.1.16) with coefficients e;4, 1 satisfying (3.1.18) with ¢ = 1. Notice
also that the remainder in (3.1.21) may be incorporated in the one in (3.1.16), in spite of
the negative powers of ¢ that may appear, since term III is supported for ¢ > e5+/ 32, SO
that the rapid decay in (3.1.19) also brings smallness in €.

We still have to cope with (3.1.26). Because the oscillatory term is e~ i1e(x/1) \when
we apply (3.1.21) with ¢ = —1, the first term disappears, and we are left only with a term
of the form (3.1.28) with ¢**% replaced by e /%, Such a term may be rewritten as

42—1t(pt 2a+ (Syl )

s=¢e2logt
y=x/t

for some a?_l in 2=578¢=1 and ¢ > 3, i.e. brings a contribution to the sum in (3.1.16)

with ¢ = —1 and a coefficient e, _; which is 0(84_4) as in the last equality (3.1.18) and
not just O (e27¢).
This concludes the treatment of term III in (3.1.22).

» TermIV. If we use expansion (2.1.5) of uy and again (3.1.21), we see that this term may
be rewritten as a contribution to the =2 e=#*¢ term in the sum (3.1.16), with a coefficient
e3,1 satisfying the first bound (3.1.18) and to the remainder er.

e Term V. Using (2.1.11), we see in the same way that this term may be written as a con-
tribution to the sum in (3.1.16), with coefficients ey 4 satisfying the first bound (3.1.18).

» Term VI. We use (2.2.2), which implies that VI may be written as a contribution to the
last sum in (3.1.16) with coefficients satisfying the second or third equality in (3.1.18).
This concludes the proof of equality (3.1.16).

To obtain (3.1.20), we notice that we may apply Corollary A.1.4 in the special case
when functions a(s, y, h, €) of that corollary are replaced by smooth functions of the sole
variable y supported for |y| < 1 and use (3.1.21) again in that context. Using expansion
(2.1.5) of ug, we thus get (3.1.20). [

Next we shall check that the function u}* defined in (3.1.15) will provide an approx-
imate solution for the nonlinear equation given by the left-hand side of (3.1.14).
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Proposition 3.1.3. Let Ny be an integer. Then if we define the approximate solution ui}_’p

by (3.1.15), (3.1.16), with N large enough relative to Ny, u?:p solves an equation

(Dy = (D)W = Y~ Op(mp) ™) = —(F + rupp), (3.1.29)
Te{—,+}3

app  app

app __ app L. .
whereuy" = (u; ", u; ,u;, ), and where the source term is given from a function F(t, x)

2 . .
supported for 1 <t < e35+/4¢° that satisfies for any sq in R,

+o00

/ IF (. )| gso dt < Cyye®™?,
1

a (3.1.30)

/ |Ly F(t ) di < €20,
1

and from a function (t, x) — rapp(t, X) supported for t > eS+/2¢% thay satisfies for any
t < T(e), any sy,

I7app (2. V50 < Coot 2N (S, — 6% log )™,

(3.1.31)
1Lt rapp (2. ) g1 < Ct'eNo(S, — £ log 1) M.

Proof. To compute the left-hand side of (3.1.29), we use definition (3.1.15) of uz_ifp,
(3.1.14), and the fact that we may apply Corollary A.1.4 with ¢ = —¢ in order to com-
pute the action of D; — p(Dy) on the last term in (3.1.15). (Notice that the assumption
1(S+ — 5)1/2%0 > ¢ holds on the support of that function.) By (A.1.23), the action of that
operator on this last term is equal to

e _.: _ 1
e ztw(y)Xl(Sl et)ci_l (s,y,;,s)

12

(3.1.32)

s=&2logt’
y=x/t

modulo a term of the same form where 773 is replaced by =2 and ¢s,—1 by a function
¢7,—1 satisfying the same conditions, and modulo a remainder satisfying (A.1.24) and
supported for s < %. Since (3.1.32) compensates the second term on the right-hand side
of (3.1.14), we get, more precisely,

(Dy = p(D ) — Y~ Op(my) (™)
Ie{—,+}3

[ !
_ _I:_Seltw(y)xl (SI_GZ)CS,I (S, Y, -, 8)
t3 !
& ] !
+ _7e—ztrp(y)X1 (81_9[)6‘7,_1 (S, y, ;’ 8)

1
+ xl(el_ot)er(s, v s)}

s=¢2logt
y=x/t

- (1 - ZO)(SZ IOgt)razpp - Fapp
=I+---4V, (3.1.33)
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where c7,_1(s, ¥, h, &) is continuous on [0, +o00[ x R x ]0, 1] x [0, 1], supported for s < %
and |y| < 1, bounded as well as all its dy, d,, h0;-derivatives, where y; is a new function
supported inside a neighborhood of 0 (which may vary from line to line), and where r
satisfies (A.1.24) and is supported for s < %. If in the cubic term on the left-hand side

of (3.1.33), we replace uapp by uapp using (3.1.15), we generate on the right-hand side a
perturbation
> (Op(mp) ™ + AFP) = Op(my) (uy™)). (3.1.34)
Te{—+}3
where
, €
AT = =70 1 (01 VT = e (5., —, ) se2 s (3.135)
2tz y=x/t

It remains to show that terms [ to V in (3.1.33) and (3.1.35) may be written as contributions
to F' + rypp on the right-hand side of (3.1.29). We start with the terms supported for s <
3?* ,i.e. ITtoIll and V in (3.1.33) and (3.1.34).

» Term1in (3.1.33). Since cs,; is bounded, as well as its d5 and 9, derivatives, and sup-
ported for |y| < 1, the Sobolev norm of I is O(et~2), so that its integral for t > g~11¢
is 0(627) as in (3.1.30). If we make L act on I and use (A.1.27) with g =1 (and a
symbol a supported for s < 35* ), we obtain the same estimate for the H '-norm of LI
integrated for r > ¢~ 11¢

, so that the second inequality (3.1.30) holds as well.

o Term Il in (3.1.33). The reasoning is the same, except that we use (A.1.27) with ¢ =
—1, so that the first term on the right-hand side of this equality remains. We thus get an
O(]x|) = O(t) factor, which is compensated by the fact that ¢7,; is O(t_%) instead of
0(t™3).

* Term Il in (3.1.33). By (A.1.24), this term is rapidly decaying in ¢ and |7/, so that the
bounds (3.1.30) are trivial when integrating for r > ¢~'+?,

» Term V in (3.1.33). This term is F,p, coming from (3.1.14) which by (2.2.41) satisfies
(3.1.30).

e Term (3.1.34). Note that A¥” in (3.1.35) is supported for s < 3‘2*, as the same holds
for ¢s,1. We have to study terms of the form

Op(mr) (™. . AFP). Op(mp) i, A, AP), 5136
Op(ml)(Ade Adpp Adpp , o
with I = (i1,i2,i3) € {—, +}3, AP = —A?‘:p, and my in So (1, 3). By inequality (A.2.2),
there is po € R such that for any s¢ € N, the H*°-norm of any term in (3.1.36) is bounded
from above by

C(luP Iweose + (AL [weooe) | AT |15

+ (1 lweoce + AT weoco) | AP [[weoo [P || 5o (3.1.37)
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Notice that for 7 in the support of (3.1.16), i.e. e 1+0 < < €35+/4¢” e have

P s = 0), W™, )l wes = o(%), (3.1.38)
IAP (£ ) 5o = O(et™2), [AP (2, ) |woooe = O(et™3). (3.1.39)

Actually, ui‘_)p is given by (3.1.16), with the e¢ 4, bounded by the first inequality (3.1.18)
by our assumption on ¢, and with s in (3.1.16) smaller than 35* , so that the functions
an (s, y, h, €) are uniformly bounded. Then (3.1.38) follows. On the other hand, (3.1.39)
follows from (3.1.35).

If we plug these estimates into (3.1.37), we get a bound in O(g3t~3), whose time
integral largely satisfies the first inequality (3.1.30). If we make L 4 act on (3.1.34) before
computing the L2-norm, we get an O(e3t~2) estimate that is still sufficient to obtain

(3.1.30).

o Term IV in (3.1.33). Term IV is supported for ¢ > eS+/2¢% and is expressed in terms of

razpp coming from (3.1.14), i.e. from (2.2.40), and is given by (2.2.3), i.e. by the sum of

(2.2.4) and (2.2.5). The general term in these sums is bounded from above, if 1 < T'(¢), by
CeS~43 (Sx —&*log f)_e(%+8)ﬂ\x\st
< Cr7 365748, — 2 logr) SGHY
x (6277 (S — 2 10g )" 1 1<, (3-1.40)

where we have used (3.1.9) and that £ > N + 2 > 5. As we assumed that (3.1.11) holds,
if N is so large that

(8" —8)(N —3) > No + 5(% +8),

(%—5’—1)(1\/—3)3%—1,

we get a bound in Mo =3 (S, — 2 log £)No.

If we take d, derivatives of the general sum in (2.2.4), (2.2.5), we may use (3.1.12) to
see that we still get expressions of the same type so that (3.1.40) will still hold true. This
implies that for any so in N,

I(1 = Fo)(e® log )rz (¢, )| o < C1726N0(Sx — 6” log )™,

i.e. the first estimate (3.1.31) holds. The second one holds in the same way, since the action
of L4 makes one lose at most O(¢). This concludes the proof of the proposition. ]

To finish this subsection, we introduce the equation satisfied by the difference

Vy = Up — ue_‘fp between the solution of (3.1.7) and the approximate solution u"fp of

Lemma 3.1.2.
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Proposition 3.1.4. The function vy =u —u’l” satisfies, with symbols mgj ) in So,0(1,3),

(Di = p(D vy = . Opmi?)(viy, viy, viy)

Ie{—,+}3
+ > Op(mP) (i, viy uf)
Ie{—+}3
3 P
+ Y Opm) (i ufl
Ie{—,+}3
+ F + Fapps (3.1.41)
3S./4€2 Sy /282

where F is supported fort <e
satisfies (3.1.30) (resp. (3.1.31)).

, Tapp 18 supported fort > e , and F (resp. rapp)

Proof. One has just to consider the difference between (3.1.7) and (3.1.29). ]

3.2. Normal forms

Identifying {—, +} to {—1, 1}, we shall respectively denote by

Ic={I = (i1,i2,03) € {— +: X ie = 1}
and

Ine = {1 = (i1,i2.13) € =+ i e # 1}

the sets of characteristic and noncharacteristic indices. We shall eliminate by normal forms
all noncharacteristic terms on the right-hand side of (3.1.41). We recall that normal forms
for Klein—Gordon equations were introduced by Shatah [28] and for further results on
these methods, we refer to the review paper of Germain [16] and references therein.

Consider I = (i1, i2,i3) € Iy Up to permutations, we have thus either (i1, i, i3) =
(1,1,1), 0or (i1,i2,i3) = (1,—1,—1), or (i1, i2,i3) = (—1,—1,—1). We set

Di(Er60.65) = i1 + 8 +ia\1 + 8 +i3y/1+8
VIt E+E+E) (3.2.1)

Since i, = i3, we may write with some ¢ > 0,

D11l = 1+ 8+ 1+ 8l + &l
> (14 min(Eal. [E2D)" = eMo(Er. £z )"

if My(&1,£,,&3) is defined by (3.1.1) and so is equivalent to the second largest among 1 +
|€1], 1 4 |&2], 1 + |&3|. This implies that for any noncharacteristic index I, Dj (£1, &5, &3)7!
belongs to the class S1,0(Mo, 3) of Definition 3.1.1. Consider the symbols mge) on the
right-hand side of (3.1.41) and define when I € T,

ﬁ;z)(fl,éz,és) = mge)(éh52,53)131(51,&,53)_1 € S1,0(Mo, 3). (3.22)
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We shall prove the following proposition:
Proposition 3.2.1. Define from the solution v of (3.1.41),

wp =vp— Y [Op() (i, . viy. Vi) + Op(A ) (vi, . viy U

13

I=(i1,i2,i3)
Il
+Op( ) (v i )], (3.2.3)
Then w4 solves, fort < T(¢), an equation of the form
(D= pD)wy = Y [0p(m§?) (i, viy. v33) + Op(m ) (v, viy P
I=(i1,iz,i3)

Iel.

+Op(m ) (v, Ul U] + R, (3.2.4)

where R is the sum of terms of the following form:

* a contribution F(t, x), supported fort < 35+/4¢% satisfying (3.1.30);

* aterm ry(t, x), supported for eS+/2¢% < satisfying (3.1.31);

*  “quintic” terms of the form
Op () (v, , uF)), |Jil+ 2] =5, [Ji] = 1,
Op() (s '™, ), |1l + 12l = 2, (32.5)
Op() (v, U s Tappoiz)s 1] 4 | 2] = 2,

Sfor different symbols m belonging to S1,0(My,5) (resp. S1,0(My,3)) for the first line
(resp. the second and third lines) for some v € N, where we denoted Fy. = F, F_ = —F,

Fapp,+ = Tapps T'app,— = —Tapp-
Proof. We make D; — p(Dy) act on (3.2.3). We get, using (3.2.2) and (3.2.1),
(Di = p(Dx)w = (Dr — p(Dx))vy
- Z [Op(mﬁl))(vil,viz, viy) + Op(m, ) (vi, Vi« Uy

=g
+0p(m ) (v, 1™ U] + R, (3.2.6)
where R’ is the sum of expressions of the following form, up to permutation of factors:

Op(m”)((Dy = i1 p(Dx))viy Vi Vi), (32.7)
Op(m ) ((Dy — i1 p(Dx))viy , viy ul), (3.2.8)
Op(m?)(D; — i1 p(Dx))vi,  ul ul), (3.2.9)
Op(m§?) (v, vy (Dy — i3 p(D)i™), (3.2.10)
Op(mi”) iy ", (D — i3 p(D )™, (32.11)

where I = (i1, ip,i3) isin I.
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In (3.2.7), we replace (D; — i1 p(Dx))v;, by the right-hand side of (3.1.41) if iy =1,
and by the opposite of the conjugate of this right-hand side if i; = —1. Using Lemma A.2.1
we get expressions of the form (3.2.5). The same conclusion holds for (3.2.8), (3.2.9).
Using (3.1.29) instead of (3.1.41), we see in the same way that (3.2.10), (3.2.11) may be
written as contributions to (3.2.5). Thus R’ contributes to R in (3.2.4). Finally, if on the
right-hand side of (3.2.6), we replace (D; — p(Dy))v4+ by its expression coming from
(3.1.41), the noncharacteristic contributions cancel each other, and we are left only with
the characteristic ones, as on the right-hand side of (3.2.4), and the contribution F' + rypp
to R. This concludes the proof. ]

To prepare the energy estimates of next section, we notice that getting bounds on w
or vy will be essentially equivalent, up to small errors.

Lemma 3.2.2. There is py € N such that for any sy in N,

lws = villzso < Clllv+llFmoce + 1P 11505000 1o+ %0 (3212

1L+ (wr = v)llz2 = Clloslpeoce I L+v4llLe + tllveiz2]
+ ClIL+uPllweos + tuf” [[weoe]

X (v llweoee + [uZPllweoee) o4 2. (32.13)

Proof. To get (3.2.12), we express w4+ — v4 from (3.2.3). We apply (A.2.2) to the first
term in the sum on the right-hand side. To treat the two remaining ones, we use (A.2.7)
with £ = 2 or £ = 1 respectively. We obtain a bound by the right-hand side of (3.2.12).

Let us prove (3.2.13). We may write for any functions fj, f2, f3 and any symbol m in
S1,0(My, 3),

L+Op(m)(f1, f2, f3) = Op(m)(f1. f2. f3) + Op(m)(f1., f2,X[3)
+ tp"(Dx)Op(m)(f1. f2. f3)

for some 77 in Sy 0(MZ,3). Then writing xf3 = (x + istp'(Dy)) f3 — i3tp’(Dy) f3, we
obtain

L+Op(m)(f1, f2, f3) = Op(m)(f1, f2, Lis f3) + Op(m)( f1, f2, f3)
—i3tOp(m)(f1. f2. P'(Dx) f3)
+ 19" (D) (f1. fa. f3). (3.2.14)

We write Ly (w4 — v4) from (3.2.3) on which we make L act. We apply equality
(3.2.14) with (f1, fa, f3) = (viy, Viy, Vi3) to the Op('") term in (3.2.3). By (A.2.3)
applied with j = 3, we get that the L2-norm of the action of L on the first term in the
sum (3.2.3) is estimated from

(ILvllzz + tlvalz2) o4l 5eeco- (3.2.15)
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In the same way, applying (3.2.14) to (f1, f2, f3) = (vi}, Vi,, u?fp), and using (A.2.3) with
j = 1, we estimate the L2-norm of the action of L on the Op(n?;z)) term in (3.2.3) by

(1L uZP |weooe + tl[us® [weoce) [[v4[lweose v | 2 (3.2.16)

Finally, doing the same for the Op(nA1§3)) term, we get a bound in

app

(1L’ weoso + 1] il

lweoco) U [[weooe [V 2

Together with (3.2.15) and (3.2.16), this gives (3.2.13). ]

4. Construction of the solution and proof of the main theorem

Recall that we want to construct a solution u to equation (1.1.1) that displays inflation of its
norms and that we have rewritten that equation as a first-order system (3.1.7)—(3.1.8). We

look next for the solution (u4,u_ = —uy) of that system in the form u4 = ufp + vy,
where ufp is the approximate solution defined in (3.1.15), which solves (3.1.29), and
Sk /&2

which blows up at time e , and where vy is the perturbation introduced in Propos-
ition 3.1.4, which solves equation (3.1.41). We shall construct v solving that equation
backwards, starting at time 7'(¢) introduced in (1.2.5), with initial condition v4 |,=7() =
0. In order to show that v exists up to time ¢ = 1, and remains under control down to
that time, we shall prove in this section a priori estimates for ||v4 (¢, -)||gso for s¢ large
enough and ||L4+v4(¢,)|z2. In order to do so, we shall exploit the fact that ||v. || weo.c
remains small, so that Lemma 3.2.2 will imply that the H* (resp. L?) norm of v (resp.
Lyvy) is equivalent to the H® (resp. L?) norm of w4 (resp. Lyw ), where w solves
equation (3.2.4), in which the explicit cubic terms on the right-hand side are all character-
istic. In the following subsections, we shall successively prove estimates for || v (¢, ) || zso,
|L+v+(2,+)| 12, and then perform the bootstrap argument that gives the proof of the main
theorem.

4.1. Sobolev estimates

In the estimates of this subsection and the following ones, it will be important to track
the dependence of some constants on others. We shall fix indices of smoothness pg, So
(which will be taken large enough), as well as the parameters §, §’, y that satisfy (3.1.11).
A universal constant will be a constant that depends possibly on these parameters, but on
no other quantity. Next we shall have constants like N (the order at which we construct the
approximate solutions (3.1.16)) or Ny in (3.1.31), as well as the constants Ag, A1, B that
we introduce below in the estimates of v.. It will be important to track how other constants
depend on them. Because of that, when we introduce a constant like K(Ay, 41, B, ...),
we mean that K depends only on the quantities explicitly mentioned in the argument.
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Proposition 4.1.1. Let pg € N be fixed such that the estimates of Proposition A.2.2 of
the appendix hold. Let so € N be given. There is an integer No min > 0 such that for any
No > No min, the following holds:

The choice of po, So, No determines the constants on the right-hand side of (3.1.30),
(3.1.31). For any couple of constants (Ag, B) with Ag large enough relative to Ny, there
is &g € |0, 1] such that, for any € € |0, g¢], the following bootstrap holds: Denote by v+ the
backwards solution of (3.1.41), with initial condition v4 (T (¢),-) = 0, and source term
F + rapp (With F, rapp satisfying (3.1.30), (3.1.31)). Assume that this solution is defined
on an interval [T, T (¢)] for some T € [1, T (¢)[ and that the following a priori estimates
hold true for any t € [T, T (¢)]:

B ,_
o4, ) lweoo < ﬁSz 9 4.1.1)
Then, for any t € [T, T (¢)], one has
Ao 5 g 2 N
los(t, ) lmso < ¢ (Sx —e&“logt)™. 4.1.2)

Before starting the proof, we introduce notation for the cubic terms on the right-hand
side of (3.1.41), namely

Faweuf) = Y Opmi”)(vi,. viy. viy)

re{—+y
2 aj
+ Y Opm) (i, viy, ui)
Ie{—,+}3
+ Yy Op(m ) (vi, . ul uiPP). (4.13)
Ie{—,+}3

As mgj) is in Sp,0(1, 3), independent of x, we may apply (A.2.2) to the first sum in (4.1.3)
and (A.2.7) to the second and third ones, with £ = 2 and £ = 1 respectively. We get for
any 5o € N,

17304, ) 5o = ClvFpnoce + U 15 ngrs0.00) 10+ %0 (4.1.4)

To prove Proposition 4.1.1, we shall need a bound for [|u’" || ys+s0.0 0n the right-hand
side of (4.1.4).

Lemma 4.1.2. For any p > 0, there are Cy(p), 0’ > 0, and for any N € N, there is a
constant K(N') such that the approximate solution ui}_’p given by (3.1.16) with that value
of N satisfies

e 1
[P lwoce < CO(P)—I(S* —&?logt)”2

N

81+9’

FK(N)E—(Sy — e2logr) "7 + K(N)it. (4.1.5)

Vi Vi
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Remark. We shall use (4.1.5) to estimate ||u{" || o+s0.c On the right-hand side of (4.1.4),
so that the first multiplicative constant on the right-hand side Co(pg + s9) = Co will be
a universal constant with the terminology introduced at the beginning of this section. In
particular, it is independent of N. The two other constants in (4.1.5) do depend on N,
but they are either multiplied by a small factor £?" or are not affected by the large factor
(Sx — &2 log t)_%

Proof of Lemma 4.1.2. We bound the W#>*°-norm of each term on the right-hand side of
(3.1.16).

By (3.1.17) and (3.1.20), the first term on the right-hand side of (3.1.16) has W#-*°-
norm bounded by C (p)% for some constant C(p) depending only on p.
In the second term on the right-hand side of (3.1.16), ail (s, y) is equal to the quantity

2(1 — yz)_%al,l (s,y), where ay; is the element of x2 given explicitly by (2.1.10).
It depends only on the initial data of (2.1.8). By definition (2.2.1) of class E_%,

84( aj 1(8 logt, ?)) = z‘_ébl(@2 logt, ;) (4.1.6)

for some by € X~ 2=¢ Since by (3.1.9), t~¢(Sx — €% logt) ™t = O(1), the W -norm
of the second term on the right-hand side of (3.1.16) is bounded by Cy(p) f(S* -
e2logt)” 2 for some constant Co(p) depending only on p.

Consider next the W#*-norm of each term in the last sum in (3.1.16). Since as above
in (4.1.6), any 0, derivative may be written as an expression of the same form as the
general term in that sum, it is enough to bound the L °°-norm, which is smaller than

Cpt™ Z(S*—E logl) —8- 1)eg(t g) 4.1.7)

with a factor ey (¢, ) that satisfies, according to (3.1.18),

eclt.e) = 0(e) it <3/,
) .18)
et e) = O™ if1 = &5/,
Using (3.1.9), we estimate (4.1.7) when t > e5+/2¢% by
Cet™2 (S, — e log1) e (1, £)e DG, (4.1.9)

Using (4.1.8), (3.1.11), and the fact that £ > 3, we get that (4.1.9) is estimated by the
second term on the right-hand side of (4.1.5) with #” > 2. The sum of all these terms
for3 < ¢ < N + 1, £ odd, is thus also controlled by this quantity.

Fort < 3514 (4.1.8) implies that the sum of expressions (4.1.7) is smaller than the last
term in (4.1.5). This concludes the proof of the lemma. [

Next we show the following lemma:
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Lemma 4.1.3. Assume the a priori inequality (4.1.1) and that the source term in (3.1.41)
satisfies (3.1.30), (3.1.31). Let Ny be given in N. Then there are a universal constant Cy
and a constant K(Ny) depending on Ny, a constant K(B) depending on B in (4.1.1), such
that

T(e)
s )l < / U1z )50 + [7app (T ) l50) d T
t
2 T 26/ 2 1 dt
F RO [ (S, = e logn) ™ + s (el
t

O st
+C S 1 '
o€ (S« —e“log 7)™ |lvg (7, )l Es0 .
t

4-20 e dt
+ K(B)e v (2, ) Eso (4.1.10)
t

foranyt € [T, T(¢)].

Proof. We write the backwards energy inequality for the solution to (3.1.41) with zero
initial condition at ¢ = T (&) using notation (4.1.3). We obtain

T (e)
loa o) o < / 153 0s o u™) (2. ) a0 d 7
t

T (e) T(e)
+ / ”F(T’ ')”HSO dt + / ”rapp(f’ ')”Hm dt.
t t

Into the first integral on the right-hand side, we plug (4.1.4). By estimate (4.1.1), the
vt ”%V/’om term on the right-hand side of (4.1.4) brings the last term in (4.1.10). To study
the contribution of the ||ua_‘}f’p||%VPO+SO,Oo term of (4.1.4), we apply (4.1.5) with p = pg + o
for an N taken large enough relative to Ny so that Proposition 3.1.3 holds. We obtain
thus from the right-hand side of (4.1.5) the second and third terms on the right-hand side
of (4.1.10), with a constant K that depends on N, and thus on Ny. This concludes the

proof. ]

Proof of Proposition 4.1.1. We make the change of variable ¢ = e with s € [0, S(¢)],
S(e) = €2log T (¢), and rewrite (4.1.10) as

S(e) S(e)
f(s) < / g(o)do + v(o) f(o)dao, 4.1.11)
where
f(s) = [v+(e?, ) g,
2(0) = eZ e 2[|F(e,)laso + [Ir(e, )| awo], (4.1.12)

Y (o) = K(No) (&2 (Se —0) ™' + 1) + Co(Sx — )~ + K(B)e> 2.
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Denote
S(¢e)

D(s) = — v(o)do (4.1.13)

N

so that (4.1.11) implies by the Gronwall inequality,

S(e) ,
f@s) < [ PN g () ds'. (4.1.14)

Assume that ¢ is small enough so that in the expression of ¥ (') in (4.1.12), K(No)&2?
K(B)82_29 < 1. Then (4.1.13) implies that for T < s <5’ < T(e) < S,

e26N=2() < e(K(No)+1)S*( Sk —8 )CO—H
Se— 5’

We thus get from (4.1.14),

S(e) S -5

o+1
/) eZg 2
—s

x [nF( 2 e + lrap(e, )|l ds’  (4.1.15)

los (e .z < K(No) /

for a new constant K (No) Next we use (3.1.30), (3.1.31) to estimate the right-hand side.
Ifs > 3S* , then the F (e 2 ,-)-contribution on the right-hand side of (4.1.15) vanishes, so
that by (3 1.31), we get the estimate

S(e) 5
Cy, K(No) / (Sx — 5)C0TI(S, — 5/)~Com 1+ Nop =2 No=2 g/ (4.1.16)
N

If No > Cyp, which may be imposed since Cy is a universal constant, we get a bound in
K(No)e 2 (Sy — 5)No+1gNo=2 (for a new K (No)) that largely implies an estimate of the
form (4.1.2), if we assume Ny > 4 and ¢ < ¢¢ small enough.

If on the other hand in (4.1.15), s < 3S* , the integral on the right-hand side of (4.1.15)
for s € [%, S(e)] is estimated as above and the remaining one by

38./4
K(No) / (Ss — ) (S, — 50 62 (e )| oo d’
* o35x/4

L 4CH K (N) / | P o d. (4.1.17)
1

The first term may be bounded again by (4.1.16) and then by K(Ng)e2~? if Ny is large
enough. By (3.1.30), the last contribution to (4.1.17) is also in K(Ng)e2~? for a new
constant depending on Njy. If the constant Ag is chosen large enough in the function of
Ny, we may ensure that (4.1.2) holds. This concludes the proof. ]
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4.2. Estimates for the action of L ;

We want to prove estimates for the L2?-norm of L vy analogous to those of Propos-
ition 4.1.1 in the case of Sobolev norms. To do so, we shall have to use the auxiliary
unknown wy of Proposition 3.2.1.

Proposition 4.2.1. Assume given large enough integers pg, So. Assume also given a large
enough integer N1 and an integer Ny satisfying No > N1 + 1 + 28. For any constant
Ao > 0 (which depends on the preceding ones), there is A1 > 0 and, for any constant
B > 0 (which may depend on Ay, A1), there is gy € 0, 1], such that the following holds
true for any ¢ € 10, go]-

Let T €]0,T(e)[ and let vy be a solution of equation (3.1.41) defined on [T, T (¢)],
with the initial condition v4 (T (¢),-) = 0, such that vy satisfies, for any t € [T, T (¢)], the
following estimates:

B
o+t )lwese < —=6>°,
NG 4.2.1)
o+l < Age®? (Sx — e log ).
Then for any t € [T, T (¢)], we have the estimate
A1 5 9 2 N
lLyvs(t, )2 < 78 (Sx —e&“logt)™!. 4.2.2)

To prove the proposition, we first need an estimate for || L+uzfp ||we.o for any p.
Lemma 4.2.2. Forany p > 0, any N € N*, there is a constant K(p, N) such that ifu:I_)p
is defined by (3.1.16), one has for any t < T (¢g) the bound

1L 2™ (2, )l wes < K(N, p)it(S* —elogr) 3, (4.2.3)

N

Proof. We make L acton (3.1.16). We get a first term
xo(e" 0t = 1) Lyuo 4. (4.2.4)

If we apply Corollary A.1.5 with ¢ = 1 or ¢ = —1 to expression (3.1.20) of ug 4, we
conclude that the W#®-norm of (4.2.4) is O(e/~/t). Applying Corollary A.1.5 again
with ¢ = 1 to the second term on the right-hand side of (3.1.16), we get that the action of
L, on it gives an expression

(4.2.5)

s=g2logt

. & 1 - 1
O = o) et =)l (5.3 o) 7 (50 )
y=x/t

with @, in $727% C £=% and 7 with all its d,, dy, hdj-derivatives smaller than
IV (»)™N for any N. Then the W**°-norm of (4.2.5) is 0(%(5,.< —&2log t)_%) since
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the action of each d,-derivative makes one lose at most 1 4 ¢ ~!(S, — s?logt)~!, which
is O(1) (using (3.1.9) when ¢ satisfies eS/26" < ¢ < T (¢)).

We consider next the action of L on the last sum in (3.1.16). We have on the one
hand the characteristic terms corresponding to ¢ = 1, £ > 3. We apply Corollary A.1.5
with ¢ = 1 to see that the action of L on these terms is givenby asumfor3 < <N + 1
of expressions

. 1
e”q’(”f%a?f <S, .-, 8)62,10’ €)ls=e2 10g1 (4.2.6)
’ t y=x/t

with aZ’lz in £=5-1-8(=1) apd eg1(t, €) given by (3.1.18), modulo a remainder &7, with
7 as in (4.2.5), so that it will trivially satisfy a bound of the form (4.2.3). In (4.2.6),
ep1(t,e) = O(g) if t < ¢5+/2¢% 5o that in this case bounds (4.2.3) hold immediately.
Ift > eS*/zgz, we bound the modulus of (4.2.6) by

L _L_q_ _ _ 1 _1 _1_ _ _ _3
172(Se—e?logt) "2 D2l = 1 (172 (S, —5) T2 ) T e (S0 = 5) T2 22 1oy

By (3.1.9) this is 0(%(5* —¢? logt)fg) since (€ —1)(5 —=8)+2—£ > 1by (3.1.11).
Since the same estimates hold for d-derivatives of (4.2.6), we get for the W#*>*°-norm
of the action of L4 on the characteristic terms in the sum in (3.1.16) a bound by the
right-hand side of (4.2.3).

We still have to study the noncharacteristic terms in that sum, i.e. those for which
q # 1. By Corollary A.1.5 and (3.1.9), we get that the action of L 4 on these terms gives

. i 2 1
/1190 2+1a2_q (5» 2 S)el,q (¢, 8)|s=‘r92 log? 4.2.7)
’ t y=x/t

with aZ"IZ in 2_%_8(‘3_1), £ > 3, modulo again a remainder that is again like &7 in (4.2.5).
The modulus of (4.2.7) is bounded by

58, — £2log 1) E D ey (1, )]

_1, 1 _1l_ s 4 _3_
=172(172(Se —5) 270 3 (S —5) T2 eg 4 (1, €)|ls=e2 101+ (4.2.8)

When ¢t > eS*/zaz, we use (3.1.9) to estimate (4.2.8) from
l‘_%S(l_S)(%_S/”(Q,q (t,8)|(Sx — &2 logt)_%_z‘s. 4.2.9)

If £ = 3, g = —1, the last inequality (3.1.18) gives a bound of the form (4.2.3). If £ = 3,
|g| = 3, the second estimate (3.1.18) shows that ey , (¢, ¢) = O(g?), so that we obtain again
the wanted bound. If £ > 5, using that ey 4(¢, &) = O0(£27%) and (3.1.11), we obtain that
(4.2.9) is controlled by the right-hand side of (4.2.3). When ¢ < eS+/ 252, the first estimate
(3.1.18) shows that the bound of (4.2.8) by (4.2.3) holds trivially. Finally, since similar
bounds are satisfied by d,-derivatives, we get that the noncharacteristic terms in the sum
in (3.1.16) are controlled as in (4.2.3). This concludes the proof. [
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We prove next a lemma relating estimates for L+ v4 and Ly w+.

Lemma 4.2.3. Let vy be a function defined on some interval [T, T (¢)] satisfying, for any
t € [T, T(g)), estimates

B
vy (2, ) lweoe < ﬁsH (4.2.10)

for some constant B. There is g9 > 0, depending on B, such that if ¢ € 10, go[ and (4.2.10)
holds, then w4 defined by (3.2.3) from vy and uzfp given by (3.1.15) satisfies

IL+vs(t, )2 <2/ Lyws (2, -)]2
+ K(N, Be'™9)&?(S, — 2log ) 72 vy ()2 (4.2.11)
(with N equal to the order at which uz_‘fp has been constructed in (3.2.14)).
Proof. By (4.1.5) and (4.2.3) we have
LR, ) lweoce + tl|ulP (2, ) [ woooe
< eK(N)V1(Sy — &2 logt) 2721 4+ 171(S, — % log 1) ™']. (4.2.12)

On the other hand, still by (4.1.5) and the a priori estimate of ||v4 (¢, -)||weo- in (4.2.10),
we have

eK(N, Be'~?)
At
Using (3.1.9), we see that the product of (4.2.12) by (4.2.13) is smaller than

P lwowos + 042 ) wross < (Se—elogn™d.  (@42.13)

e2K(N, le_e)(S* — &% log t)_l_zs.

Plugging this into (3.2.13), and also using the a priori estimate (4.2.10) of ||vy(¢,-) || weo-c,
we get

1L+ (wy =)@, )2 < K(BSI_B)i—z||L+U+(I, Iz
+ K(Be' )& v (1. )2
+e2K(N. Be' ™) (Sx — e log )™ 72 (1) 2.
which implies (4.2.11). This concludes the proof. ]
We prove next an energy inequality for || L w4 (¢, -)||z2-

Lemma 4.2.4. Assume that for t in some interval [T, T (¢)], the following a priori estimate
holds true:

B
4 (2. )l weoce < EEH' (4.2.14)
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Then for t in the same interval, one has an inequality

[(D: = p(Dx))Lyw(1.°) | 2
2
< 18w — % log1) ™! (Co + K(N. B)e”) + KV L4042

2
+ (S = e log 1) 2 (K(N) + K(N. B} [0t ) v
+ R(0) + R (). (4.2.15)

where Cy is a universal constant, 0" > 0, and Ry, Ry satisfy

+o0
6"\ 26
/1 IRL(®)l|2 df < (K(N) + K(N. B)e”)e> ™, (4.2.16)

[Re (t)2 < K(N, B)t 'e™No(S, — e?log )Mot

where Ny is the integer introduced in Proposition 3.1.3, and Ry is supported for t <
38, /4€2
e .

Proof. We make L act on equation (3.2.4) to get

(D: — p(Dx))Lywy
= Y [L+0p(m§") (v, viy . viy) + Ly Op(m?) (vi, , viy P

13
I1=(i1,i2,i3)
Iel,

+ L4 Op(m ) (v, ul® uf™)] + L R

%) 3

=144 1V. 4.2.17)

We estimate the L2-norm of the terms on the right-hand side. Since the index / is charac-
teristic, we may use Proposition A.3.1 in order to estimate I + II 4 III.

» Estimates of I, 11, IIl. By (A.3.1), we get

2
M2 < Cllvallweoco (I1LV4 2 + V4 | 250)

o420

< CB?

p (ILv4lz2 + v llEs) (4.2.18)

by (4.2.14). We estimate II using (A.3.2). We get

app

iz < 2C [lo [lweoce lu " lweooe (| Lot [l L2 + v+ ]l 2%0)

+ Cllvtllweoss (| L+ulfP lweoes + U lweoe) v |2

Using (4.2.14), bound (4.1.5) of u‘fp which implies

U (1, [ wonee < K(N)—=(Sx — 2 log 1)~ 2, 4.2.19)
+ f

7
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and (4.2.3), we get

83—9 1
[T]|z2 = K(N, B)T(S* — &% logt) 2 || Lyvi (2. ) 2
83_9 3
+ K(N, B)——(Sx =&’ log )27 lup (¢, )| rso- (4.2.20)

To estimate III, we use (A.3.3). We obtain
L 2 < 2C [[uf weoee ([ LuZ® [weoce 4 [l [[weoo) V]2
+ C P 5poco (1L 4 2 + v [l 5%0).

Using (4.1.5) to estimate ||u?£p ||weo.00 and (4.2.3), we obtain a bound

2
£ _
(Tl z> < COT(S* —&2log) ' (||Lv 2 + llvllEs0)
& 20/ 2 -1
+ K(N)T(S (S« —e”logt)™" + D([[Lv4 L2 + v #s0)

2
+ K(N)ST(S* — 2log 1) 22 Jus (1, )| 2. 4.2.21)
Summing (4.2.18), (4.2.20), and (4.2.21), we deduce that
T4 II + III|| 72

2
< ET[CO(S* —&?logt)™' + K(N. B)e?" (Sy — e?logt) ™' + K(N)]||IL+v4 |12

2
" 8
+ (K(N) + K(N, B)e® ) (Sx — & 10g )22 vy (2, ) | o (4.2.22)
for some 6” > 0, which is controlled by the right-hand side of (4.2.15).

* Estimate of IV. We estimate now the L2-norm of the last term L R in (4.2.17), where
R is the last term in (3.2.4) and has the structure described in the statement of Pro-
position 3.2.1. The contribution L4+ F to L4 &R satisfies (3.1.30) and is supported for
¢ < e35+/4¢* 5o may be incorporated into Ry, in (4.2.15), with Ry, satisfying (4.2.16).
The contribution L ryp, to LR is supported for 1 > ¢5+/2¢” and satisfies (3.1.31), so
that we may incorporate it into Ry in (4.2.15), with Ry satisfying (4.2.16).

We are left with studying the quintic terms obtained by making L 4 act on (3.2.5). We
consider first the action of L on the first term in (3.2.5). Since | J1| > 1, the first argument
in Op(/m)(---) is equal to v4. When we make L = x + tp’(Dy) act on it, we argue as
in (3.2.14), and rewrite the resulting expression as a sum of terms of the following forms:

Op(m)(Lv, vyp 1 y0),
Op(m) (v, vy, u'y’),

177 J,
tp'(Dx)Op(m) (v+, vy, uajzp),

£ 10p(m)(p'(Dx)vs. v D).
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where |J{| + |J;| = 4 and m is a new symbol in the class S1,0(M, 3) for some v, with
constant coefficients. We apply (A.2.3) with j = 1 to all these expressions. We get an
estimate of their L2-norms by

é 4
(o lweoee + [uZPllweoee)  (IL+v4llz2 + tlv4 ] L2).

By (4.2.19) and the a priori assumption (4.2.14), we get a bound
et 2 —27,—1
K(N, B)T(S* —e& logt) 1 I L4 v+ L2 + v+ llz2]-
Again using that, by (3.1.9), t~1(S, — £2logt)~! = O(1), we get finally the upper bound
!
K(N, B)T(S* — &% logt) M| Ly vl
4
+ K(N, 3)87(5* — e21og 1) 2|4 |2, (4.2.23)

which is better than the right-hand side of (4.2.15). Finally, we have to estimate the L2-
norm of the action of L4 on the last two terms in (3.2.5). Arguing again as in (3.2.14), we
have to study

Op(m)(vJI s ufi;;p, L,'3 Gi3),

Op(m) vy, u%P. Giy),

tp'(Dx)Op(m) (v, uy), Gis),

tOp(m) (v, uyY, p'(Dx)Giy),
for symbols m in S o(M}, 3) with constant coefficients, |J1| + |J2| = 2, G4 = F or
Fapps G— = —F or —TFapp- Using (A.2.3) with j = 3, we bound the L2-norm of all these

terms by
(vt llweoes + 1P lweo)*(IL+ G lIL2 + G llL2)- (4.2.24)

When G4 = F, since this term is supported for ¢z < e35+/ 482, it follows from (4.2.19) and
(4.2.14) that this is bounded by

K(B,N)e*(IL+ F(t.)llLz + | F (2. )] 2)-

By (3.1.30), the integral in ¢ of that quantity is O(K (B, N)&*~?), so may be incorporated
into Ry, satisfying (4.2.16).
When G4 = rypp, we use (4.2.19) and (4.2.14) again to bound (4.2.24) by

&2 5 . &2
(K= (Sx = logn)™" + K(B)— ) ILragot. )12

+ K(N, B)82(S* — &2 log z‘)_1 |7app (£, )l L2
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If we plug (3.1.31) into this inequality, we largely get an estimate in

2
STK(N, B)eMNo(S, — &2 log 1)yNo—1,

so that we obtain a contribution to Ry satisfying (4.2.16). Combining this with (4.2.22)
and (4.2.23) we get (4.2.15). ]

Proof of Proposition 4.2.1. We assume a priori inequalities (4.2.1). For gy > 0 small
enough, if ¢ < g¢, inequality (4.2.11) holds. Plugging this inequality into the right-hand
side of (4.2.15), and also assuming &y small enough so that K (N, B)se/, < 1land Bl <
1, we get

I(D: — p(Dx)) Lyw(t.) 12
2
< %z[(co + 1)(Si — e2log )™ + K(N)]IL w4 (2,7) | 2
2
+ STK(N )(Sw — 21og ) 2 2 oy (1. ) laso + RL() + Ru (). (4.2.25)

On the right-hand side of (4.2.25), we plug in the second a priori estimate (4.2.1) and we
write the energy inequality associated to (4.2.25), starting from time ¢t = 7 (¢) at which
L w4 vanishes. We get for T <t < T'(g), using also (4.2.16),

T (e) d‘L’
ILqwa ) < / 2A(Co + 1(Se — 2 log )™ + KL ywe (v ) 26>
t

T(e) dt
+ K(N, Ag)e>~? / (Sy — &2 log)No—2-282 —~
t T
T (e)
+ [ IRl
t

T (e) d
+ K(N, B)eNo~2 / (Sx — e2log T)No—162 45 (4.2.26)
t T

Wesett = es%, T = 657, S(e) = e2log T (g), f(s) = ||L+w+(es%, )72, and
g(s) = & (K(N. Ao) + & K(N, B))(Six — )17 + | Rp(e7)| 2672,

with Ny < Ng — 1 —26§ and N; large enough so that Ny > 4. We may thus rewrite (4.2.26)

in the form
S(¢e)

S(e)
o< [ wehf)ds + / §(s) ds’

with
Y (s) =2(Co + 1)(S« —5)~" +2K(N).
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We may apply estimate (4.1.14), with notation (4.1.13). We obtain, with new constants,

IL+wi(e<?, )12

S(e) _ 0
< [T A + KBS =

5L

+ K(N)| R (e2,)|| 26 2e:2] ds’.
Since Cy is a universal constant, we may take N; large enough so that Ny —2(Cp + 1) > 0.
Moreover, as Ry (e2,-) is supported for s’ < 35*, (Sx — )71 stays bounded on the
support of that function. Using (4.2.16), we get finally

ILswi (e, )12 < &> O (K(N, Ag) + & K(N, B))(Si — )™,

for some constants depending on N, Ag, B and anew 6” > 0. By (4.2.11) and the second
a priori inequality in (4.2.1), we get

ILsvi(t, )22 < e (K(N, Ag) + % K(N, B))(Sx — 2 log )™

for new constants K(N, Ag), K(N, B), using again that Ng > N; + 1 4 26. We take A,
large enough so that K(N, 4p) < % and ¢ < go small enough so that 89NK(N, B) < %
in order to obtain (4.2.2). ]

4.3. Proof of the main theorem

We shall deduce the proof of Theorem 1.2.1 from the preceding subsections. Let us recall
how the constants are chosen:

* First one fixes # > 0 small and 8, §', y satisfying (3.1.11), with §, § small. One also
fixes pg € N large enough so that the estimates in Proposition A.2.2 hold true (for a
fixed large enough v) and pg larger than pg in Proposition A.3.1. This pg is universal
and does not depend on any of the constants that we shall introduce in the forthcoming
points. It determines the constant Cyp in Lemma 4.1.2.

* Next one chooses so € N large enough, such that Proposition A.3.1 holds true and s¢

large enough relative to pg so that Proposition A.4.1 holds true.

* One takes N; large enough as in Proposition 4.2.1. Once N; has been chosen, we take
Ny so that Propositions 4.2.1 and 4.1.1 hold true. Once N; and Ny have been fixed,
the order N at which one has to construct the approximate solution so that uap P
Proposition 3.1.3 satisfies (3.1.29)—(3.1.31) is also determined.

*  Once N is determined, the constant Ay is taken large enough in Proposition 4.1.1.

*  Once Ay is fixed, the constant A; is determined by Proposition 4.2.1. Next we choose
B large enough relative to Ag, A as in (4.3.4) below.

* Finally, ¢ is taken in ]0, &¢] for some & small enough relative to all preceding con-
stants.
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Proof of Theorem 1.2.1. To construct the solution u of the theorem, one considers the
solution (u4,u— = —u4) of the equivalent system (3.1.7), (3.1.8): one looks for uy in
the form u = uafp + v4, where uzfp is defined in (3.1.15) and v4 satisfies equation
(3.1.41). One then wants to solve this equation for vy backwards from ¢ = T (¢), with
zero initial data at + = T'(¢), and prove that the solution exists down to time ¢t = 1. By
local existence theory, there is To < T (¢) such that the solution exists on [Ty, T'(¢)] and
we denote by 7 > 1 the infimum of the T > 1 such that the solution exists on [T T(e)]

and satisfies for all ¢ € [T T (e)] a priori estimates
log (. ) lso < Aoe> ?(Sa — £ log1)™°,

1L vt )llze < Are® 0 (Su — 2 log )™M,

20
N

where the parameters sg, po, No, N1, Ao, A1, B are chosen as explained at the beginning
of this subsection. If we apply Proposition 4.1.1, we get that it implies that for ¢ in the
same interval,

43.1)

[v4(2, ) lweoe < B

A
o4 (2. ) [as0 < 7%2—9(5* — & log1)™ (4.3.2)

if ¢ < g9 small enough. Then, applying Proposition 4.2.1, we get for ¢ < &,
A
ILsvi ()l = 50 (S = e log )™ (4.33)

By (A.4.4), we deduce from the first two inequalities (4.3.1),

g2t B
lo4-(, Y llweoe < CW(Al + VAoV Ao + 41) < ﬁsz—" (4.3.4)

if B is chosen large enough relative to Ag, A;.

By the bootstrap (4.3.2), (4.3.3), (4.3.4), we get that the solution vy exists on the
interval [1, T'(¢)] and satisfies (4.3.1) at any ¢ in that interval. Writing these estimates at
t = 1, we get from (4.3.1),

e (1) = uf (1) o = 077,
Ix g (1.) = ufP (1)l 2 = O(>7°).
By (3.1.15) and recalling that y; vanishes close to zero, we get for small enough &,
s (1) =2 (1) a0 = 0277,
Ix g (1. = @R (1, )l 2 = O(>7°).

The definition (3.1.4) (resp. (3.1.13)) of uy (resp. ﬁff_’p) from u (resp. u,pp) and the fact
that u, u,p, are real-valued functions imply

(1, ) = 2wapp(L, ) s+ + 1Dsu (1) = Diytagy(1, )0 = O(>~),

28 “4.3.5)
[l (u(1,-) — uapp(l’ Dar + Ix(Dru(l,-) — Dtuapp(L Dz = 0@E).
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By (2.2.38), (2.1.29), and (2.1.2), (uapp(1, -), 0suapp(1, -)) are the initial conditions
(¢f0, €g0) chosen in the statement of the theorem so that (1.2.3) holds. Thus (4.3.5)
shows that the initial conditions of our solution u have structure (1.2.7), with perturba-
tion ( f(x, g), g(x, ¢)) satisfying (1.2.6).

It remains to prove (1.2.8). At time t = T'(g), the value of u (resp. d;u) is given by
Uapp (T (€),+) (resp. 0:uapp(T'(€), ). By (2.2.38), these quantities are equal to ufpp(T(s), )
(resp. 8,ufpp(T(8), -)) with ”pr given by (2.2.2). All contributions corresponding to £ > 3
in (2.2.2), as well as their derivatives, have modulus bounded from above by

£ T (e) 72 (S — e log T(e) + |y — yo*) 72
x (T(e)% (8w — e21og T(e)) 2 73) (4.3.6)
Since £ > 3, (3.1.9) implies a bound in
T(e)"2(Sy — e*log T(e)) "2 (eg_sl(S* —¢%log T(s))‘g/_s)z_lsz_[. 4.3.7)

By (1.2.5), (1.2.4), Sy — €2 log T(e) = £2u(e’) is exponentially small in ¢ 2, so that
since §’ > § (4.3.7), and thus all terms with £ > 3 in (2.2.2) computed at t = T'(¢), are
negligible relative to sT(s)_% (Sx — 2 log T(s))_%. On the other hand, by (2.1.10) and
(1.2.3), (1.2.2), the coefficient of %eitw(x/ 9 in (2.2.2), computed at t = T(¢), ¥ = yp
satisfies
e2log T(e)\~2
S )

since T'(y0)¢(yo) = Sy ! by (1.2.2), (1.2.3). Moreover, since [a?(yo)| = (1 — y%)’i X
F(yo)% by (2.1.6), (1.2.1), with T'(y¢) # 0 by (1.2.2), we get that all terms with £ > 3
in (2.2.2) at time T'(¢) are 0(8T(8)_% la1,1(¢210g T(g), yo)|). We conclude that the main
contribution to (2.2.2) at time ¢t = 7'(¢) and x = yoT (¢) is

la1,1(c? log T(@). o)l = laf(vo)| (1

2Re[eT(e) 2 TOP00 g, | (62 log T(¢), yo)]
and its time derivative is
2Re[eT(e) 2 iw(yo)e' P OVay, (2 log T(e), yo)l.
Thus,
Uz (T(€), yoT ()| + |9:uz, (T (), yoT (¢)))|
~ eT(e) 2 |ar,1 (62 log T(e), yo)|
~ ET(S)_% (Sx — &2 log T(a))_%
~ T(e) 2u(e)) "2 ~ T(e) 262 43.8)
by (1.2.5). If ¢ > 0 is given and if §’ in (1.2.4) is taken small enough with respect to ¢, one

Sx
has ¢’ < e~ &2 1729 _ T(¢)=1+2¢_ Thus (4.3.8) is bounded from below by T'(¢)~¢ which
gives the first equality (1.2.8).
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To get the second one, we proceed in the same way, except that we have to estimate
from below
e

VT (e)

By (1.2.3), the example following Definition 2.2.1 and the expression (2.1.10) of a1,1, one
has

a1 (2102 7). = ellari (e og T(e). ) | L2aay)-

T(s))‘

L2(dx)

_1
la1,1(s.9)| ~ (Sx —s + |y — yol*) "2,

so that if kg > 0,

1, 1
la1,1(e210g T(e), ¥)IL2(ay) ~ (Sx — 2 log T(e)) ™2 T 0.,

We have seen above that (Sx — &2 log T'(¢)) ™! > T'(¢)!~2¢£~2. Then the second inequality
(1.2.8) for the aq,; term in (2.2.2) with the lower bound (1.2.9) follows from that, up
to changing the definition of c. Since the contr1but10ns to (2.2.2) 1ndexed by £ >3 are
bounded pointwise by (4.3.6) and thus by T'(g)~ 2 lai,1(e2log T (¢), T(S )|e <2 for some
¢ > 0, as seen after (4.3.7), they are negligible perturbations, so that (1.2.8), (1.2.9) hold

for udpp(T(s) -). This concludes the proof. [

A. Calculus and estimates for pseudo-differential and multilinear
operators
A.1. Pseudo-differential operators

In this subsection we prove several results on pseudo-differential operators used in the
bulk of the proof.

Definition A.1.1. Let p(x, ) be a smooth function on R x R, satisfying for some u € R
and all ¢, B in N,
9298 p(x.§)| < Cap(1 + )1, (A.L1)

Then if u € S(R), we set

1 .
p(x, Dx)u = E/e’xgp(x,g)ﬁ(s)dé, (A.1.2)
and if & € ]0, 1] is a semi-classical parameter, we set

p(x,hDy)v

1 .
o= [ ptr b ds

1 . (x—y)E
- / ¢ p(x.E)(y) dy dE,
2rch

where the last integral is an oscillatory one. This is related to (A.1.2) by the conjugation
formula
© ' o p(x.hDx) 0 ©} = p(hx, Dy) (A.1.3)
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if we define .
X
(Opu)(x) = ﬁu<z) (A.1.4)

We want to study the action of p(Dy) on oscillating expressions of the form used to
construct an approximate solution in Section 2. First we define the following:

Definition A.1.2. Let xo € |—1,1[, ko € N. For m € R, we denote by ™ the space of
continuous functions

(x,A,h,e) > o(x,A,h,e),
R x [1,+00[ x]0,1] x [0,1] = C,

smooth in (x, A, &), supported for |x| < 1, that satisfy for any «, B, {, N in N, any
(x, A, h,e)in[—1,1] x [1, 400[ x ]0, 1] x [0, 1],

10292 (hd1)6 o (x, A, )|

< Cupe AP (1 4 Alx — x|y 2B (1 — |x V. (A.1.5)
Let ¥:]—1, 1] — R be a smooth function such that for some A € Ry and any « € N,
109y (x)| < Co(1 — |x)~ 4711 forall x € ]-1,1]. (A.1.6)

Finally, let §¢ — p(£) be a symbol independent of x, satisfying (A.1.1).
Proposition A.1.3. Let o be in m, Then for any (x, A, h, €) satisfying Ah < 1, we have

p(D)[FYPo(x, X, h,e)] = pdy(x)o(x, A, h,e)ei?®

+hor(x A b, e)ei VD 4 r(x, A he), (AL

where o1 € ™! and where r is a continuous function on R x [1, 4o00[ x ]0, 1] x [0, 1],
smooth in (x, A, h), satisfying for any o, 8, ¢, N € N,

1099 (hd1)6r(x, A h,e)| < CRN (1 + |x) ™V, (A.1.8)

Proof. The left-hand side of (A.1.7) is

1 i
o / HEDEVON ()5 (y. 2. ) dy dE. (A.19)

Let (x, y) — 6(x, y) be a smooth function on R x ]—1, 1[, supported for |x — y| <
1 — |y/|, such that for any «, j,

102080(x, y)l < C(1 -y P, (A.1.10)

Assume also that 6(x, y) = 1if |[x — y| < ¢(1 — |y]) for some small ¢ > 0. If we insert
the cut-off 1 — 6 under the integral, and make N’ integrations by parts in &, we get an
integrand bounded by

ChY' A7 (1 + Aly = xo)™ (1= yD¥ NV ()N (1 + [x =y,
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by (A.1.1), (A.1.5). If we make hdj act on (A.1.9), we also get a similar bound, with a
different N’, using (A.1.6) as well. We thus see that (A.1.9) with the cut-off 1 — 6 under
the integral brings a contribution to 7 in (A.1.7), using that by assumption A = O(1/h)
in order to control any positive power of A, like those coming from 0, -derivatives. We are
thus reduced to

1 i
o / el EVYONG(x ) p(E)a (v, A, h, &) dy dE. (A.1.11)

Define .
Yi(x,y) = / Yty + (1—1)x)dT.
0

As on the support of 6, 1 — |x| ~ 1 — |y|, we see using (A.1.6) that for 6(x, y) # 0,

192981 (x. y)| < Cap(1— [y~ A—1oP (A.1.12)
and ¥ (y) = ¥ (x) — ¥1(x, y)(x — y), so that (A.1.11) may be written
1 - Y(x i
ﬁez ¥ / eE(X—y)'lQ(x, V)p(n+ ¥i(x,y))o(y, A, h,e)dy dn. (A.1.13)

Inside this integral, we decompose

p(n+ Y1(x,y)) = p(Y1(x,y)) +ng(x,y.n), (A.1.14)

where g(x, y,n) = fol p'(Y1(x, y) + tn) dt satisfies, according to (A.1.1), (A.1.12) and
for (x, y) staying in the support of 6, bounds of the form

1020807 (nd,) g (x. y. )| < C Y™ W10 (1 — |y|)~Kasors (A.1.15)

for some positive exponents K, g ,,c. We substitute (A.1.14) into (A.1.13). The first term

on the right-hand side of (A.1.14) gives the first term on the right-hand side of (A.1.7).

Consider next the term in (A.1.13) coming from the last term in (A.1.14), i.e. the product
- Y (x)

of e! 7 and

—5= [ FCTG0x yon b e) dy dn, (A.1.16)

with
gx,y.n.A he) = 0,[0(x, y)q(x,y,mo(y, A, h,e)].
It follows from (A.1.5), (A.1.10), (A.1.15) that

13507 (19,)" (h9W)*G(x. y. 1. A )]
< CATHA 4 Ay — o) (1 — [y N ()0

forany «’, y, y’, ¢, N. Inside integral (A.1.16) we perform integrations by parts using the

operator <)Z7_h>_2(1 — -5 Dy). We shall obtain a new expression

/ei,*(x—mql(x,y, 0. A h,e)dy dy, (A1.17)
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where ¢ satisfies since Ah < 1 and since 1 — |x| ~ 1 — |y| on the support of 8(x, y),
159 (13)" (hdn)*q1 (x. y. 1. 2 . e)]

4 —No max(u—
= CATm e (S A Ay —xo ) A= DN ()T (A1)

for an arbitrary large No. We perform next integrations by parts in (A.1.17) using
(A =) 2(1 + A%h(x = y) - Dy).
It follows from (A.1.18) that the modulus of (A.1.17) is bounded by

—No
caAmH /<%> (Ax = )M+ Aly = xo)™ !

% (mmaX(u—l,O) dy dn(1 — |x|)N' (A.1.19)

Since Ak < 1, the modulus of (A.1.19) is O(hA™" (1 + A|x — xo|)" (1 — |x)V).

If we make a dx-derivative act on the integral in (A.1.13), one dy,-integration by parts
together with (A.1.12) and estimates (A.1.5), (A.1.15) shows that we get the same estim-
ates as in (A.1.15)—(A.1.19), with m replaced by m — 1. In the same way, a d, -derivative
acting on the integral gives rise to an extra factor A1 (1 + A|y — x¢|)~2°, which induces
in the estimates of (A.1.19) a corresponding factor A~ (1 + A|x — xq|) ~2<0.

Finally, an hdp-derivative acting on the exponential in (A.1.13) may be traded off
against an 1nd,-derivative, so that by integration by parts, the final expression (A.1.19)
still has the same estimates. We thus see that (A.1.13) with p(n + ¥1(x, y)) replaced
by ng(x, y,n) may be written as the second term on the right-hand side of (A.1.7). This
concludes the proof. ]

We shall translate Proposition A.1.3 on the class of symbols X" introduced in Defin-
ition 2.2.1. Notice that if a belongs to ¥™ and if, for s € [0, S«[, we set

A= (Se—s5) %0, 5= S,—A 20, (A.1.20)
then for a(s, y, h, ¢) in ™, the function
oy, A hg) = a(Se — A7y he) (A.1.21)
satisfies, by (2.2.1),
|o(y, 2,1, 8)] < CAT2¥" (14 Aly — xo) " (1 — [y)¥

for any N, i.e. bound (A.1.5) with = B = ¢ = 0 and m replaced by m = 2kom. If we
take a d,-derivative of o, we get in the same way estimate (A.1.5) with 1 = 2«om and
o = 1. One checks similarly that d,, hd, derivatives acting on (A.1.21) give rise to similar
bounds for (A.1.5). In other words, with definition (A.1.21) of ¢ in terms of a, we have
the equivalence

aeX" & oeS™ within = 2kom. (A.1.22)
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Corollary A.14. Let p(§) be a function independent of x and satisfying (A.1.1). Let
(s,y,h,&) = a(s,y, h, &) be an element of ¥™ defined as in Definition 2.2.1 for some
m in R. Let ¥ be a real phase function defined on |—1, 1] satisfying (A.1.6). Then if

_1
t(Sx —5)%0 > ¢ >0, we have

o[l 21 = (s )

t
+ ;e”‘l’(%)al (s, ; ;8) + r(s, ; % 8), (A.1.23)
where a; € P C 2™ 1 and r satisfies
10208 (hdp)er(s.y.h.e)] < CyhN (1 + [y~ (A.1.24)
foralla, B, ¢, N.

Proof. If we seth = %, we have according to (A.1.4),

a(&)t—csM) = V(03 a)(s.x, h.e). (A.1.25)
so that the left-hand side of (A.1.23) may be written according to (A.1.3) as
Loyt [ptDole ats, x. h, o)]]. (A126)
\/E h ) s Ity

We notice that if A is defined by (A.1.20), the assumption A < ¢ of Proposition A.1.3 is

equivalent to the condition 7 (Sx — ) o > ¢~ ! that we impose in the corollary. If we apply

Proposition A.1.3 to the symbol o defined from a by (A.1.21), we deduce that (A.1.26) is
equal to
1

N

for some element 0; € S=1 with i = 2kom by (A.1.22). We denote by a; € Em_ﬁ
the symbol associated to o by (A.1.22), so that by (A.1.25), we obtain (A.1.23) with
r(s,x,h,e) = r(x, A, h, ¢) that satisfies (A.1.24) by (A.1.8), (A.1.20) and the fact that
A(s)h < 1. This concludes the proof. |

O [p(dy (2)e o als. x.he) + he F oy (x. A hoe) + r(x. AL b €)]

Corollary A.1.5. Denote ¢(x) = v'1 —x2 for |x| < 1, and set p(§) = /1 + 2. Let m
be an element of ¥™ and q be in Z.. We have

. 1
(x +1p'(Dx)) [e”q“’(x/’)a(s, ; . 8)]

_ x(l _ 4q )eitqw(x/t)a(s, : l 8)
V1+ (g% = D)(x/1)? rt

. 1 1
n ethlﬂ(x/t)al(& ; ;,8) n r<s, )[_“ ?,8) (A.1.27)

_1
for some a; € X" %0 C X" and r satisfying (A.1.24) (with h = %).
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Proof. We just apply (A.1.23), noticing that y + p’(q¢'(y)) = y(1 —

—2L )by
2 2
the definitions of p, ¢. Vit -ny* o

A.2. Properties of multilinear operators

We gather here some properties of multilinear operators that we use in the bulk of the
paper. Some of them follow from the appendices in [14].

Lemma A.2.1. Let my € S1o0(M*Y, p), my € S1.0(M"2, or some p,q € N*, some
, p , q p.q

V1, V2 € N, with the notation introduced in Definition 3.1.1. Assume moreover that my,

my have constant coefficients. Then there is m in Sl’o(M(;”—Hz, p + q — 1) such that

Op(mi)(ui, ..., up—1,0p(m2)(Up, ..., Uptq—1)) = Op(m) (U1, ... . Uptq—1) (A2.1)
for any functions uy, ..., upyg-_1.
Proof. Equality (A.2.1) follows from (3.1.3) setting
mEr.... . Eprg-1) =mir.... . Ep-1.6p + -+ Eprg-1)m2(p, ... Eprg-1).

The conclusion follows from

Mo(r, ... Ep—1.85p + -+ Eprg—1)" " Mop. ... 5p1g—1)"
< CMo(Er,. .. Eprq—1)' T2

since My(&1,...,&,) is equivalent to the second largest among [&1| + 1,...,]& |+ 1. =

We recall some results about boundedness properties of operators associated to sym-
bols in the class S,0(M{, p) from [14]. Recall that we defined

[ullweoe = [{Dx) w| Lo

Then, by [14, Proposition D.1.1] (applied with # = 1 and to symbols independent of x, y,
with the notation of that reference), we have the following proposition:

Proposition A.2.2. Let n € N*, k € N, v > 0. There is pg € N such that for any m €

Si,0(My ,n), independent of x, the following estimates hold for any s € N, any vy, ..., v,:

n
IOp(m) (1. va)lls < Cs ) ( I ||ve||wpom) v 125 (A.2.2)

J=1 M U#j

and moreover, for any fixed j in {1, ... ,n},

(0pm) ... vmlzz = € [Thoclwms oo 423
£

10p(m) ... v 125 < cs( I ||vz||Wpo+s,w) ol (A24)

>y
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If one assumes in addition that m is supported for |E1| + -+ + |E,—1| < C(1 + |&,]) for
some constant C, one gets instead of (A.2.2),

n—1

0p(m)(vy,. ... vn)|las < cs( I ||v4||Wpo,oo) [ vnll s (A.2.5)
=1
and for any j < n,
[Op(m)(v1, ..., v)lEHs < CsllvjllL2 ( l_[ ||U(||Wpo,00) |V [l po+s.00. (A.2.6)
L#]
{#n

Without the support condition on m, we get instead, forany 1 < { <n — 1,

[Op(m) (V1. ..., va) | s
¢

< CS[Z ( I ||W||Wﬂo»°°) oy
J=1 N U
n V4
£ S Ioslwmeeslvple T] ||vef||Wpo’°°}- (A27)
j=t+1j'=1 VA

1<{'<n

Finally, inequality (A.2.3) holds also for x-dependent symbols in S, g(M{,n) for any
k>0,8>0.

Proof. Estimates (A.2.2) and (A.2.3) are inequalities (D.6) and (D.7) of [14, Proposi-
tion D.1.1]. Inequality (A.2.4) follows from (A.2.3) if we make s dx-derivatives act on
Op(m)(vy, ..., vy) and use the Leibniz rule. In addition, (A.2.3) holds for general sym-
bolsin S, g (M, n) by [14, Proposition D.1.1 (iii)]. Estimate (A.2.5) is just [14, inequality
(D.5)]. Let us prove (A.2.6) when j = 1 for instance. Using the support property of m,
we may write forany ¢ € N, o < s,

%0p(m)(v1, ..., vy) = Op(A)(v1, ..., V-1, (Dx) vy)

for another symbol 772 in S0 (M{, n). Applying (A.2.3) we get (A.2.6).
To prove (A.2.7), we decompose

mEr,... ) =) miEr....E),
=1

where m; isin Sy,0(M{ ,n) and supported for [§1] + - - - + Ej\| +o 4 & < CU + & ).
For 1 < j <{, we apply (A.2.5) with n replaced by j to bound ||Op(m;)(v1,...,v,) | #s
by the first sum on the right-hand side of (A.2.7). For £ 4+ 1 < j <n we bound the Sobolev
norm ||Op(m;)(v1, ..., V)| as using (A.2.6) with (j, n) replaced by (j', j). This con-
cludes the proof. ]
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A.3. Action of L on characteristic cubic expressions

Consider m an element of Sy,9(Mp, 3) with constant coefficients, with the notation intro-
duced in Definition 3.1.1. Let I = (i1, i, i3) be a characteristic index, i.e. an element of
{—1,1}3 with iy + i + i3 = 1. The goal of this subsection is to obtain L? estimates for
the action of L on a characteristic cubic term.

Proposition A.3.1. There are integers po, So in N such that for any functions wy, Wz, w3
the following estimate holds true:

| L+Op(m)(wy, w2, w3)]| 12
3

< C > (ILigwellzz + lwellgso) [T lwllwaoce- (A3.1)
=1 1<j<3
j#L

In addition, one has also the bounds

|IL+Op(m)(w1, wa, w3)|| L2
= CALiywillza + lwillgso) w2 oo 0310
+ Cllwi lyapee (| Liywallzz + wall o) w3y o
+ C w22 w2l o (| Lis w3l o o + [103y000) (A.3.2)
and
| L+Op(m)(wy, w2, w3)| L2
< C(ILiywillzz + lwillgso) w2 llyaee w3l yso.co
+ Cllwillzz 1wz llyso.co (1 Lis w3 | waoeo + w3 llyaoe)
+ Cllwi 2 (1Liy w2 llysooo + 12l 000) 13 000 (A-3.3)

Moreover, estimates similar to (A.3.2), (A.3.3) hold if one makes any permutation of
(1,2, 3) on the right-hand side.

To prove the proposition, we shall apply some results from [14]. In order to do so, we
reduce ourselves to the framework of the appendices of that reference, using the rescaling
(A.1.4).Seth =1 and

1 X
v; = (Opw)(x) = ij(ﬁ). (A3.4)
Then if we set
vl = {ADx)*vllL2, o]l = [{hDx)* ||,

one has
_1
lojllzy = lwjllzs,  lvjllwpeee = 272w [[woee. (A3.5)
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Define

3
/eix($1+$2+§'3)m(h€:17hg:2, hgs) [ 05&)) dér d, dés.

J=1

Opp,(m)(v1,v2,v3) = 5K

Then
@;lOph(m)(G)hwl, Opwy, Opws) = h_lOp(m)(wl, Wy, W3).
Moreover, by (A.1.3), if we set
1

1
i = hOPh(X +p'(§) = Z(X + p'(hDy)), (A.3.6)

we get
0, oLLoB®pw = Liw. (A.3.7)

It follows from (A.3.4), (A.3.5)—(A.3.7), that inequality (A.3.1) is equivalent to

3
1240y (m) (o1, v2, vz < € Y (i velle + ol o) TT Ivellpoce- (A38)
(=1 1<j<3
J#L
In the same way, (A.3.2) is equivalent to
[ £+Opy (m)(v1,v2,v3) 12

< Cl(I1Livillz> + il 7o) 102l oo llvs ]

wpo w0
01l (1202 v2ll2 + 02l g50) 03 s
Hllvilzzllvaly e (1£isvslly 000 + ||v3||W}:30a°°)]s (A3.9)
and (A.3.3) is equivalent to
[ £+O0pp(m)(v1,v2,v3) 12
= Cl0Lavlz2 + 1l ) o2l ypooe 03l
otz 1921 poce (125503l 0 + 1931 000)

Horlle (1L vall e + 2l ) 3l ] (A3.10)

Moreover, estimates of Proposition A.2.2 hold (uniformly in / € ]0, 1]) if everywhere we
replace Op(m) by Opy, (m), |- s by |-l z; - and [|-[weco by ||-[[ .00

Proof of Proposition A.3.1. Let us decompose

m(Er, €2.83) = m" (61,62, &) + m™ (61,62, &),
3
m (§1,62.6) =Y ml (£1.62.83),

J=1
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where for some B > 0 small, m” is supported for |&;| + |&| + |€3| < Ch™P, while ij
is supported for [&| < Cl|&|, £ # j and |§;| > ch™8, each of these symbols being in
S1,0(My, 3).

» Contribution ome to (A.3.8)—(A.3.10). Write

£40py, (mi)(v1,v2,v3) = Opy, (A1) (V1. v2, v3) + Opy, (M{T) (L4, v1. V2, v3)
+ h_lp’(th)Oph(mf{)(vl, Ua, V3)
—iyh™'Opy(m{')(p' (hDx)v1, vz, v3), (A3.11)

H
where n?fl =1 83% € S1,0(MZ, 3). In the arguments of each term on the right-hand side,

we may replace v, by Op, (1 — yo) (hP&1))v; for yo € Cs°(R), equal to 1 close to 0, with
small enough support, by the support property of m{{ . We estimate then the L2-norm of
(A.3.11) using the version of (A.2.3) for Op;,(mm). We obtain

12+ Opy, (i) (v1, v2, v3) 22 < € (hHIOp4((1 = x0) (WP ED vl L2 + 1L v 2)

X [[v2]l 000 03] (A3.12)

Po Po,00
Wh Wh

if po is taken large enough. Moreover, in the first factor on the right-hand side, we may
bound

B 10p4 (1 = 20) (WP EDVillza = CHTH 0 i sy = Cllorlle (A3

if §o is chosen large enough so that 5o 8 > 1. Thus the left-hand side of (A.3.12) is bounded
from above by the first term on the right-hand side of (A.3.8). By symmetry, we thus get
that (A.3.8) for m replaced by m* holds.

Let us prove (A.3.9) for mf. By (A.3.11) to (A.3.13), the contribution of mfl to
the left-hand side of (A.3.9) is estimated by the first term on the right-hand side of this
inequality. In the same way, the contribution of mg is bounded by the second term on the
right-hand side. For mgl , instead of (A.3.11) write

£L4+0p;,(mE)(v1,v2,v3) = Op, (ML) (v1, v2, v3) + Opy, (ME ) (v1, v2, Liyv3)
+ h™p'(hDx)Opy, (mi) (v1, v2, v3)
— i3sh™'Opy,(m§ ) (v1, va. p'(hD)v3). (A3.14)

We use next (A.2.3) with j = 1. The L?-norm of (A.3.14) is bounded from above by

Cllvallzalvallypooe (1 €603l + 57 10PL1 = ZHP O3 [ y) — (A315)

for some large enough p;. If pg is such that (o9 — p1)B > 1, we may bound the last term
by ||v3||Wﬁ0,oo, using that operators of negative order are bounded on L*°-spaces. This

h
gives an estimate of (A.3.15) by the last term on the right-hand side of (A.3.9).



J.-M. Delort 538

Finally, let us prove (A.3.10) for m*H . The contributions of mfl , mg" are treated as in
the study of (A.3.8) and (A.3.9) above. For mf, we write (A.3.14) for mg instead of mgl
with indices 2 and 3 interchanged on the right-hand side. This gives an estimate for the
mf -contribution to the left-hand side of (A.3.10) by the third term on the right-hand side.

* Contribution of m to (A.3.8)—(A.3.10). Since m* is supported for |£;| + |&2| + |&3] <
ChP by construction, my, satisfies estimate (3.1.2) with § > 0, v = 1, « = 1, i.e. belongs
to the class Sy,g(Mo, 3). This allows us to apply [14, Proposition F.2.1] which asserts that
a Leibniz rule holds, in that sense that if (i1, i, i3) is characteristic,

£4+0p, (m")(v1, v2.v3) = Op, (ML) (Li,v1. v2, v3)
+ Opy, (m5) (V1. £,v2.v3)
+ Opy, (M%) (v1. v2, L4, v3)
+ Op,(r)(v1, v2, v3), (A.3.16)

where mJI-‘, j =1,2,3 and r are elements of the class S; g(M, 3) for some v € N. Actu-
ally, in [14], there is also a weight ]_[]3 - (& j)_l on the right-hand side of the inequalities
(3.1.2) that define the symbols, but that does not play any role in the proofs. In [14, Pro-
position F.2.1] there is also an extra term on the right-hand side of (A.3.16), of the form
h=10p;, (r")(v1,v2,v3) for some ’. Such a term does not appear here because our symbols
are constant coefficients and in particular do not depend on the y-variable in [14, Propos-
ition F.2.1]: see the last three lines in [14, Proposition B.2.1].

To obtain (A.3.8) for m%, we now just have to use estimate (A.2.3) for each term on
the right-hand side of (A.3.16), putting the L2-norm on the factor in £Li;vj for the first
three terms on the right-hand side.

One obtains (A.3.9) for m” in the same way, except that we treat the Opj, (mg‘) term on
the right-hand side of (A.3.16), putting the L?-norms on the factor v; in estimate (A.2.3).
Finally, to get (A.3.10) for m%, we argue in the same way, controlling the L2-norms of the
Opy, (m%) and Op,, (mg) terms using (A.2.3), where we put the L2-norm on the v; term
on the right-hand side.

This concludes the proof. ]

A.4. Klainerman-Sobolev estimates

In this subsection we prove a Klainerman—Sobolev estimate for the one-dimensional
Klein—Gordon equation. This estimate is not new and may be found implicitly in a weaker
form in [13,31] for instance. We first introduce some notation.

If § € [0, 1], let us introduce Ss(1), the space of smooth functions (x, £) — a(x, £, h)
from R? to C, depending also on a parameter / € ]0, 1], such that for any e, 8 in N,

0208 a(x.£.h)| < Cah™0@*P),
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For u € §(R), define the semi-classical Weyl quantization of a acting on u by

p) (@)u = ﬁ e"("ﬂ’)%a(x Y L€, h)u(y) dy dé.

If b(x, &, y, n) is a smooth function, define
O(DXv DS, Dy’ Di'])b(xvsv Vs 7’]) = (DEDy - Dan)b(X,g, Vs 77)

and recall that if § € [0, %[, ifay, ay are in §3(1), there is a symbol a1#,a, in §3(1), such
that for any N,

N

al#haz—zk,( a(Dx,Ds,Dy,Dr,)) (@1 (0. §)ar (. D) lxmyimn (AL
k=0

is in AV +DU-28) §¢ (1) and
Op) (a1) o Opy (a2) = Op) (a1#4az). (A4.2)

In particular, if a; and a; have dlS]Olnt supports, Oph (al) o Op (a2) may be written for
any N in N as h¥Op}Y (r) with r in Ss(1), since § < 1
Recall also that if a € Sg(]), Opzv(a) is bounded on Hj with uniform estimates

10py (@ullmy < Cllull - (A.4.3)

All the results above may be found, for instance, in the book by Dimassi—Sjostrand [15,
Chapter 7].
Our goal is to prove the following proposition:

Proposition A.4.1. Let pg € N. There is so € N such that for any function w, one has the
bound

C 1 1
[wllweoee < ﬁ((”L%—w”LZ + lwllaso) 2 |wllzs + [IL+wllL2), (A4.4)

where Ly = x + tp’'(Dy) with p(§) = /1 + £2.

We define from w a function v by (A.3.4) and using notation (A.3.6) and (A.3.5), we
see that (A.4.4) is equivalent to

11
lllroee = CUL+ VL2 + [Vl g20)2 ||v||§,;o + I€+vllz2). (A45)

Let us notice that one may further reduce to proving that there is some large enough §g
such that the following estimate holds:

I(hDx) vl < C((I1L+0]L2 + V], so) ||v||2 HlLsvlgs).  (A46)
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Actually, if (A.4.6) is proved, we may apply it to vy = Ophw( 127k g))v for some y €
C§°(R*) and k € N. We have then

o [l po-oe < C 2Kt | (h D) Pug ||
k(po+3) N\ 3 ~
< C25P (L vl + ||vk||HZo)2 ||Uk||H50 + ||$+vk||Hh—so)

k 2-2 ol
<C2 (Po+3+7 2)(||~><6+U”L2 + ”v”HhSO)2 ”v”Iz-I;O
+ C2KPot3=50) (|| £ v 12 + [|vllz2),

from which (A.4.5) follows by summation of a Littlewood—Paley decomposition if s¢ >
50 + 2(po + 3) and 5o > po + 3.

In the rest of this subsection, we shall prove (A.4.6). Before starting the proof, we
make some reductions.

Lemma A.4.2. Let y, y € Cg°(R) be equal to 1 close to 0, with small enough support.
Let M € N. There is B > 0 and a family of smooth functions x — 0y(x), depending on
a parameter h €10, 1], with for any a € N, 06,(x) = O(h=2B®), 0, being supported in
[—1 + ch?® 1 — ch?8] for some ¢ > 0, such that for any function v,

[¢2D2) 70 = Op) (¥ ((x + P/ ©)()) 2 P &)6L () (€) 20 oo
S CUVI vy + 1L +0lgaen). (A4.7)

h

Proof. By semi-classical Sobolev embedding, one has for any & > 0,
- _1 3_
[(hDx) 72 (v — Op) (x (WP E)) || oo < CHTZHPEF27O | g (A4.8)

if s > —% + &, so that we have an upper bound by the right-hand side of (A.4.7). We shall
study next the L°°-norm of Opzv (a(x,&)vif

a(x.£) = x(PEE 20 = P)((x + PENE)?) = ar(x, E)(x + p'(§)),

where a1 = y(hBE)y1((x + p'(§))(£)?) with y,(z) = 1_+(Z) Then a and a; belong to
§5(1) with § =28 < % for small enough B > 0. We use (A.4.2), (A.4.1) to write with
some r in §3(1),

Op) (a)v = Op} (a1) o Op) (x + p'(&))v + ' 25 0p) (r)
= hOp)Y (a1)L+v + h1=280p) (). (A.4.9)

In the right-hand side write

Op) (a1)£+v = Op) (a1)Op) ()" ((hDx) M £4v) (A.4.10)
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and use that since M is an integer, we have an exact composition formula (A.4.2),
Opj, (a1) o Opy ((£)**)

2M 1 h k
= F(iza(Dx, Dg. Dy, D,,)) (@1 MMy b=y (A4ID
k=0

Now, since |€] = O(h™#) on the support of a;, we get that (A.4.11) is of the form
h2Ms Opz‘/(az) with some a, € Ss(1). Applying the semi-classical Sobolev inequality
again, we deduce from (A.4.10), (A.4.11),

_1_
I0p}Y (@) L4 vllzoe < CHT2 ML v ] opr e
Plugging this into (A.4.9), we get
1_ 1_
0P} (@)vllzee < Ch2 MLy v]l oy gve + CHZ2OPY (M0, 4 (A412)

If § = 2 is small enough relative to 1/M, this implies that (A.4.12) is bounded by the
right-hand side of (A.4.7). Taking into account (A.4.8), we thus see that it remains to
consider

Op) (x(MPE)y ((x + P/ EN(EY) (1 — ) (x)(E) %) . (A.4.13)

We shall be done if we prove that, if Supp y has been taken small enough, we may choose
65, such that it is equal to 1 on the support of y(F8£)y((x + p/(£))(£)?) so that (A.4.13)
vanishes identically. This follows from the fact that, if Supp y is small enough and y((x +
P/ (6))(£)%) # 0, then when £ — +o0 (resp. £ — —00), x + 1 (resp. x — 1) stays in an
interval [c/£2, c5/£2] (resp. [—c2/E2, —c1/E?]) for some 0 < ¢; < cp. If, in addition,
|E| = O(h~P), this implies that x belongs to the interval [—1 + ch?# 1 — ch?#] for some
¢ > 0, which allows one to construct the wanted 6j,. This concludes the proof. [

Proof of Proposition A.4.1. With the notation of Lemma A.4.2 we set

5 =0p) (y((x + p'ENE)?) O (x) x (WP EY(E) v (A.4.14)

so that, by that lemma, inequality (A.4.6), which implies Proposition A.4.1, will follow if
we prove

- 1 1
0]l < C(IIvIIHgo + [[£4v]lz2)2 Ilvll;fo- (A.4.15)

Take 6), € Cs°(]—1,1]) equal to 1 on the support of 6y, satistying 9% Oy = O (h~%2) (with
§ = 2) for any «. Since the symbol of the operator defining ¥ in (A.4.14) is in Sg(1), it
follows from (A.4.2) and the remark following it, that (1 — éh)ﬁ =N Ophw(r)v for some
symbol r in S5 (1) and any N. Then, using the semi-classical Sobolev estimate and (A.4.3)
again, we see that ||(1 — éh)f) || is estimated by the right-hand side of (A.4.15). We are
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thus left with studying 0,0 If o(x) = V1 —x2forx € ]—1, 1], write

1

~ . ~ LQ o~ 1 . ~
164 llLoe = le™ kBl < Ch™2|[ADx (e 5 645) 1 2, lle " 5 6471 2,
~ 1
< Ch™2(||4(x)(hDx — dp(x))7 2,
~ 1 1
+ (A Dx6R) 0] 7,) 1511 7. (A.4.16)

Note that (h D 04)i = —ih' =} (x){ for a function 6 again satisfying 340} = O(h=3%),
whose support does not intersect the support of the symbol defining v in (A.4.14). Using
(A.4.2) again, we conclude that ||(th§h)ﬁ||Lz < cnhN||v| L2, so that to show that the
right-hand side of (A.4.16) is bounded by the right-hand side of (A.4.15), it is enough to
prove that

1, ~ U T 1 1
W2 100 () (R Dx = dpC)DN 2010122 = CAIvllgso + IL4vliz2)> V1] 5y (A417)
h
Notice that in (A.4.17), h# 8, (x) dp(x) is an element of 5’5(1) and that
. - h -
6p(x)h Dy = Op) (O4€) + izt%(x). (A4.18)

Again, the last contribution in (A.4.18) will bring a trivial term to estimate in (A.4.17), so
that we are reduced to the study of

~ Lo 1
W2 | OpY (81 (x) (€ — de(x)) 7] 2, 152, (A.4.19)
If we express v from (A.4.14) and use (A.4.2), (A.4.1) at order N = 1, we obtain
Op) (04 (x)(& — de(x)))5 = Op)y (ao(x. &) + hay (x.&) + K272 ryy (A.4.20)

where r € §g(1) is the remainder in (A.4.1) (the extra power hB coming from the fact
that 6, d is not in S5(1), but only in #~# S5 (1)), and where ag, a, are the first two terms
in expansion (A.4.1) and are given explicitly by

ao = O(x) (& — dp(x)y((x + p'E)E)*) x(hPE)(E) >,

) VR (A4.21)
ar = =2 {(E = dp(x)), 60y ((x + p'ENE) xR EE) )

If §, B are small enough, the r term in (A.4.20) brings to (A.4.19) a contribution bounded
by the right-hand side of (A.4.17). We thus have to study ag, a;. We use [13, Lemma 1.8]
to rewrite ag, a1. According to [13, (1.28), (1.29)] with k¥ = 2, we may write

ao(x,§) = (x + p'(€)bo(x.§),

where by is supported for || < h=#, 1 — x2 > ¢(£)7? and satisfies estimates of the form
|8§8‘g/b0(x, £)] < C(£)**™™ . Actually, as already seen in the proof of Lemma A.4.2,
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6, = 1 on the support of y((x 4+ p/(£))(£)*) x(hP &), so that this factor 6;, may be omitted
in definition (A.4.21) of ay. It follows then that by is in S5 (1) with § = 2.
We may thus apply (A.4.2), (A.4.1) to write

Opy (ao)v = Opy (bo(x,§)(x + p'(£)))v

h dbo dbo
— W _ 1"eey 220
= 00} (bo)Op} (x + p' @) — - 0p} (G = " ©F2 )
+ h2—450p;l7v(r)v, (A.4.22)
for some r in Ss(1). In the above expression, 35 -p'E) 52 %0 s in S5(1) since p”(§) =

O((€)™>). Applying (A.4.3) to the three terms on the rlght—hand side of (A.4.22), we get
that for § > 0 small enough,

I0py (ao)vli2 < C(IOpy (x + p'(E))vllL2 + hlvllL2)
< Ch(||£4+v2 + [v]L2)- (A.4.23)

Consider next a; given by (A.4.21) (where 6;,(x) may be removed). As on the support of
ap, 0¢(de(x)) = 0(($)l+2°‘), it follows that a; is in Sg(1), so that the second term on
the right-hand side of (A.4.20) satisfies

h|Opy (@)vlL> < Chllvllz2. (A.4.24)

Plugging (A.4.20), (A.4.23), and (A.4.24) into (A.4.19), we get that this expression is
bounded from above by the right-hand side of (A.4.17). This concludes the proof. ]
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