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Norm inflation for solutions of semi-linear
one-dimensional Klein–Gordon equations

Jean-Marc Delort

Abstract. In space dimension larger than or equal to 2, the nonlinear Klein–Gordon equation with
small, smooth, decaying initial data has global-in-time solutions. This no longer holds true in one
space dimension, where examples of blowing-up solutions are known. On the other hand, it has been
proved that if the nonlinearity satisfies a convenient compatibility condition, the “null condition”,
one recovers global existence and that the solutions satisfy the same dispersive bounds as linear
solutions. The goal of this paper is to show that, in the case of cubic semi-linear nonlinearities, this
null condition is optimal, in the sense that, when it does not hold, one may construct small, smooth,
decaying initial data giving rise to solutions that display inflation of their L1 and L2-norms in
finite time.

Introduction

It is well known that quasi-linear Klein–Gordon equations with smooth, small, decay-
ing initial data have global-in-time solutions, in space dimension larger than or equal
to 3, as has been proved independently by Klainerman [21] and Shatah [28]. The same
holds true in two space dimensions, according to Simon–Taflin [29] and Ozawa–Tsutaya–
Tsutsumi [27]. On the other hand, in one space dimension, finite-time blow-up may occur.
Examples of nonlinearities for which this happens have been obtained by Yordanov [32]
and Keel–Tao [18]. In [10], we introduced for a general quasi-linear nonlinearity a “null
condition”, expressed explicitly in terms of the quadratic and cubic parts of the nonlin-
earity, and we conjectured that, under that null condition, small data that are smooth and
have some decay at infinity should give rise to global solutions. We showed in [11, 12]
that this conjecture holds true for C10 initial data. We refer to Lindblad–Soffer [23–25]
for nonlinearities depending only on u, to Hayashi–Naumkin [17] and to Stingo [31] for
more general data, and to the bibliography of [11] for references about the state of the art
at the time of publication of that paper.

The goal of the present paper is to show that, in the case of cubic semi-linear nonlin-
earities, i.e. for the equation

.@2t � @
2
x C 1/u D P.u; @tu; @xu/; (1)
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where P is a homogeneous polynomial of degree three, our null condition is optimal, in
that sense that if it is not satisfied, one can construct solutions, with small and decaying
initial data, that do not enjoy the same dispersive bounds as the ones that hold true for
linear solutions (or nonlinear global solutions when the null condition is satisfied). More
precisely, the null condition was obtained in [10] extracting from the PDE an ODE which
has global solutions for small data if and only if the null condition holds. When this is
the case, the asymptotics of the solution of this ODE give the asymptotic behavior of the
global solution of the PDE. When the null condition is not satisfied, this ODE blows up at
some finite time, depending on the parameter y D x

t
2 ��1; 1Œ. The minimal blow-up time

for y describing ��1; 1Œ is of the form eS�="
2

for some S� > 0 (when blow-up occurs in the
future), "� 1 being the size of the initial condition. In [10] it was shown that the solution
exists and has L1-norm at time t which isO. "p

t
/ for t < eA="

2
, for any constant A < S�.

The main result of this paper (see Theorem 1.2.1 below) asserts that one may construct
initial data so that for t D T ."/ close enough to eS�="

2
, one has inflation of norms in the

sense thatp
T ."/.ku.T ."//kL1 C k@tu.T ."//kL1/ � cT ."/

1
2�c � e

c0

"2 ; "! 0

for positive constants c, c0. In other words, the solution is still small at time T ."/, but
exponentially large when compared to the size of linear solutions. Of course, this norm
inflation result does not mean that the solution does blow up, but we explain in the remarks
that follow the statement of Theorem 1.2.1 that this is the best we may expect, if we want
to single out a property of the solution that follows only from the violation of the null
condition, and that is in contrast with the kinds of estimates that hold true under the null
condition.

The proof of the main theorem relies on the construction of an approximate blowing-
up solution, that was inspired for us by the papers of Cazenave–Martel–Zhao [6] and
Cazenave–Han–Martel [5]. In these references, the authors construct blowing-up solutions
for Schrödinger equations of the form

.i@t � @
2
x/u D ˛juj

2u; ˛ 2 C �R: (2)

(In fact, their result is not limited to one space dimension nor to cubic nonlinearities.)
They first look for an approximate solution given in terms of a profile that satisfies some
ODE and blows up at time t D 1. Next they write the equation satisfied by the difference
between this approximate solution and the exact one. They prove that this equation has
a global backwards solution with zero initial condition at (or close to) the blow-up time.
The sum of this solution and of the approximate one brings thus an exact solution to (2)
that blows up at time t D 1. See also Liu–Zhang [26] and for blowing-up solutions of
Schrödinger equations with small data, the preprint by Kita [19].

Our general strategy is the same, except that we have to cope with some difficulties
inherent to the Klein–Gordon equation. To describe the strategy, let us write equation (1)
as a first-order system on .uC; NuC/, where uC is a new complex-valued unknown deduced
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from u, with first equation�
Dt �

p
1CD2

x

�
uC DM

.1/.uC; uC; uC/CM
.2/.uC; uC; NuC/

CM .3/.uC; NuC; NuC/CM
.4/. NuC; NuC; NuC/; (3)

M .j / being nonlocal expression of their arguments, homogeneous of degree 3. The differ-
ence from (2) comes fromM .1/,M .3/,M .4/ which are not invariant under uC! zuC for
z 2 U.1/. On the other hand, these terms are “noncharacteristic” ones, since when com-
puted on a linear solution, they oscillate along a noncharacteristic phase for the linear part
of (3). Our proof thus has two steps, as in [5, 6]. First, we construct an approximate solu-
tion starting from small initial data ."f0; "g0/ with f0, g0 in �.R/. If the null condition is
not satisfied, choosing f0, g0 conveniently, we have constructed in [10] an approximate
solution defined on some interval Œ1; eS�="

2
Œ as

u1app.t; x/ D 2Re
h "
p
t
a1;1

�
"2 log t;

x

t

�
ei
p
t2�x2

C
"3

t
3
2

a3;3

�
"2 log t;

x

t
; "
�
e3i
p
t2�x2

CO."t�
5
2 /
i
; (4)

where a1;1.s; y/, a3;3.s; y; "/ are functions supported for jyj � 1, smooth in .s; y/ for s <
S�. As a consequence of the violation of the null condition, one may construct a1;1.s; y/,
a3;3.s; y; "/ that blow up if s ! S��, so that (4) provides a useful approximate solution
only for t < eA="

2
with A < S�. If one wants to study what happens for t close to eS�="

2
,

one has to construct a more accurate approximate solution, gluing (4) for say t < e3S�=4"
2

to another approximate solution, defined on eS�=2"
2
< t < eS�="

2
, given by an ansatz of

the form

u2app.t; x/ D 2Re
� NX
`D1
` odd

"2�`t�
`
2 ei
p
t2�x2a`;1

�
"2 log t;

x

t
; "
�

C

NX
`D3
` odd

X
3�q�`
q odd

"2q�`t�
`
2 eiq

p
t2�x2a`;q

�
"2 log t;

x

t
; "
��
; (5)

where a`;q.s; y; "/ are functions that blow up at s D S� like .S� � s/�
`
2�0. If s D "2 log t

is close to S�, the a`;q terms in the two sums in (5) are thus larger and larger, so that
(5) cannot provide an approximate solution. But we may exploit the dispersive decay
factor t�

`
2 and limit ourselves to times t < T ."/, where T ."/ is such that T ."/�1.S� �

"2 log T ."//�1 � 1. Under this restriction, (5) provides a function satisfying (1) up to a
small remainder. Moreover, T ."/ is close enough to eS�="

2
so that u2app.T ."/; x/

p
T ."/

will be large (actually of size ec
0="2 ) in L1.

The second step of the proof is to look for an exact solution u.t; x/ D uapp.t; x/ C

r.t; x/, where uapp is the approximate solution obtained gluing together u1app and u2app
above, and r a remainder that will be zero as well as its time derivative at t D T ."/.
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Then r solves the backwards equation with force term deduced from (1) replacing u by
uapp C r . One has to show that if the approximate solution has been constructed in an
accurate enough way, the remainder r exists down to time t � 1 and that at this initial
time, it perturbs the initial condition ."f0; "g0/ used to construct the approximate solution
only at order o."/. The general strategy employed to prove such properties is to use the
methods that are useful in the study of global existence (normal forms, energy estimates
for the action of x ˙ t x

hxi
on the solution of the reduced system obtained by normal forms

for the remainder). A difference from problems of global existence is that the equation
satisfied by the remainder contains linear terms (coming from the linearization of the
approximate solution). The coefficients of these linear terms being expressions containing
the approximate solution, they are relatively large close to T ."/, and thus cannot be treated
as perturbations. In order to overcome this difficulty, we use an idea of Cazenave–Han–
Martel [5]: we remark that in a Grönwall inequality, the growth of the amplifying factor
coming from this large coefficient is more than compensated by the fact that the source
term against which it is integrated – which comes from the error in the equation applied
to the approximate solution – may be made as small as we want.

The plan of the paper is as follows: In Section 1 we recall the definition of the null
condition and state the main theorem. Section 2 is devoted to the construction of the
approximate solution. In Section 3 we study the remainder given by the difference between
the exact and the approximate solutions. We express it as a solution of a .2 � 2/-system
with source term, and obtain energy estimates for the Sobolev norm of the remainder and
for the L2-norm of the action of LC D x C t Dx

hDxi
on it. Finally, in Section 4 we con-

clude the proof using a bootstrap argument and a Klainerman–Sobolev estimate to control
L1-norms. The appendix is devoted to some technical results used in the proof.

To conclude this introduction, let us give some references to other works concern-
ing the construction of blowing-up solutions for nonlinear wave equations instead of
Klein–Gordon ones. In the quasi-linear case, recall that in three space dimensions, the null
condition was introduced by Christodoulou [9] and by Klainerman [20, 22], who proved
that global existence with small decaying initial data holds true under that assumption. In
two space dimensions, Alinhac [3] defined the (more complicated) corresponding version
of the null condition and also proved global existence when it holds.

When the null condition is not satisfied, the study of blowing-up solutions and of
their asymptotic behavior was undertaken by Alinhac in a series of papers [1, 2, 4]. For
more recent references on that and further results, we refer to the book by Speck [30] and
especially its preface and introduction. We notice also that the situation considered in all
these papers is quite different from the one we encounter in the present work, as in these
quasi-linear models, the singularities that form are of shock type, i.e. the quantities that
blow up are second-order derivatives, while in our setting, the function itself (or its time
derivative) will display norm inflation. For the construction of blowing-up solutions for
semi-linear wave equations with a nonlinearity depending only on the function itself, and
not on its derivatives, we refer to the papers by Cazenave–Martel–Zhao [7, 8] and their
bibliographies.
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1. Statement of the main theorem

1.1. Semi-linear Klein–Gordon equation and the null condition

We consider the cubic semi-linear Klein–Gordon equation in one space dimension

.@2t � @
2
x C 1/u D P.u; @tu; @xu/; (1.1.1)

where P is a polynomial homogeneous of degree 3, with real coefficients, which we write
in the form

P.u; @tu; @xu/ D

3X
kD0

Pk.uI @tu; @xu/; (1.1.2)

where Pk.T IZ1; Z2/ is homogeneous of degree k in .Z1; Z2/ and 3 � k in T , with real
coefficients. We define, for y 2 ��1; 1Œ ,

!0.y/ D
1p
1 � y2

; !1.y/ D �
yp
1 � y2

; (1.1.3)

and we set
pk.!0.y/; !1.y// D Pk.1I!0.y/; !1.y//;

�.y/ D .p1 C 3p3/.!0.y/; !1.y//;

 .y/ D �.3p0 C p2/.!0.y/; !1.y//:

(1.1.4)

We recall the following definition from [10]:

Definition 1.1.1. One says that the nonlinearity in (1.1.1) satisfies the null condition if
� � 0.

Assume that the null condition is satisfied and take in (1.1.1) initial conditions of
the form u.1; x/ D "f .x/, @tu.1; x/ D "g.x/ with f; g 2 C10 .R/. Then, it was proved
in [11, 12] (see also Stingo [31]), including in the case of quasi-linear equations with
quadratic and cubic nonlinearities (for which one has to modify the expression of � in
(1.1.4)), that, if the null condition is satisfied, for " > 0 small enough, the solution to
(1.1.1) is globally defined for t � 1 and satisfies L1 bounds of the form k@kxu.t; �/kL1 D
O."t�

1
2 /when t goes toC1. The solution thus decays like a solution of the linear Klein–

Gordon equation in one space dimension. Of course, a similar statement holds when t goes
to �1. On the other hand, it was also proved that scattering does not hold (one has only
modified scattering).

We are interested here in the case when the null condition is not satisfied, and we
want to construct initial data that generate inflation of the norms of the solution in finite
time, i.e. we want to show for instance that the L1-norm will not satisfy the dispersive
bounds that hold true under the null condition. Consequently, in order to ensure that the
null condition does not hold, we assume

sup
y2��1;1Œ

�.y/ > 0: (1.1.5)
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This will allow us to construct solutions that display norm inflation at some positive time.
If in (1.1.5) � was replaced by ��, we would in the same way get inflation of the norms
at some negative time.

1.2. Main theorem and norm inflation

Let f0, g0 be two real-valued functions in �.R/. We associate to them a quantity that will
appear in the expression (2.1.9) of the modulus of the solution to the ODE (2.1.8) below,
and that will control the blowing-up time. Namely, we set

�.y/ D
1

8�
.1 � y2/�1j Of0.!1.y// � i

p
1 � y2 Og0.!1.y//j

2
; (1.2.1)

which is a smooth function on ��1; 1Œ that, extended by zero outside this interval, gives
a smooth function on R. (This function was introduced in [10, formula (1.18)], but the
expression given there is correct only if f0, g0 satisfy some evenness or oddness condi-
tions. In general, the correct expression is (1.2.1).) By (1.1.5), we may choose f0, g0 in
�.R/ such that supy2��1;1Œ.�.y/�.y// is positive, and we define S� > 0 by

1

S�
D sup
y2��1;1Œ

.�.y/�.y//: (1.2.2)

As �.y/ vanishes at infinite order at y D ˙1, and � grows at most polynomially at these
points, the supremum is reached at some points in ��1; 1Œ. We shall assume

y ! �.y/�.y/ reaches its maximum at a unique point y0 2 ��1; 1Œ ;

and, moreover, there is �0 2 N� such that @˛y .�.y/�.y//jyDy0 D 0

for ˛ D 0; : : : ; 2�0 � 1 and @2�0y .�.y/�.y//jyDy0 < 0: (1.2.3)

Of course, one may always choose functions Of0, Og0 in �.R/ such that (1.2.3) holds,
because of (1.1.5).

Let  > 0, ı0 > 0 be fixed positive numbers. For " > 0 small, define

"0 D "�
2CC2ı0

1C2ı0 exp
�
�

S�

"2.1C 2ı0/

�
� 1: (1.2.4)

Let u."0/ be the unique small solution satisfying u.0/ D 0 of the equation

u D "0 exp
� u

1C 2ı0

�
so that u."0/ D "0 CO."02/, "0 ! 0. We define

T ."/ D exp
�S�
"2
� u."0/

�
D e

S�
"2 .1 � "0 CO."02//; "0 ! 0: (1.2.5)

Our main theorem is the following one:
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Theorem 1.2.1. Let f0; g0 2 �.R/ be given such that assumption (1.2.3) holds. Let c > 0,
� > 0 be given small numbers. Let s0 2 N be a large enough integer. There is ı00 > 0 and
for any ı0 2 �0; ı00�, any  � 2.ı0C 2/, there are "0 > 0, C > 0 such that for any " 2 �0; "0Œ ,
there are functions x! .f .x; "/; g.x; "// inH s0C1.R/�H s0.R/, small in the sense that

kf .�; "/kH s0C1 C kg.�; "/kH s0 � C"
1�� ;

kxf .�; "/kH1 C kxg.�; "/kL2 � C"
1�� ;

(1.2.6)

so that the unique solution u of (1.1.1) with initial data

u.1; x/ D ".f0.x/C f .x; "//; @tu.1; x/ D ".g0.x/C g.x; "// (1.2.7)

is defined for t 2 Œ1; T ."/� and satisfies

ku.T ."/; �/kL1 C k@tu.T ."/; �/kL1 D
"p
T ."/

I."/;

ku.T ."/; �/kL2 C k@tu.T ."/; �/kL2 D "J."/;

(1.2.8)

where
I."/ � cT ."/

1
2�c ; J."/ � cT ."/

1
2�

1
4�0
�c
: (1.2.9)

Remarks. Let us make the following comments:

• By (1.2.5), T ."/ is exponentially large when " ! 0C. Then (1.2.8) and the first
inequality (1.2.9) show that one has inflation of the estimate of the L1-norm of the
solution by a factor I."/ in comparison with the O."=

p
T ."// bound that holds when

the null condition is satisfied. In the same way, if �0 � 2, (1.2.8) and the lower bound
for J."/ in (1.2.9) imply inflation of the L2-norms in comparison with the O.T ."/˛/
(˛ > 0 arbitrary) bound that holds under the null condition.

• The solution u will be written as the sum of an approximate solution and of a remain-
der. The lower bounds (1.2.8) are those of this approximate solution (constructed from
f0, g0) at time T ."/.

• The exact solution will be given by the sum of the approximate solution and of an
error obtained solving a backwards Klein–Gordon equation with zero data at t D T ."/
and source term determined by the approximate solution. This error generates in the
initial conditions (1.2.7) the O."2�� / perturbation of ."f0; "g0/.

• As mentioned in the introduction, our method of proof is inspired by the construction
of blowing-up solutions for nonlinear Schrödinger equations by Cazenave–Martel–
Zhao [6] and Cazenave–Han–Martel [5]. For Klein–Gordon equations that do not
satisfy the null condition, in general we cannot expect to get blowing-up solutions,
but only norm inflation. Actually, the null condition provides a global existence cri-
terion only in the framework of small data: in order to uncover it, one has to make
some reductions (through normal forms) in order to eliminate some noncharacteristic
contributions to the nonlinearity. These reductions bring new terms in the nonlin-
earity, vanishing at order five at the origin. As long as data are small, these quintic
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corrections are negligible, but they could play a prominent role for larger solutions.
As a toy example, consider the ODE Py D 1

2
y3, with data y.0/ D ", whose solution

y.t/ D "p
1�t"2

blows up at time t D 1
"2

. The perturbed equation Py D 1
2
y3.1 � y2/

with the same initial condition has solutions that are globally defined for t � 0. If we
set

a."/ D
�
1 � "2 log

"2

1 � "2

�� 12
the solution satisfies

y.t/
�
1 � y.t/2 log

y.t/2

1 � y.t/2

�� 12
D

"a."/

.1 � t "2a."/2/
1
2

: (1.2.10)

At time t" D "�2a."/�2.1 � "2�2ı/ with ı > 0 small, we deduce from (1.2.10) that
y.t"/will be of size essentially "ı , much larger than the size " of the initial data (though
still small). This is the same phenomenon as the one that happens in the theorem.

2. Construction of approximate solution

2.1. Construction for moderate time

Our first goal is to construct an approximate solution for equation (1.1.1) with initial
condition

u.1; "/ D "f0.x/; @tu.1; "/ D "g0.x/ (2.1.1)

where .f0; g0/ are functions in �.R/ chosen so that (1.2.2) and (1.2.3) hold true. In this
subsection, we construct the solution up to time e3S�=4"

2
, essentially following [10]. We

introduce the notation

p.�/ D
p
1C �2; L˙ D x ˙ tp

0.Dx/:

We first take as an approximate solution over an interval Œ1; "�1C� �, where � > 0 is small,
the solution u0 of the linear equation

.@2t � @
2
x C 1/u0 D 0;

u0.1; �/ D "f0; @tu0.1; �/ D "g0:
(2.1.2)

Proposition 2.1.1. Set

r0.t; x/ D .@
2
t � @

2
x C 1/u0 � P.u0; @tu0; @xu0/: (2.1.3)

Then for any s0 2 N, � > 0; c > 0, there is C > 0 such thatZ c"�1C�

1

kr0.�; �/kH s0 d� � C"
3�0;Z c"�1C�

1

kL˙r0.�; �/kH1 d� � C"2C� ;

(2.1.4)
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where "3�0 means "3�� for any � > 0. Moreover, if for jyj < 1, we denote

'.y/ D
p
1 � y2;

then for t � 1, we may write u0 in the form

u0.t; x/ D 2Re
�
"
p
t
eit'.x=t/

�
a01

�x
t

�
C
1

t
b01

�x
t

�
C
1

t2
c01

�
t;
x

t

���
C "e.t; x/; (2.1.5)

where a01.y/, b
0
1.y/, (resp. c01.t; y/) are smooth functions on R (resp. Œ1;C1Œ �R), sup-

ported for jyj � 1, with

a01.y/ D
ei

�
4

2
p
2�
.1 � y2/�

3
4
�
Of0.!1.y// � i

p
1 � y2 Og0.!1.y//

�
(2.1.6)

for jyj < 1, with c01 satisfying for any ˛, ˇ, N in N,

j@˛t @
ˇ
y c
0
1.t; y/j � C˛;ˇ;N t

�˛.1 � jyj/N ; (2.1.7)

and where e.t; x/ is a real-valued function in �.Œ1;C1� �R/.

Proof. Expansion (2.1.5) is given in [10, Proposition 2.1.1]. To get estimates (2.1.4), we
just notice that r0.t; x/ D �P.u0; @tu0; @xu0/ may be written according to (2.1.5) as the
sum of an element of �.Œ1;C1Œ �R/ that is O."3/ in that space, which trivially satisfies
(2.1.4), and of expressions of the form

"3

t
3
2

eiqt'.x=t/c
�
t;
x

t

�
for some function c of the same form as c01 in (2.1.7) and some q in Z. Such terms satisfy
(2.1.4). This concludes the proof.

Our next step is to construct the approximate solution for t up to e3S�=4"
2
. We first

introduce the solution s ! a1;1.s; y/ of the differential equation

!0.y/@sa1;1.s; y/ D
1

2
.�.y/C i .y//ja1;1.s; y/j

2a1;1.s; y/;

a1;1.0; y/ D a
0
1.y/;

(2.1.8)

where a01.y/ 2 C
1
0 .R/ with support in Œ�1; 1� is defined in (2.1.6) and where !0.y/,

�.y/,  .y/ have been introduced in (1.1.3), (1.1.4). It follows from (2.1.8) that

@sja1;1.s; y/j
2
D �.y/!0.y/

�1
ja1;1.s; y/j

4

when jyj < 1, so that

ja1;1.s; y/j
2
D

ja01.y/j
2

1 � ja01.y/j
2
�.y/

p
1 � y2s

D
�.y/!0.y/

1 � �.y/�.y/s
(2.1.9)
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using definition (2.1.6) of a01 and notation (1.2.1). By (1.2.2), a1;1 is thus defined for
s 2 Œ1; S�Œ and plugging (2.1.9) into (2.1.8), we get the explicit expression

a1;1.s; y/ D a
0
1.y/.1 � �.y/�.y/s/

� 12 exp
h
�
i

2

 .y/

�.y/
log.1 � �.y/�.y/s/

i
: (2.1.10)

In particular, a1;1 is a smooth function of .s; y/ 2 Œ0; S�Œ � ��1; 1Œ that extended by zero
for jyj � 1 is smooth on Œ0; S�Œ �R, since a01 and � are C1 on R, supported in Œ�1; 1�.

We shall construct an approximate solution of (1.1.1) defined for t 2 Œc"�1C� ; e3S�=4"
2
�

that will match with u0 defined in Proposition 2.1.1.

Proposition 2.1.2. There are, in addition to function a1;1 introduced in (2.1.10), smooth
functions .s; y/ ! a13;3.s; y/ (resp. .s; y; "/ ! a15;3.s; y; "/, .s; y; "/ ! a15;5.s; y; "/)
defined on Œ0; 3S�

4
� �R (resp. on Œ0; 3S�

4
� �R � Œ0; 1�), supported for jyj � 1, such that if

we define for c"�1C� � t � e3S�=4"
2
,

u1app.t; x/ D 2Re
h "
p
t
a1;1

�
"2 log t;

x

t

�
eit'.x=t/

C
"3

t
3
2

a13;3

�
"2 log t;

x

t

�
e3it'.x=t/

C
"

t
5
2

a15;3

�
"2 log t;

x

t
; "
�
e3it'.x=t/

C
"5

t
5
2

a15;5

�
"2 log t;

x

t
; "
�
e5it'.x=t/

i
(2.1.11)

the following holds true: the remainder

r1app.t; x/ D .@
2
t � @

2
x C 1/u

1
app � P.u

1
app; @tu

1
app; @xu

1
app/ (2.1.12)

may be written as

r1app.t; x/ D 2Re
h
"t�

5
2 eit'.x=t/ Qc5;1

�
"2 log t;

x

t
;
1

t
; "
�i
C F 1app; (2.1.13)

where Qc5;1.s; y; h; "/ is continuous on Œ0; 3S�
4
��R� �0; 1�� Œ0; 1�, with uniform estimates

for the function and all its @s , @y , h@h-derivatives, supported for jyj � 1, and F 1app satisfies
for any s 2 N estimates Z exp.3S�=4"2/

c"�1C�
kF 1app.t; �/kH s dt � C"2�� ;Z exp.3S�=4"2/

c"�1C�
kL˙F

1
app.t; �/kH1 dt � C"2�� :

(2.1.14)

Before starting the proof of the proposition, we introduce some notation. We shall
denote by P the ring of continuous functions .y;h; "/! !.y;h; "/ defined on the domain
��1; 1Œ � �0; 1� � Œ0; 1�, such that for any ˛, ˛0 in N2, there is K˛;˛0 in N so that the
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function .1 � y2/K˛;˛0 @˛y .h@h/
˛0! is uniformly bounded. Then the space of functions of

.y; h; "/ defined and continuous on R � �0; 1� � Œ0; 1�, bounded as well as their @y , h@h
derivatives on that domain, and supported for jyj � 1, is a P -module. If .s; y/! a.s; y/

is a smooth function on Œ0; S�Œ � R, supported for jyj � 1, and if q, ` are (odd) integers
with 1 � jqj � `, we notice that

.@2t � @
2
x C 1/

h
eitq'.x=t/t�

`
2 a
�
"2 log t;

x

t

�i
D .1 � q2/t�

`
2 eitq'.y/a.s; y/jsD"2 log t

yDx=t

C 2iqt�
`
2�1eitq'.y/!0.y/

h
"2@sa �

1

2
.` � 1/a

i
.s; y/jsD"2 log t

yDx=t

C t�
`
2�2eitq'.y/R2.a/.s; y; "/jsD"2 log t

yDx=t

; (2.1.15)

where !0 was defined in (1.1.3) and R2.a/ belongs to the P -module generated by
@˛s @

˛0

y a.s; y/, ˛ C ˛
0 � 2.

Let us first compute the linear part in expression (2.1.12) of r1app.

Lemma 2.1.3. There is a smooth function .s;y; "/! b5;3.s;y; "/ (resp. a smooth function
.s; y; "/! b5;1.s; y; "/), defined on Œ0; 3S�

4
� � R � Œ0; 1�, supported for jyj � 1, which

is fully determined by a13;3 (resp. a1;1) in (2.1.11), and there are continuous functions
.s;y;h;"/! b7;q.s;y;h;"/, defined on Œ0; 3S�

4
��R� �0; 1�� Œ0;1�, supported for jyj � 1,

bounded as well as their @s , @y , .h@h/-derivatives, for qD 3;5;7, fully determined by a1;1,
a13;3, a15;3, a15;5 such that the following equality holds true:

.@2t � @
2
x C 1/u

1
app D 2Re

�
2i!0.y/

"3

t
3
2

eit'.y/@sa.s; y/

� 8
"3

t
3
2

e3it'.y/a13;3.s; y/

C
"

t
5
2

eit'.y/b5;1.s; y; "/

�
"

t
5
2

e3it'.y/Œ8a15;3.s; y; "/ � b5;3.s; y; "/�

� 24
"5

t
5
2

e5it'.y/a15;5.s; y; "/

C
"

t
7
2

5X
qD1

eitq'.y/b17;q

�
s; y;

1

t
; "
��ˇ̌̌̌

sD"2 log t
yDx=t

: (2.1.16)

Proof. We apply (2.1.15) to each term in definition (2.1.11) of u1app. The a1;1 term in
(2.1.11) brings the first term on the right-hand side of (2.1.16) and the third one. If we
apply (2.1.15) to the t�

3
2 "3e3i'.y/a13;3.s;y/ term in (2.1.11), we get the second term on the

right-hand side of (2.1.16), the b5;3 term (which depends only on a13;3) and contributions
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to the last sum. In the same way, applying (2.1.15) to the "t�
5
2 a15;3e

3i' term in (2.1.11),
we get the a15;3 term in (2.1.16) and contributions to the last sum. Finally, the last term of
(2.1.11) brings the a15;5 term in (2.1.16) and contributions to the last sum.

Next we compute the nonlinear part in definition (2.1.13) of r1app.

Lemma 2.1.4. There are continuous functions .s; y/! c3;q.s; y/, q D 1; 3 (resp. .s; y; "/
! c5;q.s; y; "/, 1 � q � 5, q odd, resp. .s; y; h; "/ ! c7;q.s; y; h; "/, 1 � q � 15, q
odd) defined on Œ0; 3S�

4
� � R (resp. Œ0; 3S�

4
� � R � Œ0; 1�, resp. Œ0; 3S�

4
� � R � �0; 1� �

Œ0; 1�), supported for jyj � 1, with all their @s , @y , h@h-derivatives bounded, such that
P.u1app; @tu

1
app; @xu

1
app/ may be written in the form

2Re
�
"3t�

3
2

X
qD1;3

eitq'.y/c3;q.s; y/

C "3t�
5
2

X
qD1;3

eitq'.y/c5;q

�
s; y; "

�
C "5t�

5
2 eit5'.y/c5;5.s; y; "/

C "3t�
7
2

X
q odd
1�q�15

eitq'.y/c7;q

�
s; y;

1

t
; "
��ˇ̌̌̌

sD"2 log t
yDx=t

: (2.1.17)

Moreover, c3;1 is given by

c3;1.s; y/ D i.�.y/C i .y//ja1;1.s; y/j
2a1;1.s; y/ (2.1.18)

with �,  defined in (1.1.4) and

c3;3 depends only on a1;1;

c5;q , q D 1; 3; 5 depends only on a1;1, a13;3;

c7;q , q odd, 1 � q � 15, depends only on a1;1, a13;3, a15;q0 , q
0
D 3; 5:

(2.1.19)

Proof. For the proof, we introduce the notation

U1.t; x/ D
"
p
t
eit'.x=t/a1;1

�
"2 log t;

x

t

�
;

U3.t; x/ D
"3

t
3
2

e3it'.x=t/a13;3

�
"2 log t;

x

t

�
:

Then, by (2.1.11), we may write

P.u1app; @tu
1
app; @xu

1
app/ � P

�
2Re.U1 C U3; @t .U1 C U3/; @x.U1 C U3//

�
(2.1.20)

as a linear combination of expressions of the form

"pt�
`
2 eiqt'.x=t/c

�
"2 log t;

x

t
; "
�
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with p � 3, ` � 7, 1 � jqj � 15, q odd, and c.s; y; "/ smooth on Œ0; 3S�
4
� � R � Œ0; 1�,

supported for jyj � 1, i.e. (2.1.20) contributes to the last term in (2.1.17). We are thus
reduced to the study of P.U1 CU3/, where

Uj D .Uj C xUj ; @t .Uj C xUj /; @x.Uj C xUj //:

By Taylor expansion,

P.U1 CU3/ � P.U1/CDP.U1/ �U3

modulo terms that contribute again to the last term in (2.1.17). The last termDP.U1/ �U3

may be written as contributions to the t�
5
2 -expression in (2.1.17) with coefficients c5;q

satisfying (2.1.19) and as contributions to the last term in (2.1.17). It remains to study

P.U1/ D P.U1 C xU1; @t .U1 C xU1/; @x.U1 C xU1//: (2.1.21)

When computing @tU1, @xU1, if the derivative does not fall on the exponential, we get an
extra t�1 factor, so that (2.1.21) may be written as new contributions to the last two sums
in (2.1.17) and as the expression

"3

t
3
2

P
�
eit'.y/a1;1.s; y/�.y/C e

�it'.y/
Na1;1.s; y/�.y/

�
; (2.1.22)

with the notation
�.y/ D .1; i!0.y/; i!1.y//: (2.1.23)

Then (2.1.22) provides the t�
3
2 term in (2.1.17), and to prove (2.1.18) we have to explicitly

compute the eit'.y/ term in (2.1.22), which gives

c3;1.s; y/ D DP.a1;1.s; y/�.y// � Na11.s; y/�.y/

D ja1;1.s; y/j
2a1;1.s; y/DP.�.y// ��.y/ (2.1.24)

since P is homogeneous of degree 3. The explicit expression of c3;1 given by (2.1.18)
follows from the next lemma.

Lemma 2.1.5. Let P be the cubic polynomial given by (1.1.2) and let � be given by
(2.1.23). Then

DP.�.y// ��.y/ D i.�.y/C i .y// (2.1.25)

with �,  defined in (1.1.4). Moreover,

D2P.�.y// � .�.y/;�.y// D 2i.�.y/C i .y//: (2.1.26)

Proof. Since P is homogeneous of order 3, DP.X/X D 3P.X/, whence the equality
D2P.X/.Y; X/ D 2DP.X/ � Y , so that (2.1.25) implies (2.1.26). Let us show (2.1.25).
Writing as .T;Z1; Z2/ the variables of P , we have by (2.1.23),

DP.�/ � x� D
@P

@T
.1; i!0; i!1/ � i!0

@P

@Z1
.1; i!0; i!1/ � i!1

@P

@Z2
.1; i!0; i!1/

D .T @T �Z1@Z1 �Z2@Z2/P.1; i!0; i!1/: (2.1.27)
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Write the decomposition (1.1.2) as P.T; Z1; Z2/ D
P3
kD0 Pk.T IZ1; Z2/, where Pk is

homogeneous of degree k in .Z1; Z2/ and 3 � k in T . We get that (2.1.27) is given by

.3P0 � P2/.1; i!0; i!1/C .P1 � 3P3/.1; i!0; i!1/

D .3P0 C P2/.1; !0; !1/C i.P1 C 3P3/.1; !0; !1/:

Going back to definition (1.1.4) of �,  we obtain (2.1.25).

Proof of Proposition 2.1.2. By (2.1.12), r1app is the difference of (2.1.16) and (2.1.17). We
first choose a1;1 as the solution to equation (2.1.8). By (2.1.18) this implies that the first
term on the right-hand side of (2.1.16) cancels out the c3;1 term in (2.1.17). By (2.1.19), the
c3;3 term in (2.1.17) is now determined, and we may eliminate it from (2.1.17), choosing
a13;3.s; y/D�

1
8
c3;3.s; y/ in (2.1.16). By (2.1.19), the c5;q are now determined, as are b5;1

and b5;3 in (2.1.16), according to the statement of Lemma 2.1.3. The b5;1 contribution to
(2.1.16) and the c5;1 contribution in (2.1.17) will form part of the Qc5;1 term in (2.1.13). On
the other hand, if we set

a15;3 D �
1

8
.c5;3"

2
� b5;3/;

a15;5 D �
1

24
c5;5;

we cancel out the t�
5
2 terms in (2.1.16) and (2.1.17).

We are thus left with only the t�
7
2 contributions coming from (2.1.16), (2.1.17), which

are all of the form
"eitq'.y/t�

7
2 c
�
s; y;

1

t
; "
�ˇ̌̌
sD"2 log t
yDx=t

(2.1.28)

for continuous functions on Œ0; 3Y�
4
� �R � �0; 1� � Œ0; 1�, supported for jyj � 1, bounded

as well as their @s , @y , .h@h/-derivatives. The Sobolev norms of (2.1.28) integrated for
t � c"�1C� are thus O."3�2� /, which is better than the first inequality (2.1.14). If we
make L˙ act on (2.1.28) before computing theH 1-norm, we lose an extra power of t and
get instead, after integration, an O."2�� / bound that brings the second estimate (2.1.14).
This concludes the proof.

Next we glue together the function u0, solution to (2.1.2), which is an approximate
solution of (2.1.1) for small times according to Proposition 2.1.1, and the function u1app
defined by (2.1.11), which is also an approximate solution for intermediate times.

Proposition 2.1.6. Let �0 in C1.R/ be equal to 1 close to 0. Define for 1� t � e3S�=4"
2
,

uM
app.t; x/ D �0."

1�� .t � 1//u0.t; x/C .1 � �0/."
1�� .t � 1//u1app.t; x/ (2.1.29)

and
rM

app.t; x/ D .@
2
t � @

2
x C 1/u

M
app � P.u

M
app; @tu

M
app; @xu

M
app/: (2.1.30)
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One may write

rM
app.t; x/ D 2Re

�
"

t
5
2

eit'.y/�1."
1�� t /c5;1

�
s; y;

1

t
; "
��ˇ̌̌̌

sD"2 log t
yDx=t

C FM
app.t; x/ (2.1.31)

where �1 2 C1.R/ is equal to 0 close to 0 and equal to 1 outside a neighborhood of 0,
c5;1.s; y; h; "/ is a continuous function, bounded as well as its @s , @y , .h@h/-derivatives
on Œ0; 3S�

4
� �R � �0; 1� � Œ0; 1�, supported for jyj � 1, and where FM

app satisfiesZ exp.3S�=4"2/

1

kFM
app.t; �/kH s dt � Cs"

2�� (2.1.32)

for any s 2 N and Z exp.3S�=4"2/

1

kL˙F
M
app.t; �/kH1 dt � C"2�� : (2.1.33)

Proof. We decompose rM
app using notation (2.1.3), (2.1.12) as

rM
app D r

M
app;L C r

M
app;NL C �0."

1�� .t � 1//r0 C .1 � �0/."
1�� .t � 1//r1app (2.1.34)

with

rM
app;L D .@

2
t � @

2
x C 1/u

M
app � �0."

1�� .t � 1//.@2t � @
2
x C 1/u0

� .1 � �0/."
1�� .t � 1//.@2t � @

2
x C 1/u

1
app (2.1.35)

and

rM
app;NL D �P.u

M
app; @tu

M
app; @xu

M
app/C �0."

1�� .t � 1//P.u0; @tu0; @xu0/

C .1 � �0/."
1�� .t � 1//P.u1app; @tu

1
app; @xu

1
app/: (2.1.36)

Let us study (2.1.35) and (2.1.36) successively.

• Study of (2.1.35). By definition (2.1.29) of uM
app, we may write (2.1.35) as

2"1���00."
1�� .t � 1//.@tu0 � @tu

1
app/C "

2�2��000."
1�� .t � 1//.u0 � u

1
app/: (2.1.37)

By (2.1.5) and (2.1.11), we have

u0.t; x/ � u
1
app.t; x/ D 2Re

�
"
p
t
eit'.y/.a01.y/ � a1;1.s; y//

C
"

t
3
2

eit'.y/c3;1

�
y;
1

t

�
C
"3

t
3
2

e3it'.y/c3;3.s; y/

C
"

t
5
2

e3it'.y/c5;3.s; y; "/

C
"

t
5
2

e5it'.y/c5;5.s; y; "/

�ˇ̌̌̌
sD"2 log t
yDx=t

C "e.t; x/; (2.1.38)
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where the functions c`;q.s;y;h;"/ are continuous functions of their arguments s 2 Œ0; 3S�
4
�,

y 2 R, h 2 �0; 1�, " 2 Œ0; 1�, supported for jyj � 1, bounded as well as their @s , @y , .h@h/-
derivatives on their domain of definition, and where e.t; x/ is in �.Œ1;C1Œ �R/.

Denote by Q�0 some function in C10 .�0;C1Œ/. If we take a time derivative of the
second term on the right-hand side of (2.1.38) and multiply it by "1�� Q�0."1�� .t � 1// D
t�1t "1�� Q�0."

1�� .t � 1//, we get an expression of the form of the first term on the right-
hand side of (2.1.31). This shows that the contribution of the c3;1 term in (2.1.38) to
(2.1.37) has such a form.

We need thus to prove that all other terms in (2.1.38) give, when plugged into (2.1.37),
contributions to FM

app in (2.1.31). By (2.1.8), a1;1.0; y/ D a01.y/, so that the product of
the first term on the right-hand side of (2.1.38) by "1�� Q�0."1�� .t � 1// is bounded in
modulus by

"

t
5
2

"1�� t j Q�0."
1�� .t � 1//j"2t log t1jx=t j�1: (2.1.39)

Similar or better estimates hold if we take @t or @x-derivatives, so that the contribution of
the first term on the right-hand side of (2.1.38) to (2.1.37) satisfies, as well as its derivat-
ives, bound (2.1.39). As the L2.dx/-norm of (2.1.39) is O."2C��0t�21t�"�1C� /, we see
that a bound of the form (2.1.32) holds. If we make L˙ act on the corresponding term
before computing an H 1-norm, we get a bound in O."2C��0t�11t�"�1C� / which implies
that (2.1.33) holds as well.

We are thus reduced to showing that the third to the last terms on the right-hand side of
(2.1.38) also give contributions satisfying (2.1.32), (2.1.33) when plugged into (2.1.37).
This is evident for the last term. The other ones bring to (2.1.37) expressions of the form

"a

t
`
2C1
Q�."1�� .t � 1//eiqt'.y/c.s; y; "/jsD"2 log t

yDx=t

; (2.1.40)

with either a D 3, ` D 3 or a D 1, ` � 5. The L2-norm of (2.1.40) and its derivatives
is O."at�

`C1
2 1t�"�1C� /, whose integral largely satisfies (2.1.32). To obtain (2.1.33), one

has to make L˙ act on (2.1.40), which makes one factor t appear, so that the H 1-norm is
O."at�

`�1
2 1t�"�1C� /. Because of the conditions on a, `, one gets an O."2�� / bound as in

(2.1.33). This concludes the estimate of (2.1.35).

• Estimate of (2.1.36). From definition (2.1.29) of uM
app, we may write (2.1.36) as the sum

of expressions

P.uM
app; �0@tu0 C .1 � �0/@tu

1
app; @xu

M
app/

� P
�
uM

app; @t .�0u0 C .1 � �0/u
1
app/; @xu

M
app

�
(2.1.41)

and

�0P.u0; @tu0; @xu0/C .1 � �0/P.u
1
app; @tu

1
app; @xu

1
app/

� P.�0u0 C .1 � �0/u
1
app; �0@tu0 C .1 � �0/@tu

1
app;

�0@xu0 C .1 � �0/@xu
1
app/: (2.1.42)



Norm inflation for solutions of Klein–Gordon equations 489

Difference (2.1.41) may be bounded pointwise by

C"1�� j�00."
1�� .t � 1//j ju0 � u

1
appj

� X
˛Cˇ�1

.j@˛t @
ˇ
xu

1
appj C j@

˛
t @
ˇ
xu0j/

�2
: (2.1.43)

The difference u0 �u1app is given by (2.1.38), so that its modulus is bounded from above on

the support of �00."
1�� .t � 1// by C"t�

3
2 (using that the first term in (2.1.38) is O. "p

t
s/

with s D "2 log t DO.1
t
/ if t � "�1C� ). In addition, u1app, u0 areO."t�

1
2 /, as well as their

derivatives. Then (2.1.43) is bounded from above by

C"4�� j�0."1�� .t � 1//jt�
5
2 .1jxj�t CO.hxi

�N //: (2.1.44)

A similar bound holds for the derivatives of (2.1.41), so that (2.1.32) is largely satisfied.
To get (2.1.33), one has to bound the L2-norm of (2.1.44) multiplied by t , so that the
conclusion follows as well.

It remains to study (2.1.42), which may be written as

�0.1 � �0/M.u0; @tu0; @xu0; u
1
app; @tu

1
app; @xu

1
app/ (2.1.45)

for some cubic expression M . Since by (2.1.5), (2.1.11), u0, u1app and their derivatives are

O."t�
1
2 1jxj�t / C O."t

�N hxi�N /, we get that the Sobolev norm of (2.1.45) is of mag-
nitudeO."3t�11t�"�1C� /, which brings an estimate of the form (2.1.32). In the same way,
the integrand in (2.1.33) isO."31t�"�1C� /, which gives anO."2C� / bound for the integral.

This concludes the proof, since we have shown that (2.1.35) may be written as a con-
tribution to the c5;1 term in (2.1.31) and as a remainder that may be integrated to FM

app,
since (2.1.36) is also of the form FM

app and since the remaining terms �0r0 C .1 � �0/r1app
in (2.1.34) are of the form of the right-hand side of (2.1.31) by Proposition 2.1.1 and
(2.1.13).

2.2. Construction for large time

Our next goal is to extend the approximate solution that has been constructed up to time
e3S�=4"

2
in order to almost reach the blow-up time eS�="

2
. At this time, the main part of

the profile (2.1.11) blows up and we introduce notation for spaces describing the solution
close to the blow-up time.

Definition 2.2.1. Let m 2 R, y0 be a point in ��1; 1Œ and �0 2 N�. We denote by †m the
space of continuous functions .s; y; h; "/! a.s; y; h; "/ defined on Œ0; S�Œ �R � �0; 1� �
Œ0; 1�, with values in C, smooth in .s; y; h/, supported for jyj � 1, that satisfy for any
integers ˛, ˇ, �, N , any .s; y; h; "/ in the domain of definition, estimates

j@˛s @
ˇ
y .h@h/

�a.s; y; h; "/j � C˛;ˇ;�;N .S� � sC jy � y0j
2�0/

m�˛�
ˇ
2�0 .1� jyj/N : (2.2.1)

In particular,†m is a P -module (for P defined after Proposition 2.1.2). Moreover, @˛s @
ˇ
y a

belongs to †m�˛�
ˇ
2�0 � †m�˛�ˇ . When a does not depend on one of the variables h or

", we remove it from the notation.
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Example. Consider the function a1;1.s; y/ defined in (2.1.10) with a01 smooth on R,
supported for jyj � 1. Then a1;1 is smooth on Œ0; S�� � R � ¹.S�; y0/º because
of (1.2.2), (1.2.3). Moreover, for y close to y0, (1.2.3) implies that �.y/�.y/ D 1

S�
�

.y � y0/
2�0‚.y/ for some smooth positive function ‚, so that we get estimates of the

form (2.2.1) with m D �1
2

, i.e. a1;1 belongs to †�
1
2 .

Our goal is to prove the following proposition:

Proposition 2.2.2. Let ı > 0 be a small number, N 2 N. One may construct for all odd
integers q, ` satisfying 1 � q � ` � N elements a`;q of †�

`
2�ı.`�1/ with a1;1 given by

(2.1.10) so that, if we define for t 2 Œe
S�
2"2 ; e

S�
"2 Œ , x 2 R,

u2app.t; x/ D 2Re
� NX
`D1
` odd

"2�`t�
`
2 eit'.y/a`;1.s; y; "/

C

NX
`D3
` odd

X
3�q�`
q odd

"2q�`t�
`
2 eitq'.y/a`;q.s; y; "/

�ˇ̌̌̌
sD"2 log t
yDx=t

; (2.2.2)

then
r2app D .@

2
t � @

2
x C 1/u

2
app � P.u

2
app; @tu

2
app; @xu

2
app/ (2.2.3)

may be written as the sum of the noncharacteristic expression

2Re
� 3NX
`DNC2
` odd

X
3�q�`
q odd

"2q�`t�
`
2 eitq'.y/d`;q.s; y; "/

�ˇ̌̌̌
sD"2 log t
yDx=t

(2.2.4)

with, for 3 � q � `,
d`;q 2 †

� `2�ı.`�3/;

and of a characteristic expression

2Re
3NX

`DNC4
` odd

"6�`t�
`
2 eit'.y/d`;1.s; y; "/jsD"2 log t

yDx=t

(2.2.5)

with
d`;1 2 †

� `2�ı.`�3/:

Before proving the proposition, we establish several lemmas.

Lemma 2.2.3. Assume we are given N an odd integer and for any odd integers `, q
satisfying 1 � q � ` � N continuous functions .s; y; "/! a`;q.s; y; "/ on Œ0; S�Œ �R �
Œ0; 1�, smooth in .s; y/, supported for jyj � 1. Let P0 be the ring of functions .y; "/!
.y; "/ continuous on ��1; 1Œ � Œ0; 1�, that are smooth in y and have at most algebraic
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growth, as well as their @y-derivatives when y2 ! 1 (uniformly in "). For each q, ` as
above, denote by C`;q the P0-module generated by all cubic expressions of the form

3Y
jD1

@
j̨
s @

ǰ
y a j̀ ;qj .s; y; "/; (2.2.6)

where j̀ 2 N, qj 2 Z are odd, j̨ ; ǰ 2 N, a
j̀ ;�qj D Na j̀ ;qj , and where the following

inequalities hold true:

3X
jD1

. j̀ C 2 j̨ C 2 ǰ / � `; q D jq1 C q2 C q3j: (2.2.7)

Introduce

U.t; x/ D

NX
`D1
` odd

X
1�q�`
q odd

"2q�`t�
`
2 eitq'.y/a`;q.s; y; "/jsD"2 log t

yDx=t

: (2.2.8)

Then we may write

P.2Re.U; @tU; @xU// D 2Re
� 3NX
`D3
` odd

X
3�q�`
q odd

"2q�`t�
`
2 eitq'.y/c`;q.s; y; "/

C

3NX
`D3
` odd

"6�`t�
`
2 eit'.y/c`;1.s; y; "/

�ˇ̌̌̌
sD"2 log t
yDx=t

; (2.2.9)

where c`;q belongs to C`;q . Moreover, for 3 � q � `,

c`;q depends only on a`0;q0 ; 1 � q0 � `0 � ` � 2: (2.2.10)

In addition, c3;1 is given explicitly by

c3;1.s; y/ D i.�.y/C i .y//ja1;1j
2a1;1.s; y/ (2.2.11)

and for ` � 5, one may decompose

c`;1.s; y; "/ D c
0
`;1.s; y; "/C c

00
`;1.s; y; "/; (2.2.12)

where c0
`;1

is given explicitly by

c0`;1.s; y; "/ D 2i.�.y/C i .y//
�
ja1;1j

2a`�2;1 C
1

2
a21;1 Na`�2;1

�
.s; y; "/ (2.2.13)

and

c00`;1 depends only on a`0;q0 for 1 � q0 � `0 � ` � 4

or on a`�2;q0 , 3 � q0 � ` � 2, and a1;1: (2.2.14)
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Proof. We notice first that (2.2.7) implies that

3X
jD1

.2jqj j � j̀ / � 2q � ` (2.2.15)

and that for terms (2.2.6) that are characteristic, i.e. such that q D jq1 C q2 C q3j D 1, we
have jq1j C jq2j C jq3j � q � 2, so that

3X
jD1

.2jqj j � j̀ / � 2jqj C 4 � ` � 6 � `: (2.2.16)

Let us compute (2.2.9). From (2.2.8), and the expressions that may be obtained for @tU ,
@xU from that formula, we see that the t�

`
2 terms in (2.2.9) are given by the product of

e˙iqt'.x=t/ (q 2 N, q odd), of an element of C`;q and of a power of " of the form

"
P3
jD1.2jqj j� j̀ /Ca (2.2.17)

for some a � 0. In the noncharacteristic case q ¤ 1, it follows from (2.2.15) that (2.2.17)
is O."2q�`/ and in the characteristic case, (2.2.17) will be O."6�`/ by (2.2.16). We thus
obtain the structure indicated in (2.2.9). Let us check properties (2.2.10) to (2.2.14).

Since in (2.2.7) all j̀ are larger than or equal to 1, and c`;q is given by a cubic expres-
sion of the form (2.2.6), (2.2.10) holds necessarily.

Let us consider now specifically the characteristic terms c`;1 in (2.2.9) with ` � 5.
These terms are given by (2.2.6) with indices satisfying (2.2.7). In this property, either
one j̀ is equal to `� 2 and then the others are equal to 1 and j̨ D ǰ D 0 for all j , or all
j̀ are smaller than or equal to ` � 4 (recall that they are odd). This last case corresponds

to contributions c00
`;1

satisfying the first alternative in (2.2.14). On the other hand, if one
j̀ is equal to ` � 2, say `3 D ` � 2, then `1 D `2 D 1. If the q3 associated to `3 satisfies
jq3j � 3, we get a contribution to c00

`;1
corresponding to the second alternative in (2.2.14).

We are thus left with terms of the form (2.2.6) with

j̨ D ǰ D 0; `3 D `� 2; jq3j D 1; `1 D `2 D 1; jq1 C q2 C q3j D 1: (2.2.18)

These terms give c0
`;1

in (2.2.12) and have to be computed explicitly. Notice also that in
the case ` D 3, c3;1 is itself of that form. Moreover, we have also jqj j � j̀ D 1, j D 1; 2
so that we see that we have to compute those terms of (2.2.9) that oscillate on the phases
˙t'.y/ and that come from the contribution to U given by

U 0.t; x/ D

NX
`0D1

"2�`
0

t�
`0

2 eit'.y/a`0;1.s; y/jsD"2 log t
yDx=t

: (2.2.19)

Denote by U 0
`0

the general term of that sum and set

U0`0 D .U
0
`0 C

xU 0`0 ; @t .U
0
`0 C

xU 0`0/; @x.U
0
`0 C

xU 0`0//: (2.2.20)
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We thus have to compute the contribution to (2.2.9) given by those terms in

P

� NX
`0D1
`0 odd

.U0`0 C
xU0`0/

�
(2.2.21)

that oscillate along the phases e˙it'.x=t/ and that come from the terms (2.2.20), where @t
and @x act on the oscillatory factors coming from (2.2.19) (since in (2.2.18), j̨ D ǰ D 0

for any j ). Using the notation �.y/ D .1; i!0.y/; i!1.y// we see that we may reduce
(2.2.21) to the expression

P

�
2Re

�
�.y/eit'.y/

NX
`0D1
`0 odd

"2�`
0

t�
`0

2 a`0;1.s; y/

��ˇ̌̌̌
sD"2 log t
yDx=t

: (2.2.22)

By (2.2.18) we are only interested in contributions to (2.2.22) that are at least quadratic in
a1;1; Na1;1, i.e. we may reduce (2.2.22) to

"3P.2ReŒ�.y/eit'.y/t�
1
2 a1;1.s; y/�/

C

NX
`0D1
`0 odd

"2DP.2ReŒ�.y/eit'.y/t�
1
2 a1;1.s; y/�/

� .2ReŒ�.y/eit'.y/t�
`0

2 a`0;1.s; y/"
2�`0 �/jsD"2 log t

yDx=t

: (2.2.23)

The first term in (2.2.23) has been already computed in (2.1.22), (2.1.24) and brings c3;1
given by (2.2.11). The term in t�

`
2 eit'.y/ coming from the sum in (2.2.23) is obtained

when `0 D ` � 2 and is equal to the eit'.y/ term in

"6�`t�
`
2DP.�eit'a1;1 C e

�it' x� Na1;1/ � .�e
it'a`�2;1 C e

�it' x� Na`�2;1/:

Taylor expanding this expression, we see that we have to consider

"6�`t�
`
2 eit' Œa21;1 Na`�2;1DP.�/ �

x�C ja1;1j
2a`�2;1D

2P.�/ � .x�;�/�:

By (2.1.25), (2.1.26), this gives (2.2.13) and concludes the proof of the lemma.

We apply the preceding lemma to compute P.u2app; @tu
2
app; @xu

2
app/.

Corollary 2.2.4. Assume that u2app is given by (2.2.2). Then

P.u2app; @tu
2
app; @xu

2
app/

D 2Re
� 3NX
`D3
` odd

"6�`t�
`
2 eit'.y/c`;1.s; y; "/

C

3NX
`D3
q odd

X̀
qD3
` odd

"2q�`t�
`
2 eitq'.y/c`;q.s; y; "/

�ˇ̌̌̌
sD"2 log t
yDx=t

; (2.2.24)
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where c`;q is an element of †�
`
2�ı.`�1/C2ı which, for q � 3, depends only on a`0;q0 ,

1� q0 � `0 � `� 2, where c3;1 is given by (2.2.11) and for `� 5, c`;1 may be decomposed
into the form (2.2.12) with (2.2.13) and (2.2.14) holding true.

Proof. The left-hand side of (2.2.24) is (2.2.9), so that we obtain expression (2.2.24).
The coefficients c`;q belong to C`;q , i.e. are given (up to P0-multiplicative factors) by
expressions of the form (2.2.6) with indices satisfying (2.2.7). Since a

j̀ ;qj belongs to
†�

j̀
2 �. j̀�1/ı , it follows from the definition of these classes and from (2.2.7) that c`;q is in

†�
`
2�ı.`�1/C2ı . The other assertions of the corollary follow from (2.2.10) to (2.2.14).

In order to prove Proposition 2.2.2, we also need the following result.

Lemma 2.2.5. Let y ! ‚.y/ be a complex-valued smooth function defined on ��1; 1Œ ,
with at most algebraic growth when jyj ! 1�, as well as its derivatives. Let a.s; y/ be an
element of †�

1
2 . Assume that there is an open neighborhood V of y0 in ��1; 1Œ and c > 0

such that for any y in V , any s 2 Œ0; S�Œ ,

jRe‚.y/j � c; (2.2.25)

ja.s; y/j � c.S� � s C jy � y0j
2�0/�

1
2 ; (2.2.26)

and that a solves the ODE @sa.s; y/ D ‚.y/ja.s; y/j2a.s; y/. Let ` be an odd integer,
` � 5, and let r be an element of †�

`
2�ı.`�3/. Let .s; y/! b.s; y/ be the solution of

@sb.s; y/ D ‚.y/.2ja.s; y/j
2b.s; y/C a.s; y/2b.s; y//C r.s; y/;

b.0; y/ D 0:
(2.2.27)

Then b belongs to †�
`�2
2 �ı.`�3/.

Proof. We notice first that if y stays outside V , then by definition of†�
1
2 , the coefficients

on the right-hand side of (2.2.27) are smooth functions on Œ0; S�� � .R � V /, so that the
same holds true for the solution b, which is moreover supported for jyj � 1.

We may thus assume that y stays close to y0, so that (2.2.25), (2.2.26) hold true. We
introduce B.s; y/ D

� b.s;y/
b.s;y/

�
that solves the system

@sB.s; y/ DM.s; y/B.s; y/CR.s; y/; (2.2.28)

with

R.s; y/ D

�
r.s; y/

r.s; y/

�
; M.s; y/ D

"
2‚jaj2 ‚a2

x‚ Na2 2x‚jaj2

#
:

Define the two functions

ˆ1.s; y/ D

�
ia.s; y/

�ia.s; y/

�
; ˆ2.s; y/ D

�
@sa.s; y/

@sa.s; y/

�
D ja.s; y/j2

�
‚a
x‚ Na

�
:
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Then ĵ solves the homogeneous equation @s ĵ DM.s;y/ ĵ and the wronskianw.s;y/
of ˆ1.s; y/, ˆ2.s; y/ is equal to 2i Re‚.y/ja.s; y/j4, so satisfies for y 2 V , jw.s; y/j �
cA.s; y/�4 according to (2.2.25), (2.2.26) if we set

A.s; y/ D .S� � s C jy � y0j
2�0/

1
2 :

The fact that a 2 †�
1
2 and that (2.2.25), (2.2.26) hold for y close to y0 imply that the

wronskian matrix W.s; y/ and its inverse W.s0; y/ satisfy

W.s; y/ D

�
O.A.s; y/�1/ O.A.s; y/�3/

O.A.s; y/�1/ O.A.s; y/�3/

�
;

W.s0; y/�1 D

�
O.A.s0; y// O.A.s0; y//

O.A.s0; y/3/ O.A.s0; y/3/

�
:

Since s ! A.s; y/ is decreasing, we conclude that for 0 � s0 � s,

W.s; y/W.s0; y/�1 D O
��A.s0; y/
A.s; y/

�3�
: (2.2.29)

Writing the solution to (2.2.28) with zero initial condition at s D 0 in the formZ s

0

W.s; y/W.s0; y/�1R.s0; y/ ds0 (2.2.30)

and using that r 2 †�
`
2�ı.`�1/C2ı , we get from (2.2.29), (2.2.30),

jB.s; y/j � C

Z s

0

A.s0; y/3�`�2ı.`�1/C4ı ds0A.s; y/�3:

Since ` � 5 and ı > 0, this isO.A.s; y/2�`�2ı.`�3//, i.e. B satisfies (2.2.1) with ˛ D ˇ D
0, m D � `�2

2
� ı.` � 3/ for y close to y0. If we take @y or @s derivatives in (2.2.30), we

get in the same way the estimates (2.2.1) for positive ˛ or ˇ. This concludes the proof.

Proof of Proposition 2.2.2. We shall compute first the action of @2t � @
2
x C 1 on u2app given

by (2.2.2) and use the fact that the last term in the expression (2.2.3) of r2app was computed
in Corollary 2.2.4. We shall then construct the a`;q recursively in order to reduce r2app to
an expression of the form (2.2.4).

• Linear term in (2.2.3). We apply (2.1.15) to the general term of the sums in (2.2.2). We
get on the one hand the characteristic contribution

2Re
�
2i

NC2X
`D3
` odd

"6�`t�
`
2 eit'.y/!0.y/@sa`�2;1.s; y; "/

�ˇ̌̌̌
sD"2 log t
yDx=t

C 2Re
�NC4X
`D5
` odd

"6�`t�
`
2 eit'.y/R2.a`�4;1/.s; y; "/

�ˇ̌̌̌
sD"2 log t
yDx=t

; (2.2.31)
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where R2.a`�4;1/ belongs to the P -module generated by @˛s @
ˇ
y a`�4;1 for ˛ C ˇ � 2, so

that
R2.a`�4;1/ 2 †

� `2�ı.`�5/

by the definition of this class. On the other hand, the second sum in (2.2.2) provides to the
linear term in (2.2.3) the noncharacteristic contribution

2Re
� NX
`D3
` odd

X
3�q�`
q odd

"2q�`t�
`
2 .1 � q2/eitq'.y/a`;q.s; y; "/

�ˇ̌̌̌
sD"2 log t
yDx=t

C 2Re
�NC2X
`D5
` odd

X
3�q�`�2
q odd

"2qC2�`t�
`
2 eitq'.y/R1.a`�2;q/

�ˇ̌̌̌
sD"2 log t
yDx=t

C 2Re
�NC4X
`D7
` odd

X
3�q�`�4
q odd

"2qC4�`t�
`
2 eitq'.y/R2.a`�4;q/

�ˇ̌̌̌
sD"2 log t
yDx=t

; (2.2.32)

where R1.a`�2;q/ (resp. R2.a`�4;q/) is in the P -module generated by @˛s @
ˇ
y a`�2;q (resp.

@˛s @
ˇ
y a`�4;q) for ˛ C ˇ � 1 (resp. ˛ C ˇ � 2). Thus, R1.a`�2;q/ (resp. R2.a`�4;q/) is in

†�
`
2�ı.`�3/ (resp. †�

`
2�ı.`�5/). It follows from (2.2.31) and (2.2.32) that

.@2t � @
2
x C 1/u

2
app

D 2Re
�
2i

NC2X
`D3
` odd

"6�`t�
`
2 eit'.y/!0.y/@sa`�2;1.s; y; "/

C

NX
`D3
` odd

X
3�q�`
q odd

"2q�`t�
`
2 .1 � q2/eitq'.y/a`;q.s; y; "/

C

NC4X
`D5
` odd

"6�`t�
`
2 eit'.y/b`;1.s; y; "/

C

NC4X
`D5
` odd

X
3�q�`�2
q odd

"2q�`t�
`
2 eitq'.y/b`;q.s; y; "/

�ˇ̌̌̌
sD"2 log t
yDx=t

; (2.2.33)

where for 5 � ` � N C 4,

b`;1 2 †
� `2�ı.`�5/ and depends only on a`�4;1;

b`;q 2 †
� `2�ı.`�3/ and depends only on a`0;q , `0� min.`�2;N / when q � 3:

(2.2.34)

• Nonlinear term in (2.2.3). This term is given by formula (2.2.24).
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• Determination of the a`;q . To prove Proposition 2.2.2, we have to choose the a`;q
recursively in order to eliminate most terms in the difference (2.2.2) between (2.2.33)
and (2.2.24), to be left only with terms of the form (2.2.4) or (2.2.5). We determine first
the characteristic coefficient a1;1. Equating the t�

3
2 eit'.y/ terms in (2.2.24) and (2.2.33),

and using expression (2.2.11) for c3;1, we obtain

!0.y/@sa1;1 D
1

2
.�.y/C i .y//ja1;1.s; y/j

2a1;1.s; y/:

If we take for a1;1 the function (2.1.10), this equality is satisfied by (2.1.8), and the explicit
formula (2.1.10) shows that a1;1 belongs to †�

1
2 .

Next we determine the coefficient a3;3, equating the t�
3
2 e3it'.y/ coefficients in

(2.2.24) and (2.2.33). We get �8a3;3 D c3;3, where c3;3 is determined by a1;1 accord-
ing to Corollary 2.2.4 and belongs to †�

3
2 � †�

3
2�2ı .

Assume by induction that we have determined for some ` � 5,

a`0;q0 ; 1 � q
0
� `0 � ` � 4 and a`�2;q0 ; 3 � q

0
� ` � 2: (2.2.35)

Let us determine a`�2;1. Equating the t�
`
2 eit'.y/ terms in (2.2.24) and (2.2.33), we

get, also using expressions (2.2.12) to (2.2.14),

@sa`�2;1.s; y/ D ‚.y/Œ2ja1;1j
2a`�2;1 C a

2
1;1 Na`�2;1�.s; y/C r`�2;1.s; y/; (2.2.36)

where ‚.y/ D 1
2
!0.y/

�1.�.y/C i .y// and

r`�2.s; y/ D �
i

2!0.y/
.c00`;1.s; y/ � b`;1.s; y//:

By Corollary 2.2.4, and decompositions (2.2.12)–(2.2.14), c00
`;1

is in the space†�
`
2�ı.`�3/

and depends only on a`0;q0 for 1 � q0 � `0 � ` � 4 and on a`�2;q0 for 3 � q0 � ` � 2.
These coefficients are determined by assumption (2.2.35). Moreover, by (2.2.34), b`;1
belongs to †�

`
2�ı.`�5/ and depends only on coefficients already determined. It follows

that r`�2;1 is known and belongs to †�
`
2�ı.`�3/. If we supplement (2.2.36) by the initial

condition a`�2;1.0; y/ D 0, we may thus apply Lemma 2.2.5 with a � a1;1 to conclude
that a`�2;1 belongs to †�

`�2
2 �ı.`�3/ as wanted in the statement of the proposition, if

we check that assumptions (2.2.25), (2.2.26) hold. The first one, which is equivalent to
1
2
!0.y0/

�1�.y0/¤ 0, follows from conditions (1.2.2), (1.2.3). The second one is implied
by the explicit expression (2.1.10) of a1;1 and the fact that by (2.1.6), (1.2.1), and (1.2.2),
a01.y0/ does not vanish.

We have thus determined a`0;q0 for 1 � q0 � `0 � ` � 2. To obtain (2.2.35) with
` replaced by ` C 2, we are left with finding a`;q for 3 � q � `. Equating terms in
t�

`
2 eitq'.y/ in (2.2.24) and (2.2.33), we obtain an equation

.1 � q2/a`;q D c`;q � b`;q 2 †
� `2�ı.`�3/ � †�

`
2�ı.`�1/; (2.2.37)
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where c`;q , b`;q depend only on a`0;q0 with 1� q0 � `� 2 by (2.2.34) and Corollary 2.2.4.
Consequently, the right-hand side of (2.2.37) is already determined, so that we have
defined a`�2;q for 3 � q � `. We have finally recovered (2.2.35) at rank `C 2.

Consequently, we have eliminated all characteristic terms in (2.2.33) that are O.t�
`
2 /

for ` � N C 2 and all noncharacteristic terms that are O.t�
`
2 / for ` � N . We are thus

left with the terms in the third (resp. fourth) sum in (2.2.33) corresponding to ` D N C 4
(resp. ` D N C 2 or N C 4) and with the terms in the first (resp. second) sum in (2.2.24)
corresponding to N C 4 � ` � 3N (resp. N C 2 � ` � 3N ). These terms contribute to
(2.2.4) and (2.2.5). This concludes the proof.

We construct now an approximate solution to equation (1.1.1) defined for t 2 Œ1; e
S�
"2 Œ ,

gluing together the approximate solution for moderate times uM
app that was defined in Pro-

position 2.1.6 and the approximate solution u2app of Proposition 2.2.2.

Corollary 2.2.6. Let Q�0 be in C10 .Œ0;
3S�
4
Œ/ and be equal to 1 on Œ0; S�

2
�. Define for t 2

Œ1; e
S�
"2 Œ ,

uapp.t; x/ D Q�0."
2 log t /uM

app.t; x/C .1 � Q�0/."
2 log t /u2app.t; x/: (2.2.38)

Then
rapp.t; x/ D .@

2
t � @

2
x C 1/uapp � P.uapp; @tuapp; @xuapp/ (2.2.39)

may be written as the sum

2Re
h "
t
5
2

eit'.y/�1."
1�� t /c5;1

�
s; y;

1

t
; "
�iˇ̌̌

sD"2 log t
yDx=t

C .1 � Q�0/."
2 log t /r2app.t; x/C Fapp.t; x/; (2.2.40)

where �1 is smooth, equal to 0 close to 0 and to 1 outside a neighborhood of 0, where
c5;1.s; y; h; "/ is a continuous function on Œ0;C1Œ � R � �0; 1� � Œ0; 1�, supported for
s � 3S�

4
and jyj � 1, bounded as well as all its @s , @y , h@h derivatives on that domain,

where r2app given by (2.2.3) is the sum of (2.2.4) and (2.2.5) and where Fapp is compactly

supported for t � e3S�=4"
2

and satisfiesZ exp.S�="2/

1

kFapp.�; �/kH s d� � C"2�� ;Z exp.S�="2/

1

kL˙Fapp.�; �/kH1 d� � C"2�� :

(2.2.41)

Proof. By the definition of uapp and (2.1.30), (2.2.3), we may write

rapp.t; x/ D Q�0."
2 log t /rM

app.t; x/C .1 � Q�0/."
2 log t /r2app.t; x/

C 2
"2

t
Q�00."

2 log t /@t .uM
app � u

2
app/.t; x/
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C

�"4
t2
Q�000."

2 log t / �
"2

t2
Q�00."

2 log t /
�
.uM

app � u
2
app/.t; x/

� P.uapp; @tuapp; @xuapp/C Q�0."
2 log t /P.uM

app; @tu
M
app; @xu

M
app/

C .1 � Q�0/."
2 log t /P.u2app; @tu

2
app; @xu

2
app/

D IC � � � C VII:

We examine terms I to VII successively.

• Contribution of term I. By Proposition 2.1.6, we get contributions to the first term in
(2.2.40) and to Fapp.

• Contribution of term II. This is the second term in (2.2.40).

• Contributions of terms III C IV. On the support of Q�00."
2 log t /, uM

app coincides with
u1app by (2.1.29), so that we have to estimate u1app � u

2
app and its time derivative. This

difference may be computed from (2.1.11) and (2.2.2). The t�
1
2 terms cancel out. We are

thus reduced to the following terms:

– Characteristic terms inO.t�
3
2 / coming from the t�

3
2 a3;1 term in (2.2.2): This provides

a contribution to the first term in (2.2.40).

– Noncharacteristic terms in O.t�
3
2 / coming from the a3;3 term in (2.2.2) and the a13;3

term in (2.1.11): When plugged into IIIC IV, these terms give contributions

Re
�
"5

t
5
2

�
0
.s/e3it'.y/ Qa3;3

�
s; y;

1

t
; "
��ˇ̌̌̌

sD"2 log t
yDx=t

; (2.2.42)

where �
0
2 C10 .�0;C1Œ/ and where Qa3;3.s; y; h; "/ is a continuous function on the

product Œ0;C1Œ �R � �0; 1� � Œ0; 1�, supported for s � 3S�
4

and jyj � 1, bounded as
well as all its @s , @y , h@h derivatives on that domain. The Sobolev norm of (2.2.42)
is O."5t�2/, so that the first estimate (2.2.41) largely holds. If we make L˙ act on
(2.2.42) and bound theH 1-norm, we get anO."5t�1/ estimate. Integrating for 1� t �
e3S�=4"

2
gives anO."3/ bound, better than the right-hand side of the second inequality

(2.2.41). Thus (2.2.42) may be included in Fapp in (2.2.40).

– Characteristic or noncharacteristic terms coming from (2.1.11) or (2.2.2) that are
O.t�

5
2 /, i.e. terms in a15;3, a15;5 in (2.1.11) and a`;q , `� 5 in (2.2.2): The contributions

of all such terms to IIIC IV may be written in the form

Re
�
"6�`

t
`
2

�
0
.s/eiqt'.y/ Qa`;q

�
s; y;

1

t
; "
��ˇ̌̌̌

sD"2 log t
yDx=t

; (2.2.43)

with ` � 7 and Qa`;q satisfying the same estimates as Qa3;3 above. Then the Sobolev
norm of (2.2.43) or its H 1-norm after action of L˙, integrated for t in the support of
�
0
."2 log t / is O.e�c="

2
/, so that (2.2.41) is largely verified and these terms may be

included inside Fapp.
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• Contributions of VC VIC VII. We write this contribution as the sum of

P.uapp; Q�0@tu
M
app C .1 � Q�0/@tu

2
app; @xuapp/

� P
�
uapp; @t . Q�0u

M
app C .1 � Q�0/u

2
app/; @xuapp

�
(2.2.44)

and of

Q�0P.u
M
app; @tu

M
app; @xu

M
app/C .1 � Q�0/P.u

2
app; @tu

2
app; @xu

2
app/

� P. Q�0u
M
app C .1 � Q�0/u

2
app; Q�0@tu

M
app C .1 � Q�0/@tu

2
app;

Q�0@xu
M
app C .1 � Q�0/@xu

2
app/: (2.2.45)

Consider first (2.2.44). This expression may be bounded pointwise by

"2

t
j Q�00."

2 log t /j juM
app � u

2
appj

� X
˛Cˇ�1

j@˛t @
ˇ
xu

M
appj C j@

˛
t @
ˇ
xu

2
appj

�2
: (2.2.46)

We have seen in the study of III C IV that the t�
1
2 terms cancel out in uM

app � u
2
app, so

that this difference is O."�at�
3
2 / for some a. The squared factor in (2.2.45) is moreover

O."2=t/, so that we may get for (2.2.46) a bound in O."�at�
7
2 1jxj�t /. The same holds

for derivatives of (2.2.44) so that, computing its H s-norm or the H 1-norm of the action
of L˙ on it, we shall obtain, as at the end of the study of IIIC IV, that the time integral
of these quantities is O.e�c="

2
/. Thus (2.2.44) largely satisfies (2.2.41).

Finally, consider (2.2.45) which may be written as � . Q�0."2 log t // with

 .�/ D P.�uM
app C .1 � �/u

2
app; �@tu

M
app C .1 � �/@tu

2
app; �@xu

M
app C .1 � �/@xu

2
app/

� �P.uM
app; @tu

M
app; @xu

M
app/ � .1 � �/P.u

2
app; @tu

2
app; @xu

2
app/:

As  .1/ D  .0/ D 0, we have

j . Q�0."
2 log t //j � .1 � Q�0/ Q�0 sup

�2Œ0;1�

j 00.�/j

� C.1 � Q�0/ Q�0Œju
M
app � u

2
appj C j@t .u

M
app � u

2
app/j C j@x.u

M
app � u

2
app/j�

2

�

X
˛Cˇ�1

.j@˛t @
ˇ
xu

M
appj C j@

˛
t @
ˇ
xu

2
appj/: (2.2.47)

We have seen in the study of (2.2.44) that uM
app � u

2
app is O."�at�

3
2 /, as well as its deriv-

atives, on the support of .1� Q�0/ Q�0."2 log t /. It follows that again (2.2.47) is O."�at�
7
2 /

and supported for jxj � t . As the same bound holds for derivatives of (2.2.45), we con-
clude that this term satisfies (2.2.41) as well. This concludes the proof.

3. Reduction to a system and normal form

In this section we shall reduce equation (1.1.1) to a first-order system. We shall then look
for the solution as the sum of an approximate solution deduced from uapp constructed in
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Section 2 and of a remainder. Finally, in Section 3.2, we shall perform a normal form
procedure in order to eliminate part of the cubic nonlinearity.

3.1. Reduction to a system

Let us introduce some notation that will be used in the rest of the paper. We shall denote by
M0.�1; : : : ; �n/ a smooth positive function on Rn, valued in R�C, such thatM0.�1; : : : ; �n/

is equivalent to 1Cmax2.j�1j; : : : ; j�nj/, where max2 stands for the second largest among
j�1j; : : : ; j�nj. For instance, we may take

M0.�1; : : : ; �n/ D

� X
˛D.˛1;:::;˛n/
j˛jDn

max. j̨ /�n�1

.�˛/2 C 1

� 1
2
�
1C

nX
jD1

�2j

�� n�12
: (3.1.1)

Definition 3.1.1. Let n 2 N�, � 2 R, � 2 RC, ˇ 2 RC. We denote by S�;ˇ .M �
0 ; n/ the

space of smooth functions on R �Rn, .x; �1; : : : ; �n/! m.x; �1; : : : ; �n/, with values in
C, satisfying for any ˛0 2 N, ˛ 2 N�, N 2 N estimates

j@˛0x @
˛
�m.x; �1; : : : ; �n/j � C˛0;˛;NM0.�/

�C�.˛0Cj˛j/.1C ˇhˇ j�j/�N : (3.1.2)

Remark. Most of the time we shall only need the special case ˇD 0, so that the last factor
on the right-hand side of (3.1.2) disappears. Ifm is in S�;0.M �

0 ; n/ and � 2 C10 .R
n/, then

m.x; �/�.hˇ �/ is in S�;ˇ .M �
0 ; n/ for ˇ > 0.

If m is in S�;ˇ .M �
0 ; n/ and if u1; : : : ; un are in �.Rn/, we set

Op.m/.u1; : : : ; un/ D
1

.2�/n

Z
eix.�1C���C�n/m.x; �1; : : : ; �n/

�

nY
jD1

Ouj .�j / d�1 � � � d�n: (3.1.3)

In Appendix A.2 we observe that (3.1.3) remains meaningful when uj belongs to Sobolev
spaces of high enough order, so that we may use (3.1.3) for the solution to our problem.

Let u! u.t; x/ be defined on Œ1; T Œ � R for some T 2 �1; eS�="
2
Œ with values in R,

which is in C 0.Œ1; T Œ ;H s.R// \ C 1.Œ1; T Œ ;H s�1.R// for some large enough s, solving
equation (1.1.1). We define, with the notation p.Dx/ D

p
1CD2

x ,

u˙ D .Dt ˙ p.Dx//u (3.1.4)

so that

u� D �NuC; u D
1

2
p.Dx/

�1.uC � u�/; @tu D
i

2
.uC C u�/: (3.1.5)

If I D .i1; i2; i3/ is an element of ¹�;Cº3, we set uI D .ui1 ; ui2 ; ui3/. If we express u
and its derivatives from (3.1.5) in (1.1.2), we may write

P.u; @tu; @xu/ D �
X

I2¹�;Cº3

Op.mI /.uI / (3.1.6)
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for some mI in S0;0.1; 3/ (with constant coefficients). Consequently, equation (1.1.1) is
equivalent to

.Dt � p.Dx//uC D
X

I2¹�;Cº3

Op.mI /.uI /: (3.1.7)

Of course, by conjugation, using (3.1.5), we have

.Dt C p.Dx//u� D
X

I2¹�;Cº3

Op.m�I /.u NI /; (3.1.8)

where NI D �I and

m�I .x; �1; : : : ; �n/ D .�1/
nm.x;��1; : : : ;��n/:

Let us construct an approximate solution uapp
C of equation (3.1.7) from the approximate

solution uapp of Corollary 2.2.6. We shall do that when the time t stays smaller than the
time T ."/ defined in (1.2.5). We shall use the following inequality, with ı > 0 introduced
in Proposition 2.2.2 and ı0 > 0,  > 0 to be chosen:

there is "0 2 �0; 1� such that if 0 < " < "0 and t 2 ŒeS�=2"
2

; T ."/Œ ;

then t�
1
2 .S� � "

2 log t /�
1
2�ı < "


2�ı

0

.S� � "
2 log t /ı

0�ı : (3.1.9)

Actually, this inequality is trivial if S� � "2 log t � "2 since, as t � eS�=2"
2
, the factor

t�
1
2 in the left-hand side is then exponentially decaying, so that (3.1.9) holds for small

enough ". If u D S��"
2 log t
"2

� 1, then inequality (3.1.9) is equivalent to

ue�
u

1C2ı0 > "�
2CC2ı0

1C2ı0 e
�

S�
"2.1C2ı0/ ; (3.1.10)

whose right-hand side is the quantity "0 introduced in (1.2.4). Since u ! ue�
u

1C2ı0 is
strictly increasing on Œ0; 1� if ı0 > 0, inequality (3.1.10) is equivalent to u > u."0/ where
u."0/ was defined before (1.2.5). But by the definitions of u and of T ."/ in (1.2.5), this
means t < T ."/. In the sequel, the parameters ı, ı0,  will be chosen positive, with ı and
ı0 small, satisfying the inequalities

ı0 > ı;  � 2.ı0 C 2/: (3.1.11)

We notice for further reference that (3.1.9) implies that t�1.S� � "2 log t /�1 D O.1/, so
that, when t 2 Œ1; T ."/Œ , definition (2.2.1) of classes †m shows that

a 2 †m) @˛t @
ˇ
x

h
a
�
"2 log t;

x

t
;
1

t
; "
�i
D b

�
"2 log t;

x

t
;
1

t
; "
�

(3.1.12)

for some b in †m. We define, from the approximate solution uapp of Corollary 2.2.6,

Qu
app
C D .Dt C p.Dx//uapp; Quapp

� D �Qu
app
C (3.1.13)
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and Quapp
I D . Qu

app
i1
; Qu

app
i2
; Qu

app
i3
/ if I D .i1; i2; i3/. Then, by (2.2.38), (2.2.39), (2.2.40), and

(3.1.6),

.Dt � p.Dx// Qu
app
C �

X
I2¹�;Cº3

Op.mI /. Qu
app
I /

D �

�
"

t
5
2

eit'.y/�1."
1�� t /c5;1

�
s; y;

1

t
; "
�

C
"

t
5
2

e�it'.y/�1."
1�� t /c5;�1

�
s; y;

1

t
; "
��ˇ̌̌̌

sD"2 log t
yDx=t

� Fapp.t; x/ � .1 � Q�0/."
2 log t /r2app.t; x/; (3.1.14)

where c5;�1 D Nc5;1 is supported for s � 3S�
4

, jyj � 1, and Fapp.t; x/ for t � e3S�=4"
2
,

and satisfies (2.2.41). On the right-hand side of (3.1.14), we have an eit'.x=t/ term that is
characteristic forDt �p.Dx/ and an e�it'.x=t/ term that is noncharacteristic for the same
operator. We start by eliminating the noncharacteristic term, introducing a modification
u

app
C of Quapp

C . We first define this function and study its structure.

Lemma 3.1.2. Define

u
app
C .t; x/ D Qu

app
C .t; x/ �

"

2t
5
2

e�it'.y/�1."
1�� t /

p
1 � y2c5;�1

�
s; y;

1

t
; "
�ˇ̌̌
sD"2 log t
yDx=t

:

(3.1.15)
Then we may write, for 1 � t � T ."/,

u
app
C .t; x/ D �0."

1�� .t � 1//u0;C.t; x/

C eit'.y/.1 � �0/."
1�� .t � 1//

"
p
t
aC1;1.s; y/jsD"2 log t

yDx=t

C

NC1X
`D3
` odd

X
1�jqj�`
q odd

eitq'.y/t�
`
2 aC
`;q

�
s; y;

1

t
; "
�
e`;q.t; "/jsD"2 log t

yDx=t

C "r.t; x/; (3.1.16)

where �0 was introduced in Proposition 2.1.6, where we denoted

u0;C.t; x/ D .Dt C p.Dx//u0; (3.1.17)

where aC1;1.s; y/ D 2.1 � y
2/�

1
2 a1;1.s; y/, a1;1 being defined in (2.1.10), where the coef-

ficients aC
`;q
.s; y; h; "/ are elements of †�

`
2�ı.`�1/ and where e`;q.t; "/ satisfy, for any �,

.t@t /
�e`;q.t; "/ D O."/ if t � e3S�=4"

2

;

.t@t /
�e`;q.t; "/ D O."

2jqj�`/ if t � eS�=2"
2

, q ¤ �1;

.t@t /
�e`;�1.t; "/ D O."

4�`/ if t � eS�=2"
2

;

(3.1.18)
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and where r.t; x/ is a smooth function satisfying, for all ˛, ˇ, N ,

j@˛t @
ˇ
x r.t; x/j � C.t C jxj/

�N : (3.1.19)

Moreover, we may write u0;C.t; x/ in the form

u0;C.t; x/ D
"
p
t
eit'.x=t/aC1

�x
t
;
1

t

�
C

"

t
3
2

e�it'.x=t/a�1

�x
t
;
1

t

�
C "r0.t; x/; (3.1.20)

where a˙1 .y; h/ are continuous on R � �0; 1�, bounded as well as their @y and h@h-deriv-
atives on that domain, supported for jyj � 1, and where r0 satisfies (3.1.19).

Proof. Consider first an element a`;q of †�
`
2�ı.`�1/, with 1 � jqj � `. We may apply

Corollary A.1.4 of the appendix to compute p.Dx/Œeiqt'.x=t/a`;q."2 log t; x
t
; 1
t
; "/� since

the assumption t .S� � s/
1
2�0 � c of the appendix is satisfied: this is trivial for s � S�

2
and

holds for s D "2 log t � S�
2

and t < T ."/ by (3.1.9) (for " small enough). By this corollary
and estimates (2.2.1), we have

.Dt C p.Dx//
h
eiqt'.y/a`;q

�
s; y;

1

t
; "
�iˇ̌̌

sD"2 log t
yDx=t

D

�
q C

p
1C .q2 � 1/y2p
1 � y2

�
eitq'.y/a`;q

�
s; y;

1

t
; "
�ˇ̌̌
sD"2 log t
yDx=t

C
1

t
eitq'.y/a1`;q

�
s; y;

1

t
; "
�ˇ̌̌
sD"2 log t
yDx=t

C r.t; x/; (3.1.21)

where a1
`;q

is in †�
`
2�1�ı.`�1/ and r satisfies (3.1.19).

First we compute Quapp
C in (3.1.15) from its definition (3.1.13) making .Dt C p.Dx//

act on definition (2.2.38) of uapp. Using expression (2.1.29) of uM
app, we get

Qu
app
C D �0."

1�� .t � 1//.Dt C p.Dx//u0

C .1 � �0/."
1�� .t � 1// Q�0."

2 log t /.Dt C p.Dx//u
1
app

C .1 � Q�0/."
2 log t /.Dt C p.Dx//u

2
app

� i"1���00."
1�� .t � 1//u0.t; x/

C i
�
"1���00."

1�� .t � 1// � "2t�1 Q�00."
2 log t /

�
u1app.t; x/

C i"2t�1 Q�00."
2 log t /u2app.t; x/

D IC � � � C VI: (3.1.22)

We study terms I to VI above successively, in order to obtain expressions (3.1.16) from
(3.1.15).

• Term I. This provides the first term on the right-hand side of (3.1.16) by (3.1.17).
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• Term II. Recall that u1app is given by (2.1.11). We may apply (3.1.21) to all terms in that
sum. Since each of these terms is supported for s D "2 log t � 3S�

4
and since the first term

on the right-hand side of (3.1.21) vanishes if q D �1, we shall get

II D .1 � �0/."1�� .t � 1// Q�0.s/
"
p
t
eit'.y/aC1;1.s; y; "/jsD"2 log t

yDx=t

C

5X
`D3
` odd

X
1�jqj�`
q odd

.1 � �0/."
1�� .t � 1//

"

t
`
2

eitq'.y/a
C;1
`;q

�
s; y;

1

t
; "
�ˇ̌̌
sD"2 log t
yDx=t

C "r.t; x/; (3.1.23)

with aC;11;1 .s; y/ defined in the statement of the lemma, and where the aC;1
`;q

, ` D 3; 5 are
elements of †�

`
2�ı.`�1/ and are supported for 0 � s � 3S�

4
and jyj � 1. Thus, (3.1.23)

provides a contribution to the last sum in (3.1.16) and to "r . Notice that the last term in
(3.1.15) may also be written as a contribution to the sum in (3.1.16) with ` D 5, q D �1.

• Term III. We makeDt Cp.Dx/ act on the sums (2.2.2). Consider first the contributions
coming from the second sum,

.Dt C p.Dx//Œ"
2jqj�`t�

`
2 eitq'.y/a`;q.s; y; "/�jsD"2 log t

yDx=t

: (3.1.24)

According to (3.1.21), we get a first term which is of the form of the .`; q/ term in the sum
(3.1.16) with 3 � jqj � `. The second term on the right-hand side of (3.1.21) also brings
to (3.1.24) a contribution in the form of the .`; q/ term in (3.1.16): actually, we may write
it as

t�
`
2 eitq'.y/.S� � s/a

1
`;q

�
s; y;

1

t
; "
�
e`;q.t; "/jsD"2 log t

yDx=t

;

with e`;q.t; "/ D "2jqj�`t�1.S� � "
2 log t /�1�

1
."2 log t / for some function �

1
suppor-

ted for s � S�
2

. Then property (3.1.9) shows that for t < T ."/, e`;q satisfies the second
inequality (3.1.18) when 3 � jqj � `.

We consider next the contributions coming from the first sum in (2.2.2). We have to
study

.Dt C p.Dx//Œ"
2�`t�

`
2 eit'.y/a`;1.s; y; "/�jsD"2 log t

yDx=t

; (3.1.25)

.Dt C p.Dx//Œ"
2�`t�

`
2 e�it'.y/a`;�1.s; y; "/�jsD"2 log t

yDx=t

; (3.1.26)

with a`;�1 D a`;1. We apply (3.1.21) to (3.1.25). We get a first term that may be written
as

"2�`t�
`
2 2.1 � y2/�

1
2 eit'.y/a`;1.s; y; "/jsD"2 log t

yDx=t

: (3.1.27)
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For `D 1, this brings the second term on the right-hand side of (3.1.16), when we combine
it with the first term on the right-hand side of II in (3.1.23), since we defined aC1;1.s;y;"/D
2.1 � y2/�

1
2 a1;1.s; y; "/. Terms (3.1.27) with ` � 3 contribute to the last sum in (3.1.16)

with q D 1. On the other hand, the second term on the right-hand side of (3.1.21) applied
to (3.1.25) is of the form

"2�`t�
`C2
2 eit'.y/a1`;1

�
s; y;

1

t
; "
�ˇ̌̌
sD"2 log t
yDx=t

; (3.1.28)

with a1
`;1

in †�
`C2
2 �ı.`�1/ � †�

`C2
2 �ı.`C2�1/. For any ` � 1, we may incorporate that

term to the sum in (3.1.16) with coefficients e`C2;1 satisfying (3.1.18) with q D 1. Notice
also that the remainder in (3.1.21) may be incorporated in the one in (3.1.16), in spite of
the negative powers of " that may appear, since term III is supported for t � eS�="

2
, so

that the rapid decay in (3.1.19) also brings smallness in ".
We still have to cope with (3.1.26). Because the oscillatory term is e�it'.x=t/, when

we apply (3.1.21) with q D �1, the first term disappears, and we are left only with a term
of the form (3.1.28) with eit' replaced by e�it' . Such a term may be rewritten as

"4�`e�it' t�
`
2 aC
`;�1

�
s; y;

1

t
; "
�ˇ̌̌
sD"2 log t
yDx=t

for some aC
`;�1

in †�
`
2�ı.`�1/ and ` � 3, i.e. brings a contribution to the sum in (3.1.16)

with q D �1 and a coefficient e`;�1 which is O."4�`/ as in the last equality (3.1.18) and
not just O."2�`/.

This concludes the treatment of term III in (3.1.22).

• Term IV. If we use expansion (2.1.5) of u0 and again (3.1.21), we see that this term may
be rewritten as a contribution to the t�

3
2 e˙it' term in the sum (3.1.16), with a coefficient

e3;1 satisfying the first bound (3.1.18) and to the remainder "r .

• Term V. Using (2.1.11), we see in the same way that this term may be written as a con-
tribution to the sum in (3.1.16), with coefficients e`;q satisfying the first bound (3.1.18).

• Term VI. We use (2.2.2), which implies that VI may be written as a contribution to the
last sum in (3.1.16) with coefficients satisfying the second or third equality in (3.1.18).
This concludes the proof of equality (3.1.16).

To obtain (3.1.20), we notice that we may apply Corollary A.1.4 in the special case
when functions a.s; y; h; "/ of that corollary are replaced by smooth functions of the sole
variable y supported for jyj � 1 and use (3.1.21) again in that context. Using expansion
(2.1.5) of u0, we thus get (3.1.20).

Next we shall check that the function uapp
C defined in (3.1.15) will provide an approx-

imate solution for the nonlinear equation given by the left-hand side of (3.1.14).
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Proposition 3.1.3. Let N0 be an integer. Then if we define the approximate solution uapp
C

by (3.1.15), (3.1.16), with N large enough relative to N0, uapp
C solves an equation

.Dt � p.Dx//u
app
C �

X
I2¹�;Cº3

Op.mI /.u
app
I / D �.F C rapp/; (3.1.29)

where uapp
I D .u

app
i1
; u

app
i2
; u

app
i3
/, and where the source term is given from a function F.t; x/

supported for 1 � t � e3S�=4"
2
, that satisfies for any s0 in R,Z C1
1

kF.t; �/kH s0 dt � Cs0"
2�� ;Z C1

1

kLCF.t; �/kH1 dt � C"2�� ;

(3.1.30)

and from a function .t; x/ ! rapp.t; x/ supported for t � eS�=2"
2

that satisfies for any
t < T ."/, any s0,

krapp.t; �/kH s0 � Cs0 t
�2"N0.S� � "

2 log t /N0 ;

kLCrapp.t; �/kH1 � Ct�1"N0.S� � "
2 log t /N0 :

(3.1.31)

Proof. To compute the left-hand side of (3.1.29), we use definition (3.1.15) of uapp
C ,

(3.1.14), and the fact that we may apply Corollary A.1.4 with  D �' in order to com-
pute the action of Dt � p.Dx/ on the last term in (3.1.15). (Notice that the assumption
t .S� � s/

1=2�0 � c holds on the support of that function.) By (A.1.23), the action of that
operator on this last term is equal to

"

t
5
2

e�it'.y/�1."
1�� t /c5;�1

�
s; y;

1

t
; "
�ˇ̌̌
sD"2 log t
yDx=t

; (3.1.32)

modulo a term of the same form where t�
5
2 is replaced by t�

7
2 and c5;�1 by a function

c7;�1 satisfying the same conditions, and modulo a remainder satisfying (A.1.24) and
supported for s � 3S�

4
. Since (3.1.32) compensates the second term on the right-hand side

of (3.1.14), we get, more precisely,

.Dt � p.Dx//u
app
C �

X
I2¹�;Cº3

Op.mI /. Qu
app
I /

D �

�
"

t
5
2

eit'.y/�1."
1�� t /c5;1

�
s; y;

1

t
; "
�

C
"

t
7
2

e�it'.y/�1."
1�� t /c7;�1

�
s; y;

1

t
; "
�

C �1."
1�� t /"r

�
s; y;

1

t
; "
��ˇ̌̌̌

sD"2 log t
yDx=t

� .1 � Q�0/."
2 log t /r2app � Fapp

D IC � � � C V; (3.1.33)
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where c7;�1.s;y;h;"/ is continuous on Œ0;C1Œ�R� �0; 1�� Œ0;1�, supported for s� 3S�
4

and jyj � 1, bounded as well as all its @s , @y , h@h-derivatives, where �1 is a new function
supported inside a neighborhood of 0 (which may vary from line to line), and where r
satisfies (A.1.24) and is supported for s � 3S�

4
. If in the cubic term on the left-hand side

of (3.1.33), we replace Quapp
C by uapp

C using (3.1.15), we generate on the right-hand side a
perturbation X

I2¹�;Cº3

.Op.mI /.u
app
I C�

app
I / � Op.mI /.u

app
I //; (3.1.34)

where

�
app
C D

"

2t
5
2

e�it'.y/�1."
1�� t /

p
1 � y2c5;�1

�
s; y;

1

t
; "
�ˇ̌̌
sD"2 log t
yDx=t

: (3.1.35)

It remains to show that terms I to V in (3.1.33) and (3.1.35) may be written as contributions
to F C rapp on the right-hand side of (3.1.29). We start with the terms supported for s �
3S�
4

, i.e. I to III and V in (3.1.33) and (3.1.34).

• Term I in (3.1.33). Since c5;1 is bounded, as well as its @s and @y derivatives, and sup-
ported for jyj � 1, the Sobolev norm of I is O."t�2/, so that its integral for t � "�1C�

is O."2�� / as in (3.1.30). If we make LC act on I and use (A.1.27) with q D 1 (and a
symbol a supported for s � 3S�

4
), we obtain the same estimate for the H 1-norm of LCI

integrated for t � "�1C� , so that the second inequality (3.1.30) holds as well.

• Term II in (3.1.33). The reasoning is the same, except that we use (A.1.27) with q D
�1, so that the first term on the right-hand side of this equality remains. We thus get an
O.jxj/ D O.t/ factor, which is compensated by the fact that c7;1 is O.t�

7
2 / instead of

O.t�
5
2 /.

• Term III in (3.1.33). By (A.1.24), this term is rapidly decaying in t and jx
t
j, so that the

bounds (3.1.30) are trivial when integrating for t � "�1C� .

• Term V in (3.1.33). This term is Fapp coming from (3.1.14) which by (2.2.41) satisfies
(3.1.30).

• Term (3.1.34). Note that �app
C in (3.1.35) is supported for s � 3S�

4
, as the same holds

for c5;1. We have to study terms of the form

Op.mI /.u
app
i1
; u

app
i2
; �

app
i3
/; Op.mI /.u

app
i1
; �

app
i2
; �

app
i3
/;

Op.mI /.�
app
i1
; �

app
i2
; �

app
i3
/;

(3.1.36)

with I D .i1; i2; i3/ 2 ¹�;Cº3,�app
� D��

app
C , andmI in S0;0.1;3/. By inequality (A.2.2),

there is �0 2RC such that for any s0 2N, theH s0 -norm of any term in (3.1.36) is bounded
from above by

C.ku
app
C kW

�0;1 C k�
app
C kW

�0;1/
2
k�

app
C kH

s0

C .ku
app
C kW

�0;1 C k�
app
C kW

�0;1/k�
app
C kW

�0;1ku
app
C kH

s0 : (3.1.37)



Norm inflation for solutions of Klein–Gordon equations 509

Notice that for t in the support of (3.1.16), i.e. "�1C� � t � e3S�=4"
2
, we have

ku
app
C .t; �/kH s0 D O."/; ku

app
C .t; �/kW �0;1 D O

� "
p
t

�
; (3.1.38)

k�
app
C .t; �/kH s0 D O."t

�2/; k�
app
C .t; �/kW �0;1 D O."t

� 52 /: (3.1.39)

Actually, uapp
C is given by (3.1.16), with the e`;q bounded by the first inequality (3.1.18)

by our assumption on t , and with s in (3.1.16) smaller than 3S�
4

, so that the functions
aC
`;q
.s; y; h; "/ are uniformly bounded. Then (3.1.38) follows. On the other hand, (3.1.39)

follows from (3.1.35).
If we plug these estimates into (3.1.37), we get a bound in O."3t�3/, whose time

integral largely satisfies the first inequality (3.1.30). If we make LC act on (3.1.34) before
computing the L2-norm, we get an O."3t�2/ estimate that is still sufficient to obtain
(3.1.30).

• Term IV in (3.1.33). Term IV is supported for t � eS�=2"
2

and is expressed in terms of
r2app coming from (3.1.14), i.e. from (2.2.40), and is given by (2.2.3), i.e. by the sum of
(2.2.4) and (2.2.5). The general term in these sums is bounded from above, if t < T ."/, by

C"6�`t�
`
2 .S� � "

2 log t /�`.
1
2Cı/1jxj�t

� Ct�
5
2 "6�`.S� � "

2 log t /�5.
1
2Cı/

� Œ"

2�ı

0

.S� � "
2 log t /ı

0�ı �`�51jxj�t ; (3.1.40)

where we have used (3.1.9) and that ` � N C 2 � 5. As we assumed that (3.1.11) holds,
if N is so large that

.ı0 � ı/.N � 3/ � N0 C 5
�1
2
C ı

�
;�

2
� ı0 � 1

�
.N � 3/ � N0 � 1;

we get a bound in "N0 t�
5
2 .S� � "

2 log t /N0 .
If we take @x derivatives of the general sum in (2.2.4), (2.2.5), we may use (3.1.12) to

see that we still get expressions of the same type so that (3.1.40) will still hold true. This
implies that for any s0 in N,

k.1 � Q�0/."
2 log t /r2app.t; �/kH s0 � Ct

�2"N0.S� � "
2 log t /N0 ;

i.e. the first estimate (3.1.31) holds. The second one holds in the same way, since the action
of LC makes one lose at most O.t/. This concludes the proof of the proposition.

To finish this subsection, we introduce the equation satisfied by the difference
vC D uC � u

app
C between the solution of (3.1.7) and the approximate solution uapp

C of
Lemma 3.1.2.
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Proposition 3.1.4. The function vCD uC �u
app
C satisfies, with symbolsm.j /I in S0;0.1;3/,

.Dt � p.Dx//vC D
X

I2¹�;Cº3

Op.m.1/I /.vi1 ; vi2 ; vi3/

C

X
I2¹�;Cº3

Op.m.2/I /.vi1 ; vi2 ; u
app
i3
/

C

X
I2¹�;Cº3

Op.m.3/I /.vi1 ; u
app
i2
; u

app
i3
/

C F C rapp; (3.1.41)

where F is supported for t � e3S�=4"
2
, rapp is supported for t � eS�=2"

2
, and F (resp. rapp)

satisfies (3.1.30) (resp. (3.1.31)).

Proof. One has just to consider the difference between (3.1.7) and (3.1.29).

3.2. Normal forms

Identifying ¹�;Cº to ¹�1; 1º, we shall respectively denote by

	c D
®
I D .i1; i2; i3/ 2 ¹�;Cº

3
I
P3
`D1 i` D 1

¯
and

	nc D
®
I D .i1; i2; i3/ 2 ¹�;Cº

3
I
P3
`D1 i` ¤ 1

¯
the sets of characteristic and noncharacteristic indices. We shall eliminate by normal forms
all noncharacteristic terms on the right-hand side of (3.1.41). We recall that normal forms
for Klein–Gordon equations were introduced by Shatah [28] and for further results on
these methods, we refer to the review paper of Germain [16] and references therein.

Consider I D .i1; i2; i3/ 2 	nc. Up to permutations, we have thus either .i1; i2; i3/ D
.1; 1; 1/, or .i1; i2; i3/ D .1;�1;�1/, or .i1; i2; i3/ D .�1;�1;�1/. We set

DI .�1; �2; �3/ D i1

q
1C �21 C i2

q
1C �22 C i3

q
1C �23

�

p
1C .�1 C �2 C �3/2: (3.2.1)

Since i2 D i3, we may write with some c > 0,

jDI .�1; �2; �3/j �

q
1C �22 C

q
1C �23 � j�2 C �3j

� c.1Cmin.j�2j; j�3j//�1 � cM0.�1; �2; �3/
�1

ifM0.�1; �2; �3/ is defined by (3.1.1) and so is equivalent to the second largest among 1C
j�1j, 1Cj�2j, 1Cj�3j. This implies that for any noncharacteristic index I ,DI .�1; �2; �3/�1

belongs to the class S1;0.M0; 3/ of Definition 3.1.1. Consider the symbols m.`/I on the
right-hand side of (3.1.41) and define when I 2 	nc,

ym
.`/
I .�1; �2; �3/ D m

.`/
I .�1; �2; �3/DI .�1; �2; �3/

�1
2 S1;0.M0; 3/: (3.2.2)
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We shall prove the following proposition:

Proposition 3.2.1. Define from the solution vC of (3.1.41),

wC D vC �
X

ID.i1;i2;i3/
I2	nc

ŒOp. ym.1/I /.vi1 ; vi2 ; vi3/C Op. ym.2/I /.vi1 ; vi2 ; u
app
i3
/

C Op. ym.3/I /.vi1 ; u
app
i2
; u

app
i3
/�: (3.2.3)

Then wC solves, for t < T ."/, an equation of the form

.Dt � p.Dx//wC D
X

ID.i1;i2;i3/
I2	c

ŒOp.m.1/I /.vi1 ; vi2 ; vi3/C Op.m.2/I /.vi1 ; vi2 ; u
app
i3
/

C Op.m.3/I /.vi1 ; u
app
i2
; u

app
i3
/�CR; (3.2.4)

where R is the sum of terms of the following form:

• a contribution F.t; x/, supported for t � e3S�=4"
2
, satisfying (3.1.30);

• a term rapp.t; x/, supported for eS�=2"
2
� t , satisfying (3.1.31);

• “quintic” terms of the form

Op. zm/.vJ1 ; u
app
J2
/; jJ1j C jJ2j D 5; jJ1j � 1;

Op. zm/.vJ1 ; u
app
J2
; Fi3/; jJ1j C jJ2j D 2;

Op. zm/.vJ1 ; u
app
J2
; rapp;i3/; jJ1j C jJ2j D 2;

(3.2.5)

for different symbols zm belonging to S1;0.M �
0 ; 5/ (resp. S1;0.M �

0 ; 3/) for the first line
(resp. the second and third lines) for some � 2 N, where we denoted FC D F , F� D � xF ,
rapp;C D rapp; rapp;� D �rapp.

Proof. We make Dt � p.Dx/ act on (3.2.3). We get, using (3.2.2) and (3.2.1),

.Dt �p.Dx//wC D .Dt � p.Dx//vC

�

X
ID.i1;i2;i3/
I2	nc

ŒOp.m.1/I /.vi1 ; vi2 ; vi3/C Op.m.2/I /.vi1 ; vi2 ; u
app
i3
/

C Op.m.3/I /.vi1 ; u
app
i2
; u

app
i3
/�CR0; (3.2.6)

where R0 is the sum of expressions of the following form, up to permutation of factors:

Op.m.`/I /..Dt � i1p.Dx//vi1 ; vi2 ; vi3/; (3.2.7)

Op.m.`/I /..Dt � i1p.Dx//vi1 ; vi2 ; u
app
i3
/; (3.2.8)

Op.m.`/I /..Dt � i1p.Dx//vi1 ; u
app
i2
; u

app
i3
/; (3.2.9)

Op.m.`/I /.vi1 ; vi2 ; .Dt � i3p.Dx//u
app
i3
/; (3.2.10)

Op.m.`/I /.vi1 ; u
app
i2
; .Dt � i3p.Dx//u

app
i3
/; (3.2.11)

where I D .i1; i2; i3/ is in 	nc.
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In (3.2.7), we replace .Dt � i1p.Dx//vi1 by the right-hand side of (3.1.41) if i1 D 1,
and by the opposite of the conjugate of this right-hand side if i1D�1. Using Lemma A.2.1
we get expressions of the form (3.2.5). The same conclusion holds for (3.2.8), (3.2.9).
Using (3.1.29) instead of (3.1.41), we see in the same way that (3.2.10), (3.2.11) may be
written as contributions to (3.2.5). Thus R0 contributes to R in (3.2.4). Finally, if on the
right-hand side of (3.2.6), we replace .Dt � p.Dx//vC by its expression coming from
(3.1.41), the noncharacteristic contributions cancel each other, and we are left only with
the characteristic ones, as on the right-hand side of (3.2.4), and the contribution F C rapp

to R. This concludes the proof.

To prepare the energy estimates of next section, we notice that getting bounds on wC
or vC will be essentially equivalent, up to small errors.

Lemma 3.2.2. There is �0 2 N such that for any s0 in N,

kwC � vCkH s0 � C ŒkvCk
2
W �0;1 C ku

app
C k

2
W �0Cs0;1

�kvCkH s0 ; (3.2.12)

kLC.wC � vC/kL2 � CkvCk
2
W �0;1 ŒkLCvCkL2 C tkvCkL2 �

C C ŒkLCu
app
C kW

�0;1 C tku
app
C kW

�0;1 �

� .kvCkW �0;1 C ku
app
C kW

�0;1/kvCkL2 : (3.2.13)

Proof. To get (3.2.12), we express wC � vC from (3.2.3). We apply (A.2.2) to the first
term in the sum on the right-hand side. To treat the two remaining ones, we use (A.2.7)
with ` D 2 or ` D 1 respectively. We obtain a bound by the right-hand side of (3.2.12).

Let us prove (3.2.13). We may write for any functions f1, f2, f3 and any symbolm in
S1;0.M0; 3/,

LCOp.m/.f1; f2; f3/ D Op. zm/.f1; f2; f3/C Op.m/.f1; f2; xf3/

C tp0.Dx/Op.m/.f1; f2; f3/

for some zm in S1;0.M 2
0 ; 3/. Then writing xf3 D .x C i3tp0.Dx//f3 � i3tp0.Dx/f3, we

obtain

LCOp.m/.f1; f2; f3/ D Op.m/.f1; f2; Li3f3/C Op. zm/.f1; f2; f3/

� i3tOp.m/.f1; f2; p0.Dx/f3/

C tp0.Dx/.f1; f2; f3/: (3.2.14)

We write LC.wC � vC/ from (3.2.3) on which we make LC act. We apply equality
(3.2.14) with .f1; f2; f3/ D .vi1 ; vi2 ; vi3/ to the Op. ym.1/I / term in (3.2.3). By (A.2.3)
applied with j D 3, we get that the L2-norm of the action of LC on the first term in the
sum (3.2.3) is estimated from

.kLCvCkL2 C tkvCkL2/kvCk
2
W �0;1 : (3.2.15)
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In the same way, applying (3.2.14) to .f1; f2; f3/D .vi1 ; vi2 ; u
app
i3
/, and using (A.2.3) with

j D 1, we estimate the L2-norm of the action of LC on the Op. ym.2/I / term in (3.2.3) by

.kLCu
app
C kW

�0;1 C tku
app
C kW

�0;1/kvCkW �0;1kvCkL2 : (3.2.16)

Finally, doing the same for the Op. ym.3/I / term, we get a bound in

.kLCu
app
C kW

�0;1 C tku
app
C kW

�0;1/ku
app
C kW

�0;1kvCkL2 :

Together with (3.2.15) and (3.2.16), this gives (3.2.13).

4. Construction of the solution and proof of the main theorem

Recall that we want to construct a solution u to equation (1.1.1) that displays inflation of its
norms and that we have rewritten that equation as a first-order system (3.1.7)–(3.1.8). We
look next for the solution .uC; u� D �NuC/ of that system in the form uC D u

app
C C vC,

where uapp
C is the approximate solution defined in (3.1.15), which solves (3.1.29), and

which blows up at time eS�="
2
, and where vC is the perturbation introduced in Propos-

ition 3.1.4, which solves equation (3.1.41). We shall construct vC solving that equation
backwards, starting at time T ."/ introduced in (1.2.5), with initial condition vCjtDT."/ D
0. In order to show that vC exists up to time t D 1, and remains under control down to
that time, we shall prove in this section a priori estimates for kvC.t; �/kH s0 for s0 large
enough and kLCvC.t; �/kL2 . In order to do so, we shall exploit the fact that kvCkW �0;1

remains small, so that Lemma 3.2.2 will imply that the H s (resp. L2) norm of vC (resp.
LCvC) is equivalent to the H s (resp. L2) norm of wC (resp. LCwC), where wC solves
equation (3.2.4), in which the explicit cubic terms on the right-hand side are all character-
istic. In the following subsections, we shall successively prove estimates for kvC.t; �/kH s0 ,
kLCvC.t; �/kL2 , and then perform the bootstrap argument that gives the proof of the main
theorem.

4.1. Sobolev estimates

In the estimates of this subsection and the following ones, it will be important to track
the dependence of some constants on others. We shall fix indices of smoothness �0, s0
(which will be taken large enough), as well as the parameters ı, ı0,  that satisfy (3.1.11).
A universal constant will be a constant that depends possibly on these parameters, but on
no other quantity. Next we shall have constants likeN (the order at which we construct the
approximate solutions (3.1.16)) or N0 in (3.1.31), as well as the constants A0, A1, B that
we introduce below in the estimates of vC. It will be important to track how other constants
depend on them. Because of that, when we introduce a constant like K.A0; A1; B; : : :/,
we mean that K depends only on the quantities explicitly mentioned in the argument.
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Proposition 4.1.1. Let �0 2 N be fixed such that the estimates of Proposition A.2.2 of
the appendix hold. Let s0 2 N be given. There is an integer N0;min > 0 such that for any
N0 � N0;min, the following holds:

The choice of �0, s0, N0 determines the constants on the right-hand side of (3.1.30),
(3.1.31). For any couple of constants .A0; B/ with A0 large enough relative to N0, there
is "0 2 �0; 1� such that, for any " 2 �0; "0�, the following bootstrap holds: Denote by vC the
backwards solution of (3.1.41), with initial condition vC.T ."/; �/ D 0, and source term
F C rapp (with F , rapp satisfying (3.1.30), (3.1.31)). Assume that this solution is defined
on an interval ŒT; T ."/� for some T 2 Œ1; T ."/Œ and that the following a priori estimates
hold true for any t 2 ŒT; T ."/�:

kvC.t; �/kW �0;1 �
B
p
t
"2�� : (4.1.1)

Then, for any t 2 ŒT; T ."/�, one has

kvC.t; �/kH s0 �
A0

2
"2�� .S� � "

2 log t /N0 : (4.1.2)

Before starting the proof, we introduce notation for the cubic terms on the right-hand
side of (3.1.41), namely

F3.vC; u
app
C / D

X
I2¹�;Cº3

Op.m.1/I /.vi1 ; vi2 ; vi3/

C

X
I2¹�;Cº3

Op.m.2/I /.vi1 ; vi2 ; u
app
i3
/

C

X
I2¹�;Cº3

Op.m.3/I /.vi1 ; u
app
i2
; u

app
i3
/: (4.1.3)

Asm.j /I is in S0;0.1; 3/, independent of x, we may apply (A.2.2) to the first sum in (4.1.3)
and (A.2.7) to the second and third ones, with ` D 2 and ` D 1 respectively. We get for
any s0 2 N,

kF3.vC; u
app
C /kH s0 � C.kvCk

2
W �0;1 C ku

app
C k

2
W �0Cs0;1

/kvCkH s0 : (4.1.4)

To prove Proposition 4.1.1, we shall need a bound for kuapp
C kW �0Cs0;1 on the right-hand

side of (4.1.4).

Lemma 4.1.2. For any � > 0, there are C0.�/, � 0 > 0, and for any N 2 N, there is a
constant K.N/ such that the approximate solution uapp

C given by (3.1.16) with that value
of N satisfies

ku
app
C kW �;1 � C0.�/

"
p
t
.S� � "

2 log t /�
1
2

CK.N/
"1C�

0

p
t
.S� � "

2 log t /�
1
2 CK.N/

"
p
t
: (4.1.5)
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Remark. We shall use (4.1.5) to estimate kuapp
C kW �0Cs0;1 on the right-hand side of (4.1.4),

so that the first multiplicative constant on the right-hand side C0.�0 C s0/ D C0 will be
a universal constant with the terminology introduced at the beginning of this section. In
particular, it is independent of N . The two other constants in (4.1.5) do depend on N ,
but they are either multiplied by a small factor "�

0

or are not affected by the large factor
.S� � "

2 log t /�
1
2 .

Proof of Lemma 4.1.2. We bound the W �;1-norm of each term on the right-hand side of
(3.1.16).

• By (3.1.17) and (3.1.20), the first term on the right-hand side of (3.1.16) has W �;1-
norm bounded by C.�/ "p

t
for some constant C.�/ depending only on �.

• In the second term on the right-hand side of (3.1.16), aC1;1.s; y/ is equal to the quantity

2.1� y2/�
1
2 a1;1.s; y/, where a1;1 is the element of †�

1
2 given explicitly by (2.1.10).

It depends only on the initial data of (2.1.8). By definition (2.2.1) of class †�
1
2 ,

@`x

�
aC1;1

�
"2 log t;

x

t

��
D t�`b`

�
"2 log t;

x

t

�
(4.1.6)

for some b` 2†�
1
2�`. Since by (3.1.9), t�`.S� � "2 log t /�` DO.1/, theW �;1-norm

of the second term on the right-hand side of (3.1.16) is bounded by C0.�/ "pt .S� �
"2 log t /�

1
2 for some constant C0.�/ depending only on �.

• Consider next theW �;1-norm of each term in the last sum in (3.1.16). Since as above
in (4.1.6), any @x derivative may be written as an expression of the same form as the
general term in that sum, it is enough to bound the L1-norm, which is smaller than

C`t
� `2 .S� � "

2 log t /�
`
2�ı.`�1/e`.t; "/ (4.1.7)

with a factor e`.t; "/ that satisfies, according to (3.1.18),

e`.t; "/ D O."/ if t � e3S�=4"
2

;

e`.t; "/ D O."
2�`/ if t � eS�=2"

2

:
(4.1.8)

Using (3.1.9), we estimate (4.1.7) when t � eS�=2"
2

by

C`t
� 12 .S� � "

2 log t /�
1
2 e`.t; "/"

.`�1/.

2�ı

0/: (4.1.9)

Using (4.1.8), (3.1.11), and the fact that ` � 3, we get that (4.1.9) is estimated by the
second term on the right-hand side of (4.1.5) with � 0 � 2. The sum of all these terms
for 3 � ` � N C 1, ` odd, is thus also controlled by this quantity.

For t � e3S�=4"
2

(4.1.8) implies that the sum of expressions (4.1.7) is smaller than the last
term in (4.1.5). This concludes the proof of the lemma.

Next we show the following lemma:
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Lemma 4.1.3. Assume the a priori inequality (4.1.1) and that the source term in (3.1.41)
satisfies (3.1.30), (3.1.31). Let N0 be given in N. Then there are a universal constant C0
and a constantK.N0/ depending onN0, a constantK.B/ depending onB in (4.1.1), such
that

kvC.t; �/kH s
0
�

Z T."/

t

ŒkF.�; �/kH s0 C krapp.�; �/kH s0 � d�

CK.N0/"
2

Z T."/

t

Œ"2�
0

.S� � "
2 log �/�1 C 1�kvC.�; �/kH s0

d�

�

C C0"
2

Z T."/

t

.S� � "
2 log �/�1kvC.�; �/kH s0

d�

�

CK.B/"4�2�
Z T."/

t

kvC.�; �/kH s0

d�

�
(4.1.10)

for any t 2 ŒT; T ."/�.

Proof. We write the backwards energy inequality for the solution to (3.1.41) with zero
initial condition at t D T ."/ using notation (4.1.3). We obtain

kvC.t; �/kH s0 �

Z T."/

t

kF3.vC; u
app
C /.�; �/kH s0 d�

C

Z T."/

t

kF.�; �/kH s0 d� C

Z T."/

t

krapp.�; �/kH s0 d�:

Into the first integral on the right-hand side, we plug (4.1.4). By estimate (4.1.1), the
kvCk

2
W �0;1 term on the right-hand side of (4.1.4) brings the last term in (4.1.10). To study

the contribution of the kuapp
C k

2
W �0Cs0;1

term of (4.1.4), we apply (4.1.5) with � D �0 C s0
for an N taken large enough relative to N0 so that Proposition 3.1.3 holds. We obtain
thus from the right-hand side of (4.1.5) the second and third terms on the right-hand side
of (4.1.10), with a constant K that depends on N , and thus on N0. This concludes the
proof.

Proof of Proposition 4.1.1. We make the change of variable t D e
s

"2 with s 2 Œ0; S."/�,
S."/ D "2 logT ."/, and rewrite (4.1.10) as

f .s/ �

Z S."/

s

g.�/ d� C

Z S."/

s

 .�/f .�/ d�; (4.1.11)

where

f .s/ D kvC.e
s

"2 ; �/kH s0 ;

g.�/ D e
�

"2 "�2ŒkF.e
�

"2 ; �/kH s0 C kr.e
�

"2 ; �/kH s0 �;

 .�/ D K.N0/."
2� 0.S� � �/

�1
C 1/C C0.S� � �/

�1
CK.B/"2�2� :

(4.1.12)
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Denote

ˆ.s/ D �

Z S."/

s

 .�/ d� (4.1.13)

so that (4.1.11) implies by the Grönwall inequality,

f .s/ �

Z S."/

s

eˆ.s
0/�ˆ.s/g.s0/ ds0: (4.1.14)

Assume that " is small enough so that in the expression of  .�/ in (4.1.12),K.N0/"2�
0

C

K.B/"2�2� � 1. Then (4.1.13) implies that for T � s � s0 � T ."/ < S�,

eˆ.s
0/�ˆ.s/

� e.K.N0/C1/S�
� S� � s
S� � s0

�C0C1
:

We thus get from (4.1.14),

kvC.e
s

"2 ; �/kH s0 � K.N0/

Z S."/

s

� S� � s
S� � s0

�C0C1
e
s0

"2 "�2

� ŒkF.e
s

"2 ; �/kH s0 C krapp.e
s

"2 ; �/kH s0 � ds
0 (4.1.15)

for a new constant K.N0/. Next we use (3.1.30), (3.1.31) to estimate the right-hand side.
If s � 3S�

4
, then the F.e

s

"2 ; �/-contribution on the right-hand side of (4.1.15) vanishes, so
that by (3.1.31), we get the estimate

Cs0K.N0/

Z S."/

s

.S� � s/
C0C1.S� � s

0/�C0�1CN0e
� s0

"2 "N0�2 ds0: (4.1.16)

If N0 > C0, which may be imposed since C0 is a universal constant, we get a bound in
K.N0/e

� s

"2 .S� � s/
N0C1"N0�2 (for a new K.N0/) that largely implies an estimate of the

form (4.1.2), if we assume N0 � 4 and " < "0 small enough.
If on the other hand in (4.1.15), s < 3S�

4
, the integral on the right-hand side of (4.1.15)

for s 2 Œ3S�
4
; S."/� is estimated as above and the remaining one by

K.N0/

Z 3S�=4

s

.S� � s/
C0C1.S� � s

0/�C0�1e
s0

"2 "�2krapp.e
s0

"2 ; �/kH s0 ds
0

C 4C0C1K.N0/

Z e3S�=4

1

kF.�; �/kH s0 d�: (4.1.17)

The first term may be bounded again by (4.1.16) and then by K.N0/"2�� if N0 is large
enough. By (3.1.30), the last contribution to (4.1.17) is also in K.N0/"2�� for a new
constant depending on N0. If the constant A0 is chosen large enough in the function of
N0, we may ensure that (4.1.2) holds. This concludes the proof.
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4.2. Estimates for the action of LC

We want to prove estimates for the L2-norm of LCvC analogous to those of Propos-
ition 4.1.1 in the case of Sobolev norms. To do so, we shall have to use the auxiliary
unknown wC of Proposition 3.2.1.

Proposition 4.2.1. Assume given large enough integers �0, s0. Assume also given a large
enough integer N1 and an integer N0 satisfying N0 � N1 C 1 C 2ı. For any constant
A0 > 0 (which depends on the preceding ones), there is A1 > 0 and, for any constant
B > 0 (which may depend on A0, A1), there is "0 2 �0; 1�, such that the following holds
true for any " 2 �0; "0�:

Let T 2 �0; T ."/Œ and let vC be a solution of equation (3.1.41) defined on ŒT; T ."/�,
with the initial condition vC.T ."/; �/ D 0, such that vC satisfies, for any t 2 ŒT; T ."/�, the
following estimates:

kvC.t; �/kW �0;1 �
B
p
t
"2�� ;

kvC.t; �/kH s0 � A0"
2�� .S� � "

2 log t /N0 :
(4.2.1)

Then for any t 2 ŒT; T ."/�, we have the estimate

kLCvC.t; �/kL2 �
A1

2
"2�� .S� � "

2 log t /N1 : (4.2.2)

To prove the proposition, we first need an estimate for kLCu
app
C kW �;1 for any �.

Lemma 4.2.2. For any � > 0, any N 2 N�, there is a constant K.�;N / such that if uapp
C

is defined by (3.1.16), one has for any t � T ."/ the bound

kLCu
app
C .t; �/kW �;1 � K.N; �/

"
p
t
.S� � " log t /�

3
2�2ı : (4.2.3)

Proof. We make LC act on (3.1.16). We get a first term

�0."
1�� .t � 1//LCu0;C: (4.2.4)

If we apply Corollary A.1.5 with q D 1 or q D �1 to expression (3.1.20) of u0;C, we
conclude that the W �;1-norm of (4.2.4) is O."=

p
t /. Applying Corollary A.1.5 again

with q D 1 to the second term on the right-hand side of (3.1.16), we get that the action of
LC on it gives an expression

eit'.y/.1 � �0/."
1�� .t � 1//

"
p
t
QaC1;1

�
s; y;

1

t
; "
�
C Qr

�
s; y;

1

t
; "
�ˇ̌̌
sD"2 log t
yDx=t

(4.2.5)

with QaC1;1 in †�
1
2�

1
2�0 � †�

3
2 and Qr with all its @s , @y , h@h-derivatives smaller than

hN hyi�N for any N . Then the W �;1-norm of (4.2.5) is O. "p
t
.S� � "

2 log t /�
3
2 / since
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the action of each @x-derivative makes one lose at most 1C t�1.S� � "2 log t /�1, which
is O.1/ (using (3.1.9) when t satisfies eS�=2"

2
< t < T ."/).

We consider next the action of LC on the last sum in (3.1.16). We have on the one
hand the characteristic terms corresponding to q D 1, ` � 3. We apply Corollary A.1.5
with q D 1 to see that the action ofLC on these terms is given by a sum for 3� `�N C 1
of expressions

eit'.y/t�
`
2 a
C;2
`;1

�
s; y;

1

t
; "
�
e`;1.t; "/jsD"2 log t

yDx=t

(4.2.6)

with aC;2
`;1

in †�
`
2�1�ı.`�1/ and e`;1.t; "/ given by (3.1.18), modulo a remainder " Qr , with

Qr as in (4.2.5), so that it will trivially satisfy a bound of the form (4.2.3). In (4.2.6),
e`;1.t; "/ D O."/ if t � eS�=2"

2
, so that in this case bounds (4.2.3) hold immediately.

If t > eS�=2"
2
, we bound the modulus of (4.2.6) by

t�
`
2 .S��"

2 log t /�
`
2�1�ı.`�1/"2�`D t�

1
2 .t�

1
2 .S��s/

� 12�ı/`�1"2�`.S��s/
� 32 jsD"2 log t :

By (3.1.9) this is O. "p
t
.S� � "

2 log t /�
3
2 / since .` � 1/. 

2
� ı0/C 2 � ` � 1 by (3.1.11).

Since the same estimates hold for @x-derivatives of (4.2.6), we get for the W �;1-norm
of the action of LC on the characteristic terms in the sum in (3.1.16) a bound by the
right-hand side of (4.2.3).

We still have to study the noncharacteristic terms in that sum, i.e. those for which
q ¤ 1. By Corollary A.1.5 and (3.1.9), we get that the action of LC on these terms gives

eitq'.y/t�
`
2C1a

C;2
`;q

�
s; y;

1

t
; "
�
e`;q.t; "/jsD"2 log t

yDx=t

(4.2.7)

with aC;2
`;q

in †�
`
2�ı.`�1/, ` � 3, modulo again a remainder that is again like " Qr in (4.2.5).

The modulus of (4.2.7) is bounded by

t�
`
2C1.S� � "

2 log t /�
`
2�ı.`�1/je`;q.t; "/j

D t�
1
2 .t�

1
2 .S� � s/

� 12�ı/`�3.S� � s/
� 32�2ı je`;q.t; "/jjsD"2 log t : (4.2.8)

When t � eS�=2"
2
, we use (3.1.9) to estimate (4.2.8) from

t�
1
2 ".`�3/.


2�ı

0/
je`;q.t; "/j.S� � "

2 log t /�
3
2�2ı : (4.2.9)

If ` D 3, q D �1, the last inequality (3.1.18) gives a bound of the form (4.2.3). If ` D 3,
jqj D 3, the second estimate (3.1.18) shows that e`;q.t; "/DO."3/, so that we obtain again
the wanted bound. If ` � 5, using that e`;q.t; "/ D O."2�`/ and (3.1.11), we obtain that
(4.2.9) is controlled by the right-hand side of (4.2.3). When t � eS�=2"

2
, the first estimate

(3.1.18) shows that the bound of (4.2.8) by (4.2.3) holds trivially. Finally, since similar
bounds are satisfied by @x-derivatives, we get that the noncharacteristic terms in the sum
in (3.1.16) are controlled as in (4.2.3). This concludes the proof.
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We prove next a lemma relating estimates for LCvC and LCwC.

Lemma 4.2.3. Let vC be a function defined on some interval ŒT; T ."/� satisfying, for any
t 2 ŒT; T ."/�, estimates

kvC.t; �/kW �0;1 �
B
p
t
"2�� (4.2.10)

for some constant B . There is "0 > 0, depending on B , such that if " 2 �0; "0Œ and (4.2.10)
holds, then wC defined by (3.2.3) from vC and uapp

C given by (3.1.15) satisfies

kLCvC.t; �/kL2 � 2kLCwC.t; �/kL2

CK.N;B"1�� /"2.S� � "
2 log t /�1�2ıkvC.t; �/kL2 (4.2.11)

(with N equal to the order at which uapp
C has been constructed in (3.2.14)).

Proof. By (4.1.5) and (4.2.3) we have

kLCu
app
C .t; �/kW �0;1 C tku

app
C .t; �/kW �0;1

� "K.N/
p
t .S� � "

2 log t /�
1
2�2ı Œ1C t�1.S� � "

2 log t /�1�: (4.2.12)

On the other hand, still by (4.1.5) and the a priori estimate of kvC.t; �/kW �0;1 in (4.2.10),
we have

ku
app
C .t; �/kW �0;1 C kvC.t; �/kW �0;1 �

"K.N;B"1�� /
p
t

.S� � "
2 log t /�

1
2 : (4.2.13)

Using (3.1.9), we see that the product of (4.2.12) by (4.2.13) is smaller than

"2K.N;B"1�� /.S� � "
2 log t /�1�2ı :

Plugging this into (3.2.13), and also using the a priori estimate (4.2.10) of kvC.t; �/kW �0;1 ,
we get

kLC.wC � vC/.t; �/kL2 � K.B"
1�� /

"2

t
kLCvC.t; �/kL2

CK.B"1�� /"2kvC.t; �/kL2

C "2K.N;B"1�� /.S� � "
2 log t /�1�2ıkvC.t; �/kL2 ;

which implies (4.2.11). This concludes the proof.

We prove next an energy inequality for kLCwC.t; �/kL2 .

Lemma 4.2.4. Assume that for t in some interval ŒT;T ."/�, the following a priori estimate
holds true:

kvC.t; �/kW �0;1 �
B
p
t
"2�� : (4.2.14)
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Then for t in the same interval, one has an inequality

k.Dt � p.Dx//LCwC.t; �/kL2

�
"2

t
Œ.S� � "

2 log t /�1.C0 CK.N;B/"�
00

/CK.N/�kLCvC.t; �/kL2

C
"2

t
.S� � "

2 log t /�2�2ı.K.N /CK.N;B/"�
00

/kvC.t; �/kH s0

CRL.t/CRH .t/; (4.2.15)

where C0 is a universal constant, � 00 > 0, and RH , RL satisfyZ C1
1

kRL.t/kL2 dt � .K.N /CK.N;B/"
� 00/"2�� ;

kRH .t/kL2 � K.N;B/t
�1"N0.S� � "

2 log t /N0�1;
(4.2.16)

where N0 is the integer introduced in Proposition 3.1.3, and RL is supported for t �
e3S�=4"

2
.

Proof. We make LC act on equation (3.2.4) to get

.Dt � p.Dx//LCwC

D

X
ID.i1;i2;i3/

I2	c

ŒLCOp.m.1/I /.vi1 ; vi2 ; vi3/C LCOp.m.2/I /.vi1 ; vi2 ; u
app
i3
/

C LCOp.m.3/I /.vi1 ; u
app
i2
; u

app
i3
/�C LCR

D IC � � � C IV: (4.2.17)

We estimate the L2-norm of the terms on the right-hand side. Since the index I is charac-
teristic, we may use Proposition A.3.1 in order to estimate IC IIC III.

• Estimates of I, II, III. By (A.3.1), we get

kIkL2 � CkvCk
2
W �0;1.kLvCkL2 C kvCkH s0 /

� CB2
"4�2�

t
.kLvCkL2 C kvCkH s0 / (4.2.18)

by (4.2.14). We estimate II using (A.3.2). We get

kIIkL2 � 2CkvCkW �0;1ku
app
C kW

�0;1.kLvCkL2 C kvCkH s0 /

C CkvCkW �0;1.kLCu
app
C kW

�0;1 C ku
app
C kW

�0;1/kvCkL2 :

Using (4.2.14), bound (4.1.5) of uapp
C which implies

ku
app
C .t; �/kW �0;1 � K.N/

"
p
t
.S� � "

2 log t /�
1
2 ; (4.2.19)
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and (4.2.3), we get

kIIkL2 � K.N;B/
"3��

t
.S� � "

2 log t /�
1
2 kLCvC.t; �/kL2

CK.N;B/
"3��

t
.S� � "

2 log t /�
3
2�2ıkvC.t; �/kH s0 : (4.2.20)

To estimate III, we use (A.3.3). We obtain

kIIIkL2 � 2Cku
app
C kW

�0;1.kLu
app
C kW

�0;1 C ku
app
C kW

�0;1/kvkL2

C Cku
app
C k

2
W �0;1.kLvCkL2 C kvCkH s0 /:

Using (4.1.5) to estimate kuapp
C kW

�0;1 and (4.2.3), we obtain a bound

kIIIkL2 � C0
"2

t
.S� � "

2 log t /�1.kLvCkL2 C kvCkH s0 /

CK.N/
"2

t
."2�

0

.S� � "
2 log t /�1 C 1/.kLvCkL2 C kvCkH s0 /

CK.N/
"2

t
.S� � "

2 log t /�2�2ıkvC.t; �/kL2 : (4.2.21)

Summing (4.2.18), (4.2.20), and (4.2.21), we deduce that

kIC IIC IIIkL2

�
"2

t
ŒC0.S� � "

2 log t /�1 CK.N;B/"�
00

.S� � "
2 log t /�1 CK.N/�kLCvCkL2

C .K.N /CK.N;B/"�
00

/
"2

t
.S� � "

2 log t /�2�2ıkvC.t; �/kH s0 (4.2.22)

for some � 00 > 0, which is controlled by the right-hand side of (4.2.15).

• Estimate of IV. We estimate now the L2-norm of the last term LCR in (4.2.17), where
R is the last term in (3.2.4) and has the structure described in the statement of Pro-
position 3.2.1. The contribution LCF to LCR satisfies (3.1.30) and is supported for
t � e3S�=4"

2
, so may be incorporated into RL in (4.2.15), with RL satisfying (4.2.16).

The contribution LCrapp to LCR is supported for t � eS�=2"
2

and satisfies (3.1.31), so
that we may incorporate it into RH in (4.2.15), with RH satisfying (4.2.16).

We are left with studying the quintic terms obtained by making LC act on (3.2.5). We
consider first the action ofLC on the first term in (3.2.5). Since jJ1j � 1, the first argument
in Op. zm/.� � � / is equal to v˙. When we make LC D x C tp0.Dx/ act on it, we argue as
in (3.2.14), and rewrite the resulting expression as a sum of terms of the following forms:

Op.m/.L˙v˙; vJ 01 ; u
app
J 02
/;

Op.m/.v˙; vJ 01 ; u
app
J 02
/;

tp0.Dx/Op.m/.v˙; vJ 01 ; u
app
J 02
/;

˙ tOp.m/.p0.Dx/v˙; vJ 01 ; u
app
J 02
/;
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where jJ 01j C jJ
0
2j D 4 and m is a new symbol in the class S1;0.M �

0 ; 3/ for some �, with
constant coefficients. We apply (A.2.3) with j D 1 to all these expressions. We get an
estimate of their L2-norms by

.kvCkW �0;1 C ku
app
C kW

�0;1/
4.kLCvCkL2 C tkvCkL2/:

By (4.2.19) and the a priori assumption (4.2.14), we get a bound

K.N;B/
"4

t
.S� � "

2 log t /�2Œt�1kLCvCkL2 C kvCkL2 �:

Again using that, by (3.1.9), t�1.S� � "2 log t /�1 D O.1/, we get finally the upper bound

K.N;B/
"4

t
.S� � "

2 log t /�1kLCvCkL2

CK.N;B/
"4

t
.S� � "

2 log t /�2kvCkL2 ; (4.2.23)

which is better than the right-hand side of (4.2.15). Finally, we have to estimate the L2-
norm of the action of LC on the last two terms in (3.2.5). Arguing again as in (3.2.14), we
have to study

Op.m/.vJ1 ; u
app
J2
; Li3Gi3/;

Op.m/.vJ1 ; u
app
J2
; Gi3/;

tp0.Dx/Op.m/.vJ1 ; u
app
J2
; Gi3/;

tOp.m/.vJ1 ; u
app
J2
; p0.Dx/Gi3/;

for symbols m in S1;0.M �
0 ; 3/ with constant coefficients, jJ1j C jJ2j D 2, GC D F or

rapp, G� D � xF or �rapp. Using (A.2.3) with j D 3, we bound the L2-norm of all these
terms by

.kvCkW �0;1 C ku
app
C kW

�0;1/
2.kLCGCkL2 C tkGCkL2/: (4.2.24)

When GC D F , since this term is supported for t � e3S�=4"
2
, it follows from (4.2.19) and

(4.2.14) that this is bounded by

K.B;N /"2.kLCF.t; �/kL2 C kF.t; �/kL2/:

By (3.1.30), the integral in t of that quantity is O.K.B;N /"4�� /, so may be incorporated
into RL, satisfying (4.2.16).

When GC D rapp, we use (4.2.19) and (4.2.14) again to bound (4.2.24) by�
K.N/

"2

t
.S� � "

2 log t /�1 CK.B/
"2

t

�
kLCrapp.t; �/kL2

CK.N;B/"2.S� � "
2 log t /�1krapp.t; �/kL2 :
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If we plug (3.1.31) into this inequality, we largely get an estimate in

"2

t
K.N;B/"N0.S� � "

2 log t /N0�1;

so that we obtain a contribution to RH satisfying (4.2.16). Combining this with (4.2.22)
and (4.2.23) we get (4.2.15).

Proof of Proposition 4.2.1. We assume a priori inequalities (4.2.1). For "0 > 0 small
enough, if " < "0, inequality (4.2.11) holds. Plugging this inequality into the right-hand
side of (4.2.15), and also assuming "0 small enough so thatK.N;B/"�

00

� 1 and B"1�� �
1, we get

k.Dt � p.Dx//LCwC.t; �/kL2

�
"2

t
2Œ.C0 C 1/.S� � "

2 log t /�1 CK.N/�kLCwC.t; �/kL2

C
"2

t
K.N /.S� � "

2 log t /�2�2ıkvC.t; �/kH s0 CRL.t/CRH .t/: (4.2.25)

On the right-hand side of (4.2.25), we plug in the second a priori estimate (4.2.1) and we
write the energy inequality associated to (4.2.25), starting from time t D T ."/ at which
LCwC vanishes. We get for T � t � T ."/, using also (4.2.16),

kLCwC.t; �/kL2 �

Z T."/

t

2Œ.C0 C 1/.S� � "
2 log �/�1 CK.N/�kLCwC.�; �/kL2"

2 d�

�

CK.N;A0/"
2��

Z T."/

t

.S� � "
2 log �/N0�2�2ı"2

d�

�

C

Z T."/

t

kRL.�/kL2 d�

CK.N;B/"N0�2
Z T."/

t

.S� � "
2 log �/N0�1"2

d�

�
: (4.2.26)

We set t D e
s

"2 , � D e
s0

"2 , S."/ D "2 logT ."/, f .s/ D kLCwC.e
s

"2 ; �/kL2 , and

g.s/ D "2�� .K.N;A0/C "
�K.N;B//.S� � s/

N1�1 C kRL.e
s

"2 /kL2"
�2e

s

"2 ;

withN1 �N0 � 1� 2ı andN1 large enough so thatN0 � 4. We may thus rewrite (4.2.26)
in the form

f .s/ �

Z S."/

s

 .s0/f .s0/ ds0 C

Z S."/

s

g.s0/ ds0

with
 .s/ D 2.C0 C 1/.S� � s/

�1
C 2K.N/:
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We may apply estimate (4.1.14), with notation (4.1.13). We obtain, with new constants,

kLCwC.e
s

"2 ; �/kL2

�

Z S."/

s

� S� � s
S� � s0

�2.C0C1/
Œ"2�� .K.N;A0/C "

�K.N;B//.S� � s
0/N1�1

CK.N/kRL.e
s0

"2 ; �/kL2"
�2e

s0

"2 � ds0:

SinceC0 is a universal constant, we may takeN1 large enough so thatN1 � 2.C0C 1/> 0.
Moreover, as RL.e

s0

"2 ; �/ is supported for s0 � 3S�
4

, .S� � s0/�1 stays bounded on the
support of that function. Using (4.2.16), we get finally

kLCwC.e
s

"2 ; �/kL2 � "
2�� .K.N;A0/C "

� 00K.N;B//.S� � s/
N1 ;

for some constants depending on N , A0, B and a new � 00 > 0. By (4.2.11) and the second
a priori inequality in (4.2.1), we get

kLCvC.t; �/kL2 � "
2�� .K.N;A0/C "

� 00K.N;B//.S� � "
2 log t /N1

for new constants K.N;A0/, K.N;B/, using again that N0 � N1 C 1C 2ı. We take A1
large enough so that K.N;A0/ � A1

4
and " < "0 small enough so that "�

00

K.N;B/ � A1
4

in order to obtain (4.2.2).

4.3. Proof of the main theorem

We shall deduce the proof of Theorem 1.2.1 from the preceding subsections. Let us recall
how the constants are chosen:

• First one fixes � > 0 small and ı, ı0,  satisfying (3.1.11), with ı, ı0 small. One also
fixes �0 2 N large enough so that the estimates in Proposition A.2.2 hold true (for a
fixed large enough �) and �0 larger than Q�0 in Proposition A.3.1. This �0 is universal
and does not depend on any of the constants that we shall introduce in the forthcoming
points. It determines the constant C0 in Lemma 4.1.2.

• Next one chooses s0 2 N large enough, such that Proposition A.3.1 holds true and s0
large enough relative to �0 so that Proposition A.4.1 holds true.

• One takes N1 large enough as in Proposition 4.2.1. Once N1 has been chosen, we take
N0 so that Propositions 4.2.1 and 4.1.1 hold true. Once N1 and N0 have been fixed,
the order N at which one has to construct the approximate solution so that uapp

C in
Proposition 3.1.3 satisfies (3.1.29)–(3.1.31) is also determined.

• Once N0 is determined, the constant A0 is taken large enough in Proposition 4.1.1.

• Once A0 is fixed, the constant A1 is determined by Proposition 4.2.1. Next we choose
B large enough relative to A0, A1 as in (4.3.4) below.

• Finally, " is taken in �0; "0� for some "0 small enough relative to all preceding con-
stants.
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Proof of Theorem 1.2.1. To construct the solution u of the theorem, one considers the
solution .uC; u� D �NuC/ of the equivalent system (3.1.7), (3.1.8): one looks for uC in
the form uC D u

app
C C vC, where uapp

C is defined in (3.1.15) and vC satisfies equation
(3.1.41). One then wants to solve this equation for vC backwards from t D T ."/, with
zero initial data at t D T ."/, and prove that the solution exists down to time t D 1. By
local existence theory, there is T0 < T."/ such that the solution exists on ŒT0; T ."/� and
we denote by T � 1 the infimum of the zT � 1 such that the solution exists on Œ zT ; T ."/�
and satisfies for all t 2 Œ zT ; T ."/� a priori estimates

kvC.t; �/kH s0 � A0"
2�� .S� � "

2 log t /N0 ;

kLCvC.t; �/kL2 � A1"
2�� .S� � "

2 log t /N1 ;

kvC.t; �/kW �0;1 � B
"2��
p
t
;

(4.3.1)

where the parameters s0, �0, N0, N1, A0, A1, B are chosen as explained at the beginning
of this subsection. If we apply Proposition 4.1.1, we get that it implies that for t in the
same interval,

kvC.t; �/kH s0 �
A0

2
"2�� .S� � "

2 log t /N0 (4.3.2)

if " < "0 small enough. Then, applying Proposition 4.2.1, we get for " < "0,

kLCvC.t; �/kL2 �
A1

2
"2�� .S� � "

2 log t /N1 : (4.3.3)

By (A.4.4), we deduce from the first two inequalities (4.3.1),

kvC.t; �/kW �0;1 � C
"2��
p
t

�
A1 C

p
A0
p
A0 C A1

�
�

B

2
p
t
"2�� (4.3.4)

if B is chosen large enough relative to A0, A1.
By the bootstrap (4.3.2), (4.3.3), (4.3.4), we get that the solution vC exists on the

interval Œ1; T ."/� and satisfies (4.3.1) at any t in that interval. Writing these estimates at
t D 1, we get from (4.3.1),

kuC.1; �/ � u
app
C .1; �/kH s0 D O."

2�� /;

kx.uC.1; �/ � u
app
C .1; �//kL2 D O."

2�� /:

By (3.1.15) and recalling that �1 vanishes close to zero, we get for small enough ",

kuC.1; �/ � Qu
app
C .1; �/kH s0 D O."

2�� /;

kx.uC.1; �/ � Qu
app
C .1; �//kL2 D O."

2�� /:

The definition (3.1.4) (resp. (3.1.13)) of uC (resp. Quapp
C ) from u (resp. uapp) and the fact

that u, uapp are real-valued functions imply

ku.1; �/ � uapp.1; �/kH s0C1 C kDtu.1; �/ �Dtuapp.1; �/kH s0 D O."
2�� /;

kx.u.1; �/ � uapp.1; �//kH1 C kx.Dtu.1; �/ �Dtuapp.1; �//kL2 D O."
2�� /:

(4.3.5)
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By (2.2.38), (2.1.29), and (2.1.2), .uapp.1; �/; @tuapp.1; �// are the initial conditions
."f0; "g0/ chosen in the statement of the theorem so that (1.2.3) holds. Thus (4.3.5)
shows that the initial conditions of our solution u have structure (1.2.7), with perturba-
tion .f .x; "/; g.x; "// satisfying (1.2.6).

It remains to prove (1.2.8). At time t D T ."/, the value of u (resp. @tu) is given by
uapp.T ."/; �/ (resp. @tuapp.T ."/; �/). By (2.2.38), these quantities are equal to u2app.T ."/; �/

(resp. @tu2app.T ."/; �/) with u2app given by (2.2.2). All contributions corresponding to ` � 3
in (2.2.2), as well as their derivatives, have modulus bounded from above by

"2�`T ."/�
1
2 .S� � "

2 logT ."/C jy � y0j
2�0/�

1
2

�
�
T ."/�

1
2 .S� � "

2 logT ."//�
1
2�ı

�`�1
: (4.3.6)

Since ` � 3, (3.1.9) implies a bound in

T ."/�
1
2 .S� � "

2 logT ."//�
1
2
�
"

2�ı

0

.S� � "
2 logT ."//ı

0�ı
�`�1

"2�`: (4.3.7)

By (1.2.5), (1.2.4), S� � "2 log T ."/ D "2u."0/ is exponentially small in e�
c

"2 , so that
since ı0 > ı (4.3.7), and thus all terms with ` � 3 in (2.2.2) computed at t D T ."/, are
negligible relative to "T ."/�

1
2 .S� � "

2 log T ."//�
1
2 . On the other hand, by (2.1.10) and

(1.2.3), (1.2.2), the coefficient of "p
t
eit'.x=t/ in (2.2.2), computed at t D T ."/, x

t
D y0

satisfies

ja1;1."
2 logT ."/; y0/j D ja01.y0/j

�
1 �

"2 logT ."/
S�

�� 12
since �.y0/�.y0/ D S�1� by (1.2.2), (1.2.3). Moreover, since ja01.y0/j D .1 � y

2
0/
� 14 �

�.y0/
1
2 by (2.1.6), (1.2.1), with �.y0/ ¤ 0 by (1.2.2), we get that all terms with ` � 3

in (2.2.2) at time T ."/ are o."T ."/�
1
2 ja1;1."

2 logT ."/; y0/j/. We conclude that the main
contribution to (2.2.2) at time t D T ."/ and x D y0T ."/ is

2ReŒ"T ."/�
1
2 eiT ."/'.y0/a1;1."

2 logT ."/; y0/�

and its time derivative is

2ReŒ"T ."/�
1
2 i!.y0/e

iT ."/'.y0/a1;1."
2 logT ."/; y0/�:

Thus,

ju2app.T ."/; y0T ."//j C j@tu
2
app.T ."/; y0T ."//j

� "T ."/�
1
2 ja1;1."

2 logT ."/; y0/j

� "T ."/�
1
2 .S� � "

2 logT ."//�
1
2

� T ."/�
1
2u."0/�

1
2 � T ."/�

1
2 "0�

1
2 (4.3.8)

by (1.2.5). If c > 0 is given and if ı0 in (1.2.4) is taken small enough with respect to c, one

has "0 � e�
S�
"2
.1�2c/

� T ."/�1C2c . Thus (4.3.8) is bounded from below by T ."/�c which
gives the first equality (1.2.8).
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To get the second one, we proceed in the same way, except that we have to estimate
from below

"p
T ."/

a1;1�"2 logT ."/;
x

T ."/

�
L2.dx/

D "ka1;1."
2 logT ."/; y/kL2.dy/:

By (1.2.3), the example following Definition 2.2.1 and the expression (2.1.10) of a1;1, one
has

ja1;1.s; y/j � .S� � s C jy � y0j
2�0/�

1
2 ;

so that if �0 > 0,

ka1;1."
2 logT ."/; y/kL2.dy/ � .S� � "

2 logT ."//�
1
2C

1
4�0 :

We have seen above that .S� � "2 logT ."//�1 � T ."/1�2c"�2. Then the second inequality
(1.2.8) for the a1;1 term in (2.2.2) with the lower bound (1.2.9) follows from that, up
to changing the definition of c. Since the contributions to (2.2.2) indexed by ` � 3 are
bounded pointwise by (4.3.6) and thus by T ."/�

1
2 ja1;1."

2 logT ."/; x
T."/

/je
� c

"2 for some
c > 0, as seen after (4.3.7), they are negligible perturbations, so that (1.2.8), (1.2.9) hold
for u2app.T ."/; �/. This concludes the proof.

A. Calculus and estimates for pseudo-differential and multilinear
operators

A.1. Pseudo-differential operators

In this subsection we prove several results on pseudo-differential operators used in the
bulk of the proof.

Definition A.1.1. Let p.x; �/ be a smooth function on R �R, satisfying for some � 2 R
and all ˛; ˇ in N,

j@˛x@
ˇ

�
p.x; �/j � C˛;ˇ .1C j�j/

��jˇ j: (A.1.1)

Then if u 2 �.R/, we set

p.x;Dx/u D
1

2�

Z
eix�p.x; �/ Ou.�/ d�; (A.1.2)

and if h 2 �0; 1� is a semi-classical parameter, we set

p.x; hDx/v D
1

2�

Z
eix�p.x; h�/ Ov.�/ d�

D
1

2�h

Z
ei

.x�y/�
h p.x; �/v.y/ dy d�;

where the last integral is an oscillatory one. This is related to (A.1.2) by the conjugation
formula

‚�1h ı p.x; hDx/ ı‚h D p.hx;Dx/ (A.1.3)
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if we define
.‚hu/.x/ D

1
p
h
u
�x
h

�
: (A.1.4)

We want to study the action of p.Dx/ on oscillating expressions of the form used to
construct an approximate solution in Section 2. First we define the following:

Definition A.1.2. Let x0 2 ��1; 1Œ , �0 2 N. For m 2 R, we denote by z†m the space of
continuous functions

.x; �; h; "/! �.x; �; h; "/;

R � Œ1;C1Œ � �0; 1� � Œ0; 1�! C;

smooth in .x; �; h/, supported for jxj � 1, that satisfy for any ˛, ˇ, �, N in N, any
.x; �; h; "/ in Œ�1; 1� � Œ1;C1Œ � �0; 1� � Œ0; 1�,

j@˛x@
ˇ

�
.h@h/

��.x; �; h; "/j

� C˛;ˇ;��
�mC˛�ˇ .1C �jx � x0j/

m�˛�2�0ˇ .1 � jxj/N : (A.1.5)

Let  W ��1; 1Œ! R be a smooth function such that for some A 2 RC and any ˛ 2 N,

j@˛x .x/j � C˛.1 � jxj/
�A�j˛j for all x 2 ��1; 1Œ: (A.1.6)

Finally, let � ! p.�/ be a symbol independent of x, satisfying (A.1.1).

Proposition A.1.3. Let � be in z†m. Then for any .x; �; h; "/ satisfying �h � 1, we have

p.hDx/Œe
i
h
 .x/�.x; �; h; "/� D p.d .x//�.x; �; h; "/e

i
h
 .x/

C h�1.x; �; h; "/e
i
h
 .x/
C r.x; �; h; "/; (A.1.7)

where �1 2 z†m�1 and where r is a continuous function on R � Œ1;C1Œ � �0; 1� � Œ0; 1�,
smooth in .x; �; h/, satisfying for any ˛; ˇ; �; N 2 N,

j@˛x@
ˇ

�
.h@h/

�r.x; �; h; "/j � ChN .1C jxj/�N : (A.1.8)

Proof. The left-hand side of (A.1.7) is

1

2�h

Z
e
i
h
Œ.x�y/�C .y/�p.�/�.y; �; h; "/ dy d�: (A.1.9)

Let .x; y/ ! �.x; y/ be a smooth function on R � ��1; 1Œ , supported for jx � yj �
1 � jyj, such that for any ˛, ˇ,

j@˛x@
ˇ
y �.x; y/j � C.1 � jyj/

�˛�ˇ : (A.1.10)

Assume also that �.x; y/ D 1 if jx � yj � c.1 � jyj/ for some small c > 0. If we insert
the cut-off 1 � � under the integral, and make N 0 integrations by parts in �, we get an
integrand bounded by

ChN
0

��m.1C �jy � x0j/
m.1 � jyj/N�N

0

h�i��N
0

.1C jx � yj/�N
0

;
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by (A.1.1), (A.1.5). If we make h@h act on (A.1.9), we also get a similar bound, with a
different N 0, using (A.1.6) as well. We thus see that (A.1.9) with the cut-off 1 � � under
the integral brings a contribution to r in (A.1.7), using that by assumption � D O.1=h/
in order to control any positive power of �, like those coming from @x-derivatives. We are
thus reduced to

1

2�h

Z
e
i
h
Œ.x�y/�C .y/��.x; y/p.�/�.y; �; h; "/ dy d�: (A.1.11)

Define

 1.x; y/ D

Z 1

0

 0.�y C .1 � �/x/ d�:

As on the support of � , 1 � jxj � 1 � jyj, we see using (A.1.6) that for �.x; y/ ¤ 0,

j@˛x@
ˇ
y 1.x; y/j � C˛;ˇ .1 � jyj/

�A�1�˛�ˇ (A.1.12)

and  .y/ D  .x/ �  1.x; y/.x � y/, so that (A.1.11) may be written

1

2�h
ei

 .x/
h

Z
e
i
h
.x�y/��.x; y/p.�C  1.x; y//�.y; �; h; "/ dy d�: (A.1.13)

Inside this integral, we decompose

p.�C  1.x; y// D p. 1.x; y//C �q.x; y; �/; (A.1.14)

where q.x; y; �/ D
R 1
0
p0. 1.x; y/C ��/ d� satisfies, according to (A.1.1), (A.1.12) and

for .x; y/ staying in the support of � , bounds of the form

j@˛x@
ˇ
y @

�.�@�/

�q.x; y; �/j � C h�imax.��1;0/.1 � jyj/�K˛;ˇ;;� (A.1.15)

for some positive exponents K˛;ˇ;;� . We substitute (A.1.14) into (A.1.13). The first term
on the right-hand side of (A.1.14) gives the first term on the right-hand side of (A.1.7).
Consider next the term in (A.1.13) coming from the last term in (A.1.14), i.e. the product
of ei

 .x/
h and

�
i

2�

Z
e
i
h
.x�y/�

Qq.x; y; �; �; h; "/ dy d�; (A.1.16)

with
Qq.x; y; �; �; h; "/ D @y Œ�.x; y/q.x; y; �/�.y; �; h; "/�:

It follows from (A.1.5), (A.1.10), (A.1.15) that

j@˛
0

y @

�.�@�/

 0.h@h/
�
Qq.x; y; �; �; h; "/j

� C��mC1C˛
0

.1C �jy � x0j/
m�1.1 � jyj/N h�imax.��1;0/

for any ˛0,  ,  0, �, N . Inside integral (A.1.16) we perform integrations by parts using the
operator h �

�h
i
�2
.1 � �

�2h
Dy/. We shall obtain a new expressionZ

e
i
h
.x�y/�

Qq1.x; y; �; �; h; "/ dy d�; (A.1.17)
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where Qq1 satisfies since �h � 1 and since 1 � jxj � 1 � jyj on the support of �.x; y/,

j@˛
0

y @

�.�@�/

 0.h@h/
�
Qq1.x; y; �; �; h; "/j

� C��mC1C˛
0

.�h/�
D �
�h

E�N0
.1C�jy�x0j/

m�1.1�jxj/N h�imax.��1;0/ (A.1.18)

for an arbitrary large N0. We perform next integrations by parts in (A.1.17) using

h�.x � y/i�2.1C �2h.x � y/ �D�/:

It follows from (A.1.18) that the modulus of (A.1.17) is bounded by

C��mC1
Z D �

�h

E�N0
h�.x � y/i�N0.1C �jy � x0j/

m�1

� h�imax.��1;0/ dy d�.1 � jxj/N : (A.1.19)

Since �h � 1, the modulus of (A.1.19) is O.h��mC1.1C �jx � x0j/m�1.1 � jxj/N /.
If we make a @x-derivative act on the integral in (A.1.13), one @y-integration by parts

together with (A.1.12) and estimates (A.1.5), (A.1.15) shows that we get the same estim-
ates as in (A.1.15)–(A.1.19), with m replaced by m � 1. In the same way, a @�-derivative
acting on the integral gives rise to an extra factor ��1.1C �jy � x0j/�2�0 , which induces
in the estimates of (A.1.19) a corresponding factor ��1.1C �jx � x0j/�2�0 .

Finally, an h@h-derivative acting on the exponential in (A.1.13) may be traded off
against an �@�-derivative, so that by integration by parts, the final expression (A.1.19)
still has the same estimates. We thus see that (A.1.13) with p.� C  1.x; y// replaced
by �q.x; y; �/ may be written as the second term on the right-hand side of (A.1.7). This
concludes the proof.

We shall translate Proposition A.1.3 on the class of symbols †m introduced in Defin-
ition 2.2.1. Notice that if a belongs to †m and if, for s 2 Œ0; S�Œ , we set

� D .S� � s/
� 1
2�0 ; s D S� � �

�2�0 ; (A.1.20)

then for a.s; y; h; "/ in †m, the function

�.y; �; h; "/ D a.S� � �
�2�0 ; y; h; "/ (A.1.21)

satisfies, by (2.2.1),

j�.y; �; h; "/j � C��2�0m.1C �jy � x0j/
2�0m.1 � jyj/N

for any N , i.e. bound (A.1.5) with ˛ D ˇ D � D 0 and m replaced by zm D 2�0m. If we
take a @y-derivative of � , we get in the same way estimate (A.1.5) with zm D 2�0m and
˛ D 1. One checks similarly that @�, h@h derivatives acting on (A.1.21) give rise to similar
bounds for (A.1.5). In other words, with definition (A.1.21) of � in terms of a, we have
the equivalence

a 2 †m, � 2 z† zm with zm D 2�0m: (A.1.22)



J.-M. Delort 532

Corollary A.1.4. Let p.�/ be a function independent of x and satisfying (A.1.1). Let
.s; y; h; "/! a.s; y; h; "/ be an element of †m defined as in Definition 2.2.1 for some
m in R. Let  be a real phase function defined on ��1; 1Œ satisfying (A.1.6). Then if
t .S� � s/

1
2�0 � c > 0, we have

p.Dx/
h
eit .

x
t /a
�
s;
x

t
;
1

t
; "
�i
D eit .

x
t /p

�
 0
�x
t

��
a
�
s;
x

t
;
1

t
; "
�

C
1

t
eit .

x
t /a1

�
s;
x

t
;
1

t
; "
�
C r

�
s;
x

t
;
1

t
; "
�
; (A.1.23)

where a1 2 †
m� 1

2�0 � †m�1 and r satisfies

j@˛s @
ˇ
y .h@h/

�r.s; y; h; "/j � CNh
N .1C jyj/�N (A.1.24)

for all ˛, ˇ, �, N .

Proof. If we set h D 1
t
, we have according to (A.1.4),

a
�
s;
x

t
; h; "

�
D
p
t .‚�1h a/.s; x; h; "/; (A.1.25)

so that the left-hand side of (A.1.23) may be written according to (A.1.3) as

1
p
h
‚�1h

�
p.hDx/Œe

i
 .x/
h a.s; x; h; "/�

�
: (A.1.26)

We notice that if � is defined by (A.1.20), the assumption �h � c of Proposition A.1.3 is
equivalent to the condition t .S� � s/

1
2�0 � c�1 that we impose in the corollary. If we apply

Proposition A.1.3 to the symbol � defined from a by (A.1.21), we deduce that (A.1.26) is
equal to

1
p
h
‚�1h Œp.d .x//e

i
 .x/
h a.s; x; h; "/C hei

 .x/
h �1.x; �; h; "/C r.x; �; h; "/�

for some element �1 2 z† zm�1 with zm D 2�0m by (A.1.22). We denote by a1 2 †
m� 1

2�0

the symbol associated to �1 by (A.1.22), so that by (A.1.25), we obtain (A.1.23) with
r.s; x; h; "/ D r.x; �; h; "/ that satisfies (A.1.24) by (A.1.8), (A.1.20) and the fact that
�.s/h � 1. This concludes the proof.

Corollary A.1.5. Denote '.x/ D
p
1 � x2 for jxj < 1, and set p.�/ D

p
1C �2. Let m

be an element of †m and q be in Z. We have

.x C tp0.Dx//
h
eitq'.x=t/a

�
s;
x

t
;
1

t
; "
�i

D x

�
1 �

qp
1C .q2 � 1/.x=t/2

�
eitq'.x=t/a

�
s;
x

t
;
1

t
; "
�

C eitq'.x=t/a1

�
s;
x

t
;
1

t
; "
�
C r

�
s;
x

t
;
1

t
; "
�

(A.1.27)

for some a1 2 †
m� 1

2�0 � †m�1 and r satisfying (A.1.24) (with h D 1
t
).
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Proof. We just apply (A.1.23), noticing that y C p0.q'0.y// D y.1 � qp
1C.q2�1/y2

/ by
the definitions of p, '.

A.2. Properties of multilinear operators

We gather here some properties of multilinear operators that we use in the bulk of the
paper. Some of them follow from the appendices in [14].

Lemma A.2.1. Let m1 2 S1;0.M �1 ; p/, m2 2 S1;0.M �2 ; q/ for some p; q 2 N�, some
�1; �2 2 N, with the notation introduced in Definition 3.1.1. Assume moreover that m1,
m2 have constant coefficients. Then there is m in S1;0.M

�1C�2
0 ; p C q � 1/ such that

Op.m1/.u1; : : : ; up�1;Op.m2/.up; : : : ; upCq�1// D Op.m/.u1; : : : ; upCq�1/ (A.2.1)

for any functions u1; : : : ; upCq�1.

Proof. Equality (A.2.1) follows from (3.1.3) setting

m.�1; : : : ; �pCq�1/ D m1.�1; : : : ; �p�1; �p C � � � C �pCq�1/m2.�p; : : : ; �pCq�1/:

The conclusion follows from

M0.�1; : : : ; �p�1; �p C � � � C �pCq�1/
�1M0.�p; : : : ; �pCq�1/

�2

� CM0.�1; : : : ; �pCq�1/
�1C�2

since M0.�1; : : : ; �n/ is equivalent to the second largest among j�1j C 1; : : : ; j�nj C 1.

We recall some results about boundedness properties of operators associated to sym-
bols in the class S�;0.M �

0 ; p/ from [14]. Recall that we defined

kukW �;1 D khDxi
�wkL1 :

Then, by [14, Proposition D.1.1] (applied with hD 1 and to symbols independent of x, y,
with the notation of that reference), we have the following proposition:

Proposition A.2.2. Let n 2 N�, � 2 N, � � 0. There is �0 2 N such that for any m 2
S�;0.M

�
0 ;n/, independent of x, the following estimates hold for any s 2N, any v1; : : : ; vn:

kOp.m/.v1; : : : ; vn/kH s � Cs

nX
jD1

�Y
`¤j

kv`kW �0;1

�
kvj kH s ; (A.2.2)

and moreover, for any fixed j in ¹1; : : : ; nº,

kOp.m/.v1; : : : ; vn/kL2 � C
�Y
`¤j

kv`kW �0;1

�
kvj kL2 ; (A.2.3)

kOp.m/.v1; : : : ; vn/kH s � Cs

�Y
`¤j

kv`kW �0Cs;1

�
kvj kH s : (A.2.4)
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If one assumes in addition that m is supported for j�1j C � � � C j�n�1j � C.1C j�nj/ for
some constant C , one gets instead of (A.2.2),

kOp.m/.v1; : : : ; vn/kH s � Cs

� n�1Y
`D1

kv`kW �0;1

�
kvnkH s ; (A.2.5)

and for any j < n,

kOp.m/.v1; : : : ; vn/kH s � Cskvj kL2

�Y
`¤j
`¤n

kv`kW �0;1

�
kvnkW �0Cs;1 : (A.2.6)

Without the support condition on m, we get instead, for any 1 � ` � n � 1,

kOp.m/.v1; : : : ; vn/kH s

� Cs

�X̀
jD1

� Y
`0¤j

kv`0kW �0;1

�
kvj kH s

C

nX
jD`C1

X̀
j 0D1

kvj kW �0Cs;1kvj 0kL2
Y

`0¤j;j 0

1�`0�n

kv`0kW �0;1

�
: (A.2.7)

Finally, inequality (A.2.3) holds also for x-dependent symbols in S�;ˇ .M �
0 ; n/ for any

� � 0, ˇ � 0.

Proof. Estimates (A.2.2) and (A.2.3) are inequalities (D.6) and (D.7) of [14, Proposi-
tion D.1.1]. Inequality (A.2.4) follows from (A.2.3) if we make s @x-derivatives act on
Op.m/.v1; : : : ; vn/ and use the Leibniz rule. In addition, (A.2.3) holds for general sym-
bols in S�;ˇ .M �

0 ;n/ by [14, Proposition D.1.1 (iii)]. Estimate (A.2.5) is just [14, inequality
(D.5)]. Let us prove (A.2.6) when j D 1 for instance. Using the support property of m,
we may write for any ˛ 2 N, ˛ � s,

@˛xOp.m/.v1; : : : ; vn/ D Op. zm/.v1; : : : ; vn�1; hDxi
svn/

for another symbol zm in S�;0.M �
0 ; n/. Applying (A.2.3) we get (A.2.6).

To prove (A.2.7), we decompose

m.�1; : : : ; �n/ D

nX
jD1

mj .�1; : : : ; �n/;

wheremj is in S�;0.M �
0 ; n/ and supported for j�1j C � � � Cbj�j j C � � � C j�nj � C.1C j�j j/.

For 1 � j � `, we apply (A.2.5) with n replaced by j to bound kOp.mj /.v1; : : : ; vn/kH s

by the first sum on the right-hand side of (A.2.7). For `C 1� j � nwe bound the Sobolev
norm kOp.mj /.v1; : : : ; vn/kH s using (A.2.6) with .j; n/ replaced by .j 0; j /. This con-
cludes the proof.
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A.3. Action of LC on characteristic cubic expressions

Consider m an element of S1;0.M0; 3/ with constant coefficients, with the notation intro-
duced in Definition 3.1.1. Let I D .i1; i2; i3/ be a characteristic index, i.e. an element of
¹�1; 1º3 with i1 C i2 C i3 D 1. The goal of this subsection is to obtain L2 estimates for
the action of LC on a characteristic cubic term.

Proposition A.3.1. There are integers Q�0, Qs0 in N such that for any functions w1, w2, w3
the following estimate holds true:

kLCOp.m/.w1; w2; w3/kL2

� C

3X
`D1

.kLi`w`kL2 C kw`kH Qs0 /
Y

1�j�3
j¤`

kwj kW Q�0;1 : (A.3.1)

In addition, one has also the bounds

kLCOp.m/.w1; w2; w3/kL2

� C.kLi1w1kL2 C kw1kH Qs0 /kw2kW Q�0;1kw3kW Q�0;1

C Ckw1kW Q�0;1.kLi2w2kL2 C kw2kH Qs0 /kw3kW Q�0;1

C Ckw1kL2kw2kW Q�0;1.kLi3w3kW Q�0;1 C kw3kW Q�0;1/ (A.3.2)

and

kLCOp.m/.w1; w2; w3/kL2

� C.kLi1w1kL2 C kw1kH Qs0 /kw2kW Q�0;1kw3kW Q�0;1

C Ckw1kL2kw2kW Q�0;1.kLi3w3kW Q�0;1 C kw3kW Q�0;1/

C Ckw1kL2.kLi2w2kW Q�0;1 C kw2kW Q�0;1/kw3kW Q�0;1 : (A.3.3)

Moreover, estimates similar to (A.3.2), (A.3.3) hold if one makes any permutation of
.1; 2; 3/ on the right-hand side.

To prove the proposition, we shall apply some results from [14]. In order to do so, we
reduce ourselves to the framework of the appendices of that reference, using the rescaling
(A.1.4). Set h D 1

t
and

vj D .‚hwj /.x/ D
1
p
h
wj

�x
h

�
: (A.3.4)

Then if we set

kvkH s
h
D khhDxi

svkL2 ; kvkW �;1
h
D khhDxi

�
kL1 ;

one has
kvj kH s

h
D kwj kH s ; kvj kW �;1

h
D h�

1
2 kwj kW �;1 : (A.3.5)
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Define

Oph.m/.v1; v2; v3/ D
1

.2�/3

Z
eix.�1C�2C�3/m.h�1; h�2; h�3/

3Y
jD1

Ovj .�j / d�1 d�2 d�3:

Then
‚�1h Oph.m/.‚hw1; ‚hw2; ‚hw3/ D h

�1Op.m/.w1; w2; w3/:

Moreover, by (A.1.3), if we set

L˙ D
1

h
Oph.x ˙ p

0.�// D
1

h
.x ˙ p0.hDx//; (A.3.6)

we get
‚�1h ıL˙ ı‚hw D L˙w: (A.3.7)

It follows from (A.3.4), (A.3.5)–(A.3.7), that inequality (A.3.1) is equivalent to

kLCOph.m/.v1; v2; v3/kL2 � C
3X
`D1

.kLi`v`kL2 C kv`kH Qs0
h

/
Y

1�j�3
j¤`

kv`kW Q�0;1
h

: (A.3.8)

In the same way, (A.3.2) is equivalent to

kLCOph.m/.v1; v2; v3/kL2

� C
�
.kLi1v1kL2 C kv1kH Qs0

h

/kv2k
W
Q�0;1

h

kv3k
W
Q�0;1

h

C kv1k
W
Q�0;1

h

.kLi2v2kL2 C kv2kH Qs0
h

/kv3k
W
Q�0;1

h

C kv1kL2kv2kW Q�0;1
h

.kLi3v3kW Q�0;1
h

C kv3k
W
Q�0;1

h

/
�
; (A.3.9)

and (A.3.3) is equivalent to

kLCOph.m/.v1; v2; v3/kL2

� C
�
.kLi1v1kL2 C kv1kH Qs0

h

/kv2k
W
Q�0;1

h

kv3k
W
Q�0;1

h

C kv1kL2kv2kW Q�0;1
h

.kLi3v3kW Q�0;1
h

C kv3k
W
Q�0;1

h

/

C kv1kL2.kLi2v2kW Q�0;1
h

C kv2k
W
Q�0;1

h

/kv3k
W
Q�0;1

h

�
: (A.3.10)

Moreover, estimates of Proposition A.2.2 hold (uniformly in h 2 �0; 1�) if everywhere we
replace Op.m/ by Oph.m/, k�kH s by k�kH s

h
, and k�kW �;1 by k�kW �;1

h
.

Proof of Proposition A.3.1. Let us decompose

m.�1; �2; �3/ D m
L.�1; �2; �3/Cm

H .�1; �2; �3/;

mH .�1; �2; �3/ D

3X
jD1

mHj .�1; �2; �3/;
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where for some ˇ > 0 small, mL is supported for j�1j C j�2j C j�3j � Ch�ˇ , while mHj
is supported for j�`j � C j�j j, ` ¤ j and j�j j � ch�ˇ , each of these symbols being in
S1;0.M0; 3/.

• Contribution of mH to (A.3.8)–(A.3.10). Write

LCOph.m
H
1 /.v1; v2; v3/ D Oph. zm

H
1 /.v1; v2; v3/C Oph.m

H
1 /.Li1v1; v2; v3/

C h�1p0.hDx/Oph.m
H
1 /.v1; v2; v3/

� i1h
�1Oph.m

H
1 /.p

0.hDx/v1; v2; v3/; (A.3.11)

where zmH1 D i
@mH1
@�1
2 S1;0.M

2
0 ; 3/. In the arguments of each term on the right-hand side,

we may replace v1 by Oph..1��0/.h
ˇ �1//v1 for �0 2C10 .R/, equal to 1 close to 0, with

small enough support, by the support property of mH1 . We estimate then the L2-norm of
(A.3.11) using the version of (A.2.3) for Oph.m/. We obtain

kLCOph.m
H
1 /.v1; v2; v3/kL2 � C

�
h�1kOph..1 � �0/.h

ˇ �//v1kL2 C kLi1v1kL2
�

� kv2k
W
Q�0;1

h

kv3k
W
Q�0;1

h

(A.3.12)

if Q�0 is taken large enough. Moreover, in the first factor on the right-hand side, we may
bound

h�1kOph..1 � �0/.h
ˇ �//v1kL2 � Ch

�1Cˇ Qs0kv1k
H
Qs0
h

� Ckv1k
H
Qs0
h

(A.3.13)

if Qs0 is chosen large enough so that Qs0ˇ � 1. Thus the left-hand side of (A.3.12) is bounded
from above by the first term on the right-hand side of (A.3.8). By symmetry, we thus get
that (A.3.8) for m replaced by mH holds.

Let us prove (A.3.9) for mH . By (A.3.11) to (A.3.13), the contribution of mH1 to
the left-hand side of (A.3.9) is estimated by the first term on the right-hand side of this
inequality. In the same way, the contribution of mH2 is bounded by the second term on the
right-hand side. For mH3 , instead of (A.3.11) write

LCOph.m
H
3 /.v1; v2; v3/ D Oph. zm

H
3 /.v1; v2; v3/C Oph.m

H
3 /.v1; v2;Li3v3/

C h�1p0.hDx/Oph.m
H
3 /.v1; v2; v3/

� i3h
�1Oph.m

H
3 /.v1; v2; p

0.hDx/v3/: (A.3.14)

We use next (A.2.3) with j D 1. The L2-norm of (A.3.14) is bounded from above by

Ckv1kL2kv2kW Q�0;1
h

.kLi3v3kW Q�1;1
h

C h�1kOph.1 � �.h
ˇ �//v3k

W
Q�1;1

h

/ (A.3.15)

for some large enough Q�1. If Q�0 is such that . Q�0 � Q�1/ˇ > 1, we may bound the last term
by kv3k

W
Q�0;1

h

, using that operators of negative order are bounded on L1-spaces. This

gives an estimate of (A.3.15) by the last term on the right-hand side of (A.3.9).
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Finally, let us prove (A.3.10) for mH . The contributions of mH1 , mH3 are treated as in
the study of (A.3.8) and (A.3.9) above. FormH2 , we write (A.3.14) formH2 instead ofmH3
with indices 2 and 3 interchanged on the right-hand side. This gives an estimate for the
mH2 -contribution to the left-hand side of (A.3.10) by the third term on the right-hand side.

• Contribution ofmL to (A.3.8)–(A.3.10). SincemL is supported for j�1j C j�2j C j�3j �
Ch�ˇ by construction,mL satisfies estimate (3.1.2) with ˇ > 0, � D 1, � D 1, i.e. belongs
to the class S1;ˇ .M0; 3/. This allows us to apply [14, Proposition F.2.1] which asserts that
a Leibniz rule holds, in that sense that if .i1; i2; i3/ is characteristic,

LCOph.m
L/.v1; v2; v3/ D Oph.m

L
1 /.Li1v1; v2; v3/

C Oph.m
L
2 /.v1;Li2v2; v3/

C Oph.m
L
3 /.v1; v2;Li2v3/

C Oph.r/.v1; v2; v3/; (A.3.16)

wheremLj , j D 1; 2; 3 and r are elements of the class S1;ˇ .M �
0 ; 3/ for some � 2N. Actu-

ally, in [14], there is also a weight
Q3
jD1 h�j i

�1 on the right-hand side of the inequalities
(3.1.2) that define the symbols, but that does not play any role in the proofs. In [14, Pro-
position F.2.1] there is also an extra term on the right-hand side of (A.3.16), of the form
h�1Oph.r

0/.v1; v2; v3/ for some r 0. Such a term does not appear here because our symbols
are constant coefficients and in particular do not depend on the y-variable in [14, Propos-
ition F.2.1]: see the last three lines in [14, Proposition B.2.1].

To obtain (A.3.8) for mL, we now just have to use estimate (A.2.3) for each term on
the right-hand side of (A.3.16), putting the L2-norm on the factor in Lij vj for the first
three terms on the right-hand side.

One obtains (A.3.9) formL in the same way, except that we treat the Oph.m
L
3 / term on

the right-hand side of (A.3.16), putting the L2-norms on the factor v1 in estimate (A.2.3).
Finally, to get (A.3.10) formL, we argue in the same way, controlling the L2-norms of the
Oph.m

L
2 / and Oph.m

L
3 / terms using (A.2.3), where we put the L2-norm on the v1 term

on the right-hand side.
This concludes the proof.

A.4. Klainerman–Sobolev estimates

In this subsection we prove a Klainerman–Sobolev estimate for the one-dimensional
Klein–Gordon equation. This estimate is not new and may be found implicitly in a weaker
form in [13, 31] for instance. We first introduce some notation.

If ı 2 Œ0; 1�, let us introduce zSı.1/, the space of smooth functions .x; �/! a.x; �; h/

from R2 to C, depending also on a parameter h 2 �0; 1�, such that for any ˛, ˇ in N,

j@˛x@
ˇ

�
a.x; �; h/j � C˛h

�ı.˛Cˇ/:
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For u 2 �.R/, define the semi-classical Weyl quantization of a acting on u by

OpW
h .a/u D

1

2�h

Z
ei.x�y/

�
h a
�x C y

2
; �; h

�
u.y/ dy d�:

If b.x; �; y; �/ is a smooth function, define

�.Dx ;D� ;Dy ;D�/b.x; �; y; �/ D .D�Dy �DxD�/b.x; �; y; �/

and recall that if ı 2 Œ0; 1
2
Œ , if a1, a2 are in zSı.1/, there is a symbol a1#ha2 in zSı.1/, such

that for any N ,

a1#ha2 �
NX
kD0

1

kŠ

� ih
2
�.Dx ;D� ;Dy ;D�/

�k
.a1.x; �/a2.y; �//jxDy;�D� (A.4.1)

is in h.NC1/.1�2ı/ zSı.1/ and

OpW
h .a1/ ı OpW

h .a2/ D OpW
h .a1#ha2/: (A.4.2)

In particular, if a1 and a2 have disjoint supports, OpW
h .a1/ ı OpW

h .a2/ may be written for
any N in N as hNOpW

h .r/ with r in zSı.1/, since ı < 1
2

.
Recall also that if a 2 zSı.1/, OpW

h .a/ is bounded on H s
h

with uniform estimates

kOpW
h .a/ukH s

h
� CkukH s

h
: (A.4.3)

All the results above may be found, for instance, in the book by Dimassi–Sjöstrand [15,
Chapter 7].

Our goal is to prove the following proposition:

Proposition A.4.1. Let �0 2N. There is s0 2N such that for any function w, one has the
bound

kwkW �0;1 �
C
p
t
..kLCwkL2 C kwkH s0 /

1
2 kwk

1
2

H s0 C kLCwkL2/; (A.4.4)

where LC D x C tp0.Dx/ with p.�/ D
p
1C �2.

We define from w a function v by (A.3.4) and using notation (A.3.6) and (A.3.5), we
see that (A.4.4) is equivalent to

kvk
W
�0;1

h
� C..kLCvkL2 C kvkH s0

h
/
1
2 kvk

1
2

H
s0
h

C kLCvkL2/: (A.4.5)

Let us notice that one may further reduce to proving that there is some large enough Qs0
such that the following estimate holds:

khhDxi
�3vkL1 � C..kLCvkL2 C kvkH Qs0

h

/
1
2 kvk

1
2

H
Qs0
h

C kLCvk
H
�Qs0
h

/: (A.4.6)



J.-M. Delort 540

Actually, if (A.4.6) is proved, we may apply it to vk D OpW
h .�.2

�k�//v for some � 2
C10 .R

�/ and k 2 N. We have then

kvkkW �0;1

h
� C2k.�0C3/khhDxi

�3vkkL1

� C2k.�0C3/..kLCvkkL2 C kvkkH Qs0
h

/
1
2 kvkk

1
2

H
Qs0
h

C kLCvkkH�Qs0
h

/

� C2k.�0C3C
Qs0
2 �

s0
2 /.kLCvkL2 C kvkH s0

h
/
1
2 kvk

1
2

H
s0
h

C C2k.�0C3�Qs0/.kLCvkL2 C kvkL2/;

from which (A.4.5) follows by summation of a Littlewood–Paley decomposition if s0 >
Qs0 C 2.�0 C 3/ and Qs0 > �0 C 3.

In the rest of this subsection, we shall prove (A.4.6). Before starting the proof, we
make some reductions.

Lemma A.4.2. Let ; � 2 C10 .R/ be equal to 1 close to 0, with small enough support.
Let M 2 N. There is ˇ > 0 and a family of smooth functions x ! �h.x/, depending on
a parameter h 2 �0; 1�, with for any ˛ 2 N, @˛x�h.x/ D O.h

�2ˇ˛/, �h being supported in
Œ�1C ch2ˇ ; 1 � ch2ˇ � for some c > 0, such that for any function v,hhDxi�2v � OpW

h

�

�
.x C p0.�//h�i2

�
�.hˇ �/�h.x/h�i

�2
�
v

L1

� C.kvk
H
�1C 1

2ˇ
h

C kLCvkH�2MC1
h

/: (A.4.7)

Proof. By semi-classical Sobolev embedding, one has for any " > 0,hhDxi�2�v � OpW
h .�.h

ˇ �//v
�
L1
� Ch�

1
2Cˇ.sC

3
2�"/kvkH s

h
(A.4.8)

if s > �3
2
C ", so that we have an upper bound by the right-hand side of (A.4.7). We shall

study next the L1-norm of OpW
h .a.x; �//v if

a.x; �/ D �.hˇ �/h�i�2.1 � /
�
.x C p0.�//h�i2

�
D a1.x; �/.x C p

0.�//;

where a1 D �.hˇ �/1..x C p0.�//h�i
2/ with 1.z/ D

1�.z/
z

. Then a and a1 belong to
zSı.1/ with ı D 2ˇ < 1

2
for small enough ˇ > 0. We use (A.4.2), (A.4.1) to write with

some r in zSı.1/,

OpW
h .a/v D OpW

h .a1/ ı OpW
h .x C p

0.�//v C h1�2ıOpW
h .r/

D hOpW
h .a1/LCv C h

1�2ıOpW
h .r/: (A.4.9)

In the right-hand side write

OpW
h .a1/LCv D OpW

h .a1/OpW
h .h�i

2M /.hhDxi
�2MLCv/ (A.4.10)
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and use that since M is an integer, we have an exact composition formula (A.4.2),

OpW
h .a1/ ı OpW

h .h�i
2M /

D

2MX
kD0

1

kŠ

�
i
h

2
�.Dx ;D� ;Dy ;D�/

�k
.a1.x; �/h�i

2M /jxDy;�D�: (A.4.11)

Now, since j�j D O.h�ˇ / on the support of a1, we get that (A.4.11) is of the form
h�2MıOpW

h .a2/ with some a2 2 zSı.1/. Applying the semi-classical Sobolev inequality
again, we deduce from (A.4.10), (A.4.11),

kOpW
h .a1/LCvkL1 � Ch

� 12�2Mı
kLCvk

H
�2MC 12C"

:

Plugging this into (A.4.9), we get

kOpW
h .a/vkL1 � Ch

1
2�2Mı

kLCvk
H
�2MC 12C"

C Ch
1
2�2ıkOpW

h .r/vkH
1
2C"
: (A.4.12)

If ı D 2ˇ is small enough relative to 1=M , this implies that (A.4.12) is bounded by the
right-hand side of (A.4.7). Taking into account (A.4.8), we thus see that it remains to
consider

OpW
h

�
�.hˇ �/

�
.x C p0.�//h�i2

�
.1 � �h/.x/h�i

�2
�
v: (A.4.13)

We shall be done if we prove that, if Supp  has been taken small enough, we may choose
�h such that it is equal to 1 on the support of �.hˇ �/..x C p0.�//h�i2/ so that (A.4.13)
vanishes identically. This follows from the fact that, if Supp is small enough and ..xC
p0.�//h�i2/ ¤ 0, then when � ! C1 (resp. � ! �1), x C 1 (resp. x � 1) stays in an
interval Œc1=�2; c2=�2� (resp. Œ�c2=�2;�c1=�2�) for some 0 < c1 < c2. If, in addition,
j�j D O.h�ˇ /, this implies that x belongs to the interval Œ�1C ch2ˇ ; 1� ch2ˇ � for some
c > 0, which allows one to construct the wanted �h. This concludes the proof.

Proof of Proposition A.4.1. With the notation of Lemma A.4.2 we set

Qv D OpW
h

�

�
.x C p0.�//h�i2

�
�h.x/�.h

ˇ �/h�i�3
�
v (A.4.14)

so that, by that lemma, inequality (A.4.6), which implies Proposition A.4.1, will follow if
we prove

k QvkL1 � C.kvk
H
Qs0
h

C kLCvkL2/
1
2 kvk

1
2

H
Qs0
h

: (A.4.15)

Take Q�h 2 C10 .��1; 1Œ/ equal to 1 on the support of �h, satisfying @˛x Q�h D O.h
�ı˛/ (with

ı D 2ˇ) for any ˛. Since the symbol of the operator defining Qv in (A.4.14) is in zSı.1/, it
follows from (A.4.2) and the remark following it, that .1� Q�h/ Qv D hNOpW

h .r/v for some
symbol r in zSı.1/ and anyN . Then, using the semi-classical Sobolev estimate and (A.4.3)
again, we see that k.1 � Q�h/ QvkL1 is estimated by the right-hand side of (A.4.15). We are
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thus left with studying Q�h Qv. If '.x/ D
p
1 � x2 for x 2 ��1; 1Œ , write

k Q�h QvkL1 D ke
�i

'
h Q�h QvkL1 � Ch

� 12 khDx.e
�i

'
h Q�h Qv/k

1
2

L2
ke�i

'
h Q�h Qvk

1
2

L2

� Ch�
1
2
�
k Q�h.x/.hDx � d'.x// Qvk

1
2

L2

C k.hDx Q�h/ Qvk
1
2

L2

�
k Qvk

1
2

L2
: (A.4.16)

Note that .hDx Q�h/ QvD�ih1�ı Q�1h .x/ Qv for a function Q�1
h

again satisfying @˛x Q�
1
h
DO.h�ı˛/,

whose support does not intersect the support of the symbol defining Qv in (A.4.14). Using
(A.4.2) again, we conclude that k.hDx Q�h/ QvkL2 � cNhN kvkL2 , so that to show that the
right-hand side of (A.4.16) is bounded by the right-hand side of (A.4.15), it is enough to
prove that

h�
1
2 k Q�h.x/.hDx � d'.x// Qvk

1
2

L2
k Qvk

1
2

L2
� C.kvk

H
Qs0
h

C kLCvkL2/
1
2 kvk

1
2

H
Qs0
h

: (A.4.17)

Notice that in (A.4.17), hˇ Q�h.x/ d'.x/ is an element of zSı.1/ and that

Q�h.x/hDx D OpW
h .
Q�h�/C i

h

2
Q� 0h.x/: (A.4.18)

Again, the last contribution in (A.4.18) will bring a trivial term to estimate in (A.4.17), so
that we are reduced to the study of

h�
1
2

OpW
h

�
Q�h.x/.� � d'.x//

�
Qv
 12
L2
k Qvk

1
2

L2
: (A.4.19)

If we express Qv from (A.4.14) and use (A.4.2), (A.4.1) at order N D 1, we obtain

OpW
h

�
Q�h.x/.� � d'.x//

�
Qv D OpW

h .a0.x; �/C ha1.x; �/C h
2.1�2ı/�ˇ r/v; (A.4.20)

where r 2 zSı.1/ is the remainder in (A.4.1) (the extra power h�ˇ coming from the fact
that Q�h d' is not in zSı.1/, but only in h�ˇ zSı.1/), and where a0, a1 are the first two terms
in expansion (A.4.1) and are given explicitly by

a0 D �h.x/.� � d'.x//
�
.x C p0.�//h�i2

�
�.hˇ �/h�i�3;

a1 D �
i

2
¹.� � d'.x//; �h.x/

�
.x C p0.�//h�i2

�
�.hˇ �/h�i�3º:

(A.4.21)

If ı, ˇ are small enough, the r term in (A.4.20) brings to (A.4.19) a contribution bounded
by the right-hand side of (A.4.17). We thus have to study a0, a1. We use [13, Lemma 1.8]
to rewrite a0, a1. According to [13, (1.28), (1.29)] with � D 2, we may write

a0.x; �/ D .x C p
0.�//b0.x; �/;

where b0 is supported for j�j � h�ˇ , 1 � x2 � ch�i�2 and satisfies estimates of the form
j@˛x@

˛0

�
b0.x; �/j � C h�i

2˛�˛0 . Actually, as already seen in the proof of Lemma A.4.2,
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�h � 1 on the support of ..x C p0.�//h�i2/�.hˇ �/, so that this factor �h may be omitted
in definition (A.4.21) of a0. It follows then that b0 is in zSı.1/ with ı D 2ˇ.

We may thus apply (A.4.2), (A.4.1) to write

OpW
h .a0/v D OpW

h

�
b0.x; �/.x C p

0.�//
�
v

D OpW
h .b0/OpW

h .x C p
0.�//v �

h

2i
OpW

h

�@b0
@�
� p00.�/

@b0

@x

�
v

C h2�4ıOpW
h .r/v; (A.4.22)

for some r in zSı.1/. In the above expression, @b0
@�
� p00.�/ @b0

@x
is in zSı.1/ since p00.�/ D

O.h�i�3/. Applying (A.4.3) to the three terms on the right-hand side of (A.4.22), we get
that for ˇ > 0 small enough,

kOpW
h .a0/vkL2 � C

�
kOpW

h .x C p
0.�//vkL2 C hkvkL2

�
� Ch.kLCvkL2 C kvkL2/: (A.4.23)

Consider next a1 given by (A.4.21) (where �h.x/ may be removed). As on the support of
a1, @˛x.d'.x// D O.h�i

1C2˛/, it follows that a1 is in zSı.1/, so that the second term on
the right-hand side of (A.4.20) satisfies

hkOpW
h .a1/vkL2 � ChkvkL2 : (A.4.24)

Plugging (A.4.20), (A.4.23), and (A.4.24) into (A.4.19), we get that this expression is
bounded from above by the right-hand side of (A.4.17). This concludes the proof.
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