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Cylinder counts and spin refinement of area Siegel–Veech
constants

Jan-Willem van Ittersum and Adrien Sauvaget

Abstract. We study the area Siegel–Veech constants of components of strata of abelian dif-
ferentials with even or odd spin parity. We prove that these constants may be computed using
either: (I) quasimodular forms, or (II) intersection theory. These results refine the main theorems
of Chen–Möller–Zagier (2018) and Chen–Möller–Sauvaget–Zagier (2020), which described the
area Siegel–Veech constants of the full strata. Along the proof of (II), we establish a new identity
for Siegel–Veech constants of cylinders.

1. Introduction

1.1. Relations between cylinder Siegel–Veech constants

Let g; n be non-negative integers satisfying 2g � 2C n > 0. Let Mg;n and xMg;n be
the moduli spaces of smooth and stable complex curves of genus g with n distinct
markings. We denote by pW xHg;n !

xMg;n the Hodge bundle, i.e., the vector bundle
whose fiber at the point .C; x D ¹x1; : : : ; xnº/ is the space H 0.C; !C / of abelian
differentials on C . If � D .m1; : : : ; mn/ is a vector of positive integers satisfying

j�j
def
D

nX
iD1

mi D 2g � 2C n;

then we denote by H .�/ the stratum of abelian differentials of type �, i.e., the sub-
space of xHg;n of differentials .C;x;�/ satisfying:C is smooth, and ordxi .�/Dmi � 1
for all 1� i � n. This space is equipped with a canonical measure �, called the Masur–
Veech measure. If X is a component of H .�/, then we denote by

Vol.X/ D .4g � 2C 2n/ � �
²
.C; x; �/ 2 X; s.t.

i
2

Z
C

� ^ x� < 1

³
;
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the Masur–Veech volume of X . This volume is finite and rational up to a power of �
by [13, 14, 25, 34].

Let .C;x;�/ be a differential of type�. The differential � defines a flat metric with
trivial holonomy on C n ¹x1; : : : ; xnº. Each xi is a conical singularity of this metric
with angle mi .2�/. The union of closed geodesics of a given homotopy type in this
open surface forms a cylinder Z whose width w.Z/ is the length of any geodesics in
the homotopy class. This cylinder is bounded on each side by at least one singularity.
We denote

N .C; �; L/0 D
X

Z s.t. w.Z/<L

area.Z/
area.C /

;

N .C; �; L/cyl D
X

Z s.t. w.Z/<L

1

area.C /
:

Here we consider a refinement of the count of cylinders: for all 1 � i � n, we denote

N .C; �; L/cyl;i D
1

2

X
Z s.t. w.Z/<L

fi .Z/

area.C /
;

where fi .Z/ D 0; 1, or 2 if xi bounds Z on 0; 1, or 2 sides. For a connected compo-
nent X of H .�/, there exist constants c0.X/; ccyl.X/; ccyl;1.X/; : : : ; ccyl;n.X/ satis-
fying

N .C; �; L/? �
L!1

c?.X/ � �L
2

for almost all abelian differentials in X (see [12, 35]). These constants are elements
of ��2Q and may be expressed as ratios between volumes of connected components
of strata (see Section 4). In [36] Vorobets showed the following identity holds:

ccyl.X/ D .2g � 2C n/c0.X/: (1)

Our first theorem is a refinement of this identity.

Theorem 1.1. For all 1 � i � n, we have ccyl;i .X/ D mi � c0.X/.

Example 1.2. A standard class of abelian differentials is provided by coverings of
the square torus ramified above a single point – square-tiled surfaces. The differential
on the covering surface is the pull-back of the unique (up to scalar) differential on the
torus, and its singularities are determined by the orders of ramification. The polygon
of Figure 1 is a square-tiled surface in H .4; 2/: the surface is obtained by identifying
the edges of the polygon with the same labels. The red/blue vertices of the polygon
are identified along this process to produce conical singularities of angles 8� and 4�
respectively. In this example, the red cylinder is bounded twice by the red singularity,
while the green one is bounded once by each singularity.
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Figure 1. Square-tiled surface in H .4; 2/.

Theorem 1.1 implies that if we choose a random boundary of a cylinder of large
width for a generic deformation of this square-tiled surface, then the probability that
it contains the red singularity is approximately 2=3.

1.2. Spin parity of abelian differentials

Here we assume that the entries of � are all odd. An element .C; x; �/ in H .�/

determines a canonical spin structure, i.e., a line bundle L! C such that L˝2 ' !C .
This line bundle is defined as

L D OC

�
m1 � 1

2
x1 C � � � C

mn � 1

2
xn

�
:

The sign—or Arf invariant—of an abelian differential in H .�/ equals .�1/h
0.C;L/.

By classical results of Mumford and Atiyah, this sign is constant in connected families
of spin structures [1, 27]. Thus we denote by H .�/C=H .�/� the components of
H .�/ of even/odd differentials.

Remark 1.3. The components H .�/C and H .�/� may be disconnected. Indeed,
when � D .2g � 1/ or .g; g/, then H .�/ contains a connected component of abelian
differentials supported on hyperelliptic curves. This connected component may be
included in the even or odd component depending on the value of g (see [22]). Hence,
the space H .�/ may have up to 3 connected components. As Theorem 1.1 holds
trivially on hyperelliptic components, it suffices to study ci .X/ for X D H .�/C and
X D H .�/�.

If X is a union of components of H .�/, and ? is one of the counting types above
then c?.X/ stands for the average of the Siegel–Veech constants of its connected
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components (weighted by the Masur–Veech volume). We denote by c?.�/ the Siegel–
Veech constants of H .�/. Moreover, we write

Vol.�/ D Vol.H .�//;

Vol˙.�/ D Vol.H .�/C/ � Vol.H .�/�/;

c?.�/ D Vol.H .�//;

c˙? .�/ D c?.H .�/C/
Vol.H .�/C/

Vol.H .�//
� c?.H .�/�/

Vol.H .�/�/

Vol.H .�//
:

The functions Vol, c0 and Vol˙ may be expressed either

(I) as the value q! 1 of the q-expansion of quasimodular forms (see [7,13,14]);
or

(II) as intersection numbers on P xH .�/, the Zariski closure of the projectivization
of H .�/ in the projectivized Hodge bundle (see [6]).

We extend these two results to the function c˙0 in Theorems 2.23 and 3.2 respectively.

Remark 1.4. Several results for the function c0 may be transposed to c˙0 with parallel
arguments. However, certain ingredients were missing in the previous works to obtain
the complete description of c˙0 . We emphasize two arguments that play an important
role.

(1) The quasimodular forms approach relies on the description of the character
table of the Sergeev group (Propositions 2.16 and 2.18), while the computation of
Vol˙ only relied on the description of the irreducible spin superrepresentations. As
a result, the expression of the differential operator @2 appearing in Theorem 2.23 is
different from the conjectural expression of [6, Section 10.3].

(2) The geometric counterpart relies on the original description of cylinder con-
figurations by Eskin–Masur–Zorich. We show that the expression of the area Siegel–
Veech constants as intersection numbers is essentially equivalent to the statement of
Theorem 1.1 above. It is interesting to remark that this approach also recovers the
result of [6] on c0 without using quasimodular forms.

This remark is essential as it paves the way for an expression of area Siegel–
Veech constants (and sums of Lyapunov exponents) in terms of intersection numbers
for (more) general affine invariant manifolds. Indeed, this new approach only relies
on the expression of volumes as intersection numbers and could extend the present
results to affine invariants manifolds where the expression of volumes as integrals of
tautological classes is proved or conjectured.



Cylinder counts and spin refinement of area Siegel–Veech constants 5

2. Weighted spin Hurwitz numbers and quasimodular forms

We compute c˙0 as the limit of weighted spin Hurwitz numbers of the torus of large
degree. By the work of [14] generating series of spin Hurwitz numbers can be exp-
ressed in terms of quasimodular forms. We extend the approach of [7] for c0 to
compute c˙0 as the limiting value q ! 1 in the q-expansion of a quasimodular form,
or, more precisely, as the leading term of the growth polynomial associated to a quasi-
modular form. We proceed as follows: In Section 2.1 we introduce the spin q-bracket
and the symmetric functions pk . These functions serve as an analogue of both the
shifted symmetric functions Qk and the hook-length moments Tp . In particular, its
brackets are quasimodular forms and the action of the pk inside strict brackets can be
encoded by differential operators.

In Section 2.2 we recall the growth polynomials of quasimodular forms and relate
this growth to the aforementioned differential operators.

In Section 2.3 we recall the representation theory of the spin symmetric group,
and explain the representation theory of the so-called Sergeev group.

In Section 2.4 we refine the aforementioned result of [14]. More precisely, we
compute the generating series of weighted spin Hurwitz numbers. Here, we exten-
sively make use of the character table of the Sergeev group. We find that strict brackets
of the pk compute weighted Hurwitz numbers.

In Section 2.5 we take all these results together to prove the evaluation of c˙0 .�/
as the value q D 1 of the q-expansion of quasimodular forms.

2.1. Spin bracket and quasimodular forms

Denote by SP the set of all strict partitions of integers (i.e., partitions where all part
sizes are different) and by OP the set of all odd partitions (i.e., partitions where all
part sizes are odd). For f WSP! C, denote the spin q-bracket hf i 2 CJqK by

hf i WD

P
�2SP.�1/

`.�/f .�/qj�jP
�2SP.�1/

`.�/qj�j
;

where j�j WD
P
i �i denotes the size of �. The denominator is given byX

�2SP

.�1/`.�/ qj�j D
Y
m�1

.1 � qm/:

For a partition � and a positive integerm, we denote by rm.�/ the number of parts
of � equal tom. Observe that for strict partitions � we have rm.�/ 2 ¹0; 1º. Moreover,
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we let

pk.�/ WD
X
i

�ki D

1X
mD1

mk rm.�/ .k 2 Z/;

pk WD �
1

2
�.�k/C pk .k 2 Z�0/

be the symmetric power sums (with an additional constant). Note that this constant
equals

�
1

2
�.�k/ D

BkC1

2.k C 1/
;

with BkC1 the .k C 1/th Bernoulli number. WriteƒD CŒp1;p3;p5; : : :� for the sym-
metric algebra and assign to pi weight i C 1. Then, for all f 2ƒ, the spin bracket hf i
is known to be a quasimodular form [14, Section 3.2.2], which is made precise in the
following result. Recall that the Eisenstein series Gk , given by

Gk WD �
Bk

2k
C

X
m;r�1

mk�1qmr .k � 2 even/; (2)

is an example of a quasimodular form of weight k, and that every quasimodular form
is a polynomial in these series: the space of quasimodular forms zM (for the full modu-
lar group SL2.Z/) is given by zM DQŒG2;G4;G6�. This space admits a natural action
of sl2 by the derivations D D q @

@q
;�1

2
@
@G2

and the diagonal operator multiplying a
form by its weight. In particular, D increases the weight of a modular form by 2. For
an introduction to quasimodular forms, see [37].

In order to state this result we introduce connected brackets, following [7, Sec-
tion 11]. The connected spin q-bracket is the multilinear map .CSP/˝n ! CJqK,
defined by

hf1 j � � � j fni WD
X

˛2….n/

�.˛/
Y
A2˛

� Y
a2A

fa

�
; (3)

where….n/ is the set of set partitions of J1;nK WD ¹1; : : : ; nº, and � is the correspond-
ing Möbius function �.˛/D .�1/`.˛/�1.`.˛/� 1/Š with `.˛/ the length (cardinality)
of the partition ˛. Let u1; u3; : : : be formal variables and for � 2 OP, write

u� D
Y
i

u�i :

Similarly, write
p� D

Y
i

p�i :
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We introduce the generating series ‰ (and ‰ı) of (connected) brackets of symmetric
power sums by

‰.u1; u3; : : :/ WD

�
exp

�X
k

pkuk
��
D

X
n�0

1

nŠ

X
`1;:::;`n

hp`1 � � � p`niu`1 � � �u`n ;

‰ı.u1; u3; : : :/ WD
X
n>0

1

nŠ

X
`1;:::;`n

hp`1 j � � � jp`niu`1 � � �u`n ;

where the sum is over all odd integers k, and odd `1; : : : ; `n respectively. In this
notation, the aforementioned result of [14] is as follows.

Proposition 2.1. We have

‰ı.u1; u3; : : :/ D �
X
�2OP
�¤;

1

Aut.�/
D`.�/�1Gj�j�`.�/C2u�;

where D D q @
@q

, Aut.�/ D
Q
m�1 rm.�/Š and Gk is the Eisenstein series of weight k

(see (2)).

Proof. We have

‰.u1; u3; : : :/ D
1Q

m>0.1 � q
m/

X
�2SP

.�1/`.�/ exp
�X

k

pk.�/ uk
�
qj�j

D exp
�
�
1

2

X
k

�.�k/ uk

� Y
m>0

1 � exp
�P

k m
k uk

�
qm

1 � qm
;

where the sums over k are restricted to odd positive integers. Then, by the properties
of the connected bracket we have exp‰ı D ‰, i.e.,

‰ı.u1; u3; : : :/

D �
1

2

X
k

�.�k/ uk C
X
m;r�1

�
1 � exp

�
r
X
k

mkuk

��
qmr

r

D �

X
�2OP
�¤;

�
1

2

X
k

�.��1/ ı`.�/D1 C
1

Aut.�/

X
m;r�1

mj�j r`.�/�1 qmr
�
u�;

which is easily seen to match the stated result.

Note that this result determines hf i for all f 2 ƒ. Recall D increases the weight
of a quasimodular form by 2. Hence, if f is of weight k, the spin bracket hf i is a
quasimodular form of weight k.
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Two consequences of this result will be important for us: (i) a recursive formula
for spin brackets, and (ii) the definition of a modified q-bracket for functions of the
form p�1f with f 2ƒ. This recursive formula should be compared with the recursive
formula for the hook-length moments in [7, Theorem 16.1] and to a similar result for
symmetric functions in the non-spin setting in [33, Proposition 6.2.1].

Corollary 2.2. For all i; j � 0 with i even, the differential operators %i;j Wƒ! ƒ

given by

%i;j D
X
�2OP

`.�/Dj; j�jDiCj

1

Aut.�/
@`.�/

@p�
;

are such that for all odd k � 1 and f 2 ƒ one has

hpkf i D �
X
i;j�0

h%i;j .f /iD
jGkCiC1:

Proof. Without loss of generality, we assume that f is a monomial, i.e., f D p� for
some odd partition � of length n. Then, by applying Möbius inversion to (3), we find

hpk p�i D
X

˛2….nC1/

Y
¹a1;:::;ar º2˛

hpa1 j � � � jpar i

D

X
�2OP

�Y
m>0

�
rm.�/

rm.�/

��
hp�n�ihpkjp�1 jp�2 j � � � i

D �

X
�2OP

�
1

Aut.�/
@`.�/

@p�
p�
�
D`.�/GkCj�j�`.�/C1:

Note that

%i;0 D ıi;0 � Id and %0;j D
1

j Š

@j

@pj1
.i; j � 0/:

Following the proof of [7, Theorem 16.1] in the spin setting, we deduce that a
certain linear combination of brackets involving p�1 is quasimodular.

Corollary 2.3. For all f 2 ƒk , the modified spin q-bracket

hf i� WD hp�1f i � hp�1ihf i C
1

24
h@2.f /i

is a quasimodular form of weight k, where @2 D %0;1 D @
@p1

. More precisely, we have

hf i� D �
X

i�2;j�0

h%�i;j .f /iD
jGi ;

where ��i;j D �i;j C ıi;2�0;jC1 and D D q @
@q

.
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Proof. Note that determining hpkf i for all positive odd k (in the previous corollary)
uniquely determines

hrm f i D �
X
i;j�0

h%i;j .f /i
X
r�1

miCj rj qmr :

As �i;0 D ıi;0 � Id, we find that hp�1f i equals

�

X
i;j

h%i;j .f /i

� X
m;r�1

miCj�1rj qmr
�

D �hf i

�X
m;r

m�1qmr
�

�

X
j�1

h%0;j .f /iD
j�1

� 1
24
CG2

�
�

X
i�2;j�1

h%i;j .f /iD
jGi

D hf ihp�1i �
1

24
h@2.f /i �

X
j�1

h%0;j .f /iD
j�1G2 �

X
i�2;j�1

h%i;j .f /iD
jGi :

As h%i;j .f /i is quasimodular of weight k � i � 2j the result follows.

2.2. Growth polynomials of quasimodular forms

Recall zMDQŒG2;G4;G6� is the space of quasimodular forms. WriteMDQŒG4;G6�

for the space of modular forms for SL2.Z/. Following [7, Section 9], there exists a
unique algebra homomorphism evW zM ! QŒ�2�Œ1=h� such that

F.�/ D evŒF �.h/CO.e�h/ .q D e2�i� D e�h/

as h! 0 (i.e., q ! 1). We call evŒF �.h/ the growth polynomial of F—it is a poly-
nomial in 1=h; for more details see the aforementioned paper by Chen, Möller and
Zagier. In particular, this morphism is characterized by the following three properties:

(i) evŒF �.h/ D a0.f /.2� i=h/k for F 2Mk;

(ii) evŒG2�.h/ D �.2/=h2 � 1=2h;

(iii) evŒDF �.h/ D � @
@h

evŒF � for F 2 zMk .

We will be interested in the leading coefficient of the growth polynomial. For
f1; : : : ; fr 2 ƒ, we define the „-bracket and its leading term by

hf1 j � � � j fri„ WD evŒhf1 j � � � j fri�.„/;

hf1 j � � � j friL WD lim
„!0

„k�rC1

.2� i/k�2rC2
hf1 j � � � j fri„;
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where k is the sum of the weights of the fi . Note that by [7, Proposition 11.1] this limit
is well defined. By Corollary 2.3 we can extend the notation and allow an insertion
of p�1:

hp�1 j f1 j � � � j fri„ WD evŒhp�1 j f1 j � � � j fri�.„/;

hp�1 j f1 j � � � j friL WD lim
„!0

„k�rC1

.2� i/k�2rC2
hp�1 j f1 j � � � j fri„: (4)

The behavior as „ ! 0 also determines the growth of the first N Fourier coefficients.
That is, the N -bracket, which we define by

Œf1 j � � � j fr �N WD

NX
nD1

an.f1; : : : ; fr/;

where we wrote
hf1j � � � jfri D

X
n�0

an.f1; : : : ; fr/q
n;

admits the following growth [7, Proposition 9.4].

Proposition 2.4. For f1; : : : ; fr 2 ƒ of weights k1; : : : ; kr with k D
P
ki , we have

Œf1 j � � � j fr �N D hf1 j � � � j friL
N k�rC1.2� i/k�2rC2

.k � r C 1/Š
CO

�
N k�r logN

�
Œp�1 j f1 j � � � j fr �N D hp�1 j f1 j � � � j friL

N k�rC1.2� i/k�2rC2

.k � r C 1/Š

CO
�
N k�r logN

�
as N !1.

In the rest of this subsection, we will now state two lemmas we need in the sequel.
First of all, as a corollary of Corollary 2.3, we determine the leading terms of p�1
insertions. Secondly, we discuss the relationship between growth polynomials and
differential operators.

For all ` � 1 odd, we define

h` WD
�1

2`
Œu`C1�P.u/`; where P.u/ WD exp

�
�

X
k�0
k odd

2pk ukC1
�
: (5)

These functions are the highest weight part of the central characters f` introduced
in (7), i.e., for all odd ` � 1 the function h` is homogeneous, and f` � h`=` is of
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weight less than `C 1 [6, Theorem 6.7]. We will be interested in the growth of the
coefficients in the following sequences

‰H .u1; u3; : : :/ WD
X
n�0

1

nŠ

X
`1;:::;`n

hh`1 � � � h`niu`1 � � �u`n ;

‰H;ı.u1; u3; : : :/ WD
X
n�0

1

nŠ

X
`1;:::;`n

hh`1 j � � � jh`niu`1 � � �u`n ;

‰
H;ı
�1 .u1; u3; : : :/ WD

X
n�0

1

nŠ

X
`1;:::;`n

hp�1jh`1 j � � � jh`niu`1 � � �u`n ;

C
H;ı
�1 .u1; u3; : : :/ WD

�1

24‰H

X
n�0

1

nŠ

X
`1;:::;`n

X
j�1

h@
j
2.h`1 � � � h`n/iu`1 � � �u`n :

By Corollary 2.3, in the spin setting [6, Lemma 10.4] reads as follows.

Corollary 2.5. The leading terms of ‰H;ı�1 and C
H;ı
�1 agree.

Let the differential operator D Wƒ! ƒ be given by

2D D �
@

@p1
C

X
`1;`2�1

.`1 C `2/p`1C`2�1
@2

@p`1 @p`2
:

In [6, Proof of Proposition 6.10] it was shown that (we correct their formula by a
factor of 1=2)

dhf i D hD.f /i

for all f 2 ƒ, where d is the unique derivation on quasimodular forms given by
d.G2/ D �1=2 and d.f / D 0 if f is modular. This operator D is extremely useful
in determining the growth of the coefficients of F D hf iq for f 2 ƒ. Namely, by [6,
Proposition 6.10], for all f 2 ƒk we have

hf i„ D
.2� i/k

„k

�
e.2� i/�2„Df

�
.;/: (6)

(Be careful that the definition of the „-bracket in [6, equation (34)] differs by a power
of 2� i of the „-bracket in [7] and in this work.) Observe that the evaluation at the
partition ; of 0 is explicitly given by pk.;/ D �12�.�k/.

Later, we will make use of the following commutation relation, which is the spin
analogue of the commutation relation in [6, Lemma 10.5].

Lemma 2.6. The commutation relation

@2 ı e
D.f / D eD

X
j�1

@
j
2.f /

�
@2 D

@

@p1

�
holds for all f 2 ƒ.



J.-W. van Ittersum and A. Sauvaget 12

Proof. First, observe that Œ@2;D � D @22. Hence, by induction we find

Œ@i2;D � D i@iC12 .i � 0/:

Next, again by induction, we show that

@2D
i
D

iX
kD0

i Š

kŠ
Dk@i�kC12

for all i � 0. For i D 0 this is trivial. By assuming the result for i D j , we obtain

@2D
jC1
D

jX
kD0

j Š

kŠ
Dk@

j�kC1
2 D

D

jX
kD0

j Š

kŠ

�
DkC1@

j�kC1
2 C .j � k C 1/Dk@

j�kC2
2

�
D

jC1X
kD1

j Šk

kŠ
Dk@

j�kC2
2 C

jX
kD0

j Š.j � k C 1/

kŠ
Dk@

j�kC2
2

D

jC1X
kD0

.j C 1/Š

kŠ
Dk@

.jC1/�kC1
2 ;

proving the claim. We conclude that

@2 ı e
D
D

X
i�0

@2D
i

i Š
D

X
i�0

iX
kD0

1

kŠ
Dk@i�kC12 D eD

X
j�1

@
j
2 :

2.3. Representations of the Sergeev group

The Siegel–Veech constants are computed as the limit of (weighted) Hurwitz numbers
of the torus of large degree [7]. These Hurwitz numbers can be expressed in terms
of central characters of the symmetric group (the Burnside Character Formula; see,
e.g., [4]). Analogously, spin Siegel–Veech constants and spin Hurwitz numbers can be
expressed in terms of central characters of the spin-symmetric group [14,17,24]. More
precisely, spin Siegel–Veech constants can be expressed in terms of central characters
corresponding to representations of the Sergeev group, which is closely related to the
spin symmetric group. Following [16, 18, 19, 26], we recall some results about the
representation theory of both groups and explain how they are related. Though most
of the results are not new, the character table of the Sergeev group seems not to be
available in the literature. We explain how to derive this table from the known results
in the literature.



Cylinder counts and spin refinement of area Siegel–Veech constants 13

The spin symmetric group zSd is one of the two representation groups of the
symmetric group (for d � 4), meaning that every projective representation of the
symmetric group Sd lifts to a (linear) representation of zSd . Explicitly, it is defined
by the central extension

0! Z=2Z! zSd

�
�! Sd ! 1

and can be presented by

zSd D ht1; : : : ; td�1; " j "
2
D 1; t2j D "; .tj tjC1/

3
D "; .tj tk/

2
D " for jj � kj � 2i:

The projection � to Sd is given by sending " to the neutral element and tj to the
transposition .j; j C 1/.

Note that the element " is central. Hence, " acts by ˙1 in every representation
of zSd . We call representations for which " acts by �1 spin representations. These
correspond to the projective representation of Sd , whereas representation for which "
acts byC1 correspond to ordinary (linear) representations of Sd .

Proposition 2.7 ([31]; see also [18, Theorem 8.7]). The irreducible spin represen-
tations V �

˙
of zSd are parametrized by pairs .�; .�1/d�`.�// for strict partitions �.

Moreover, the character values '�
˙
.x/ are determined recursively by

(i) an analogue of the Murnaghan–Nakayama rule when �.x/ has only odd
cycles in its cycle type;

(ii) '�
˙
.x/ D ˙ ip

2

pQ
�i when d � `.�/ is odd and �.x/ has cycle type �;

(iii) '�
˙
.x/ D 0 in all other cases.

The Murnaghan–Nakayama rule for '�
˙

is [18, Theorem 10.1]. There exists an
amusing way to describe the Murnaghan–Nakayama rule uniformly for both Sd

and zSd , for which we refer to the survey by Morris [26]. Note that in case d � `.�/
is odd, both cases (i) and (ii) contribute one-half to the character inner product.

Corollary 2.8. For all � 2 SP.d/ with d � `.�/ odd

1

j zSd j

X
(i)

j'�˙.x/j
2
D
1

2
D

1

j zSd j

X
(ii)

j'�˙.x/j
2;

where the first sum is over all x for which �.x/ has only odd cycles in its cycle type
and the second over all x for which �.x/ has cycle type �.

Proof. This follows from the fact that the character inner product, which is the sum
of the left and right side, is one, and that the conjugacy class of elements for which
�.x/ is of type � is of size 2dŠ=

Q
�i .



J.-W. van Ittersum and A. Sauvaget 14

The sign of a permutation in the symmetric group determines a Z=2Z-grading
on Sd , which lifts to a Z=2Z-grading on zSd . Explicitly, deg."/D 0 and deg.ti /D 1.
The elements of degree 0 in zSd form the group zAd , which is a central extension of
the alternating group. Given a partition �, we write �.�/ for the parity of d � `.�/.

Proposition 2.9 ([31]; see also [18, Theorem 8.7]). The irreducible spin represen-
tations of zAd are parametrized by pairs .�; .˙1/d�`.�/C1/ for strict partitions �.
More precisely, if d � `.�/ is odd, then V �C and V �� are isomorphic irreducible rep-
resentations of zAd . If d � `.�/ is even, the representation V �C splits as a sum of two
irreducible representations of zAd . The corresponding characters ˛�

˙
satisfy

(i) ˛�
˙
.x/ D 2�.�/�1'�C.x/ when �.x/ is of cycle type � 2 OP and � ¤ �;

(ii) ˛�
˙
.x/ D 1

2
'�C.x/ ˙

i
2

pQ
�i when d � `.�/ is even and �.x/ has cycle

type �;

(iii) ˛˙
�
.x/ D '�C.x/ D 0 in all other cases.

Note that the values of '�C.x/ determined by the Murnaghan–Nakayama rule are
real; hence, '�C.x/ is real if x is as in case (i) and purely imaginary if x is as in case (ii)
in Proposition 2.7. Also, note that in zAd the conjugacy class of elements for which
�.x/ is of type � is of size 2dŠ=

Q
�i . The analogue of Corollary 2.8 is therefore the

following result.

Corollary 2.10. For all � 2 SP.d/ with d � `.�/ even,

1

jzAd j

X
x2zAd

�
Re˛�˙.x/

�2
D
1

2
D

1

jzAd j

X
x2zAd

�
Im˛�˙.x/

�2
:

We now return to the spin symmetric group. Spin representations are representa-
tions of the twisted group algebra

Td WD CŒzSd �=."C 1/:

Note that Td inherits the grading, and hence is a superalgebra. The irreducible super-
modules of Td (i.e., irreducible Z=2Z-graded modules) can easily be determined in
terms of the irreducible modules of zSd .

Proposition 2.11. The irreducible supermodules of Td are given by

V � D

´
V �C d � `.�/ is even;

V �C ˚ V
�
� d � `.�/ is odd:

If we were only to know the supermodules of Td , generalities on superalgebras
(see, e.g., [20, Chapter 12]) would allow us to obtain the irreducible supermodules
of zSd and zAd . By doing so, we would almost be able to recover Proposition 2.7
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and Proposition 2.9. There is, however, an important subtlety: by doing so we lose
information about the characters '�

˙
and ˛�

˙
at x for which �.x/ has cycle type �,

and it would require more specific information about the supermodules to recover
part (ii) in these results. Soon, we will come across the same subtlety for a different
supermodule.

Instead of working with Td , often it is more convenient to work with the Sergeev
superalgebra. Both algebras capture the same information. Before introducing this
algebra, we introduce two more groups. Let

Cld WD ¹�1; : : : ; �d ; " j "2 D 1; �2i D "; "�i D �i"; �i�j D "�j �i for all i ¤ j º

be the Clifford group, which is a central extension of .Z=2Z/d . Following Sergeev
in [32], we define the Sergeev group Sed as the semidirect product

Sed WD Sd Ë Cld ;

where Sd acts on Cld by permuting the �i . (Some authors define the Sergeev group
slightly differently by setting �2i D 1 instead of �2i D ". The representation theory of
these two groups is the same; note, however, that the two Sergeev groups are non-
isomorphic.)

Before we study the representation theory of Sed , we describe the conjugacy
classes C such that C \ "C D ;. Namely, if the latter condition is not satisfied, every
spin representation is trivial on C .

Lemma 2.12 ([32, Lemma 5]). Let g D .�; �/ 2 Sed and write � D "a0�a11 � � � �
an
n for

ai 2 ¹0; 1º. Then, g is not conjugate to "g if and only if

(1) deg.�/ D 0, the cycle type of � is in OP, and
P
j2� aj is even for all disjoint

cycles � of � ;

(2) deg.�/ D 1, the cycle type of � is � 2 SP with `.�/ odd and
P
j2� aj is odd

for all disjoint cycles � of � .

The first case corresponds to the conjugacy class of a pure permutation .�;1/2Sed.
Note that this conjugacy class only depends on the cycle type � 2 OP of � ; we denote
this conjugacy class by C�. In the second case, we write C�;1 for the corresponding
conjugacy class.

On Cld we introduce the Z=2Z-grading by setting deg�iD1. This grading extends
to Sed by additionally letting deg� D deg"D 0 for � 2Sd . Define the corresponding
twisted algebras by

Cd WD CŒCld �=."C 1/; Xd WD CŒSed �=."C 1/;

which both are superalgebras. The following results determine the corresponding irre-
ducible supermodules. In these results, it is important to recall that the tensor product
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of two superalgebras A and B is not the same as the tensor product of two algebras.
Instead, the multiplication is defined by

.a˝ b/.a0 ˝ b0/ D .�1/deg.b/ deg.a0/.aa0/˝ .bb0/ .a; a0 2 A; b; b0 2 B/:

The following two propositions are [20, Example 12.1.3 and Lemma 13.2.3].

Proposition 2.13. The Clifford superalgebra, denoted Cd , is irreducible of dimension
2b.dC1/=2c.

In particular, the character � corresponding to Cd satisfies �.1/ D 2b.dC1=2/c and
�.x/ D 0 if x ¤ 1.

Proposition 2.14. The map #d W Td ˝ Cd ! Xd given by

tj ˝ 1 7!
1
p
2
.�j � �jC1/.j; j C 1/;

1˝ �j 7! �j

is an isomorphism of superalgebras.

We write ı.�/ and �.�/ for the parity of `.�/ and d � `.�/ respectively.

Corollary 2.15. The irreducible supermodules of Xd are given by V�˝Cd , where �
goes over all strict partitions. The corresponding character �� is given by

��.x/ D

´
2.`.�/Cı.�/��.�//=2'�.�/; x 2 C� for some � 2 OP;

0; x 62 C� [ "C� for some � 2 OP;

where '�.�/ is the character of V� evaluated at a permutation of type � 2 OP.

The structure of supermodules of Xd does not directly imply the character table
of the Sergeev group, nor does seem to be contained in the literature. However, the
irreducible representations of Sed were constructed by Maxim Nazarov in [28, Sec-
tion 1]. We deduce the following proposition from his result.

Proposition 2.16. The irreducible spin representations of Sed are parametrized by
pairs .�; .˙1/`.�// for strict partitions �. Moreover, the character values ��

˙
.x/ are

determined recursively by

(i) ��
˙
.x/ D 2�ı.�/��.�/ if x 2 C�;

(ii) ��
˙
.x/ D ˙2.`.�/�1/=2i

pQ
�i when `.�/ is odd and x 2 C�;1;

(iii) ��
˙
.x/ D 0 in all other cases.

Proof. First of all, observe that by the previous corollary the result holds if `.�/ is
even. Namely, in that case, the irreducible representation corresponding to � equals
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the superrepresentation corresponding to �. We now follow Nazarov’s construction
in the case `.�/ is odd.

First, assume d is even. Write ��
˙

for the representations corresponding to V �
˙

.
Then the irreducible representation of Sed corresponding the pair .�;˙/ in the space
Cd ˝ V

�
˙

is given by .j D 1; : : : ; d � 1/

.j; j C 1/ 7! i�0
�j � �jC1
p
2

˝ ��˙.tj /; �j 7! �j ˝ Id; " 7! �1:

Let x 2 Sed . Then, as the trace of the Clifford algebra only takes values on the identity,
we find

��˙.x/ D C.x/
2d=2

2.d�`.�//=2
'�˙.�/;

where C.x/ denotes the multiplicity of the identity in

�0.�1 � �2/ � � � �0.��j1�1
� ��jr /�

if we write x D .j1; j1 C 1/ � � � .jr ; jr C 1/�, and where � is the cycle type of the
projection of x to the symmetric group. Note that this multiplicity takes values in
¹�1; 0; 1º. In case � 2 OP, we obtain

��˙.x/ D 2
`.�/=2'�˙.�/ D 2

.`.�/�1/=2��.�/;

which we could also have deduced directly from Corollary 2.15. More interestingly,
if x 2 C�;1, we obtain

��˙.x/ D ˙2
.`.�/�1/=2i

rY
�i :

That ��
˙
.x/D 0 in all other cases, now easily follows from the orthogonality relations,

or by a similar computation as above.
Next, suppose d is odd. Note that Cd , considered as an ordinary module, rather

than a super module, splits as a sum Cd ' CC
d
˚ C�

d
of irreducible (non-super)

modules C˙
d

of dimension 2.d�1/=2. Let I D
�
0 �i
i 0

�
and J D

�
1 0
0 �1

�
. Nazarov now

first constructs a reducible representation of Sed corresponding to � in the space
C2 ˝ CC

d
˝ V � by

.j; j C 1/ 7! I ˝
�j � �jC1
p
2

˝ ��.tj /; �j 7! J ˝ �k ˝ Id :

Write !� for the endomorphism of V� defined by v 7! .�1/deg.v/v. Then, the ˙1-
eigenspaces with respect to the involution J ˝ Id˝!� form two irreducible repre-
sentations corresponding to .�;˙/. In particular, in this case, we obtain

��˙.x/ D D.x/
2.d�1/=2

2.d�`.�//=2
�

´
˛�C.�/C ˛

�
�.�/; deg x D 0;

˛�C.�/ � ˛
�
�.�/; deg x D 1
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with D.x/ the multiplicity of the identity in

.�j1 � �j1C1/ � � � .�j2 � ��j2C1
/�

if we write x D .j1; j1 C 1/ � � � .jr ; jr C 1/, and where the product .j1; j1 C 1/ � � �
.jr ; jr C 1/ is of cycle type � (i.e., x 2 C��). In other words, if x 2 C�, we obtain

��˙.x/ D 2
.`.�/C1/=2˛�˙.�/ D 2

.`.�/C1/=2˛�˙.�/ D
1

2
��.�/:

Moreover, if x 2 C�;1, we obtain

��˙.x/ D ˙2
.`.�/�1/=2i

rY
�i :

Similar to the spin symmetric group, we conclude that both cases contribute one-
half to the inner product of characters.

Corollary 2.17. For all � 2 SP with `.�/ odd,

1

jSed j

X
�2OP

X
x2C�

j��˙.x/j
2
D
1

2
D

1

jSed j

X
x2C�;1

j��˙.x/j
2:

Write Se0d for the subgroup of Sed consisting of elements of even degree. Simi-
larly to Proposition 2.16, we obtain the character table.

Proposition 2.18. The irreducible spin representations of Se0d are parametrized by
pairs .�; .˙1/`.�/C1/ for strict partitions �. Moreover, the character values  �

˙
.x/

are determined recursively by

(i)  �
˙
.x/ D 1

2
��.�/ if x 2 C� and � ¤ �;

(ii)  �
˙
.x/ D 1

2
��.�/˙ 1

2
2`.�/=2i

pQ
�i when `.�/ is even and x 2 C�;

(iii)  �
˙
.x/ D 0 in all other cases.

Corollary 2.19. For all � 2 SP.d/ with `.�/ even,

1

jSe0d j

X
x2Se0

d

�
Re �˙.x/

�2
D
1

2
D

1

jSe0d j

X
x2Se0

d

�
Im �˙.x/

�2
:

Finally, we end our discussion by introducing the central characters associated
to the Sergeev group. Given � 2 OP.d/, the class sum xC�, which is the sum of all
permutations in C�, acts by Schur’s lemma as a constant on a supermodule V� ˝ Cd .
We call this constant the central character and denote it by f�.�/. In fact,

f�.�/ D jC�j
��.�/

dim ��
D jC�j

��
˙
.�/

dim��
˙

D jC�j
 �.�/

dim �
; (7)
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where  � is the average of  �C and  �� (or equal to  �C if `.�/ is odd). In particu-
lar, the central characters associated to Sed and Se0d agree. (Note that we restricted
ourselves to � 2 OP in the definition of central characters.)

We extend this notation to all � 2 OP and � 2 SP, even if � and � are not of the
same size. Write � � �0 if the partitions � and �0 only differ in the number of parts
equal to 1, and set

f�.�/ D

´
f�0.�/; j�j < j�j;
0; j�j > j�j;

(8)

where � � �0 and j�0j D j�j. Then, by [19] we have f� 2ƒ, whereƒ is the symmetric
algebra introduced before. More concretely, if � D .`/, then by [6, Theorem 6.7]

`f`.�/ D
�1

2`
Œt`C1�

� `�1Y
jD1

.1 � jt/ � exp
�X
k�1
k odd

2

k
pk.�/ t

k
�
1 � .1 � `t/�k

���
:

(The central characters in our work agree with those in [14], but differ by a factor `
of those in [6, Theorem 6.7] and in [19, Definition 6.3].) By comparing this formula
with the definition of h`, we see that f` � h`=` is of weight less than `C 1.

2.4. Weighted spin Hurwitz numbers

Let … D .�.1/; : : : ; �.n// with �.i/ 2 OP.d/. A Hurwitz tuple of degree d and rami-
fication type … is an element

.˛; ˇ; 1; : : : ; n/ 2 .Sd /
nC2

such that Œ˛; ˇ�1 : : : n D 1 and the type of i is equivalent to the partition �.i/

(i.e., they only differ in the amount of 1’s).
Write Hurd .…/ for the set of all Hurwitz tuples h of degree d and ramification

type …. Every such Hurwitz tuple corresponds to a (ramified) covering of the torus,
which, after pulling back the flat metric on the torus, yields a differential of type �.
This induces a spin parity sWHur.…/! Z=2Z. By [14, Theorem 2] the spin Hurwitz
number of degree d and ramification profile … is given by

1

dŠ

X
h2Hurd .…/

.�1/s.h/ D 2�=2
X

�2SP.d/

.�1/`.�/ f….�/;

where f… D
Q
i f�.i/ with f�.i/ a central character, defined by (8), and � is the Euler

characteristic of the cover, i.e.,

� D
X
i

�
`.�.i// � j�.i/j

�
:
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We generalize this result, by finding the following expression for a weighted count.
Given a Hurwitz tuple h D .˛; ˇ; 1; : : : ; n/ and f 2 ƒ, write f .˛/ to denote the
value of f applied to the partition corresponding to the conjugacy class of ˛.

Proposition 2.20. For any f 2 ƒ, we have

1

dŠ

X
h2Hurd .…/

.�1/s.h/f .˛/ D 2�=2
X

�2SP.d/

.�1/`.�/ f….�/ f .�/:

Proof. Given conjugacy classes C1; : : : ; Cn in a finite group G, we define a Hurwitz
tuple for G with ramification type C D .C1; : : : ; Cn/ to be an element

.˛; ˇ; 1; : : : ; n/ 2 G
nC2

such that Œ˛; ˇ�1 � � � n D 1 and i 2 Ci for all i . Denote by HurG.C/ the set of all
Hurwitz tuples forG with ramification type C . The sum of all elements of a conjugacy
class C in the group algebra of G acts by Schur’s lemma by a constant; this constant
is the central character fC , which we consider as a function fC WG^! C, where G^

denotes the set of irreducible representations of G. We write fC D
Q
C2C fC . Given

an irreducible representation � of G and a class function f WG ! C, we let

MG.f; �/ WD
1

jGj

X
g2G

��.g/ ��.g/f .g/ D
1

jGj

X
Œg�

jŒg�j��.g/��.g/f .g/;

where the last sum is over all conjugacy classes Œg� of G, and with �� the character
of the representation � and jŒg�j the size of the conjugacy class of g in G.

Mutatis mutandis, the proof of [23, Theorem A.1.10] implies that for all class
functions f WG ! C, we have that

Hf;C .G/ WD
1

jGj

X
h2HurG.C/

f .˛/ D
X
�2G^

fC .�/MG.f; �/;

where hD .˛;ˇ;1; : : : ; n/. In the non-spin setting, this result forGDSd suffices to
prove the non-spin variant of this proposition (see [7, Proposition 6.3]). Here, it does
not suffice to let G D Sed , as we have to take care of the sign of the Hurwitz tuple.
Hence, we complete the proof along the same lines as [14, Sections 3.1.6–3.1.10].

Given a group homomorphism �WG0!G;h 2HurG.C/ and a conjugacy class C 0

of G0 such that �.C 0/ D C , we write HurG0.h; �/ D HurG0.h/ for the set of Hurwitz
tuples h0 2 HurG0.C 0/ such that �.h0/ D h. For all d � 1, write Bd for the group of
signed permutations, obtained by setting "D 1 in Sed . Moreover, write B0

d
and Se0d for

the subgroups of even elements with respect to the Z=2Z-grading on Sed . Note that
all these four groups Bd , B0

d
, Se0d and Se0d admit a natural projection homomorphism

to Sd .
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Write Hurd .C/ for HurSd .C/ and let h 2 Hurd .C/ be given. Now, in terms of
Hurwitz tuples, [14, Proposition 5] reads

.�1/s.h/

dŠ
D 2�=2

�
jHurBd .h/j

jBd j
�

jHurB0
d
.h/j

jB0
d
j
�
jHurSed .h/j

jSed j
C

jHurSe0
d
.h/j

jSe0d j

�
:

Hence, summing over all h 2 Hurd .C/ and multiplying by f .˛/, we obtainX
h2Hurd .C/

.�1/s.h/

dŠ
f .˛/D 2�=2

�
Hf;C .Bd /�Hf;C .B0d /�Hf;C .Sed /CHf;C .Se0d /

�
;

where in Hf;C .G/ the conjugacy class C should be interpreted as the conjugacy class
of pure permutations in G.

Observe that the irreducible representations � of Sed such that �."/ D 1 corre-
spond to the representations of Bd . In particular,MBd .f;�/DMSed .f;�/ for such � .
Hence,

Hf;C .Sed / �Hf;C .Bd / D
X

�2.Sed /^�

fC .�/MSed .f; �/;

where .Sed /^� denotes the set of irreducible spin representations of Sed . Similarly, the
result holds after replacing Sed and Bd with Se0d and B0

d
, so thatX

h2Hurd .C/

.�1/s.h/

dŠ
f .˛/D

X
�2.Se0

d
/^�

fC .�/MSe0
d
.f;�/�

X
�2.Sed /^�

fC .�/MSed .f;�/:

At this point, we can no longer follow [14] closely. Instead, we will compute
MSed .f; �/ using Proposition 2.16. Recall the conjugacy class of cycle type � in the
symmetric group Sd is of size dŠ=z� with

z� D
Y
m>0

mrm.�/rm.�/Š D Aut.�/
Y
i

�i :

First assume that � D �� is associated to � 2 SP and `.�/ is odd. Then, �� only
takes values on the conjugacy classes C� and "C�. Both conjugacy classes consist of
2d�`.�/dŠ=z� elements. Hence, we obtain

MSed .f; ��/ D
1

2dC1dŠ

X
�2OP.d/

2 � 2d�`.�/
dŠ

z�
j��.�/j

2f .�/

D

X
�2OP.d/

2�`.�/

z�
j��.�/j

2f .�/ DW M.f /.�/;
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where M.f / can be thought of as the spin analogue of the Möller transform in [7,
Corollary 13.2]. Next, let �˙

�
be associated to � 2 SP with `.�/ odd. By Corol-

lary 2.17, we find that

MSed .f; �
˙
� / D

1

2
f .�/C

X
�2OP.d/

2�`.�/

z�
j�˙� .�/j

2f .�/ DW
1

2
f .�/C

1

2
M.f /.�/;

where we now also defined the Möller transform if `.�/ is odd.
Similarly, we compute MSe0

d
.f; �/ for all � 2 .Se0d /

^ using Proposition 2.18.
First, suppose � D �� and `.�/ is odd. As  �C D �

�
C, we find

MSe0
d
.f; ��/ D

1

2ddŠ

X
�2OP.d/

2 � 2d�`.�/
dŠ

z�
j��C.�/j

2f .�/ D M.f /.�/:

Finally, let �˙
�
2 .Se0d /

^ with `.�/ even. By Corollary 2.19, we obtain

MSe0
d
.f; �˙� / D

1

2
f .�/C 2

X
�2OP.d/

2�`.�/

z�

ˇ̌̌1
2
��.�/

ˇ̌̌2
f .�/

D
1

2
f .�/C

1

2
M.f /.�/:

Recall that the central characters corresponding to all representations of Sed and
Se0d agree on odd partitions. Hence, we concludeX

h2Hurd .C/

.�1/s.h/

dŠ
f .˛/

D 2�=2
X

�2SP.d/

f….�/.�1/`.�/
�
M.f /.�/ � 2

�1
2
f .�/C

1

2
M.f /.�/

��
D 2�=2

X
�2SP.d/

.�1/`.�/f….�/f .�/:

Define the (combinatorial) `-weighted spin Siegel–Veech constant c˙
`
.d;…/ to be

c˙` .d;…/ WD
1

dŠ

X
h2Hurd .…/

.�1/s.h/ p`.˛/;

where h D .˛; ˇ; 1; : : : ; n/.

Corollary 2.21. For all odd `,

c˙` .d;…/ D 2
�=2

X
�2SP.d/

.�1/`.�/f….�/p`.�/:
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2.5. Recursion relation for c˙
0
.�/

The symmetric algebra ƒ is canonically identified with R D QŒh1; h3; : : :� (see (5)
for the definition of the hi ). As in [6, equation (56)], for all non-empty sets I � N of
cardinality n, we define a function AI 2 RJ.zi /i2I K as follows:

A¹iº WD z
�1
i C

X
s�0

h2sC1z2sC1i ;

A¹i;j º WD
ziA

0.zi / � zjA0.zj /

A.zj / �A.zi /
� 1;

AI WD
1

.n � 1/

X
k�0

`D.`1:::;`k/

X
ID¹r;sºtI1t���tIk

1

kŠ
A
`

¹r;sº

kY
iD1

A
Œ`i �
Ii

.n � 3/:

In the last line, the first sum on the right-hand side is over all vectors of odd positive
integers of length k, while the second sum is over partitions of I into kC 1 non-empty
sets, and we let

A
`

¹i;j º
WD

@k

@`1 : : : @`k
A¹i;j º and A

Œ`�
I WD Œz

`
i �AI[¹iº:

Set An DA¹1;:::;nº. Then for any element h 2R we denote by hjh` 7!˛` 2Q the image
of h under the unique ring morphism ƒ! Q mapping h` to the rational number ˛`
defined by

˛` WD
�1

2`
Œu`�P.u/`; where P.u/ WD exp

�X
s�1

�.�s/ usC1
�
:

Notation 2.22. If X is a connected component of a stratum H .�/, the normalized
Masur–Veech volume of X is defined as

vol.X/ WD
.j�j � 1/Š

Qn
iD1mi

2.2� i/2g
Vol.X/:

We denote vol.�/ D vol.H .�// and vol˙.�/ D vol.H .�/C/ � vol.H .�/�/.

Recall that the leading term h � � � iL of the growth polynomial is defined by (4), the
elements h` 2 ƒ are defined by (5) and recall that @2 D @

@p1
.

Theorem 2.23. We have

c˙0 .�/ D
3 � 2�=2

2�2 � j�j � vol.�/
hp�1jhm1 j � � � jhmniL

D
�2�=2

16�2 � j�j � vol.�/
Œz
m1
1 � � � z

mn
n � @2Anjh` 7!˛` :
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Proof. We compute c˙0 as the limit of Hurwitz numbers of the torus of large degree:

c˙0 .�/ D lim
D!1

3

�2

PD
dD1 c

˙;ı
�1 .d;…/PD

dD1N
ı
d
.…/

;

where … D ..m1; 1; : : : ; 1/; : : : ; .mn; 1; : : : ; 1//, N ıd .…/ is the number of connected
torus covers of degree d with ramification profile …, while c˙;ı�1 .d; …/ is the sum
over those covers with �1st Siegel–Veech weight and with sign given by the parity.
The proof of this formula is obtained from a direct transposition of the proof of the
analogue result for c0.�/ given by [7, Proposition 17.1]. Note that by [13] we have
that

DX
dD1

N ıd .…/ �
D!1

Dj�jC1

j�j C 1
Vol.�/:

By Corollary 2.21 and the inclusion-exclusion principle used to obtain connected
cover counts from possibly disconnected ones, we have:

c
˙;ı
`
.d;…/ D 2�=2Œqd �hp`jfm1 j � � � jfmni;

where the connected q-brackets were defined by (3). The growth rate of the connected
bracket is determined by Proposition 2.4. Note 2 � 2g D � D n � j�j. Therefore,

c˙0 .�/ D
3

�2
lim
D!1

2�=2Œp�1jfm1 j � � � jfmn �D
Dj�jC1

j�jC1
Vol.�/

D
3

�2
lim
D!1

2�=2hp�1jfm1 j � � � jfmniL
Dj�jC1

.j�jC1/Š
.2� i/2g

Dj�jC1

j�jC1
Vol.�/

D
3

�2
2�=2hp�1jfm1 j � � � jfmniL

2j�j vol.�/

nY
iD1

mi

D
3

�2
2�=2hp�1jhm1 j � � � jhmniL

2j�j vol.�/
;

where the last equation follows as f` � h`=` is of weight less than `C 1.
We denote by Aut.m/ the cardinality of the stabilizer of the action of Sn on

.m1; : : : ; mn/, and recall ‰H;ı�1 .u/, C
H;ı
�1 .u/, ‰

H .u/ and ‰H;ı.u/ defined in Sec-
tion 2.2 and their corresponding L-brackets. Then, by using Corollary 2.5, we find

hp�1jhm1 j � � � jhmniL D
1

Aut.m/
Œum1 � � �umn �‰

H;ı
�1 .u/L

D
1

Aut.m/
Œum1 � � �umn �C

H;ı
�1 .u/L:
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By (6) and Lemma 2.6, we see that the leading term in „ of C
H;ı
�1 .u/„ and @2‰

H .u/„
‰H .u/„

agree, i.e.,

hp�1jhm1 j � � � jhmniL D
�1

24

1

Aut.m/
Œum1 � � �umn �

@2‰
H .u/L

‰H .u/L

D
�1

24

1

Aut.m/
Œum1 � � �umn � @2‰

H;ı.u/L

D
�1

24
Œz
m1
1 � � � z

mn
n � @2Anjh` 7!˛` ;

where, for the last equality, see [6, Proposition 6.9 and Corollary 6.11].

3. Twisted graphs and the boundary of the Hodge bundle

Fix �;g; n as in the introduction. We will consider the following cohomology classes
of the projectivized Hodge bundle:

• the tautological class � D c1.O.1// 2 H 2.P xHg;n;Q/;

• the Poincaré-dual class of the locus of curves with a non-separating node ı0 2
H 2. xMg;n;Q/;

• the Chern class of the cotangent line at the i th marking  i 2H 2. xMg;n;Q/ for all
1 � i � n.

For all 1 � i � n, we denote

ˇi D �
2g�2

�

�Y
j¤i

mi �  i

�
: (9)

Let X be a component of H .�/. We denote by P xX the Zariski closure of the projec-
tivization of X . In [6, 9, 29], it was shown that

vol.X/ D
Z

P xX
ˇi � �

for all 1 � i � n (see Notation 2.22 for the definition of vol and vol˙). Here, we will
consider the following intersection numbers for all 1 � i � n:

di .X/ D

Z
P xX

ˇi � ı0:

The purpose of the rest of the paper is to prove the following result.

Theorem 3.1. For all connected components X of H .�/, and 1 � i � n, we have

ccyl;i .X/ D
�mi

4�2
�
di .X/

vol.X/
:
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For all X , the number di .X/ is independent of the choice of i (see [6]). Besides,
we recall that ccyl.X/ D

Pn
iD1 ccyl;i .X/ is related to c0.X/ via the Vorobets rela-

tion (1). Thus, Theorem 3.1 directly implies Theorem 1.1 and the following expres-
sion for the area Siegel–Veech (SV) constants of connected components, which is a
new check that the class ˇi represents the Kontsevich–Zorich cocycle (see [11, 21]).

Theorem 3.2. For all connected component of a stratum of abelian differentials X ,
and all 1 � i � n, we have

c0.X/ D
�1

4�2
�
di .X/

vol.X/
:

As SV constants of hyperelliptic components are explicit and Theorem 1.1 holds
trivially for these components, we only need to consider the SV constants of strata
and their weighting by their spin sign

di .�/ D di .H .�// and d˙i .�/ D di .H .�/C/ � di .H .�/�/:

Then, to prove Theorem 3.1 we need to prove that the identities

ccyl;i .�/ D
�mi

4�2
�
di .�/

vol.�/
and c˙cyl;i .�/ D

�mi

4�2
�
d˙i .�/

vol.�/

hold for all (odd) partitions � and for all 1 � i � n. Besides, we will show that Theo-
rem 3.1 holds when we set i D 1 (the general case follows immediately by permuting
the entries of �). We proceed in two steps:

(1) In the present section we use intersection theory to express the numbers d1.�/
and d˙1 .�/ in terms of the functions vol; vol˙ and intersection numbers in genus 0
(see Proposition 3.11).

(2) In the next section we use arguments of combinatorics to show that Proposi-
tion 3.11 may be rewritten as the sum of the contributions of cylinder configurations
in the sense of [12] thus finishing the proof of Theorem 3.1.

3.1. Twisted graphs

We recall here the definition of twisted graphs of [15]. A stable graph is the data of

� D
�
V;H; gWV ! Z�0; �WH ! H; �WH ! V;H �

' J1; nK
�
;

where

• an element v 2 V is called a vertex. We denote by g.v/ the genus of v.

• an element h 2 H is called an half-edge. We say h is incident to �.h/, and write
h 7! v if �.h/ D v. Moreover, we denote by n.v/ the valency of the vertex v,
i.e., the number of half-edges incident to v.
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• the function � is an involution. The set E consist of cycles of length 2 for �, which
are called edges.

• the fixed points of � are called legs. We write n for the number of legs, and identify
the set of legs with the set J1; nK WD ¹1; 2; : : : ; nº.

• for all vertices v we have 2g.v/ � 2C n.v/ > 0.

• the graph .V;E/ is connected.

The genus of � is defined as

g.�/ D h1.�/C
X
v2V

g.v/ with h1.�/ D jEj � jV j C 1:

An automorphism of � consists of automorphisms of the sets V and H that leave
invariant the data g; � and �. A stable graph is said to be of compact type if h1.�/D 0,
i.e., if the graph is a tree.

Definition 3.3. A twist on a stable graph � is a function m W H ! Z satisfying the
following conditions:

• For all v 2 V , we denote by �.v/ D .m.h//h 7!v the vector of twists at half-edges
incident to v. We impose

j�.v/j

�
def
D

X
h 7!v

m.h/

�
D 2g.v/ � 2C n.v/:

• If e D .h; h0/ is an edge of � from v to v0, then we have m.h/ D �m.h0/.

• There exists a partial order � on V such that for all vertices v; v0 connected by an
edge .h; h0/ we have .v � v0/, .m.h/ � 0/.

For an edge e D .h; h0/ from v to v0, we call me D jm.h/j the twist at the edge.
If me D 0 (or, equivalently, if v � v0 and v0 � v) then we will say that the edge is
horizontal.

A twisted graph is a pair .�; m/, where m is a twist on � . It is said compatible
with an integral vector � of length n, if the twist at the i th leg is equal to mi .

Most of the twisted graphs that will be considered will be in the following set.

Definition 3.4. A twisted graph .�;m/ is a graph of rational type if it is of compact
type and there exists a partition of the set of vertices V.�/DR.�/tD.�/ satisfying:

• the twists at the legs are non-negative.

• g.v/ D 0, v 2 R.�/ (the set of rational vertices).

• if v 2D.�/ (the set of decorations), then all half-edges incident to v have positive
twist.
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Remark 3.5. In this definition, the twist and the partition of the set of vertices are
uniquely determined by the underlying stable graph and the twists at the legs in J1;nK.
In particular, an automorphism of � automatically respects the twist function. Thus,
to keep the notation simple, we denote by � a graph of rational type.

Definition 3.6. A twisted graph .�; m/ is a bicolored graph if there is a partition of
the set of vertices

V.�/ D V0 t V�1

such that all edges connect a vertex v 2 V0 to a vertex v0 2 V�1 with v > v0.
A bicolored graph is a rational backbone graph if it is of compact type, has a

unique vertex in V�1 of genus 0 which carries the first marking, and all vertices of V0
have positive genus (note that a rational backbone graph is of rational type and satis-
fies D.�/ D V0 and R.�/ D V�1).

3.2. Boundary of strata of differentials

If� is a vector of (not necessarily positive) integers of length nwith j�j D 2g� 2C n,
then we denote by H .�/ the moduli space of objects .C; x; �/, where C is smooth
and � is a meromorphic differential with ordxi .�/ D mi � 1 for all 1 � i � n. This
space is canonically embedded in the vector bundle

��! xCg;n= xMg;n
.p1 �D1 C � � � C pn �Dn/;

where � W xCg;n ! xMg;n is the universal curve, Di is the divisor associated to the
i th marking, and pi is a positive integer bigger than �mi for all 1 � i � n. The
incidence variety compactification P xH .�/ is the Zariski closure of PH .�/ in the
projectivization of the above vector bundle. The geometry of P xH .�/ does not depend
on the choice of the pi ’s and was described in [2].

3.2.1. Residue conditions. If � has r non-positive entries then we denote by R.�/

the subspace of Cr with sum equal to 0. If R is a linear subspace of R.�/, then we
denote by H .�;R/�H .�/ and P xH .�;R/� P xH .�/ the space of differentials with
residues in R (up to a scalar in the projectivized case).

3.2.2. Boundary components of P xH .�/. We recall that a non-trivial stable graph �
determines a boundary component of the moduli space of curves

�W xM� D

Y
v2V.�/

xMg.v/;n.v/ !
xMg;n
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with g D g.�/ and n the number of markings. A bicolored graph .�;m/ determines
two moduli spaces:

H .�;m;R/0 D
Y
v2V0

H .�.v/; Rv/;

H .�;m;R/�1 D
Y
v2V�1

H .�.v/; Rv/;

where for all v the vector spaceRv is defined by the so-called global residue condition
defined in [2, Definition 1.2]. Moreover, it determines a morphism

�.�;m/WPH .�;m;R/0 � PH .�;m;R/�1 ! P xH .�;R/:

Denote by P xH .�;m;R/ the Zariski closure of the image of this morphism.
Besides, if .�; m/ is a twisted graph with exactly one horizontal edge, then we

denote by P xH .�;m;R/ � P xH .�;R/ the subspace of differentials whose underlying
curve sits in the image of xM� . With these notations at hand, P xH .�; R/ is the union
of the P xH .�;m;R/ for .�;m/ bicolored graphs and twisted graphs with exactly one
horizontal edge compatible with �.

3.2.3. Generalization of spin parity. If� is odd, then the parity of a point .C;x;�/2
H .�/ is the parity of h0.C;O..m1 � 1/=2C � � � C .mn � 1/=2//.

Besides, if � has only odd entries apart from the first two which are equal to 0,
andR �R.�/ is the vector space defined by r1C r2 D 0, then the parity of a point in
.C;x;�/ 2H .�;R/ is defined as the parity of the differentials in the desingularization
of the node created by attaching the two poles of order 1 (see [3] for the details of this
construction). Then, as in the holomorphic case, we denote by

ŒP xH .�;R/�˙ D ŒP xH .�;R/�C � ŒP xH .�;R/��;

where Œ � � stands for the Poincaré dual class of a subspace (here we consider P xH .�;R/

as a subspace of a projectivized vector bundle of differentials with large enough
poles).

3.3. Functions defined by intersection numbers in genus 0

Here, we define three functions f , ', and '˙ as intersection numbers on strata of
differentials of genus 0. We also show how to compute these functions recursively.
The results collected in this section will only be used in Section 4 to manipulate the
sums indexed by different families of graphs of rational type.
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3.3.1. The f -function. Let � D .m1; m2; : : :/ 2 Zn be vector of length n � 3 such
that: no entry of � is equal to 0, m1 and m2 are positive, and j�j D n � 2, where
j�j D

Pn
iD1mi . Then, we define

f .�/ D

Z
P xH.�;¹0º/

Y
i�3

s.t.mi>0

mi i ;

where ¹0º stands for the trivial vector space.1 This function may be computed induc-
tively by using twisted graphs. We fix an index i in J2; nK n ¹3º. We say that a twisted
graph � of genus 0 is of type fi if it has exactly two vertices v0 > v�1, one (non-
horizontal) edge e and satisfies:

• the legs i and 1 are on one of the vertices, and the leg 3 is on the other one.

• the vertex v0 (respectively v�1) has exactly 1 (respectively 2) of the legs with
index in ¹1; 2; 3º.

In Table 1 we represented the graphs of type f2 and fi with mi < 0 below (the last
case mi > 0 and i > 2 will not be used in the rest of the text). Moreover, we write
� ` fi to denote that � is of type fi and compatible with �. Then we set

f .�/ D f .�.v�1// � f .�.v0//;

where we order the entries of �.v�1/ and �.v0/ in such a way that the first entries of
�.v�1/ are the mj ’s for the values j 2 ¹1; 2; 3º and incident to v�1, while the first
entries of �.v0/ are me and mj for the last value j 2 ¹1; 2; 3º.

Lemma 3.7. If mi < 0 for i > 2, then we have

f .�/ D .n � 3/Š Œtm2 �
Y
i>2

t
1 � t�mi

1 � t
;

where Œtm2 � stands for m2-coefficient in the variable t . Moreover, if m3 > 0, then for
all i 2 J2; nK n ¹3º we have the following relation:

f .�/ D m3
X
�`fi

f .�/;

where the sum is over all twisted graphs of type fi compatible with �.

This lemma generalizes [6, Proposition 2.1] where the induction formula is proved
for the case i D 2 (i.e., the third marking is separated from markings 1 and 2). In the
present work, we will apply this lemma to cases where i is a marking with mi < 0.

1Note that this definition differs from the function hP1 in [6, Section 2.2] by a product of
the mi .
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Proof. We use the same approach as in [6]. For all i , we have

 3 D
X

†�¹1;:::;nºn¹1;i;3º

.��†/�.1/ 2 H
2. xMg;n;Q/;

where �† is the graph with one edge and one of the vertices carries the markings
in † [ ¹1; iº while the other vertex carries the other markings. There is a unique
twisted graph structure m on � which is compatible with �. Then the intersection
of .��†/�.1/ with p�ŒP xH .�; ¹0º/� is transverse (we recall that pWP xH .�/! xMg;n

is the forgetful morphism of the differential) and given by p�ŒP xH .�; m; ¹0º/�. The
integral of Y

i�4
s.t.mi>0

mi i

is non-trivial if and only if the unique structure of twisted graph on the stable graph
defining ı† satisfies the constraints of the type fi for dimension reasons. In that case,
the space P xH .�;m; ¹0º/ is isomorphic to

P xH .�0; ¹0º/ � P xH .��1; ¹0º/

the integral is given by f .�†/ (see [6]).

We use this lemma to show another identity satisfied by the function f . For
i 2 J3; nK, we say a twisted graph is of type f 0i if it satisfies the same conditions
as for the type fi , but interchanging the roles of the markings 2 and 3. Its contribution
is also determined by the same formula as for graphs of type fi by interchanging the
roles of the markings 2 and 3.

Lemma 3.8. If m1; m2; m3 are positive, then we haveX
�`f2

.me Cm3/f .�/ D
X
�`f 0

3

.me Cm2/f .�/:

Proof. We have the following identity in H�. xM0;nC2;Q/:

.m3 3 �m2 2/ p�
�
P xH .�; ¹0º/

�
D

X
�2Bic2;3

mE.�/p�
�
P xH .�;m; ¹0º/

�
�

X
�2Bic3;2

mE.�/p�
�
P xH .�;m; ¹0º/

�
;

where Bicj;j 0 is the set of bicolored graphs with the leg j incident to a vertex in V�1
and j 0 is incident to a vertex in V0 (see [30, Theorem 6]), and mE.�/ D

Q
e2E.�/me

(and we recall that pWP xH .�/! xMg;n is the forgetful morphism of the differential).
We intersect this identity with Y

i�4
s.t.mi>0

mi i :
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On the left-hand side, we use Lemma 3.7 as sums over graphs of type f2 or f 03 . On
the right-hand side, only the graphs of type f2 and f 03 give a non-trivial contribu-
tion on the right-hand side (see [6, Section 2.4]. All-in-all, we obtain the following
expression:X

�`f2

m3f .�/ �
X
�`f 0

3

m2f .�/ D
X
�`f 0

3

mef .�/ �
X
�`f2

mef .�/;

which is the desired identity.

3.3.2. The '-function. Now, let � be a vector of length n C 2 satisfying: m1 is
positive, mnC1 and mnC2 are non-positive, no other entry is zero, and j�j D n. Then,
we denote

'.�/ D

Z
P xH.�;R1;2/

Y
i�2

s.t.mi>0

mi  i ;

where R1;2 is the vector space defined by rnC1 C rnC2 D 0 while all other residues
are equal to 0. Moreover, if all entries of � are odd apart from mnC1 D mnC2 D 0,
we denote

'˙.�/ D

Z
ŒP xH.�;R1;2/�˙

Y
i�2

s.t.mi>0

mi  i :

We will need three types of graphs of rational type of genus 0 to compute ' and '˙

inductively (see also Table 1). A graph of rational type � is of:

Type '1 if it has one edge e, the legs 1, nC 1, and nC 2 are incident to a vertex v�1
which is lower than the vertex v0 carrying the leg 2. Then, we set

'.�/ D '.�.v�1// � f .�.v0//;

'˙.�/ D '˙.�.v�1// � f .�.v0//;

where �.v�1/ D .m1; : : : ; mnC1; mnC2/ and �.v0/ D .m2; me; : : :/.

Type '01 is defined similarly but we impose that the leg nC 2 is incident to vertex v0.
Then, we set

'.�/ D '.�.v�1// � f .�.v0//;

where �.v�1/ D .m1; : : : ; mnC1;�me/ and �.v0/ D .m2; me; : : :/ (note that this
configuration may only occur if mnC2 is negative so we do not need to define '˙ for
such a graph).

Type '001 if it has one edge e, the legs 2 and nC 2 are incident to a vertex v�1 which
is lower than the vertex v0 carrying the legs 1 and nC 1. Then, we set

'.�/ D '.�.v�1// � f .�.v0//;



Cylinder counts and spin refinement of area Siegel–Veech constants 33

where �.v�1/ D .m2; : : : ; mnC2;�me/ and �.v0/ D .m1; me; : : :/ (here mnC1 is
negative thus we do not need to define '˙ for such a graph).

Type '2 if it has one edge, which is horizontal, the legs 1 and nC 1 are incident to a
vertex v1 and the legs 2 and nC 2 to the vertex v2. Then, we set

'.�/ D '.�.v1// � '.�.v2//;

'˙.�/ D �'˙.�.v1// � '
˙.�.v2//;

where �.v1/ D .m1; : : : ; mnC1; 0/ and �.v0/ D .m2; : : : ; 0;mnC2/.

Type '3 if it has two edges, both not horizontal, and the legs 1 and nC 1 are incident
to a vertex v1, the legs 2 and n C 2 to a vertex v2 which are both connected to an
upper vertex v0 with edges e1 and e2. Then, we set

'.�/ D .me1 Cme2/ � '.�.v1// � f .�.v0// � '.�.v2//;

where �.v1/D.m1; : : : ;mnC1;�me1/, �.v2/D.m2; : : : ;�me2 ;mnC2/ and �.v�1/D
.me1 ; me2 ; : : :/.

The function ' may be computed by the following lemma.

Lemma 3.9. If mi < 0 for all 1 < i � n, then

'.�/ D .n � 1/Š

nY
iD2

.�mi / and '˙.�/ D �.n � 1/Š:

If m2 > 0, then we may compute ' and '˙ recursively

'.�/ D m2
X

�`'1;'
0
1
;'00
1
;'2;'3

'.�/;

'˙.�/ D m2
X

�`'1;'2

'˙.�/;

where the sums are over graphs of type '1; '01; '
00
1 ; '2, or '3 compatible with �.

Proof. The base cases of the lemma will be established in Section 4 with the language
of chains and cylinder configurations.

To prove the induction formulas, we use the same strategy as for f . We use the
following relation in H 2. xM0;nC2;Q/:

 2 D
X

†�¹3;:::;nC2ºn¹nC1º

ı† 2 H
2. xM0;nC2;Q/;

where ı† D .��†/�.1/, and �† for the unique graph with one edge and one vertex
carrying the legs in ¹1; nC 1º [† (while the other one carries the others).
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Type of twisted graph Contribution

Type f2 f

v0
Cme

�me

f

m3 v�1

m1 m2

Type fi (with mi < 0/ f

v0
Cme

�me

f

m1 mi v�1

m3 m2

Type '1 f

v0

Cme

�me

' m2

mnC1 v�1 mnC2

m1

Type '01 f

' v0
Cme

�me

mnC2

mnC1 v�1 m2

m1

Type '001 f

mnC1 v0
Cme

�me

'

m1 v�1 mnC2

m2

Table 1. The types of twisted graphs involved in the induction formulas defining f and '. Only
the twists at the first legs and the half-edges of the edge are indicated. Besides, the letters f or '
above each vertex indicate which function is used to define the contribution of the graph (cont.
on next page).
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Type '2 ' '

mnC1 v1
0

0
v2 mnC2

m1 m2

Type '3 f

' v0

�me1

Cme1 Cme2

�me2

'

mnC1 v1 v2 mnC2

m1 m2

Table 1. The types of twisted graphs involved in the induction formulas defining f and '. Only
the twists at the first legs and the half-edges of the edge are indicated. Besides, the letters f or '
above each vertex indicate which function is used to define the contribution of the graph (cont.).

Let† be a set appearing in the expression of  2. The schematic intersection of ı†
with P xH .�; R1;2/ is the union of all divisors of P xH .�; R1;2/ defined by bicolored
graphs or twisted graphs with one horizontal edge and which have an edge which
separates ¹1; nC 1º [† from the other legs. To compute the intersection number of
.ı† � ŒP xH .�;R1;2/�/ with Y

i�2
s.t.mi>0

mi i ;

we only need to consider the twisted graphs that do not vanish once we push forward
the class ŒP xH .�; m; R1;2/� along pWP xH .�; R1;2/! xM0;nC2. This is the case only
for the types of graphs '1; '01; '

00
1 ; '2 and '3. Namely, as there are exactly two poles

with opposite residues, there may be only two vertices per level. Indeed,

• if .�; m/ has a unique horizontal edge, then the two poles n C 1 and n C 2
should be carried by the two distinct vertices. Otherwise, the residue at the edge
would vanish and the graph would define a space of dimension smaller than
dim.P xH .�;R1;2// � 1.

• if .�;m/ is a bicolored graph, then V�1 may have up to 2 vertices and V0 only 1.
If V�1 has two vertices, then necessarily, each vertex carries one of the poles with
non-vanishing residue. This gives the type '1; '01; '

00
1 and '3.

The multiplicity of the graphs of type '1; '01; '
00
1 , and '2 is one as for the graphs of

type f . Thus we only need to show that a graph .�;m/ of type '3 contributes trivially
to the function '˙ and with multiplicity me1 Cme2 to '.
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To do this we choose i D 1 or 2. Then the edge ei determines a set † as: the set
of legs incident to the vertex v1 if i D 1, and the set of legs incident to the vertices v1
and v0 if i D 2. In both cases we will show that

ı† � ŒP xH .�;R1;2/� D m3�i ŒP xH .�;m;R1;2/�;

while ı† � ŒP xH .�; R1;2/�
˙ D 0. Indeed, a generic point y 2 PH .�; m; R1;2/ has

neighborhood in P xH .�; R1;2/ given by � � G � U , where U is neighborhood of y
in PH .�;m;R1;2/,G is a discrete set of cardinality gcd.me1 ;me2/, and� is an open
disk of C containing 0 parametrized by some parameter � (see [30, Lemma 5.6]).
Moreover, the neighborhood of the node corresponding to ei in the universal curve
C ! � � G � U is given by z � w D �lcm.me1 ;me2 /=mei . Therefore, the intersection
of P xH .�;R1;2/ with ı† is equal to

gcd.me1 ; me2/ �
lcm.me1 ; me2/

mei
D
me1me2
mei

;

which is the expected contribution for the function '.

Spin parity. To prove the induction formula for '˙, we need to compute the parity
of differentials closed to divisors of each type (as mentioned above we do not need to
consider the type '01 and '001 here).

The degeneration of type '2 separates a genus 1 curve from a genus 0 curve via
a separating node, therefore the parity of the limit curve is the sum of the parities on
each component, but as the parity in genus 0 is always even, the parity is determined
by the vertex carrying the poles of order 1.

For the type '1 we compute the parity on a smoothing of the degenerated curve by
considering index (or winding number) of the flat structure along two cycles: a cycleA
which is a closed curve in the cylinder that is bounded by xnC1, and a cycle B which
goes from xnC1 to xnC2. Then the parity of the differential is computed as

.indB C 1/.indA C 1/.mod 2/

(see [12, Section 5.1] for instance). The index along A is 0 as a periodic curve does
no rotate a tangent vector. Therefore the parity of the differential is determined as the
parity of indB C 1. When the curve degenerate this cycle breaks into two cycles B1
and B2 for which indB D indB1 C indB2 . Therefore the parity of the nearby differen-
tial is equal to

.indB C 1/ D .indB1 C 1/C .indB2 C 1/C 1.mod 2/;

and thus equal to minus the sum of parities of the limit differentials of each compo-
nent.
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To compute the parity for the situation '3 we consider the parity of the generic
element in

U � ¹º �
�
� n ¹0º

�
for an element in  2 G as described above. As both vertices have even twists, half of
the elements of G give even or odd parity (see [10, Proposition 5.2]). Therefore, the
intersection of ı† with ŒP xH .�;R1;2/

C� � ŒP xH .�;R1;2/
�� is trivial.

3.4. Intersection of strata with ı0

From now on, � is a vector of positive entries. We recall from [6, Theorems 1.2
and 6.2] the following induction formula for the normalized volume (Notation 2.22).

Proposition 3.10. If n � 2, then we have the following relation:

vol.�/ D
X

�2BB.�/2

f .�.v�1//

Q
e2E.�/me

jAut.�/j

Y
v2V0

vol.�.v//;

vol˙.�/ D
X

�2BB.�/2

f .�.v�1//

Q
e2E.�/me

jAut.�/j

Y
v2V0

vol˙.�.v//;

where BB.�/2 is the set of rational backbone graphs compatible with � such that the
second leg is incident to the vertex v�1 in V�1, and where �.v�1/ D .m1; m2; : : :/ is
the vector of twists at half-edges incident to v�1.

Remark that the spin part of Proposition 3.10 is slightly different from [6, Theo-
rem 6.2] but both statements are equivalent. Indeed, this theorem expresses the volume
of the odd and even components separately, but the difference between the two expres-
sions gives the simpler expression above.

Here we will prove the following expression of the functions d1 and d˙1 in terms
of the volume function.

Proposition 3.11. For all �, we have

d1.�/ D
X

�2BB.�/0

'.�.v�1//

Q
e2E.�/me

2 jAut.�/j

Y
v2V0

vol.�.v//;

d˙1 .�/ D
X

�2BB.�/0

'˙.�.v�1//

Q
e2E.�/me

2 jAut.�/j

Y
v2V0

vol˙.�.v//;

where BB.�/0 is the set of rational backbone graphs compatible with .m1; : : : ; mn;
0; 0/ with the legs nC 1 and nC 2 incident to v�1, and �.v�1/ D .m1; : : : ; 0; 0/ is
the vector of twist at half-edges incident to v�1.
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Proof. To prove this proposition we will proceed in two steps:

(i) we express ı0 � ŒP xH .�/� in terms of boundary component of P xH .�/;

(ii) we use the results of [30] to compute the intersection of � with these boundary
components.

Intersection of strata with ı0. Let X be connected component of P xH .�/. Up to
loci of co-dimension 2, the schematic intersection of P xX and ı0 is contained in the
union of the spaces P xH .�; m/, where .�; m/ is either the unique graph with one
non-separating horizontal edge, or a bicolored graph with h1.�/ > 0. We will show
that graphs of the second type contribute trivially to the integral of ˇ1 (see (9) for the
definition of ˇ1).

Let .�;m/ be a bicolored graph with h1.�/ > 0 and let X be a connected compo-
nent of H .�;m/. We have

ˇ1 � ŒP xX� D p�
�
�2g�2 � ŒP xX�

�
�

nY
iD2

mi i ;

where pW P xH .�/ ! xMg;n is the forgetful morphism of the differential. We have
p�.�

2g�2 � ŒP xX�/D 0 by [6, Proposition 3.10] (actually the proposition is given there
for the complete stratum P xH .�/, but the arguments can be transposed directly for all
connected components). Therefore, as ı0 intersects transversally along .�0; m0/, the
unique graph with one non-separating horizontal edge, we have

d1.�/ D

Z
P xH.�0;m0/

ˇi D
1

2

Z
P xH.�C.0;0//

�2g�2
nY
iD2

mi i

(the factor 1=2 comes from the automorphism group of .�0;m0/). Moreover, we also
get the spin analogue

d˙1 .�/ D
1

2

Z
ŒP xH.�C.0;0//�˙

�2g�2
nY
iD2

mi i :

Expression of � on P xH .�C .0; 0//. We use [30] to write � as a linear combination
of boundary divisors. Indeed,

� �
�
P xH .�C .0; 0//

�
D
�
P xH .�C .0; 0/; ¹0º/

�
C boundary terms.

However, P xH .�C .0; 0/; ¹0º/ is empty as there can be no pole of order exactly one
with vanishing residue. The boundary terms are supported on the strata xH .�;m/ for
all bicolored graphs .�; m/ in B0 the set of graphs with the two poles incident to
vertices of V�1. Then we write

� �
�
P xH .�C .0; 0//

�
D

X
�2BB.�/0

� Y
e2E.�/

me

�
�
�
P xH .�/

�
C�;
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where � is supported on the union of strata associated with graphs in B0 n BB.�/0.
We will prove that Z

�

�2g�3
nY
iD2

 i D 0: (10)

To do so, we chose a connected component X of H .�; m/ for a twisted graph of
B0 nBB.�/0, then we will show that

R
P xX �

2g�3
Qn
iD2 i vanishes. First, if we assume

that .�;m/ is not a rational backbone graph, then

p�
�
�2g�3 � ŒP xX�

�
D 0

by the same arguments that were used to prove [6, Proposition 3.10]. Now we assume
that .�;m/ is a rational backbone graph. Then H .�/�1 has dimension n�1, where n�1
is the number of legs in J1; nK incident to the vertex of V�1. Thus its projectivization
has dimension n�1 � 1, and we obtainZ

P xH.�;m/

�2g�3
nY
iD2

 i D 0

unless 1 is incident to the vertex of V�1 which implies the identity (10).
Finally, if .�;m/ 2 BB.�/0, then we haveZ

P xH.�;m/

�2g�3
nY
iD2

mi i D
'.�.v�1//

jAut.�/j

Y
v2V0

vol.�.v//:

So we obtained the desired expression of d1.�/. Also, if � is odd, then we haveZ
ŒP xH.�;m/�˙

�2g�3
nY
iD2

mi i D
'˙.�.v�1//

jAut.�/j

Y
v2V0

vol˙.�.v//:

Indeed, a backbone graph is of compact type thus the parity of a generic element of
H .�; I / is defined as the product of the parities of the elements in H .�.v/; Rv/ for
all vertices of � (see [8]).

4. Chains and cylinder configurations

In this section we use Proposition 3.11 to express d1.�/ and d˙1 .�/ as sums over
cylinder configuration.
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4.1. Chains

Here we define a category of graphs called chains to encode cylinder configurations
in the spirit of [5].

Definition 4.1. A chain is a graph of rational type � with nC 2 legs and a partition
D.�/ D F.�/ t P.�/ satisfying the following constraints:

• m.nC 1/ D m.nC 2/ D 0, and the other legs have positive twists. Moreover, the
first leg is incident to the same vertex as the .nC 1/-st.

• If v 2 F.�/ (set of “figure eights” in the terminology of [12]), then v has exactly 1
incident edge.

• If v 2P.�/ (set of “pairs of holes” in the terminology of [12]), then v has exactly 2
incident edges.

• Each vertex in R.�/ has exactly two of the following half-edges: the leg .nC 1/
or .nC 2/, or the half-edge of a horizontal edge or of an edge to a vertex in P.�/.

• Each vertex in R.�/ has exactly one leg with index in J1; nK.

We say a chain � is odd if all positive twists are odd. Denote by CH.�/ and CH.�/odd

the set of (odd) chains compatible with .m1; : : : ; mn; 0; 0/.

Observe that each vertex has an even number of incident half-edges with even
twists. As m.nC 1/ D m.nC 2/ D 0, it follows that each vertex in R.�/ has at least
two incident half-edges with even twists. Hence, if � is odd, then P.�/ is empty.

Definition 4.2. Let 1� i � n. A cylinder configuration marked by x1 is the data of: a
cylinder configuration of a stratum of abelian differentials (in the sense of [12] or [5]),
and the choice of a side of one of the cylinders which is bounded by the marking x1.

The data of a cylinder configurations marked by x1 is equivalent to the choice of:

(i) a chain in CH.�/;

(ii) an order on the vertices in F.�/ connected to v for all v in R.�/;

(iii) an integer 1 � ae � me for all edges incident to a vertex in F.�/ or P.�/;

(iv) a choice of connected component of the space H .�.v// for all v 2 F.�/
and P.�/. We use this fact to express the number ccyl;1.�/ as a sum over
chains.

Example 4.3. In Figure 2, we represent a chain for � D .6; 6; 3; 2; 2; 2; 2/. The ver-
tices in R.�/; F.�/, and P.�/ are colored green, red, and blue respectively. Using
the notation of [12] (in particular the non-logarithmic convention), the configurations
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0 0 0 0�2 �2
�2

�1 �1

C1 C1
C2 C2

C2

m1 D 6 m2 D 6

m3 D 3

m4 D 2

m5 D 2

m6 D 2

m7 D 2

Figure 2. Example of chain in CH.6; 6; 3; 2; 2; 2; 2/.

associated to this graph are of the form:

) .˛1 C .1 � ˛1/; 1/! .1; 0; 2; 1/) .˛2 C .1 � ˛2/; 1/! .0C 0/);

or

) .˛1 C .1 � ˛1/; 1/! .1; 0; 2; 1/) .0C 0/! .˛2 C .1 � ˛2/; 1/);

for ˛1 and ˛2 equal to 0 or 1. Here ˛i D ai � 1 in our system of notation.

Let � be a chain. We define the contribution of a vertex v of � according to the
type of vertex:

• if v 2 R.�/, thenbc.v/ WD mi .n.v/ � 3/Š, where mi is the marking of the unique
leg incident to v;

• if v 2F.�/, thenbc.v/ WDmej�.v/jvol.�.v//, where e is the unique edge incident
to v;

• if v 2 P.�/, thenbc.v/ WD j�.v/j vol.�.v//.

Then, we define

bcont.�/ WD
1

jAut.�/j

Y
v2V.�/

bc.v/:
If� is odd and � is odd, then we define yc˙.v/ WDmi .n.v/� 3/Š for a vertex v 2R.�/,
and yc˙.v/ D �j�.v/j vol˙.�.v// for a vertex v 2 F.�/, and we set

bcont˙.�/ WD
�1

jAut.�/j

Y
v2V.�/

yc˙.v/:
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Proposition 4.4. The following identity holds:

ccyl;1.�/ D
.�4�2/�1

2 vol.�/

X
�2CH.�/

bcont.�/:

Moreover, if � is odd, we have

c˙cyl;1.�/ D
.�4�2/�1

2 vol.�/

X
�2CH.�/odd

bcont˙.�/:

Proof. Let � be a chain graph. We choose a connected component Xv of H .�.v//

for each vertex of F.�/ and P.�/. All the marked cylinder configurations with chain
graph � and with the same choices of .Xv/ have the same Siegel–Veech constant,
given by � Y

e2E.�/

m.e/

�Q
v2D.�/

1
2
j�.v/jŠVol.H .Xv//

.1
2
j�j � 1/ŠVol.H .�//

;

see [12, formula (32)].2 Now, we can use the expression of the normalized volume vol
given in Notation 2.22 to rewrite this Siegel–Veech constant as

.�4�2/�1

vol.�/

� Y
v2R.�/

mi

�
�

� Y
v2F.�/

j�.v/j � vol.Xv/
�
�

� Y
v2P.�/

j�.v/j � vol.Xv/
�
;

where, in the first product mi is the twist of the unique leg incident to v 2 R.�/
(see [12, formulas (13.1) and (14.4)]). Besides, there are

1

jAut.�/j

� Y
v2R.�/

.n.v/ � 3/Š

�
�

� Y
e 7!v2F.�/

me

�
such configurations. Indeed the first product accounts for all choices of orders on
the vertices of F.�/ connected to the vertices in R.�/, while the second product
accounts for the choice of the ae for edges incident to the vertices in F.�/. Thus
the first identity follows as ccyl;1.�/ is the sum of the Siegel–Veech constants of all
configurations.

To obtain the second identity, we recall that if � 2 CH.�/ nCH.�/odd then half of
the choices of tuples .ae/e 7!v2F.�/ contribute to the even or odd component (see [12,
Lemma 14.4]). Thus the contribution of the odd and even components compensate

2This formula is written with the real dimension d of the stratum or dv for the stratum of
the vertices in D.�/. Here we have used the fact that d D 2.j�j C 1/.
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and � contributes trivially to c˙cyl;1.�/. Besides, if � 2 CH.�/odd, then by [12, Lem-
ma 14.2] the parity of the configuration is the parity of

1C
X

e 7!v2F.�/

ae C
X

v2F.�/

�.Xv/;

where �.Xv/ equals 0 or 1 if Xv is an even or odd component respectively. Thus, for
each edge e incident to a vertex in F.�/, we have .ae � 1/=2 terms which give the
same parity while the other .ae C 1/=2 produce the inverse parity, thus only one of
these choices of ae contributes.

Base case of Lemma 3.9. First, we remark that if mi < 0 for all 1 < i � n, then the
space PH .�; R1;2/ is of dimension 0 and thus the integrals ' and '˙ are numbers
of points in this space (or numbers of points counted with spin sign). By [5, Proposi-
tion 3.8], these points are in bijection with the number of cylinder configurations for
a single cylinder with figure eight constructions. As explained in the proof of Propo-
sition 4.4 there are exactly

.n � 1/Š
Y

i;mi<0

jmi j

such configurations (the factorial accounts for the ordering of the figure eights and
the mi terms account for the partitions of the mi � 1 as a sum of two non-negative
integers. Finally, by [5, Lemma 4.8] the parity of the meromorphic differential is
determined by the parity of the associated configuration.

4.2. Expanded chains

Proposition 4.4 provides an expression of ccyl;1.�/ as a sum over chains in CH.�/,
while Proposition 3.11 above provides an expression of d1.�/ as a sum over backbone
graphs. To compare ccyl;1 and d1, we introduce a family of sets of graphs of rational
type ECH.�/i , the expanded chains of complexity i for i D 1; : : : ;n (see Definition 4.7
below). We will also construct maps between the different sets of graphs of rational
type constructed until here:

BB.�/0 ' ECH.�/1 ECH.�/2
F2oo � � �

F3oo ECH.�/n
Fnoo

F

��

CH.�/:

These maps will be used to compare the different expressions of d1.�/ by applying
Lemmas 3.7 and 3.9 repeatedly.
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Definition 4.5. A pre-expanded chain is a graph of rational type with nC 2 legs such
that there exists a partitionR.�/D C.�/tL.�/ satisfying the following constraints:

• m.nC 1/ D m.nC 2/ D 0, and the other legs have positive twists. Moreover, the
first leg is incident to the same vertex as the .nC 1/-st.

• Let .v0; : : : ; vk/ be the shortest path from the vertex v0 with the leg nC 1 to the
vertex vk with leg nC 2. A vertex is in C.�/ (the core) if and only if it appears
in this path. Thus we have an ordering on the vertices of the core.

• A vertex v in C.�/ is called a bottom or a top if for all v0 in C.�/ connected to v,
we have v � v0 or v > v0 respectively.

• All half-edges with vanishing twists are incident to bottoms of C.�/. In particular,
all horizontal edges are between two bottoms.

• Each vertex in D.�/ has exactly one edge.

• Each vertex in L.�/ (the set of links), has exactly one edge to a lower vertex (it
may have any number of edges to upper vertices).

• If v is a vertex in L.�/ or a vertex in C.�/ which is not a top, then v has at least
one leg in J1; nK.

Definition 4.6. Let � be an pre-expanded chain. For all vertices of � , we denote
by ind.v/ the minimum of the indices of the legs incident to v and C1 if there are
no legs incident to v. Let v be a top in C.�/. It determines a unique subpath of the
core C.�/:

.vk1 ; vk1C1; : : : ; vN D v; vNC1; : : : ; vk2/

such that vN is the unique top of the sequence, and vk1 and vk2 are the only bottoms.
We say that v is admissible if the minimum of ind.vj / for j D k1 C 1; : : : ; k2 is
reached for j DN C 1. A pre-expanded chain is an expanded chain if all tops ofC.�/
are admissible.

Definition 4.7. If 1 � i � n, then we denote by ECH.�/i the set of expanded chains
of complexity i , i.e., the chains satisfying:

• for all 1 � j � i , we have: if the j th leg is incident to a vertex v, then v is not a
top of C.�/ and either v in D.�/ or j D ind.v/;

• for all v in R.�/, we have ind.v/ � i or v is a top of C.�/.

To compare the different sets of graphs we define the functions F2; : : : ; Fn and F
(see the above diagram).

4.2.1. Construction of the maps Fi . Let � be a graph in ECH.�/i . We construct
the image of � as follows:

• If the i th leg is incident to a vertex of D.�/, then Fi .�/ D � .
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0 0

m1 D 6 m2 D 6

m3 D 3 m4 D 2
m5 D 2

m6 D 2

m7 D 2

Figure 3. An expanded chain in ECH.6; 6; 3; 2; 2; 2; 2/i for i D 6 or 7.

• If the i th leg is incident to a vertex of L.�/, then Fi .�/ is obtained by contracting
the unique edge to a lower vertex.

• If the i th leg is on a vertex vj of C.�/ and vj�1 is not a top, then Fi .�/ is obtained
by contracting the edge between vj�1 and vj ; if vj�1 is a top, we also contract the
edge between vj�2 and vj�1.

Note that Fi .�/ then satisfies the first condition of elements in ECHi�1 by the admis-
sibility condition, and the second condition because if there is a vertex v in � with
ind.v/ D i , then this vertex is merged with a vertex which has a leg of smaller index
incident to it.

4.2.2. Construction of the map F . Let � be a graph in ECH.�/n. The image of �
is defined by contracting all edges which are not incident to at least one bottom vertex
of C.�/, where the genus of a merged vertex is the sum of the genera of the previous
vertices.

Example 4.8. In Figure 3, we represent an example of an expanded chain in

ECH.6; 6; 3; 2; 2; 2; 2/i

for i D 6 or 7 (for simplicity we did not put the twist at the edges as they may be
computed from the twists at the legs). The vertices of C.�/ are black dots while the
vertex in L.�/ is a white dot. Remark that the admissibility condition is satisfied,
as the marking on the vertex following the unique top of C.�/ has index 3 which
is smaller than 5 and 6. This expanded chain is mapped to the chain of Example 2
under F so we have surrounded in green, red, or blue the subgraphs that have to be
contracted to obtain this chain.
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�
1;2;3;
4;5;6

 �
F2.'3/

�

�
1;5

�
2;3;
4;6

 �
F3.'2/

�

�
1;5

�
3;6

�
2;4

 �
F4.'1/

� �4

�
1;5

�
3;6

�
2

 �
F5.'

0
1
/

�

�
5

�4

�
1

�
3;6

�
2

 �
F6.'

00
1
/

�

�
5

�
3

�4

�
1

�
6
�
2

Figure 4. Effect of the functions Fi on the expanded chain of Figure 3. The function F7 acts
trivially on this example so we do not represent it.

To illustrate the effect of the functions Fi on graphs, we represent on Figure 4
the images of this twisted graph in the ECH.6; 6; 3; 2; 2; 2; 2/i . Here, we only repre-
sent the rational part of the graph (in particular the 7th marking is not present) and
where the markings sit. At each step, we indicate in the parenthesis which type of
'-degeneration is used to create new vertices.

4.2.3. Odd expanded chains. If � is odd, then an expanded chain � is odd if the all
positive twists are odd. In particular,C.�/ contains only bottom vertices. Indeed, each
vertex has an even number of incident half-edges with even twists, thus each vertex
of the core has exactly 2 incident half-edges with even twists (the ones connecting
to the previous and next vertex or the legs nC 1 and nC 2). As all of these twists
are equal to 0, all vertices are bottom and all edges of the core are horizontal. The
functions Fi WECHodd

i .�/! ECHodd
i�1.�/ and F WECHodd

n .�/! CHodd.�/ are defined
by restricting the functions F and Fi to the sets of odd expanded chains.

4.3. Contribution of expanded chains

Let � be an expanded chain. The contribution c.v/ of a vertex v of � is defined
according to the type of vertex:

• If v 2D.�/, then c.v/ WDme vol.�.v//, whereme is the twist at the edge incident
to v and �.v/ is the vector of twists of half-edges incident to v.



Cylinder counts and spin refinement of area Siegel–Veech constants 47

• If v 2 L.�/, or if v 2 C.�/ is neither a top nor a bottom, then we set c.v/ WD
mj f .�.v//, where j D ind.v/ and �.v/ D .mj ; me; : : :/ with e the unique edge
to a lower vertex.

• If v is a top of C.�/, then c.v/ WD .me Cme0/ f .�.v// whereme andme0 are the
twists at the two edges e and e0 to lower vertices, and �.v/ D .me; me0 ; : : :/.

• If v is a bottom of C.�/, then c.v/ WDmj '.�.v//, where j D ind.v/, and�.v/D
.mj ; : : : ;me;me0/, where e and e0 are the edges to the previous and next vertex in
C.�/ if there is one, and else, me D 0 or me0 D 0 respectively.

Then, we define

cont.�/ D
1

jAut.�/j

Y
v2V.�/

c.v/:

Moreover, if � is odd and � is an odd expanded chain, and v is a vertex of � , then we
define c˙.v/ and cont˙.�/ by replacing the function vol by vol˙ and the function '
by '˙ in the definition of c.v/ and cont.�/.

Proposition 4.9. Let 1 < i � n and let � 2 ECH.�/i�1. We have

cont.�/ D
X

�02F�1
i
¹�º

cont.� 0/:

Besides, if � is odd, then

cont˙.�/ D
X

�02F�1
i
¹�º

cont˙.� 0/;

where in the last sum we restrict Fi to the sets of odd expanded chains.

Proof. Let i > 1 and � 2ECH.�/i�1. Any graph inF �1i ¹�º is obtained by modifying
the vertex v carrying the leg i and not the others. Thus we show that the proposition
holds by studying each possible type of vertex for v.

If v 2D.�/, then � 2 ECH.�/i and F �1i ¹�º D ¹�º. Thus, the proposition holds
trivially.

If v is in L.�/, then c.v/ is given in terms of the function f . Using Lemma 3.7,
we may write this function as a sum over all twisted graphs of type f2, i.e., as all
possible ways to split v into 2 vertices (leaving ind.v/ and the edge towards a lower
vertex together on the lowest of the created vertices while i is on the upper one). All
the graphs of F �1i ¹�º are obtained in this way, and we may check that the induction
formula of Lemma 3.7 gives the right contribution of any element of F �1i ¹�º.

Therefore from now on, we assume that v is in C.�/. First, let us remark that v
cannot be a top of C.�/. Namely, v cannot be the result of contracting the edge
between a top vj and a vertex vj�1, as that would violate the first condition of
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expanded chains of complexity i . Moreover, if v is obtained by contracting the edge
between a vertex vj , a top vj�1 and a vertex vj�2, by the admissibility condition, we
know that v is a bottom (and not a top).

If v is neither a top nor a bottom, then its contribution is given by the function f .
Then we apply the recursion of Lemma 3.7 and we write f as a sum over graphs of
type fh where h is the half-edge of the edge that connects v to the previous vertex
of C.�/. Either we obtain two vertices in C.�/, where the closest to v0 carries the
leg ind.v/ while the other carries the leg i ; or a vertex in C.�/ with the leg ind.v/
and a vertex in L.�/ carrying the leg i . All the graphs of F �1i ¹�º are obtained in
this way, and we may check that the induction formula of Lemma 3.7 gives the right
contribution of any element of F �1i ¹�º.

If v is a bottom in C.�/, then its contribution is given by the function '. Any
graph in F �1i ¹�º is obtained by splitting v into 2 or 3 vertices of type '1, '01, '001 ,
'2, or '3. Then the induction formula of Lemma 3.9 shows that the contribution of �
may be written as the sum of the contributions of F �1i ¹�º as in the previous case.

4.4. Contribution of chains

The purpose of this section is to show the following identities.

Proposition 4.10. Let � 2 CH.�/. We have

bcont.�/ D
X

�02F�1¹�º

cont.� 0/;

and if � is odd, then

bcont˙.�/ D
X

�02F�1¹�º

cont˙.� 0/:

To prove these identities we need two extra families of combinatorial objects,
called rooted trees and expanded pairs of holes.

Definition 4.11. Let † � J1; nK and p be a positive integer. A rooted tree is a graph
of rational type with 1C j†j legs indexed by ¹rº [†, which is either the trivial graph
(i.e., the stable graph with one vertex and no edges) or is such that:

• no edge is horizontal;

• each vertex in D.�/ has exactly one incident edge;

• the vertex with the leg r is called the root. The root has 2 legs and no edges to
lower vertices. All other vertices of R.�/ have 1 leg and 1 edge to a lower vertex
(they may have any number of edges to upper vertices).

We denote by RT.�;†; p/ the rooted trees compatible with .p/C .mi /i2†.
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Definition 4.12. Let † � J2; nK, p1; p2 be positive integers and I 2 R n †. A pre-
expanded pair of holes is a graph of rational type � with legs indexed by the set
† [ ¹h1; h2º, and with a partition R.�/ D C.�/ t L.�/ satisfying:

• All legs have positive twists and there are no horizontal edges.

• Let .v0; : : : ; vk/ be the shortest path from the vertex with the leg h1 to the vertex
with the leg h2. A vertex is in C.�/ if and only if it appears in this path.

• There is exactly one top in C.�/, i.e., there is precisely one vertex v whose
edges to other vertices of v0 2 C.�/ satisfy v > v0. No leg in † is incident to
the top.

• Each vertex in D.�/ has exactly one edge.

• Each vertex in L.�/ (the set of links), has exactly one edge to a lower vertex (it
may have any number of edges to upper vertices).

• If v is a vertex in L.�/ or a vertex in C.�/ which is not the top, then v has
exactly one leg in †.

It is an expanded pair of holes in EP.�;†; p1; p2; I / if it is compatible with

.mi /i2† C .p1; p2/;

and the following admissibility condition holds:

• either the leg h2 is incident to the top vertex (i.e., the top is the last vertex of the
core), and I is smaller than all legs incident to vertices in C.�/;

• or the smallest index j of a leg incident to a vertex of C.�/ is smaller than I and
is incident to the vertex directly after the top.

Example 4.13. In Figure 3, examples of rooted trees or expanded pairs of holes are
given by the subgraphs surrounded by red or blue lines respectively.

If � is a rooted tree or an expanded pair of holes, and v is a vertex of � , then the
contribution c.v/ of v is defined as for expanded chains. Here, for rooted trees, we set
R.�/ D L.�/ and identify me with p for the root. Also, for expanded pair of holes,
we identify p1 and p2 with the twists me and me0 at the first and last vertices of the
core respectively. Then we define cont.�/ as jAut.�/j�1

Q
v c.v/. If � is odd and �

is a rooted tree then we define cont˙.�/ in the same way.

Lemma 4.14 ([6, Sections 3.5 and 6.1]). For all positive integers p and † � J2; nK,
we have �

p C
X
i2†

mi

�
vol
�
.p/C .mi /i2†

�
D

X
�2RT.�;†;p/

cont.�/;
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and if � is odd, then we have�
p C

X
i2†

mi

�
vol˙

�
.p/C .mi /i2†

�
D

X
�2RT.�;†;p/

cont˙.�/:

We will show the following analogue result for an expanded pair of holes.

Lemma 4.15. For all positive integers p1; p2, † � J2; nK and I 2 R n†, we have�
p1 C p2 C

X
i2†

mi

�
vol
�
.mi /i2† C .p1; p2/

�
D

X
�2EP.�;†;p1;p2;I /

cont.�/:

Proof. We fix a choice of �;†;p1; p2. We denote by S.I / the sum on the right-hand
side of the identity of the Lemma. This function is locally constant on R n†, thus to
prove the lemma we proceed in two steps: first, we show that it is valid when I D 0;
then we show that S.i � 1=2/ � S.i C 1=2/ D 0 for all i 2 †.

The case I D 0. We proceed by induction on the size of †. If † is empty, then a
graph in EP.�;†; p1; p2; 0/ is a backbone s.t. the legs h1 and h2 are incident to v�1.
Thus, we may apply Proposition 3.10 for � D .p1; p2/, which implies the lemma in
this case.

If † is non-empty, then the admissibility condition implies that the marking h2 is
incident to the top. Then a graph in EP.�;†; p1; p2; 0/ is determined by:

(1) an element i 2 † [ ¹h2º;

(2) an integer k � 1;

(3) a partition † n ¹iº D †1 t � � � t †k , and a partition p1 C mi � k D p01 C

� � � C p0
k

, where mi D p2 if i D h2;

(4) a rooted tree in RT.�; †j ; p0j / for 1 � j � k if h2 … †j , or an element of
EP.�;†j ; p0j ; p2; 0/ otherwise.

Indeed, with this datum we construct a graph in EP.�;†;p1;p2; 0/ by attaching the k
graphs of the last part of the data to a vertex of genus 0 with the markings h1 and i .
Here, we replace an half-edge with marking p0j by an edge ej with twist mej D p

0
j

to this vertex with markings h1 and i . Using this fact, we may rewrite the sum defin-
ing S.0/ as follows:X

i2†
k�1

X
†1t���t†kD.†n¹iº/[¹h2º
p0
1
C���Cp0

k
Dp1Cmi�k

mif .p1; mi ;�p
0
1; : : : ;�p

0
k
/

.k � 1/Š

�

� X
�2EP.�;†1;p01;p2;0/

cont.�/
� kY
jD2

� X
�2RT.�;†j ;p0j /

cont.�/
�
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C

X
k�1

X
†1t���t†kD†

p0
1
C���Cp0

k
Dp1Cp2�k

.p1 C p2/f .p1; p2;�p
0
1; : : : ;�p

0
k
/

kŠ

�

kY
jD1

� X
�2RT.�;†j ;p0j /

cont.�/
�
:

The first sum accounts for the contribution of graphs where h2 is not incident to the
same vertex as h1 (thus one of the descendants of the main vertex of genus 0 is dis-
tinguished as it carries the leg h2) while the second sum accounts for the contribution
of graphs with h1 and h2 incident to the same vertex.

Therefore, we may compute the sum S.0/ recursively by applying Lemma 4.14
and the induction hypothesis to obtain that S.0/ is given byX

i2†
k�1

X
†1t���t†kD.†n¹iº/[¹h2º
p0
1
C:::Cp0

k
Dp1Cmi�k

mif .p1; mi ;�p
0
1; : : : ;�p

0
k
/

kŠ

�

kY
jD1

�
p0j C

X
i 02†j

mi 0

�
vol
�
.p0j /C .mi 0/i 02†j

�
C

X
k�1

X
†1t���t†kD†

p0
1
C���Cp0

k
Dp1Cp2�k

.p1 C p2/f .p1; p2;�p
0
1; : : : ;�p

0
k
/

kŠ

�

kY
jD1

�
p0j C

X
i 02†j

mi 0

�
vol
�
.p0j /C .mi 0/i 02†j

�
;

where, again, mh2 D p2. We apply [6, Proposition 3.11] to deduce that

S.0/ D
X
i2†

�
mi vol

�
†C .p1; p2/

��
C .p1 C p2/ vol

�
†C .p1; p2/

�
;

which is the desired identity.

Crossing an element in †. We fix i in †. We first remark that the contribution of
an element in the sum defining S.I / does not depend on I . Indeed, the dependence
of S.I / on I is uniquely given by the set of graphs that contribute. Thus we need
to determine which graphs contribute to S.i C 1=2/ but not to S.i � 1=2/ and con-
versely.

We assume that i D min¹ind.v/ j v 2 C.�/º. Namely, if this is not the case then
the same graphs contribute to S.i C 1=2/ and S.i � 1=2/. Now, a graph contributes
to S.i C 1=2/ but not to S.i � 1=2/ if and only if the label i belongs to C.�/ and h2
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is incident to the top. We denote by SC the sum of the contributions for graphs of this
type. Conversely, a graph contributes to S.i � 1=2/ but not to S.i C 1=2/ if and only
if the label i is incident to the vertex following the top in C.�/. We denote by S� the
sum of the contributions for graphs of this type. We will show that SC D S� to finish
the proof of the lemma.

To do so, we introduce a family of sets of pre-expanded pairs of holes S.i; `/
for all ` � 0. A pre-expanded pair of holes �2 EP.�;†; p1; p2; I / compatible with
.mi /i2† C .p1; p2/ belongs to S.i; `/ if:

• the leg i is incident to a vertex of C.�/ and if a leg i 0 2 † is incident to a vertex
of C.�/ then i 0 > i ;

• the top vertex is the t th vertex of the core, and the vertex carrying i the sth of
the core then either ` > 0 and the top is the last vertex of the core, or we have
t � s C 1 D `.

In particular, with this notation we have S.i; 0/ D S�, while S.i; `/ D SC if ` is
sufficiently large. Then we show thatX

�2S.i;`/

cont.�/ D
X

�2S.i;`C1/

cont.�/

for all ` � 0. Indeed, for each graph � 2 S.i; `/: either the top vertex is the last vertex
and then it belongs to S.i; `C 1/ too, or we apply Lemma 3.8 to the subgraph made
of the top vertex and the next vertex in the C.� . Then Lemma 3.8 exchange the roles
of these two vertices and thus the difference between the positions of the top vertex
and the vertex carrying the i th leg is augmented by 1. We thus obtain a summation on
graphs in S.i; `C 1/.

End of the proof of Proposition 4.10. To finish the proof, we simply remark that the
datum of an expanded chain is equivalent to the datum of:

(i) a chain �;

(ii) a rooted tree for each vertex of F.�/;

(iii) an expanded pair of holes for each vertex of P.�/.

Moreover, applying Lemmas 4.14 and 4.15 provides the equality between the con-
tribution of a vertex in F.�/ or P.�/ and the sum of the contributions of the rooted
trees or expanded pairs of holes associated to this vertex. Note that the factorme in the
contributionmej�.v/jvol.�.v// of a vertex v 2 F.�/ does not occur in Lemma 4.14,
but does occur in the function '.�.v0// in the contribution of v0, where v0 is the vertex
of the core of the chain connected to v.
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4.5. End of the proof of Theorem 3.1

An expanded chain in ECH.�/1 has only one vertex inR.�/, and thus uniquely deter-
mines a backbone graph in BB.�/0. Moreover, Proposition 3.11 may be rewritten as

d1.�/ D
1

2m1

X
�2ECH.�/1

cont.�/:

Thus using Propositions 4.9, 4.10 and 4.4 successively, we obtain

d1.�/ D
1

2m1

X
�2ECH.�/n

cont.�/ D
1

2m1

X
�2CH.�/

bcont.�/

D
�4�2

m1
ccyl;1.�/ � vol.�/;

which is the first identity stated in Theorem 3.1. If � is odd, then the second statement
of Theorem 3.1 is obtained similarly by applying the spin counterpart of Proposi-
tions 3.11, 4.9, 4.10 and 4.4.

A. Character tables of the spin symmetric group and the Sergeev
group for d � 5

For d � 5, and G being one the groups zSd ; zAd ; Sed and Se0d , we compute the
character table of all irreducible spin representations, i.e., we assume the central ele-
ment " 2 G acts by �1. If the characters are �1; �2; : : : and the conjugacy classes
C1;C2; : : : ; we write

G C1 � � �

jGj jC1j � � �

�1 �1.C1/ � � �
:::

:::

for the character table of G. Note that �i ."Cj / D ��i .Cj /. Thus, we omit all conju-
gacy classes for which Cj \ "Cj ¤ ;, and else pick only one of the two conjugacy
classes Cj and "Cj . Row and column orthogonality relations are satisfied, i.e.,X

i

jCj j�i .Cj /�i .Cj 0/ D
1

2
jGjıj;j 0 for all j; j 0;

X
j

jCj j�i .Cj /�i 0.Cj / D
1

2
jGjıi;i 0 for all i; i 0:
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The first factor 1=2 appears because we omit half of the conjugacy classes, as exp-
lained before. The second factor 1=2 appears because we omit the non-spin represen-
tations, which correspond to representations of the quotient G=".

d D 1

zS1 e

2 1

1 1

zA1 ' zS1 Se1 e Ce;1

4 1 1

1C 1 Ci

1� 1 �i

Se01 e

2 1

1 1

d D 2

zS2 e .12/

4 1 1

2C 1 Ci

2� 1 �i

zA2 e

2 1

2 1

Se2 e C.12/;1

16 1 2

2C 2 Ci
p
2

2� 2 �i
p
2

Se02 e

8 1

2 2

d D 3

zS3 e .123/ .12/

12 1 2 3

3 2 1 0

2; 1C 1 �1 Ci

2; 1� 1 �1 �i

zA3 e .123/ .321/

6 1 1 1

3C 1 1
2
C

1
2

i
p
3 1

2
C

1
2

i
p
3

3� 1 1
2
�
1
2

i
p
3 1

2
�
1
2

i
p
3

2; 1 1 �1 �1

Se3 e C.123/ C.123/;1

96 1 8 8

3C 4 1 Ci
p
3

3� 4 1 �i
p
3

2; 1 4 �2 0

Se03 e C.123/ C.12/

48 1 8 6

3 4 1 0

2; 1C 2 �1 Ci
p
2

2; 1� 2 �1 �i
p
2
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d D 4

zS4 e .123/ .1234/

48 1 8 6

4C 2 1 Ci
p
2

4� 2 1 �i
p
2

3; 1 4 �1 0

zA4 e .123/ .321/

24 1 4 4

4 2 1 1

3; 1C 2 �1
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